Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Accelerating Offshore Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development December 12, 2012 - 2:15pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs What does this project do? The 2012 investments support innovative offshore installations for commercial deployment by 2017. The 2011 grants were targeted at projects that aim to either improve the technology used for offshore wind generation or remove the market barriers to offshore wind generation. View the Full Map Today the Energy Department announced investments in seven offshore wind demonstration projects. These projects are part of a broader effort to launch an offshore wind industry in the United States, and support innovative offshore installations for commercial deployment by 2017.

2

Accelerating Offshore Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerating Offshore Wind Development Accelerating Offshore Wind Development Accelerating Offshore Wind Development Click on a project for more information. The Energy Department has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to $4 million from the Energy Department to complete the engineering, site evaluation, and planning phase of their project. Upon completion of this phase, the Energy Department will select the up to three of these projects to advance the follow-on design, fabrication, and deployment phases to achieve commercial operation by 2017. Each of the these projects will be eligible for up to $47 million in additional funding over four years, subject to Congressional appropriations. This map also includes 42

3

Offshore Wind Accelerator | Open Energy Information  

Open Energy Info (EERE)

Offshore Wind Accelerator Place: United Kingdom Sector: Wind energy Product: Research and development initiative aimed at cutting the cost of offshore wind energy. References:...

4

NREL: Wind Research - Research and Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Printable Version Wind Research Home Research & Development Utility-Scale Wind Turbines Offshore Wind Turbines Small Wind Turbines Grid Integration Market Acceleration...

5

WInd-and-react Bi-2212 coil development for accelerator magnets  

SciTech Connect

Sub-scale coils are being manufactured and tested at Lawrence Berkeley National Laboratory in order to develop wind-and-react Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (Bi-2212) magnet technology for future graded accelerator magnet use. Previous Bi-2212 coils showed significant leakage of the conductors core constituents to the environment, which can occur during the partial melt reaction around 890 C in pure oxygen. The main origin of the observed leakage is intrinsic leakage of the wires, and the issue is therefore being addressed at the wire manufacturing level. We report on further compatibility studies, and the performance of new sub-scale coils that were manufactured using improved conductors. These coils exhibit significantly reduced leakage, and carry currents that are about 70% of the witness wire critical current (I{sub c}). The coils demonstrate, for the first time, the feasibility of round wire Bi-2212 conductors for accelerator magnet technology use. Successful high temperature superconductor coil technology will enable the manufacture of graded accelerator magnets that can surpass the, already closely approached, intrinsic magnetic field limitations of Nb-based superconducting magnets.

Godeke, A.; Acosta, P.; Cheng, D.; Dietderich, D. R.; Mentink, M. G. T.; Prestemon, S. O.; Meinesz, M.; Hong, S.; Huang, Y.; Miao, H.; Parrell, J.; Sabbi, G.L.

2009-10-13T23:59:59.000Z

6

Development of Wind-and-React Bi-2212 Accelerator Magnet Technology  

SciTech Connect

We report on the progress in our R&D program, targeted to develop the technology for the application of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x} (Bi-2212) in accelerator magnets. The program uses subscale coils, wound from insulated cables, to study suitable materials, heat treatment homogeneity, stability, and effects of magnetic field and thermal and electro-magnetic loads. We have addressed material and reaction related issues and report on the fabrication, heat treatment, and analysis of subscale Bi-2212 coils. Such coils can carry a current on the order of 5000 A and generate, in various support structures, magnetic fields from 2.6 to 9.9 T. Successful coils are therefore targeted towards a hybrid Nb{sub 3}Sn-HTS magnet which will demonstrate the feasibility of Bi-2212 for accelerator magnets, and open a new magnetic field realm, beyond what is achievable with Nb{sub 3}Sn.

Cheng, Daniel; Dietderich, Daniel R.; English, C.D.; Felice, Helene; Hannaford, Charles R.; Prestemon, Soren O.; Sabbi, GianLuca; Scanlan, Ron M.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.; Godeke, A.

2007-06-01T23:59:59.000Z

7

Development of Wind-and-React Bi-2212 Accelerator MagnetTechnology  

SciTech Connect

We report on the progress in our R&D program, targetedto develop the technology for the application of Bi2Sr2CaCu2Ox (Bi-2212)in accelerator magnets. The program uses subscale coils, wound frominsulated cables, to study suitable materials, heat treatmenthomogeneity, stability, and effects ofmagnetic field and thermal andelectro-magnetic loads. We have addressed material and reaction relatedissues and report onthe fabrication, heat treatment, and analysis ofsubscale Bi-2212 coils. Such coils can carry a current on the order of5000 A and generate, in various support structures, magnetic fields from2.6 to 9.9 T. Successful coils are therefore targeted towards a hybridNb3Sn-HTS magnet which will demonstrate the feasibility of Bi-2212 foraccelerator magnets, and open a new magnetic field realm, beyond what isachievable with Nb3Sn.

Godeke, A.; Cheng, D.; Dietderich, D.R.; English, C.D.; Felice,H.; Hannaford, C.R.; Prestemon, S.O.; Sabbi, G.; Scanlan, R.M.; Hikichi,Y.; Nishioka, J.; Hasegawa, T.

2007-08-28T23:59:59.000Z

8

WINDExchange: Wind Economic Development  

Wind Powering America (EERE)

help you analyze the economics of a small wind electric system and decide whether wind energy will work for you. Wind Energy Finance Online Calculator Wind Energy Finance developed...

9

Advanced Offshore Wind Tech: Accelerating New Opportunities for...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy May 7, 2014 - 12:11pm...

10

NREL: Wind Research - Small Wind Turbine Development  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Development Small Wind Turbine Development A photo of Southwest Windpower's Skystream wind turbine in front of a home. PIX14936 Southwest Windpower's Skystream wind turbine. A photo of the Endurance wind turbine. PIX15006 The Endurance wind turbine. A photo of the Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. PIX07301 The Atlantic Orient Corporation 15/50 wind turbine at the National Wind Technology Center. NREL supports continued market expansion of small wind turbines by funding manufacturers through competitive solicitations (i.e., subcontracts and/or grants) to refine prototype systems leading to commercialization. Learn more about the turbine development projects below. Skystream NREL installed and tested an early prototype of this turbine at the

11

Offshore Wind Development 2011  

Science Journals Connector (OSTI)

Growth in the European offshore market will depend principally on the ability ... manufacturing capacity, and the development of specialized offshore wind turbines with their own manufacturing supply chain are...

Mark J. Kaiser; Brian F. Snyder

2012-01-01T23:59:59.000Z

12

Workforce Development Wind Projects | Department of Energy  

Energy Savers (EERE)

Workforce Development Wind Projects Workforce Development Wind Projects This report covers the Wind and Water Power Technologies Office's workforce development wind projects from...

13

TS Wind Power Developers | Open Energy Information  

Open Energy Info (EERE)

TS Wind Power Developers Jump to: navigation, search Name: TS Wind Power Developers Place: Satara, Maharashtra, India Sector: Wind energy Product: Setting up 30MW wind farm in...

14

The Wind Project Development Process  

Wind Powering America (EERE)

Wind Project Wind Project Development Process Developed for the National Renewable Energy Laboratory by Dale Osborn Distributed Generation Systems, Inc. September 1998 The Wind Project Development Process Site Selection Land Agreements Wind Assessment Environmental Review Economic Modeling Interconnection Studies Financing Permitting Sales Agreements Turbine Procurement Construction Contracting Operations & Maintenance Site Selection Evidence of Significant Wind Preferably Privately Owned Remote Land Proximity to Transmission Lines Reasonable Road Access Few Environmental Concerns Receptive Community Land Agreements Term: Expected Life of the Turbine Assignable Indemnification Rights Compensation: Percentage of Revenues Reclamation Provision Wind Rights, Ingress/Egress Rights, Transmission Rights

15

Lower Sioux Wind Feasibility & Development  

SciTech Connect

This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

Minkel, Darin

2012-04-01T23:59:59.000Z

16

Wind Development on the Rosebud  

Energy.gov (U.S. Department of Energy (DOE))

Presentation covers the Wind Development on the Rosebud, given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

17

Variables Affecting Economic Development of Wind Energy  

SciTech Connect

NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

Lantz, E.; Tegen, S.

2008-07-01T23:59:59.000Z

18

Particle acceleration in the colliding winds binary WR140  

E-Print Network (OSTI)

Massive WR+O star systems produce high-temperature, shock-heated plasma where the wind of the WR star and that of its binary companion collide - the wind-collision region (WCR). The WCR is a source of thermal (e.g. hard X-rays) and non-thermal (e.g. synchrotron) emission, the latter arising from electrons and ions accelerated to relativistic energies. These colliding wind binaries provide an excellent laboratory for the study of particle acceleration at higher mass, photon and magnetic energy densities than exist in SNRs. Recent models of the non-thermal emission from WR 140 have provided insight into this process.

J. M. Pittard; S. M. Dougherty

2007-03-23T23:59:59.000Z

19

Session: Wind industry project development  

SciTech Connect

This first session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a question and answer period. The session was intended to provide a general overview of wind energy product development, from the industry's perspective. Tom Gray of AWEA presented a paper titled ''State of the Wind Energy Industry in 2004'', highlighting improved performance and lower cost, efforts to address avian impacts, a status of wind energy in comparison to other energy-producing sources, and ending on expectations for the near future. Sam Enfield of Atlantic Renewable Energy Corporation presented a paper titled ''Key Factors for Consideration in Wind Plant Siting'', highlighting factors that wind facility developers must consider when choosing a site to build wind turbines and associated structures. Factors covered include wind resources available, ownership and land use patterns, access to transmission lines, accessibility and environmental impacts. The question and answer sum mary included topics related to risk taking, research and development, regulatory requirements, and dealing with utilities.

Gray, Tom; Enfield, Sam

2004-09-01T23:59:59.000Z

20

Magnetized Gas Clouds can Survive Acceleration by a Hot Wind  

E-Print Network (OSTI)

We present three-dimensional magnetohydrodynamic simulations of magnetized gas clouds accelerated by hot winds. We initialize gas clouds with tangled internal magnetic fields and show that this field suppresses the disruption of the cloud: rather than mixing into the hot wind as found in hydrodynamic simulations, cloud fragments end up co-moving and in pressure equilibrium with their surroundings. We also show that a magnetic field in the hot wind enhances the drag force on the cloud by a factor ~(1+v_A^2/v_wind^2)$, where v_A is the Alfven speed in the wind and v_wind measures the relative speed between the cloud and the wind. We apply this result to gas clouds in several astrophysical contexts, including galaxy clusters, galactic winds, the Galactic center, and the outskirts of the Galactic halo. Our results can explain the prevalence of cool gas in galactic winds and galactic halos and how such cool gas survives in spite of its interaction with hot wind/halo gas. We also predict that drag forces can lead t...

McCourt, Michael; Madigan, Ann-Marie; Quataert, Eliot

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Wind Development on the Rosebud  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rosebud Sioux Rosebud Sioux Indian Reservation Wind Development on the Rosebud Akicita Cikala 750 Kw turbine Owl Feather War Bonnet Wind Farm, 30Mw North Antelope Highlands Wind Farm, 190Mw Met towers installed in 2003 Met tower installed in 2001 Met tower installed in 1999 Met towers installed in 2009 Akicita Cikala Turbine Neg Micon 750kw Commissioned March 2003 Owl Feather War Bonnet Wind Farm 2003 Dept. of Energy Grant DOE Funding $448,551.00 DISGEN Cost share/in-kind $78,750.00 RST/TUC Cost share/in-kind $27,272.00 Participants in Development RST Resource Development Office, Ken Haukaas, Coordinator RST Tribal Utilities Commission, Tony Rogers, Director RST Natural Resource Office, Stephanie Middlebrooks, Wildlife Biologist Distribute Generation Inc., Dale Osborn, President, Belvin Pete, Project

22

ACCELERATION OF THE SOLAR WIND BY ALFVEN WAVE PACKETS  

SciTech Connect

A scale separation kinetic model of the solar wind acceleration is presented. The model assumes an isotropic Maxwellian distribution of protons and a constant influx of outward propagating Alfven waves with a single exponent Kolmogorov-type spectrum at the base of a coronal acceleration region ({approx}2 R {sub Sun }). Our results indicate that nonlinear cyclotron resonant interaction taking energy from Alfven waves and depositing it into mostly perpendicular heating of protons in initially weakly expanding plasma in a spherically non-uniform magnetic field is able to produce the typical fast solar wind velocities for the typical plasma and wave conditions after expansion to about 5-10 solar radii R {sub Sun }. The acceleration model takes into account the gravity force and the ambipolar electric field, as well as the mirror force, which plays the most important role in driving the solar wind acceleration. Contrary to the recent claims of Isenberg, the cold plasma dispersion only slightly slows down the acceleration and actually helps in obtaining the more realistic fast solar wind speeds.

Galinsky, V. L.; Shevchenko, V. I., E-mail: vit@ucsd.edu [ECE Department, UC San Diego, MC 407, La Jolla, CA 92093-0407 (United States)

2013-01-20T23:59:59.000Z

23

Accelerating Development in the Americas  

E-Print Network (OSTI)

for governments and as a strategic tool for development strategies; · Creating reference cases and best practices by making them feel useful, but also that of their families. OAS & MICROSOFT Accelerating Sustainable for the economic development of our countries as it is part of the process of globalisation and therefore

Narasayya, Vivek

24

Origin and Acceleration of the Slow Solar Wind  

Science Journals Connector (OSTI)

This Letter uses Doppler dimming measurements by SOHO UVCS to elucidate the origin and acceleration of the slow solar wind. By investigating plasma flow in the corona over an active region during 2000 May 14-16, we confirm what has been suggested by the presence of the imprint of active regions in the solar wind near Earth orbit, that active regions are a source of slow wind. The observed active region does not have an associated streamer in the outer corona. We explain how this implies that any related heliospheric current sheet must be transverse to the line of sight. It is this favorable geometry of a transverse heliospheric current sheet that allows the plasma flow over the active region to be isolated in path-integrated Doppler dimming measurements. The results also show that acceleration of the slow wind associated with active regions toward its terminal speed is faster than that along the heliospheric current sheet. These differences in acceleration explain why the signatures of the heliospheric current sheet are dissimilar in velocity, but not in density, between the corona and solar wind measured near Earth orbit.

Richard Woo; Shadia Rifai Habbal

2005-01-01T23:59:59.000Z

25

Cosmic Ray Acceleration by Spiral Shocks in the Galactic Wind  

E-Print Network (OSTI)

Cosmic ray acceleration by shocks related with Slipping Interaction Regions (SIRs) in the Galactic Wind is considered. SIRs are similar to Solar Wind Corotating Interaction Regions. The spiral structure of our Galaxy results in a strong nonuniformity of the Galactic Wind flow and in SIR formation at distances of 50 to 100 kpc. SIRs are not corotating with the gas and magnetic field because the angular velocity of the spiral pattern differs from that of the Galactic rotation. It is shown that the collective reacceleration of the cosmic ray particles with charge $Ze$ in the resulting shock ensemble can explain the observable cosmic ray spectrum beyond the "knee" up to energies of the order of $10^{17}Z$ eV. For the reaccelerated particles the Galactic Wind termination shock acts as a reflecting boundary.

H. J. Voelk; V. N. Zirakashvili

2004-01-19T23:59:59.000Z

26

Development of Artificial Ash Accelerated Accumulation Test ...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Artificial Ash Accelerated Accumulation Test Development of Artificial Ash Accelerated Accumulation Test Poster presented at the 16th Directions in Engine-Efficiency and Emissions...

27

Development in wind energy technology: an update  

Science Journals Connector (OSTI)

This paper presents an overview of the development in wind energy technology. Growth in wind technology and components of wind energy conversion systems are provided. Ratings, and system size are included for various applications in addition to power ... Keywords: development, power electronics converters, technology, wind energy

Faeka M. H. Khater

2012-04-01T23:59:59.000Z

28

Community Wind Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Community Wind Development Handbook Community Wind Development Handbook Jump to: navigation, search Tool Summary Name: Community Wind Development Handbook Agency/Company /Organization: Windustry Partner: AURI AG Innovations, The Minnesota Project, MC&PC, Clean Energy Resource Teams, Southwest Initiative Foundation Sector: Energy Focus Area: Wind, Economic Development Phase: Evaluate Options, Develop Goals, Prepare a Plan, Create Early Successes Resource Type: Guide/manual User Interface: Other Website: www.auri.org/research/Community%20Wind%20Handbook.pdf Cost: Free References: Community Wind Development Handbook[1] Provides developers practical knowledge of what to expect when developing commercial-scale community wind energy projects in the range of 2 to 50 Megawatts. Overview The Community Wind Development Handbook "is designed to give developers of

29

Wind Research and Development | Department of Energy  

Office of Environmental Management (EM)

Research and Development Wind Research and Development Photo of two multimegawatt wind turbines in a green field, blue sky with clouds in the background. The U.S. Department of...

30

Accelerated leach test development program  

SciTech Connect

In FY 1989, a draft accelerated leach test for solidified waste was written. Combined test conditions that accelerate leaching were validated through experimental and modeling efforts. A computer program was developed that calculates test results and models leaching mechanisms. This program allows the user to determine if diffusion controls leaching and, if this is the case, to make projections of releases. Leaching mechanisms other than diffusion (diffusion plus source term partitioning and solubility limited leaching) are included in the program is indicators of other processes that may control leaching. Leach test data are presented and modeling results are discussed for laboratory scale waste forms composed of portland cement containing sodium sulfate salt, portland cement containing incinerator ash, and vinyl ester-styrene containing sodium sulfate. 16 refs., 38 figs., 5 tabs.

Fuhrmann, M.; Pietrzak, R.F.; Heiser, J.; Franz, E.M.; Colombo, P.

1990-11-01T23:59:59.000Z

31

The colliding-wind binary WR140: the particle acceleration laboratory  

E-Print Network (OSTI)

WR+O star binary systems exhibit synchrotron emission arising from relativistic electrons accelerated where the wind of the WR star and that of its massive binary companion collide - the wind-collision region (WCR). These ``colliding-wind'' binaries (CWB), provide an excellent laboratory for the study of particle acceleration, with the same physical processes as observed in SNRs, but at much higher mass, photon and magnetic energy densities. WR140 is the best studied CWB, and high resolution radio observations permit a determination of several system parameters, particularly orbit inclination and distance, that are essential constraints for newly developed models of CWBs. We show a model fit to the radio data at orbital phase 0.9, and show how these models may be used to predict the high energy emission from WR140.

S. M. Dougherty; J. M. Pittard

2005-10-18T23:59:59.000Z

32

Requirements for Wind Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Requirements for Wind Development Requirements for Wind Development Requirements for Wind Development < Back Eligibility Commercial Construction Industrial Installer/Contractor Utility Savings Category Wind Buying & Making Electricity Program Info State Oklahoma Program Type Solar/Wind Permitting Standards In 2010, Oklahoma passed HB 2973, known as The Oklahoma Wind Energy Development Act. The bill becomes effective January 1, 2011. The Act provides sets rules for owners of wind energy facilities related to decommissioning, payments, and insurance. * Within one year of abandonment of a project, equipment from wind energy facilities must be removed and the land must be returned to its condition prior to the facility construction, except for roads. * After 15 years of operation, wind energy facility owners must file an

33

On Theories for Stochastic Acceleration in the Solar Wind  

Science Journals Connector (OSTI)

The suprathermal tails on the distribution functions of ions in the solar wind are observed to have a common spectral shape in many different circumstances: a power law in particle speed with spectral index of –5. Three possible approaches for explaining these observations are considered: (1) the acceleration mechanism of Fisk & Gloeckler in which energy is redistributed from a core particle population into the suprathermal tail; (2) traditional stochastic acceleration in which particles are accelerated by damping turbulence; and (3) the statistical approach introduced by Schwadron et al. in which the –5 spectrum is formed by averaging over individual spectra. The acceleration mechanism of Fisk & Gloeckler has advantages: (1) it appears to occur in conditions that are readily satisfied: compressive turbulence that is thermally isolated (no large-scale spatial gradients), with a core distribution of particles with a sharp initial cutoff in particle speed, above which particles can spatially diffuse; and (2) it yields spectra that are consistent with observations. Traditional stochastic acceleration has the disadvantage that it is unlikely to yield spectral shapes consistent with observations, and the spectra are dependent upon the plasma conditions and thus unlikely to be the same in different circumstances. The statistical approach of Schwadron et al. can yield the –5 spectrum and is consistent with the results of Fisk & Gloeckler when the assumed distribution functions for individual events and the averaging technique are taken to be compatible with the assumptions and averaging in Fisk & Gloeckler.

L. A. Fisk; G. Gloeckler; N. A. Schwadron

2010-01-01T23:59:59.000Z

34

Wind Program Announces $2 Million to Develop and Field Test Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Announces 2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Wind Program Announces 2 Million to Develop and Field Test Wind Energy Bat Impact...

35

Jilin Huayi Wind Energy Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Energy Development Co Ltd Jump to: navigation, search Name: Jilin Huayi Wind Energy Development Co Ltd Place: Jilin Province, China Sector: Wind energy Product: China-based wind...

36

Guodian Hefeng Wind Power Development Company | Open Energy Informatio...  

Open Energy Info (EERE)

Hefeng Wind Power Development Company Jump to: navigation, search Name: Guodian Hefeng Wind Power Development Company Place: Huludao, Liaoning Province, China Sector: Wind energy...

37

Stakeholder Engagement and Outreach: Wind Economic Development  

Wind Powering America (EERE)

Development Development This page provides software applications and publications to help individuals, developers, local governments, and utilities make decisions about wind power. Projecting costs and benefits of new installations, including the economic development impacts created, is a key element in looking at potential wind applications. Communities, states, regions, jobs (i.e., construction, operations and maintenance), the tax base, tax revenues, and others can be positively affected. These benefits are in addition to the impacts for the owner or developer. Wind, A Montana County's Plan to Reverse a Declining Tax Base and Expand Economic Opportunities Thumbnail of the Cascade County Wind Power brochure. Cascade County, Montana, Commissioner Peggy Beltrone, initiated an

38

Wind Energy and Economic Development in Nebraska  

SciTech Connect

This fact sheet summarizes a recent report by the National Renewable Energy Laboratory (NREL), Economic Development Benefits from Wind Power in Nebraska: A Report for the Nebraska Energy Office, which focuses on the estimated economic development impacts in Nebraska from development and operation of wind power in the state as envisioned in the U.S. Department of Energy's (DOE's) report, 20% Wind Energy by 2030.

Lantz, E.

2009-06-01T23:59:59.000Z

39

MOWII Webinar: Wind Development Cultural Resource Management  

Energy.gov (U.S. Department of Energy (DOE))

During the planning stages, wind energy development can be affected by the regulatory process relative to cultural resource management issues. Section 106 of the National Historic Preservation Act ...

40

WINDExchange: Wind Economic Development Resources and Tools  

Wind Powering America (EERE)

page lists wind-related economic development resources and tools such as publications, Web resources, and news. Search the WINDExchange Database Choose a Type of Information All...

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Northern Cheyenne Tribe Wind Energy Development Report  

SciTech Connect

Specific development objectives focused on the completion of all actions required to qualify a specfic project for financing and construction of a 30MW wind facility.

Belvin Pete; Distributed Generation Systems Inc; WEST, Inc; Michael S. Burney; Chris Bergen; Electrical Consultants, Inc; Terracon

2007-06-27T23:59:59.000Z

42

Accelerated New Product Development in Credit Card Industry  

E-Print Network (OSTI)

CALIFORNIA Los Angeles Accelerated New Product DevelopmentABSTRACT OF THE THESIS Accelerated New Product Developmentmodels to provide accelerated new product development

Gupta, Ravi Kumar

2012-01-01T23:59:59.000Z

43

U.S. Wind Power Development  

SciTech Connect

The report provides an overview of domestic wind power development which provides an understanding of where the industry stands today, how it got there, and where it is going. The advent of state renewable portfolio standards and the 3-year renewal of the production tax credit have driven wind power to record levels. A key objective of the report is to provide a comprehensive view of what is behind these developments, so that industry participants can take advantage of the opportunity offered by wind power. Topics covered include: overview of U.S. wind power including its history, current status, and future prospects; business drivers of the U.S. wind power market; barriers to the growth of the U.S. wind power market; keys to successful wind power project development; economics of U.S. wind power, including cost, revenue, and government subsidy components; analysis of key state markets for wind power development; and, profiles of major U.S. wind power project developers.

NONE

2007-11-15T23:59:59.000Z

44

Cosmic Ray Acceleration beyond the Knee up to the Ankle in the Galactic Wind Halo  

E-Print Network (OSTI)

Cosmic Ray Acceleration beyond the Knee up to the Ankle in the Galactic Wind Halo Vladimir Acceleration beyond the Knee up to the Ankle in the Galactic Wind Halo2 radius 100 kpc in this model. This size mechanism to produce the observed CRs beyond the so-called knee at several Ã?1015 eV to the so-called ankle

45

New England Wind Forum: Historic Wind Development in New England  

Wind Powering America (EERE)

First Large Scale Windmill First Large Scale Windmill 1970s OPEC Oil Embargo Sparks Renewed Interest Age of PURPA Spawns the Wind Farm An Industry in Transition More New England Wind Farms Modern Wind Turbines History Wrap Up State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Historic Wind Development in New England Wind has been an important energy source for centuries. In the United States, mechanical windmills provided as much as 25% of all non-transportation energy by the end of the 1800s. New England has relied on the wind from its early days, from powering seafaring commerce to grinding grain in the windmills of Cape Cod, several of which still stand. Some 6 million windmills across the nation were used for small-scale generation of electricity from the 1920s until the 1950s, when the U.S. government's rural electrification programs successfully reached remote areas. By the early 1970s, the number of windmills operating in the U.S. had dwindled to 150,000 - used mostly for watering livestock in remote areas of the western United States - although their widespread use continued elsewhere in the world.

46

New Wind Test Facilities Open in Colorado and South Carolina  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

47

Colorado and South Carolina: New Wind Test Facilities Open  

Office of Energy Efficiency and Renewable Energy (EERE)

Two state-of-the-art wind testing facilities will accelerate development and deployment of wind energy technologies.

48

Accelerator development for heavy ion fusion  

SciTech Connect

Accelerator technology development is presented for heavy ion drivers used in inertial confinement fusion. The program includes construction of low-velocity ''test bed'' accelerator facilities, development of analytical and experimental techniques to characterize ion beam behavior, and the study of ion beam energy deposition.

Talbert, W.L. Jr.; Sawyer, G.A.

