National Library of Energy BETA

Sample records for wind electricity generation

  1. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    Contribution to U.S. Electricity Supply. National Renewable20% of the nation's electricity from wind technology byTERMS wind-generated electricity; wind energy; 20% wind

  2. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    of wind and conventional energy technologies, transmission,wind versus the displaced conventional energy technologies,wind energy I. I NTRODUCTION Generating electricity from wind technology

  3. Floating offshore wind farms : demand planning & logistical challenges of electricity generation

    E-Print Network [OSTI]

    Nnadili, Christopher Dozie, 1978-

    2009-01-01

    Floating offshore wind farms are likely to become the next paradigm in electricity generation from wind energy mainly because of the near constant high wind speeds in an offshore environment as opposed to the erratic wind ...

  4. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    Energy Facilities. ” American Wind Energy Association (AWEA)Analyzing the Effects of Temporal Wind Patterns onthe Value of Wind-Generated Electricity References TrueWind

  5. The role of hydroelectric generation in electric power systems with large scale wind generation

    E-Print Network [OSTI]

    Hagerty, John Michael

    2012-01-01

    An increasing awareness of the operational challenges created by intermittent generation of electricity from policy-mandated renewable resources, such as wind and solar, has led to increased scrutiny of the public policies ...

  6. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    the Value of Wind-Generated Electricity References TrueWindValuing the Time-Varying Electricity Production of Solarthe Value of Wind-Generated Electricity References Gipe, P.

  7. A stochastic framework for uncertainty analysis in electric power transmission systems with wind generation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    of generating units, the transfer of electric power over networks of transmission lines and, finally1 A stochastic framework for uncertainty analysis in electric power transmission systems with wind an electric transmission network with wind power generation and their impact on its reliability. A stochastic

  8. Quantifying the system balancing cost when wind energy is incorporated into electricity generation system 

    E-Print Network [OSTI]

    Issaeva, Natalia

    2009-01-01

    Incorporation of wind energy into the electricity generation system requires a detailed analysis of wind speed in order to minimize system balancing cost and avoid a significant mismatch between supply and demand. Power ...

  9. If I generate 20 percent of my national electricity from wind...

    Open Energy Info (EERE)

    If I generate 20 percent of my national electricity from wind and solar - what does it do to my GDP and Trade Balance ? Home I think that the economics of fossil fuesl are well...

  10. NWTC Aerodynamics Studies Improve Energy Capture and Lower Costs of Wind-Generated Electricity

    SciTech Connect (OSTI)

    2015-08-01

    Researchers at the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) have expanded wind turbine aerodynamic research from blade and rotor aerodynamics to wind plant and atmospheric inflow effects. The energy capture from wind plants is dependent on all of these aerodynamic interactions. Research at the NWTC is crucial to understanding how wind turbines function in large, multiple-row wind plants. These conditions impact the cumulative fatigue damage of turbine structural components that ultimately effect the useful lifetime of wind turbines. This work also is essential for understanding and maximizing turbine and wind plant energy production. Both turbine lifetime and wind plant energy production are key determinants of the cost of wind-generated electricity.

  11. Talkin’ Bout Wind Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  12. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    SciTech Connect (OSTI)

    Bolinger, Mark A; Hand, Maureen; Blair, Nate; Bolinger, Mark; Wiser, Ryan; Hern, Tracy; Miller, Bart; O'Connell, R.

    2008-06-09

    The Wind Energy Deployment System model was used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030. This generation capacity expansion model selects from electricity generation technologies that include pulverized coal plants, combined cycle natural gas plants, combustion turbine natural gas plants, nuclear plants, and wind technology to meet projected demand in future years. Technology cost and performance projections, as well as transmission operation and expansion costs, are assumed. This study demonstrates that producing 20% of the nation's projected electricity demand in 2030 from wind technology is technically feasible, not cost-prohibitive, and provides benefits in the forms of carbon emission reductions, natural gas price reductions, and water savings.

  13. Managing Wind-based Electricity Generation and Storage

    E-Print Network [OSTI]

    Sadeh, Norman M.

    , and to meet increasing electricity demand without harming the environment. Two of the most promising solutions batteries. Grid storage can also help match the supply and demand of an entire electricity market. In Chapter 3, I examine how electricity storage can be used to help match electricity supply and demand

  14. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    year. 2 Be- cause wind power generators are intermittent andgenerators to compensate for the intermittency of wind power

  15. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    approach to locating wind farms in the UK," RenewableV. G. Rau, "Optimum siting of wind turbine generators," IEEEoptimal planning for wind energy conver- sion systems over

  16. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    of wind turbine generators," IEEE Transactions on Energysuch as wind turbines, can contribute both energy andturbine converts about 40 percent of the kinetic energy of wind

  17. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    value of re- newable electricity; and customer surveys ofCalifornia or Northwestern electricity demand. This may bebetween wind speed and electricity demand," Solar Energy,

  18. Economic assessment of small-scale electricity generation from wind 

    E-Print Network [OSTI]

    McAllister, Kristen Dawn

    2007-09-17

    Analysis was done to determine if small-scale wind energy could be economically feasible on a cotton farm with 1,200 irrigated acres, a house, and a barn. Lubbock and Midland were locations chosen for this model farm and the twenty-year analysis. A...

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    fueled power generation with wind energy reduces waterand water savings. Index Terms—power system modeling, wind

  20. Using Electric Vehicles to Mitigate Imbalance Requirements Associated with an Increased Penetration of Wind Generation

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-10-10

    The integration of variable renewable generation sources continues to be a significant area of focus for power system planning. Renewable portfolio standards and initiatives to reduce the dependency on foreign energy sources drive much of the deployment. Unfortunately, renewable energy generation sources like wind and solar tend to be highly variable in nature. To counter the energy imbalance caused by this variability, wind generation often requires additional balancing resources to compensate for the variability in the electricity production. With the expected electrification of transportation, electric vehicles may offer a new load resource for meeting all, or part, of the imbalance created by the renewable generation. This paper investigates a regulation-services-based battery charging method on a population of plug-in hybrid electric vehicles to meet the power imbalance requirements associated with the introduction of 11 GW of additional wind generation into the Northwest Power Pool. It quantifies the number of vehicles required to meet the imbalance requirements under various charging assumptions.

  1. Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air Energy Storage System

    E-Print Network [OSTI]

    Li, Perry Y.

    Revenue Maximization of Electricity Generation for a Wind Turbine Integrated with a Compressed Air controller is developed for a Compressed Air Energy Storage (CAES) system integrated with a wind turbine of wind intermittency are investigated in [2] using convex optimization techniques. The optimal power flow

  2. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  3. Power System Modeling of 20% Wind-Generated Electricity by 2030: Preprint

    SciTech Connect (OSTI)

    Hand, M.; Blair, N.; Bolinger, M.; Wiser, R.; O'Connell, R.; Hern, T.; Miller, B.

    2008-06-01

    This paper shows the results of the Wind Energy Deployment System model used to estimate the costs and benefits associated with producing 20% of the nation's electricity from wind technology by 2030.

  4. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  5. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    fuel price forecast Coal prices follow AEO 2007 referencecoal- and natural gas-based electricity generation analyzed here include decreased natural gas prices,

  6. Renewable Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  7. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S. (Pleasanton, CA); Wilson, James R. (Livermore, CA); McDonald, Jr., Charles A. (Danville, CA)

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  8. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    Electricity Anemometer Data Percentage Change Due to Wind Timing TrueWind Data at Same Locations Load- Weighted Capacity Factor Market

  9. Wind Generation Challenges & New Technologies

    E-Print Network [OSTI]

    McCalley, James D.

    · Introduction · Grid Integration Challenges · "New" Technologies · Conclusions #12;Introduction #12;Proprietary · Testing and modeling thermal and renewable plants for grid code compliance GE Wind Generator & Electrical: AWEA, 1Q 2014 [1] #12;Wind Integration Challenges #12;Proprietary Information: This document contains

  10. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  11. Dynamic modelling of generation capacity investment in electricity markets with high wind penetration 

    E-Print Network [OSTI]

    Eager, Daniel

    2012-06-25

    The ability of liberalised electricity markets to trigger investment in the generation capacity required to maintain an acceptable level of security of supply risk has been - and will continue to be - a topic of much ...

  12. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    of wind power, based on historical and forecast wholesale-wind timing using historical electricity loads and historical and forecastValue, Forecast Prices Figure 3. Effects of Wind Timing on

  13. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    price is constant Shallow Offshore Wind Technology Cost WindOhio was modified and offshore wind development in Texas was

  14. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01

    approach to locating wind farms in the UK," Renewablepower production at existing wind farms. Each of these is anpower from potential wind farm locations in California and

  15. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    Assumptions Land-Based Wind Technology Cost $1730/kW in 2005Shallow Offshore Wind Technology Cost Wind Technologyare modeled by WinDS, the costs of building transmission

  16. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    generator portfolio, as well as computing resources that would make it prohibitive for estimating the capacity contribution from wind power

  17. Small Wind Electric Systems Small Wind Electric Systems

    E-Print Network [OSTI]

    Branoff, Theodore J.

    An Illinois Consumer's Guide Small Wind Electric Systems #12;Small Wind Electric Systems Cover photo: Small wind turbines, like this grid-connected 10-kilowatt Bergey, can provide supplemental power -- Warren Gretz, NREL/PIX09630 #12;Small Wind Electric Systems Contents Introduction

  18. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    Long-Term Market Penetration of Wind in the United States. ”2003. U.S. Department of Energy (2008). 20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.

  19. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    2003. U.S. Department of Energy (2008). 20% Wind Energy by2030: Increasing Wind Energy’s Contribution to U.S.shows the results of the Wind Energy Deployment System model

  20. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    demand in future years. Technology cost and performanceAssumptions Land-Based Wind Technology Cost $1730/kW in 2005Shallow Offshore Wind Technology Cost Wind Technology

  1. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    wind and conventional energy technologies, transmission, operations and maintenance (wind versus the displaced conventional energy technologies, as well as differences in transmission, operations and maintenance (

  2. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    electricity capacity expansion in the continental U.S. wholesale market.capacity level will vary significantly as electricity markets

  3. 20% wind energy by 2030: Increasing wind energy's contribution to U.S. electricity supply

    SciTech Connect (OSTI)

    None, None

    2008-07-01

    Report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030.

  4. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    selected to achieve a cost-optimal generation mix over a 20-Conventional Generation Technology Cost and Performancethe future cost and performance of conventional generation

  5. The effects of energy storage properties and forecast accuracy on mitigating variability in wind power generation

    E-Print Network [OSTI]

    Jaworsky, Christina A

    2013-01-01

    Electricity generation from wind power is increasing worldwide. Wind power can offset traditional fossil fuel generators which is beneficial to the environment. However, wind generation is unpredictable. Wind speeds have ...

  6. Wind and solar power electric generation to see strong growth over the next two years

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry NaturalPrices Globaldieselgasolinemonthlysummer1Net ProductionWind

  7. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  8. Power System Modeling of 20percent Wind-Generated Electricity by 2030

    E-Print Network [OSTI]

    Hand, Maureen

    2008-01-01

    pulverized coal plants, combined cycle natural gas plants,natural gas plants, and combined cycle natural gas plants.generated largely from combined-cycle Capacity (GW) yd r as

  9. New Superconducting Magnet Will Lead to Next Generation of Wind...

    Energy Savers [EERE]

    DOE funded AML's design for a superconducting generator for large-scale, high-efficiency offshore wind turbines. AML worked with its partners, Emerson Electric Corporation, Creare...

  10. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co Paulina Jaramillo Doctor Paul Fischbeck 2012 #12;ii #12;iii Managing Wind Power Forecast Uncertainty generated from wind power is both variable and uncertain. Wind forecasts provide valuable information

  11. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  12. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    1992). “Capacity credit of wind power in the Netherlands. ”modeling as a tool for wind resource assessment andBurton, T. , et al. (2001). Wind Energy Handbook, John

  13. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    7 2.2.3 Wind Farm Production1. Rated Capacity of Wind Farms for which Monthly Productionpower from potential wind farm locations in California and

  14. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    towers or operational wind farms are needed to resolveapproach to locating wind farms in the UK. ” Renewablepower from potential wind farm locations in California and

  15. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    Energy Facilities. ” American Wind Energy Association (AWEA)21. Brower, M. 2002a. New Wind Energy Resource Maps ofand M. Schwartz. 1993. Wind Energy Potential in the United

  16. California's future `Smart Grid' system will integrate solar, wind, and other renewable electricity generation with energy storage to meet our electricity demands and to support electric transportation. The Sustainable Integrated Grid

    E-Print Network [OSTI]

    California at Riverside, University of

    California's future `Smart Grid' system will integrate solar, wind, and other renewable electricity. The Sustainable Integrated Grid Initiative at UCR combines these elements so that researchers, utility personnel and wind are intermittent in nature and may not be available when needed. Electrical energy stored

  17. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01

    a) (b) Effect of Wind Timing with Forecast California Pricesa) (b) Effect of Wind Timing with Forecast Northwest Pricesby TrueWind, to develop a forecast of wind speeds. Or, going

  18. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  19. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C. (Los Alamos, NM); Swift, Gregory W. (Los Alamos, NM); Migliori, Albert (Santa Fe, NM)

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  20. Installing and Maintaining a Small Wind Electric System | Department...

    Office of Environmental Management (EM)

    Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System If you went...

  1. Planning a Small Wind Electric System

    Broader source: Energy.gov [DOE]

    Is a small wind electric system right for you? Find out if there is enough wind, the location is appropriate, if wind systems are allowed, and if the system will be economical.

  2. Class Generation for Numerical Wind Atlases

    E-Print Network [OSTI]

    Class Generation for Numerical Wind Atlases Risř National Laboratory Wind Energy Department Constructing a Numerical Wind Atlas 5 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.4 The existing procedure at Risř . . . . . . . . . . . . . . . . . . . 13 3 Representing a Wind

  3. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  4. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  5. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  6. Contracting for wind generation

    E-Print Network [OSTI]

    Newbery, David

    on the discount offered to small wind farms, but it might even be as high as 15-20%. These figures may also reflect risk surrounding ROC prices, which although apparently stable, are subject to political and credibility risk. EPRG No 1120 14 ahead of time...

  7. The Effect of Wind Speed and Electric Rates On Wind Turbine Economics

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power by the theoretical maximum energy production if the generator were running at its rated power all the year turbine Rated Power per turbine: assumption 1,500 kW C Availability assumption 97% D 8,760 hrs/year E

  8. Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment of the requirements for

    E-Print Network [OSTI]

    Instituto de Sistemas e Robotica

    Managing Wind Power Forecast Uncertainty in Electric Grids Submitted in partial fulfillment;iii Abstract Electricity generated from wind power is both variable and uncertain. Wind forecasts prices. Wind power forecast errors for aggregated wind farms are often modeled with Gaussian

  9. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Broader source: Energy.gov (indexed) [DOE]

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and...

  10. Coupling Wind Generation with Controllable Load and Storage

    E-Print Network [OSTI]

    Electric Energy System #12;Coupling Wind Generation with Controllable Load and Storage: A Time the electric power industry and educating the next generation of power engineers. More information about PSERC will fundamentally alter the traditional generation technology mix. This will place a greater value on technologies

  11. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power > Generation Hydro

  12. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    wind energy generation within the Electric Reliabilitywind energy generation within the Electric Reliability

  13. Wind turbine/generator set and method of making same

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2013-06-04

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  14. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary)

    SciTech Connect (OSTI)

    None, None

    2008-12-01

    Executive summary of a report on the requirements needed to generate twenty percent of the nation's electricity from wind energy by the year 2030.

  15. Thermoacoustic magnetohydrodynamic electrical generator

    SciTech Connect (OSTI)

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1986-07-08

    A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid.

  16. Wind Turbine Generator KanaKanapathipillai

    E-Print Network [OSTI]

    New South Wales, University of

    Wind Turbine Generator Noise KanaKanapathipillai Reliable and accurate measurement of wind turbine & Associates on wind turbine noise for a number of years. Treatment for Presbyopia Hooman M. Pour Presbyopia

  17. Small Wind Electric Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and the benefits they provide. A small wind system can be connected to the electric grid through your power provider or it can stand alone (off-grid). This makes small wind...

  18. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    with compressed air energy storage (CAES) participating freely in the day-ahead electricity market without the benefit of a renewable portfolio standard or production tax credit. CAES is used to reduce the risk of committing uncertain quantities of wind energy and to shift dispatch of wind generation to high price periods

  19. Sandia Energy - Wind Generator Modeling

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-Throughput AnalysisSinkholeCapabilitiesThe Sandia-patented rotary electricalWind

  20. Electrical Generation for More-Electric Aircraft using Solid...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells Electrical Generation for More-Electric Aircraft using Solid Oxide Fuel Cells This study, completed by...

  1. Wind Generation Feasibility Study in Bethel, AK

    SciTech Connect (OSTI)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  2. Registration of Electric Generators (Connecticut)

    Broader source: Energy.gov [DOE]

    All electric generating facilities operating in the state, with the exception of hydroelectric and nuclear facilities, must obtain a certificate of registration from the Department of Public...

  3. General Electric Company Oahu Wind Integration Study

    E-Print Network [OSTI]

    General Electric Company Oahu Wind Integration Study Final Report Delivered to: Richard Rocheleau dependent state in the nation. In 2008 this cost the state approximately $8.4 billion each year, which to integrate 400 MW of wind power located on the islands of Molokai and/or Lanai that could be transmitted

  4. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01

    wind generation) and electricity demand suggests that windin Wind Generation and Electricity Demand Source: Wind speeddata – CWET (2010). Electricity demand data – CEA (2011).

  5. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines ThisHENPDepartment'sPrestonPreviousMembers | HomeWind

  6. Method for protecting an electric generator

    DOE Patents [OSTI]

    Kuehnle, Barry W. (Ammon, ID); Roberts, Jeffrey B. (Ammon, ID); Folkers, Ralph W. (Ammon, ID)

    2008-11-18

    A method for protecting an electrical generator which includes providing an electrical generator which is normally synchronously operated with an electrical power grid; providing a synchronizing signal from the electrical generator; establishing a reference signal; and electrically isolating the electrical generator from the electrical power grid if the synchronizing signal is not in phase with the reference signal.

  7. Wind turbine generators having wind assisted cooling systems and cooling methods

    DOE Patents [OSTI]

    Bagepalli, Bharat (Niskayuna, NY); Barnes, Gary R. (Delanson, NY); Gadre, Aniruddha D. (Rexford, NY); Jansen, Patrick L. (Scotia, NY); Bouchard, Jr., Charles G. (Schenectady, NY); Jarczynski, Emil D. (Scotia, NY); Garg, Jivtesh (Cambridge, MA)

    2008-09-23

    A wind generator includes: a nacelle; a hub carried by the nacelle and including at least a pair of wind turbine blades; and an electricity producing generator including a stator and a rotor carried by the nacelle. The rotor is connected to the hub and rotatable in response to wind acting on the blades to rotate the rotor relative to the stator to generate electricity. A cooling system is carried by the nacelle and includes at least one ambient air inlet port opening through a surface of the nacelle downstream of the hub and blades, and a duct for flowing air from the inlet port in a generally upstream direction toward the hub and in cooling relation to the stator.

  8. Risk implications of the deployment of renewables for investments in electricity generation

    E-Print Network [OSTI]

    Sisternes, Fernando J. de (Fernando José de Sisternes Jiménez)

    2014-01-01

    This thesis explores the potential risk implications that a large penetration of intermittent renewable electricity generation -such as wind and solar power- may have on the future electricity generation technology mix, ...

  9. Structural optimisation of permanent magnet direct drive generators for 5MW wind turbines 

    E-Print Network [OSTI]

    Zavvos, Aristeidis

    2013-11-28

    This thesis focuses on permanent magnet "direct drive" electrical generators for wind turbines with large power output. A variety of such generator topologies is reviewed, tested and optimised in an attempt to increase ...

  10. Property Tax Exemption for Wind Generators

    Broader source: Energy.gov [DOE]

    In May 2015, Oklahoma enacted a bill (SB 498) ending the property tax exemption for wind power generators. The exemption will end on January 1, 2017; projects currently in production or put into...

  11. Variable Speed Wind Turbine Generator with Zero-sequence Filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  12. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, Eduard (Golden, CO)

    1998-01-01

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility.

  13. Variable speed wind turbine generator with zero-sequence filter

    DOE Patents [OSTI]

    Muljadi, E.

    1998-08-25

    A variable speed wind turbine generator system to convert mechanical power into electrical power or energy and to recover the electrical power or energy in the form of three phase alternating current and return the power or energy to a utility or other load with single phase sinusoidal waveform at sixty (60) hertz and unity power factor includes an excitation controller for generating three phase commanded current, a generator, and a zero sequence filter. Each commanded current signal includes two components: a positive sequence variable frequency current signal to provide the balanced three phase excitation currents required in the stator windings of the generator to generate the rotating magnetic field needed to recover an optimum level of real power from the generator; and a zero frequency sixty (60) hertz current signal to allow the real power generated by the generator to be supplied to the utility. The positive sequence current signals are balanced three phase signals and are prevented from entering the utility by the zero sequence filter. The zero sequence current signals have zero phase displacement from each other and are prevented from entering the generator by the star connected stator windings. The zero sequence filter allows the zero sequence current signals to pass through to deliver power to the utility. 14 figs.

  14. EIA - Electricity Generating Capacity

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet) Wyoming Dry Natural GasNatural Gas UsageDiesel pricesDieselAnnualElectricity

  15. Sixth Northwest Conservation & Electric Power Plan Cost and Availability of Wind

    E-Print Network [OSTI]

    1 Sixth Northwest Conservation & Electric Power Plan Cost and Availability of Wind Integration and Conservation Council Wind Integration Costs · Reserving capacity for within-hour balancing is costly the system without the need to reserve flexible capacity for within-hour balancing of wind generation #12;3 5

  16. Funding Opportunity: Next Generation Electric Machines: Megawatt...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors Funding Opportunity: Next Generation Electric Machines: Megawatt Class Motors March 19, 2015 - 4:45pm...

  17. Email To Friend Steam Electricity Generator

    E-Print Network [OSTI]

    . keymanengravables.com Steam Turbine Generator Info, Pictures And Deals For Steam turbine generator ediscountshoppingBack One Email To Friend Steam Electricity Generator Need Steam Electricity Generator? See Steam Electricity Generator. greenshieldsindustrial.com Steam Generators Deals on Steam Generators Find what you

  18. Role of Energy Storage with Renewable Electricity Generation

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-01-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as intermittent) output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    wind energy generation within the Electric ReliabilityEnergy Regulatory Commission General Electric Corporation gigawatt generation and

  20. Final report: Task 4a.2 20% wind scenario assessment of electric grid operational features

    SciTech Connect (OSTI)

    Toole, Gasper L.

    2009-01-01

    Wind integration modeling in electricity generation capacity expansion models is important in that these models are often used to inform political or managerial decisions. Poor representation of wind technology leads to under-estimation of wind's contribution to future energy scenarios which may hamper growth of the industry. The NREL's Wind Energy Deployment System (WinDS) model provides the most detailed representation of geographically disperse renewable resources and the optimization of transmission expansion to access these resources. Because WinDS was selected as the primary modeling tool for the 20% Wind Energy by 2030 study, it is the ideal tool for supplemental studies of the transmission expansion results. However, as the wind industry grows and knowledge related to the wind resource and integration of wind energy into the electric system develops, the WinDS model must be continually improved through additional data and innovative algorithms to capture the primary effects of variable wind generation. The detailed representation of wind technology in the WinDS model can be used to provide improvements to the simplified representation of wind technology in other capacity expansion models. This task did not employ the WinDS model, but builds from it and its results. Task 4a.2 provides an assessment of the electric grid operational features of the 20% Wind scenario and was conducted using power flow models accepted by the utility industry. Tasks 2 provides information regarding the physical flow of electricity on the electric grid which is a critical aspect of infrastructure expansion scenarios. Expanding transmission infrastructure to access remote wind resource in a physically realizable way is essential to achieving 20% wind energy by 2030.

  1. Installing and Maintaining a Small Wind Electric System | Department...

    Energy Savers [EERE]

    Installing and Maintaining a Small Wind Electric System Installing and Maintaining a Small Wind Electric System July 2, 2012 - 8:22pm Addthis Installing and Maintaining a Small...

  2. Electricity for road transport, flexible power systems and wind...

    Open Energy Info (EERE)

    Electricity for road transport, flexible power systems and wind power (Smart Grid Project) Jump to: navigation, search Project Name Electricity for road transport, flexible power...

  3. Installing and Maintaining a Small Wind Electric System

    Broader source: Energy.gov [DOE]

    Installing a small wind electric system? Proper installation and maintenance are key to getting the most out of your system.