1980-01-01T23:59:59.000Z

49

DOE Announces More than $5 Million to Support Wind Energy Development |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

More than $5 Million to Support Wind Energy More than $5 Million to Support Wind Energy Development DOE Announces More than $5 Million to Support Wind Energy Development September 13, 2010 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu announced today that the Department of Energy is awarding more than $5 million to support U.S. wind energy development. Two projects receiving a total of $3.4 million over two years will improve short-term wind forecasting, which will accelerate the use of wind power in electricity transmission networks by allowing utilities and grid operators to more accurately forecast when and where electricity will be generated from wind power. Three additional projects are receiving a total of more than $1.8 million to boost the speed and scale of midsize wind turbine technology development and deployment.

50

QUANTIFYING ACCELERATED SOIL EROSION THROUGH ECOLOGICAL SITE-BASED ASSESSMENTS OF WIND AND WATER EROSION  

E-Print Network (OSTI)

QUANTIFYING ACCELERATED SOIL EROSION THROUGH ECOLOGICAL SITE- BASED ASSESSMENTS OF WIND AND WATER change and intensification have resulted in accelerated rates of soil erosion in many areas of the world quantification of accelerated soil erosion. Ecological site soil erosion Variation in the simulated erosion rates

51

Wind Program Announces $2 Million to Develop and Field Test Wind Energy Bat Impact Minimization Technologies  

Energy.gov (U.S. Department of Energy (DOE))

EERE's Wind Program announced $2 million in funding to advance technologies that address wind development’s potential impacts on wildlife.

52

Landowners' Frequently Asked Questions about Wind Development  

Wind Powering America (EERE)

Landowners' Frequently Asked Questions Landowners' Frequently Asked Questions about Wind Development 1 Landowners' Frequently Asked Questions about Wind Development Jay Haley, P.E. 1. How much money can I make? Based on wind projects in southern Minnesota and northern Iowa, landowners can expect to receive annual land-lease payments ranging from $2,000 to more than $4,000 per turbine. The amount depends on the size of the wind turbine and how much electricity it produces as well as the selling price of the electricity. The same turbine will produce more in one location than another depending on the annual average wind speed at the site. The payments typically represent from 2% to 4% of the annual gross revenue of the turbine. 2. How many turbines can be placed on a section of

53

Wind Workforce Development | Open Energy Information  

Open Energy Info (EERE)

Workforce Development Workforce Development Jump to: navigation, search Photo from Casey Joyce, RMT Inc., NREL 24542 If the wind industry and nation wish to capitalize on industry growth, reversing current educational trends away from science, engineering, and technical skills must be achieved.[1] The following resources explore this topic. Resources Baring-Gould, I.; Kelly, M. (2010). Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry. National Renewable Energy Laboratory. Accessed August 26, 2013. This poster provides an overview of the educational infrastructure and expected industry needs through a discussion of the activities to train workers while addressing issues for each of the education sectors, leading to the development of an educational infrastructure to support wind

54

International Workshop on Small Scale Wind Energy for Developing Countries  

Open Energy Info (EERE)

Scale Wind Energy for Developing Countries Scale Wind Energy for Developing Countries Jump to: navigation, search Name International Workshop on Small Scale Wind Energy for Developing Countries Agency/Company /Organization Risoe DTU Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Technology characterizations Resource Type Workshop, Training materials, Lessons learned/best practices Website http://www.risoe.dtu.dk/~/medi References International Workshop on Small Scale Wind Energy for Developing Countries[1] Background "The workshop covers the following main themes: Wind energy technologies, their perspectives and applications in developing countries. Reliability of wind turbines, lifetime and strength of wind turbine components. Low cost and natural materials for wind turbines.

55

SciTech Connect: Offshore Wind Jobs and Economic Development...  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation) Citation Details In-Document Search Title: Offshore Wind Jobs and Economic Development...

56

U.S. Offshore Wind Manufacturing and Supply Chain Development...  

Office of Environmental Management (EM)

U.S. Offshore Wind Manufacturing and Supply Chain Development U.S. Offshore Wind Manufacturing and Supply Chain Development This report seeks to provide an organized, analytical...

57

Upcoming Funding Opportunity to Develop and Field Test Wind Energy...  

Energy Savers (EERE)

Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat Impact Minimization Technologies Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat...

58

China’s Wind Energy Development and Prediction.  

E-Print Network (OSTI)

??This thesis focuses on China’s wind energy development, focusing on data pertaining to effects of wind energy development on economic, environmental, and social issues. It… (more)

Wallin, Micah R.

2010-01-01T23:59:59.000Z

59

Sandia National Laboratories: support wind-energy development  

NLE Websites -- All DOE Office Websites (Extended Search)

support wind-energy development Sandia Develops Tool to Evaluate Wind-TurbineRadar Impacts On December 3, 2014, in Computational Modeling & Simulation, Energy, News, News &...

60

Northwest Wind Developers | Open Energy Information  

Open Energy Info (EERE)

Name Northwest Wind Developers Name Northwest Wind Developers Place Jefferson, North Carolina Zip 38640 Sector Wind energy Product A family held wind developer in North Carolina Coordinates 43.004875°, -88.807279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.004875,"lon":-88.807279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Advanced Offshore Wind Tech: Accelerating New Opportunities for Clean Energy  

Office of Energy Efficiency and Renewable Energy (EERE)

The Energy Department today announced the selection of three projects that aim to advance the offshore wind industry and lower the cost of offshore wind technologies. Learn more about these technological innovations.

62

Virginia Offshore Wind Development Authority (Virginia) | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) Virginia Offshore Wind Development Authority (Virginia) < Back Eligibility Commercial Construction Developer Industrial Installer/Contractor Investor-Owned Utility Local Government Municipal/Public Utility Rural Electric Cooperative Systems Integrator Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State Virginia Program Type Industry Recruitment/Support Provider Virginia Offshore Wind Development Authority The Virginia Offshore Wind Development Authority is a public body, established for the purposes of facilitating, coordinating, and supporting the development, either by the Authority or by other qualified entities, of the offshore wind energy industry, offshore wind energy projects, and

63

NRELs Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Powering NREL's Wind Powering America Team Helps Indiana Develop Wind Resources How does a state advance, in just five years, from having no wind power to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi. Since 1999, WPA has helped advance technology acceptance and wind energy deployment across the United States through the formation of state wind working groups (WWGs). The WWGs facilitate workshops, manage anemometer loan programs, conduct outreach, and

64

Offshore Wind Market Acceleration Projects | Department of Energy  

Energy Savers (EERE)

on wildlife and the marine environment, and mitigating the impact of offshore wind turbines on radar and other communication and navigation equipment. The links below will...

65

HeWind Co Ltd ZheJiang Huayi Wind Energy Development | Open Energy  

Open Energy Info (EERE)

HeWind Co Ltd ZheJiang Huayi Wind Energy Development HeWind Co Ltd ZheJiang Huayi Wind Energy Development Jump to: navigation, search Name HeWind Co Ltd (ZheJiang Huayi Wind Energy Development) Place Yueqing, Zhejiang Province, China Zip 325600 Sector Wind energy Product A company that develops wind farm and produces wind turbines. References HeWind Co Ltd (ZheJiang Huayi Wind Energy Development)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. HeWind Co Ltd (ZheJiang Huayi Wind Energy Development) is a company located in Yueqing, Zhejiang Province, China . References ↑ "HeWind Co Ltd (ZheJiang Huayi Wind Energy Development)" Retrieved from "http://en.openei.org/w/index.php?title=HeWind_Co_Ltd_ZheJiang_Huayi_Wind_Energy_Development&oldid=3465

66

Solar and Wind Energy Utilization and Project Development Scenarios...  

Open Energy Info (EERE)

Solar and Wind Energy Utilization and Project Development Scenarios (Abstract): Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of...

67

Progress in Wind-and-React Bi-2212 Accelerator Magnet Technology  

SciTech Connect

We report on our progress in the development of the technology for the application of Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+x}(Bi-2212) in Wind-and-React accelerator magnets. A series of superconducting subscale coils has been manufactured at LBNL and reacted at the wire manufacturer SWCC. Selected coils are impregnated and tested in self-field, even though the coils exhibited leakage during the partial melt heat treatment. Other coils have been disassembled after reaction and submitted to critical current (Ic) tests on individual cable sections. We report on the results of the current carrying capacity of the coils. Voltage-current (VI) transitions were reproducibly measured up to a quench currents around 1400 A, which is 25% of the expected performance. The results indicate that the coils are limited by the inner windings. We further compare possibilities to use Bi-2212 and Nb{sub 3}Sn tilted solenoid, and YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO) racetrack inserts to increase the magnetic field in HD2, a 36 mm bore Nb{sub 3}Sn dipole magnet which recently achieved a bore magnetic field of 13.8 T. The application of Bi-2212 and/or YBCO in accelerator type magnets, if successful, will open the road to higher magnetic fields, far surpassing the limitations of Nb{sub 3}Sn magnet technology.

Godeke, A.; Cheng, D.; Dietderich, D.R.; Hannaford, C.R.; Prestemon, S.O.; Sabbi, G.; Wang, X.; Hikichi, Y.; Nishioka, J.; Hasegawa, T.

2009-08-16T23:59:59.000Z

68

Vehicle Systems Integration Laboratory Accelerates Powertrain Development  

ScienceCinema (OSTI)

ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

None

2014-06-25T23:59:59.000Z

69

The Development of a Small Engine Based Accelerated Ash Loading...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Accelerated Ash Loading Protocol The Development of a Small Engine Based Accelerated Ash Loading Protocol Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan....

70

Wind Project Development | Open Energy Information  

Open Energy Info (EERE)

Project Development Project Development Jump to: navigation, search This page provides links to information resources regarding project development steps. Photo from Iberdrola Renewables Inc., NREL 16702 To finance and construct a wind energy project, five areas must be addressed: Detailed wind resource data for the site being developed The right to access and use the land on which the project will be constructed Permission to construct and operate the project from local permitting authorities Rights to interconnect to the transmission or distribution system and to transport (wheel) that energy to its purchaser A power purchase agreement between the project owner (seller) and the power purchaser (buyer). If any of these items are not contractually supported with the proper documentation, the project is unlikely to obtain financing.[1]

71

Highland New Wind Development LLC | Open Energy Information  

Open Energy Info (EERE)

Wind Development LLC Wind Development LLC Jump to: navigation, search Name Highland New Wind Development LLC Place Virginia Sector Wind energy Product Developer of the 39MW Allegheny Mountain wind project in western Virginia. References Highland New Wind Development LLC[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Highland New Wind Development LLC is a company located in Virginia . References ↑ "Highland New Wind Development LLC" Retrieved from "http://en.openei.org/w/index.php?title=Highland_New_Wind_Development_LLC&oldid=346536" Categories: Clean Energy Organizations Companies Organizations Stubs What links here Related changes Special pages Printable version

72

Qixia Rulin Wind Power Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Qixia Rulin Wind Power Development Co Ltd Qixia Rulin Wind Power Development Co Ltd Jump to: navigation, search Name Qixia Rulin Wind Power Development Co. Ltd. Place Qixia City, Shandong Province, China Zip 265300 Sector Wind energy Product Local wind project developer based in Qixia, Shandong province, China. References Qixia Rulin Wind Power Development Co. Ltd.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Qixia Rulin Wind Power Development Co. Ltd. is a company located in Qixia City, Shandong Province, China . References ↑ "Qixia Rulin Wind Power Development Co. Ltd." Retrieved from "http://en.openei.org/w/index.php?title=Qixia_Rulin_Wind_Power_Development_Co_Ltd&oldid=350125

73

Wind for Schools: Developing Educational Programs to Train the Next Generation of Wind Energy Experts (Poster)  

SciTech Connect

As the world moves toward a vision of expanded wind energy, the industry is faced with the challenges of obtaining a skilled workforce and addressing local wind development concerns. Wind Powering America's Wind for Schools Program works to address these issues. The program installs small wind turbines at community "host" schools while developing wind application centers at higher education institutions. Teacher training with interactive and interschool curricula is implemented at each host school, while students at the universities assist in implementing the host school systems while participating in other wind course work. This poster provides an overview of the program's objectives, goals, approach, and results.

Baring-Gould, I.; Flowers, L.; Kelly, M.; Miles, J.

2009-05-01T23:59:59.000Z

74

Further analysis of MHD acceleration for a hypersonic wind tunnel  

SciTech Connect

A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation.

Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N. [Univ. of Tennessee Space Institute, Tullahoma, TN (United States)

1995-12-31T23:59:59.000Z

75

Erlianhot Changfeng Xiehe Wind Power Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Jump to: navigation, search Name Erlianhot Changfeng Xiehe Wind Power Development Co Ltd Place Inner Mongolia Autonomous Region, China Sector Wind energy Product Erlianhot-based wind project developer. It is a JV between Tianjin DH Power Investment and China WindPower Group. References Erlianhot Changfeng Xiehe Wind Power Development Co Ltd[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Erlianhot Changfeng Xiehe Wind Power Development Co Ltd is a company located in Inner Mongolia Autonomous Region, China . References ↑ "[ Erlianhot Changfeng Xiehe Wind Power Development Co Ltd]" Retrieved from

76

New England Wind Forum: Historic Wind Development in New England:  

Wind Powering America (EERE)

Transition to Modern Wind Turbines Transition to Modern Wind Turbines Cold weather operation of the 550-kW Zond Z-40 FS wind turbines at the 6-MW Green Mountain Power wind plant. PIX05593. Cold weather operation of the 550-kW Zond Z-40 FS wind turbines at the 6-MW Green Mountain Power wind plant. Green Mountain Power also installed New England's seventh wind farm, with eleven 550-kW turbines manufactured by Zond Corporation (now owned by GE Wind), in Searsburg, VT, in 1996. Although installation was completed late in 1996, the turbines produced no power during their first winter due to mechanical failures with blade bolts and gearboxes. After mud season in 1997, all gearboxes were replaced, and the Searsburg wind farm went on line in June 1997. It is a local attraction that has received a significant amount of positive attention from visitors and the media. Green Mountain Power reports that the wind farm continues to perform reasonably well, with availability in the 85% to 95% range.

77

Wind Developer's Perspective on Incorporating Wind in Cap and Trade Program  

Wind Powering America (EERE)

Developer's Perspective Developer's Perspective on Incorporating Wind in Cap & Trade Programs January 12, 2006 Kevin Rackstraw Clipper Windpower, Inc. Clipper Windpower, Inc. 301/263 301/263- -0028 0028 krackstraw@clipperwind.com krackstraw@clipperwind.com About Clipper Windpower * Founded by James Dehlsen, a wind energy pioneer and recognized world leader in the wind industry, and founder of the company that is now GE Wind * Team is one of the most experienced in the business * Both a developer of wind projects and manufacturer of large wind turbines * Over $1.5 billion of wind projects developed * Another $4 billion of wind projects in the development pipeline Motivations * Emissions reduction claims: * In cap and trade states, neither we nor our marketers can state that we reduce capped emissions w/out allowances

78

Landowners and Wind Energy Development | Open Energy Information  

Open Energy Info (EERE)

Landowners and Wind Energy Development Landowners and Wind Energy Development Jump to: navigation, search Photo from Cielo Wind Power Corporation, NREL 10558 Many people will benefit from the clean air and economic growth brought about by wind power development, but farmers and other rural landowners may benefit the most. The best wind resources tend to be located in rural areas and on farmland in the Great Plains states. Wind power can provide a new cash crop for farmers and ranchers. Large wind turbines use only about one quarter-acre of land, including access roads, so farmers can continue to plant crops and graze livestock right up to the base of the turbines. One of the easiest and most attractive ways for farmers and other landowners to benefit from wind power is to allow wind developers to

79

Wind Energy Economic Development and Impacts | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Economic Development and Impacts Wind Energy Economic Development and Impacts Jump to: navigation, search Wind turbine blades wind their way by train through Denver. Photo by Dennis Schroeder, NREL 20894 Meeting 20% of the nation's electricity demand with wind energy will lead to benefits to rural landowners and towns, the manufacturing sector, and infrastructure across America.[1] The following provide more information about wind energy and economic development: Resources European Wind Energy Association. Economic Benefits of Wind This page outlines the economic benefits of wind energy in Europe. National Renewable Energy Laboratory. (March 2013). Economic Development from New Generation and Transmission in Wyoming and Colorado. Accessed November 29, 2013. This fact sheet summarizes a recent analysis, commissioned by the Wyoming

80

Cosmic Ray Acceleration beyond the Knee up to the Ankle in the Galactic Wind Halo  

E-Print Network (OSTI)

Cosmic Ray Acceleration beyond the Knee up to the Ankle in the Galactic Wind Halo Vladimir the so-called knee at several #2;10 15 eV to the so-called ankle at a few #2;10 18 eV total energy

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Accelerators of ELV-type Status, development, applications  

E-Print Network (OSTI)

Accelerators of ELV-type Status, development, applications In the work presented here the parameters of powerful electron accelerators of con- tinuous action are given and the main systems of the accelerator and a wide set of sup- plementary devices extending the application range of the accelerator

82

Contributed Paper Effects of Wind Energy Development on Nesting  

E-Print Network (OSTI)

Contributed Paper Effects of Wind Energy Development on Nesting Ecology of Greater Prairie 32611, U.S.A. Abstract: Wind energy is targeted to meet 20% of U.S. energy needs by 2030, but new sites for impacts of a wind energy development on the reproductive ecology of prairie-chickens in a 5-year study. We

Sandercock, Brett K.

83

Development of Wind Turbines Prototyping Software Under Matlab/Simulink  

E-Print Network (OSTI)

204 1 Development of Wind Turbines Prototyping Software Under Matlab/Simulink® Through present the development of a wind turbine prototyping software under Matlab/Simulink® through and the end of 1999, around 75% of all new grid-connected wind turbines worldwide were installed in Europe [3

Paris-Sud XI, Université de

84

Kickoff of Offshore Wind Power in China: Playoffs for China Wind Power Development  

Science Journals Connector (OSTI)

Year 2010 is the significant year of offshore wind power development in China. The first national offshore wind power project is connected to the grid, and the first round of concession projects marks the strong support from central government. It is foreseeable that offshore wind power capacity in China will expand rapidly in the future, and the understanding pattern of it is crucial for analyzing the overall wind market in China and global offshore wind power development. This paper firstly provides an overview of global offshore wind power development, then in China, including historical installation, potential of resources, demonstration and concession projects, and target of development. Based on this, analysis on current policies related to offshore wind power and their implementation, current wind farm developers and turbine manufacturers of China's offshore wind industry is done. All the previous analysis generates complete evaluation of current status and some issues and trends of China offshore wind power development, based on which some policy recommendations for sustainable development of offshore wind power are made.

Zhang Xiliang; Zhang Da; Michele Stua

2012-01-01T23:59:59.000Z

85

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network (OSTI)

Figure 1. Location of Wind Power Development in the UnitedFigure 4: Total Installed Wind Power Capacity (MW): 2000 -development impacts of wind power installations. References

Brown, Jason P

2014-01-01T23:59:59.000Z

86

New England Wind Forum: Historic Wind Development in New England: An  

Wind Powering America (EERE)

An Industry in Transition An Industry in Transition Most early wind farm development in the United States took place in California because the state granted a 25% income tax credit for wind energy investment, utilities signed contracts for power at attractive prices, state-funded wind measurement studies documented good wind resources, and because the state government, utilities, and local investors encouraged development. From 1980 through 1985, the principal market for wind turbines was tax-motivated individuals. Changes in federal tax law, including expiration of the energy tax credit in 1985 and passage of the Tax Reform Act of 1986, removed the major tax incentives for investing in wind energy. Because energy tax credits were eliminated and deductions for losses from passive investments had been reduced, the number of new wind turbines installed dropped sharply over this period. Oil prices declined during the same period, so many manufacturers and developers went out of business or were consolidated into larger operations.

87

Impacts of wind power on PJM market development  

Science Journals Connector (OSTI)

Recently, there has been a substantial growth in wind energy in the USA. An increasing number of states are experiencing market design, planning and investment in wind energy with this growth. Currently, wind installations exist in more than half of the states. This paper explores the market factors that have been driven and affected by large-scale wind energy development in the USA, particularly in PJM control area that have achieved in recent years and will have a substantial amount of wind energy investment in the next 10â??15 years. In this paper, we also identify the key issues for wind power planning and interconnection.

Zhenyu Fan; Hui Ni

2008-01-01T23:59:59.000Z

88

New England Wind Forum: Historic Wind Development in New England: The Age  

Wind Powering America (EERE)

The Age of PURPA Spawns the "Wind Farm" The Age of PURPA Spawns the "Wind Farm" The sustained high cost of conventional fuels together with heightened environmental concerns about air pollution led in 1978 to federal legislation - known as PURPA, the Public Utility Regulatory Policies Act - that encouraged private, non-utility investment in generating power from renewable energy sources. At that time, the first small-scale wind turbines were being sold by domestic manufacturers. Wind Farm at Crotched Mountain, NH, 1978. Photo courtesy of the University of Massachusetts. Click on the photo to view a larger image. Wind Farm at Crotched Mountain, NH, 1978. Photo courtesy of the University of Massachusetts. Crotched Mountain In December 1980, U.S. Windpower installed the world's first wind farm, consisting of 20 wind turbines rated at 30 kilowatts each, on the shoulder of Crotched Mountain in southern New Hampshire. Like many firsts, it was a failure: The developer overestimated the wind resource, and the turbines frequently broke. U.S. Windpower, which later changed its name to Kenetech, subsequently developed wind farms in California, and after experiencing machine failure there too, improved its designs and became the world's largest turbine manufacturer and wind farm developer before succumbing to the weight of aggressive development efforts, serious technical problems with its newest turbines, and a weak U.S. market, ultimately filing for bankruptcy in 1996.

89

New Developments in Planning Accelerated Life Tests.  

E-Print Network (OSTI)

??Accelerated life tests (ALTs) are often used to make timely assessments of the life time distribution of materials and components. The goal of many ALTs… (more)

Ma, Haiming

2009-01-01T23:59:59.000Z

90

Variables Affecting Economic Development of Wind Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Variables Affecting Economic Variables Affecting Economic Development of Wind Energy E. Lantz and S. Tegen National Renewable Energy Laboratory Presented at WINDPOWER 2008 Houston, Texas June 1-4, 2008 Conference Paper NREL/CP-500-43506 July 2008 NREL is operated by Midwest Research Institute ● Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government.

91

Expedited Permitting of Grid-Scale Wind Energy Development (Maine) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Expedited Permitting of Grid-Scale Wind Energy Development (Maine) Expedited Permitting of Grid-Scale Wind Energy Development (Maine) Expedited Permitting of Grid-Scale Wind Energy Development (Maine) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Wind Buying & Making Electricity Program Info State Maine Program Type Siting and Permitting Maine's Expedited Permitting of Grid-Scale Wind Energy Development statue provides an expedited permitting pathway for proposed wind developments in

92

Determining Optimal Locations for New Wind Energy Development in Iowa.  

E-Print Network (OSTI)

??The purpose of this research is to generate the most accurate model possible for predicting locations most suitable for new wind energy development using a… (more)

Mann, David

2011-01-01T23:59:59.000Z

93

Offshore Wind Research and Development | Department of Energy  

Office of Environmental Management (EM)

and advanced technology demonstration. Technology Development Offshore wind turbines are frequently located far from shore, more than 60 percent, are in areas where...

94

Factors driving wind power development in the United States  

E-Print Network (OSTI)

news release, “PUC Approves Xcel Resource Plan with AdditionPublic Utility Commission’s Xcel Wind Decision. ” Papera settlement requiring Xcel Energy to develop or purchase

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

95

NREL: Wind Research - NREL/DOE Develop Collaboration with Japan...  

NLE Websites -- All DOE Office Websites (Extended Search)

(DOE) and its National Renewable Energy Laboratory (NREL) recently traveled to Japan to develop a collaborative relationship between U.S. and Japanese offshore wind...

96

Offshore Wind Technology Development Projects | Department of...  

Office of Environmental Management (EM)

optimized for installation and operation in the marine environment. Offshore wind turbines are frequently located far from shore, face greater potential for corrosion from...

97

ARE660 Wind Generator: Low Wind Speed Technology for Small Turbine Development  

SciTech Connect

This project is for the design of a wind turbine that can generate most or all of the net energy required for homes and small businesses in moderately windy areas. The purpose is to expand the current market for residential wind generators by providing cost effective power in a lower wind regime than current technology has made available, as well as reduce noise and improve reliability and safety. Robert W. Preus’ experience designing and/or maintaining residential wind generators of many configurations helped identify the need for an improved experience of safety for the consumer. Current small wind products have unreliable or no method of stopping the wind generator in fault or high wind conditions. Consumers and their neighbors do not want to hear their wind generators. In addition, with current technology, only sites with unusually high wind speeds provide payback times that are acceptable for the on-grid user. Abundant Renewable Energy’s (ARE) basic original concept for the ARE660 was a combination of a stall controlled variable speed small wind generator and automatic fail safe furling for shutdown. The stall control for a small wind generator is not novel, but has not been developed for a variable speed application with a permanent magnet alternator (PMA). The fail safe furling approach for shutdown has not been used to our knowledge.

Robert W. Preus; DOE Project Officer - Keith Bennett

2008-04-23T23:59:59.000Z

98

Accelerator System Development at High Voltage Engineering  

SciTech Connect

Throughout the years, HVE has continuously extended the capabilities of its accelerator systems to meet the rising demands from a diverse field of applications, among which are deep level ion implantation, micro-machining, neutron production for biomedical research, isotope production or accelerator mass spectrometry. Characteristic for HVE accelerators is the coaxial construction of the all solid state power supply around the acceleration tubes. With the use of solid state technology, the accelerators feature high stability and very low ripple. Terminal voltages range from 1 to 6 MV for HVE Singletrons and Tandetrons. The high-current versions of these accelerators can provide ion beams with powers of several kW. In the last years, several systems have been built with terminal voltages of 1.25 MV, 2 MV and 5 MV. Recently, the first system based on a 6 MV Tandetron has passed the factory tests. In this paper we describe the characteristics of the HVE accelerator systems and present as example recent systems.

Klein, M. G.; Gottdang, A.; Haitsma, R. G.; Mous, D. J. W. [High Voltage Engineering Europa B.V., P.O. Box 99, Amersfoort 3800 AB (Netherlands)

2009-03-10T23:59:59.000Z

99

Wind Energy Workforce Development: A Roadmap to a Sustainable Wind Industry (Poster)  

SciTech Connect

As the United States moves toward a vision of greatly expanded wind energy use as outlined in the U.S. Department of Energy's 20% Wind Energy by 2030 report, the need for skilled workers at all levels in the industry is repeatedly identified as a critical issue. This presentation is an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry through a discussion of the activities identified that must be put in place to train workers. The paper will also provide a framework to address issues raised from each of the education and industry sectors, identifying a roadmap for developing an educational infrastructure to support wind technology. The presentation will also provide an understanding of the available resources, materials, and programs available across the industry. This presentation provides an overview of the educational infrastructure and expected industry needs to support the continued development of a vibrant U.S. wind industry as part of a collaborative effort to develop a wind workforce roadmap. This presentation will provide 1) A review of needed programs to train workers for the wind industry; 2) An overview of the importance education will play if the nation is to expand wind energy (both in development and deployment terms) and a review of ongoing activities with a focus on federal efforts; 3) A review of the materials and resources available across the industry and a framework to address issues raised from each of the education and industry sectors.

Baring-Gould, I.; Kelly, M.

2010-05-01T23:59:59.000Z

100

New England Wind Forum: Historic Wind Development in New England: Wrap Up  

Wind Powering America (EERE)

Wrap Up Wrap Up Remote Power in Isolated Electric Systems Additional installations of earlier-generation wind turbines occurred at Cuttyhunk Island, MA (a 200-kW WTG turbine operated as part of a wind-diesel installation), and Block Island, RI, which hosted one of the first four 200-kW MOD-OA units developed under the Department of Energy's large wind research program. Small Wind Turbine Manufacturing Vermont was a hotbed for early small-machine manufacturers. North Wind (now Northern Power Systems) and Enertech won two of the first contracts awarded by the Department of Energy wind research program for small-machine design. NPS still survives as a successful business today, while Enertech was succeeded by Atlantic Orient, which in turn has taken on new life in Canada as Entegrity. (Other companies, such as Astral Wilcon and Pinson Energy in Massachusetts, are no longer in business.)

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Development of Regional Wind Resource and Wind Plant Output Datasets for the Hawaiian Islands  

SciTech Connect

In March 2009, AWS Truepower was engaged by the National Renewable Energy Laboratory (NREL) to develop a set of wind resource and plant output data for the Hawaiian Islands. The objective of this project was to expand the methods and techniques employed in the Eastern Wind Integration and Transmission Study (EWITS) to include the state of Hawaii.

Manobianco, J.; Alonge, C.; Frank, J.; Brower, M.

2010-07-01T23:59:59.000Z

102

Advancing Development and Greenhouse Gas Reductions in Vietnam's Wind Sector  

SciTech Connect

Clean energy development is a key component of Vietnam's Green Growth Strategy, which establishes a target to reduce greenhouse gas (GHG) emissions from domestic energy activities by 20-30 percent by 2030 relative to a business-as-usual scenario. Vietnam has significant wind energy resources, which, if developed, could help the country reach this target while providing ancillary economic, social, and environmental benefits. Given Vietnam's ambitious clean energy goals and the relatively nascent state of wind energy development in the country, this paper seeks to fulfill two primary objectives: to distill timely and useful information to provincial-level planners, analysts, and project developers as they evaluate opportunities to develop local wind resources; and, to provide insights to policymakers on how coordinated efforts may help advance large-scale wind development, deliver near-term GHG emission reductions, and promote national objectives in the context of a low emission development framework.

Bilello, D.; Katz, J.; Esterly, S.; Ogonowski, M.

2014-09-01T23:59:59.000Z

103

The status of wind energy development in Tanzania  

Science Journals Connector (OSTI)

Wind energy development in Tanzania started about 3 decades ago when some windmills were installed at several locations in the country to pump water for human and animal consumption and in a few cases for irrigation. There were some attempts to manufacture the windmills locally but these were never successful. In 1980 there were some attempts to generate electricity from wind but these also were unsuccessful. The analysed wind speed data revealed that the wind energy potential in Tanzania is fairly high. The analysis also showed that the windy season coincides with the dry season. The available wind energy at one prospective site called if harvested for the purpose of electricity generation could help to alleviate the shortage of hydroelectricity that prevails during the dry season. Wind energy experts are involved in analysing the available wind speed data and also measuring wind speed in small intervals of time at the sites that are believed to have high wind energy potential. It is also planned to draw a wind map for Tanzania.

R R M Kainkwa

2002-01-01T23:59:59.000Z

104

Linear Accelerators for Protons: New Developments  

Science Journals Connector (OSTI)

...5 P INT C HIGH EN AC 624 ( 1965 ). CITRON, A, 1966 P LIN AC C 497 ( 1966 ). COURANT, E.D., THE STRONG-FOCUSING SYNCHROTON - A NEW HIGH ENERGY ACCELERATOR, PHYSICAL REVIEW 88 : 1190 ( 1952 ). CURTIS, C.D., 1966 P LIN ACC C 365 ( 1966...

Darragh E. Nagle

1967-07-14T23:59:59.000Z

105

Wind Energy at NREL's National Wind Technology Center  

ScienceCinema (OSTI)

It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

None

2013-05-29T23:59:59.000Z

106

DOE/NREL Advanced Wind Turbine Development Program  

SciTech Connect

The development of technologically advanced, high-efficiency wind turbines continues to be a high-priority activity of the US wind industry. The National Renewable Energy Laboratory (formerly the Solar Energy Research Institute), sponsored by the US Department of Energy (DOE), has initiated the Advanced Wind Turbine Program to assist the wind industry in the development of a new class of advanced wind turbines. The initial phase of the program focused on developing conceptual designs for near-term and advanced turbines. The goal of the second phase of this program is to use the experience gained over the last decade of turbine design and operation combined with the latest existing design tools to develop a turbine that will produce energy at $0.05 per kilowatt-hour (kWh) in a 5.8-m/s (13-mph) wind site. Three contracts have been awarded, and two more are under negotiation in the second phase. The third phase of the program will use new innovations and state-of-the-art wind turbine design technology to produce a turbine that will generate energy at $0.04/kWh in a 5.8-m/s wind site. Details of the third phase will be announced in early 1993.

Butterfield, C.P.; Smith, B.; Laxson, A.; Thresher, B. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.] [USDOE Assistant Secretary for Conservation and Renewable Energy, Washington, DC (United States). Wind/Hydro/Ocean Technologies Div.

1993-05-01T23:59:59.000Z

107

The Impact of Wind Development on County-Level Income and Employment: A Review of Methods and an Empirical Analysis (Fact Sheet). Wind And Water Power Program (WWPP).  

E-Print Network (OSTI)

development potential from wind power installations has beendevelopment potential of wind power projects, however,is whether new investment in wind power projects stimulates

Brown, Jason P.

2014-01-01T23:59:59.000Z

108

National Wind Technology Center to Debut New Dynamometer (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

New test facility will be used to accelerate the New test facility will be used to accelerate the development and deployment of next-generation wind energy technologies. This fall, the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL) will open a new dynamometer test facility. Funded by a grant from the U.S. Department of Energy under the American Recovery and Reinvestment Act (ARRA), the new facility will offer wind industry engineers a unique opportunity to conduct a wide range of tests on the mechanical and electrical power producing systems of a wind turbine including generators, gearboxes, power converters, bearings, brakes, lubrication, cooling, and control systems. Dynamometers enable industry and testing agencies to verify the performance and reliability

109

Overcoming Barriers to Wind Development in Appalachian Coal Country  

SciTech Connect

This research project synthesizes existing data and communication from experts to assess barriers to wind development in Pennsylvania, Maryland, West Virginia, Virginia, and Kentucky, and makes recommendations where feasible to reduce or eliminate those barriers.

Brent Bailey; Evan Hansen

2012-10-09T23:59:59.000Z

110

Development of onshore wind energy utilisation in Germany  

Science Journals Connector (OSTI)

Onshore wind energy utilisation in Germany has developed very dynamically in the last decade. This has mainly been driven by the renewable energy laws that systematically support the expansion of renewable ene...

Ronald Meisel; René Pforte; Wolf Fichtner

2009-03-01T23:59:59.000Z

111

North Wind 4-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect

This report presents the results of Phase II (testing and fabrication) of a program funded by the US Department of Energy to design, fabricate, and test a cost-effective wind system in the 3 to 6 kW class. During Phase II, using the design developed during Phase I, a prototype 4 kW machine was fabricated and tested in Waitsfield, Vermont. Several problems were encountered and subsequently analyzed. Design modifications, including the use of a larger alternator, are described. Test performed by North Wind and by Rockwell International (which monitored the program) demonstrated the predicted performance characteristics and the validity of the North Wind design.

Lynch, J.; Coleman, C.; Mayer, D.J.

1983-01-01T23:59:59.000Z

112

Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels  

SciTech Connect

The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2{approximately}3)x10{sup 5} Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N{sub 2}, but this effect is insignificant.

Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E. [Central Aerohydrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)

1995-12-31T23:59:59.000Z

113

FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION  

E-Print Network (OSTI)

FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT, REGULATORY FRAMEWORK, AND INTEGRATION 2010 Amardeep Dhanju All Rights Reserved #12;FOUR ESSAYS ON OFFSHORE WIND POWER POTENTIAL, DEVELOPMENT

Firestone, Jeremy

114

Zhejiang Wind Power Development Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhejiang Wind Power Development Co Ltd Zhejiang Wind Power Development Co Ltd Place Hangzhou, Zhejiang Province, China Zip 31005 Sector Wind energy Product A company engages in developing wind farm. Coordinates 30.252501°, 120.165024° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.252501,"lon":120.165024,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

115

Wind for Schools Portal Developer Resources | Open Energy Information  

Open Energy Info (EERE)

Developer Resources Developer Resources Jump to: navigation, search Wind for Schools Portal Home Comparison Motion Chart Educational Resources Data, APIs and Visualizations - introduction for aspiring developers Are you looking to get raw data from Wind for Schools Portal? Or perhaps you'd like to modify an existing visualization? This page shows details on how to query data and modify or create your own visualizations. All of the Wind for Schools Portal data is open. Because it is updated real-time, it is unique, interesting data that you can download, analyze and visualize. Data Wind data is aggregated daily to Google Fusion Tables. This data is such that SQL-like queries can be made against it and a visualization created. Generate an API key for your usage at Google API console. This API

116

Weather Incorporated for Needs Development (W.I.N.D.)  

SciTech Connect

The OSHA Power Generation Standard states that power generation employees shall be trained in specific applications of the standard that apply to individual job requirements. The intent of the project objective, then, is to create a tailored course that identifies standard requirements that apply to wind energy technicians.The purpose of this project is to develop an OSHA Power Generation Standard (1910.269) training course for both college based wind energy technician students and for continued workforce training of already employed wind technicians.

Paul Gunderson; Melinda Martin; Jay Johnson

2012-01-30T23:59:59.000Z

117

Computational Tools for Accelerating Carbon Capture Process Development  

SciTech Connect

This presentation reports development of advanced computational tools to accelerate next generation technology development. These tools are to develop an optimized process using rigorous models. They include: Process Models; Simulation-Based Optimization; Optimized Process; Uncertainty Quantification; Algebraic Surrogate Models; and Superstructure Optimization (Determine Configuration).

Miller, David; Sahinidis, N.V,; Cozad, A; Lee, A; Kim, H; Morinelly, J.; Eslick, J.; Yuan, Z.

2013-06-04T23:59:59.000Z

118

Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine  

Science Journals Connector (OSTI)

Abstract Wind tunnel experiments have been conducted with a newly developed two-bladed Savonius-style wind turbine specifically meant for a small-scale energy conversion. This novel shape of the turbine blade is evolved from a series of experiments with different types of blades in the recent past. The developed two-bladed turbine is tested in an open type test section and its performance is assessed in terms of power and torque coefficients. Experiments have also been conducted with other standard blades such as semi-circular, semi-elliptic, Benesh and Bach types in order to have a direct comparison. In this study, all the reported experimental data are inclusive of wind tunnel blockage corrections. Further, the effects of Reynolds number on the dynamic and static characteristics are also discussed. The present investigation demonstrates a gain of 34.8% in maximum power coefficient with the newly developed two-bladed turbine.

Sukanta Roy; Ujjwal K. Saha

2015-01-01T23:59:59.000Z

119

NREL: Wind Research - Offshore Wind Resource Characterization  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Wind Resource Characterization Offshore Wind Resource Characterization Map of the United States, showing the wind potential of offshore areas across the country. Enlarge image US offshore wind speed estimates at 90-m height NREL scientists and engineers are leading efforts in resource mapping, remote sensor measurement and development, and forecasting that are essential for the development of offshore wind. Resource Mapping For more than 15 years, NREL's meteorologists, engineers, and Geographic Information System experts have led the production of wind resource characterization maps and reports used by policy makers, private industry, and other government organizations to inform and accelerate the development of wind energy in the United States. Offshore wind resource data and mapping has strategic uses. As with terrestrial developments, traditional

120

New England Wind Forum: Historic Wind Development in New England: The 70's  

Wind Powering America (EERE)

The 70's OPEC Oil Embargo Sparks Renewed Interest The 70's OPEC Oil Embargo Sparks Renewed Interest In 1973, when the United States met 94% of its energy requirements from nonrenewable sources, OPEC's oil embargo had a dramatic impact. Supply disruptions and a four-fold price increase caused an increased interest in renewable (i.e., sun-driven) resources. As one response, the Department of Energy and private companies began to develop the forerunners of today's modern wind turbines. WF-1 Wind Turbine at University of Massachusetts, 1976. Photo courtesy of the University of Massachusetts. WF-1 Wind Turbine at University of Massachusetts, 1976. Photo courtesy of the University of Massachusetts. UMass Wind Furnace WF-1 The mid 1970s saw the design, construction and installation of a 25-kW wind turbine at the University of Massachusetts at Amherst. According to the University's Renewable Energy Research Lab, this turbine, known as WF-1, was at the time of its completion the largest existing wind turbine in the United States and for a short time, one of the two or three largest operating turbines in the world. It has now been decommissioned and is currently being prepared for storage and transportation to the Smithsonian Institution.

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network (OSTI)

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

122

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

123

Coronal Heating and Acceleration of the High/Low-Speed Solar Wind by Fast/Slow MHD Shock Trains  

E-Print Network (OSTI)

We investigate coronal heating and acceleration of the high- and low-speed solar wind in the open field region by dissipation of fast and slow magnetohydrodynamical (MHD) waves through MHD shocks. Linearly polarized \\Alfven (fast MHD) waves and acoustic (slow MHD) waves travelling upwardly along with a magnetic field line eventually form fast switch-on shock trains and hydrodynamical shock trains (N-waves) respectively to heat and accelerate the plasma. We determine one dimensional structure of the corona from the bottom of the transition region (TR) to 1AU under the steady-state condition by solving evolutionary equations for the shock amplitudes simultaneously with the momentum and proton/electron energy equations. Our model reproduces the overall trend of the high-speed wind from the polar holes and the low-speed wind from the mid- to low-latitude streamer except the observed hot corona in the streamer. The heating from the slow waves is effective in the low corona to increase the density there, and plays an important role in the formation of the dense low-speed wind. On the other hand, the fast waves can carry a sizable energy to the upper level to heat the outer corona and accelerate the high-speed wind effectively. We also study dependency on field strength, $B_0$, at the bottom of the TR and non-radial expansion of a flow tube, $f_{\\rm max}$, to find that large $B_0/f_{\\rm max}\\gtrsim 2$ but small $B_0\\simeq 2$G are favorable for the high-speed wind and that small $B_0/f_{\\rm max}\\simeq 1$ is required for the low-speed wind.

Takeru K. Suzuki

2003-12-22T23:59:59.000Z

124

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE Accord Seeks Accelerated Development of Alaska's Vast DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

125

DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accord Seeks Accelerated Development of Alaska's Vast Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources DOE Accord Seeks Accelerated Development of Alaska's Vast Unconventional Energy Resources April 16, 2013 - 9:30am Addthis Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17. Acting ASFE, Christopher Smith, and Alaska Department of Natural Resources Commissioner, Dan Sullivan, sign an MOU at the LNG 17 Global Conference in Houston, Texas, pledging to work together in the effort to get more of Alaska's fossil fuels into the energy stream. Photo courtesy of LNG 17.

126

Computational Tools to Accelerate Commercial Development  

SciTech Connect

The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.

Miller, David C.

2013-01-01T23:59:59.000Z

127

Wind Energy Development as an Economic Development Strategy for Rural Areas  

E-Print Network (OSTI)

Why does wind development make sense for rural areas? In many rural areas, utility scale wind energy developments can be a great way to expand and grow the economy through direct investment and job creation, in addition to significant potential spinoff development activities. Because of renewable state standards and incentives, including the Federal Production Tax Credit (PTC) and the Ohio SB 232 (which levels the playing field for wind projects by setting a property tax ceiling), more wind companies view Ohio as a new and exciting market for investment. Siting requirements for wind are also prevalent in Ohio, including good transmission lines and available land and wind resources. Ohio also has a skilled workforce that can construct and provide maintenance on wind systems as well as manufacture component parts for the industry. Utility Wind Basics Utility scale wind developments are large “wind farms ” that generate 5 megawatts per hour or greater. They are governed by the Ohio Power Siting Board (OPSB) under provisions found in House Bill 562, 2008

Nancy Bowen-ellzey

128

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, andWind Power Development in the United States: Current94720 Abstract: The U.S. wind power industry is in an era of

Wiser, Ryan H

2009-01-01T23:59:59.000Z

129

Feasibility analysis of coordinated offshore wind project development in the U.S.  

E-Print Network (OSTI)

Wind energy is one of the cleanest and most available resources in the world, and advancements in wind technology are making it more cost effective. Though wind power is rapidly developing in many regions, its variable ...

Zhang, Mimi Q

2008-01-01T23:59:59.000Z

130

Acceleration  

NLE Websites -- All DOE Office Websites (Extended Search)

Acceleration Acceleration of porous media simulations on the Cray XE6 platform Kirsten M. Fagnan, Michael Lijewski, George Pau, Nicholas J. Wright Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, CA 94720 May 18, 2011 1 Introduction In this paper we investigate the performance of the Porous Media with Adaptive Mesh Refinment (PMAMR) code which was developed in the Center for Computational Science and Engineering at Lawrence Berkeley National Laboratory. This code is being used to model carbon sequestration and contaminant transport as part of the Advanced Simulation Capability for Environmental Management (ASCEM) project. The goal of the ASCEM project is to better understand and quantify flow and contaminant transport behavior in complex geological systems. It will also address the long-term performance of engineered components including cementitious materials in

131

Shenyang Huaren Wind Power Technology Development Co Ltd | Open Energy  

Open Energy Info (EERE)

Huaren Wind Power Technology Development Co Ltd Huaren Wind Power Technology Development Co Ltd Jump to: navigation, search Name Shenyang Huaren Wind Power Technology Development Co Ltd Place Shenyang, Liaoning Province, China Sector Wind energy Product China-based technology provider of 1MW, 1.5MW and 3MW wind turbines. Coordinates 41.788509°, 123.40612° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.788509,"lon":123.40612,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

132

Potential for Development of Solar and Wind Resource in Bhutan  

SciTech Connect

With support from the U.S. Agency for International Development (USAID), the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) produced maps and data of the wind and solar resources in Bhutan. The solar resource data show that Bhutan has an adequate resource for flat-plate collectors, with annual average values of global horizontal solar radiation ranging from 4.0 to 5.5 kWh/m2-day (4.0 to 5.5 peak sun hours per day). The information provided in this report may be of use to energy planners in Bhutan involved in developing energy policy or planning wind and solar projects, and to energy analysts around the world interested in gaining an understanding of Bhutan's wind and solar energy potential.

Gilman, P.; Cowlin, S.; Heimiller, D.

2009-09-01T23:59:59.000Z

133

EA-1655: Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development  

Energy.gov (U.S. Department of Energy (DOE))

Berkeley Lab Laser Accelerator (BELLA) Laser Acquisition, Installation and Use for Research and Development

134

Wind Speed Scaling in Fully Developed Seas  

Science Journals Connector (OSTI)

Recent tests of all generations of numerical wave models indicate that extreme wave heights are significantly underpredicted by these models. This behavior is consistent with the finding by Ewing and Laing that fully developed wave spectra do not ...

Donald T. Resio; Val R. Swail; Robert E. Jensen; Vincent J. Cardone

1999-08-01T23:59:59.000Z

135

Sandia National Laboratories Develops Tool for Evaluating Wind...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

better integrating new wind turbines with their local environment. One barrier to wind energy installations has been the concern that wind turbines may impact the National Air...

136

An Experimental Robotic Testbed for Accelerated Development of Ankle Prostheses  

E-Print Network (OSTI)

An Experimental Robotic Testbed for Accelerated Development of Ankle Prostheses Joshua M. Caputo systematic changes in high-level control law parameters. For example, we widely varied net ankle work (from] recently demonstrated the first robotic ankle to significantly reduce energy cost for amputees

Collins, Steven H.

137

Wind News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind News Wind News Wind News RSS February 7, 2011 Salazar, Chu Announce Major Offshore Wind Initiatives Strategic plan, $50 million in R&D funding, identified Wind Energy Areas will speed offshore wind energy development December 16, 2010 Department of Energy Finalizes Loan Guarantee to Support World's Largest Wind Project 845-Megawatt Wind Facility Will Create Hundreds of Jobs and Avoid Over 1.2 Million Tons of Carbon Dioxide Annually October 29, 2010 Statement by Energy Secretary Steven Chu on Today's Grand Opening of the Nordex Manufacturing Facility in Jonesboro, Arkansas Recovery Act investment creates jobs, helps lay the foundation for a clean energy economy September 13, 2010 DOE Announces More than $5 Million to Support Wind Energy Development Funds to Enhance Short-Term Wind Forecasting and Accelerate Midsize Wind

138

Conceptual Design of a 50--100 MW Electron Beam Accelerator System for the National Hypersonic Wind Tunnel Program  

SciTech Connect

The National Hypersonic Wind Tunnel program requires an unprecedented electron beam source capable of 1--2 MeV at a beam power level of 50--100 MW. Direct-current electron accelerator technology can readily generate high average power beams to approximately 5 MeV at output efficiencies greater than 90%. However, due to the nature of research and industrial applications, there has never been a requirement for a single module with an output power exceeding approximately 500 kW. Although a 50--100 MW module is a two-order extrapolation from demonstrated power levels, the scaling of accelerator components appears reasonable. This paper presents an evaluation of component and system issues involved in the design of a 50--100 MW electron beam accelerator system with precision beam transport into a high pressure flowing air environment.

SCHNEIDER,LARRY X.

2000-06-01T23:59:59.000Z

139

Solar and Wind Energy Utilization and Project Development Scenarios |  

Open Energy Info (EERE)

Utilization and Project Development Scenarios Utilization and Project Development Scenarios Dataset Summary Description (Abstract): Solar and wind energy resources in Ethiopia have not been given due attention in the past. Some of the primary reasons for under consideration of these resources are lack of awareness of their potential in the country, the role they can have in the overall energy mix and the social benefits associated with them. Knowledge of the exploitable potential of these resources and identification of potential regions for development will help energy planners and developers to incorporate these resources as alternative means of supplying energy by conducting a more accurate techno-economic analysis which leads to more realistic economic projections. (Purpose): The ultimate objective of this study is to produce a document that comprises country background information on solar and wind energy utilization and project scenarios which present solar and wind energy investment opportunities to investors and decision makers. It is an integrated study with specific objectives of resource documentation including analysis of barriers and policies, identification of potential areas for technology promotion, and nationwide aggregation of potentials and benefits of the resource. The

140

1 Introduction The development of wind energy use has led to  

E-Print Network (OSTI)

1 Introduction The development of wind energy use has led to a noticeable contribution in of electricity by wind energy acts as a negative load leading to an increase in fluctuations of net load patterns conventional reserves have to be kept ready to replace the wind energy share in case of decreasing wind speeds

Heinemann, Detlev

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Space use by female Greater Prairie-Chickens in response to wind energy development  

E-Print Network (OSTI)

Space use by female Greater Prairie-Chickens in response to wind energy development V. L. WINDER,1-Chickens in response to wind energy development. Ecosphere 5(1):3. http://dx.doi.org/10.1890/ ES13-00206.1 Abstract. Wind energy development is targeted to meet 20% of U.S. energy demand by 2030. In Kansas, optimal sites

Sandercock, Brett K.

142

A Comparative Analysis of Community Wind Power Development Models  

E-Print Network (OSTI)

Whip Up Hopes for Wind Power Again. ” The Wall StreetProduction Tax Credit for Wind Power. LBNL-51465. Berkeley,This combination is making wind power an important new cash

Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

2005-01-01T23:59:59.000Z

143

Argonne National Laboratory Develops Extreme-Scale Wind Farm...  

Office of Environmental Management (EM)

studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy....

144

Factors driving wind power development in the United States  

E-Print Network (OSTI)

about 1.3 MW of Iowa wind power to supply its Second Natureuse a portion of the wind power to supply customers whosupplies wholesale wind power to four Colorado utilities,

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

145

Colorado and South Carolina: New Wind Test Facilities Open |...  

Energy Savers (EERE)

Act, the new facilities will accelerate the development and deployment of next-generation wind energy technologies for both offshore and land-based applications. Located on a...

146

A Comparative Analysis of Community Wind Power DevelopmentModels  

SciTech Connect

For years, farmers in the United States have looked with envy on their European counterparts ability to profitably farm the wind through ownership of distributed, utility-scale wind projects. Only within the past few years, however, has farmer- or community-owned windpower development become a reality in the United States. The primary hurdle to this type of development in the United States has been devising and implementing suitable business and legal structures that enable such projects to take advantage of tax-based federal incentives for windpower. This article discusses the limitations of such incentives in supporting farmer- or community-owned wind projects, describes four ownership structures that potentially overcome such limitations, and finally conducts comparative financial analysis on those four structures, using as an example a hypothetical 1.5 MW farmer-owned project located in the state of Oregon. We find that material differences in the competitiveness of each structure do exist, but that choosing the best structure for a given project will largely depend on the conditions at hand; e.g., the ability of the farmer(s) to utilize tax credits, preference for individual versus cooperative ownership, and the state and utility service territory in which the project will be located.

Bolinger, Mark; Wiser, Ryan; Wind, Tom; Juhl, Dan; Grace, Robert; West, Peter

2005-05-20T23:59:59.000Z

147

Community small scale wind farms for New Zealand: a comparative study of Austrian development, with consideration for New Zealand's future wind energy development.  