  4. Size Reduction of Permanent Magnet Generators for Wind Turbines with Higher Energy Density

    E-Print Network [OSTI]

    McCalley, James D.

    . Currently, the U.S has 60GW installed wind capacity; this translates to 3.6% of total electricity generation [1]. The U.S. Department of Energy has proposed that 20% of electricity generation in the U.S. should to DFIGs. II. PERMANENT MAGNET GENERATORS A. Fundamental Principles In PMGs, the permanent magnets provide

  5. Wind Power (pbl/generation)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  6. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis Jennifer Morris* , Mort Webster* and John Reilly* Abstract The electric power sector, which

  7. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  8. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  9. Market Power and Technological Bias: The Case of Electricity Generation

    E-Print Network [OSTI]

    Twomey, Paul; Neuhoff, Karsten

    2006-03-14

    .twomey@econ.cam.ac.uk, karsten.neuhoff@econ.cam.ac.uk. 1 1 Introduction Renewable energy technologies are playing an increasingly important role in the portfolio mix of electricity generation. However, the intermittent nature of output from wind turbines and solar panels... . This intermittency discount is not a market failure but simply reflects the value of electricity provided by different technologies. Building on this base case the paper assesses the impact of monopolist and strategic behaviour of conventional generation companies...

  10. Multi-winding homopolar electric machine

    DOE Patents [OSTI]

    Van Neste, Charles W

    2012-10-16

    A multi-winding homopolar electric machine and method for converting between mechanical energy and electrical energy. The electric machine includes a shaft defining an axis of rotation, first and second magnets, a shielding portion, and a conductor. First and second magnets are coaxial with the shaft and include a charged pole surface and an oppositely charged pole surface, the charged pole surfaces facing one another to form a repulsive field therebetween. The shield portion extends between the magnets to confine at least a portion of the repulsive field to between the first and second magnets. The conductor extends between first and second end contacts and is toroidally coiled about the first and second magnets and the shield portion to develop a voltage across the first and second end contacts in response to rotation of the electric machine about the axis of rotation.

  11. Next-Generation Wind Technology | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and reliability of next-generation wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity...

  12. Apparatuses and methods for generating electric fields

    DOE Patents [OSTI]

    Scott, Jill R; McJunkin, Timothy R; Tremblay, Paul L

    2013-08-06

    Apparatuses and methods relating to generating an electric field are disclosed. An electric field generator may include a semiconductive material configured in a physical shape substantially different from a shape of an electric field to be generated thereby. The electric field is generated when a voltage drop exists across the semiconductive material. A method for generating an electric field may include applying a voltage to a shaped semiconductive material to generate a complex, substantially nonlinear electric field. The shape of the complex, substantially nonlinear electric field may be configured for directing charged particles to a desired location. Other apparatuses and methods are disclosed.

  13. Electrical Power Grid Delivery Dynamic Analysis: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer; Michael E. Reed

    2011-11-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  14. Xcel Energy Wind and Biomass Generation Mandate

    Broader source: Energy.gov [DOE]

    A separate law (Minn. Stat. § 216B.2424, also originally enacted in 1994) requires Xcel Energy to build or contract for 110 MW of electricity generated from biomass resources. The original...

  15. Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F GENERATION COST AND PERFORMANCE

    E-Print Network [OSTI]

    F-1 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F APPENDIX F GENERATION WIND #12;F-2 Draft Fourth Northwest Conservation and Electric Power Plan, Appendix F GENERATION COST and Electric Power Plan, Appendix F ANALYTICALAPPROACH The analysis of alternative generating resources

  16. Candidate wind turbine generator site: annual data summary, January 1981-December 1981

    SciTech Connect (OSTI)

    Sandusky, W.F.; Buck, J.W.; Renne, D.S.; Hadley, D.L.; Abbey, O.B.

    1982-07-01

    Summarized hourly meteorological data for 34 candidate and wind turbine generator sites for calendar year 1981 are presented. These data are collected for the purpose of evaluating the wind energy potential at these sites and are used to assist in selection of potential sites for installation and testing of large wind turbines in electric utility systems. For each site, wind speed, direction, and distribution data are given in eight tables. Use of information from these tables, with information about specific wind turbines, should allow the user to estimate the potential for wind energy production at each site.

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    wind power for representative load scenarios in  a  us  electric  power  system:  Operational  costs 

  18. Wind Generation in the Future Competitive California Power Market

    SciTech Connect (OSTI)

    Sezgen, O.; Marnay, C.; Bretz, S.

    1998-03-01

    The goal of this work is to develop improved methods for assessing the viability of wind generation in competitive electricity markets. The viability of a limited number of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development, and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using a site-specific development cost calculation and by taking the effect of time varying market prices on revenues into account. The first component of the work is to develop data characterizing wind resources suitable for use in production costing and capacity expansion models, such as Elfin, that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission (CE C) in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Maps (DEMs) and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, the Elfin model is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Under best guess assumptions, including prohibition of new nuclear and coal capacity, moderate increase in gas prices and some decline in renewable capital costs, about 7.35 GW of the 10 GW potential capacity at the 36 specific sites is profitably developed and 62 TWh of electricity produced per annum by the year 2030. Most of the development happens during the earlier years of the forecast. Sensitivity of these results to future gas price scenarios is also presented. This study also demonstrates that an analysis based on a simple levelized profitability calculation approach does not sufficiently capture the implications of time varying prices in a competitive market.

  19. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Generation:  Integrating  Wind  Forecast  Uncertainty  and day?ahead  forecast  for  the  wind  speed.    Similar forecast,  fits  this  description.   Another  example is wind 

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Commitment  with  Wind  Power  Generation:  Integrating El?Saadany.  Overview of wind power intermittency impacts for  minimizing wind  power  scenarios  in  stochastic 

  1. Small Wind Electric Systems: A New Hampshire Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A New Hampshire Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a New Hampshire wind resource map and information about state incentives and contacts for more information.

  2. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2003-06-01

    The purpose of the Small Wind Electric Systems Consumer's: A Maine Consumer's Guide is to provide consumers with enough information to help them determine if a small wind electric system will work for them based on their wind resource, the type and size of their sites, and their economics. The cover of this guide contains a wind resource map for the state of Maine and information about state incentives and contacts for more information.

  3. Generators for Small Electrical and Thermal Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    build and test improved electric-power generators for use in residential Combined Heat and Power (CHP) systems, which capture the generator's heat output for space and water...

  4. Transmission and Generation Investment in Electricity Markets

    E-Print Network [OSTI]

    Mar 4, 2015 ... Transmission and Generation Investment in Electricity Markets: The Effects of Market Splitting and Network Fee Regimes.

  5. Modelling renewable electric resources: A case study of wind

    SciTech Connect (OSTI)

    Bernow, S.; Biewald, B.; Hall, J.; Singh, D.

    1994-07-01

    The central issue facing renewables in the integrated resource planning process is the appropriate assessment of the value of renewables to utility systems. This includes their impact on both energy and capacity costs (avoided costs), and on emissions and environmental impacts, taking account of the reliability, system characteristics, interactions (in dispatch), seasonality, and other characteristics and costs of the technologies. These are system-specific considerations whose relationships may have some generic implications. In this report, we focus on the reliability contribution of wind electric generating systems, measured as the amount of fossil capacity they can displace while meeting the system reliability criterion. We examine this issue for a case study system at different wind characteristics and penetration, for different years, with different system characteristics, and with different modelling techniques. In an accompanying analysis we also examine the economics of wind electric generation, as well as its emissions and social costs, for the case study system. This report was undertaken for the {open_quotes}Innovative IRP{close_quotes} program of the U.S. Department of Energy, and is based on work by both Union of Concerned Scientists (UCS) and Tellus Institute, including America`s Energy Choices and the UCS Midwest Renewables Project.

  6. Enhanced Efficiency of Wind-Diesel Power Generation in Tribal...

    Office of Environmental Management (EM)

    Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages Enhanced Efficiency of Wind-Diesel Power Generation in Tribal Villages June 17, 2014 - 3:50pm Addthis The...

  7. A doubly-fed permanent magnet generator for wind turbines

    E-Print Network [OSTI]

    Thomas, Andrew J. (Andrew Joseph), 1981-

    2004-01-01

    Optimum extraction of energy from a wind turbine requires that turbine speed vary with wind speed. Existing solutions to produce constant-frequency electrical output under windspeed variations are undesirable due to ...

  8. Viability of Small Wind Distributed Generation for Farmers Who Irrigate (Poster)

    SciTech Connect (OSTI)

    Meadows, B.; Forsyth, T.; Johnson, S.; Healow, D.

    2010-05-01

    About 14% of U.S. farms are irrigated, representing 55 million acres of irrigated land. Irrigation on these farms is a major energy user in the United States, accounting for one-third of water withdrawals and 137 billion gallons per day. More than half of the Irrigation systems use electric energy. Wind energy can be a good choice for meeting irrigation energy needs. Nine of the top 10 irrigation states (California, Texas, Idaho, Arkansas, Colorado, Nebraska, Arizona, Kansas, Washington, and Oregon) have good to excellent wind resources. Many rural areas have sufficient wind speeds to make wind an attractive alternative, and farms and ranches can often install a wind energy system without impacting their ability to plant crops and graze livestock. Additionally, the rising and uncertain future costs of diesel, natural gas, and even electricity increase the potential effectiveness for wind energy and its predictable and competitive cost. In general, wind-powered electric generation systems generate more energy in the winter months than in the summer months when most crops need the water. Therefore, those states that have a supportive net metering policy can dramatically impact the viability of an onsite wind turbine. This poster presentation highlights case studies that show favorable and unfavorable policies that impact the growth of small wind in this important sector and demonstrate how net metering policies affect the viability of distributed wind generation for farmers who irrigate.

  9. Methods and apparatus for cooling wind turbine generators

    DOE Patents [OSTI]

    Salamah, Samir A. (Niskayuna, NY); Gadre, Aniruddha Dattatraya (Rexford, NY); Garg, Jivtesh (Schenectady, NY); Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Alplaus, NY); Carl, Jr., Ralph James (Clifton Park, NY)

    2008-10-28

    A wind turbine generator includes a stator having a core and a plurality of stator windings circumferentially spaced about a generator longitudinal axis. A rotor is rotatable about the generator longitudinal axis, and the rotor includes a plurality of magnetic elements coupled to the rotor and cooperating with the stator windings. The magnetic elements are configured to generate a magnetic field and the stator windings are configured to interact with the magnetic field to generate a voltage in the stator windings. A heat pipe assembly thermally engaging one of the stator and the rotor to dissipate heat generated in the stator or rotor.

  10. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  11. Advanced Wind Turbine Program Next Generation Turbine Development Project: June 17, 1997--April 30, 2005

    SciTech Connect (OSTI)

    GE Wind Energy, LLC

    2006-05-01

    This document reports the technical results of the Next Generation Turbine Development Project conducted by GE Wind Energy LLC. This project is jointly funded by GE and the U.S. Department of Energy's National Renewable Energy Laboratory.The goal of this project is for DOE to assist the U.S. wind industry in exploring new concepts and applications of cutting-edge technology in pursuit of the specific objective of developing a wind turbine that can generate electricity at a levelized cost of energy of $0.025/kWh at sites with an average wind speed of 15 mph (at 10 m height).

  12. Electric power from offshore wind via synoptic-scale interconnection

    E-Print Network [OSTI]

    Firestone, Jeremy

    Electric power from offshore wind via synoptic-scale interconnection Willett Kemptona,1 , Felipe M regional estimate, Kempton et al. (2) calculated that two-thirds of the offshore wind power off the U in the U.S. Atlantic region is already underway. Fig. 1 shows as black squares offshore wind developments

  13. Washington University Can the Sound Generated by Modern Wind Turbines

    E-Print Network [OSTI]

    Salt, Alec N.

    Washington University Can the Sound Generated by Modern Wind Turbines Affect the Health of Those turbines haveWind turbines have been getting biggerbeen getting bigger and bigger....and bigger.... Lars Needs Wind turbines are "green" and areWind turbines are "green" and are contributing to our energy

  14. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    None

    2007-08-01

    The handbook provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy.

  15. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  16. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2002-05-01

    Small Wind Electric Systems An Oregon Consumer's Guide provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the Oregon guide provides state specific information that includes and state wind resource map, state incentives, and state contacts for more information.

  17. Small Wind Electric Systems: A Maryland Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  18. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect (OSTI)

    O'Dell, K.

    2001-10-01

    The Vermont Consumer's Guide for Small Wind Electric Systems provides consumers with enough information to help them determine if a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include: how to make your home more energy efficient, how to choose the right size turbine, the parts of a wind electric system, determining if there is enough wind resource on your site, choosing the best site for your turbine, connecting your system to the utility grid, and if it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a state wind resource map and a list of state incentives and state contacts for more information.

  19. Optimal utilisation of renewable electricity generation Location: School of Mathematics, University of Leeds, UK

    E-Print Network [OSTI]

    Banaji,. Murad

    . The increase of random fluctuations in the generation of electricity when more wind and solar installations, wind and solar generation fluctuates depending on meteorological conditions. This new source to limited capacity, hydro-pump plants are currently employed. With the growing penetration of renewable

  20. Exemption from Electric Generation Tax (Connecticut)

    Broader source: Energy.gov [DOE]

    In 2011, Connecticut created a new tax requiring electric power plants in the state that generate and upload electricity to the regional bulk power grid to pay $2.50 per megawatt hour. Renewable...

  1. Wind Turbines Electrical and Mechanical Engineering

    E-Print Network [OSTI]

    Provancher, William

    wind power. Encourage students to discuss the pros and cons of wind design. Students can find the wind? Time Required (Itemized) · Design introduction ­ 20 minutes · Student construction time o Option is created through conservation of energy! Designing a wind turbine takes a lot of ingenuity. The designer

  2. Wind Energy in Indian Country: Turning to Wind for the Seventh Generation

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Wind Energy in Indian Country: Turning to Wind for the Seventh Generation by Andrew D. Mills: ___________________________________________ Jane Stahlhut Date #12;Wind Energy in Indian Country A.D. Mills Abstract - ii - Abstract Utility-scale wind projects are increasingly being developed in rural areas of the United States. In the West

  3. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    Us Offices May 3, 2010 EA-1726: Final Environmental Assessment Loan Guarantee to Kahuku Wind Power, LLC for Construction of the Kahuku Wind Power Facility in Kahuku, O'ahu,...

  4. WESTERN MONTANA ELECTRIC GENERATING & TRANSMISSION COOPERATIVE, INC.

    E-Print Network [OSTI]

    1 WESTERN MONTANA ELECTRIC GENERATING & TRANSMISSION COOPERATIVE, INC. 1001 SW Higgins, Panorama, but not the more fundamental issues of stakeholder definition, future role, governance and structure. We

  5. Policymakers' Guidebook for Geothermal Electricity Generation (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    This document provides an overview of the NREL Geothermal Policymakers' Guidebook for Electricity Generation with information directing people to the Web site for more in-depth information.

  6. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Hawaii Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A U.S. Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A U.S. Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Small Wind Electric Systems: A Montana Consumer's Guide (Revised)

    SciTech Connect (OSTI)

    Not Available

    2006-04-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  9. Small Wind Electric Systems: A Colorado Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2006-12-01

    Small Wind Electric Systems: A Colorado Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  10. Small Wind Electric Systems: A Maryland Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Maryland Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  11. Small Wind Electric Systems: A Michigan Consumer's Guide (revised)

    SciTech Connect (OSTI)

    Not Available

    2007-01-01

    Small Wind Electric Systems: A Michigan Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  12. Small Wind Electric Systems: A South Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A South Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  13. Small Wind Electric Systems: An Alaska Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Alaska Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  14. Small Wind Electric Systems: An Oregon Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oregon Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  15. Small Wind Electric Systems: A Vermont Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Vermont Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  16. Small Wind Electric Systems: An Illinois Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: An Illinois Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  17. Small Wind Electric Systems: A Minnesota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A Minnesota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  18. Small Wind Electric Systems: A Washington Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Washington Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  19. Small Wind Electric Systems: A North Carolina Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2005-03-01

    Small Wind Electric Systems: A North Carolina Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  20. Small Wind Electric Systems: A North Dakota Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-04-01

    Small Wind Electric Systems: A North Dakota Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  1. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Oklahoma Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  2. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Utah Consumer's Guide provides Utah consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  3. Small Wind Electric Systems: A Maine Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Maine Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  4. Small Wind Electric Systems: A Pennsylvania Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Pennsylvania Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  5. Small Wind Electric Systems: A Montana Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Montana Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics. Topics include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  6. Small Wind Electric Systems: An Ohio Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: An Ohio Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  7. Small Wind Electric Systems: A Kansas Consumer's Guide

    SciTech Connect (OSTI)

    Not Available

    2007-08-01

    Small Wind Electric Systems: A Kansas Consumer's Guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a list of contacts for more information.

  8. Using Wind and Solar to Reliably Meet Electricity Demand, Greening...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and wind generation technologies. A variety of approaches can be deployed, including demand response, which can be used to shift demand to periods of greater renewable output,...

  9. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01

    wind was unavailable, power (from an external electric generator)wind conditions and 22 RPM in higher wind speeds by adjusting the generator power

  10. Cost trajectories of low carbon electricity generation technologies: A study of cost uncertainty

    E-Print Network [OSTI]

    Levi, Peter; Pollitt, Michael

    2015-08-03

    for three important electricity generation technologies for the UK; nuclear, offshore wind and coal with carbon capture and storage. The first analysis composes LCOE estimate trajectories from previous years' DECC estimates and presents them alongside...

  11. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  12. Alternative methods of modeling wind generation using production cost models

    SciTech Connect (OSTI)

    Milligan, M.R. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Pang, C.K. [P Plus Corp., Cupertino, CA (United States)] [P Plus Corp., Cupertino, CA (United States)

    1996-08-01

    This paper examines the methods of incorporating wind generation in two production costing models: one is a load duration curve (LDC) based model and the other is a chronological-based model. These two models were used to evaluate the impacts of wind generation on two utility systems using actual collected wind data at two locations with high potential for wind generation. The results are sensitive to the selected wind data and the level of benefits of wind generation is sensitive to the load forecast. The total production cost over a year obtained by the chronological approach does not differ significantly from that of the LDC approach, though the chronological commitment of units is more realistic and more accurate. Chronological models provide the capability of answering important questions about wind resources which are difficult or impossible to address with LDC models.

  13. Aalborg Universitet Loss Minimizing Operation of Doubly Fed Induction Generator Based Wind Generation

    E-Print Network [OSTI]

    Hu, Weihao

    performance [1]. Moreover, some grid codes already require wind turbines to provide reactive power ability Wind Generation Systems Considering Reactive Power Provision. In Proceedings of the 40th Annual generator based wind generation systems when providing reactive power. The proposed method achieves its goal

  14. ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development

    SciTech Connect (OSTI)

    Robert W. Preus; DOE Project Officer - Keith Bennett

    2008-04-23

    This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

  15. Analysis of Wind Power Generation of Texas 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    2007-01-01

    ? Not appropriate for predicting hourly power using power curve ? On-site wind: ? Measured power vs. on-site wind following well the power curve prediction ? No curtailment at this site ? Green curves showing a band of 5 MW from the power curve WHY NOT Use... APPLICATION ? Indian Mesa Wind Farm Measured MW Plotted Against Hourly NOAA Wind Speed? ANN significantly improves the prediction of on-site wind speed compared to NOAA. ? Green curves showing a band of 5 MW from the power curve Hourly Wind Power...

  16. Dynamic Analysis of Electrical Power Grid Delivery: Using Prime Mover Engines to Balance Dynamic Wind Turbine Output

    SciTech Connect (OSTI)

    Diana K. Grauer

    2011-10-01

    This paper presents an investigation into integrated wind + combustion engine high penetration electrical generation systems. Renewable generation systems are now a reality of electrical transmission. Unfortunately, many of these renewable energy supplies are stochastic and highly dynamic. Conversely, the existing national grid has been designed for steady state operation. The research team has developed an algorithm to investigate the feasibility and relative capability of a reciprocating internal combustion engine to directly integrate with wind generation in a tightly coupled Hybrid Energy System. Utilizing the Idaho National Laboratory developed Phoenix Model Integration Platform, the research team has coupled demand data with wind turbine generation data and the Aspen Custom Modeler reciprocating engine electrical generator model to investigate the capability of reciprocating engine electrical generation to balance stochastic renewable energy.

  17. Small Wind Electric Systems: A Utah Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  18. Small Wind Electric Systems: A Nevada Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  19. Small Wind Electric Systems: A Michigan Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  20. Electrical Collection and Transmission Systems for Offshore Wind Power: Preprint

    SciTech Connect (OSTI)

    Green, J.; Bowen, A.; Fingersh, L.J.; Wan, Y.

    2007-03-01

    The electrical systems needed for offshore wind farms to collect power from wind turbines--and transmit it to shore--will be a significant cost element of these systems. This paper describes the development of a simplified model of the cost and performance of such systems.

  1. Small Wind Electric Systems: A U.S. Consumer's Guide

    Broader source: Energy.gov [DOE]

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  2. Small Wind Electric Systems: A Hawaii Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  3. Small Wind Electric Systems: A Nebraska Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  4. Small Wind Electric Systems: An Indiana Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  5. Small Wind Electric Systems: A Missouri Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  6. Small Wind Electric Systems: An Oklahoma Consumer's Guide

    SciTech Connect (OSTI)

    2009-01-18

    This guide provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and economics.

  7. National-Scale Wind Resource Assessment for Power Generation (Presentation)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.

    2013-08-01

    This presentation describes the current standards for conducting a national-scale wind resource assessment for power generation, along with the risk/benefit considerations to be considered when beginning a wind resource assessment. The presentation describes changes in turbine technology and viable wind deployment due to more modern turbine technology and taller towers and shows how the Philippines national wind resource assessment evolved over time to reflect changes that arise from updated technologies and taller towers.

  8. Fact #844: October 27, 2014 Electricity Generated from Coal has...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown Fact 844: October 27, 2014 Electricity Generated from Coal has...

  9. Wind turbine/generator set having a stator cooling system located between stator frame and active coils

    DOE Patents [OSTI]

    Bevington, Christopher M.; Bywaters, Garrett L.; Coleman, Clint C.; Costin, Daniel P.; Danforth, William L.; Lynch, Jonathan A.; Rolland, Robert H.

    2012-11-13

    A wind turbine comprising an electrical generator that includes a rotor assembly. A wind rotor that includes a wind rotor hub is directly coupled to the rotor assembly via a simplified connection. The wind rotor and generator rotor assembly are rotatably mounted on a central spindle via a bearing assembly. The wind rotor hub includes an opening having a diameter larger than the outside diameter of the central spindle adjacent the bearing assembly so as to allow access to the bearing assembly from a cavity inside the wind rotor hub. The spindle is attached to a turret supported by a tower. Each of the spindle, turret and tower has an interior cavity that permits personnel to traverse therethrough to the cavity of the wind rotor hub. The wind turbine further includes a frictional braking system for slowing, stopping or keeping stopped the rotation of the wind rotor and rotor assembly.

  10. Wind Turbine Generator System Safety and Function Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Entegrity EW50 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  11. Wind Turbine Generator System Safety and Function Test Report for the Ventera VT10 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2012-11-01

    This report summarizes the results of a safety and function test that NREL conducted on the Ventera VT10 wind turbine. This test was conducted in accordance with the International Electrotechnical Commissions' (IEC) standard, Wind Turbine Generator System Part 2: Design requirements for small wind turbines, IEC 61400-2 Ed.2.0, 2006-03.

  12. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    to Strengthen U.S. Electric Transmission Networks. DecemberElectric Corporation gigawatt generation and transmissionElectric Reliability Council of Texas Eastern Wind Integration and Transmission

  13. Economic modeling of intermittency in wind power generation

    E-Print Network [OSTI]

    Cheng, Alan Yung Chen

    2005-01-01

    The electricity sector is a major source of carbon dioxide emissions that contribute to global climate change. Over the past decade wind energy has steadily emerged as a potential source for large-scale, low carbon energy. ...

  14. Renewable Electricity Generation in the United States

    E-Print Network [OSTI]

    Schmalensee, Richard

    This paper provides an overview of the use of renewable energy sources to generate electricity in the United States and a critical analysis of the federal and state policies that have supported the deployment of renewable ...

  15. Electric Power Generation and Transmission (Iowa)

    Broader source: Energy.gov [DOE]

    Electric power generating facilities with a combined capacity greater than 25 MW, as well as associated transmission lines, may not be constructed or begin operation prior to the issuance of a...

  16. Wind/PV Generation for Frequency Regulation and Oscillation Damping in the Eastern Interconnection

    SciTech Connect (OSTI)

    Liu, Yong; Gracia, Jose R; Hadley, Stanton W; Liu, Yilu

    2013-12-01

    This report presents the control of renewable energy sources, including the variable-speed wind generators and solar photovoltaic (PV) generators, for frequency regulation and inter-area oscillation damping in the U.S. Eastern Interconnection (EI). In this report, based on the user-defined wind/PV generator electrical control model and the 16,000-bus Eastern Interconnection dynamic model, the additional controllers for frequency regulation and inter-area oscillation damping are developed and incorporated and the potential contributions of renewable energy sources to the EI system frequency regulation and inter-area oscillation damping are evaluated.

  17. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE) Electrical energy can be generated from renewable resources the potential to meet the worldwide demand of electricity and they contribute to the total generation

  18. Small Wind Electric Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    JavaScript if it is disabled in your browser. Wind power is the fastest growing source of energy in the world -- efficient, cost effective, and non-polluting. What does this mean...

  19. Electricity Generation | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar:IAboutReubenPressElectrical Safety- 2015Reports and

  20. Operational-Condition-Independent Criteria Dedicated to Monitoring Wind Turbine Generators: Preprint

    SciTech Connect (OSTI)

    Yang, W.; Sheng, S.; Court, R.

    2012-08-01

    To date the existing wind turbine condition monitoring technologies and commercially available systems have not been fully accepted for improving wind turbine availability and reducing their operation and maintenance costs. One of the main reasons is that wind turbines are subject to constantly varying loads and operate at variable rotational speeds. As a consequence, the influences of turbine faults and the effects of varying load and speed are coupled together in wind turbine condition monitoring signals. So, there is an urgent need to either introduce some operational condition de-coupling procedures into the current wind turbine condition monitoring techniques or develop a new operational condition independent wind turbine condition monitoring technique to maintain high turbine availability and achieve the expected economic benefits from wind. The purpose of this paper is to develop such a technique. In the paper, three operational condition independent criteria are developed dedicated for monitoring the operation and health condition of wind turbine generators. All proposed criteria have been tested through both simulated and practical experiments. The experiments have shown that these criteria provide a solution for detecting both mechanical and electrical faults occurring in wind turbine generators.

  1. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    of Energy  Computational Needs for Next Generation Electric Generation Electric Grid   HyungSeon   Oh  National Energy generation  communication requirements, technologies, and architecture for the electric power  grid”, IEEE   Power and Energy 

  2. Capacity Value of PV and Wind Generation in the NV Energy System

    SciTech Connect (OSTI)

    Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

    2014-03-21

    Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

  3. Wind Generation on Winnebago Tribal Lands

    SciTech Connect (OSTI)

    Multiple

    2009-09-30

    The Winnebago Wind Energy Study evaluated facility-scale, community-scale and commercial-scale wind development on Winnebago Tribal lands in northeastern Nebraska. The Winnebago Tribe of Nebraska has been pursuing wind development in various forms for nearly ten years. Wind monitoring utilizing loaned met towers from NREL took place during two different periods. From April 2001 to April 2002, a 20-meter met tower monitored wind data at the WinnaVegas Casino on the far eastern edge of the Winnebago reservation in Iowa. In late 2006, a 50-meter tower was installed, and subsequently monitored wind data at the WinnaVegas site from late 2006 through late 2008. Significant challenges with the NREL wind monitoring equipment limited the availability of valid data, but based on the available data, average wind speeds between 13.6 – 14.3 miles were indicated, reflecting a 2+/3- wind class. Based on the anticipated cost of energy produced by a WinnaVegas wind turbine, and the utility policies and rates in place at this time, a WinnaVegas wind project did not appear to make economic sense. However, if substantial grant funding were available for energy equipment at the casino site, and if either Woodbury REC backup rates were lower, or NIPCO was willing to pay more for wind power, a WinnaVegas wind project could be feasible. With funding remaining in the DOE-funded project budget,a number of other possible wind project locations on the Winnebago reservation were considered. in early 2009, a NPPD-owned met tower was installed at a site identified in the study pursuant to a verbal agreement with NPPD which provided for power from any ultimately developed project on the Western Winnebago site to be sold to NPPD. Results from the first seven months of wind monitoring at the Western Winnebago site were as expected at just over 7 meters per second at 50-meter tower height, reflecting Class 4 wind speeds, adequate for commercial development. If wind data collected in the remaining months of the twelve-month collection period is consistent with that collected in the first seven months, the Western Winnebago site may present an interesting opportunity for Winnebago. Given the distance to nearby substations, and high cost of interconnection at higher voltage transmission lines, Winnebago would likely need to be part of a larger project in order to reduce power costs to more attractive levels. Another alternative would be to pursue grant funding for a portion of development or equipment costs, which would also help reduce the cost of power produced. The NREL tower from the WinnaVegas site was taken down in late 2008, re-instrumented and installation attempted on the Thunderway site south of the Winnebago community. Based on projected wind speeds, current equipment costs, and the project’s proximity to substations for possible interconnection, a Thunderway community-scale wind project could also be feasible.

  4. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    Control as it Relates to Wind- Powered Generation AppendixControl as it Relates to Wind-Powered Generation JohnControl as it Relates to Wind-Powered Generation LBNL-XXXXX

  5. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01

    2009. “North America Dynamic Wind Generator Modeling Update,work performed by the WECC Wind Generator Modeling Group andIEEE Dynamic Performance of Wind Power Generation Working

  6. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01

    IEEE Dynamic Performance of Wind Power Generation Workingof the impacts of wind generation on power system frequencywith Increased Wind Generation 9. Siemens Power Technologies

  7. Renewable Electricity Futures Study. Volume 2: Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, C.; Bain, R.; Chapman, J.; Denholm, P.; Drury, E.; Hall, D.G.; Lantz, E.; Margolis, R.; Thresher, R.; Sandor, D.; Bishop, N.A.; Brown, S.R.; Cada, G.F.; Felker, F.

    2012-06-01

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%-90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT).

  8. Renewable Electricity Futures Study. Volume 2. Renewable Electricity Generation and Storage Technologies

    SciTech Connect (OSTI)

    Augustine, Chad; Bain, Richard; Chapman, Jamie; Denholm, Paul; Drury, Easan; Hall, Douglas G.; Lantz, Eric; Margolis, Robert; Thresher, Robert; Sandor, Debra; Bishop, Norman A.; Brown, Stephen R.; Felker, Fort; Fernandez, Steven J.; Goodrich, Alan C.; Hagerman, George; Heath, Garvin; O'Neil, Sean; Paquette, Joshua; Tegen, Suzanne; Young, Katherine

    2012-06-15

    The Renewable Electricity Futures (RE Futures) Study investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. The analysis focused on the sufficiency of the geographically diverse U.S. renewable resources to meet electricity demand over future decades, the hourly operational characteristics of the U.S. grid with high levels of variable wind and solar generation, and the potential implications of deploying high levels of renewables in the future. RE Futures focused on technical aspects of high penetration of renewable electricity; it did not focus on how to achieve such a future through policy or other measures. Given the inherent uncertainties involved with analyzing alternative long-term energy futures as well as the multiple pathways that might be taken to achieve higher levels of renewable electricity supply, RE Futures explored a range of scenarios to investigate and compare the impacts of renewable electricity penetration levels (30%–90%), future technology performance improvements, potential constraints to renewable electricity development, and future electricity demand growth assumptions. RE Futures was led by the National Renewable Energy Laboratory (NREL) and the Massachusetts Institute of Technology (MIT). Learn more at the RE Futures website. http://www.nrel.gov/analysis/re_futures/

  9. Modelling Wind in the Electricity Sector

    E-Print Network [OSTI]

    Neuhoff, Karsten; Cust, J.; Keats, Kim

    01000 2000 3000 4000 SCO UNO NOR MID CEN SWE EST Fu ll Lo ad H ou rs Figure 2 - Wind power full load hours by region, relative to 8760 hours per year For existing power stations we used the database developed by ICF International. Nuclear power... 550 350 610 1185 560 4. 00 31.61 20 2015- 2019 520 330 575 1150 525 4.14 31.61 20 2020- 2024 500 320 540 1115 490 4.30 31.61 20 Table 1 Baseline assumptions. Wind costs are varied to reflect subsidies/taxes calibrated for target penetration...

  10. Electric Power Generation from Coproduced Fluids from Oil and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Coproduced Fluids from Oil and Gas Wells Electric Power Generation from Coproduced Fluids from Oil and Gas Wells The primary objective of this...

  11. Renewable Electricity Generation (Fact Sheet), Office of Energy...

    Energy Savers [EERE]

    Renewable Electricity Generation (Fact Sheet), Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy (DOE) Renewable Electricity Generation (Fact Sheet),...

  12. Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hot Springs Resort - Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Chena Hot Springs Resort - Electric Power Generation Using Geothermal...

  13. Next Generation Metallic Iron Nodule Technology in Electric Furnace...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking Next Generation Metallic Iron Nodule Technology in Electric Furnace Steelmaking This factsheet...

  14. Adapting On-Site Electrical Generation Platforms for Producer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April 2014 Adapting On-Site Electrical Generation Platforms for Producer Gas - Fact Sheet, April...

  15. Proton Exchange Membrane Fuel Cells for Electrical Power Generation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board Commercial Airplanes Proton Exchange Membrane Fuel Cells for Electrical Power Generation On-Board...

  16. Role of Energy Storage with Renewable Electricity Generation (Report Summary) (Presentation)

    SciTech Connect (OSTI)

    Denholm, P.; Ela, E.; Kirby, B.; Milligan, M.

    2010-03-01

    Renewable energy sources, such as wind and solar, have vast potential to reduce dependence on fossil fuels and greenhouse gas emissions in the electric sector. Climate change concerns, state initiatives including renewable portfolio standards, and consumer efforts are resulting in increased deployments of both technologies. Both solar photovoltaics (PV) and wind energy have variable and uncertain (sometimes referred to as "intermittent") output, which are unlike the dispatchable sources used for the majority of electricity generation in the United States. The variability of these sources has led to concerns regarding the reliability of an electric grid that derives a large fraction of its energy from these sources as well as the cost of reliably integrating large amounts of variable generation into the electric grid. In this report, we explore the role of energy storage in the electricity grid, focusing on the effects of large-scale deployment of variable renewable sources (primarily wind and solar energy).

  17. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  18. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  19. Variance Analysis of Wind and Natural Gas Generation under Different Market Structures: Some Observations

    SciTech Connect (OSTI)

    Bush, B.; Jenkin, T.; Lipowicz, D.; Arent, D. J.; Cooke, R.

    2012-01-01

    Does large scale penetration of renewable generation such as wind and solar power pose economic and operational burdens on the electricity system? A number of studies have pointed to the potential benefits of renewable generation as a hedge against the volatility and potential escalation of fossil fuel prices. Research also suggests that the lack of correlation of renewable energy costs with fossil fuel prices means that adding large amounts of wind or solar generation may also reduce the volatility of system-wide electricity costs. Such variance reduction of system costs may be of significant value to consumers due to risk aversion. The analysis in this report recognizes that the potential value of risk mitigation associated with wind generation and natural gas generation may depend on whether one considers the consumer's perspective or the investor's perspective and whether the market is regulated or deregulated. We analyze the risk and return trade-offs for wind and natural gas generation for deregulated markets based on hourly prices and load over a 10-year period using historical data in the PJM Interconnection (PJM) from 1999 to 2008. Similar analysis is then simulated and evaluated for regulated markets under certain assumptions.

  20. Electrical motor/generator drive apparatus and method

    DOE Patents [OSTI]

    Su, Gui Jia

    2013-02-12

    The present disclosure includes electrical motor/generator drive systems and methods that significantly reduce inverter direct-current (DC) bus ripple currents and thus the volume and cost of a capacitor. The drive methodology is based on a segmented drive system that does not add switches or passive components but involves reconfiguring inverter switches and motor stator winding connections in a way that allows the formation of multiple, independent drive units and the use of simple alternated switching and optimized Pulse Width Modulation (PWM) schemes to eliminate or significantly reduce the capacitor ripple current.

  1. A model of the ULF magnetic and electric field generated from a dust devil

    E-Print Network [OSTI]

    Cummer, Steven A.

    A model of the ULF magnetic and electric field generated from a dust devil W. M. Farrell,1 J. R emit ULF magnetic radiation. On Mars, dust devils may also generate such magnetic emissions, which in the vortex wind fields accounts for the magnetic emission. To test this hypothesis in general

  2. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation and treatment of paper recycling

    E-Print Network [OSTI]

    -mail: blogan@psu.edu #12;taneous electricity generation, including municipal, food processing, brewery

  3. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    price ($/kWh) Distributed Generation Dispatch Optimization Under Various Electricity Tariffs carbon (

  4. Western Wind and Solar Integration Study Phase 3A: Low Levels of Synchronous Generation

    SciTech Connect (OSTI)

    Miller, Nicholas W.; Leonardi, Bruno; D'Aquila, Robert; Clark, Kara

    2015-11-17

    The stability of the North American electric power grids under conditions of high penetrations of wind and solar is a significant concern and possible impediment to reaching renewable energy goals. The 33% wind and solar annual energy penetration considered in this study results in substantial changes to the characteristics of the bulk power system. This includes different power flow patterns, different commitment and dispatch of existing synchronous generation, and different dynamic behavior from wind and solar generation. The Western Wind and Solar Integration Study (WWSIS), sponsored by the U.S. Department of Energy, is one of the largest regional solar and wind integration studies to date. In multiple phases, it has explored different aspects of the question: Can we integrate large amounts of wind and solar energy into the electric power system of the West? The work reported here focused on the impact of low levels of synchronous generation on the transient stability performance in one part of the region in which wind generation has displaced synchronous thermal generation under highly stressed, weak system conditions. It is essentially an extension of WWSIS-3. Transient stability, the ability of the power system to maintain synchronism among all elements following disturbances, is a major constraint on operations in many grids, including the western U.S. and Texas systems. These constraints primarily concern the performance of the large-scale bulk power system. But grid-wide stability concerns with high penetrations of wind and solar are still not thoroughly understood. This work focuses on 'traditional' fundamental frequency stability issues, such as maintaining synchronism, frequency, and voltage. The objectives of this study are to better understand the implications of low levels of synchronous generation and a weak grid on overall system performance by: 1) Investigating the Western Interconnection under conditions of both high renewable generation (e.g., wind and solar) and low synchronous generation (e.g., significant coal power plant decommitment or retirement); and 2) Analyzing both the large-scale stability of the Western Interconnection and regional stability issues driven by more geographically dispersed renewable generation interacting with a transmission grid that evolved with large, central station plants at key nodes. As noted above, the work reported here is an extension of the research performed in WWSIS-3.

  5. Small Wind Electric Systems | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation ofAlbuquerque|Sensitive Species3performed StevenSmall Particles, BigWind

  6. Book Chapter Microbial Fuel Cells: Electricity Generation from Organic

    E-Print Network [OSTI]

    Gu, Tingyue

    oxygen demand (BOD) sensors, bioremediation, hydrogen production and electricity generation (Logan Book Chapter Microbial Fuel Cells: Electricity Generation from Organic Wastes by Microbes Kun) are bioreactors that convert chemical energy stored in the bonds of organic matters into electricity through

  7. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    Broader source: Energy.gov [DOE]

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  8. Impact of Generator Flexibility on Electric System Costs and Integration of Renewable Energy

    SciTech Connect (OSTI)

    Palchak, D.; Denholm, P.

    2014-07-01

    Flexibility of traditional generators plays an important role in accommodating the increased variability and uncertainty of wind and solar on the electric power system. Increased flexibility can be achieved with changes to operational practices or upgrades to existing generation. One challenge is in understanding the value of increasing flexibility, and how this value may change given higher levels of variable generation. This study uses a commercial production cost model to measure the impact of generator flexibility on the integration of wind and solar generators. We use a system that is based on two balancing areas in the Western United States with a range of wind and solar penetrations between 15% and 60%, where instantaneous penetration of wind and solar is limited to 80%.

  9. Simultaneous wastewater treatment and biological electricity generation

    E-Print Network [OSTI]

    anaerobic treatment technologies, based on methane production, economical. The costs of wastewater treatment, and a calculation is made on the potential for electricity recovery. Assuming a town of 100,000 people generate 16.4 Ł 106 L of wastewater, a wastewater treatment plant has the potential to become a 2.3 MW power plant

  10. Systems and methods for an integrated electrical sub-system powered by wind energy

    DOE Patents [OSTI]

    Liu, Yan (Ballston Lake, NY); Garces, Luis Jose (Niskayuna, NY)

    2008-06-24

    Various embodiments relate to systems and methods related to an integrated electrically-powered sub-system and wind power system including a wind power source, an electrically-powered sub-system coupled to and at least partially powered by the wind power source, the electrically-powered sub-system being coupled to the wind power source through power converters, and a supervisory controller coupled to the wind power source and the electrically-powered sub-system to monitor and manage the integrated electrically-powered sub-system and wind power system.

  11. Wind turbine generator with improved operating subassemblies

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (24 Stonepost Rd., Glastonbury, CT 06033)

    1985-01-01

    A wind turbine includes a yaw spring return assembly to return the nacelle from a position to which it has been rotated by yawing forces, thus preventing excessive twisting of the power cables and control cables. It also includes negative coning restrainers to limit the bending of the flexible arms of the rotor towards the tower, and stop means on the rotor shaft to orient the blades in a vertical position during periods when the unit is upwind when the wind commences. A pendulum pitch control mechanism is improved by orienting the pivot axis for the pendulum arm at an angle to the longitudinal axis of its support arm, and excessive creep is of the synthetic resin flexible beam support for the blades is prevented by a restraining cable which limits the extent of pivoting of the pendulum during normal operation but which will permit further pivoting under abnormal conditions to cause the rotor to stall.

  12. Implementation of optimum solar electricity generating system

    SciTech Connect (OSTI)

    Singh, Balbir Singh Mahinder Karim, Samsul Ariffin A.; Sivapalan, Subarna; Najib, Nurul Syafiqah Mohd; Menon, Pradeep

    2014-10-24

    Under the 10{sup th} Malaysian Plan, the government is expecting the renewable energy to contribute approximately 5.5% to the total electricity generation by the year 2015, which amounts to 98MW. One of the initiatives to ensure that the target is achievable was to establish the Sustainable Energy Development Authority of Malaysia. SEDA is given the authority to administer and manage the implementation of the feed-in tariff (FiT) mechanism which is mandated under the Renewable Energy Act 2011. The move to establish SEDA is commendable and the FiT seems to be attractive but there is a need to create awareness on the implementation of the solar electricity generating system (SEGS). In Malaysia, harnessing technologies related to solar energy resources have great potential for implementation. However, the main issue that plagues the implementation of SEGS is the intermittent nature of this source of energy. The availability of sunlight is during the day time, and there is a need for electrical energy storage system, so that there is electricity available during the night time as well. The meteorological condition such as clouds, haze and pollution affects the SEGS as well. The PV based SEGS is seems to be promising electricity generating system that can contribute towards achieving the 5.5% target and will be able to minimize the negative effects of utilizing fossil fuels for electricity generation on the environment. Malaysia is committed to Kyoto Protocol, which emphasizes on fighting global warming by achieving stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the climate system. In this paper, the technical aspects of the implementation of optimum SEGS is discussed, especially pertaining to the positioning of the PV panels.

  13. Optimal Contract for Wind Power in Day-Ahead Electricity Markets

    E-Print Network [OSTI]

    Wierman, Adam

    Optimal Contract for Wind Power in Day-Ahead Electricity Markets Desmond W. H. Cai1 Sachin Adlakha2 integration in current electric power systems. In this work, we study how a wind power producer can bid wind power producer will produce as much as wind power is available (up to its contract size). 1

  14. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  15. Electric current generation in distorted graphene

    E-Print Network [OSTI]

    Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

    2014-09-23

    Graphene-like materials can be effectively described by quantum electrodynamics in 2+1 dimensions. In a pure state these systems exhibit a symmetry between the non-equivalent Dirac points in the honeycomb lattice. The effect of some types of doping or the contact with asymmetric external lattices (for instance a boron nitride layer) break this symmetry via a mechanism of effective mass generation that works differently for each Dirac point. In this work we show that the incorporation of an in-plane external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field. This mass structure is associated to a Chern-Simons type of effective action. Together with the presence of a magnetic field generating an electric current, this scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

  16. Value of electrical heat boilers and heat pumps for wind power integration

    E-Print Network [OSTI]

    Value of electrical heat boilers and heat pumps for wind power integration Peter Meibom Juha of using electrical heat boilers and heat pumps as wind power integration measures relieving the link\\ZRUGV wind power, integration, heat pumps, electric heat boilers ,QWURGXFWLRQ 3UREOHP RYHUYLHZ The Danish

  17. Rare-Earth-Free Nanostructure Magnets: Rare-Earth-Free Permanent Magnets for Electric Vehicle Motors and Wind Turbine Generators: Hexagonal Symmetry Based Materials Systems Mn-Bi and M-type Hexaferrite

    SciTech Connect (OSTI)

    2012-01-01

    REACT Project: The University of Alabama is developing new iron- and manganese-based composite materials for use in the electric motors of EVs and renewable power generators that will demonstrate magnetic properties superior to today’s best rare-earth-based magnets. Rare earths are difficult and expensive to refine. EVs and renewable power generators typically use rare earths to make their electric motors smaller and more powerful. The University of Alabama has the potential to improve upon the performance of current state-of-the-art rare-earth-based magnets using low-cost and more abundant materials such as manganese and iron. The ultimate goal of this project is to demonstrate improved performance in a full-size prototype magnet at reduced cost.

  18. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01

    Electricity generation [GWh/year] Wind onshore BiogasElectricity generation [GWh/year] Wind onshore Hydro small-scale Solid biomass PV Hydro large-scale Biogas

  19. Assessment of Wind/Solar Co-located Generation in Texas

    SciTech Connect (OSTI)

    Steven M. Wiese

    2009-07-20

    This paper evaluates the opportunity to load co-located wind and solar generation capacity onto a constrained transmission system while engendering only minimal losses. It quantifies the economic and energy opportunities and costs associated with pursuing this strategy in two Texas locations �¢���� one in west Texas and the other in south Texas. The study builds upon previous work published by the American Solar Energy Society (ASES) which illuminated the potential benefits of negative correlation of wind and solar generation in some locations by quantifying the economic and energy losses which would arise from deployment of solar generation in areas with existing wind generation and constrained transmission capacity. Clean Energy Associates (CEA) obtained and incorporated wind and solar resource data and the Electric Reliability Council of Texas (ERCOT)) load and price data into a model which evaluates varying levels of solar thermal, solar photovoltaic (PV) and wind capacity against an assumed transmission capacity limit at each of the two locations.

  20. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    optimization for the unit commitment problem. Technicaloptimization of generation unit commitment and transmissionLee,  M.   Anitescu,  “Unit  Commitment  with  Wind  Power 

  1. Electric Power Generation Using Geothermal Fluid Coproduced from...

    Open Energy Info (EERE)

    Electric Power Generation Using Geothermal Fluid Coproduced from Oil andor Gas Wells Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal Article: Electric...

  2. Restructuring, Ownership and Efficiency: The Case of Labor in Electricity Generation

    E-Print Network [OSTI]

    Shanefelter, Jennifer Kaiser

    2007-01-01

    inputs to electricity generation: fuel, capital, materialsand labor. Electricity generation is a fuel-intensive

  3. Coal based electric generation comparative technologies report

    SciTech Connect (OSTI)

    Not Available

    1989-10-26

    Ohio Clean Fuels, Inc., (OCF) has licensed technology that involves Co-Processing (Co-Pro) poor grade (high sulfur) coal and residual oil feedstocks to produce clean liquid fuels on a commercial scale. Stone Webster is requested to perform a comparative technologies report for grassroot plants utilizing coal as a base fuel. In the case of Co-Processing technology the plant considered is the nth plant in a series of applications. This report presents the results of an economic comparison of this technology with other power generation technologies that use coal. Technologies evaluated were:Co-Processing integrated with simple cycle combustion turbine generators, (CSC); Co-Processing integrated with combined cycle combustion turbine generators, (CCC); pulverized coal-fired boiler with flue gas desulfurization and steam turbine generator, (PC) and Circulating fluidized bed boiler and steam turbine generator, (CFB). Conceptual designs were developed. Designs were based on approximately equivalent net electrical output for each technology. A base case of 310 MWe net for each technology was established. Sensitivity analyses at other net electrical output sizes varying from 220 MWe's to 1770 MWe's were also performed. 4 figs., 9 tabs.

  4. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema (OSTI)

    None

    2014-06-05

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  5. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect (OSTI)

    2014-05-06

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  6. Guide to Small Wind Energy Systems

    SciTech Connect (OSTI)

    2010-10-01

    Wind is one of the great renewable energy resources on the planet because it is in limitless supply. Using wind energy to generate electricity can have environmental benefits.