E-Print Network (OSTI)

??In New Zealand, the development of wind energy is occurring predominantly at a large scale level with very little opportunity for local people to become… (more)

Thomson, Grant

2008-01-01T23:59:59.000Z

148

New England Wind Forum: Historic Wind Development in New England: More New  

Wind Powering America (EERE)

More New England Wind Farms More New England Wind Farms Since Crotched Mountain, six additional wind farms have been installed to date in New England. The performance of New England wind farms has generally mirrored the performance of wind farms elsewhere, i.e., a slow start followed by rapid improvement. Original wind farm on Equinox Mountain, circa 1982. Photo courtesy of Endless Energy Corporation. Click on the image to view a larger version. Original wind farm on Equinox Mountain, circa 1982. Equinox Mountain, VT The four WTG turbines installed in 1981 and 1982 at Equinox Mountain, VT, comprised one of the first wind farm installations in the United States. These early turbines, which suffered mechanical issues (including blade throws), were subsequently removed, but Equinox Mountain continued to receive attention as a wind power site (see below).

149

Offshore wind energy development in China: Current status and future perspective  

Science Journals Connector (OSTI)

Year 2010 is the significant year of offshore wind power development in China. The first national offshore wind power project is connected to the grid, and the first round of concession projects marks the strong support from central government. It is foreseeable that offshore wind power capacity in China will expand rapidly, and play a notable role in the transition to a sustainable energy system, therefore, the understanding pattern of it is crucial for analyzing the overall wind market in China and global offshore wind power development. This paper firstly provides an overview of global offshore wind power development, then in China, including historical installation, potential of resources, demonstration and concession projects, and target of development. Furthermore, a comprehensive overview of advantages and challenges for developing offshore wind in China is presented. Based on this, analysis on current policies related to offshore wind power and their implementation, current wind farm developers and turbine manufacturers as well as technology transfer and development of China's offshore wind industry is done. All the previous analysis generates complete evaluation of current status and future perspectives of China offshore wind power development, based on which some policy recommendations for sustainable development of offshore wind power are made.

Zhang Da; Zhang Xiliang; He Jiankun; Chai Qimin

2011-01-01T23:59:59.000Z

150

Experimental Evolution of Accelerated Development in Drosophila. 1. Developmental Speed and Larval Survival  

E-Print Network (OSTI)

Experimental Evolution of Accelerated Development in Drosophila. 1. Developmental Speed and Larval://www.jstor.org #12;Evolition, 51(5), 1997, pp. 1536-1551 EXPERIMENTAL EVOLUTION OF ACCELERATED DEVELOPMENT and COI5) for faster development. After 125 generations, the resulting accelerated populations (ACBI5

Rose, Michael R.

151

Development and Deployment of an Advanced Wind Forecasting Technique  

E-Print Network (OSTI)

findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power in Porto) Power Systems Unit Porto, Portugal Industry Partners Horizon Wind Energy, LLC Midwest Independent

Kemner, Ken

152

From%laggard%to%leader:%% Explaining%offshore%wind%developments%in%  

E-Print Network (OSTI)

From%laggard%to%leader:%% Explaining%offshore%wind%developments%in% the%UK% Florian!laggard!to!leader:!Explaining! offshore!wind!developments!in!the!UK! Florian Kern1* , Adrian Smith1 , Chris Shaw1 , Rob Raven2 and Bram for publication in Energy Policy, 19 Feb 2014 Abstract Offshore wind technology has recently undergone rapid

Sussex, University of

153

LEEDCo awarded $4 million to launch offshore wind development on Lake Erie  

E-Print Network (OSTI)

LEEDCo awarded $4 million to launch offshore wind development on Lake Erie By Teresa Dixon Murray in the United States, the Lake Erie Energy Development Corp. of Cleveland will launch an offshore wind to build wind turbines in Lake Erie. "This is a great day for Northeast Ohio," said LEEDCo CEO Lorry Wagner

Rollins, Andrew M.

154

Effects of wind energy development on survival of female greater prairie-chickens  

E-Print Network (OSTI)

Effects of wind energy development on survival of female greater prairie-chickens Virginia L of Florida, Gainesville, FL 32611, USA Summary 1. The potential effects of wind energy development on wildlife have received increased attention over the past decade. In Kansas, optimal sites for wind energy

Sandercock, Brett K.

155

Offshore Wind Jobs and Economic Development Impact: Four Regional Scenarios (Presentation)  

SciTech Connect

NREL's Jobs and Economic Development Impact (JEDI) Model for Offshore Wind, is a computer tool for studying the economic impacts of fixed-bottom offshore wind projects in the United States. This presentation provides the results of an analysis of four offshore wind development scenarios in the Southeast Atlantic, Great Lakes, Mid-Atlantic, and Gulf of Mexico regions.

Tegen, S.

2014-11-01T23:59:59.000Z

156

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

5 3.1.1 Xcel Energy’s Wind7 3.1.3 Xcel Energy’s Small Wind Tariff and7 3.1.5 Xcel Energy’s Renewable Development

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

157

Development of All-fiber Coherent Doppler Lidar to Measure Atmosphere Wind Speed  

Science Journals Connector (OSTI)

An all-fiber pulsed coherent Doppler lidar is developed to measure wind profiles. The maximum horizontal and vertical range for wind speed is 4.2km and 2km with speed accuracy of...

Liu, Jiqiao; Chen, Weibiao; Zhu, Xiaopeng

158

Development of High-Capacity Desalination Plant Driven by Offshore Wind Turbine  

Science Journals Connector (OSTI)

This paper presents a development of the desalination plant based on the concept of the Wind Energy Marine Unit (WEMU) which is the high-capacity offshore wind turbine with the floating rotor. The great potential...

Valery V. Cheboxarov; Victor V. Cheboxarov

2009-01-01T23:59:59.000Z

159

China Resources Wind Power Development Co Ltd Hua Run | Open Energy  

Open Energy Info (EERE)

Hua Run Hua Run Jump to: navigation, search Name China Resources Wind Power Development Co Ltd (Hua Run) Place Shantou, Guangdong Province, China Zip 515041 Sector Wind energy Product A company engages in developing wind power project. References China Resources Wind Power Development Co Ltd (Hua Run)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. China Resources Wind Power Development Co Ltd (Hua Run) is a company located in Shantou, Guangdong Province, China . References ↑ "China Resources Wind Power Development Co Ltd (Hua Run)" Retrieved from "http://en.openei.org/w/index.php?title=China_Resources_Wind_Power_Development_Co_Ltd_Hua_Run&oldid=343528

160

Development of the SCRF Power Coupler for the APT Accelerator  

SciTech Connect

The team responsible for the design of the Accelerator Production of Tritium (APT) superconducting (SC) radio frequency (RF) power coupler has developed two 700-MHz, helium gas-cooled power couplers. One has a fixed inner conductor and the other has an adjustable inner conductor (gamma prototype and alpha prototype). The power couplers will be performance tested in the near future. This paper discusses the mechanical design and fabrication techniques employed in the development of each power coupler. This includes material selection, copper coating, assembly sequences, and metal joining procedures, as well as the engineering analyses performed to determine the dynamic response of the inner conductors due to environmental excitations. A bellows is used in both prototype inner conductors in the area near the ceramic RF window, to compensate for thermal expansion and mechanical tolerance build-up. In addition, a bellows is used near the tip of the inner conductor of the alpha prototype for running the power coupler after it is installed on the accelerator. Extensive analytical work has been performed to determine the static loads transmitted by the bellows due to thermally induced expansion on the inner conductor and on the RF window. This paper also discusses this analysis, as well as the mechanical analysis performed to determine the final geometric shape of the bellows. Finally, a discussion of the electromagnetic analysis used to optimize the performance of the power couplers is included.

Schmierer, E.N.; Lujan, R.E.; Rusnak, B.; Smith, B.; Haynes, W.B.; Gautier, C.; Waynert, J.A.; Krawczyk, F.; Gioia, J.

1999-03-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Stakeholder Engagement and Outreach: Wind Economic Development Resources  

Wind Powering America (EERE)

Development Resources and Tools Development Resources and Tools This page lists wind-related economic development resources and tools such as publications, Web resources, and news. Search the Stakeholder Engagement and Outreach initiative's Database Choose a Type of Information All News Publications Web Resource Videos Choose # of Records per Page Default (10 per page) 5 25 50 To search the titles, enter a word or phrase. Start Search Clear Contents Total of 198 records found. Page 1 of 40, Sorted by descending date Filtered by: Econ. Dev. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 Next Page >> Date sort by ascending date sort by descending date State sort by ascending state sort by descending state Type of Information Program Area Title sort by ascending title sort by descending title

162

Developing Integrated National Design Standards for Offshore Wind Plants  

Energy.gov (U.S. Department of Energy (DOE))

The DOE Wind Program and the National Renewable Energy Laboratory recently published a report that summarizes the regulations, standards, and guidelines for the design and operation of offshore wind projects in the United States.

163

Acoustic Array Development for Wind Turbine Noise Characterization  

SciTech Connect

This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

2013-11-01T23:59:59.000Z

164

Developing a Practical Wind Tunnel Test Engineering Course for Undergraduate Aerospace Engineering Students  

E-Print Network (OSTI)

This thesis describes the development and assessment of an undergraduate wind tunnel test engineering course utilizing the 7ft by 10ft Oran W. Nicks Low Speed Wind Tunnel (LSWT). Only 5 other universities in the United States have a wind tunnel...

Recla, Benjamin Jeremiah

2013-04-19T23:59:59.000Z

165

FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development on the Population Biology  

E-Print Network (OSTI)

Collaborative Abby Arnold, Executive Director, American Wind Wildlife Institute,aarnold@awwi.org, 202- 535-7800 (x105) Taber D. Allison, Director of Research and Evaluation, American Wind Wildlife Institutei FINAL TECHNICAL REPORT Project Title: Environmental Impacts of Wind Power Development

Sandercock, Brett K.

166

DEVELOPMENT OF AN ULTRASONIC NDT SYSTEM FOR AUTOMATED IN-SITU INSPECTION OF WIND TURBINE BLADES  

E-Print Network (OSTI)

of a wind turbine, including turbine blades, tower, gears, generator bearings etc. [2]. However, due to highDEVELOPMENT OF AN ULTRASONIC NDT SYSTEM FOR AUTOMATED IN- SITU INSPECTION OF WIND TURBINE BLADES Abington, Cambridge, CB21 6AL, UK bic@brunel.ac.uk ABSTRACT It is crucial to maintain wind turbine blades

Boyer, Edmond

167

Pacific Northwest National Laboratory Assesses Risks for Marine Vessel Traffic and Wind Energy Development  

Energy.gov (U.S. Department of Energy (DOE))

The nationwide demand for energy is fueling development of sustainable offshore wind resources. To reach the strong and steady offshore wind resources, the Bureau of Ocean Energy Management (BOEM) will lease the seabed on the outer continental shelf for offshore wind farms.

168

The role of vorticity in developing lineation by wind erosion  

Science Journals Connector (OSTI)

...found to be facing the prevailing wind (southwest). Instead, most...be lee to the regional or to a local high- velocity wind direction. The crestal keel would...also may be the pattern of the foehn wind. It may be a major factor in...

169

Argonne National Laboratory Develops Extreme-Scale Wind Farm Simulation Capabilities  

Energy.gov (U.S. Department of Energy (DOE))

Researchers at DOE's Argonne National Laboratory are developing a computational simulation tool to conduct studies of complex flow and wind turbine interactions in large land-based and offshore wind farms that will improve wind plant design and reduce the levelized cost of energy. Simulations on a wind-plant-scale require accurate simultaneous resolution of multiple flow scales, from mesoscale weather to turbine-blade scale turbulence, which presents special demands on the computational solver efficiency and requires extreme scalability.

170

Offshore Wind Turbines - Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine: Environmental Effects of Offshore Wind Energy Development  

SciTech Connect

Deep C Wind, a consortium headed by the University of Maine will test the first U.S. offshore wind platforms in 2012. In advance of final siting and permitting of the test turbines off Monhegan Island, residents of the island off Maine require reassurance that the noise levels from the test turbines will not disturb them. Pacific Northwest National Laboratory, at the request of the University of Maine, and with the support of the U.S. Department of Energy Wind Program, modeled the acoustic output of the planned test turbines.

Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

2010-11-23T23:59:59.000Z

171

Clean Energy Investment in Developing Countries: Wind Power in Egypt | Open  

Open Energy Info (EERE)

Developing Countries: Wind Power in Egypt Developing Countries: Wind Power in Egypt Jump to: navigation, search Name Clean Energy Investment in Developing Countries: Wind Power in Egypt Agency/Company /Organization International Institute for Sustainable Development (IISD) Sector Energy Focus Area Renewable Energy, Wind Topics Finance, Market analysis, Background analysis Resource Type Lessons learned/best practices Website http://www.iisd.org/pdf/2009/b Country Egypt Northern Africa References Clean Energy Investment in Developing Countries: Wind Power in Egypt[1] Clean Energy Investment in Developing Countries: Wind Power in Egypt Screenshot Summary "What elements of the domestic policy regime might be improved to help stimulate flows of private investment in clean energy infrastructure and

172

Accelerated Approval for Pertuzumab in the Neoadjuvant Setting: Winds of Change?  

Science Journals Connector (OSTI)

...Neoadjuvant Setting: Winds of Change? Laura...who present with life-threatening breast...Four preoperative cycles of pertuzumab in...Six preoperative cycles of pertuzumab in...intent-to-treat analysis, the median OS was...scheduled to receive four cycles given every 3 weeks...

Laura J. Esserman and Angela DeMichele

2014-07-15T23:59:59.000Z

173

Vietnam-GTZ RE Policy and Wind Power Development Project | Open Energy  

Open Energy Info (EERE)

Vietnam-GTZ RE Policy and Wind Power Development Project Vietnam-GTZ RE Policy and Wind Power Development Project Jump to: navigation, search Logo: Vietnam-GTZ Wind Power Development Project Name Vietnam-GTZ Wind Power Development Project Agency/Company /Organization GTZ on behalf of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Partner Ministry of Industry and Trade (MoIT), The Electricity Regulatory Authority of Vietnam (ERAV), Electricity of Vietnam (EVN) Sector Energy Focus Area Wind Topics Policies/deployment programs, Background analysis Website http://www.gtz.de/en/themen/26 Program Start 2008 Program End 2011 Country Vietnam UN Region South-Eastern Asia References Establishment of a Legal Framework and Improvement of Technical Capacities for Grid - connected Wind Power Development in Viet Nam[1]

174

NWCC Guidelines for Assessing the Economic Development Impacts of Wind Power  

SciTech Connect

OAK-B135 The primary objective of this study is to provide examples of thorough and consistent analysis and documentation of economic impacts from wind power development.

Michael Taylor, Northwest Economic Associates Alan Fox, Northwest Economic Associates Jill Chilton, Northwest Economic Associates NWCC Economic Development Work Group Contributors Steve Clemmer, Lisa Daniels, Ed DeMeo, Rick Halet, Ron Lehr, Michael Milligan Vince Robinson

2002-02-12T23:59:59.000Z

175

Accelerator & Detector Research & Development | U.S. DOE Office...  

Office of Science (SC) Website

whose cost and complexity require shared support. Research at the Accelerator Test Facility at Brookhaven National Laboratory is jointly funded by the High Energy Physics...

176

Development of an Accelerated Ash-Loading Protocol for Diesel...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerated Ash-Loading Protocol for Diesel Particulate Filters Bruce G. Bunting and Todd J. Toops Oak Ridge National Laboratory Adam Youngquist and Ke Nguyen University of...

177

Sandia National Laboratories Develops Tool for Evaluating Wind Turbine-Radar Impacts  

Energy.gov (U.S. Department of Energy (DOE))

The TSPEAR toolkit supports energy developers that wish to design, analyze, track the progress of wind energy projects. Initially designed to support wind energy development by assessing the interaction between turbines and constraining factors, such as the NAS radar systems, TSPEAR is partially populated with information from existing databases and can integrate custom models and tools used throughout the development process.

178

Development of a low-cost bi-axial intensity-based optical fibre accelerometer for wind turbine blades  

Science Journals Connector (OSTI)

Abstract A bi-axial optical fibre accelerometer was developed for wind turbine monitoring. The sensor was fabricated from intensity-modulated optical fibre, which is low-cost, lightweight and simple in design. The bi-axial acceleration was measured by light intensity coupling between a cantilever fibre and two receiving fibres. Numerical simulation was performed to obtain the light coupling characteristics and the results were used to design the sensor parameters. A prototype was fabricated and the calibration scheme validated experimentally. The performance of the prototype was tested in terms of frequency response and linearity.

Yao Ge; Kevin S. Kuang; Ser Tong Quek

2013-01-01T23:59:59.000Z

179

Regional coherence project - Potential wind power plant development zone.  

E-Print Network (OSTI)

??This document presents a methodology to highlight the location on which the wind turbines could be implemented. This study was performed in the framework of… (more)

Bellut, Romain

2009-01-01T23:59:59.000Z

180

Development of learning material to wind power courses.  

E-Print Network (OSTI)

??Wind power plants are more and more commonly used as power production units, which lead to an increased demand of educated personnel within the area.… (more)

Bruhn, Kristin; Lorensson, Sofia

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

to Develop Multi-Megawatt Offshore Wind Turbine with General to Develop Multi-Megawatt Offshore Wind Turbine with General Electric DOE to Develop Multi-Megawatt Offshore Wind Turbine with General Electric March 9, 2006 - 11:44am Addthis Contract Valued at $27 million, supports President Bush's Advanced Energy Initiative WASHINGTON, D.C. - The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) in Golden, Colorado, has signed a $27 million, multi-year contract with the General Electric Company (GE) to develop a new offshore wind power system over the next several years. Approximately $8 million of the offshore wind project will be cost-shared by DOE. "Offshore wind technology, another aspect of President Bush's Advanced Energy Initiative, can reduce our dependence on foreign energy sources as

182

New England Wind Forum: Historic Wind Development in New England: Grandpa's  

Wind Powering America (EERE)

Grandpa's Knob Grandpa's Knob Wind Turbine on Grandpa's Knob, VT. Photo courtesy of Rutland Herald. Wind Turbine on Grandpa's Knob, VT. Photo courtesy of Rutland Herald. The first large-scale electricity-producing windmill (the world's largest at the time) was installed in 1941 at Grandpa's Knob, on the border of Castleton and West Rutland, VT, to take advantage of New England's strong wind energy regime. Several companies collaborated on the turbine: S. Morgan Smith of Pennsylvania financed the project; Palmer C. Putnam executed the design; and General Electric, the American Bridge Co., the Budd Co. and Wellman Engineering also participated. Among the electric companies declaring interest in the project was Central Vermont Public Service, whose president believed wind power to be the wave of the future.

183

Where the wind blows: navigating offshore wind development, domestically and abroad  

SciTech Connect

2010 is a defining year for offshore wind power globally. Many are watching with bated breath to see how the Department of Interior will handle the future of the industry in the United States. (author)

Colander, Brandi

2010-04-15T23:59:59.000Z

184

Sustainable Development and Kish Island Environment Protection, using Wind Energy  

E-Print Network (OSTI)

Abstract—Kish Islands in South of Iran is located in coastal water near Hormozgan Province. Based on the wind 3-hour statistics in Kish station, the mean annual windspeed in this Island is 8.6 knot (4.3 m/s). The maximum windspeed recorded in this stations 47 knot (23.5 m/s). In 45.7 percent of recorded times, windspeed has been Zero or less than 8 knot which is not suitable to use the wind energy. But in 54.3 percent of recorded times, windspeed has been more than 8 knot and suitable to use wind energy to run turbines. In 40.2 percent of recorded times, windspeed has been between 8 to 16 knot, in 13 percent of times between 16 to 24 knot and in 1 percent of times it has been higher than 24 knot. In this station, the direction of winds higher than 8 is west and wind direction in Kish station is stable in most times of the year.With regard to high – speed and stable direction winds during the year and also shallow coasts near this is land, it is possible to build offshore wind farms near Kish Island and utilize wind energy produce the electricity required in this Island during most of the year.

Amir Gandomkar

185

Vindicator Lidar Assessment for Wind Turbine Feed-Forward Control Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-352  

SciTech Connect

Collaborative development and testing of feed-forward and other advanced wind turbine controls using a laser wind sensor.

Wright, A.

2014-01-01T23:59:59.000Z

186

Probing the Solar Wind Acceleration Region with the Sun--Grazing Comet C/2002 S2  

E-Print Network (OSTI)

Comet C/2002 S2, a member of the Kreutz family of Sungrazing comets, was discovered in white light images of the SOHO/LASCO coronagraph on 2002 September 18 and observed in \\hi\\, \\lya\\, emission by the SOHO/UVCS instrument at four different heights as it approached the Sun. The \\hi\\, \\lya\\, line profiles detected by UVCS are analyzed to determine the spectral parameters: line intensity, width and Doppler shift with respect to the coronal background. Two dimensional comet images of these parameters are reconstructed at the different heights. A novel aspect of the observations of this sungrazing comet data is that, whereas the emission from the most of the tail is blue--shifted, that along one edge of the tail is red--shifted. We attribute these shifts to a combination of solar wind speed and interaction with the magnetic field. In order to use the comet to probe the density, temperature and speed of the corona and solar wind through which it passes, as well as to determine the outgassing rate of the comet, we ...

Giordano, Silvio; Lamy, Philippe; Uzzo, Michael; Dobrzycka, Danuta

2014-01-01T23:59:59.000Z

187

Research and Development | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Research and Development Research and Development Research and Development Photo of two multimegawatt wind turbines in a green field, blue sky with clouds in the background. The U.S. Department of Energy's Wind Program leads the nation's efforts to improve the performance, lower the costs, and accelerate the deployment of wind power technologies. Learn more about the specific research sponsored by the Wind Program: Large Wind Technology Offshore Wind Technology Distributed Wind Testing and Certification Supporting Wind Turbine Manufacturing Resource Assessment and Characterization Renewable Systems Integration Environmental Impacts and Siting of Wind Projects To learn more about the Wind Program's successes in working with businesses, industry partners, universities, research labs, and other

188

Economic Development from Gigawatt-Scale Wind Deployment in Wyoming (Presentation)  

SciTech Connect

This presentation provides an overview of economic development in Wyoming from gigawatt-scale wind development and includes a discussion of project context, definitions and caveats, a deployment scenario, modeling inputs, results, and conclusions.

Lantz, E.

2011-05-23T23:59:59.000Z

189

Economic Impacts of Wind Turbine Development in U.S. Counties  

NLE Websites -- All DOE Office Websites (Extended Search)

are the economic development impacts on U.S. counties of are the economic development impacts on U.S. counties of wind power projects, as defined by growth in per capita income and employment? Objective To address the research question using post-project construction, county-level data, and econometric evaluation methods. Background * Wind energy is expanding rapidly in the United States: Over the last 4 years, wind power has contributed approximately 35 percent of all new electric power capacity. * Wind power plants are often developed in rural areas where local economic development impacts from the installation are projected, including land lease and property tax payments and employment growth during plant construction and operation. * Wind energy represented 2.3 percent of the U.S. electricity supply in 2010, but studies show

190

RENEWABLE ENERGY FOR CLEAN AND SUSTAINABLE FUTURE: ASSESSMENT AND DEVELOPMENT STRATEGIES OF WIND  

E-Print Network (OSTI)

There is a substantial increase in energy demand in Turkey because of its growth of industrial development. Turkey’s present energy resources are insufficient and the need for energy is growing rapidly. Turkey does not possess enough conventional fossil fuel reserves, but possesses rich renewable energy resources such as hydraulic, solar, geothermal and wind. Among all, wind energy seems to be the most suitable renewable energy resource for electricity production. This study is aimed to summarize the assessment and development strategies of wind power in Turkey. Considering the development of wind energy in the country, it may be concluded that the number of wind power plant installations will considerably increase in the future.

Power In Turkey; Afsin Gungor

191

Offshore Wind Jobs and Economic Development Impacts in the United States: Four Regional Scenarios  

Energy.gov (U.S. Department of Energy (DOE))

This report uses the offshore wind Jobs and Economic Development Impacts (JEDI) model and provides four case studies of potential offshore wind deployment scenarios in different regions of the United States: the Southeast, the Great Lakes, the Gulf Coast, and the Mid-Atlantic.

192

New Report Highlights Trends in Offshore Wind with 14 Projects Currently In Advanced Stages of Development  

Energy.gov (U.S. Department of Energy (DOE))

The Energy Department today released a new report showing progress for the United States offshore wind energy market over the past year, including two projects that have moved into the initial stages of construction, and 14 projects that are in the advanced stages of development– together representing nearly 4,900 megawatts of potential offshore wind energy capacity for the U.S.

193

Short-term Forecasting of Offshore Wind Farm Production Developments of the Anemos Project  

E-Print Network (OSTI)

Short-term Forecasting of Offshore Wind Farm Production ­ Developments of the Anemos Project J.a.brownsword@rl.ac.uk 6 Overspeed GmBH & Co.KG, 26129 Oldenburg, Germany Email: h.p.waldl@overspeed.de Key words: Offshore to the large dimensions of offshore wind farms, their electricity production must be known well in advance

Paris-Sud XI, Université de

194

Response of Rocky Mountain Elk (Cervus elaphus) to Wind-power Development  

E-Print Network (OSTI)

Department of Wildlife and Fisheries Sciences, South Dakota State University, Brookings 57007 ABSTRACT.--WindResponse of Rocky Mountain Elk (Cervus elaphus) to Wind-power Development W. DAVID WALTER1 Oklahoma Cooperative Fish and Wildlife Research Unit, 404 Life Sciences West, Oklahoma State University, Stillwater

195

Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development  

E-Print Network (OSTI)

Win-Win for Wind and Wildlife: A Vision to Facilitate Sustainable Development Joseph M. Kiesecker1: Kiesecker JM, Evans JS, Fargione J, Doherty K, Foresman KR, et al. (2011) Win-Win for Wind and Wildlife of Georgia, Athens, Georgia, United States of America, 8 United States Fish and Wildlife Service, Bismarck

Foresman, Kerry R.

196

Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens  

Energy.gov (U.S. Department of Energy (DOE))

This report summarizes the results of a seven-year, DOE-funded research project, conducted by researchers from Kansas State University and the National Wind Coordinating Collaborative, to assess the effects of wind energy development in Kansas on the population and reproduction of greater prairie chickens.

197

The development of a wind tunnel facility for the study of V/STOL noise  

E-Print Network (OSTI)

An open-jet wind tunnel operating within an anechoic chamber was developed for the purpose of the study of V/STOL noise mechanisms. An existing low-speed conventional hard-walled wind tunnel was modified to operate as an ...

Widnall, S. E.

1972-01-01T23:59:59.000Z

198

Wind Turbine Blade Test Definition of the DeWind DW90 Rotor Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-326  

SciTech Connect

This CRADA was developed as a funds-in CRADA with DeWind to assess the suitability of facilities and equipment at the NWTC for performing certification blade testing on wind turbine blades made from advanced materials. DeWind produces a wind turbine blade which includes the use of high-strength and stiffness materials. NREL and DeWind had a mutual interest in defining the necessary facilities, equipment, and test methods for testing large wind turbine blades which incorporate advanced materials and adaptive structures, as the demands on test equipment and infrastructure are greater than current capabilities. Work under this CRADA would enable DeWind to verify domestic capability for certification-class static and fatigue testing, while NREL would be able to identify and develop specialized test capabilities based on the test requirements.

Hughes, S.

2012-05-01T23:59:59.000Z

199

Wind Turbine R&D and Certification Services: Cooperative Research and Development Final Report, CRADA Number CRD-04-00147  

SciTech Connect

NREL and Underwriters Laboratories Inc. are developing a domestic certification program for the US wind and photovoltaic (PV) industry.

Link, H.

2011-02-01T23:59:59.000Z

200

THE DEVELOPMENT OF HEAVY-ION ACCELERATORS AS DRIVERS FOR INERTIALLY CONFINED FUSION  

E-Print Network (OSTI)

HEAVY ION ACCELERATORS Principal Components . . . . .Ion Sources Pre-accelerators Low-beta Accelerators Sain Accelerators Rf Linacs . . .

Herrmannsfeldt, W.b.

2010-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

On the application of MHD-gas acceleration wind tunnels to investigate hypersonic gas flows over bodies  

SciTech Connect

The paper contains the results of applying a hypervelocity MHD-gas acceleration wind tunnel to investigations of flows over bodies. Consideration is given to the conditions of re producing gas dynamic and thermochemical flow parameters as applied to different types of tests: pressure and heat flux distributions, determination of shock wave positions and shapes. The measured heat fluxes towards the leading edge of swept wings are presented for sweep angles ranging from 0{degrees} to 60{degrees} at a flow velocity of U{approximately}6000 m/s. An appreciable influence of the surface nonequilibrium and catalyticity on their values is indicated. Possible investigations of flows over bodies at ultra high heat fluxes, q {approximately} 10 kW/m{sup 2} are discussed. The results of applying the facility to the verification of calculation codes and thermodynamic gas models are analyzed for flows over a hemisphere, a cone and a wedge. The calculated and measured surface pressure distributions are in good agreement for a hemisphere and satisfactory for a cone and a wedge. The shock wave positions and shapes are compared. It is shown that respective gas glow is impossible to use for this purpose.

Alfyorov, V.I.; Yegorov, I.V.; Shcherbakov, G.I. [Central Aerodrodynamic Institute (TsAGI), Zhukovsky (Russian Federation)

1995-12-31T23:59:59.000Z

202

Preferential acceleration and heating of helium ions by transverse Alfven-cyclotron waves in the solar wind  

E-Print Network (OSTI)

We study correlations of the heating and acceleration of alpha particles with the power of transverse waves that have frequencies between $0.01$ and $1$ normalized to the proton gyrofrequency in the solar wind frame. It is found that the normalized differential speed, $V_{\\alpha p}/V_A$ (where $V_A$ is the Alfv\\'en speed), increases when the relative wave power is growing. Furthermore, if this speed stays below 0.5, then the alpha-particle temperature anisotropy, $T_{\\perp \\alpha}/T_{\\parallel \\alpha}$, and normalized thermal speed, $V_{th \\alpha}/V_A$, correlate positively with the relative power of the transverse waves, i.e., both grow with increasing wave intensity. However, if $V_{\\alpha p}/V_A$ is larger than 0.6, then the alpha-particle temperature anisotropy tends to decrease towards values below unity, despite the presence of transverse waves with relatively large amplitudes. For small relative wave amplitude, it is found that alpha particles can even be heated more strongly than protons when the alph...

Bourouaine, Sofiane; Neubauer, Fritz M

2010-01-01T23:59:59.000Z

203

Economic Development Impacts of Community Wind Projects: A Review and Empirical Evaluation; Preprint  

SciTech Connect

'Community wind' refers to a class of wind energy ownership structures. The extent of local ownership may range from a small minority share to full ownership by persons in the immediate area surrounding the wind project site. Potential project owners include local farmers, businesses, Native American tribes, universities, cooperatives, or any other local entity seeking to invest in wind energy. The opposite of community wind is an 'absentee' project, in which ownership is completely removed from the state and community surrounding the facility. Thus, there is little or no ongoing direct financial benefit to state and local populations aside from salaries for local repair technicians, local property tax payments, and land lease payments. In recent years, the community wind sector has been inhibited by manufacturers' preference for larger turbine orders. This often puts smaller community wind developers and projects at a competitive disadvantage. However, state policies specifically supporting community wind may become a more influential market factor as turbines are now more readily available given manufacturer ramp-ups and the slow-down in the industry that has accompanied the recent economic and financial crises. This report examines existing literature to provide an overview of economic impacts resulting from community wind projects, compares results, and explains variability.

Lantz, E.; Tegen, S.

2009-04-01T23:59:59.000Z

204

Economic feasibility of development of wind power plants in coastal locations of Saudi Arabia – A review  

Science Journals Connector (OSTI)

Climate change and depletion of natural resources are serious issues that have potential impact on the economic and social development of countries. In this perspective, the governments world-wide are mobilizing initiatives to exploit renewable energy sources to mitigate increasing demand of energy, volatile fuel prices, and environmental concerns. Renewable energy (wind/solar) based power system is a nature-friendly option for power production to foster sustainable development challenges. In the present study, the economic feasibility of development of 75 MW wind power plants (wind farms) in the coastal locations of the Kingdom of Saudi Arabia (K.S.A.) has been studied/reviewed by analyzing long-term wind speed data. Attention has been focused on four coastal locations (Al-Wajh, Jeddah, Yanbu and Jizan) covering the west coast. In general, long-term data indicates that the yearly average wind speed of K.S.A. varies from 3.0 to 4.5 m/s at 10 m height. The wind farms simulated consist of different combinations of 600 kW commercial wind machines (50 m hub-height). NREL's (HOMER Energy's) HOMER software has been employed to perform the techno-economic assessment. The study presents monthly variations of wind speed, cumulative frequency distribution (CFD) profiles of wind speed, monthly and yearly amount of energy generated from the 75 MW wind farms (50 m hub-height) at different coastal locations of K.S.A., cost of generating energy (COE, $/kWh), capacity factor (%), etc. The CFD indicates that the wind speeds are less than 3 m/s for 45%, 53%, 41%, and 52% of the time during the year at Al-Wajh, Jeddah, Yanbu and Jizan respectively. This implies that wind electric conversion systems (WECS) will not produce energy for about 41–53% of the time during the year. The annual energy produced by 75 MW wind farms (50 m hub-height) has been found to be 107,196, 81,648, 135,822, and 80,896 MWh at Al-Wajh, Jeddah, Yanbu and Jizan respectively. The cost of wind-based electricity by using 600 kW (50 m hub-height) commercial WECS has been found to be 0.0536, 0.0704, 0.0423, and 0.0711 US$/kWh for Al-Wajh, Jeddah, Yanbu and Jizan respectively. Also, attempt has been made to determine the capacity factor (CF) of wind-based power plants, the CF has been found to vary from 12% to 21% for different locations of the Kingdom.

S.M. Shaahid; L.M. Al-Hadhrami; M.K. Rahman

2013-01-01T23:59:59.000Z

205

Idaho Power Develops Renewable Integration Tool for More Cost Effective Use of Wind Power  

Energy.gov (U.S. Department of Energy (DOE))

Idaho Power Company (IPC) has developed a Renewables Integration Tool (RIT) that enables grid operators to use wind energy more cost-effectively to serve electricity customers in Idaho and Oregon. The case study on this project is now available.

206

Development of laboratory doubly fed induction generator for wind energy research.  

E-Print Network (OSTI)

??This thesis studies the basic concept of doubly-fed induction generators (DFIG) and develops a laboratory model to simulate DFIG wind turbine generators (WTG). “Doubly-fed” refers… (more)

Hu, Zhouxing

2010-01-01T23:59:59.000Z

207

Development and Investigation of a Dipole Magnet with a High-Temperature Superconductor Winding  

Science Journals Connector (OSTI)

The structure of a dipole magnet with an iron yoke, where the winding is made of a Bi-2223 high-temperature superconductor, has been developed and the magnet has been built at the Institute of High-Energy Physics...

A. I. Ageev; I. V. Bogdanov; V. V. Zubko; S. S. Kozub; K. P. Myznikov…

2002-12-01T23:59:59.000Z

208

Wind energy offers considerable promise; the wind itself is free,  

E-Print Network (OSTI)

Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

Langendoen, Koen

209

A Computer Program Development for Sizing Stand-alone Photovoltaic-Wind Hybrid Systems  

Science Journals Connector (OSTI)

Abstract The exhaustion and all the drawbacks of fossil fuels are the main elements that led to the development and use of new alternativesfor power generation based on renewable energy,amongthem: photovoltaic energy systems, windenergy systems and their combination in a hybrid photovoltaic-wind system. In this paper we proposed a sizing approach of stand-alone Photovoltaic-Wind systems which is evaluated by the development of a computer applicationbased essentially on Loss of Power Supply Probability (LPSP) algorithmto provide an optimal technical-economic configuration. An example of a PV-Wind plant sizing is presented and discussed.

H. Belmili; M.F. Almi; B.Bendib; S. Bolouma

2013-01-01T23:59:59.000Z

210

The development of a low velocity wind tunnel with instrumentation for boundary layer investigations  

E-Print Network (OSTI)

THE DEVELOPMENT OF A LOW VELOCITY WIND TUNNEL WITH INSTRUMENTATION FOR BOUNDARY LAYER INVESTIGATIONS A Dissertation B y John Robert Massey Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial... fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY May 1958 Major Subject: Mechanical Engineering THE DEVELOPMENT OF A LOW VELOCITY WIND TUNNEL WITH INSTRUMENTATION FOR BOUNDARY LAYER INVESTIGATIONS A Dissertation By John Robert...

Massey, John Robert

2013-10-04T23:59:59.000Z

211

Second Wind Sonic Wind Profiler: Cooperative Research and Development Final Report, CRADA number CRD-08-00297  

SciTech Connect

Second Wind will deploy their Triton Sonic Wind Profiler at the National Wind Technology Center for the purposes of verification with measurements made by the NWTC 80 meter Meteorological tower.

Johnson, J. A.

2010-07-01T23:59:59.000Z

212

Use of synthetic aperture radar for offshore wind resource assessment and wind farm development in the UK   

E-Print Network (OSTI)

The UK has an abundant offshore wind resource with offshore wind farming set to grow rapidly over the coming years. Optimisation of energy production is of the utmost importance and accurate estimates of wind speed distributions are critical...

Cameron, Iain Dickson

2008-01-01T23:59:59.000Z

213

Best Practices for Sustainable WInd Energy Development in the Great Lakes Region and Beyond  

SciTech Connect

This document offers a menu of 18 different, yet complimentary preferred practices and policies. The best practices cover all phases of the wind energy development process - from the policies that allow for wind development, to the sustainable operation of a wind project, to the best practices for decommissioning a spent turbine - including applications for offshore wind. The practices include those that have been previously tested and proven effective, as well as new practices that were identified by experts in the field as needed for future wind developments. Each best practice includes information about the opportunities and challenges (pros and cons), and offers a case example that illustrates how that best practice is being utilized by a particular jurisdiction or wind project. The practices described in this publication were selected by a diverse group of interests from the Great Lakes Wind Collaborative that included environmental groups, industry, and federal, state and local government regulators. They were identified through a year long process that included a literature review, online survey and interviews with individuals from the public, private and non-profit sectors.

Great Lakes Commission; Victoria Pebbles; John Hummer; Celia Haven

2011-07-19T23:59:59.000Z

214

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

215

The development and application practice of wind–solar energy hybrid generation systems in China  

Science Journals Connector (OSTI)

China is the largest developing country in the world. At present, more and more energy demand gives immense pressure to Chinese government. The inappropriate energy structure must be improved by Chinese government in order to achieve the sustainable development of economy and society. Development and application of renewable energy, such as wind energy, solar energy, biomass energy, etc., have been regarded by the government and the local people in the past 10 years, and more and more actual examples have been established, which are supported by government and plants in China. It is well known that there are abundant wind and solar resources in China. This paper presents the distribution zone and development and application practice status in China. However, a common drawback is existing in the stand-alone wind energy and solar energy generating power system, which is the unpredictable output electric power, and the output power depends on the unpredictable weather and climatic changes. Fortunately, the wind–solar hybrid generation system can partially overcome the problems. The conventional structure and key technology of stand-alone wind–solar hybrid generating system, the current status and outlook of wind–solar hybrid energy system are presented in the paper, for example, the city road lighting system, distributed generation, photovoltaic (PV) water pumping for irrigation, etc. At the end, the policies and laws of China central government and local governments are described, and the development barriers and recommendations are introduced.

Li-qun Liu; Zhi-xin Wang

2009-01-01T23:59:59.000Z

216

Development of a Web-based Emissions Reduction Calculator for Green Power Purchases from Texas Wind Energy Providers  

E-Print Network (OSTI)

DEVELOPMENT OF A WEB-BASED, EMISSIONS REDUCTION CALCULATOR FOR GREEN POWER PURCHASES FROM TEXAS WIND ENERGY PROVIDERS Zi Liu, Ph.D. Research Engineer Jeff S. Haberl, Ph.D., P.E. Professor/Assc. Director Juan... that have been developed to calculate the emissions reductions from electricity provided by wind energy providers in the Texas ERCOT region, including an analysis of actual hourly wind power generated from a wind turbine in Randall County, Texas...

Liu, Z.; Baltazar-Cervantes, J. C.; Gilman, D.; Haberl, J.; Culp, C.

2005-01-01T23:59:59.000Z

217

The U.S. Department of Energy Wind Turbine Development Program  

SciTech Connect

The development of technologically-advanced wind turbines continues to be a high priority of the US wind industry. The United States Department of Energy (DOE) is sponsoring a range of projects that assist the wind industry to design, develop, and test new wind turbines. The overall goal is to develop turbines that can compete with conventional electric generation with a cost of energy (COE) of 5 cents/kWh at 5.8 m/s (13 mph sites) by the mid-1990s and with a cost of energy of 4 cents/kWh or less at 5.8 m/s sites by the year 2000. These goals will be supported through the DOE Turbine Development Program. The Turbine Development Program uses a two-path approach. The first path assists US industry to develop and integrate innovative technologies into utility-grade wind turbines for the near-term (mid-1990s). The second path assists industry to develop a new generation of turbines for the year 2000. This paper describes present and planned projects under the Turbine Development Program.

Link, H.; Laxson, A.; Smith, B. [National Renewable Energy Lab., Golden, CO (United States); Goldman, P. [Dept. of Energy, Washington, DC (United States)

1995-03-01T23:59:59.000Z

218

Session: Development and application of guidelines for siting, constructing, operating and monitoring wind turbines  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question and answer period. The two papers were: 'Development and Application of USFWS Guidance for Site Evaluation, Siting, Construction, Operation and Monitoring of Wind Turbines' by Albert Manville and 'Wind Power in Washington State' by Greg Hueckel. The session provided a comparison of wind project guidelines developed by the U.S. Fish and Wildlife Service (USFWS) in May 2003 and the Washington State Department of Fish and Wildlife in August 2003. Questions addressed included: is there a need or desire for uniform national or state criteria; can other states learn from Washington State's example, or from the USFWS voluntary guidelines; should there be uniform requirements/guidelines/check-lists for the siting, operation, monitoring, and mitigation to prevent or minimize avian, bat, and other wildlife impacts.

Manville, Albert; Hueckel, Greg

2004-09-01T23:59:59.000Z

219

New Model Examines Cumulative Impacts of Wind Energy Development on Sensitive Species  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Argonne National Laboratory recently developed the prototype of a spatially explicit individual-based model for examining the cumulative impacts of wind energy development on populations and habitats of the greater sage grouse (Centrocercus urophasianus)—an important wildlife species that has been affected by energy development in the western United States.

220

20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...  

Office of Environmental Management (EM)

20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

FACT SHEET: MULTILATERAL SOLAR AND WIND WORKING GROUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: MULTILATERAL SOLAR AND WIND WORKING GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers announced the development of a Multilateral Solar and Wind Working Group to promote accelerated deployment of solar and wind technologies by implementing recommendations from the MEF Technology Action Plan on Solar and Wind Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The

222

FACT SHEET: MULTILATERAL SOLAR AND WIND WORKING GROUP  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FACT SHEET: MULTILATERAL SOLAR AND WIND WORKING GROUP At the Clean Energy Ministerial in Washington, D.C. on July 19 th and 20 th , ministers announced the development of a Multilateral Solar and Wind Working Group to promote accelerated deployment of solar and wind technologies by implementing recommendations from the MEF Technology Action Plan on Solar and Wind Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The

223

The lessons learned from the development of the wind energy industry that might be applied to marine industry renewables  

Science Journals Connector (OSTI)

...capital grants for wind energy in late 1970s to early 1980s. still active in wind energy manufacture? still active in wind energy? USA Boeing no no GE yes...development. Figure 2. Early history of Bonus list price (adjusted for inflation...

2012-01-01T23:59:59.000Z

224

CHARGE STATE EVOLUTION IN THE SOLAR WIND. II. PLASMA CHARGE STATE COMPOSITION IN THE INNER CORONA AND ACCELERATING FAST SOLAR WIND  

SciTech Connect

In the present work, we calculate the evolution of the charge state distribution within the fast solar wind. We use the temperature, density, and velocity profiles predicted by Cranmer et al. to calculate the ionization history of the most important heavy elements in the solar corona and solar wind: C, N, O, Ne, Mg, Si, S, and Fe. The evolution of each charge state is calculated from the source region in the lower chromosphere to the final freeze-in point. We show that the solar wind velocity causes the plasma to experience significant departures from equilibrium at very low heights, well inside the field of view (within 0.6 R{sub sun} from the solar limb) of nearly all the available remote-sensing instrumentation, significantly affecting observed spectral line intensities. We also study the evolution of charge state ratios with distance from the source region, and the temperature they indicate if ionization equilibrium is assumed. We find that virtually every charge state from every element freezes in at a different height, so that the definition of freeze-in height is ambiguous. We also find that calculated freeze-in temperatures indicated by charge state ratios from in situ measurements have little relation to the local coronal temperature of the wind source region, and stop evolving much earlier than their correspondent charge state ratio. We discuss the implication of our results on plasma diagnostics of coronal holes from spectroscopic measurements as well as on theoretical solar wind models relying on coronal temperatures.

Landi, E.; Gruesbeck, J. R.; Lepri, S. T.; Zurbuchen, T. H.; Fisk, L. A. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, MI 48109 (United States)

2012-12-10T23:59:59.000Z

225

Shifting towards offshore wind energy—Recent activity and future development  

Science Journals Connector (OSTI)

To date, most of the existing wind farms have been built on-land but during the last few years many countries have also invested in offshore applications. The shift towards offshore wind project developments has mainly been driven by European energy policies, especially in north-west countries. In offshore sites the winds are stronger and steadier than on-land, making wind farms more productive with higher capacity factors. On the other hand, although offshore wind energy is not in its infancy period, most of the costs associated with its development are still much higher from onshore counterparts; however some recent technological progress may have the potential to narrow this gap in the years to come. In the present work, an overview of the activity noted in the field of offshore wind energy is carried out, with emphasis being given on the current status and future trends of the technology employed, examining at the same time energy production and availability issues as well as economic considerations.

J.K. Kaldellis; M. Kapsali

2013-01-01T23:59:59.000Z

226

Development of short-term forecast quality for new offshore wind farms  

Science Journals Connector (OSTI)

As the rapid wind power build-out continues, a large number of new wind farms will come online but forecasters and forecasting algorithms have little experience with them. This is a problem for statistical short term forecasts, which must be trained on a long record of historical power production – exactly what is missing for a new farm. Focus of the study was to analyse development of the offshore wind power forecast (WPF) quality from beginning of operation up to one year of operational experience. This paper represents a case study using data of the first German offshore wind farm "alpha ventus" and first German commercial offshore wind farm "Baltic1". The work was carried out with measured data from meteorological measurement mast FINO1, measured power from wind farms and numerical weather prediction (NWP) from the German Weather Service (DWD). This study facilitates to decide the length of needed time series and selection of forecast method to get a reliable WPF on a weekly time axis. Weekly development of WPF quality for day-ahead WPF via different models is presented. The models are physical model; physical model extended with a statistical correction (MOS) and artificial neural network (ANN) as a pure statistical model. Selforganizing map (SOM) is investigated for a better understanding of uncertainties of forecast error.

M Kurt; B Lange

2014-01-01T23:59:59.000Z

227

NNSA Awards Additional Support to Accelerate the Development...  

National Nuclear Security Administration (NNSA)

million to NorthStar to further develop its technology to produce Mo-99 via neutron capture, bringing the total NNSA support to this project to 16.1 million. SHINE Medical...

228

Department of Energy to Invest Up To $30 Million to Accelerate Development  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Up To $30 Million to Accelerate Up To $30 Million to Accelerate Development and Deployment of Plug-In Hybrid Electric Vehicle Technology Department of Energy to Invest Up To $30 Million to Accelerate Development and Deployment of Plug-In Hybrid Electric Vehicle Technology January 17, 2008 - 10:38am Addthis DOE also partners with the State of Michigan and industry to advance vehicle technologies DETROIT, MI -U.S. Department of Energy (DOE) Under Secretary Bud Albright today announced that DOE will invest up to $30 million for cost-shared development and demonstration projects supporting Plug-In Hybrid Vehicles (PHEVs); and that DOE will participate in a cooperative, pre-competitive research and development alliance - known as the U.S. Automotive Partnership for Advancing Research & Technologies - or USAutoPARTs. Both

229

WIND ENERGY POLICIES IN TURKEY  

E-Print Network (OSTI)

Energy is a strategic parameter, which demonstrates the development of a country. In Turkey, energy and energy politics are mainly based on the supply due to the inadequate fossil fuel resources. In the beginning of the 21 st century, due to the increase in the price of fossil fuels and environmental burdens, many countries showed renewed interest in alternative energy resources. Climate change and environmental problems caused by greenhouse gas emissions showed the importance of renewable energy resources and especially wind energy. The major reason for the interest in wind energy technologies out of many renewable energy resources is the bulk availability of this resource without any cost. In Turkey, the major solution to the dependency on foreign energy resources is: domestic production, development, and operation of renewable energy resources. However, in order to make these investments, suitable conditions and strategies must be generated. In order to accelerate the wind energy investments in Turkey: (i) the problems related to the interconnectivity of the wind power systems to the grid must be solved (ii) the guaranteed purchase price of the wind energy must be updated (iii) and the construction/operation of wind power plants must be subsidised by government initiatives. In this study, the politics related to wind energy is extensively reviewed and the possible suggestions/solutions related to the acceleration of wind energy production and investments in Turkey are given.

S?tk? Güner; Irem Firtina; Mehmet Meliko?lu; Ayhan Albostan

230

Model Examines Cumulative Impacts of Wind Energy Development on the Greater Sage-Grouse  

Energy.gov (U.S. Department of Energy (DOE))

DOE's Argonne National Laboratory developed a spatially explicit individual-based model for examining the cumulative impacts of wind energy development on populations and habitats of the greater sage-grouse (Centrocercus urophasianus)—a candidate for listing under the Endangered Species Act.

231

Jobs and Economic Development Impacts (Postcards), Wind Powering America (WPA), Energy Efficiency & Renewable Energy (EERE)  

Wind Powering America (EERE)

Development Impacts Wind Powering America is a nationwide initiative to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. Jobs and Economic Development Impacts The Jobs and Economic Development Impacts (JEDI) model is a user-friendly tool that estimates the economic impacts of constructing and operating power generation at the local and state levels. Based on project-specific or default inputs (derived from industry norms), JEDI estimates the number of jobs and economic impacts to a local area that could reasonably be supported by a power generation project. For example, JEDI estimates the number of in-state construction jobs from a new wind farm. EERE Information Center

232

Software Development Kit for Multicore Acceleration Version 3.1  

E-Print Network (OSTI)

want to develop device drivers, compilers, or operating systems for the Cell Broadband Engine® operating system, SDK code examples, and the IBM® Full System Simulator for Cell/B.E. Related documentation with a single, searchable site where you can access product documentation for IBM systems hardware, operating

233

NASA Technical Memorandum 107050 An Accelerated Development,Reduced Cost  

E-Print Network (OSTI)

in a "building block" fashion, a variety of single and multi-engine lunar and Mars vehicles can be configured, a single launch Mars cargo vehicle capable of -------______-_-_------ *Nuclear Propulsion Office "'Cost klbf NTR engines and the two standardized LH2 tank sizes developed for lunar and Mars cargo vehicle

Rathbun, Julie A.

234

Wind Program FY 2015 Budget At-A-Glance  

Office of Energy Efficiency and Renewable Energy (EERE)

The Wind Program, part of the Wind and Water Power Technologies Office, accelerates U.S. deployment of clean, affordable, and reliable domestic wind power through research, development, and demonstration. These advanced technology investments directly contribute to the goals for the United States to double renewable electricity generation again by 2020 and to achieve 80% of its electricity from clean, carbon?free energy sources by 2035 by reducing costs and increasing performance of wind energy systems. Wind power currently provides more than 4% of the nation’s electricity, and more wind?powered electricity generation capacity was installed in the United States in 2012 than that of any other power source.

235

Computational Tools for Accelerating Carbon Capture Process Development  

SciTech Connect

The goals of the work reported are: to develop new computational tools and models to enable industry to more rapidly develop and deploy new advanced energy technologies; to demonstrate the capabilities of the CCSI Toolset on non-proprietary case studies; and to deploy the CCSI Toolset to industry. Challenges of simulating carbon capture (and other) processes include: dealing with multiple scales (particle, device, and whole process scales); integration across scales; verification, validation, and uncertainty; and decision support. The tools cover: risk analysis and decision making; validated, high-fidelity CFD; high-resolution filtered sub-models; process design and optimization tools; advanced process control and dynamics; process models; basic data sub-models; and cross-cutting integration tools.