  7. Farmers Electric Cooperative (Kalona)- Renewable Energy Purchase Rate

    Broader source: Energy.gov [DOE]

    Farmers Electric Cooperative offers a production incentive to members that install qualifying wind and solar electricity generating systems. Qualifying grid-tied solar and wind energy systems are...

  8. Commitment of Electric Power Generators under Stochastic Market Prices

    E-Print Network [OSTI]

    Mazumdar, Mainak

    that when an electric power producer has the option of trading electricity at market prices, an optimal unitCommitment of Electric Power Generators under Stochastic Market Prices Jorge Valenzuela 1 November 2001 1 Corresponding author. #12;1 Commitment of Electric Power Generators under Stochastic Market

  9. EIS-0006: Wind Turbine Generator System, Block Island, Rhode Island

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy prepared this EIS to evaluate the environmental impacts of installing and operating a large experimental wind turbine, designated the MOD-OA, which is proposed to be installed on a knoll in Rhode Island's New Meadow Hill Swamp, integrated with the adjacent Block Island Power Company power plant and operated to supply electricity to the existing utility network.

  10. Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Simulation of electricity supply of an Atlantic island by offshore wind turbines and wave energy community. Key words: Wave energy, offshore wind turbines, marine energy 1 Introduction Marine renewables installations of a few kW like small wind turbines or photovoltaic cells installed to provide electricity

  11. Variable Renewable Generation can Provide Balancing Control to the Electric Power System (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-09-01

    As wind and solar plants become more common in the electric power system, they may be called on to provide grid support services to help maintain system reliability. For example, through the use of inertial response, primary frequency response, and automatic generation control (also called secondary frequency response), wind power can provide assistance in balancing the generation and load on the system. These active power (i.e., real power) control services have the potential to assist the electric power system in times of disturbances and during normal conditions while also potentially providing economic value to consumers and variable renewable generation owners. This one-page, two-sided fact sheet discusses the grid-friendly support and benefits renewables can provide to the electric power system.

  12. Electric current generation in distorted graphene

    E-Print Network [OSTI]

    Ana Julia Mizher; Alfredo Raya; Cristian Villavicencio

    2015-10-26

    Graphene-like materials can be effectively described by Quantum Electrodynamics in (2+1)-dimensions. In a pristine state, these systems exhibit a symmetry between the nonequivalent Dirac points in the honeycomb lattice. Realistic samples which include distortions and crystalline anisotropies are considered through mass gaps of topological and dynamical nature. In this work we show that the incorporation of an in-plane uniform external magnetic field on this pseudochiral asymmetric configuration generates a non-dissipative electric current aligned with the magnetic field: The pseudo chiral magnetic effect. This scenario resembles the chiral magnetic effect in Quantum Chromodynamics.

  13. Aalborg Universitet How to improve the design of the electrical system in future wind power plants

    E-Print Network [OSTI]

    Bak, Claus Leth

    of the main electrical components in wind farms. Two of the Ph.D. projects focus specifically to offshore wind on the transient and temporary overvoltages known to appear in the collection grid of offshore wind farms.D. project Harmonics in Large Offshore Wind Farms will provide in-depth knowledge of all relevant aspects

  14. Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision Processes

    E-Print Network [OSTI]

    Smith, Ryan N.

    Wind-Energy based Path Planning For Electric Unmanned Aerial Vehicles Using Markov Decision wind-energy is one possible way to ex- tend flight duration for Unmanned Arial Vehicles. Wind-energy sources of wind energy available to exploit for this problem [5]: 1) Vertical air motion, such as thermal

  15. Impact of dispersed solar and wind systems on electric distribution planning and operation

    SciTech Connect (OSTI)

    Boardman, R.W.; Patton, R.; Curtice, D.H.

    1981-02-01

    Small-scale dispersed solar photovoltaic and wind generation (DSW) will affect the generation, transmission, and distribution systems of an electric utility. This study examines the technical and economic impacts of dispersing DSW devices within the distribution system. Dispersed intermittent generation is included. Effects of DSW devices on capital investments, reliability, operating and maintenance costs, protection requirements, and communication and control requirements are examined. A DSW operation model is developed to help determine the dependable capacity of fluctuating solar photovoltaic and wind generation as part of the distribution planning process. Specific case studies using distribution system data and renewable resource data for Southern California Edison Company and Consumers Power Company are analyzed to gain insights into the effects of interconnecting DSW devices. The DSW devices were found to offer some distribution investment savings, depending on their availability during peak loads. For a summer-peaking utility, for example, dispersing photovoltaic systems is more likely to defer distribution capital investments than dispersing wind systems. Dispersing storage devices to increase DSW's dependable capacity for distribution systems needs is not economically attractive. Substation placement of DSW and storage devices is found to be more cost effective than feeder or customer placement. Examination of the effects of DSW on distribution system operation showed that small customer-owned DSW devices are not likely to disrupt present time-current distribution protection coordination. Present maintenance work procedures, are adequate to ensure workmen's safety. Regulating voltages within appropriate limits will become more complex with intermittent generation along the distribution feeders.

  16. Optimization of a Small Passive Wind Turbine Generator with Multiobjective Genetic Algorithms

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    : Multiobjective Optimization, Genetic Algorithms, Wind Energy, Vertical Axis Wind Turbine hal-00763673,version1 #12;2.2. The Wind Turbine Characteristics A Savonius Vertical Axis Wind Turbine of radius R = 0.5 mOptimization of a Small Passive Wind Turbine Generator with Multiobjective Genetic Algorithms A

  17. 2/21/2014 Downsizing Wind Energyfor Your Phone | Glacial EnergyBlog -Commercial Electric Savings, Electric Provider, Electric Supplier http://blog.glacialenergy.com/2014/02/19/downsizing-wind-energy-for-your-phone/ 1/2

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    2/21/2014 Downsizing Wind Energyfor Your Phone | Glacial EnergyBlog - Commercial Electric Savings Energy Saving Tips Events General Electricity green roof Household Tips Life Tips Natural Gas New, Electric Provider, Electric Supplier http://blog.glacialenergy.com/2014/02/19/downsizing-wind-energy

  18. Statistical Analysis of Environment Canada's Wind Speed Data

    E-Print Network [OSTI]

    Taylor, James H.

    of wind power generation poses operational difficulties to electricity markets. An electricity market to the defaulters. The wind energy (WE) utility thus faces the challenge of producing accurate power generation the kinetic energy in the wind is converted into electric power by the wind power generator. Stationary time

  19. Aalborg Universitet ARIMA-Based Time Series Model of Stochastic Wind Power Generation

    E-Print Network [OSTI]

    Bak-Jensen, Birgitte

    the nonstationarity and physical limits of stochastic wind power generation. The model is constructed based on wind power measurement of one year from the Nysted offshore wind farm in Denmark. The proposed limitedAalborg Universitet ARIMA-Based Time Series Model of Stochastic Wind Power Generation Chen, Peiyuan

  20. The State of the Art of Generators for Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    243 1 The State of the Art of Generators for Wind Energy Conversion Systems Y. Amirat, M. E. H. Benbouzid, B. Bensaker, R. Wamkeue and H. Mangel Abstract--Wind Energy Conversion Systems (WECS) have become of the studied generators is provided in Fig. 2. II. WIND ENERGY BACKGROUND A. Wind Power Conversion

  1. Proof-of-Principle Detonation Driven, Linear Electric Generator Facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Proof-of-Principle Detonation Driven, Linear Electric Generator Facility Eric M. Braun, Frank K. Lu a generator and produce electricity.4­6 Since the majority of power in the world is generated by deflagrative is described in which a detonation-driven piston system has been integrated with a linear generator in order

  2. Planning a Small Wind Electric System | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeeding access| DepartmentPeerFederal FleetUpSmall Wind Electric System Planning a

  3. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Bushnell, James B.; Wolfram, Catherine

    2005-01-01

    ciency of Electric Generating Plants: A Stochastic Frontierthe existing stock of electricity generating plants. Betweenover 300 electric generating plants in the US, accounting

  4. Has Restructuring Improved Operating Efficiency at U.S. Electricity Generating Plants?

    E-Print Network [OSTI]

    Fabrizio, Kira; Rose, Nancy; Wolfram, Catherine

    2004-01-01

    Cost Efficiency of Electric Generating Plants: A Stochasticat US Electricity Generating Plants? Kira Markiewicz, Nancyat US Electricity Generating Plants? Kira Markiewicz UC

  5. EA-1857: Wind Turbine Power Generation Complex at Idaho National Laboratory

    Broader source: Energy.gov [DOE]

    This EA would evaluate the environmental impacts of the proposed wind turbine power generation complex at Idaho National Laboratory, Idaho.

  6. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  7. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  8. Removable bearing arrangement for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran; Jansen, Patrick Lee; Gadre, Aniruddha Dattatraya

    2010-06-15

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  9. Method for changing removable bearing for a wind turbine generator

    DOE Patents [OSTI]

    Bagepalli, Bharat Sampathkumaran (Niskayuna, NY); Jansen, Patrick Lee (Scotia, NY), Gadre; Aniruddha Dattatraya (Rexford, NY)

    2008-04-22

    A wind generator having removable change-out bearings includes a rotor and a stator, locking bolts configured to lock the rotor and stator, a removable bearing sub-assembly having at least one shrunk-on bearing installed, and removable mounting bolts configured to engage the bearing sub-assembly and to allow the removable bearing sub-assembly to be removed when the removable mounting bolts are removed.

  10. Wind Turbine Bearing Failure Detection Using Generator Stator Current Homopolar Component

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Wind Turbine Bearing Failure Detection Using Generator Stator Current Homopolar Component Ensemble Empirical Mode Decomposition (EEMD) as a tool for failure detection in wind turbine generators for stationary and non stationary cases. Index Terms-Wind turbine, induction generator, bearing failure, ensemble

  11. Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Stephen Rehmeyer Pepe

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Testing Small Wind Turbine Generators: Design of a Driving Dynamometer by Stephen Rehmeyer Pepe Sc, Berkeley Spring 2007 #12;Testing Small Wind Turbine Generators: Design of a Driving Dynamometer Copyright c 2007 by Stephen Rehmeyer Pepe #12;Abstract Testing Small Wind Turbine Generators: Design of a Driving

  12. Stochastic Co-optimization for Hydro-Electric Power Generation

    E-Print Network [OSTI]

    1 Stochastic Co-optimization for Hydro-Electric Power Generation Shi-Jie Deng, Senior Member, IEEE the optimal scheduling problem faced by a hydro-electric power producer that simultaneously participates in multiple markets. Specifically, the hydro-generator participates in both the electricity spot market

  13. SENSING THE ENVIRONMENT Detection and Generation of Electric Signals

    E-Print Network [OSTI]

    be actively generated by an electric organ or passively generated due to the uneven distribution of ions of kilohertz such as those produced by an EOD. Electrosense The ability to detect electric fields. A passive to a unique form of electricity ­ an innate vital force housed within animal tissue that was released

  14. Vogtle Electric Generating Plant ETE Analysis Review

    SciTech Connect (OSTI)

    Diediker, Nona H.; Jones, Joe A.

    2006-12-09

    Under contract with the Nuclear Regulatory Commission (NRC), staff from Pacific Northwest National Laboratory (PNNL) and Sandia National Laboratory (SNL)-Albuquerque reviewed the evacuation time estimate (ETE) analysis dated April 2006 prepared by IEM for the Vogtle Electric Generating Plant (VEGP). The ETE analysis was reviewed for consistency with federal regulations using the NRC guidelines in Review Standard (RS)-002, Supplement 2 and Appendix 4 to NUREG-0654, and NUREG/CR-4831. Additional sources of information referenced in the analysis and used in the review included NUREG/CR-6863 and NUREG/CR-6864. The PNNL report includes general comments, data needs or clarifications, and requests for additional information (RAI) resulting from review of the ETE analysis.

  15. Supplementary Information Potential for Electricity Generation from Renewable Resources and Levelized Cost of Electricity (LCOE)

    E-Print Network [OSTI]

    Suo, Zhigang

    the potential to meet the worldwide demand of electricity and they contribute to the total generation of providing enough energy to meet the world demand of electricity, the current amount of electricitySupplementary Information Potential for Electricity Generation from Renewable Resources

  16. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply; Executive Summary (Revised)

    SciTech Connect (OSTI)

    Not Available

    2008-12-01

    This document is a 21-page summary of the 200+ page analysis that explores one clearly defined scenario for providing 20% of our nation's electricity demand with wind energy by 2030 and contrasts it to a scenario of no new U.S. wind power capacity.

  17. Exotic Electricity Options and the Valuation of Electricity Generation and Transmission

    E-Print Network [OSTI]

    Exotic Electricity Options and the Valuation of Electricity Generation and Transmission Assets a methodology for valuing electricity deriva- tives by constructing replicating portfolios from electricity-storable nature of electricity, which rules out the traditional spot mar- ket, storage-based method of valuing

  18. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01

    generating electricity from RES is wind energy, followed byto a rapid growth of wind energy. The development in Japanof hydro, some biomass and wind energy plants at favourable

  19. Modeling of a detonation driven, linear electric generator facility

    E-Print Network [OSTI]

    Texas at Arlington, University of

    Modeling of a detonation driven, linear electric generator facility E.M. Braun, E. Baydar, and F demonstrated that a PDE can be used for power generation and may be more efficient than a deflagration that involve coupling a PDE with different systems to drive a generator and produce electricity [2, 3]. One

  20. Production Tax Credit for Renewable Electricity Generation (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01

    In the late 1970s and early 1980s, environmental and energy security concerns were addressed at the federal level by several key pieces of energy legislation. Among them, the Public Utility Regulatory Policies Act of 1978 (PURPA), P.L. 95-617, required regulated power utilities to purchase alternative electricity generation from qualified generating facilities, including small-scale renewable generators; and the Investment Tax Credit (ITC), P.L. 95-618, part of the Energy Tax Act of 1978, provided a 10% federal tax credit on new investment in capital-intensive wind and solar generation technologies.

  1. Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies

    E-Print Network [OSTI]

    Joskow, Paul L.

    Economic evaluations of alternative electric generating technologies typically rely on comparisons between their expected life-cycle production costs per unit of electricity supplied. The standard life-cycle cost metric ...

  2. Integration of decentralized generators with the electric power grid

    E-Print Network [OSTI]

    Finger, Susan

    1981-01-01

    This report develops a new methodology for studying the economic interaction of customer-owned electrical generators with the central electric power grid. The purpose of the report is to study the reciprocal effects of the ...

  3. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  4. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Becker, Sarah; Andresen, Gorm B; Zeyer, Timo; Schramm, Stefan; Greiner, Martin; Jacobson, Mark Z

    2014-01-01

    Wind and solar PV generation data for the entire contiguous US are calculated, on the basis of 32 years of weather data with temporal resolution of one hour and spatial resolution of 40x40km$^2$, assuming site-suitability-based as well as stochastic wind and solar PV capacity distributions throughout the country. These data are used to investigate a fully renewable electricity system, resting primarily upon wind and solar PV power. We find that the seasonal optimal mix of wind and solar PV comes at around 80% solar PV share, owing to the US summer load peak. By picking this mix, long-term storage requirements can be more than halved compared to a wind only mix. The daily optimal mix lies at about 80% wind share due to the nightly gap in solar PV production. Picking this mix instead of solar only reduces backup energy needs by about 50%. Furthermore, we calculate shifts in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to their differing resour...

  5. 2/1/2014 Miniature Windmill generating wind energy-wordlessTech http://wordlesstech.com/2014/01/14/miniature-windmill-generating-wind-energy/ 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    is the replacement of the conventional keyboard Rhode Island offshore wind farm Wind, created by waving the cell2/1/2014 Miniature Windmill generating wind energy- wordlessTech http://wordlesstech.com/2014/01/14/miniature-windmill-generating-wind-energy/ 1/3 0 Miniature Windmill generating wind energy January 14, 2014

  6. Sensorless Adaptive Output Feedback Control of Wind Energy Systems with PMS Generators

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Sensorless Adaptive Output Feedback Control of Wind Energy Systems with PMS Generators A. El the problem of controlling wind energy conversion (WEC) systems involving permanent magnet synchronous is to maximize wind energy extraction which cannot be achieved without letting the wind turbine rotor operate

  7. Predicting short-period, wind-wave-generated seismic1 noise in coastal regions2

    E-Print Network [OSTI]

    Tsai, Victor C.

    Predicting short-period, wind-wave-generated seismic1 noise in coastal regions2 Florent Gimberta recorded in this period range is mostly caused by local wind-waves, i.e. by wind-waves occurring within in nearly opposite directions is orders of magnitude smaller than previously suggested for wind-waves, does

  8. Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar

    Broader source: Energy.gov [DOE]

    The Next Generation Electric Machines: Megawatt Class Motors FOA Informational Webinar will discuss standard procedures regarding the EERE Office and FOA process.

  9. Renewable Energy for Electricity Generation in Latin America...

    Open Energy Info (EERE)

    Renewable Energy for Electricity Generation in Latin America: Market, Technologies, and Outlook (Webinar) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable...

  10. Adapting On-site Electrical Generation Platforms for Producer Gas

    Broader source: Energy.gov [DOE]

    Internal combustion reciprocating engine generators (gensets) are regularly deployed at distribution centers, small municipal utilities, and public institutions to provide on-site electricity...

  11. Electric Power Generation Systems | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation Systems Coal gasification-based power plants Coal combustion-based power plants Natural gas-fueled power plants Turbines Fuel cells Existing power plants...

  12. DOE Announces Webinars on Next Generation Electric Machines,...

    Broader source: Energy.gov (indexed) [DOE]

    April 1: Live Webinar on Next Generation Electric Machines: Megawatt Class Motors FOA Webinar Sponsor: Advanced Manufacturing Office The Energy Department will present a live...

  13. Edison Electric Institute State Generation and Transmission Siting...

    Open Energy Info (EERE)

    Edison Electric Institute State Generation and Transmission Siting Directory Jump to: navigation, search OpenEI Reference LibraryAdd to library PermittingRegulatory Guidance -...

  14. Updated Capital Cost Estimates for Utility Scale Electricity Generating Plants

    Reports and Publications (EIA)

    2013-01-01

    The current and future projected cost and performance characteristics of new electric generating capacity are a critical input into the development of energy projections and analyses.

  15. Aalborg Universitet Electric vehicle battery charging algorithm using PMSM windings and an inverter as an

    E-Print Network [OSTI]

    Mathe, Laszlo

    windings and an inverter as an active rectifier. In Proceedings of the 2014 IEEE Vehicle Power windings as grid side inductors and controlling the inverter to operate as an active boost rectifierAalborg Universitet Electric vehicle battery charging algorithm using PMSM windings and an inverter

  16. Method for computing efficient electrical indicators for offshore wind turbine monitoring

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    by offshore deployment of wind farms. The offshore turbines have much lower accessibility(1) so maintenanceMethod for computing efficient electrical indicators for offshore wind turbine monitoring Georgia.cablea, pierre.granjon, christophe.berenguer} @gipsa-lab.grenoble-inp.fr Abstract Offshore wind turbines

  17. Assessing the wind field over the continental shelf as a resource for electric power

    E-Print Network [OSTI]

    Firestone, Jeremy

    Assessing the wind field over the continental shelf as a resource for electric power by Richard W. Garvine1,2 and Willett Kempton1,3,4 ABSTRACT To assess the wind power resources of a large continental for the comparison period) that the near-coast phase advantage is obviated. We also find more consistent wind power

  18. Risk-Based Strategies for Wind/Pumped-Hydro Coordination under Electricity Markets

    E-Print Network [OSTI]

    Boyer, Edmond

    be reduced by coupling the wind farm with energy storage facilities, thus constituting a virtual power plant1 Risk-Based Strategies for Wind/Pumped-Hydro Coordination under Electricity Markets Franck Bourry is able to minimize the imbalance penalty risks associated to wind power forecast uncertainty through

  19. Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-06-01

    Small Wind Electric Systems: A Guide Produced for the Tennessee Valley Authority provides consumers with information to help them determine whether a small wind electric system can provide all or a portion of the energy they need for their home or business based on their wind resource, energy needs, and their economics. Topics discussed in the guide include how to make a home more energy efficient, how to choose the correct turbine size, the parts of a wind electric system, how to determine whether enough wind resource exists, how to choose the best site for a turbine, how to connect a system to the utility grid, and whether it's possible to become independent of the utility grid using wind energy. In addition, the cover of the guide contains a regional wind resource map and a list of incentives and contacts for more information.

  20. Choosing wind power plant locations and sizes based on electric reliability measures using multiple-year wind speed measurements

    SciTech Connect (OSTI)

    Milligan, M.R.; Artig, R.

    1999-07-08

    To project the US potential to meet future electricity demands with wind energy, estimates of available wind resource and costs to access that resource are critical. The US Department of Energy (DOE) Energy Information Administration (EIA) annually estimates the US market penetration of wind in its Annual Energy Outlook series. For these estimates, the EIA uses wind resource data developed by the Pacific Northwest National Laboratory for each region of the country. However, the EIA multiplies the cost of windpower by several factors, some as large as 3, to account for resource quality, market factors associated with accessing the resource, electric grid impacts, and rapid growth in the wind industry. This paper examines the rationale behind these additional costs and suggests alternatives.

  1. Minimizing electricity costs with an auxiliary generator using stochastic programming

    E-Print Network [OSTI]

    Rafiuly, Paul, 1976-

    2000-01-01

    This thesis addresses the problem of minimizing a facility's electricity costs by generating optimal responses using an auxiliary generator as the parameter of the control systems. The-goal of the thesis is to find an ...

  2. Current Generated Harmonics and Their Effect Upon Electrical Industrial Systems 

    E-Print Network [OSTI]

    Alexander, H. R.; Rogge, D. S.

    1995-01-01

    This paper provides a general overview of harmonics and addresses the causes of current generated harmonics in electrical systems. In addition, problems caused by current generated harmonics and their affects upon different ...

  3. The State of the Art of Generators for Wind Energy Conversion Systems

    E-Print Network [OSTI]

    Boyer, Edmond

    The State of the Art of Generators for Wind Energy Conversion Systems Yassine Amirat, Mohamed Benbouzid, Bachir Bensaker and René Wamkeue Abstract--Wind Energy Conversion Systems (WECS) have become as to index some emerging solutions. Index Terms--Wind turbine, WECS, generator, state of the art, comparison

  4. Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid

    E-Print Network [OSTI]

    Hansen, René Rydhof

    Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault Risř National Laboratory Vestas Wind Systems A/S #12;#12;I Modelling and Analysis of Variable Speed Wind Turbines with Induction Generator during Grid Fault by Sigrid M. Bolik Institute of Energy

  5. On Impedance Spectroscopy Contribution to Failure Diagnosis in Wind Turbine Generators

    E-Print Network [OSTI]

    Boyer, Edmond

    On Impedance Spectroscopy Contribution to Failure Diagnosis in Wind Turbine Generators Mohamed Becherif1 , El Houssin El Bouchikhi2 and Mohamed Benbouzid2 Abstract ­ Wind turbines proliferation impedance spectroscopy contribution to the failure diagnosis of doubly-fed induction generator-based wind

  6. Wind Turbines Condition Monitoring and Fault Diagnosis Using Generator Current Amplitude

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Wind Turbines Condition Monitoring and Fault Diagnosis Using Generator Current Amplitude in the research of renewable energy sources. In order to make wind turbines as competitive as the classical detection in a Doubly-Fed Induction Generator (DFIG) based wind turbine for stationary and nonstationary

  7. Nanjing Sunec Wind Generator Equipment Factory | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA) JumpLiteratureMengdongDNR JumpSunec Wind Generator

  8. Zhejiang Windey Wind Generating Engineering | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindey Wind Generating Engineering Jump to:

  9. SHORT TERM PREDICTIONS FOR THE POWER OUTPUT OF ENSEMBLES OF WIND TURBINES AND PV-GENERATORS

    E-Print Network [OSTI]

    Heinemann, Detlev

    subject. 2. RELEVANCE OF POWER PRODUCTION FORECASTS OF WIND AND SOLAR INSTALLATIONS First, the relevance region the installed wind power capacity has reached the order of magnitude of the average load-georg.beyer@elektrotechnik.fh-magdeburg.de Abstract - With the increase of penetration of the utility networks by wind- and solar derived electricity

  10. The role of wind generation in European power sector decarbonization : a general equilibrium analysis

    E-Print Network [OSTI]

    Karkatsouli, Ioanna

    2013-01-01

    Wind generation has been growing fast, with onshore wind having a 27% average annual growth rate over the past decade. Motivated by this growth, a comprehensive analysis of both the economic and engineering implications ...

  11. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    power  flow  relations  for  electric  transmission  lines  (electric power  costs  are  cheap:  if  a  large  power  consumer  is  close  to  the  generator,  the  excess  power  needs associated with transmission line electric grid consists of a network of transmission lines.  Power 

  12. Impact of Electric Industry Structure on High Wind Penetration Potential

    SciTech Connect (OSTI)

    Milligan, M.; Kirby, B.; Gramlich, R.; Goggin, M.

    2009-07-01

    This paper attempts to evaluate which balancing area (BA) characteristics best accommodate wind energy.

  13. Facilitating Wind Development: The Importance of Electric Industry Structure

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-05-01

    This paper evaluates which wholesale elecricity market-structure characteristics best accommodate wind energy development.

  14. RECONNECTION OUTFLOW GENERATED TURBULENCE IN THE SOLAR WIND

    SciTech Connect (OSTI)

    Vörös, Z.; Sasunov, Y. L.; Zaqarashvili, T. V.; Khodachenko, M.; Semenov, V. S.; Bruno, R.

    2014-12-10

    Petschek-type time-dependent reconnection (TDR) and quasi-stationary reconnection (QSR) models are considered to understand reconnection outflow structures and the generation of local turbulence in the solar wind. Comparing TDR/QSR model predictions of the outflow structures with actual measurements shows that both models can explain the data equally well. It is demonstrated that the outflows can often generate more or less spatially extended turbulent boundary layers. The structure of a unique extended reconnection outflow is investigated in detail. The analysis of spectral scalings and spectral break locations shows that reconnection can change the local field and plasma conditions which may support different local turbulent dissipation mechanisms at their characteristic wavenumbers.

  15. ReEDS Modeling of the President's 2020 U.S. Renewable Electricity Generation Goal (Presentation)

    SciTech Connect (OSTI)

    Zinaman, O.; Mai, T.; Lantz, E.; Gelman, R.; Porro, G.

    2014-05-01

    President Obama announced in 2012 an Administration Goal for the United States to double aggregate renewable electricity generation from wind, solar, and geothermal sources by 2020. This analysis, using the Regional Energy Deployment System (ReEDS) model, explores a full range of future renewable deployment scenarios out to 2020 to assess progress and outlook toward this goal. Under all modeled conditions, consisting of 21 scenarios, the Administration Goal is met before 2020, and as early as 2015.

  16. Using Electric Vehicles to Meet Balancing Requirements Associated with Wind Power

    SciTech Connect (OSTI)

    Tuffner, Francis K.; Kintner-Meyer, Michael CW

    2011-07-31

    Many states are deploying renewable generation sources at a significant rate to meet renewable portfolio standards. As part of this drive to meet renewable generation levels, significant additions of wind generation are planned. Due to the highly variable nature of wind generation, significant energy imbalances on the power system can be created and need to be handled. This report examines the impact on the Northwest Power Pool (NWPP) region for a 2019 expected wind scenario. One method for mitigating these imbalances is to utilize plug-in hybrid electric vehicles (PHEVs) or battery electric vehicles (BEVs) as assets to the grid. PHEVs and BEVs have the potential to meet this demand through both charging and discharging strategies. This report explores the usage of two different charging schemes: V2GHalf and V2GFull. In V2GHalf, PHEV/BEV charging is varied to absorb the additional imbalance from the wind generation, but never feeds power back into the grid. This scenario is highly desirable to automotive manufacturers, who harbor great concerns about battery warranty if vehicle-to-grid discharging is allowed. The second strategy, V2GFull, varies not only the charging of the vehicle battery, but also can vary the discharging of the battery back into the power grid. This scenario is currently less desirable to automotive manufacturers, but provides an additional resource benefit to PHEV/BEVs in meeting the additional imbalance imposed by wind. Key findings in the report relate to the PHEV/BEV population required to meet the additional imbalance when comparing V2GHalf to V2GFull populations, and when comparing home-only-charging and work-and-home-charging scenarios. Utilizing V2GFull strategies over V2GHalf resulted in a nearly 33% reduction in the number of vehicles required. This reduction indicates fewer vehicles are needed to meet the unhandled energy, but they would utilize discharging of the vehicle battery into the grid. This practice currently results in the voiding of automotive manufacturer's battery warranty, and is not feasible for many customers. The second key finding is the change in the required population when PHEV/BEV charging is available at both home and work. Allowing 10% of the vehicle population access to work charging resulted in nearly 80% of the grid benefit. Home-only charging requires, at best, 94% of the current NWPP light duty vehicle fleet to be a PHEV or BEV. With the introduction of full work charging availability, only 8% of the NWPP light duty vehicle fleet is required. Work charging has primarily been associated with mitigating range anxiety in new electric vehicle owners, but these studies indicate they have significant potential for improving grid reliability. The V2GHalf and V2GFull charging strategies of the report utilize grid frequency as an indication of the imbalance requirements. The introduction of public charging stations, as well as the potential for PHEV/BEVs to be used as a resource for renewable generation integration, creates conditions for additional products into the ancillary services market. In the United Kingdom, such a capability would be bid as a frequency product in the ancillary services market. Such a market could create the need for larger, third-party aggregators or services to manage the use of electric vehicles as a grid resource. Ultimately, customer adoption, usage patterns and habits, and feedback from the power and automotive industries will drive the need.

  17. Insuring Electric Power for Critical Services After Disasters with Building-Sited Electric Generating Technologies 

    E-Print Network [OSTI]

    Jackson, J.

    2006-01-01

    -sited combined heat and power (CHP) electric generation technologies. This paper evaluates the physical requirements and costs of preemptively installing these new building- sited electric generation technologies to insure reliable long-term power for critical... source of emergency power available with new building-sited combined heat and power (CHP) electric generation technologies (see US Department of Energy, 2000 and 2002 for descriptions of these technologies). Instead of traditional emergency...

  18. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  19. Managing the Variability of Wind Energy with Location and Sizing and Electrical Engineering Issues

    E-Print Network [OSTI]

    Lavaei, Javad

    of Wind Power Integration Shengxi Yuan ELEN 4511 Prof. Lavaei Course Project 6/5/2014 #12;Abstract Today of wind power into the grid. On a large scale, such as the landscape of the United States, a sensible, the variability of wind power generation remains arguably the most significant challenge for deeper penetration

  20. Innovative Applications of O.R. Scheduling electric power production at a wind farm

    E-Print Network [OSTI]

    Kusiak, Andrew

    computations Wind farm Particle swarm optimization Small world network a b s t r a c t We present a model for scheduling power generation at a wind farm, and introduce a particle swarm optimization algorithm) and therefore could be incorporated into an optimization model to assist opera- tors in scheduling wind turbines

  1. Energy Intensity Indicators: Electricity Generation Energy Intensity

    Broader source: Energy.gov [DOE]

    A kilowatt-hour (kWh) of electric energy delivered to the final user has an energy equivalent to 3,412 British thermal units (Btu). Figure E1, below, tracks how much energy was used by the various...

  2. Topic 5: Power System Operation and Planning for Enhanced Wind Generation Penetration

    SciTech Connect (OSTI)

    Vittal, Vijay; Heydt, Gerald T; Ayyanar, Raja; McCalley, James D; Ajjarapu, V; Aliprantis, Dionysios

    2012-08-31

    This project dealt with the development of a range of educational resources dealing with wind energy and wind energy integration in the electric grid. These resources were developed for a variety of audiences including; a) high school student, b) undergraduate electrical engineering students, c) graduate electrical engineering students, and d) practicing engineers in industry. All the developed material is available publicly and the courses developed are being taught at the two participating universities, Arizona State University and Iowa State University.

  3. CSEM WP 111R The Efficiency of Electricity Generation

    E-Print Network [OSTI]

    California at Berkeley. University of

    -utility generating plants. Then, beginning with California in 1996, nearly half the states passed and a smaller-utility generators, specifically cogeneration facilities or plants using renewable resources. Also, initiativesCSEM WP 111R The Efficiency of Electricity Generation in the U.S. After Restructuring Catherine

  4. THE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    environments. The Energy Policy Act of 1992 opened access to transmission for non-utility generating plants-utility generators, specifically cogeneration facilities or plants using renewable resources. Also, initiativesTHE EFFICIENCY OF ELECTRICITY GENERATION IN THE US AFTER RESTRUCTURING Catherine Wolfram· UC

  5. Relationship Between Wind Generation and Balancing Energy Market Prices in ERCOT: 2007-2009

    SciTech Connect (OSTI)

    Nicholson, E.; Rogers, J.; Porter, K.

    2010-11-01

    This paper attempts to measure the average marginal effects of wind generation on the balancing-energy market price in ERCOT with the help of econometric analysis.

  6. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown – Dataset

    Broader source: Energy.gov [DOE]

    Excel file with dataset for Fact #844: Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

  7. Responses of floating wind turbines to wind and wave excitation

    E-Print Network [OSTI]

    Lee, Kwang Hyun

    2005-01-01

    The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

  8. Next Generation Short-Term Forecasting of Wind Power Overview of the ANEMOS Project.

    E-Print Network [OSTI]

    Boyer, Edmond

    1 Next Generation Short-Term Forecasting of Wind Power ­ Overview of the ANEMOS Project. G outperform current state-of-the-art methods, for onshore and offshore wind power forecasting. Advanced and evaluation at a local, regional and national scale. Finally, the project demonstrates the value of wind

  9. University of Delaware Technical Analysis for On-Site Wind Generation

    E-Print Network [OSTI]

    Firestone, Jeremy

    Sustainable Energy Developments, Inc. (SED) performed a technical assessment for an on-site wind turbineUniversity of Delaware Technical Analysis for On-Site Wind Generation Lewes Campus Summary overview of the detailed feasibility study performed for an on-site wind turbine development

  10. IMPACTS TO BIRDS CAUSED BY WIND ENERGY GENERATION 4.1 INTRODUCTION

    E-Print Network [OSTI]

    77 CHAPTER 4 IMPACTS TO BIRDS CAUSED BY WIND ENERGY GENERATION 4.1 INTRODUCTION Bird mortality studies reporting on wind energy facilities elsewhere regularly report that bird mortality in the APWRA is unusually high there and is, therefore, an anomaly among wind energy facilities in the United States. We

  11. A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations

    E-Print Network [OSTI]

    A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations Characterizing and optimizing overall performance of wind plants composed of large numbers at the National Renewable Energy Laboratory (NREL) are coupling physical models of the atmosphere and wind

  12. GENERATION OF ELECTRIC Hesham E. Shaalan

    E-Print Network [OSTI]

    Powell, Warren B.

    of generating systems. These include steam cycles, combined steam- and gas-turbine cycles (systems where the hot a steam turbine), and a number of advanced technology processes such as fuel cells (i.e., systems having exhaust gases are delivered to a heat-recovery steam generator to produce steam that is used to drive

  13. Competitive electricity markets and investment in new generating capacity

    E-Print Network [OSTI]

    Joskow, Paul L.

    2006-01-01

    Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating ...

  14. Sales and Use Tax Exemption for Electrical Generating Facilities

    Broader source: Energy.gov [DOE]

    Electrical generating facilities are exempt from sales and use taxes in North Dakota. The exemption is granted for the purchase of building materials, production equipment, and any other tangible...

  15. Alternative electric generation impact simulator : final summary report

    E-Print Network [OSTI]

    Gruhl, Jim

    1981-01-01

    This report is a short summary of three related research tasks that were conducted during the project "Alternative Electric Generation Impact Simulator." The first of these tasks combines several different types of ...

  16. The Economics and Feasibility of Electricity Generation using

    E-Print Network [OSTI]

    Laughlin, Robert B.

    benefits of using biogas to generate electricity instead of coal are positive, implying that an otherwise efficient rate structure will err against biogas. The second consideration is that manure digester

  17. Sandia Energy - Electric Power Generation and Water Use Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Power Generation and Water Use Data Home Climate & Earth Systems WaterEnergy Nexus Decision Models for Integrating EnergyWater Energy and Water in the Western and Texas...

  18. Maine: Energy Efficiency Program Helps Generate Town's Electricity

    Office of Energy Efficiency and Renewable Energy (EERE)

    Energy Efficiency program helps municipalities with their energy bills. Thomaston, Maine, was able to install solar panels to generate 13% of the electricity used by the wastewater treatment facility.

  19. Evaluating Policies to Increase Electricity Generation from Renewable Energy

    E-Print Network [OSTI]

    Schmalensee, Richard

    Building on a review of experience in the United States and the European Union, this article advances four main propositions concerning policies aimed at increasing electricity generation from renewable energy. First, who ...

  20. Use of Solar and Wind as a Physical Hedge against Price Variability within a Generation Portfolio

    SciTech Connect (OSTI)

    Jenkin, T.; Diakov, V.; Drury, E.; Bush, B.; Denholm, P.; Milford, J.; Arent, D.; Margolis, R.; Byrne, R.

    2013-08-01

    This study provides a framework to explore the potential use and incremental value of small- to large-scale penetration of solar and wind technologies as a physical hedge against the risk and uncertainty of electricity cost on multi-year to multi-decade timescales. Earlier studies characterizing the impacts of adding renewable energy (RE) to portfolios of electricity generators often used a levelized cost of energy or simplified net cash flow approach. In this study, we expand on previous work by demonstrating the use of an 8760 hourly production cost model (PLEXOS) to analyze the incremental impact of solar and wind penetration under a wide range of penetration scenarios for a region in the Western U.S. We do not attempt to 'optimize' the portfolio in any of these cases. Rather we consider different RE penetration scenarios, that might for example result from the implementation of a Renewable Portfolio Standard (RPS) to explore the dynamics, risk mitigation characteristics and incremental value that RE might add to the system. We also compare the use of RE to alternative mechanisms, such as the use of financial or physical supply contracts to mitigate risk and uncertainty, including consideration of their effectiveness and availability over a variety of timeframes.

  1. Electricity generation with looped transmission networks: Bidding to an ISO

    E-Print Network [OSTI]

    Ferris, Michael C.

    Electricity generation with looped transmission networks: Bidding to an ISO Xinmin Hu Daniel Ralph to model markets for delivery of electrical power on looped transmission networks. It analyzes, 2323 Audubon St, New Orleans, LA 70125-4117, USA; www.EKonomicsLLC.com ¶ Department of Economics

  2. Low-cost distributed solar-thermal-electric power generation

    E-Print Network [OSTI]

    Sanders, Seth

    -piston Stirling engine devices incorporating integrated electric generation. We target concentrator- collector design issues, and a specific design for an appropriately dimensioned free-piston Stirling engine. Only: Solar Thermal Collectors, Solar Thermal Electricity, Stirling Engine 1. INTRODUCTION In this paper, we

  3. Pricing Carbon for Electricity Generation: National and International Dimensions

    E-Print Network [OSTI]

    Grubb, Michael; Newbery, David

    In this paper, which forms a chapter in the forthcoming Book �Delivering a Low Carbon Electricity System: Technologies, Economics and Policy�, Grubb and Newbery examine how carbon for electricity generation should be priced. They begin...

  4. Bioaugmentation for Electricity Generation from Corn Stover

    E-Print Network [OSTI]

    -intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate and animal wastewaters and corn stover hydrolysates. For example, high power densities (810 to 970 mW/m2

  5. Development of a microbial process for the conversion of carbon dioxide and electricity to higher alcohols as biofuels

    E-Print Network [OSTI]

    Li, Han

    2013-01-01

    solar cells collect energy from sunlight and generate electricityas solar, hydro, and wind energy. The electricity generated

  6. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2009-05-15

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  7. Maximum power tracking control scheme for wind generator systems 

    E-Print Network [OSTI]

    Mena Lopez, Hugo Eduardo

    2008-10-10

    The purpose of this work is to develop a maximum power tracking control strategy for variable speed wind turbine systems. Modern wind turbine control systems are slow, and they depend on the design parameters of the turbine and use wind and/or rotor...

  8. Flying Electric Generators | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New PagesSustainable Urban Transport JumpFlowood, Mississippi:Open(Sasada,Flying Electric

  9. Two Colorado-Based Electric Cooperatives Selected as 2014 Wind...

    Office of Environmental Management (EM)

    Cooperatives as Wind Cooperatives of the Year for 2014 Comments on RFI on Permitting of Transmission Lines Available Energy Department Recognizes Nation's Top Green Power Programs...

  10. Direct Power Control of Doubly-Fed Generator Based Wind Turbine Converters to Improve Low Voltage

    E-Print Network [OSTI]

    Kimball, Jonathan W.

    by an Industrial Power Corruptor (IPC) in the laboratory. I. INTRODUCTION The new grid code requirements for windDirect Power Control of Doubly-Fed Generator Based Wind Turbine Converters to Improve Low Voltage power integration state that doubly fed induction generator (DFIG) controllers should be capable

  11. Evaluation of Global Onshore Wind Energy Potential and Generation Costs

    SciTech Connect (OSTI)

    Zhou, Yuyu; Luckow, Patrick; Smith, Steven J.; Clarke, Leon E.

    2012-06-20

    In this study, we develop an updated global estimate of onshore wind energy potential using reanalysis wind speed data, along with updated wind turbine technology performance and cost assumptions as well as explicit consideration of transmission distance in the calculation of transmission costs. We find that wind has the potential to supply a significant portion of world energy needs, although this potential varies substantially by region as well as with assumptions such as on what types of land can be used to site wind farms. Total global wind potential under central assumptions is estimated to be approximately 89 petawatt hours per year at less than 9 cents/kWh with substantial regional variations. One limitation of global wind analyses is that the resolution of current global wind speed reanalysis data can result in an underestimate of high wind areas. A sensitivity analysis of eight key parameters is presented. Wind potential is sensitive to a number of input parameters, particularly those related to land suitability and turbine density as well as cost and financing assumptions which have important policy implications. Transmission cost has a relatively small impact on total wind costs, changing the potential at a given cost by 20-30%. As a result of sensitivities studied here we suggest that further research intended to inform wind supply curve development focus not purely on physical science, such as better resolved wind maps, but also on these less well-defined factors, such as land-suitability, that will also have an impact on the long-term role of wind power.

  12. Analyzing Effects of Turbulence on Power Generation Using Wind Plant Monitoring Data: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Chowdhury, S.; Hodge, B. M.

    2014-01-01

    In this paper, a methodology is developed to analyze how ambient and wake turbulence affects the power generation of a single wind turbine within an array of turbines. Using monitoring data from a wind power plant, we selected two sets of wind and power data for turbines on the edge of the wind plant that resemble (i) an out-of-wake scenario (i.e., when the turbine directly faces incoming winds) and (ii) an in-wake scenario (i.e., when the turbine is under the wake of other turbines). For each set of data, two surrogate models were then developed to represent the turbine power generation (i) as a function of the wind speed; and (ii) as a function of the wind speed and turbulence intensity. Support vector regression was adopted for the development of the surrogate models. Three types of uncertainties in the turbine power generation were also investigated: (i) the uncertainty in power generation with respect to the published/reported power curve, (ii) the uncertainty in power generation with respect to the estimated power response that accounts for only mean wind speed; and (iii) the uncertainty in power generation with respect to the estimated power response that accounts for both mean wind speed and turbulence intensity. Results show that (i) under the same wind conditions, the turbine generates different power between the in-wake and out-of-wake scenarios, (ii) a turbine generally produces more power under the in-wake scenario than under the out-of-wake scenario, (iii) the power generation is sensitive to turbulence intensity even when the wind speed is greater than the turbine rated speed, and (iv) there is relatively more uncertainty in the power generation under the in-wake scenario than under the out-of-wake scenario.

  13. Compare All CBECS Activities: Electricity Generation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustments (Billion Cubic Feet)DecadeYear Jan Feb Mar Apr May Jun Jul Aug Sep3,118,592Number ofBy Electricity

  14. University of Delaware Technical Analysis for On-Site Wind Generation

    E-Print Network [OSTI]

    Firestone, Jeremy

    at the identified wind turbine locations and subsequent foundation design. #12;Final Report ­ Technical Analysis.3 TERRAIN AND ROUGHNESS MAPS 12 2.4 RESOURCE GRID 13 2.5 WIND TURBINE POWER CURVE 14 2.6 SUMMMARY OF MODEL-LEWES ELECTRICITY DATA 19 3.2 NET METERING 19 3.3 USAGE AND RATES 20 3.4 WHOLESALE POWER SALES 22 3.5 WIND DATA 25 3

  15. Nonlinear Electrical Simulation of High-Power Synchronous Generator System

    E-Print Network [OSTI]

    Wu, Thomas

    power density, the generator operates in nonlinear region of the magnetic circuit. Magnetic Finite for motor simulation [I]. Fardoun simulated permanent-magnet machine drive system using SPlCE [2]. NatarajanNonlinear Electrical Simulation of High-Power Synchronous Generator System Jie Chen and Thomas Wu

  16. Wind Turbine Generator System Power Performance Test Report for the Entegrity EW50 Wind Turbine

    SciTech Connect (OSTI)

    Smith, J.; Huskey, A.; Jager, D.; Hur, J.

    2011-05-01

    Report on the results of the power performance test that the National Renewable Energy Laboratory (NREL) conducted on Entegrity Wind System Inc.'s EW50 small wind turbine.

  17. Data Analytics Methods in Wind Turbine Design and Operations 

    E-Print Network [OSTI]

    Lee, Giwhyun

    2013-05-22

    This dissertation develops sophisticated data analytic methods to analyze structural loads on, and power generation of, wind turbines. Wind turbines, which convert the kinetic energy in wind into electrical power, are operated within stochastic...

  18. Fully coupled dynamic analysis of a floating wind turbine system

    E-Print Network [OSTI]

    Withee, Jon E

    2004-01-01

    The use of wind power is in a period of rapid growth worldwide and wind energy systems have emerged as a promising technology for utilizing offshore wind resources for the large scale generation of electricity. Drawing ...

  19. Table 2. Ten Largest Plants by Generation Capacity, 2013

    U.S. Energy Information Administration (EIA) Indexed Site

    General Electric Co",487 9,"Hermiston Generating Plant","Natural gas","Hermiston Generating Co LP",464 10,"Biglow Canyon Wind Farm","Wind","Portland General Electric Co",449....

  20. Wind for Schools: Developing Education Programs to Train the Next Generation of the Wind Energy Workforce

    SciTech Connect (OSTI)

    Baring-Gould, I.; Flowers, L.; Kelly, M.; Barnett, L.; Miles, J.

    2009-08-01

    This paper provides an overview of the Wind for Schools project elements, including a description of host and collegiate school curricula developed for wind energy and the status of the current projects. The paper also provides focused information on how schools, regions, or countries can become involved or implement similar projects to expand the social acceptance and understanding of wind energy.

  1. Generation of Simulated Wind Data using an Intelligent Algorithm...

    Office of Scientific and Technical Information (OSTI)

    Renewable Energy Laboratory (NREL), Golden, CO. Sponsoring Org: USDOE Office of Energy Efficiency and Renewable Energy Wind Power Technologies Office Country of Publication:...

  2. Generating Economic Development from a Wind Power Plant in Spanish...

    Wind Powering America (EERE)

    of the utility companies. In Utah, the Commission is responsible for determining avoided cost rates for qualifying facilities. As will be noted later, the Spanish Fork Wind...

  3. Competitive Bidding Process for Electric Distribution Companies’ Procurement of Default and Back-up Electric Generation Services (Connecticut)

    Broader source: Energy.gov [DOE]

    Electric distribution companies shall utilize a competitive bidding process for electric generation services. The Department of Public Utility Control will be responsible for setting the criteria...