Miller, David

2013-01-01T23:59:59.000Z

236

Development of a free vortex wake method code for offshore floating wind turbines  

Science Journals Connector (OSTI)

Offshore floating wind turbines (OFWTs) present unique aerodynamic analysis challenges. Motion–derived velocity perturbations in the wake necessitate higher–fidelity aerodynamic analysis methods than the ubiquitous momentum balance techniques currently in use. A more physically–sound approach is to model the wake generated by a wind turbine rotor as a freely convecting lattice, using the resultant inflow to estimate rotor loads, as it done with a free vortex wake method (FVM). The FVM code Wake Induced Dynamics Simulator (WInDS) was developed at the University of Massachusetts at Amherst to predict the aerodynamic loading and wake evolution of an OFWT to a higher degree of accuracy than is possible via momentum balance methods. A series of validation cases were conducted to provide some basis for applying \\{WInDS\\} to floating wind turbine cases, for which no aerodynamic experimental data is currently available. The results from these tests show that \\{WInDS\\} is able to accurately predict the aerodynamically–derived loads and wake structures generated by various fixed and rotary–wing cases, and may therefore be applied to more complex cases, like OFWTs, with a degree of confidence.

T. Sebastian; M.A. Lackner

2012-01-01T23:59:59.000Z

237

JEDI II: Jobs and Economic Development Impacts from Coal, Naural Gas and Wind Power (Poster)  

Wind Powering America (EERE)

JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS JEDI II: JOBS AND ECONOMIC DEVELOPMENT IMPACTS FROM COAL, NATURAL GAS, AND WIND POWER Marshall Goldberg MRG & Associates Nevada City, California Suzanne Tegen National Renewable Energy Laboratory Golden, Colorado The information contained in this poster is subject to a government license. * WINDPOWER 2006 * Pittsburgh, PA * June 4-7, 2006 * NREL/PO-500-39908 Michael Milligan, Consultant National Renewable Energy Laboratory Golden, Colorado How does JEDI II work? The user enters data specific to the new coal, gas, or wind plant: * Year of installation * Size of the project * Location * Cost ($/kW) * Any other site-specific information

238

"The cream on the pudding..." : An analysis of the Clean Development Mechanism in the Indian wind power sector.  

E-Print Network (OSTI)

??The thesis examines the effects of the Clean Development Mechanism (CDM), a flexible mechanism under the Kyoto Protocol, on the Indian wind power sector. Indian… (more)

Turkanovic, Zlata

2010-01-01T23:59:59.000Z

239

NREL Wind Turbine Blade Structural Testing of the Modular Wind Energy MW45 Blade: Cooperative Research and Development Final Report, CRADA Number CRD-09-354  

SciTech Connect

This CRADA was a purely funds-in CRADA with Modular Wind Energy (MWE). MWE had a need to perform full-scale testing of a 45-m wind turbine blade. NREL/NWTC provided the capabilities, facilities, and equipment to test this large-scale MWE wind turbine blade. Full-scale testing is required to demonstrate the ability of the wind turbine blade to withstand static design load cases and demonstrate the fatigue durability. Structural testing is also necessary to meet international blade testing certification requirements. Through this CRADA, MWE would obtain test results necessary for product development and certification, and NREL would benefit by working with an industrial partner to better understand the unique test requirements for wind turbine blades with advanced structural designs.

Hughes, S.

2012-05-01T23:59:59.000Z

240

Sandia National Laboratories: Scaled Wind Farm Technology Facility...  

NLE Websites -- All DOE Office Websites (Extended Search)

ClimateECEnergyScaled Wind Farm Technology Facility Baselining Project Accelerates Work Scaled Wind Farm Technology Facility Baselining Project Accelerates Work Increasing the...

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Fact Sheet: Multilateral Solar and Wind Working Group | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Multilateral Solar and Wind Working Group Multilateral Solar and Wind Working Group Fact Sheet: Multilateral Solar and Wind Working Group A fact sheet detailling the development of a Multilateral Solar and Wind Working Group to promote accelerated deployment of solar and wind technologies by implementing recommendations from the MEF Technology Action Plan on Solar and Wind Technologies that was released by the Major Economies Forum Global Partnership in December 2009. The Multilateral Solar and Wind Working Group will focus its initial work on developing a Global Atlas for Solar and Wind Energy and a corresponding Long-Term Strategy on Joint Capacity Building. Fact Sheet: Multilateral Solar and Wind Working Group More Documents & Publications Renewables-Fact-Sheet.pdf Clean Energy Ministerial Press Fact Sheer

242

An R&D Approach to the Development of Long Nb3Sn Accelerator Magnets Using the key and Bladder Technology  

SciTech Connect

Building accelerator quality magnets using Nb{sub 3}Sn for next generation facilities is the challenge of the next decade. The Superconducting Magnet Group at LBNL has developed an innovative support structure for high field magnets. The structure is based on an aluminum shell over iron yokes using hydraulic bladders and locking keys for applying the pre-stress. At cool down the pre-stress is almost doubled due to the differences of thermal contraction. This new structure allows precise control of the pre-stress with minimal spring back and conductor over-stress. At present the support structure has been used with prototype magnets up to one meter in length. In this paper, the design of a 4-meter long, 11 Tesla, wind-and-react racetrack dipole will be presented as a possible step toward the fabrication of long Nb{sub 3}Sn accelerator magnets.

Bartlett, S. E.; Caspi, S.; Dietderich, D. R.; Ferracin, P.; Gourlay, S. A.; Hannaford, C. R.; Hafalia, A. R.; Lietzke, A. F.; McInturff, A. D.; Mattafirri, S.; Sabbi, G.; Scanlan, R. M.

2004-08-01T23:59:59.000Z

243

U.S. Offshore Wind Manufacturing and Supply Chain Development  

Office of Environmental Management (EM)

transferability for entrants inexperienced with other offshore markets (e.g., oil and gas) poses risk to investment should consistent demand fail to develop. (1) See Table 2-3...

244

Wind power and Wind power and  

E-Print Network (OSTI)

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

245

Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the Unitedrural areas, where wind power plants are often constructedimpacts of actual wind power plants (e.g. ,Pedden, 2006;

Brown, Jason P.

2014-01-01T23:59:59.000Z

246

Ex post analysis of economic impacts from wind power development in U.S. counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the Unitedrural areas, where wind power plants are often constructedimpacts of actual wind power plants (e.g. ,Pedden, 2006;

Brown, Jason P

2014-01-01T23:59:59.000Z

247

Assessment of Ports for Offshore Wind Development in the United States  

SciTech Connect

As offshore wind energy develops in the United States, port facilities will become strategic hubs in the offshore wind farm supply chain because all plant and transport logistics must transit through these facilities. Therefore, these facilities must provide suitable infrastructure to meet the specific requirements of the offshore wind industry. As a result, it is crucial that federal and state policy-makers and port authorities take effective action to position ports in the offshore wind value chain to take best advantage of their economic potential. The U.S. Department of Energy tasked the independent consultancy GL Garrad Hassan (GL GH) with carrying out a review of the current capability of U.S. ports to support offshore wind project development and an assessment of the challenges and opportunities related to upgrading this capability to support the growth of as many as 54 gigawatts of offshore wind installed in U.S. waters by 2030. The GL GH report and the open-access web-based Ports Assessment Tool resulting from this study will aid decision-makers in making informed decisions regarding the choice of ports for specific offshore projects, and the types of investments that would be required to make individual port facilities suitable to serve offshore wind manufacturing, installation and/or operations. The offshore wind industry in the United States is still in its infancy and this study finds that additional port facilities capable of supporting offshore wind projects are needed to meet the anticipated project build-out by 2030; however, no significant barriers exist to prevent the development of such facilities. Furthermore, significant port capabilities are in place today with purpose-build port infrastructure currently being built. While there are currently no offshore wind farms operating in the United States, much of the infrastructure critical to the success of such projects does exist, albeit in the service of other industries. This conclusion is based on GL GH’s review of U.S. ports infrastructure and its readiness to support the development of proposed offshore wind projects in U.S. waters. Specific examples of facility costs and benefits are provided for five coastal regions (North Atlantic, South Atlantic, Gulf of Mexico, Great Lakes, and Pacific) around the country. GL GH began this study by identifying the logistical requirements of offshore wind ports to service offshore wind. This review was based on lessons learned through industry practice in Northern Europe. A web-based port readiness assessment tool was developed to allow a capability gap analysis to be conducted on existing port facilities based on the identified requirements. Cost models were added to the assessment tool, which allowed GL GH to estimate the total upgrade cost to a port over the period 2014-2030 based on a set of regional project build-out scenarios. Port fee information was gathered from each port allowing an estimate of the potential revenue to the port under this same set of scenarios. The comparison of these revenue and improvement cost figures provides an initial indication of the level of offshore wind port readiness. To facilitate a more in-depth infrastructure analysis, six ports from different geographic regions, with varied levels of interest and preparedness towards offshore wind, were evaluated by modeling a range of installation strategies and port use types to identify gaps in capability and potential opportunities for economic development. Commonalities, trends, and specific examples from these case studies are presented and provide a summary of the current state of offshore wind port readiness in the U.S. and also illustrate the direction some ports have chosen to take to prepare for offshore wind projects. For example, the land area required for wind turbine and foundation manufacturing is substantial, particularly due to the large size of offshore wind components. Also, the necessary bearing capacities of the quayside and storage area are typically greater for offshore wind components than for more conventiona

Elkinton, Chris [DNV GL] [DNV GL; Blatiak, Alicia; Ameen, Hafsa

2014-03-21T23:59:59.000Z

248

An accelerator based fusion product source for development of fusion-plasma diagnostics and education  

E-Print Network (OSTI)

been very instrumental in designing, optimizing, characterizing several types of fusionAn accelerator based fusion product source for development of fusion-plasma diagnostics and education Johan Frenje MIT - Plasma Science and Fusion Center Conference on The Big Impact of Small

249

DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY*  

E-Print Network (OSTI)

954 DEVELOPMENT OF A HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN, New York 11973 and K. McDonald Princeton [Jniversity Abstract An electron gun utilizing a radio). Here we report on the de;$n of the electron gun which will provide r.f. bunches of up to 10 electrons

McDonald, Kirk

250

Prospects for accelerated development of high performance structural materials Steven J. Zinkle a,  

E-Print Network (OSTI)

in the operational per- formance and radiation resistance of structural materials during the past few decadesProspects for accelerated development of high performance structural materials Steven J. Zinkle a for fission and fusion energy applica- tions, by linking material fabrication to thermo-mechanical properties

Ghoniem, Nasr M.

251

GPU accelerated cardiac electrophysiology  

E-Print Network (OSTI)

OF THE THESIS GPU Accelerated Cardiac Electrophysiology bySAN DIEGO GPU Accelerated Cardiac Electrophysiology A thesistoolkit for developing GPU accelerated programs called CUDA,

Lionetti, Fred

2010-01-01T23:59:59.000Z

252

Economic Development Impacts in Colorado from Four Vestas Manufacturing Facilities, Wind Powering America Fact Sheet Series  

SciTech Connect

This case study summarizes the economic development benefits to Colorado from four Vestas manufacturing facilities: one in Windsor, two in Brighton, and one in Pueblo (which is planned to be the world's largest tower-manufacturing facility). In the midst of an economic slowdown during which numerous U.S. manufacturers have closed their doors, wind energy component manufacturing is one U.S. industry that has experienced unprecedented growth during the past few years. As demand for wind power in the United States has increased and transportation costs have increased around the world, states have seen a significant increase in the number of manufacturers that produce wind turbine components in the United States. Vestas' Colorado operations will bring approximately $700 million in capital investment and nearly 2,500 jobs to the state.

Not Available

2009-04-01T23:59:59.000Z

253

Cumulative impact assessments and bird/wind farm interactions: Developing a conceptual framework  

SciTech Connect

The wind power industry has grown rapidly in the UK to meet EU targets of sourcing 20% of energy from renewable sources by 2020. Although wind power is a renewable energy source, there are environmental concerns over increasing numbers of wind farm proposals and associated cumulative impacts. Individually, a wind farm, or indeed any action, may have minor effects on the environment, but collectively these may be significant, potentially greater than the sum of the individual parts acting alone. EU and UK legislation requires a cumulative impact assessment (CIA) as part of Environmental Impact Assessments (EIA). However, in the absence of detailed guidance and definitions, such assessments within EIA are rarely adequate, restricting the acquisition of basic knowledge about the cumulative impacts of wind farms on bird populations. Here we propose a conceptual framework to promote transparency in CIA through the explicit definition of impacts, actions and scales within an assessment. Our framework requires improved legislative guidance on the actions to include in assessments, and advice on the appropriate baselines against which to assess impacts. Cumulative impacts are currently considered on restricted scales (spatial and temporal) relating to individual development EIAs. We propose that benefits would be gained from elevating CIA to a strategic level, as a component of spatially explicit planning.

Masden, Elizabeth A., E-mail: e.masden.1@research.gla.ac.u [Department of Ecology and Evolutionary Biology, University of Glasgow, Glasgow, G12 8QQ (United Kingdom) and Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Fox, Anthony D., E-mail: tfo@dmu.d [Department of Wildlife Ecology and Biodiversity, National Environmental Research Institute, University of Aarhus, Kalo, Grenavej 14, 8410 Ronde (Denmark); Furness, Robert W., E-mail: r.furness@bio.gla.ac.u [Department of Ecology and Evolutionary Biology, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Bullman, Rhys, E-mail: rhys.bullman@rpsgroup.co [Scottish Natural Heritage, The Beta Centre, Innovation Park, University of Stirling, Stirling FK9 4NF (United Kingdom); Haydon, Daniel T., E-mail: d.haydon@bio.gla.ac.u [Department of Ecology and Evolutionary Biology, University of Glasgow, Glasgow, G12 8QQ (United Kingdom); Boyd Orr Centre for Population and Ecosystem Health, University of Glasgow, Glasgow, G12 8QQ (United Kingdom)

2010-01-15T23:59:59.000Z

254

DEVELOPMENT OF WATER JET PLASMA MIRROR FOR STAGING OF LASER PLASMA ACCELERATORS  

E-Print Network (OSTI)

STAGING OF LASER PLASMA ACCELERATORS ? Dmitriy Panasenko,Staging Laser Plasma Accelerators (LPAs) is necessary in4]. INTRODUCTION Laser Plasma Accelerators (LPAs) have now

Panasenko, Dmitriy

2010-01-01T23:59:59.000Z

255

Development of high gradient laser wakefield accelerators towards nuclear detection applications at LBNL  

E-Print Network (OSTI)

laser wakefield accelerators towards nuclear detectionRecent laser wakefield accelerator experiments at LBNLscaling of laser driven accelerators to GeV energies. Stable

Geddes, Cameron GR

2010-01-01T23:59:59.000Z

256

Advanced Hydraulic Wind Energy  

Science Journals Connector (OSTI)

The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems ... Keywords: wind, tide, energy, power, hydraulic

Jack A. Jones; Allan Bruce; Adrienne S. Lam

2013-04-01T23:59:59.000Z

257

LET is a Critical Factor in Accelerating Development of Lymphoma in  

NLE Websites -- All DOE Office Websites (Extended Search)

is a Critical Factor in Accelerating Development of Lymphoma in is a Critical Factor in Accelerating Development of Lymphoma in Irradiated Bax Transgenic C57/B6 Mice James Jacobus University of Iowa Abstract A major risk during exposure to both low and high linear energy transfer (LET) radiation is the development of lymphoma. Both occupationally and therapeutically exposed individuals are at risk for lymphoma development induced by low LET radiation, while deeply penetrating high LET radiation is a significant concern for those planning and undertaking long duration missions in space where a high degree of uncertainty on actual risk exists due to the lack of epidemiologically-based datasets. The C57/B6 transgenic mice used in this study have been genetically engineered to possess either one (Bax 1) or two (Bax 38/1) extra copies of

258

Making european-style community wind power development work in the United States  

E-Print Network (OSTI)

and sells power to Xcel under the small wind tariff. Thecommunity wind projects are currently selling power to the

Bolinger, Mark A.

2004-01-01T23:59:59.000Z

259

The Offshore Wind Market Deployment: Forecasts For 2020, 2030 And Impacts On The European Supply Chain Development  

Science Journals Connector (OSTI)

Almost 4 GW of offshore wind power capacity will be installed in European waters at the end of 2011. The impressive growth of the sector during the last decades continues and by 2020, EWEA expects 40 GW of offshore wind capacity to be installed across Europe and 150 GW by 2030. However, the growth of the offshore wind sector will not happen without a strong supply chain underpinning its development. This paper presents the latest developments of the offshore wind power market and the objectives the supply chain needs to meet to assist the growth of the industry.

Arapogianni Athanasia; Genachte Anne-Bénédicte; Moccia Jacopo

2012-01-01T23:59:59.000Z

260

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Development of a multicusp H/sup -/ ion source for accelerator applications  

SciTech Connect

The development of a multicusp surface-production H/sup -/ ion source (Berkeley concept) designed specifically for accelerator use is described. The goal of this development effort has been to provide a suitable H/sup -/ ion source for the Proton Storage Ring now being constructed at LAMPF. The ion source that has been developed is now capable of long-term operation at 20 mA of H/sup -/ current at 10% duty factor and with normalized beam emittance of 0.13 cm-mrad (95% beam fraction). The development program will be described with particular emphasis on beam emittance measurements.

York, R.L.; Stevens, R.R. Jr.

1983-01-01T23:59:59.000Z

262

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

263

Stakeholder Engagement and Outreach: Wind Resource Maps and Anemometer Loan  

Wind Powering America (EERE)

Maps & Data Maps & Data Printable Version Bookmark and Share Utility-Scale Land-Based Maps Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Maps and Anemometer Loan Program Data The Stakeholder Engagement and Outreach initiative provides wind maps and validation to help states and regions build capacity to support and accelerate wind energy deployment. Read about the available wind maps for utility-, community-, and residential-scale wind development. A wind resource map of the United States showing land-based with offshore resources. The Energy Department, the National Renewable Energy Laboratory, and AWS Truepower provide the wind resource map that shows land-based with offshore resources. This map is the first to provide wind developers and policy

264

Salazar, Chu Announce Major Offshore Wind Initiatives | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Major Offshore Wind Initiatives Major Offshore Wind Initiatives Salazar, Chu Announce Major Offshore Wind Initiatives February 7, 2011 - 12:00am Addthis NORFOLK, VA - Unveiling a coordinated strategic plan to accelerate the development of offshore wind energy, Secretary of the Interior Ken Salazar and Secretary of Energy Steven Chu today announced major steps forward in support of offshore wind energy in the United States, including new funding opportunities for up to $50.5 million for projects that support offshore wind energy deployment and several high priority Wind Energy Areas in the mid-Atlantic that will spur rapid, responsible development of this abundant renewable resource. Deployment of clean, renewable offshore wind energy will help meet the President's goal of generating 80 percent of the Nation's electricity from

265

NREL: Wind Research - Wind Resource Assessment  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Assessment Wind Resource Assessment A map of the United States is color-coded to indicate the high winds at 80 meters. This map shows the wind resource at 80 meters for both land-based and offshore wind resources in the United States. Correct estimation of the energy available in the wind can make or break the economics of wind plant development. Wind mapping and validation techniques developed at the National Wind Technology Center (NWTC) along with collaborations with U.S. companies have produced high-resolution maps of the United States that provide wind plant developers with accurate estimates of the wind resource potential. State Wind Maps International Wind Resource Maps Dynamic Maps, GIS Data, and Analysis Tools Due to the existence of special use airspace (SUA) (i.e., military airspace

266

Wind Program Accomplishments | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

performance, lower costs, and accelerate deployment of wind technologies on land and offshore. Wind Accomplishments.pdf More Documents & Publications Securing Clean, Domestic,...

267

LET and gender are critical factors in accelerating development of lymphoma  

NLE Websites -- All DOE Office Websites (Extended Search)

and gender are critical factors in accelerating development of lymphoma and gender are critical factors in accelerating development of lymphoma in irradiated Bax transgenic C57Bl/6 mice James A. Jacobus The University of Iowa Abstract Humans are exposed to sparsely ionizing (low LET) radiation from environmental sources and radiotherapy as well as densely ionizing (high LET) radiation during radiotherapy and from cosmic radiations, particularly during space travel. To test the hypothesis that defects in mitochondrial metabolism leading to increased ROS levels could alter responses to radiation, lymphoma-prone C57Bl/6 mice over expressing the mitochondrial-acting Bax protein in thymocytes (which demonstrate increased steady-state levels of superoxide; FRBM 44: 1677-1686, 2008) were irradiated with both low and high LET radiations and the onset of tumor

268

Development of Simplified Models for Wind Turbine Blades with Application to NREL 5 MW Offshore Research Wind Turbine  

Science Journals Connector (OSTI)

Integration of complex models of wind turbine blades in aeroelastic simulations places an untenable demand on computational resources and, hence, means of speed-up become necessary. This paper considers the pr...

Majid Khorsand Vakilzadeh; Anders T. Johansson…

2014-01-01T23:59:59.000Z

269

Development of superconducting crossbar-H-mode cavities for proton and ion accelerators  

Science Journals Connector (OSTI)

The crossbar-H-mode (CH) structure is the first superconducting multicell drift tube cavity for the low and medium energy range operated in the H21 mode. Because of the large energy gain per cavity, which leads to high real estate gradients, it is an excellent candidate for the efficient acceleration in high power proton and ion accelerators with fixed velocity profile. A prototype cavity has been developed and tested successfully with a gradient of 7??MV/m. A few new superconducting CH cavities with improved geometries for different high power applications are under development at present. One cavity (f=325??MHz, ?=0.16, seven cells) is currently under construction and studied with respect to a possible upgrade option for the GSI UNILAC. Another cavity (f=217??MHz, ?=0.059, 15 cells) is designed for a cw operated energy variable heavy ion linac application. Furthermore, the EUROTRANS project (European research program for the transmutation of high level nuclear waste in an accelerator driven system, 600 MeV protons, 352 MHz) is one of many possible applications for this kind of superconducting rf cavity. In this context a layout of the 17 MeV EUROTRANS injector containing four superconducting CH cavities was proposed by the Institute for Applied Physics (IAP) Frankfurt. The status of the cavity development related to the EUROTRANS injector is presented.

F. Dziuba; M. Busch; M. Amberg; H. Podlech; C. Zhang; H. Klein; W. Barth; U. Ratzinger

2010-04-26T23:59:59.000Z

270

On the Heating of the Solar Corona and the Acceleration of the Low-Speed Solar Wind by Acoustic Waves Generated in Corona  

E-Print Network (OSTI)

We investigate possibilities of solar coronal heating by acoustic waves generated not at the photosphere but in the corona, aiming at heating in the mid- to low-latitude corona where the low-speed wind is expected to come from. Acoustic waves of period tau ~ 100s are triggered by chromospheric reconnection, one model of small scale magnetic reconnection events recently proposed by Sturrock. These waves having a finite amplitude eventually form shocks to shape sawtooth waves (N-waves), and directly heat the surrounding corona by dissipation of their wave energy. Outward propagation of the N-waves is treated based on the weak shock theory, so that the heating rate can be evaluated consistently with physical properties of the background coronal plasma without setting a dissipation length in an ad hoc manner. We construct coronal structures from the upper chromosphere to the outside of 1AU for various inputs of the acoustic waves having a range of energy flux of F_{w,0} = (1-20) times 10^5 erg cm^{-2} s^{-1} and a period of tau = 60-300s. The heating by the N-wave dissipation effectively works in the inner corona and we find that the waves of F_{w,0} >= 2 times 10^5 erg cm^{-2} s^{-1} and tau >= 60s could maintain peak coronal temperature, T_{max} > 10^6 K. The model could also reproduce the density profile observed in the streamer region. However, due to its short dissipation length, the location of T_{max} is closer to the surface than the observation, and the resultant flow velocity of the solar wind is lower than the observed profile of the low-speed wind. The cooperations with other heating and acceleration sources with the larger dissipation length are inevitable to reproduce the real solar corona.

Takeru Ken Suzuki

2002-06-14T23:59:59.000Z

271

The effect of broad-band Alfven-cyclotron waves spectra on the preferential heating and differential acceleration of He{sup ++} ions in the solar wind  

SciTech Connect

In anticipation of results from inner heliospheric missions such as the Solar Orbiter and the Solar Probe we present the results from 1.5D hybrid simulations to study the role of magnetic fluctuations for the heating and differential acceleration of He{sup ++} ions in the solar wind. We consider the effects of nonlinear Alfven-cyclotron waves at different frequency regimes. Monochromatic nonlinear Alfven-alpha-cyclotron waves are known to preferentially heat and accelerate He{sup ++} ions in collisionless low beta plasma. In this study we demonstrate that these effects are preserved when higherfrequency monochromatic and broad-band spectra of Alfven-proton-cyclotron waves are considered. Comparison between several nonlinear monochromatic waves shows that the ion temperatures, anisotropies and relative drift are quantitatively affected by the shift in frequency. Including a broad-band wave-spectrum results in a significant reduction of both the parallel and the perpendicular temperature components for the He{sup ++} ions, whereas the proton heating is barely influenced, with the parallel proton temperature only slightly enhanced. The differential streaming is strongly affected by the available wave power in the resonant daughter ion-acoustic waves. Therefore for the same initial wave energy, the relative drift is significantly reduced in the case of initial wave-spectra in comparison to the simulations with monochromatic waves.

Maneva, Y. G. [Department of Physics, Catholic University of America, Washington DC, 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Ofman, L. [Department of Physics, Catholic University of America, Washington, DC 20064 (United States) and Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Vinas, A. F. [Heliophysics Science Devision, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

2013-06-13T23:59:59.000Z

272

ABO Wind AG | Open Energy Information  

Open Energy Info (EERE)

AG Place: Hessen, Germany Zip: 65193 Sector: Bioenergy, Wind energy Product: German developer of wind and bioenergy generation assets. ABO Wind has no direct holding in any wind...

273

Heilongjiang Lishu Wind Power | Open Energy Information  

Open Energy Info (EERE)

Lishu Wind Power Jump to: navigation, search Name: Heilongjiang Lishu Wind Power Place: Heilongjiang Province, China Sector: Wind energy Product: China-based wind project developer...

274

Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties  

E-Print Network (OSTI)

use requirements of modern wind power plants in the United2002. Economic impacts of wind power in Kittitas County:Renewable energy: Wind power’s contribution to electric

Brown, Jason P.

2014-01-01T23:59:59.000Z

275

Wind turbine blade fatigue tests: lessons learned and application to SHM system development  

SciTech Connect

This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M. [Los Alamos National Laboratory; Jeong, Hyomi [Chonbuk National University, Korea; Jang, JaeKyung [Chonbuk National University, Korea; Park, Gyu Hae [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory

2012-06-28T23:59:59.000Z

276

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network (OSTI)

also concludes that the integration of 20% wind into U.S.and integration costs, Figure 4 provides a supply curve for wind

Wiser, Ryan H

2009-01-01T23:59:59.000Z

277

Wind Power and Ecotourism: : A Study of Sustainable Development on the Ground in Møre and Romsdal.  

E-Print Network (OSTI)

??This is a study of wind power and ecotourism in Møre and Romsdal. Wind power seen as renewable and “clean” energy production while ecotourism is… (more)

Barker, Annemarie

2009-01-01T23:59:59.000Z

278

Upcoming Funding Opportunity to Develop and Field Test Wind Energy Bat Impact Minimization Technologies  

Energy.gov (U.S. Department of Energy (DOE))

EERE's Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Energy Bat Impact Minimization Technologies and Field Testing Opportunities."

279

Economic Development Impacts of Wind Power: A Comparative Analysis of Impacts within the Western Governors' Association States; Preprint  

SciTech Connect

This paper uses NREL's newest Jobs and Economic Development Impacts (JEDI II) model to assess economic impacts from alternative power technologies, with a focus on wind energy, for a variety of states.

Tegen, S.; Milligan, M.; Goldberg, M.

2007-06-01T23:59:59.000Z

280

Effectiveness of GIS suitability mapping in predicting ecological impacts of proposed wind farm development on Aristazabal Island, BC  

Science Journals Connector (OSTI)

Like any industrial development, wind farms can have negative impacts on the ... environment. These can include impacts to airborne wildlife populations, loss of habitat for fish and wildlife, changes to riparian...

James C. Griffiths; William T. Dushenko

2011-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Model Development and Loads Analysis of a Wind Turbine on a Floating Offshore Tension Leg Platform  

SciTech Connect

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. Models in this code are of greater fidelity than most of the models that have been used to analyze floating turbines in the past--which have neglected important hydrodynamic and mooring system effects. The report provides a description of the development process of a TLP model, which is a modified version of a Massachusetts Institute of Technology design derived from a parametric linear frequency-domain optimization process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the International Electrotechnical Commission offshore wind turbine design standard was performed with the verified TLP model. Response statistics, extreme event tables, fatigue lifetimes, and selected time histories of design-driving extreme events are analyzed and presented. Loads for the wind turbine on the TLP are compared to those of an equivalent land-based turbine in terms of load ratios. Major instabilities for the TLP are identified and described.

Matha, D.; Fischer, T.; Kuhn, M.; Jonkman, J.

2010-02-01T23:59:59.000Z

282

Wind Pressure Resistance of Walls with Exterior Rigid Foam: Structural Performance Testing and Development of Design Specifications  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Pressure Resistance of Wind Pressure Resistance of Walls with Exterior Rigid Foam: Structural Performance Testing and Development of Design Specifications Building America Stakeholder Meeting February 2012 2 Gaps and Barriers  Wind pressure resistance of multi- layered walls with exterior rigid foam * Performance characteristics * Capacity * Limitations * Design method * Design specification 3 Market Implications  Walls with exterior rigid foam  2012 IECC - Climate Zones 3 and higher  Wall systems:  Claddings and their attachments  Interior finishes  Air sealing, air barriers  Cavity insulation 4 Research Tasks  Laboratory Testing of Wall Assemblies under dynamic wind pressures at the NAHB Research Center  NAHB/DOE/ACC  Laboratory Testing of a One-story House in IBHS Wind Tunnel Facility

283

New England Wind Forum: Large Wind  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Large Wind When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133.

284

How can accelerated development of bioenergy contribute to the future UK energy mix? Insights from a MARKAL modelling exercise  

Science Journals Connector (OSTI)

This work explores the potential contribution of bioenergy technologies to 60% and 80% carbon reductions in the UK energy system by 2050, by outlining the potential for accelerated technological development of...

Donna Clarke; Sophie Jablonski; Brighid Moran…

2009-07-01T23:59:59.000Z

285

Using Uncertainty Analysis to Guide the Development of Accelerated Stress Tests (Presentation)  

SciTech Connect

Extrapolation of accelerated testing to the long-term results expected in the field has uncertainty associated with the acceleration factors and the range of possible stresses in the field. When multiple stresses (such as temperature and humidity) can be used to increase the acceleration, the uncertainty may be reduced according to which stress factors are used to accelerate the degradation.

Kempe, M.

2014-03-01T23:59:59.000Z

286

WINDExchange: Wind Energy Ordinances  

Wind Powering America (EERE)

Wind Energy Ordinances Federal, state, and local regulations govern many aspects of wind energy development. The exact nature of the project and its location will largely drive the...

287

WINDExchange: Siting Wind Turbines  

Wind Powering America (EERE)

Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by...

288

Environmental Impacts of Wind Power Development on the Population Biology of Greater Prairie-Chickens  

SciTech Connect

Executive Summary 1. We investigated the impacts of wind power development on the demography, movements, and population genetics of Greater Prairie-Chickens (Tympanuchus cupido) at three sites in northcentral and eastern Kansas for a 7-year period. Only 1 of 3 sites was developed for wind power, the 201MW Meridan Way Wind Power Facility at the Smoky Hills site in northcentral Kansas. Our project report is based on population data for prairie chickens collected during a 2-year preconstruction period (2007-2008), a 3-year postconstruction period (2009-2011) and one final year of lek surveys (2012). Where relevant, we present preconstruction data from our field studies at reference sites in the northern Flint Hills (2007-2009) and southern Flint Hills (2006-2008). 2. We addressed seven potential impacts of wind power development on prairie chickens: lek attendance, mating behavior, use of breeding habitat, fecundity rates, natal dispersal, survival rates, and population numbers. Our analyses of pre- and postconstruction impacts are based on an analysis of covariance design where we modeled population performance as a function of treatment period, distance to eventual or actual site of the nearest wind turbine, and the interaction of these factors. Our demographic and movement data from the 6-year study period at the Smoky Hills site included 23 lek sites, 251 radio-marked females monitored for 287 bird-years, and 264 nesting attempts. Our genetic data were based on genotypes of 1,760 females, males and chicks that were screened with a set of 27 microsatellite markers that were optimized in the lab. 3. In our analyses of lek attendance, the annual probability of lek persistence during the preconstruction period was ~0.9. During the postconstruction period, distance to nearest turbine did not have a significant effect on the probability of lek persistence. However, the probability of lek persistence increased from 0.69 at 0 m to 0.89 at 30 km from turbines, and most abandoned lek sites were located <5 km from turbines. Probability of lek persistence was significantly related to habitat and number of males. Leks had a higher probability of persistence in grasslands than agricultural fields, and increased from ~0.2 for leks of 5 males, to >0.9 for leks of 10 or more males. Large leks in grasslands should be a higher priority for conservation. Overall, wind power development had a weak effect on the annual probability of lek persistence. 3. We used molecular methods to investigate the mating behavior of prairie chickens. The prevailing view for lek-mating grouse is that females mate once to fertilize the clutch and that conspecific nest parasitism is rare. We found evidence that females mate multiple times to fertilize the clutch (8-18% of broods, 4-38% of chicks) and will parasitize nests of other females during egg-laying (~17% of nests). Variable rates of parentage were highest in the fragmented landscapes at the Smoky Hills field site, and were lower at the Flint Hills field site. Comparisons of the pre- and postconstruction periods showed that wind energy development did not affect the mating behaviors of prairie chickens. 4. We examined use of breeding habitats by radio-marked females and conducted separate analyses for nest site selection, and movements of females not attending nests or broods. The landscape was a mix of native prairie and agricultural habitats, and nest site selection was not random because females preferred to nest in grasslands. Nests tended to be closer to turbines during the postconstruction period and there was no evidence of behavioral avoidance of turbines by females during nest site selection. Movements of females not attending nests or broods showed that females crossed the site of the wind power development at higher rates during the preconstruction period (20%) than the postconstruction period (11%), and that movements away from turbines were more frequent during the postconstruction period. Thus, wind power development appears to affect movements in breeding habitats but not nest site s

Sandercock, Brett K. [Kansas State University

2013-05-22T23:59:59.000Z

289

Accelerate Oklahoma (Oklahoma) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Accelerate Oklahoma (Oklahoma) Accelerate Oklahoma (Oklahoma) Accelerate Oklahoma (Oklahoma) < Back Eligibility Agricultural Commercial Construction Developer Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Low-Income Residential Multi-Family Residential Retail Supplier Systems Integrator Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Oklahoma Program Type Equity Investment Provider i2E Three new funds that each offer equity and growth investment capital for state-based entrepreneurs, depending on the lifecycle stage of their business, were appropriated through the Oklahoma Commerce Department by the U.S. Treasury Department and are managed by i2E.

290

Wind pump systems  

Science Journals Connector (OSTI)

The application of wind mills for water pumping is of lesser importance ... it is useful to discuss this type of wind energy application in a wind energy book targeted at development and planning...

Prof. Dr.-Ing. Robert Gasch; Prof. Dr.-Ing. Jochen Twele

2012-01-01T23:59:59.000Z

291

Solar wind energy transfer regions inside the dayside magnetopause: Accelerated heavy ions as tracers for MHD-processes in the dayside boundary layer  

Science Journals Connector (OSTI)

Plasma and magnetic field data from PROGNOZ-7 have revealed that solar wind (magnetosheath) plasma elements may penetrate the dayside magnetopause surface and form high density regions with enhanced cross-field flow in the boundary layer. The injected magnetosheath plasma is observed to have an excess drift velocity as compared to the local boundary layer plasma, comprising both “cold” plasma of terrestrial origin and a hot ring current component. A differential drift between two plasma components can be understood in terms of a momentum transfer process driven by an injected magnetosheath plasma population. The braking action of the injected plasma may be described as a dynamo process where particle kinetic energy is transferred into electromagnetic energy (electric field). The generated electric field will force the local plasma to ?×B-drift, and the dynamo region therefore also constitutes an accelerator region for the local plasma. Whenever energy is dissipated from the energy transfer process (a net current is flowing through a load), there will also be a difference between the induced electric field and the v×B term of the generator plasma. Thus, the local plasma will drift more slowly than the injected generator plasma. We will present observations showing that a relation between the momentum transferred, the injected plasma and the momentum taken up by the local plasma exists. For instance, if the local plasma density is sufficiently high, the differential drift velocity of the injected and local plasma will be small. A large fraction of the excess momentum is then transferred to the local plasma. Conversely, a low local plasma density results in a high velocity difference and a low fraction of local momentum transfer. In our study cases the “cold” plasma component was frequently found to dominate the local magnetospheric plasma density in the boundary layer. Accordingly, this component may have the largest influence on the local momentum transfer process. We will demonstrate that this also seems to be the case. Moreover we show that the accelerated “cold” plasma component may be used as a tracer element reflecting both the momentum and energy transfer and the penetration process in the dayside boundary layer. The high He+ percentage of the accelerated “cold” plasma indicates a plasmaspheric origin. Considering the quite high densities of energetic He+ found in the boundary layer, the overall low abundance of He+ (as compared to e.g. O+) found in the plasma sheet and outer ring current evidently reduces the importance of the dayside boundary layer as a plasma source in the large scale magnetospheric circulation system.

R. Lundin; E.M. Dubinin

1985-01-01T23:59:59.000Z

292

Wind versus coal: Comparing the local economic impacts of energy resource development in Appalachia  

Science Journals Connector (OSTI)

Two energy development scenarios were compared for the Coal River Mountain in Raleigh County, West Virginia: (1) mountaintop mining (MTM) of coal, and (2) wind energy plus underground mining of coal. Economic impact computations over the life of each energy development scenario were made on a county basis for output of goods and services, the number of jobs created, and local earnings. Externality costs were assigned monetary values for coal mining and subtracted from earnings. Premature mortality within the general population due to additional coal mining accounted for 96% of these external cost computations. The results showed that economic output over the life of each scenario was twice as high for MTM mining as wind energy plus underground coal mining. Over the short term, employment and earnings were higher for MTM mining, but towards the end of the scenario, cumulative employment and earnings became higher under scenario (2). When local externality costs were subtracted from local earnings, MTM coal production had an overall negative net social impact on the citizens of Raleigh County. The external costs of MTM coal production provide an explanation of the existence of a “resource curse” and the conflicting results of output versus income provide insights into why coal-producing counties are underdeveloped.

Alan R. Collins; Evan Hansen; Michael Hendryx

2012-01-01T23:59:59.000Z

293

Gamma-Ray and Hard X-Ray Emission from Pulsar-Aided Supernovae as a Probe of Particle Acceleration in Embryonic Pulsar Wind Nebulae  

E-Print Network (OSTI)

It has been suggested that some classes of luminous supernovae (SNe) and gamma-ray bursts (GRBs) are driven by newborn magnetars. Fast-rotating proto-neutron stars have also been of interest as potential sources of gravitational waves (GWs). We show that for a range of rotation periods and magnetic fields, hard X rays and GeV gamma rays provide us with a promising probe of pulsar-aided SNe. It is observationally known that young pulsar wind nebulae (PWNe) in the Milky Way are very efficient lepton accelerators. We argue that, if embryonic PWNe satisfy similar conditions at early stages of SNe (in ~1-10 months after the explosion), external inverse-Compton emission via upscatterings of SN photons is naturally expected in the GeV range as well as broadband synchrotron emission. To fully take into account the Klein-Nishina effect and two-photon annihilation process that are important at early times, we perform detailed calculations including electromagnetic cascades. Our results suggest that hard X-ray telescope...

Murase, Kohta; Kiuchi, Kenta; Bartos, Imre

2014-01-01T23:59:59.000Z

294

A quantitative method to analyze the quality of EIA information in wind energy development and avian/bat assessments  

Science Journals Connector (OSTI)

The environmental impact assessment (EIA) has been a tool for decision makers since the enactment of the National Environmental Policy Act (NEPA). Since that time, few analyses have been performed to verify the quality of information and content within EIAs. High quality information within assessments is vital in order for decision makers, stake holders, and the public to understand the potential impact of proposed actions on the ecosystem and wildlife species. Low quality information has been a major cause for litigation and economic loss. Since 1999, wind energy development has seen an exponential growth with unknown levels of impact on wildlife species, in particular bird and bat species. The purpose of this article is to: (1) develop, validate, and apply a quantitative index to review avian/bat assessment quality for wind energy EIAs; and (2) assess the trends and status of avian/bat assessment quality in a sample of wind energy EIAs. This research presents the development and testing of the Avian and Bat Assessment Quality Index (ABAQI), a new approach to quantify information quality of ecological assessments within wind energy development \\{EIAs\\} in relation to avian and bat species based on review areas and factors derived from 23 state wind/wildlife siting guidance documents. The ABAQI was tested through a review of 49 publicly available EIA documents and validated by identifying high variation in avian and bat assessments quality for wind energy developments. Of all the reviewed EIAs, 66% failed to provide high levels of preconstruction avian and bat survey information, compared to recommended factors from state guidelines. This suggests the need for greater consistency from recommended guidelines by state, and mandatory compliance by EIA preparers to avoid possible habitat and species loss, wind energy development shut down, and future lawsuits.

Tony Chang; Erik Nielsen; William Auberle; Frederic I. Solop

2013-01-01T23:59:59.000Z

295

The Wind at Our Backs  

Science Journals Connector (OSTI)

...uncertainty that chills U.S. wind farm development. He...serious challenge of siting wind turbines in the United States...a community college wind training program, and...and the nation's first offshore wind project near Nantucket...

Dan Reicher

2012-05-11T23:59:59.000Z

296

New England Wind Forum: New England Wind Resources  

Wind Powering America (EERE)

New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resources Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Resources Go to the Vermont wind resource map. Go to the New Hampshire wind resource map. Go to the Maine wind resource map. Go to the Massachusetts wind resource map. Go to the Connecticut wind resource map. Go to the Rhode Island wind resource map. New England Wind Resource Maps Wind resources maps of Connecticut, Massachusetts, Maine, New Hampshire, Rhode Island, and Vermont.

297

EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EA-1792: University of Maine's Deepwater Offshore Floating Wind EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine EA-1792: University of Maine's Deepwater Offshore Floating Wind Turbine Testing and Demonstration Project, Gulf of Maine Summary This EA evaluates the environmental impacts of a proposal to support research on floating offshore wind turbine platforms. This project would support the mission, vision, and goals of DOE's Office of Energy Efficiency and Renewable Energy Wind and Water Power Program to improve performance, lower costs, and accelerate deployment of innovative wind power technologies. Development of offshore wind energy technologies would help the nation reduce its greenhouse gas emissions, diversify its energy supply, provide cost-competitive electricity to key coastal regions, and

298

Low Wind Speed Turbine Development Project Report: November 4, 2002 - December 31, 2006  

SciTech Connect

This report summarizes work conducted by Clipper Windpower under the DOE Low Wind Speed Turbine project. The objective of this project was to produce a wind turbine that can lower the cost of energy.

Mikhail, A.

2009-01-01T23:59:59.000Z

299

Managing Offshore Wind Energy Assets: On the Systematic Development of an Integrated Architecture  

Science Journals Connector (OSTI)

Offshore wind turbines are being used in a number ... and convert it to electricity. Commercial-scale offshore wind facilities are currently in operation in shallow ... outer continental shelf. However, this shif...

Idriss El-Thalji; Jayantha P. Liyanage

2012-01-01T23:59:59.000Z

300

Wind energy: Program overview, FY 1992  

SciTech Connect

The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

Not Available

1993-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

E-Print Network 3.0 - accelerator technology developments Sample...  

NLE Websites -- All DOE Office Websites (Extended Search)

Technology Through Flexibility: The Case of a Demonstration Accelerator-Driven Subcritical Reactor... technology facing significant technological uncertainty, the...

302

NREL Identifies Investments for Wind Turbine Drivetrain Technologies (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

examines current U.S. manufacturing and supply examines current U.S. manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. Innovative technologies are helping boost the capacity and operating reliability of conventional wind turbine drivetrains. With the proper manufacturing and supply chain capabilities in place, the United States can better develop and deploy these advanced technologies- increasing the competitiveness of the U.S. wind industry and reducing the levelized cost of energy (LCOE). National Renewable Energy Laboratory (NREL) researchers conducted a study for the U.S. Department of Energy to assess the state of the nation's manufacturing and supply chain capabilities for advanced wind turbine drivetrain technologies. The findings helped determine the

303

NREL: Wind Research - Small Wind Turbine Webinars  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Webinars Small Wind Turbine Webinars Here you will find webinars about small wind turbines that NREL hosted. Introducing WindLease(tm): Making Wind Energy Affordable NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version.) Date: August 1, 2013 Run Time: 40 minutes Joe Hess, VP of Business Development at United Wind, described United Wind's WindQuote and WindLease Program and explained the process from the dealer's and consumer's perspective. Texas Renewable Energy Industries Association NREL and the American Solar Energy Society (ASES) Wind Division co-hosted this webinar. (Text Version). Date: March 7, 2013 Run Time: 1 hour Russel Smith, Texas Renewable Energy Industries Association executive director and co-founder, provided an overview of the trade association

304

New England Wind Forum: Small Wind  

Wind Powering America (EERE)

Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia Wind for Schools Project Funding Case Studies: Thomas Harrison Middle School, Virginia August 26, 2013 Workshop Explores Information's Role in Wind Project Siting: A Wind Powering America Success Story November 19, 2012 More News Subscribe to News Updates Events Renewable Energy Market Update Webinar January 29, 2014 Strategic Energy Planning: Webinar February 26, 2014 Introduction to Wind Systems March 10, 2014 More Events Publications 2012 Market Report on Wind Technologies in Distributed Applications August 12, 2013 More Publications Features Sign up for the New England Wind Forum Newsletter. New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England

305

Wind for Schools (Poster)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

Baring-Gould, I.

2010-05-01T23:59:59.000Z

306

An accelerated remedial strategy developed for J-Field, Aberdeen Proving Ground, Maryland  

SciTech Connect

For an installation with many disposal sites and multiple contaminant sources, successful remediation at minimum cost can be complicated by insufficient geologic and hydrogeologic information, incomplete records of historical disposal activities, and uncertainty about the effectiveness of different investigative methods. To reduce these uncertainties and to increase the probability of successful remediation at minimum cost, a ``Phased and pilot`` accelerated remedial strategy has been developed for the J-Field area of Aberdeen Proving Ground, Maryland. The strategy includes four phases. First, the most contaminated site is selected as a pilot for detailed investigation. Second, the most contaminated areas within the pilot site are chosen as a pilot source area for interim action study, and a remedial action is developed to remove the primary contaminant sources. The subsequent sitewide investigation uses the effective tools developed in the first phase. Third, a cleanup operation is initiated in the pilot source area, while a sitewide feasibility study is developed by taking advantage of lessons learned in the interim action. Fourth, a sitewide cleanup operation proceeds.

Yuen, C.R.; Martino, L.; Patton, T. [Argonne National Lab., IL (United States); Wrobel, J. [US Army Directorate of Safety, Health, and Environment, Aberdeen Proving Ground, MD (United States)

1995-06-01T23:59:59.000Z

307

Wind Energy Markets, 2. edition  

SciTech Connect

The report provides an overview of the global market for wind energy, including a concise look at wind energy development in key markets including installations, government incentives, and market trends. Topics covered include: an overview of wind energy including the history of wind energy production and the current market for wind energy; key business drivers of the wind energy market; barriers to the growth of wind energy; key wind energy trends and recent developments; the economics of wind energy, including cost, revenue, and government subsidy components; regional and national analyses of major wind energy markets; and, profiles of key wind turbine manufacturers.

NONE

2007-11-15T23:59:59.000Z

308

Wind Farm Monitoring at Lake Benton II Wind Power Project - Equipment Only: Cooperative Research and Development Final Report, CRADA Number CRD-08-275  

SciTech Connect

Long-term, high-resolution wind turbine and wind power plant output data are important to assess the impact of wind power on grid operations and to derive meaningful statistics for better understanding of the variability nature of wind power. These data are used for many research and analyses activities consistent with the Wind Program mission: Establish a database of long-term wind power similar to other long-term renewable energy resource databases (e.g. solar irradiance and hydrology); produce meaningful statistics about long-term variation of wind power, spatial and temporal diversity of wind power, and the correlation of wind power, other renewable energy resources, and utility load; provide high quality, realistic wind power output data for system operations impact studies and wind plant and forecasting model validation.

Gevorgian, V.

2014-06-01T23:59:59.000Z

309

Final Scientific Report - Wind Powering America State Outreach Project  

SciTech Connect

The goal of the Wind Powering America State Outreach Project was to facilitate the adoption of effective state legislation, policy, finance programs, and siting best practices to accelerate public acceptance and development of wind energy. This was accomplished by Clean Energy States Alliance (CESA) through provision of informational tools including reports and webinars as well as the provision of technical assistance to state leaders on wind siting, policy, and finance best practices, identification of strategic federal-state partnership activities for both onshore and offshore wind, and participation in regional wind development collaboratives. The Final Scientific Report - Wind Powering America State Outreach Project provides a summary of the objectives, activities, and outcomes of this project as accomplished by CESA over the period 12/1/2009 - 11/30/2011.

Sinclair, Mark; Margolis, Anne

2012-02-01T23:59:59.000Z

310

Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties  

NLE Websites -- All DOE Office Websites (Extended Search)

LBNL# 5793E LBNL# 5793E Ex Post Analysis of Economic Impacts from Wind Power Development in U.S. Counties Jason P. Brown 1 USDA, Economic Research Service 355 E St. SW, Washington, D.C. 20024 jbrown@ers.usda.gov John Pender USDA, Economic Research Service 355 E St. SW, Washington, D.C. 20024 jpender@ers.usda.gov Ryan Wiser Lawrence Berkeley National Laboratory 1 Cyclotron Road, Berkeley, CA 94720 RHWiser@lbl.gov Eric Lantz National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, CO 80401 eric.lantz@nrel.gov Ben Hoen Lawrence Berkeley National Laboratory 20 Sawmill Road, Milan, NY 1257 BHoen@lbl.gov Pre-print of article submitted for publication to Energy Economics. Download from: http://www.sciencedirect.com/science/article/pii/S0140988312001466

311

Department of Energy Awards $43 Million to Spur Offshore Wind Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards $43 Million to Spur Offshore Wind Department of Energy Awards $43 Million to Spur Offshore Wind Energy Department of Energy Awards $43 Million to Spur Offshore Wind Energy September 8, 2011 - 9:46am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $43 million over the next five years to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The 41 projects across 20 states will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The awards announced today will help the U.S. to compete in the global wind energy manufacturing sector, promote economic development and job creation, and

312

Department of Energy Awards $43 Million to Spur Offshore Wind Energy |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department of Energy Awards $43 Million to Spur Offshore Wind Department of Energy Awards $43 Million to Spur Offshore Wind Energy Department of Energy Awards $43 Million to Spur Offshore Wind Energy September 8, 2011 - 9:46am Addthis Washington, D.C. - U.S. Energy Secretary Steven Chu today announced $43 million over the next five years to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The 41 projects across 20 states will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The awards announced today will help the U.S. to compete in the global wind energy manufacturing sector, promote economic development and job creation, and

313

A current and future state of art development of hybrid energy system using wind and PV-solar: A review  

Science Journals Connector (OSTI)

The wind and solar energy are omnipresent, freely available, and environmental friendly. The wind energy systems may not be technically viable at all sites because of low wind speeds and being more unpredictable than solar energy. The combined utilization of these renewable energy sources are therefore becoming increasingly attractive and are being widely used as alternative of oil-produced energy. Economic aspects of these renewable energy technologies are sufficiently promising to include them for rising power generation capability in developing countries. A renewable hybrid energy system consists of two or more energy sources, a power conditioning equipment, a controller and an optional energy storage system. These hybrid energy systems are becoming popular in remote area power generation applications due to advancements in renewable energy technologies and substantial rise in prices of petroleum products. Research and development efforts in solar, wind, and other renewable energy technologies are required to continue for, improving their performance, establishing techniques for accurately predicting their output and reliably integrating them with other conventional generating sources. The aim of this paper is to review the current state of the design, operation and control requirement of the stand-alone PV solar–wind hybrid energy systems with conventional backup source i.e. diesel or grid. This Paper also highlights the future developments, which have the potential to increase the economic attractiveness of such systems and their acceptance by the user.