  4. ECE 457 Dawson Fall 2010 Course Syllabus & Policies Fundamentals of Wind Power

    E-Print Network [OSTI]

    Stuart, Steven J.

    to power generation. Topics include wind energy principles, wind site assessment, wind turbine components, power generation machinery, control systems, connection to the electric grid, and maintenance and societal perspectives regarding the demand for mechanical and electrical power generation from wind using

  5. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  6. Southeast Regional Assessment Study: an assessment of the opportunities of solar electric power generation in the Southeastern United States

    SciTech Connect (OSTI)

    None

    1980-07-01

    The objective of this study was to identify and assess opportunities for demonstration and large scale deployment of solar electric facilities in the southeast region and to define the technical, economic, and institutional factors that can contribute to an accelerated use of solar energy for electric power generation. Graphs and tables are presented indicating the solar resource potential, siting opportunities, energy generation and use, and socioeconomic factors of the region by state. Solar electric technologies considered include both central station and dispersed solar electric generating facilities. Central stations studied include solar thermal electric, wind, photovoltaic, ocean thermal gradient, and biomass; dispersed facilities include solar thermal total energy systems, wind, and photovoltaic. The value of solar electric facilities is determined in terms of the value of conventional facilities and the use of conventional fuels which the solar facilities can replace. Suitable cost and risk sharing mechanisms to accelerate the commercialization of solar electric technologies in the Southeast are identified. The major regulatory and legal factors which could impact on the commercialization of solar facilities are reviewed. The most important factors which affect market penetration are reviewed, ways to accelerate the implementation of these technologies are identified, and market entry paths are identified. Conclusions and recommendations are presented. (WHK)

  7. 2/1/2014 Miniature Windmill generating wind energy| MyScienceAcademy http://myscienceacademy.org/2014/01/16/miniature-windmill-generating-wind-energy/ 1/3

    E-Print Network [OSTI]

    Chiao, Jung-Chih

    2/1/2014 Miniature Windmill generating wind energy| MyScienceAcademy http://myscienceacademy.org/2014/01/16/miniature-windmill-generating-wind-energy/ 1/3 91Like 0 Tweet 1 MINIATURE WINDMILLGENERATING WINDENERGY Researchers have designed a micro-windmill that generates wind energy. This may become

  8. One-point statistics and intermittency of induced electric field in the solar wind

    E-Print Network [OSTI]

    Luca Sorriso-Valvo; Vincenzo Carbone; Roberto Bruno

    2004-05-26

    The interplanetary induced electric field e=vxb is studied, using solar wind time series. The probability distribution functions (PDFs) of the electric field components are measured from the data and their non-gaussianity is discussed. Moreover, for the first time we show that the electric field turbulence is characterized by intermittency. This point is addressed by studying, as usual, the scaling of the PDFs of field increments, which allows a quantitative characterization of intermittency.

  9. Electrical power systems (Guatemala). Electric power generation and distribution equipment, March 1991. Export trade information

    SciTech Connect (OSTI)

    Not Available

    1991-03-01

    The article analyzes the electrical power generation and distribution equipment market in Guatemala and contains the following subtopics: market assessment, competitive situation, market access, trade promotion opportunities, best sales prospects, and statistical data. The total market demand of electrical power generation and distribution equipment and materials in Guatemala increased from US $19.0 million in 1987 to $24.8 million in 1988 (30.5 percent).

  10. Hybrid Electro-Mechanical Simulation Tool for Wind Turbine Generators: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Muljadi, E.; Jonkman, J.

    2013-05-01

    This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG and the FAST aero-elastic wind turbine code to simulate the aerodynamic and mechanical aspects of the WTG. The combination of the two enables studies involving both electrical and mechanical aspects of the WTG.

  11. HAS222d Intro to Energy and Environement: 40% off energy use in US goes into generating electricity

    E-Print Network [OSTI]

    goes into generating electricity generation efficiency: 33% electric power loss: plant to consumer 7) http://en.wikipedia.org/wiki/Electric_power_transmission#Losses http fuel power generation plants that dominate our electricity production. Remember that electricity

  12. RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine

    E-Print Network [OSTI]

    Hu, Hui

    installed in onshore or/and offshore wind farms in order to meet the 20% electricity generation goal. WindRESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind Hui Hu · Zifeng Yang · Partha Sarkar Received: 16 August 2011 / Revised: 1

  13. Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface mixed layer

    E-Print Network [OSTI]

    Smith, Jerome A.

    Rapid generation of high-frequency internal waves beneath a wind and wave forced oceanic surface the wind) generates high- frequency internal waves in the stratified fluid below. The internal waves evolveKinnon, and A. E. Tejada-Marti´nez (2008), Rapid generation of high-frequency internal waves beneath a wind

  14. Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow intertidal basins

    E-Print Network [OSTI]

    Fagherazzi, Sergio

    Importance of wind conditions, fetch, and water levels on wave-generated shear stresses in shallow, and wind direction on water depth, fetch, and the resulting wave-generated shear stresses. We identify four. Wiberg (2009), Importance of wind conditions, fetch, and water levels on wave-generated shear stresses

  15. Missing Money--Will the Current Electricity Market Structure Support High (~50%) Wind/Solar?; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Milligan, Michael

    2015-05-15

    This presentation summarizes the missing money problem and whether the current electricity market structure will support high penetration levels of wind and solar.

  16. Modelling Dynamic Constraints in Electricity Markets and the Costs of Uncertain Wind Output

    E-Print Network [OSTI]

    Musgens, Felix; Neuhoff, Karsten

    2006-03-14

    define model demand as German demand net of CHP, run off river hydro, expected wind generation and international power exchange. Hourly wind forecasts and realisations are provided by ISET e.V. Generation plant data are taken from EWI’s plant data base... one model region and endogenously determine international power exchange. In addition, the model is directly applicable to many other empirical questions, such as the effect of CO2emission costs on plant dispatch and costs or competitive bench...

  17. Superconducting generators for large off shore wind turbines 

    E-Print Network [OSTI]

    Keysan, Ozan

    2014-06-30

    This thesis describes four novel superconducting machine concepts, in the pursuit of finding a suitable design for large offshore wind turbines. The designs should be reliable, modular and light-weight. The main novelty ...

  18. Wind Energy for Rural Electric Cooperatives | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomesWind EnergyWind

  19. Optimized Hydrogen and Electricity Generation from Wind | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankADVANCED MANUFACTURINGEnergy Bills and ReduceNovemberDOE'sManagementOpenEIthe U.S.Energy Optimized

  20. EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE GENERATORS

    E-Print Network [OSTI]

    EFFECT OF PITCH CONTROL AND POWER CONDITIONING ON POWER QUALITY OF VARIABLE SPEED WIND TURBINE), Curtin University of Technology, WA Abstract: Variable speed wind turbine generators provide the opportunity to capture more power than fixed speed turbines. However the variable speed machine output can

  1. WindTurbineGenerator Introduction of the Renewable Micro-Grid Test-Bed

    E-Print Network [OSTI]

    Johnson, Eric E.

    Introduction of the Renewable Micro-Grid Test-Bed Dr. Wenxin Liu Smart Micro-grid and Renewable Technology/AC Inverter Wind Turbine: Torque or Speed Control Wind Generator: PQ Control Cubicle #4: Energy Storage - ± 70A Renewable Microgrid Shipboard Power System ZEDSZEDS ZEDSZEDS ZEDS PDM PDM PMM PMM PDM PMM PMM PDM

  2. Record of Decision for the Electrical Interconnection of the Windy Point Wind Energy Project.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-11-01

    The Bonneville Power Administration (BPA) has decided to offer contract terms for interconnection of 250 megawatts (MW) of power to be generated by the proposed Windy Point Wind Energy Project (Wind Project) into the Federal Columbia River Transmission System (FCRTS). Windy Point Partners, LLC (WPP) propose to construct and operate the proposed Wind Project and has requested interconnection to the FCRTS. The Wind Project will be interconnected at BPA's Rock Creek Substation, which is under construction in Klickitat County, Washington. The Rock Creek Substation will provide transmission access for the Wind Project to BPA's Wautoma-John Day No.1 500-kilovolt (kV) transmission line. BPA's decision to offer terms to interconnect the Wind Project is consistent with BPA's Business Plan Final Environmental Impact Statement (BP EIS) (DOE/EIS-0183, June 1995), and the Business Plan Record of Decision (BP ROD, August 15, 1995). This decision thus is tiered to the BP ROD.

  3. Fact #844: October 27, 2014 Electricity Generated from Coal has Declined while Generation from Natural Gas has Grown

    Broader source: Energy.gov [DOE]

    From 2002 to 2012, most states have reduced their reliance on coal for electricity generation. The figure below shows the percent change in electricity generated by coal and natural gas for each...

  4. Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind.

    E-Print Network [OSTI]

    California at Berkeley, University of

    Langmuir wave-packet generation from an electron beam propagating in the inhomogeneous solar wind of an electron beam in an homogeneous plasma leads to the generation of Lang- muir waves, that are electrostatic of the generation of plasma waves during type III radio bursts or close to the electron foreshock. It is also known

  5. Life Cycle Greenhouse Gas Emissions from Electricity Generation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-01-01

    Analysts at NREL have developed and applied a systematic approach to review the LCA literature, identify primary sources of variability and, where possible, reduce variability in GHG emissions estimates through a procedure called 'harmonization.' Harmonization of the literature provides increased precision and helps clarify the impacts of specific electricity generation choices, producing more robust results.

  6. Clean coal technologies in electric power generation: a brief overview

    SciTech Connect (OSTI)

    Janos Beer; Karen Obenshain [Massachusetts Institute of Technology (MIT), MA (United States)

    2006-07-15

    The paper talks about the future clean coal technologies in electric power generation, including pulverized coal (e.g., advanced supercritical and ultra-supercritical cycles and fluidized-bed combustion), integrated gasification combined cycle (IGCC), and CO{sub 2} capture technologies. 6 refs., 2 tabs.

  7. Modeling Distributed Electricity Generation in the NEMS Buildings Models

    Reports and Publications (EIA)

    2011-01-01

    This paper presents the modeling methodology, projected market penetration, and impact of distributed generation with respect to offsetting future electricity needs and carbon dioxide emissions in the residential and commercial buildings sector in the Annual Energy Outlook 2000 (AEO2000) reference case.

  8. Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water

    E-Print Network [OSTI]

    Electricity Generation from Synthetic Acid-Mine Drainage (AMD) Water using Fuel Cell Technologies, 2007. Acid-mine drainage (AMD) is difficult and costly to treat. We investigated a new approach to AMD and systems suitable for scale-up. Introduction Acid-mine drainage (AMD) is a serious environmental problem

  9. EIS-0476: Vogtle Electric Generating Plant, Units 3 and 4

    Broader source: Energy.gov [DOE]

    This EIS evaluates the environmental impacts of construction and startup of the proposed Units 3 and 4 at the Vogtle Electric Generating Plant in Burke County, Georgia. DOE adopted two Nuclear Regulatory Commission EISs associated with this project (i.e., NUREG-1872, issued 8/2008, and NUREG-1947, issued 3/2011).

  10. Preliminary design and viability consideration of external, shroud-based stators in wind turbine generators

    E-Print Network [OSTI]

    Shoemaker-Trejo, Nathaniel (Nathaniel Joseph)

    2012-01-01

    Horizontal-axis wind turbine designs often included gearboxes or large direct-drive generators to compensate for the low peripheral speeds of the turbine hub. To take advantage of high blade tip speeds, an alternative ...

  11. Analysis of Alternative Extensions of the Existing Production Tax Credit for Wind Generators

    Reports and Publications (EIA)

    2007-01-01

    Requestor: Ms. Janice Mays, Chief Counsel, Committee on Ways & Means, U.S. House of Representatives This is a letter response requesting analysis of alternative extensions of the existing production tax credit (PTC) that would apply to wind generators only.

  12. A Methodology to Assess the Value of Integrated Hydropower and Wind Generation

    E-Print Network [OSTI]

    to a test case integrated hydropower and wind generation system including five hydropower projects in a run-of-river using the RiverWare river system and hydropower modeling tool. The model represents both the physical

  13. Methodology The electricity generation and distribution network in the Western United States is

    E-Print Network [OSTI]

    Hall, Sharon J.

    Methodology The electricity generation and distribution network in the Western United States is comprised of power plants, electric utilities, electrical transformers, transmission and distribution infrastructure, etc. We conceptualize the system as a transportation network with resources (electricity

  14. Wind Turbine Generator System Duration Test Report for the Gaia-Wind 11 kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-09-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Renewable Energy Laboratory's (NRELs) National Wind Technology Center (NWTC) as a part of this project. Duration testing is one of up to five tests that may be performed on the turbines, including power performance, safety and function, noise, and power quality tests. The results of the testing will provide the manufacturers with reports that may be used for small wind turbine certification. The test equipment includes a Gaia-Wind 11 kW wind turbine mounted on an 18 m monopole tower. Gaia-Wind Ltd. manufactured the turbine in Denmark, although the company is based in Scotland. The system was installed by the NWTC Site Operations group with guidance and assistance from Gaia-Wind.

  15. Wind Turbine Generator System Power Quality Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Curtis, A.; Gevorgian, V.

    2011-07-01

    This report details the power quality test on the Gaia Wind 11-kW Wind Turbine as part of the U.S. Department of Energy's Independent Testing Project. In total five turbines are being tested as part of the project. Power quality testing is one of up to five test that may be performed on the turbines including power performance, safety and function, noise, and duration tests. The results of the testing provide manufacturers with reports that may be used for small wind turbine certification.

  16. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators’ forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the “flying brick” technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  17. The maximum potential to generate wind power in the contiguous United States is more than three times

    E-Print Network [OSTI]

    , the potential for 100-meter hubs operating in windy regions with at least 30% capacity is 12,125 GW of wind, the installed U.S. wind power capacity is now about 35 GW. While most of the wind potential comes from the windyThe maximum potential to generate wind power in the contiguous United States is more than three

  18. Hybrid Wind and Solar Electric Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the grid in remote locations. | Photo courtesy of Dave Parsons. Off-Grid or Stand-Alone Renewable Energy Systems Whether a home solar electric system will work for you depends on...

  19. Wind Generation Feasibility Study for Sac & Fox Tribe of the Mississippi in Iowa (Meskwaki Nation)

    SciTech Connect (OSTI)

    Lasley, Larry C.

    2013-03-19

    1.2 Overview The Meskwaki Nation will obtain an anemometer tower. Install the tower at the site that has been pre-qualified as the site most likely to produce maximum electric power from the wind. It will collect meteorological data from the tower�s sensors for a one year period, as required for due diligence to identify the site as appropriate for the installation of a wind turbine to provide electric power for the community. Have the collected data analyzed by a meteorologist and a professionally certified wind engineer to produce the reports of expected power generation at the site, for the specific wind turbine(s) under consideration for installation. 1.2.1 Goals of the Tribe The feasibility study reports, including technical and business analyses will be used to obtain contracts and financing required to develop and implement a wind turbine project on the Meskwaki Settlement. Our goal is to produce two (2) mega watts of power and to reduce the cost for electricity currently being paid by the Meskwaki Casino. 1.2.2 Project Objectives Meet the energy needs of the community with clean energy. Bring renewable energy to the settlement in a responsible, affordable manner. Maximize both the economic and the spiritual benefits to the tribe from energy independence. Integrate the Tribe�s energy policies with its economic development goals. Contribute to achieving the Tribe�s long-term goals of self-determination and sovereignty. 1.2.3 Project Location The precise location proposed for the tower is at the following coordinates: 92 Degrees, 38 Minutes, 46.008 Seconds West Longitude 41 Degrees, 59 Minutes, 45.311 Seconds North Latitude. A circle of radius 50.64 meters, enclosing and area of 1.98 acres in PLSS Township T83N, Range R15W, in Iowa. In relative directions, the site is 1,650 feet due west of the intersection of Highway 30 and 305th Street in Tama, Iowa, as approached from the direction of Toledo, Iowa. It is bounded on the north by Highway 30 and on the south by 305th Street, a street which runs along a meandering west-south-west heading from this intersection with Highway 30. In relation to Settlement landmarks, it is 300 meters west of the Meskwaki water tower found in front of the Meskwaki Public Works Department, and is due north of the athletic playing fields of the Meskwaki Settlement School. The accompanying maps (in the Site Resource Maps File) use a red pushpin marker to indicate the exact location, both in the overview frames and in the close-up frame. 1.2.4 Long Term Energy Vision The Meskwaki Tribe is committed to becoming energy self-sufficient, improving the economic condition of the tribe, and maintaining Tribal Values of closeness with Grandmother Earth. The details of the Tribe�s long-term vision continues to evolve. A long term vision exists of: 1) a successful assessment program; 2) a successful first wind turbine project reducing the Tribe�s cost of electricity; 3) creation of a Meskwaki Tribal Power Utility/Coop under the auspices of the new tribal Corporation, as we implement a master plan for economic and business development; 4), and opening the doors for additional wind turbines/renewable energy sources on the community. The additional turbines could lead directly to energy self-sufficiency, or might be the one leg of a multi-leg approach using multiple forms of renewable energy to achieve self-sufficiency. We envision current and future assessment projects providing the data needed to qualify enough renewable energy projects to provide complete coverage for the entire Meskwaki Settlement, including meeting future economic development projects� energy needs. While choosing not to engage in excessive optimism, we can imagine that in the future the Iowa rate-setting bodies will mandate that grid operators pay fair rates (tariffs) to renewable suppliers. We will be ready to expand renewable production of electricity for export, when that time comes. The final report includes the Wind

  20. Wind Turbine Generator System Duration Test Report for the Mariah Power Windspire Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; Bowen, A.; Jager, D.

    2010-05-01

    This test was conducted as part of the U.S. Department of Energy's (DOE) Independent Testing project to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of the first round of this project. Duration testing is one of up to five tests that may be performed on the turbines. Other tests include power performance, safety and function, noise, and power quality tests. NWTC testing results provide manufacturers with reports that may be used to meet part of small wind turbine certification requirements. This duration test report focuses on the Mariah Power Windspire wind turbine.

  1. Effects on electrical distribution networks of dispersed power generation at high levels of connection penetration

    SciTech Connect (OSTI)

    Longrigg, P.

    1983-07-01

    The advent and deployment of significant levels of photovoltaic and wind energy generation in the spatially dispersed mode (i.e., residential and intermediate load centers) may have deleterious effects upon existing protective relay equipment and its time-current coordination on radial distribution circuits to which power conditioning equipment may be connected for power sell-back purposes. The problems that may arise involve harmonic injection from power conditioning inverters that can affect protective relays and cause excessive voltage and current from induced series and parallel resonances on feeders and connected passive equipment. Voltage regulation, var requirements, and consumer metering can also be affected by this type of dispersed generation. The creation of islands of supply is also possible, particularly on rural supply systems. This paper deals mainly with the effects of harmonics and short-circuit currents from wind energy conversion systems (WECS) and photovoltaic (PV) systems upon the operating characteristics of distribution networks and relays and other protective equipment designed to ensure the safety and supply integrity of electrical utility networks. Traditionally, electrical supply networks have been designed for one-way power flow-from generation to load, with a balance maintained between the two by means of automatic generation and load-frequency controls. Dispersed generation, from renewables like WECS or PV or from nonrenewable resources, can change traditional power flow. These changes must be dealt with effectively if renewable energy resources are to be integrated into the utility distribution system. This paper gives insight into these problems and proposes some solutions.

  2. Evaluation and Ranking of Geothermal Resources for Electrical Generation or Electrical Offset in Idaho, Montana, Oregon and Washington. Volume II.

    SciTech Connect (OSTI)

    Bloomquist, R. Gordon

    1985-06-01

    This volume contains appendices on: (1) resource assessment - electrical generation computer results; (2) resource assessment summary - direct use computer results; (3) electrical generation (high temperature) resource assessment computer program listing; (4) direct utilization (low temperature) resource assessment computer program listing; (5) electrical generation computer program CENTPLANT and related documentation; (6) electrical generation computer program WELLHEAD and related documentation; (7) direct utilization computer program HEATPLAN and related documentation; (8) electrical generation ranking computer program GEORANK and related documentation; (9) direct utilization ranking computer program GEORANK and related documentation; and (10) life cycle cost analysis computer program and related documentation. (ACR)

  3. Zhenkang County Jineng Electricity Generation Co Ltd | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) JumpZhuyuanWindey Wind GeneratingZhengzhouSolar

  4. VLF wave activity in the solar wind and the photoelectron effect in electric field measurements: Ulysses observations

    E-Print Network [OSTI]

    California at Berkeley, University of

    solar wind streams, Ulysses observed nearly continuous electric wave activity with peak power belowVLF wave activity in the solar wind and the photoelectron effect in electric field measurements present observations of very low frequency (VLF) waves (0.2 to 448 Hz) made by Ulysses during the solar

  5. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Jacobson, Mark

    . To quantify general features of such a weather dependent electricity supply in the contiguous US, windFeatures of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions Sarah Becker a, b, * , Bethany A. Frew b , Gorm B. Andresen d, b , Timo Zeyer c

  6. Candidate wind-turbine-generator site summarized meteorological data for December 1976-December 1981. [Program WIND listed

    SciTech Connect (OSTI)

    Sandusky, W.F.; Renne, D.S.; Hadley, D.L.

    1982-09-01

    Summarized hourly meteorological data for 16 of the original 17 candidate and wind turbine generator sites collected during the period from December 1976 through December 1981 are presented. The data collection program at some individual sites may not span this entire period, but will be contained within the reporting period. The purpose of providing the summarized data is to document the data collection program and provide data that could be considered representative of long-term meteorological conditions at each site. For each site, data are given in eight tables and a topographic map showing the location of the meteorological tower and turbine, if applicable. Use of information from these tables, along with information about specific wind turbines, should allow the user to estimate the potential for long-term average wind energy production at each site.

  7. Identification and definition of unbundled electric generation and transmission services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.; Vancoevering, J.

    1995-03-01

    State and federal regulators, private and public utilities, large and small customers, power brokers and marketers, and others are engaged in major debates about the future structure of the electric industry. Although the outcomes are far from certain, it seems clear that customers will have much greater choices about the electric services they purchase and from whom they buy these services. This report examines the ``ancillary`` services that are today buried within the typical vertically integrated utility. These ancillary services support and make possible the provision of the basic services of generating capacity, energy supply, and power delivery. These ancillary services include: Management of generating units; reserve generating capacity to follow variations in customer loads, to provide capacity and energy when generating units or transmission lines suddenly fall, to maintain electric-system stability, and to provide local-area security; transmission-system monitoring and control; replacement of real power and energy losses; reactive-power management and voltage regulation; transmission reserves; repair and maintenance of the transmission network; metering, billing, and communications; and assurance of appropriate levels of power quality. Our focus in this report, the first output from a larger Oak Ridge National Laboratory project, is on identification and definition of these services. Later work in this project will examine more closely the costs and pricing options for each service.

  8. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  9. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    electricity from biogas and they have the same rate of electrical generationbiogas can be used as a supplemental energy source for thermal energy loads and the generation of electricity.generation of electricity. Anaerobic digestion destroys pathogens and this method is used to generate biogas

  10. BUILDOUT AND UPGRADE OF CENTRAL EMERGENCY GENERATOR SYSTEM, GENERATOR 3 AND 4 ELECTRICAL INSTALLATION

    SciTech Connect (OSTI)

    Gary D. Seifert; G. Shawn West; Kurt S. Myers; Jim Moncur

    2006-07-01

    SECTION 01000—SUMMARY OF WORK PART 1—GENERAL 1.1 SUMMARY The work to be performed under this project consists of providing the labor, equipment, and materials to perform "Buildout and Upgrade of Central Emergency Generator System, Generator 3 and 4 Electrical Installation" for the National Aeronautics and Space Administration at the Dryden Flight Research Center (NASA/DFRC), Edwards, California 93523. All modifications to existing substations and electrical distribution systems are the responsibility of the contractor. It is the contractor’s responsibility to supply a complete and functionally operational system. The work shall be performed in accordance with these specifications and the related drawings. The work of this project is defined by the plans and specifications contained and referenced herein. This work specifically includes but is not limited to the following: Scope of Work - Installation 1. Install all electrical wiring and controls for new generators 3 and 4 to match existing electrical installation for generators 1 and 2 and in accordance with drawings. Contractor shall provide as-built details for electrical installation. 2. Install battery charger systems for new generators 3 and 4 to match existing battery charging equipment and installation for generators 1 and 2. This may require exchange of some battery charger parts already on-hand. Supply power to new battery chargers from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 3. Install electrical wiring for fuel/lube systems for new generators 3 and 4 to match existing installation for generators 1 and 2. Supply power to lube oil heaters and fuel system (day tanks) from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to fuel systems. 4. Install power to new dampers/louvers from panel and breakers as shown on drawings. Wiring shall be similar to installation to existing dampers/louvers. Utilize existing conduits already routed to louver areas to field route the new wiring in the most reasonable way possible. Add any conduits necessary to complete wiring to new dampers/louvers. 5. Install power to jacket water heaters for new generators 3 and 4 from panel and breakers as shown on drawings. Utilize existing conduits already routed to generators 3 and 4 to field route the new wiring in the most reasonable way possible. 6. Install new neutral grounding resistor and associated parts and wiring for new generators 3 and 4 to match existing installation for generators 1 and 2. Grounding resistors will be Government Furnished Equipment (GFE). 7. Install two new switchgear sections, one for generator #3 and one for generator #4, to match existing generator #1 cubicle design and installation and in accordance with drawings and existing parts lists. This switchgear will be provided as GFE. 8. Ground all new switchgear, generators 3 and 4, and any other new equipment to match existing grounding connections for generators 1 and 2, switchgear and other equipment. See drawings for additional details. Grounding grid is already existing. Ensure that all grounding meets National Electrical Code requirements. 9. Cummins DMC control for the generator and switchgear syste

  11. Electricity generation and environmental externalities: Case studies, September 1995

    SciTech Connect (OSTI)

    NONE

    1995-09-28

    Electricity constitutes a critical input in sustaining the Nation`s economic growth and development and the well-being of its inhabitants. However, there are byproducts of electricity production that have an undesirable effect on the environment. Most of these are emissions introduced by the combustion of fossil fuels, which accounts for nearly 70 percent of the total electricity generated in the United States. The environmental impacts (or damages) caused by these emissions are labeled environmental ``externalities.`` Included in the generic term ``externality`` are benefits or costs resulting as an unintended byproduct of an economic activity that accrue to someone other than the parties involved in the activity. This report provides an overview of the economic foundation of externalities, the Federal and State regulatory approaches, and case studies of the impacts of the externality policies adopted by three States.

  12. Learning About Wind Turbine Technology, Motors and Generators...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    I'll be talking to you about one of the latest subjects taught in the program's A course, Electric Machines. In a recent post, Dave Shoudy talked to you about the course on Power...

  13. TRANSMISSION SYSTEM ADEQUACY EVALUATION CONSIDERING WIND POWER

    E-Print Network [OSTI]

    Saskatchewan, University of

    TRANSMISSION SYSTEM ADEQUACY EVALUATION CONSIDERING WIND POWER Rajesh Karki Jaimin Patel Power to significantly increase renewable power penetration in electrical power systems. Wind power is the most important systems and large grid connected systems. Power generated by wind depends on the availability of the wind

  14. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  15. Wind Turbine Generator System Acoustic Noise Test Report for the ARE 442 Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.; van Dam, J.

    2010-11-01

    This test was conducted on the ARE 442 as part of the U.S. Department of Energy's (DOE's) Independent Testing project. This project was established to help reduce the barriers of wind energy expansion by providing independent testing results for small turbines. In total, five turbines are being tested at the National Wind Technology Center (NWTC) as a part of this project. Acoustic noise testing is one of up to five tests that may be performed on the turbines, including duration, safety and function, power performance, and power quality tests. The acoustic noise test was conducted to the IEC 61400-11 Edition 2.1.

  16. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    Optimization Under Various Electricity Tariffs Firestone,Optimization Under Various Electricity Tariffs Table of3 2.1 Electricity Tariff

  17. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    mechanism for electricity transmission expansion. Journal ofpolicy,  electricity  reliability,  transmission  planning, transmission investment in restructured electricity 

  18. Multiple Timescale Dispatch and Scheduling for Stochastic Reliability in Smart Grids with Wind Generation Integration

    E-Print Network [OSTI]

    He, Miao; Zhang, Junshan

    2010-01-01

    Integrating volatile renewable energy resources into the bulk power grid is challenging, due to the reliability requirement that at each instant the load and generation in the system remain balanced. In this study, we tackle this challenge for smart grid with integrated wind generation, by leveraging multi-timescale dispatch and scheduling. Specifically, we consider smart grids with two classes of energy users - traditional energy users and opportunistic energy users (e.g., smart meters or smart appliances), and investigate pricing and dispatch at two timescales, via day-ahead scheduling and realtime scheduling. In day-ahead scheduling, with the statistical information on wind generation and energy demands, we characterize the optimal procurement of the energy supply and the day-ahead retail price for the traditional energy users; in realtime scheduling, with the realization of wind generation and the load of traditional energy users, we optimize real-time prices to manage the opportunistic energy users so as...

  19. Effect of Wind Intermittency on the Electric Grid: Mitigating the Risk of Energy Deficits

    E-Print Network [OSTI]

    George, Sam O; Nguyen, Scott V

    2010-01-01

    Successful implementation of California's Renewable Portfolio Standard (RPS) mandating 33 percent renewable energy generation by 2020 requires inclusion of a robust strategy to mitigate increased risk of energy deficits (blackouts) due to short time-scale (sub 1 hour) intermittencies in renewable energy sources. Of these RPS sources, wind energy has the fastest growth rate--over 25% year-over-year. If these growth trends continue, wind energy could make up 15 percent of California's energy portfolio by 2016 (wRPS15). However, the hour-to-hour variations in wind energy (speed) will create large hourly energy deficits that require installation of other, more predictable, compensation generation capacity and infrastructure. Compensating for the energy deficits of wRPS15 could potentially cost tens of billions in additional dollar-expenditure for fossil and / or nuclear generation capacity. There is a real possibility that carbon dioxide and other greenhouse gas (GHG) emission reductions will miss the California ...

  20. Property:PotentialOnshoreWindGeneration | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo,AltFuelVehicle2FlatDemandMonth3PotentialOnshoreWindArea Jump to:

  1. Ningxia Yinyi Wind Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA)Options Jump to: navigation, searchYinyi Wind Power

  2. Loranger Power Generation Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided wavesLoneLorain County,2

  3. Understanding best practice regarding interruptible connections for wind generation: lessons from national and international experience

    E-Print Network [OSTI]

    Anaya, Karim L.; Pollitt, Michael G.

    2013-05-01

      one  or  more  wind  turbines  completely when  the  fixed  tolerance  levels  are  exceeded.  This  is  a  business  as  usual  practice  by  which generators are controlled.  Smart curtailment assesses exactly how much capacity is available  at a...   it  to be  applied.  However,   from  a  technological  point  of  view,  this  option  does  not  necessarily  incentivise nor does it support the connection of new and more efficient wind infrastructure.  This is due to the fact that this will be removed first rather than older wind turbines...

  4. A Multi-State Model for the Reliability Assessment of a Distributed Generation System via Universal Generating Function

    E-Print Network [OSTI]

    Boyer, Edmond

    renewable technology (e.g. wind or solar, etc.) whose behavior is described by a binary state, working of the renewable generator (e.g. solar generator, wind turbine, and electrical vehicle aggregation) State value Multiplication operator of u-functions Wind speed Total number of discretized wind speed states Discretized wind

  5. CCPExecutiveSummary Storing Wind

    E-Print Network [OSTI]

    Feigon, Brooke

    )1603 593715 A: UEA, Norwich, NR4 7TJ Storing Wind for a Rainy Day: What kind of electricity does Denmark the consequences and challenges of high rates of wind generation from both a technical and economic perspective. METHODOLOGY The authors re-examine Denmark's patterns of electricity production and trade from 2001 to 2009

  6. DOE: Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets

    SciTech Connect (OSTI)

    Brooks, Daniel, EPRI; Tuohy, Aidan, EPRI; Deb, Sidart, LCG Consulting; Jampani, Srinivas, LCG Consulting; Kirby, Brendan, Consultant; King, Jack, Consultant

    2011-11-29

    Wind power development in the United States is outpacing previous estimates for many regions, particularly those with good wind resources. The pace of wind power deployment may soon outstrip regional capabilities to provide transmission and integration services to achieve the most economic power system operation. Conversely, regions such as the Southeastern United States do not have good wind resources and will have difficulty meeting proposed federal Renewable Portfolio Standards with local supply. There is a growing need to explore innovative solutions for collaborating between regions to achieve the least cost solution for meeting such a renewable energy mandate. The DOE-funded project 'Integrating Southwest Power Pool Wind Energy into Southeast Electricity Markets' aims to evaluate the benefits of coordination of scheduling and balancing for Southwest Power Pool (SPP) wind transfers to Southeastern Electric Reliability Council (SERC) Balancing Authorities (BAs). The primary objective of this project is to analyze the benefits of different balancing approaches with increasing levels of inter-regional cooperation. Scenarios were defined, modeled and investigated to address production variability and uncertainty and the associated balancing of large quantities of wind power in SPP and delivery to energy markets in the southern regions of the SERC. The primary analysis of the project is based on unit commitment (UC) and economic dispatch (ED) simulations of the SPP-SERC regions as modeled for the year 2022. The UC/ED models utilized for the project were developed through extensive consultation with the project utility partners, to ensure the various regions and operational practices are represented as accurately as possible realizing that all such future scenario models are quite uncertain. SPP, Entergy, Oglethorpe Power Company (OPC), Southern Company, and the Tennessee Valley Authority (TVA) actively participated in the project providing input data for the models and review of simulation results and conclusions. While other SERC utility systems are modeled, the listed SERC utilities were explicitly included as active participants in the project due to the size of their load and relative proximity to SPP for importing wind energy. The analysis aspects of the project comprised 4 primary tasks: (1) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with only 7 GW of installed wind capacity in SPP for internal SPP consumption with no intended wind exports to SERC. This model is referred to as the 'Non-RES' model as it does not reflect the need for the SPP or SERC BAs to meet a federal Renewable Energy Standard (RES). (2) Analysis of hourly-resolution simulation results of the Non-RES model for the year 2022 to provide project stakeholders with confidence in the model and analytical framework for a scenario that is similar to the existing system and more easily evaluated than the high-wind transfer scenarios that are analyzed subsequently. (3) Development of SCUC/SCED model of the SPP-SERC footprint for the year 2022 with sufficient installed wind capacity in SPP (approximately 48 GW) for both SPP and the participating SERC BAs to meet an RES of 20% energy. This model is referred to as the 'High-Wind Transfer' model with several different scenarios represented. The development of the High-Wind Transfer model not only included identification and allocation of SPP wind to individual SERC BAs, but also included the evaluation of various methods to allow the model to export the SPP wind to SERC without developing an actual transmission plan to support the transfers. (4) Analysis of hourly-resolution simulation results of several different High-Wind Transfer model scenarios for the year 2022 to determine balancing costs and potential benefits of collaboration among SPP and SERC BAs to provide the required balancing.

  7. Dynamic Simulation Studies of the Frequency Response of the Three U.S. Interconnections with Increased Wind Generation

    E-Print Network [OSTI]

    Mackin, Peter

    2011-01-01

    the power factor. Type 2 Wind Turbine Generator (Wound Rotorwind Time (Seconds) Figure 2-5. The Power Delivered by Primary Frequency Control Actions Provided by GeneratorWind .. 20   Figure 3- 5. The Power Delivered (and Load Removed) by Primary Frequency Control Actions via Generator

  8. Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation of convectively

    E-Print Network [OSTI]

    Vadas, Sharon

    Generation of large-scale gravity waves and neutral winds in the thermosphere from the dissipation: Vadas, S. L., and H. Liu (2009), Generation of large-scale gravity waves and neutral winds of convectively generated gravity waves Sharon L. Vadas1 and Han-li Liu2 Received 29 January 2009; accepted 11

  9. Development and Deployment of Generation 3 Plug-In Hybrid Electric...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Generation 3 Plug-In Hybrid Electric School Buses Development and Deployment of Generation 3 Plug-In Hybrid Electric School Buses 2011 DOE Hydrogen and Fuel Cells Program, and...

  10. Electric Power Generation from Co-Produced and Other Oil Field...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Power Generation from Co-Produced and Other Oil Field Fluids Electric Power Generation from Co-Produced and Other Oil Field Fluids Co-produced and low-temperature...

  11. Floating Offshore Wind Technology Generating Resources Advisory Committee

    E-Print Network [OSTI]

    resource Offshore technology Prototypes and projects Cost Proposed 7th Plan Treatment 2 #12;Why Plan Treatment In the plan Technology & resource description (Very!) preliminary cost projections & Veatch. (2012) Cost and Performance Data for Power Generation Technologies. Prepared for National

  12. ReEDS Modeling of the President’s 2020 U.S. Renewable Electricity Generation Goal

    Broader source: Energy.gov [DOE]

    The primary objective of the analysis is to project future contributions from wind, solar, and geothermal technologies to the U.S. electricity generation mix in the 2020 time period. While this exercise is motivated by an interest in assessing the feasibility of achieving the Obama's Administration's goal of doubling renewable generation during that timeframe, the analysis only evaluates one interpretation of the goal and does not comprehensively evaluate others. The report introduction provides further background for this motivation. The analysis presented in this report was requested by the Office of Energy Efficiency and Renewable Energy in the U.S. Department of Energy.

  13. Engineering innovation to reduce wind power COE

    SciTech Connect (OSTI)

    Ammerman, Curtt Nelson

    2011-01-10

    There are enough wind resources in the US to provide 10 times the electric power we currently use, however wind power only accounts for 2% of our total electricity production. One of the main limitations to wind use is cost. Wind power currently costs 5-to-8 cents per kilowatt-hour, which is more than twice the cost of electricity generated by burning coal. Our Intelligent Wind Turbine LDRD Project is applying LANL's leading-edge engineering expertise in modeling and simulation, experimental validation, and advanced sensing technologies to challenges faced in the design and operation of modern wind turbines.

  14. Review of Operational Water Consumption and Withdrawal Factors for Electricity Generating Technologies

    SciTech Connect (OSTI)

    Macknick, J.; Newmark, R.; Heath, G.; Hallett, K. C.

    2011-03-01

    Various studies have attempted to consolidate published estimates of water use impacts of electricity generating technologies, resulting in a wide range of technologies and values based on different primary sources of literature. The goal of this work is to consolidate the various primary literature estimates of water use during the generation of electricity by conventional and renewable electricity generating technologies in the United States to more completely convey the variability and uncertainty associated with water use in electricity generating technologies.

  15. Incorporating operational flexibility into electric generation planning : impacts and methods for system design and policy analysis

    E-Print Network [OSTI]

    Palmintier, Bryan S. (Bryan Stephen)

    2013-01-01

    This dissertation demonstrates how flexibility in hourly electricity operations can impact long-term planning and analysis for future power systems, particularly those with substantial variable renewables (e.g., wind) or ...

  16. Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation Plants

    E-Print Network [OSTI]

    Sadoulet, Elisabeth

    Ownership Change, Incentives and Plant Efficiency: The Divestiture of U.S. Electric Generation generating plants. Between 1998 and 2001, over 300 electric generating plants in the US, accounting Plants James B. Bushnell and Catherine Wolfram March 2005 Abstract Electric industry restructuring

  17. Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially-Efficient Transmission Investments? *

    E-Print Network [OSTI]

    .S. transmission system is under stress (Abraham, 2002). Growth of electricity demand and new generation capacity investment in new generation and growth in electricity demand. Much of the current underinvestment1 Do Generation Firms in Restructured Electricity Markets Have Incentives to Support Socially

  18. ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel

    E-Print Network [OSTI]

    Sun, Baolin

    ENVIRONMENTAL BIOTECHNOLOGY Electricity generation at high ionic strength in microbial fuel cell organic matter using elec- trochemically active bacteria as catalysts to generate electrical energy of the most exciting applications of MFCs is their use as benthic unattended generators to power electrical

  19. The rebuilding and repairing of electric motors and generators

    E-Print Network [OSTI]

    Ridenour, Roy Everett

    1918-01-01

    Motor After Coils had been Put Back in Place In the repairing and rebuilding of electric motors and generators there are three principal factors which must be considered. These factors are, service, cost and reliability. If a machine can easily... motor. This motor had been through a fire in a Cripple Creek mine. The insulation had been burned from the coils except in the slots where mica had been used. The solder was*melted from the rotor and the babbitt from the bearings. Water had been...

  20. Biomass Fired Electricity Generation Market | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar Energy LLC Jump to:Greece:BajoBelpowerBiocarFired Electricity Generation

  1. Yangbi Puping Electric Power Generation Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (UtilityMichigan) Jump to: Name:XinjiangPuping Electric Power Generation

  2. SiC's Potential Impact on the Design of Wind Generation System , Leon M. Tolbert1,2

    E-Print Network [OSTI]

    Tolbert, Leon M.

    is that SiC devices would reduce substantially the cost of energy of large wind turbines that use powerSiC's Potential Impact on the Design of Wind Generation System Hui Zhang1 , Leon M. Tolbert1 National Laboratory Knoxville, TN 37932 Abstract -- The potential impact of SiC devices on a wind

  3. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    flow constraints on electric transmission The  objective relations  for  electric  transmission  lines  (we  used A ?A E : Set of AC electric transmission arcs, which satisfy

  4. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

  5. Wave variability and wave spectra for wind generated gravity waves 

    E-Print Network [OSTI]

    Bretschneider, Charles L.

    1959-01-01

    A series of experiments of forces on a fixed vertical truncated column due to Stokes 5th order like waves were done in a wave tank. An effort was made to generate the waves as close as possible to theoretical Stokes 5th order waves. A systematic...

  6. Submerged electricity generation plane with marine current-driven motors

    DOE Patents [OSTI]

    Dehlsen, James G.P.; Dehlsen, James B.; Fleming, Alexander

    2014-07-01

    An underwater apparatus for generating electric power from ocean currents and deep water tides. A submersible platform including two or more power pods, each having a rotor with fixed-pitch blades, with drivetrains housed in pressure vessels that are connected by a transverse structure providing buoyancy, which can be a wing depressor, hydrofoil, truss, or faired tube. The platform is connected to anchors on the seafloor by forward mooring lines and a vertical mooring line that restricts the depth of the device in the water column. The platform operates using passive, rather than active, depth control. The wing depressor, along with rotor drag loads, ensures the platform seeks the desired operational current velocity. The rotors are directly coupled to a hydraulic pump that drives at least one constant-speed hydraulic-motor generator set and enables hydraulic braking. A fluidic bearing decouples non-torque rotor loads to the main shaft driving the hydraulic pumps.

  7. Preliminary Assessment of Plug-in Hybrid Electric Vehicles on Wind Energy Markets

    SciTech Connect (OSTI)

    Short, W.; Denholm, P.

    2006-04-01

    This report examines a measure that may potentially reduce oil use and also more than proportionately reduce carbon emissions from vehicles. The authors present a very preliminary analysis of plug-in hybrid electric vehicles (PHEVs) that can be charged from or discharged to the grid. These vehicles have the potential to reduce gasoline consumption and carbon emissions from vehicles, as well as improve the viability of renewable energy technologies with variable resource availability. This paper is an assessment of the synergisms between plug-in hybrid electric vehicles and wind energy. The authors examine two bounding cases that illuminate this potential synergism.

  8. Optimization Online - Stochastic Real-Time Scheduling of Wind ...

    E-Print Network [OSTI]

    Alireza Soroudi

    2015-01-03

    Jan 3, 2015 ... Stochastic Real-Time Scheduling of Wind-thermal Generation Units in an Electric Utility. Alireza Soroudi (alireza.soroudi ***at*** ucd.ie)

  9. Distributed Generation Dispatch Optimization under Various Electricity Tariffs

    E-Print Network [OSTI]

    Firestone, Ryan; Marnay, Chris

    2007-01-01

    to solar insolation. Energy Prices Electricity prices weresolar insolation that are based on these data. Energy Loads Utility electricityenergy loads (non- cooling electric, electric, and heating), electricity prices, DG availability, and solar

  10. Wind-electric icemaking project: Analysis and dynamometer testing. Volume 1

    SciTech Connect (OSTI)

    Holz, R.; Gervorgian, V.; Drouilhet, S.; Muljadi, E.

    1998-07-01

    The wind/hybrid systems group at the National Renewable Energy Laboratory has been researching the most practical and cost-effective methods for producing ice from off-grid wind-electric power systems. The first phase of the project, conducted in 1993--1994, included full-scale dynamometer and field testing of two different electric ice makers directly connected to a permanent magnet alternator. The results of that phase were encouraging and the second phase of the project was launched in which steady-state and dynamic numerical models of these systems were developed and experimentally validated. The third phase of the project was the dynamometer testing of the North Star ice maker, which is powered by a 12-kilowatt Bergey Windpower Company, Inc., alternator. This report describes both the second and third project phases. Also included are detailed economic analyses and a discussion of the future prospects of wind-electric ice-making systems. The main report is contained in Volume 1. Volume 2 consists of the report appendices, which include the actual computer programs used in the analysis and the detailed test results.

  11. Exact and Efficient Algorithm to Discover Extreme Stochastic Events in Wind Generation over Transmission Power Grids

    E-Print Network [OSTI]

    Chertkov, Michael; Pan, Feng; Baldick, Ross

    2011-01-01

    In this manuscript we continue the thread of [M. Chertkov, F. Pan, M. Stepanov, Predicting Failures in Power Grids: The Case of Static Overloads, IEEE Smart Grid 2011] and suggest a new algorithm discovering most probable extreme stochastic events in static power grids associated with intermittent generation of wind turbines. The algorithm becomes EXACT and EFFICIENT (polynomial) in the case of the proportional (or other low parametric) control of standard generation, and log-concave probability distribution of the renewable generation, assumed known from the wind forecast. We illustrate the algorithm's ability to discover problematic extreme events on the example of the IEEE RTS-96 model of transmission with additions of 10%, 20% and 30% of renewable generation. We observe that the probability of failure may grow but it may also decrease with increase in renewable penetration, if the latter is sufficiently diversified and distributed.

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  13. Features of a fully renewable US electricity system: Optimized mixes of wind and solar PV and transmission grid extensions

    E-Print Network [OSTI]

    Jacobson, Mark

    in FERC (Federal Energy Regulatory Commission)-level LCOE (Levelized Costs Of Electricity) for wind and solar PV due to differing weather conditions. Regional LCOE vary by up to 29%, and LCOE-optimal mixes

  14. Geek-Up[04.01.2011]: Charting Wind, Thermal, Hydro Generation

    Office of Energy Efficiency and Renewable Energy (EERE)

    Check out Bonneville Power Administration’s new near real-time energy monitoring – it displays the output of all wind, thermal and hydro generation in the agency’s balancing authority against its load. Updated every five minutes, it’s a great resource for universities, research laboratories and other utilities.

  15. Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)

    SciTech Connect (OSTI)

    Flowers, L.; Baring-Gould, I.

    2010-04-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.

  16. Unbundling generation and transmission services for competitive electricity markets

    SciTech Connect (OSTI)

    Hirst, E.; Kirby, B.

    1998-01-01

    Ancillary services are those functions performed by the equipment and people that generate, control, and transmit electricity in support of the basic services of generating capacity, energy supply, and power delivery. The Federal Energy Regulatory Commission (FERC) defined such services as those `necessary to support the transmission of electric power from seller to purchaser given the obligations of control areas and transmitting utilities within those control areas to maintain reliable operations of the interconnected transmission system.` The nationwide cost of ancillary services is about $12 billion a year, roughly 10% of the cost of the energy commodity. More important than the cost, however, is the necessity of these services for bulk-power reliability and for the support of commercial transactions. FERC`s landmark Order 888 included a pro forma tariff with provision for six key ancillary services. The Interconnected Operations Services Working Group identified another six services that it felt were essential to the operation of bulk-power systems. Several groups throughput the United States have created or are forming independent system operators, which will be responsible for reliability and commerce. To date, the electricity industry (including traditional vertically integrated utilities, distribution utilities, power markets and brokers, customers, and state and federal regulators) has paid insufficient attention to these services. Although the industry had made substantial progress in identifying and defining the key services, much remains to be doe to specify methods to measure the production, delivery, and consumption of these services; to identify the costs and cost-allocation factors for these services; and to develop market and operating rules for their provision and pricing. Developing metrics, determining costs, and setting pricing rules are important because most of these ancillary services are produced by the same pieces of equipment that produce the basic electricity commodity. Thus, the production of energy and ancillary services is highly interactive, sometimes complementary and sometimes competing. In contrast to today`s typical time-invariant, embedded-cost prices, competitive prices for ancillary services would vary with system loads and spot prices for energy.

  17. THE DEFINITION OF ENGINEERING DEVELOPMENT AND RESEARCH PROBLEMS RELATING TO THE USE OF GEOTHERMAL FLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

    E-Print Network [OSTI]

    Apps, J.A.

    2011-01-01

    resources for electric power generation. i. Plant size ii.SYSTEMS Electric Power Generation Systems NonelectricFLUIDS FOR ELECTRIC POWER GENERATION AND NONELECTRIC HEATING

  18. Promoting electricity from renewable energy sources -- lessons learned from the EU, U.S. and Japan

    E-Print Network [OSTI]

    Haas, Reinhard

    2008-01-01

    fluctuations. Electricity generation [TWh/year] EU-25 USA4 . Electricity generation [TWh/year] Japan EU-25 USA EU-25USA Japan Wind Waste Solar Biomass Geothermal Figure 2 Historical pattern of electricity

  19. Methods and apparatus for rotor load control in wind turbines

    DOE Patents [OSTI]

    Moroz, Emilian Mieczyslaw

    2006-08-22

    A wind turbine having a rotor, at least one rotor blade, and a plurality of generators, of which a first generator is configured to provide power to an electric grid and a second generator is configured to provide power to the wind turbine during times of grid loss. The wind turbine is configured to utilize power provided by the second generator to reduce loads on the wind turbine during times of grid loss.

  20. Electrical Engineering for Wind Engineers (ELEG467/667-010, embedded in ELEG437/637)-This short course will provide non-Electrical Engineers with sufficient instruction to understand the

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 Electrical Engineering for Wind Engineers (ELEG467/667-010, embedded in ELEG437/637)- This short course will provide non-Electrical Engineers with sufficient instruction to understand the conversion of rotary motion into electrical

  1. Investigation of vortex generators for augmentation of wind turbine power performance

    SciTech Connect (OSTI)

    Griffin, D.A. [Lynette (R.) and Associates, Seattle, WA (United States)

    1996-12-01

    This study focuses on the use of vortex generators (VGs) for performance augmentation of the stall-regulated AWT-26 wind turbine. The goal was to design a VG array which would increase annual energy production (AEP) by increasing power output at moderate wind speeds, without adversely affecting the loads or stall-regulation performance of the turbine. Wind tunnel experiments were conducted at the University of Washington to evaluate the effect of VGs on the AWT-26 blade, which is lofted from National Renewable Energy Laboratory (NREL) S-series airfoils. Based on wind-tunnel results and analysis, a VG array was designed and then tested on the AWT-26 prototype, designated P1. Performance and loads data were measured for P1, both with and without VGs installed. the turbine performance with VGs met most of the design requirements; power output was increased at moderate wind speeds with a negligible effect on peak power. However, VG drag penalties caused a loss in power output for low wind speeds, such that performance with VGs resulted in a net decrease in AEP for sites having annual average wind speeds up to 8.5 m/s. While the present work did not lead to improved AEP for the AWT-2 turbine, it does provide insight into performance augmentation of wind turbines with VGs. The safe design of a VG array for a stall-regulated turbine has been demonstrated, and several issues involving optimal performance with VGs have been identified and addressed. 15 refs., 34 figs., 10 tabs.

  2. Vertical axis wind turbine acoustics

    E-Print Network [OSTI]

    Pearson, Charlie

    2014-04-08

    due to the political support for renewable energy and the introduction of Feed In Tariffs, which pay home owners for generating their own electricity. Due to their ability to respond quickly to changing wind conditions, small-scale vertical axis...

  3. Performance of a stand-alone wind-electric ice maker for remote villages

    SciTech Connect (OSTI)

    Davis, H.C. [National Renewable Energy Lab., Golden, CO (United States); Brandemuehl, M.J. [University of Colorado, Boulder, CO (United States). Joint Center for Energy Management; Bergey, M.L.S. [Bergey Windpower Co., Norman, OK (United States)

    1995-01-01

    Two ice makers in the 1.1 metric tons per 24 hours (1.2 tons per day) size range were tested to determine their performance when directly coupled to a variable-frequency wind turbine generator. Initial tests were conducted using a dynamometer to simulate to wind to evaluate whether previously determined potential problems were significant and to define basic performance parameters. Field testing in Norman, Oklahoma, was completed to determine the performance of one of the ice makers under real wind conditions. As expected, the ice makers produced more ice at a higher speed than rated, and less ice at a lower speed. Due to the large start-up torque requirement of reciprocating compressors, the ice making system experienced a large start-up current and corresponding voltage drop which required a larger wind turbine that expected to provide the necessary current and voltage. Performance curves for ice production and power consumption are presented. A spreadsheet model was constructed to predict ice production at a user-defined site given the wind conditions for that location. Future work should include long-term performance tests and research on reducing the large start-up currents the system experiences when first coming on line.

  4. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  5. Computational Needs for the Next Generation Electric Grid Proceedings

    SciTech Connect (OSTI)

    Birman, Kenneth; Ganesh, Lakshmi; Renessee, Robbert van; Ferris, Michael; Hofmann, Andreas; Williams, Brian; Sztipanovits, Janos; Hemingway, Graham; University, Vanderbilt; Bose, Anjan; Stivastava, Anurag; Grijalva, Santiago; Grijalva, Santiago; Ryan, Sarah M.; McCalley, James D.; Woodruff, David L.; Xiong, Jinjun; Acar, Emrah; Agrawal, Bhavna; Conn, Andrew R.; Ditlow, Gary; Feldmann, Peter; Finkler, Ulrich; Gaucher, Brian; Gupta, Anshul; Heng, Fook-Luen; Kalagnanam, Jayant R; Koc, Ali; Kung, David; Phan, Dung; Singhee, Amith; Smith, Basil

    2011-10-05

    The April 2011 DOE workshop, 'Computational Needs for the Next Generation Electric Grid', was the culmination of a year-long process to bring together some of the Nation's leading researchers and experts to identify computational challenges associated with the operation and planning of the electric power system. The attached papers provide a journey into these experts' insights, highlighting a class of mathematical and computational problems relevant for potential power systems research. While each paper defines a specific problem area, there were several recurrent themes. First, the breadth and depth of power system data has expanded tremendously over the past decade. This provides the potential for new control approaches and operator tools that can enhance system efficiencies and improve reliability. However, the large volume of data poses its own challenges, and could benefit from application of advances in computer networking and architecture, as well as data base structures. Second, the computational complexity of the underlying system problems is growing. Transmitting electricity from clean, domestic energy resources in remote regions to urban consumers, for example, requires broader, regional planning over multi-decade time horizons. Yet, it may also mean operational focus on local solutions and shorter timescales, as reactive power and system dynamics (including fast switching and controls) play an increasingly critical role in achieving stability and ultimately reliability. The expected growth in reliance on variable renewable sources of electricity generation places an exclamation point on both of these observations, and highlights the need for new focus in areas such as stochastic optimization to accommodate the increased uncertainty that is occurring in both planning and operations. Application of research advances in algorithms (especially related to optimization techniques and uncertainty quantification) could accelerate power system software tool performance, i.e. speed to solution, and enhance applicability for new and existing real-time operation and control approaches, as well as large-scale planning analysis. Finally, models are becoming increasingly essential for improved decision-making across the electric system, from resource forecasting to adaptive real-time controls to online dynamics analysis. The importance of data is thus reinforced by their inescapable role in validating, high-fidelity models that lead to deeper system understanding. Traditional boundaries (reflecting geographic, institutional, and market differences) are becoming blurred, and thus, it is increasingly important to address these seams in model formulation and utilization to ensure accuracy in the results and achieve predictability necessary for reliable operations. Each paper also embodies the philosophy that our energy challenges require interdisciplinary solutions - drawing on the latest developments in fields such as mathematics, computation, economics, as well as power systems. In this vein, the workshop should be viewed not as the end product, but the beginning of what DOE seeks to establish as a vibrant, on-going dialogue among these various communities. Bridging communication gaps among these communities will yield opportunities for innovation and advancement. The papers and workshop discussion provide the opportunity to learn from experts on the current state-of-the-art on computational approaches for electric power systems, and where one may focus to accelerate progress. It has been extremely valuable to me as I better understand this space, and consider future programmatic activities. I am confident that you too will enjoy the discussion, and certainly learn from the many experts. I would like to thank the authors of the papers for sharing their perspectives, as well as the paper discussants, session recorders, and participants. The meeting would not have been as successful without your commitment and engagement. I also would like to thank Joe Eto and Bob Thomas for their vision and leadership in bringing together su

  6. Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics

    E-Print Network [OSTI]

    Enhancement and Electric Charge-Assisted Tuning of Nonlinear Light Generation in Bipolar Plasmonics, hence fundamentally different from the classic electric field induced SHG-tuning (EFISH). We propose of frequency), termed electric field induced second harmonic-generation (EFISH), has been studied for a long

  7. Modeling Water Withdrawal and Consumption for Electricity Generation in the United States

    E-Print Network [OSTI]

    Modeling Water Withdrawal and Consumption for Electricity Generation in the United States Kenneth://globalchange.mit.edu/ Printed on recycled paper #12;1 Modeling Water Withdrawal and Consumption for Electricity Generation of Withdrawal and Consumption for Thermo-electric Systems (WiCTS) is formalized. This empirically

  8. Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost

    E-Print Network [OSTI]

    Pedram, Massoud

    Distributed Load Demand Scheduling in Smart Grid to Minimize Electricity Generation Cost Siyu Yue of electricity consumers is an effective way to alleviate the peak power demand on the elec- tricity grid- ple users cooperate to perform load demand scheduling in order to minimize the electricity generation

  9. Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost under a Dynamic Pricing

    E-Print Network [OSTI]

    Pedram, Massoud

    Concurrent Optimization of Consumer's Electrical Energy Bill and Producer's Power Generation Cost their electric bill. On the other hand optimizing the number and production time of power generation facilities lower cost. I. INTRODUCTION There is no substitute for the status of electrical energy, which

  10. November 21, 2000 PV Lesson Plan 3 PV Array Generating Electricity

    E-Print Network [OSTI]

    Oregon, University of

    November 21, 2000 PV Lesson Plan 3 ­ PV Array Generating Electricity Prepared for the Oregon in Arrays: Solar Cells Generating Electricity Lesson Plan Content: In this lesson, students will learn about electricity. Objectives: Students will learn to use a tool called PV WATTS to calculate the output of PV

  11. Cost and Performance Assumptions for Modeling Electricity Generation Technologies

    SciTech Connect (OSTI)

    Tidball, R.; Bluestein, J.; Rodriguez, N.; Knoke, S.

    2010-11-01

    The goal of this project was to compare and contrast utility scale power plant characteristics used in data sets that support energy market models. Characteristics include both technology cost and technology performance projections to the year 2050. Cost parameters include installed capital costs and operation and maintenance (O&M) costs. Performance parameters include plant size, heat rate, capacity factor or availability factor, and plant lifetime. Conventional, renewable, and emerging electricity generating technologies were considered. Six data sets, each associated with a different model, were selected. Two of the data sets represent modeled results, not direct model inputs. These two data sets include cost and performance improvements that result from increased deployment as well as resulting capacity factors estimated from particular model runs; other data sets represent model input data. For the technologies contained in each data set, the levelized cost of energy (LCOE) was also evaluated, according to published cost, performance, and fuel assumptions.

  12. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Modeling electricity markets as two?stage capacity capacity expansion in  imperfectly competitive restructured  electricity markets.  Capacity expansion in the integrated supply  network for an electricity market.  

  13. Deployment of GTHTR300 Cogeneration for Hydrogen and Electric Generation

    SciTech Connect (OSTI)

    Kazuhiko Kunitomi; Xing Yan; Isao Minatsuki

    2004-07-01

    JAERI (Japan Atomic Energy Research Institute) has started the design study on the GTHTR300-cogeneration (GTHTR300C) aiming at producing electricity by a helium gas turbine and hydrogen by a thermochemical water splitting method (IS process method). The GTHTR300C is a block type High Temperature Gas-cooled Reactor (HTGR) with its reactor thermal power of 600 MW and outlet coolant temperature of 950 deg. C. The Intermediate Heat Exchanger (IHX) is located between the reactor pressure vessel (RPV) and the gas turbine system. The heat capacity of the IHX is 170 MW and is used for hydrogen production. The balance of the reactor thermal power is used for electric generation. The GTHTR300C is designed based on existing technologies for the High Temperature Engineering Test Reactor (HTTR) and the helium turbine power conversion technology under development for the Gas Turbine High Temperature Reactor (GTHTR300). This paper describes the deployment of the GTHTR300C together with the original design features and advantages of the system. (authors)

  14. Electrical Generation for More-Electric Aircraft Using Solid Oxide Fuel Cells

    SciTech Connect (OSTI)

    Whyatt, Greg A.; Chick, Lawrence A.

    2012-04-01

    This report examines the potential for Solid-Oxide Fuel Cells (SOFC) to provide electrical generation on-board commercial aircraft. Unlike a turbine-based auxiliary power unit (APU) a solid oxide fuel cell power unit (SOFCPU) would be more efficient than using the main engine generators to generate electricity and would operate continuously during flight. The focus of this study is on more-electric aircraft which minimize bleed air extraction from the engines and instead use electrical power obtained from generators driven by the main engines to satisfy all major loads. The increased electrical generation increases the potential fuel savings obtainable through more efficient electrical generation using a SOFCPU. However, the weight added to the aircraft by the SOFCPU impacts the main engine fuel consumption which reduces the potential fuel savings. To investigate these relationships the Boeing 787­8 was used as a case study. The potential performance of the SOFCPU was determined by coupling flowsheet modeling using ChemCAD software with a stack performance algorithm. For a given stack operating condition (cell voltage, anode utilization, stack pressure, target cell exit temperature), ChemCAD software was used to determine the cathode air rate to provide stack thermal balance, the heat exchanger duties, the gross power output for a given fuel rate, the parasitic power for the anode recycle blower and net power obtained from (or required by) the compressor/expander. The SOFC is based on the Gen4 Delphi planar SOFC with assumed modifications to tailor it to this application. The size of the stack needed to satisfy the specified condition was assessed using an empirically-based algorithm. The algorithm predicts stack power density based on the pressure, inlet temperature, cell voltage and anode and cathode inlet flows and compositions. The algorithm was developed by enhancing a model for a well-established material set operating at atmospheric pressure to reflect the effect of elevated pressure and to represent the expected enhancement obtained using a promising cell material set which has been tested in button cells but not yet used to produce full-scale stacks. The predictions for the effect of pressure on stack performance were based on literature. As part of this study, additional data were obtained on button cells at elevated pressure to confirm the validity of the predictions. The impact of adding weight to the 787-8 fuel consumption was determined as a function of flight distance using a PianoX model. A conceptual design for a SOFC power system for the Boeing 787 is developed and the weight estimated. The results indicate that the power density of the stacks must increase by at least a factor of 2 to begin saving fuel on the 787 aircraft. However, the conceptual design of the power system may still be useful for other applications which are less weight sensitive.

  15. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    Carrying  renewable electricity across the u.s.a.   http://electricity  supply  industry  (for  ten  years),  and various universities in Australia and the USA.  

  16. RESEARCH ARTICLE The proteome survey of an electricity-generating organ

    E-Print Network [OSTI]

    Vertes, Akos

    RESEARCH ARTICLE The proteome survey of an electricity-generating organ (Torpedo californica electric organ) Javad Nazarian1 , Yetrib Hathout1 , Akos Vertes2 and Eric P. Hoffman1 1 Research Center Chondrichthyes. Electric rays have evolved the electric organ, which is similar to the mammalian neuromuscular

  17. European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind Generation by a Dynamic

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    European Wind Energy Conference & Exhibition EWEC 2003, Madrid, Spain. Forecasting of Regional Wind. Abstract-Short-term wind power forecasting is recognized nowadays as a major requirement for a secure and economic integration of wind power in a power system. In the case of large-scale integration, end users

  18. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  19. First Generation 50 MW OTEC Plantship for the Production of Electricity and Desalinated Water

    E-Print Network [OSTI]

    , the OC-OTEC plant makes use of low pressure steam generated in flash evaporators to drive steam turbine pressurized anhydrous ammonia as the working fluid to drive turbine-generators to produce electricity; and pressurized anhydrous ammonia as the working fluid to drive turbine- generators to produce electricity; and

  20. Generating Electricity with your Steam System: Keys to Long Term Savings 

    E-Print Network [OSTI]

    Bullock, B.; Downing, A.

    2010-01-01

    The application of combined heat and power principals to existing plant steam systems can help produce electricity at more than twice efficiency of grid generated electricity. In this way, steam plant managers can realize substantial savings...

  1. Electric Power Generation from Co-Produced Fluids from Oil and...

    Open Energy Info (EERE)

    Electric Power Generation from Co-Produced Fluids from Oil and Gas Wells Geothermal Project Jump to: navigation, search Last modified on July 22, 2011. Project Title Electric Power...

  2. The economic impact of state ordered avoided cost rates for photovoltaic generated electricity

    E-Print Network [OSTI]

    Bottaro, Drew

    1981-01-01

    The Public Utility Regulatory Policies Act (PURPA) of 1978 requires that electric utilities purchase electricity generated by small power producers (QFs) such as photovoltaic systems at rates that will encourage the ...

  3. Wind Energy Developments: Incentives In Selected Countries

    Reports and Publications (EIA)

    1999-01-01

    This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

  4. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    for  unexpected  failure  of  generators  and  transmission case  of  a  failure of one of the generators, transmission considering failure of more than one generator and/or 

  5. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    SciTech Connect (OSTI)

    Bailey, Owen; Worrell, Ernst

    2005-08-03

    The nation's power system is facing a diverse and broad set of challenges. These range from restructuring and increased competitiveness in power production to the need for additional production and distribution capacity to meet demand growth, and demands for increased quality and reliability of power and power supply. In addition, there are growing concerns about emissions from fossil fuel powered generation units and generators are seeking methods to reduce the CO{sub 2} emission intensity of power generation. Although these challenges may create uncertainty within the financial and electricity supply markets, they also offer the potential to explore new opportunities to support the accelerated deployment of cleaner and cost-effective technologies to meet such challenges. The federal government and various state governments, for example, support the development of a sustainable electricity infrastructure. As part of this policy, there are a variety of programs to support the development of ''cleaner'' technologies such as combined heat and power (CHP, or cogeneration) and renewable energy technologies. Energy from renewable energy sources, such as solar, wind, hydro, and biomass, are considered carbon-neutral energy technologies. The production of renewable energy creates no incremental increase in fossil fuel consumption and CO{sub 2} emissions. Electricity and thermal energy production from all renewable resources, except biomass, produces no incremental increase in air pollutants such as nitrogen oxides, sulfur oxides, particulate matter, and carbon monoxide. There are many more opportunities for the development of cleaner electricity and thermal energy technologies called ''recycled'' energy. A process using fossil fuels to produce an energy service may have residual energy waste streams that may be recycled into useful energy services. Recycled energy methods would capture energy from sources that would otherwise be unused and convert it to electricity or useful thermal energy. Recycled energy produces no or little increase in fossil fuel consumption and pollutant emissions. Examples of energy recycling methods include industrial gasification technologies to increase energy recovery, as well as less traditional CHP technologies, and the use of energy that is typically discarded from pressure release vents or from the burning and flaring of waste streams. These energy recovery technologies have the ability to reduce costs for power generation. This report is a preliminary study of the potential contribution of this ''new'' generation of clean recycled energy supply technologies to the power supply of the United States. For each of the technologies this report provides a short technical description, as well as an estimate of the potential for application in the U.S., estimated investment and operation costs, as well as impact on air pollutant emission reductions. The report summarizes the potential magnitude of the benefits of these new technologies. The report does not yet provide a robust cost-benefit analysis. It is stressed that the report provides a preliminary assessment to help focus future efforts by the federal government to further investigate the opportunities offered by new clean power generation technologies, as well as initiate policies to support further development and uptake of clean power generation technologies.

  6. Analysis of electrical signatures in synchronous generators characterized by bearing faults 

    E-Print Network [OSTI]

    Choi, Jae-Won

    2009-05-15

    mechanical load and speed variations in the driven systems or electric machine itself and convert them via back-emf into stator signal variations. The stator signals are collected in a non- intrusive manner and then processed to detect and diagnose mechanical...) around the rotor poles. Due to the MMF, the field magnetic flux crosses the air gap and enters the armature winding. When the rotor rotates at synchronous speed, the flux linkage with the stator winding induces the electromotive force (EMF...

  7. Clean Energy Technologies: A Preliminary Inventory of the Potential for Electricity Generation

    E-Print Network [OSTI]

    Bailey, Owen; Worrell, Ernst

    2005-01-01

    biogas digester systems can generate electricity and thermal energy to serve heatingbiogas (mostly methane) can be captured and used to provide energy services either by direct heating

  8. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01

    to generate in this way wind speed fluctuations with similar statistics as observed in nature. Forces wereWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  9. Under very extreme conditions a flood that threatens to overtop a dam may be combined with strong winds that generate waves in the reservoir.

    E-Print Network [OSTI]

    Bowles, David S.

    winds that generate waves in the reservoir. Prolonged wave overtopping or a combination of wave the actions of wind generated waves and wave overtopping. The uneven elevations of the dam crest method (Hungr 1987) Stability check near the flow entrance during Erosion Stage 3 Predict wind generated

  10. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Garulli, Andrea

    profiles, raise major challenges to wind power integration into the electricity grid. In this work we studyOptimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts Antonio that the inherent variability in wind power generation and the related difficulty in predicting future generation

  11. Economic and Technical Feasibility Study of Utility-Scale Wind Generation for the New York Buffalo River and South Buffalo Brownfield Opportunity Areas

    SciTech Connect (OSTI)

    Roberts, J. O.; Mosey, G.

    2014-04-01

    Through the RE-Powering America's Land initiative, the economic and technical feasibility of utilizing contaminated lands in the Buffalo, New York, area for utility-scale wind development is explored. The study found that there is available land, electrical infrastructure, wind resource, and local interest to support a commercial wind project; however, economies of scale and local electrical markets may need further investigation before significant investment is made into developing a wind project at the Buffalo Reuse Authority site.

  12. Power and Frequency Control as it Relates to Wind-Powered Generation

    E-Print Network [OSTI]

    Lacommare, Kristina S H

    2011-01-01

    of large amounts of wind power production might requirewill be satisfactory as wind power provides an increasing64   7.2   Wind Power in Relation to System

  13. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    is affiliated with  the Power and Energy Systems area.  His of  Electrical Power & Energy Systems,  27 (2005), pp.  528?of Electrical Power & Energy  Systems, 32 (2010), pp.  615?

  14. Evaluation of glare at the Ivanpah Solar Electric Generating System

    SciTech Connect (OSTI)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts of the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.

  15. Evaluation of glare at the Ivanpah Solar Electric Generating System

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ho, C. K.; Sims, C. A.; Christian, J. M.

    2015-06-05

    The Ivanpah Solar Electric Generating System (ISEGS), located on I-15 about 40 miles (60 km) south of Las Vegas, NV, consists of three power towers 459 ft (140 m) tall and over 170,000 reflective heliostats with a rated capacity of 390 MW. In addition, reports of glare from the plant have been submitted by pilots and air traffic controllers and recorded by the Aviation Safety Reporting System and the California Energy Commission since 2013. Aerial and ground-based surveys of the glare were conducted in April, 2014, to identify the cause and to quantify the irradiance and potential ocular impacts ofmore »the glare. Results showed that the intense glare viewed from the airspace above ISEGS was caused by heliostats in standby mode that were aimed to the side of the receiver. Evaluation of the glare showed that the retinal irradiance and subtended source angle of the glare from the heliostats in standby were sufficient to cause significant ocular impact (potential for after-image) up to a distance of ~6 miles (10 km), but the values were below the threshold for permanent eye damage. Glare from the receivers had a low potential for after-image at all ground-based monitoring locations outside of the site boundaries. A Letter to Airmen has been issued by the Federal Aviation Administration to notify pilots of the potential glare hazards. Additional measures to mitigate the potential impacts of glare from ISGES are also presented and discussed.« less

  16. Electrical & Computer Engineering S E M I N A R

    E-Print Network [OSTI]

    Koppelman, David M.

    energy (wind and photovoltaic), distributed generation, power quality, electric vehicles, and electric-connected distributed generation systems, power quality improvement in microgrid, high-power charging station and level energy (wind and photovoltaic), high power converters, electric vehicles, power quality, and model

  17. Radiological characterization of main cooling reservoir bottom sediments at The South Texas Project Electrical Generating Station 

    E-Print Network [OSTI]

    Blankinship, David Randle

    1993-01-01

    The South Texas Project Electrical Generating Station (STPEGS operating license directs that an effective radiological environmental monitoring program be established. Site- specific data should then augment the generation of an accurate dose model...

  18. Computational Needs for the Next Generation Electric Grid Proceedings

    E-Print Network [OSTI]

    Birman, Kenneth

    2012-01-01

    electric  power  sector.   The  Regional  Energy  Deployment  System  (ReEDS)  model  (model  provide  additional  constraints  on  the  system,  such  as  the  inclusion  of  power  flow  relations  for  electric Electric Power Grid  2.1 Overview  Power  system  researchers  have  devoted  significant  efforts  in  the  past  to  the  development of sophisticated computer models 

  19. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  20. Fluctuations in the interplanetary electric potential and energy coupling between the solar-wind and the magnetosphere

    E-Print Network [OSTI]

    Badruddin,

    2013-01-01

    We utilize solar rotation average geomagnetic index ap and various solar wind plasma and field parameters for four solar cycles 20-23. We perform analysis to search for a best possible coupling function at 27-day time resolution. Regression analysis using these data at different phases of solar activity (increasing including maximum/decreasing including minimum) led us to suggest that the time variation of interplanetary electric potential is a better coupling function for solar wind-magnetosphere coupling. We suspect that a faster rate of change in interplanetary electric potential at the magnetopause might enhance the reconnection rate and energy transfer from the solar wind into the magnetosphere. The possible mechanism that involves the interplanetary potential fluctuations in influencing the solar wind-magnetosphere coupling is being investigated.