Pragya Nema; R.K. Nema; Saroj Rangnekar

2009-01-01T23:59:59.000Z

314

Community-Owned wind power development: The challenge of applying the European model in the United States, and how states are addressing that challenge  

E-Print Network (OSTI)

ea/EMS/cases/Minnesota.pdf Xcel Energy Small Distributedcorpcomm/Me_Section_10.pdf Xcel Renewable Development Fundin Minnesota, including: 2 • Xcel Energy’s wind mandate, •

Bolinger, Mark

2004-01-01T23:59:59.000Z

315

Predictive tools for coolant development: An accelerated aging procedure for modeling fleet test results  

SciTech Connect

The objective of this study was to develop an accelerated aging test (AAT) for conventional and extended life coolants that will predict coolant composition and performance after 100,000 or more miles (160,930 km) of use. The procedure was developed by examining the effects of a series of cooling system metals, their surface area and the amount of each used, test temperature, glycol concentration, and test time on important chemical and physical properties of the test coolant. The chemical and physical properties evaluated included the accumulation of glycol degradation products, the depletion rate of active inhibitors, the pH drop, and the presence of corrosion products in solution. In addition, the test coolant performance was evaluated in ASTM D 1384 and D 4340. The effects of variation in the test procedure on the coolant were compared to actual coolant from extended duration fleet tests. The test procedure selected gave test coolant with composition, physical properties, and performance that compared favorably with the fleet test fluid. The test performance was validated by comparing the properties of a series fluids after this test to corresponding fluids removed from vehicles after extended use. An example of fluid development using this procedure is presented. Further areas of investigation are suggested. It is recommended that the general test procedure be considered for adoption as an ASTM test method for evaluation of the extended performance of fluids in automotive and light duty cooling systems.

Gershun, A.V.; Mercer, W.C. [Prestone Products Corp., Danbury, CT (United States)

1999-08-01T23:59:59.000Z

316

Stakeholder Engagement and Outreach: Offshore 90-Meter Wind Maps and Wind  

Wind Powering America (EERE)

Offshore 90-Meter Wind Maps and Wind Resource Potential Offshore 90-Meter Wind Maps and Wind Resource Potential The Stakeholder Engagement and Outreach initiative provides 90-meter (m) height, high-resolution wind maps and estimates of the total offshore wind potential that would be possible from developing the available offshore areas. The offshore wind resource maps can be used as a guide to identify regions for commercial wind development. A map of the United States showing offshore wind resource. Washington offshore wind map. Oregon offshore wind map. California offshore wind map. Texas offshore wind map. Minnesota offshore wind map. Lousiana offshore wind map. Wisconsin offshore wind map. Michigan offshore wind map. Michigan offshore wind map. Illinois offshore wind map. Indiana offshore wind map. Ohio offshore wind map. Georgia offshore wind map. South Carolina offshore wind map. North Carolina offshore wind map. Virginia offshore wind map. Maryland offshore wind map. Pennsylvania offshore wind map. Delaware offshore wind map. New Jersey offshore wind map. New York offshore wind map. Maine offshore wind map. Massachusetts offshore wind map. Rhode Island offshore wind map. Connecticut offshore wind map. Hawaii offshore wind map. Delaware offshore wind map. New Hampshire offshore wind map.

317

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

NLE Websites -- All DOE Office Websites (Extended Search)

6 6 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 U.S. Wind Power Capacity Increased by 27% in 2006 . . . . . . . . . . . . . . . .4 The United States Leads the World in Annual Capacity Growth . . . . . . . .4 Texas, Washington, and California Lead the U.S. in Annual Capacity Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with Siemens Gaining Market Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Average Turbine Size Continues to Increase . . . . . . . . . . . . . . . . . . . . . . .7 Developer Consolidation Accelerates . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Innovation and Competition in Non-Utility Wind Financing Persists . . . .9 Utility Interest in Wind Asset Ownership Strengthens; Community Wind Grows Modestly . . . . . . . . . . . .

318

Development of High-Gradient Dielectric Laser-Driven Particle Accelerator Structures  

SciTech Connect

The thrust of Stanford's program is to conduct research on high-gradient dielectric accelerator structures driven with high repetition-rate, tabletop infrared lasers. The close collaboration between Stanford and SLAC (Stanford Linear Accelerator Center) is critical to the success of this project, because it provides a unique environment where prototype dielectric accelerator structures can be rapidly fabricated and tested with a relativistic electron beam.

Byer, Robert L.

2013-11-07T23:59:59.000Z

319

Wind Energy R&D Collaboration between NIRE and NREL: Cooperative Research and Development Final Report, CRADA Number CRD-11-437  

SciTech Connect

This work includes, but is not limited to, research and development of joint technology development and certification efforts in the wind power sector; providing access to commercial wind farm and federal facilities to enhance R&D; identification of workforce development best practices. This work will be done at Contractor and Participant facilities.

Moriarty, P.

2015-01-01T23:59:59.000Z

320

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume I. Executive summary  

SciTech Connect

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program, a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch, stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Development of a 2-kilowatt high-reliability wind machine. Phase I. Design and analysis. Volume II. Technical report  

SciTech Connect

A high reliability wind machine rated for 2 kW at 9 m/s has been designed to be cost-effective for remote site use. To meet or exceed environmental conditions as specified in Contract PF64410F, the resulting design defines a rugged, relatively simple wind machine. Rigorous fatigue analysis for structural components and development of redundant systems for electrical components led to an expected mean time between failures of 12.35 years. Approximately one year into the research and development program a completed design meeting contract stipulations is being submitted to the contract buyer. The design is for a horizontal axis, down-wind machine with two wooden blades spanning 5 meters diameter. Positive rotor speed control is accomplished through a centrifugally governed variable pitch stalling rotor. Design merits have been confirmed through dynamic truck testing.

Drake, W.; Clews, H.; Cordes, J.; Johnson, B.; Murphy, P.

1980-01-01T23:59:59.000Z

322

NREL Develops New Controls that Proactively Adapt to the Wind (Fact Sheet), Innovation: The Spectrum of Clean Energy Innovation, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Office Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. NREL Develops New Controls that Proactively Adapt to the Wind Until now, wind turbine controls that reduce the impacts of wind gusts and turbulence were always reactive-responding to the wind rather than anticipating it. But with today's laser-based sensors and new controls developed by researchers at the National Renewable Energy Laboratory (NREL) and their industry partners, the wind speed can be measured ahead of the turbine, thereby improving performance, reducing structural loads, and increasing energy capture. The world's first field tests of these controls are currently underway at the National Wind Technology Center (NWTC) at NREL. As utility-scale wind turbines become more sophisticated, their components become bigger,

323

Design And Development Of Small Wind Energy Systems Is A Soft Path For Power Generation And Environment Conservation For Off Grid Applications In India.  

E-Print Network (OSTI)

ABSTRACT: This paper describes the design a new evolving electrical power generation system with small wind turbine. Which offer solutions to meet local energy requirements of a specific location. Energy conservation decreases energy requirements, promotes energy efficiency and facilitates development of renewable. Wind energy dominates as an immediate viable cost effective option which promotes energy conservation and avoids equivalent utilization of fossil fuels and avoids million ton of green house gas emission causing ozone depletion and other environmental impacts like global warming. This paper gives an over view about the current status and a possible development for small wind turbines for off – grid applications in India. KEY WORDS: wind energy, wind power generation system, wind sensor, Energy resources, and wind

unknown authors

324

Development and Validation of an Aeroelastic Model of a Small Furling Wind Turbine: Preprint  

SciTech Connect

Small wind turbines often use some form of furling (yawing and/or tilting out of the wind) to protect against excessive power generation and rotor speeds in high winds.The verification study demonstrated the correct implementation of FAST's furling dynamics. During validation, the model tends to predict mean rotor speeds higher than measured in spite of the fact that the mean furl motion and rotor thrust are predicted quite accurately. This work has culminated with an enhanced version of FAST that should prove to be a valuable asset to designers of small wind turbines.

Jonkman, J. M.; Hansen, A. C.

2004-12-01T23:59:59.000Z

325

Development of a Control and Monitoring Platform Based on Fuzzy Logic for Wind Turbine Gearboxes .  

E-Print Network (OSTI)

??It is preferable that control and bearing condition monitoring are integrated, as the condition of the system should influence control actions. As wind turbines mainly… (more)

Chen, Wei

2012-01-01T23:59:59.000Z

326

Session: Why avian impacts are a concern in wind energy development  

SciTech Connect

This lunchtime session at the Wind Energy and Birds/Bats workshop consisted of one presentation followed by a discussion/question and answer period. The session provided a more detailed overview of the environmental community's perspective on wind power's impacts on birds. The presentation described how wind projects impact birds, detailing the species distribution of collisions at various sites around the US and discussing problems such as avoidance, habitat disturbance, and cumulative effects on populations. The presentation, ''Wind Turbines and Birds'', was given by Gerald Winegrad from the American Bird Conservancy.

Winegrad, Gerald

2004-09-01T23:59:59.000Z

327

Four essays on offshore wind power potential, development, regulatory framework, and integration.  

E-Print Network (OSTI)

?? Offshore wind power is an energy resource whose potential in the US has been recognized only recently. There is now growing interest among the… (more)

Dhanju, Amardeep

2010-01-01T23:59:59.000Z

328

Guodian Linghai Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Linghai Wind Power Co Ltd Jump to: navigation, search Name: Guodian Linghai Wind Power Co Ltd Place: China Sector: Wind energy Product: Wind power project developer. References:...

329

Tianjin Jinneng Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jinneng Wind Power Co Ltd Place: Tianjin Municipality, China Sector: Wind energy Product: Tianjin-based wind power project developer. References: Tianjin Jinneng Wind Power Co...

330

Wind Resource Maps (Postcard)  

SciTech Connect

The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

Not Available

2011-07-01T23:59:59.000Z

331

Blue Ribbon Panel on Development of Wind Turbine Facilities in Coastal Waters  

E-Print Network (OSTI)

Executive Order, creating this Panel and charging it with "identifying and weighing the costs and benefits Jersey has actively encouraged the use of renewable energy including solar and wind power; and WHEREAS as the issues relevant to wind turbines in coastal waters and to New Jersey's energy future are complex

Firestone, Jeremy

332

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

333

Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint  

SciTech Connect

Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

Jonkman, J. M.; Sclavounos, P. D.

2006-01-01T23:59:59.000Z

334

Enertech 15-kW wind-system development: Phase I. Design and analysis. Volume I. Executive summary  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Not Available

1981-09-01T23:59:59.000Z

335

Enertech 15-kW wind-system development. Phase I. Design and Analysis. Volume II. Technical report  

SciTech Connect

A utility interfaced wind machine rated for 15 kW at 9 m/s (20.1 mph) has been designed to be cost effective in 5.4 m/s (12 mph) average wind sites. Approximately 18 months into the research and development program a completed design meeting contract specifications was submitted to the buyer. The design is for a horizontal axis, down wind machine which features three fixed pitch wood-epoxy blades and free yaw. Rotor diameter is 44 feet (13.4 meters). Unit shutdown is provided by an electrohydraulic brake. Blade tip brakes provide back-up rotor overspeed protection. Design merits have been verified through dynamic truck testing of a prototype unit.

Dodge, D.M. (ed.)

1981-09-01T23:59:59.000Z

336

Sinovel Wind Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Name: Sinovel Wind Co Ltd Place: Beijing Municipality, China Zip: 100872 Sector: Wind energy Product: Develops, manufactures and markets wind power generating equipment....

337

Wind Power Associates LLC | Open Energy Information  

Open Energy Info (EERE)

Associates LLC Jump to: navigation, search Name: Wind Power Associates LLC Place: Goldendale, Washington State Sector: Wind energy Product: Wind farm developer and operater....

338

Wave Wind LLC | Open Energy Information  

Open Energy Info (EERE)

Wave Wind LLC Place: Sun Prairie, Wisconsin Zip: 53590 Sector: Services, Wind energy Product: Wisconsin-based wind developer and construction services provider. References: Wave...

339

Berrendo Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Berrendo Wind Energy Jump to: navigation, search Name: Berrendo Wind Energy Place: Boulder, Colorado Zip: 80304 Sector: Wind energy Product: Colorado-based firm developing utility...

340

Wind Success Stories | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Wind Success Stories Wind Success Stories RSS The Office of Energy Efficiency and Renewable Energy's (EERE) successes in developing clean, affordable, and reliable domestic wind...

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Department of Energy Awards $43 Million to Spur Offshore Wind Energy, Wind Program Newsletter, September 2011 Edition (Brochure)  

SciTech Connect

EERE Wind Program Quarterly Newsletter - September 2011. In September, the U.S. Department of Energy announced that it will award $43 million over the next five years to 41 projects across 20 states to speed technical innovations, lower costs, and shorten the timeline for deploying offshore wind energy systems. The projects will advance wind turbine design tools and hardware, improve information about U.S. offshore wind resources, and accelerate the deployment of offshore wind by reducing market barriers such as supply chain development, transmission and infrastructure. The projects announced in September focus on approaches to advancing offshore technology and removing market barriers to responsible offshore wind energy deployment. Funding is subject to Congressional appropriations.

Not Available

2011-09-01T23:59:59.000Z

342

100 MeV laser accelerator demonstration and 1 GeV baseline design development. 1992 Annual report  

SciTech Connect

The acceleration of relativistic electrons using the inverse Cerenkov effect was first demonstrated at Stanford University in 1981. Later, Fontana and Pantell developed an improved configuration for the inverse Cerenkov acceleration (ICA) process. A radially polarized laser beam is focused by an axicon onto the e-beam traveling through a gas-filled interaction region. The light intersects the e-beam at the Cerenkov angle {theta}{sub c}, where {theta}{sub c} = cos{sup {minus}1}(1/n{beta}), n is the index of refraction of the gas, and {beta} is the ratio of the electron velocity to the speed of light. The goal of the present program is to demonstrate improved laser acceleration using the Fontana and Pantell configuration. The experiments will be performed on the Accelerator Test Facility (ATF) located at Brookhaven National Laboratory (BNL). This facility features a 50 MeV linac fed by a Nd:YAG (4{omega}) laser-driven photocathode e-gun. It will be upgraded to 65 MeV in the near future. The ATF also has a high peak power CO{sub 2} laser, which was developed for laser acceleration studies. The present ICA experiment was divided into two phases. Phase 1 was to examine certain experimental issues in preparation for Phase 2. Phase 1 was successfully completed in the spring of 1992. Phase 2 is to perform the actual laser acceleration experiments on the ATF e-beam. The authors are currently waiting for the availability of the e-beam so that they can begin the Phase 2 experiments. In this section, the theory and experimental hardware for the present program are described. The results of the Phase 1 experiments are presented, and an update on the Phase 2 experiment is given.

Not Available

1992-12-01T23:59:59.000Z

343

Hull Wind II: A Case Study of the Development of a Second Large Wind Turbine Installation in the Town of Hull, MA  

E-Print Network (OSTI)

; a capped landfill was chosen. Resource assessment took advantage of the Hull Wind I experience, nearby data made the wind power projects economically feasible; and a citizenry willing to participate actively for salt production. Hull's pursuit of modern wind power began more than 20 years ago, with the 1985

Massachusetts at Amherst, University of

344

NREL: Wind Research - Small Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Small Wind Turbine Research Small Wind Turbine Research The National Renewable Energy Laboratory and U.S. Department of Energy (NREL/DOE) Small Wind Project's objectives are to reduce barriers to wind energy expansion, stabilize the market, and expand the number of small wind turbine systems installed in the United States. "Small wind turbine" refers to a turbine smaller than or equal to 100 kilowatts (kW). "Distributed wind" includes small and midsize turbines (100 kW through 1 megawatt [MW]). Since 1996, NREL's small wind turbine research has provided turbine testing, turbine development, and prototype refinement leading to more commercially available small wind turbines. Work is conducted under the following areas. You can also learn more about state and federal policies

345

Wind Vision Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind Farm Wind Farm Jump to: navigation, search Name Wind Vision Wind Farm Facility Wind Vision Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Wind Vision Developer Wind Vision Location St. Ansgar IA Coordinates 43.348224°, -92.888816° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.348224,"lon":-92.888816,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

346

High Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Winds Wind Farm Winds Wind Farm Jump to: navigation, search Name High Winds Wind Farm Facility High Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser PPM Energy Inc Location Solano County CA Coordinates 38.124844°, -121.764915° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.124844,"lon":-121.764915,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

347

Stakeholder Engagement and Outreach: Learn About Wind  

Wind Powering America (EERE)

About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner with, and support wind power; and how and where wind energy has increased over the past decade. What Is Wind Power? Learn about how wind energy generates power, about wind turbine sizes and how wind turbines work, and how wind energy can be used. Also read examples of financial and business decisions. Where Is Wind Power? Go to maps to see the wind resource for utility-, community-, and residential-scale wind development. Or, see how much energy wind projects

348

Department of Energy to Invest up to $4 Million for Wind Turbine Blade  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

up to $4 Million for Wind Turbine up to $4 Million for Wind Turbine Blade Testing Facilities Department of Energy to Invest up to $4 Million for Wind Turbine Blade Testing Facilities June 25, 2007 - 2:07pm Addthis New facilities in Massachusetts and Texas will bring cutting-edge technology to wind research WASHINGTON, DC - The U.S. Department of Energy (DOE) Secretary Samuel W. Bodman today announced that DOE has selected the Commonwealth of Massachusetts Partnership in Massachusetts, and the Lone Star Wind Alliance in Texas, to each receive up to $2 million in test equipment to develop large-scale wind blade test facilities, accelerating the commercial availability of wind energy. These consortia have been selected to negotiate cooperative research and development agreements (CRADAs) to

349

Development of a Digital Controller for a Vertical Wind Tunnel (VWT) Prototype to Mitigate Ball Fluctuations  

E-Print Network (OSTI)

The objective of this research was to mitigate fluctuations of a levitated ping pong ball within a vertical wind tunnel (VWT) prototype. This was made possible by remodeling the VWT system with its inherent nonlinear characteristics instead...

Silva, Ramon A.

2011-08-08T23:59:59.000Z

350

Design and Development of Controller for Stand-Alone Wind Driven Self-excited Induction Generator  

Science Journals Connector (OSTI)

The 3-? self-excited induction generator driven by wind energy source is suitable ... capacitance required for self-excitation of 3-? induction generator is taken up in this work and...

M. Sathyakala; M. Arutchelvi

2013-01-01T23:59:59.000Z

351

Wind Power Development in the United States: Current Progress, Future Trends  

SciTech Connect

The U.S. wind power industry is in an era of substantial growth, with the U.S. and China likely to vie for largest-market status for years to come. With the market evolving at such a rapid pace, keeping up with current trends in the marketplace has become increasingly difficult. At the same time, limits to future growth are uncertain. This paper summarizes major trends in the U.S. wind market, and explores the technical and economic feasibility of achieving much greater levels of wind penetration. China would be well served to conduct similar analyses of the feasibility, benefits, challenges, and policy needs associated with much higher levels of wind power generation than currently expressed in national targets.

Wiser, Ryan H

2008-10-29T23:59:59.000Z

352

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

AAI Home AAI Home Welcome Accelerators at Argonne Mission Organization History Document Collection Conferences & Workshops Beams and Applications Seminar Argonne-Fermilab Collaboration Lee Teng Scholarship Program Useful Links Argonne Accelerator Institute In 2006, Argonne Laboratory Director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. More Information for: Members * Students Industrial Collaborators - Working with Argonne Link to: Accelerators for America's Future Upcoming Events and News 4th International Particle Accelerator Conference (IPAC'13)

353

Enertech 15-kW wind-system development. Phase II. Fabrication and test  

SciTech Connect

This Phase II report presents a description of the Enertech 15 kW prototype wind system hardware fabrication; results of component tests; and results of preliminary testing conducted at Norwich, VT and the RF Wind Energy Research Center. In addition, the assembly sequence is documented. During testing, the unit experienced several operational problems, but testing proved the design concept and demonstrated the system's ability to meet the contract design specifications for power output.

Zickefoose, C.R.

1982-12-01T23:59:59.000Z

354

The origin and development of instabilities in radiatively-driven stellar winds  

SciTech Connect

The numerous observational indicators of instability in the radiatively-driven winds of hot stars are review briefly, followed by a summary of the present theoretical understanding of the linear instability of such winds. This provides the motivation for the hydrodynamic simulation, the major thrust of the paper. A serious approximation that must be made in order to reduce the cost of the simulations to a reasonable level--the absorption approximation for the radiation force--is discussed in some detail. The hydrodynamic methods are described briefly, and then the computational results for winds models computed in the absorption approximation are discussed. The most notable results pertain to the critical nature of the ratio v{sub th}/a of the intrinsic line width to the sound speed. When this ratio is large, only a negligible wind results; when the ratio is small, the wind executes permanent self-excited oscillations; in an intermediate range the wind is globally stable, but acts as a powerful wave amplifier. The morphology of the oscillations--strong rarefactions and reverse shocks--is described and related to Abbott's linear theory, and the possible connection to observations is mentioned. 30 refs.

Castor, J.I.

1990-11-20T23:59:59.000Z

355

Wind energy information guide  

SciTech Connect

This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

NONE

1996-04-01T23:59:59.000Z

356

Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines  

E-Print Network (OSTI)

measurements of the wind fields engulfing today's huge wind turbines. Our aim is to measure in real- time 3D velocity field, ,within the volumes that fully surround the huge wind turbines of today and tomorrow atmospheric flow that surrounds the giant wind turbines. This new knowledge we envision will accelerate

357

The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development  

Science Journals Connector (OSTI)

Abstract Renewable energies arise as part of both economic development plans and mitigation strategies aimed at abating climate change. Contrariwise, most renewable energies are potentially vulnerable to climate change, which could affect in particular solar and wind power. Proper evaluations of this two-way climate–renewable energy relationship require detailed information of the geographical location of the renewable energy fleets. However, this information is usually provided as total amounts installed per administrative region, especially with respect to future planned installations. To help overcome this limiting issue, the objective of this contribution was to develop the so-called CLIMIX model: a tool that performs a realistic spatial allocation of given amounts of both photovoltaic (PV) and wind power installed capacities and evaluates the energy generated under varying climate conditions. This is done over a regular grid so that the created scenarios can be directly used in conjunction with outputs of climate models. First, we used the 0.44° resolution grid defined for the EURO-CORDEX project and applied the CLIMIX model to spatially allocate total amounts of both unreported 2012 and future 2020 PV and wind power installations in Europe at the country level. Second, we performed a validation exercise using the various options for estimating PV and wind power production under the created scenarios that are included in the model. The results revealed an acceptable agreement between the estimated and the recorded power production values in every European country. Lastly, we estimated increases in power production derived from the future deployment of new renewable units, often obtaining non-direct relationships. This latter further emphasizes the need of accurate spatially-resolved PV and wind power scenarios in order to perform reliable estimations of power production.

S. Jerez; F. Thais; I. Tobin; M. Wild; A. Colette; P. Yiou; R. Vautard

2015-01-01T23:59:59.000Z

358

Accelerators and the Accelerator Community  

E-Print Network (OSTI)

of electrostatic accelerators, while Ernest O. Lawrence (CBP 820 LBNL TBA ACCELERATORS ANDTHE ACCELERATOR COMMUNITY 1 ANDREW SESSLER Lawrence Berkeley

Malamud, Ernest

2009-01-01T23:59:59.000Z

359

Wind Career Map: Resource List  

Energy.gov (U.S. Department of Energy (DOE))

The following resources were used in the development of the Wind Career Map, associated job profile information, or are potential resources for interested Wind Career Map viewers.

360

WINDExchange: Wind for Schools Project  

Wind Powering America (EERE)

Resources Wind for Schools Project As the United States dramatically expands wind energy deployment, the industry is challenged with developing a highly-educated workforce...

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

4.0 Source: Wind resource estimates developed by AWS Truepower, LLC for windNavigator . Web: http:www.windnavigator.com | http:www.awstruepower.com. Spatial resolution of wind...

362

Development of an RF Conditioning System for Charged-Particle Accelerators  

SciTech Connect

Charged-particle accelerators use various vacuum windows on their accelerating radio-frequency (RF) cavities to throughput very high RF power. Before being placed on the cavities, the windows should be cleaned, baked, and fully RF conditioned to prevent a poor vacuum from outgassing, as well as other forms of contamination. An example is the coaxial fundamental power coupler (FPC) with an annular alumina ceramic window for each of the 81 superconducting RF cavities in the Spallation Neutron Source (SNS) linear accelerator. The FPCs needed to be tested up to 650-kW peak in a traveling wave and 2.6 MW with standing wave peaks in 1.3 and 60 pulses/s at 805 MHz. In this paper, an Experimental-Physics-and-Industrial-Control-System-based RF conditioning system for the SNS RF test facility is presented. This paper summarizes the hardware and software design strategies, provides the results obtained, and describes the future research scope.

Kang, Yoon W [ORNL; Howlader, Mostofa [ORNL; Shajedul Hasan, Dr. S. M. [Virginia Polytechnic Institute and State University (Virginia Tech)

2008-01-01T23:59:59.000Z

363

Quantifying the Economic Development Impacts of Wind Power in Six Rural Montana Counties Using NRELs JEDI Model  

Wind Powering America (EERE)

September 2004 * NREL/SR-500-36414 September 2004 * NREL/SR-500-36414 M. Costanti Bozeman, Montana Quantifying the Economic Development Impacts of Wind Power in Six Rural Montana Counties Using NREL's JEDI Model Period of Performance: December 1, 2003 - May 31, 2004 National Renewable Energy Laboratory 1617 Cole Boulevard, Golden, Colorado 80401-3393 303-275-3000 * www.nrel.gov Operated for the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 September 2004 * NREL/SR-500-36414 Quantifying the Economic Development Impacts of Wind Power in Six Rural Montana Counties Using NREL's JEDI Model Period of Performance: December 1, 2003 - May 31, 2004 M. Costanti

364

Wind Powering America  

Wind Powering America (EERE)

These news items are notable additions These news items are notable additions to the Wind Powering America Web site. The Wind Powering America Web site reports recent national and state wind market changes by cataloging wind activities such as wind resource maps, small wind consumer's guides, local wind workshops, news articles, and publications in the areas of policy, public power, small wind, Native Americans, agricultural sector, economic development, public lands, and schools. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America http://www.windpoweringamerica.gov/ Nominate an Electric Cooperative for Wind Power Leadership Award by January 15 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4076 Mon, 16

365

LET and gender are critical factors in accelerating development of lymphoma in irradiated Bax transgenic C57Bl/6 mice  

NLE Websites -- All DOE Office Websites (Extended Search)

LET and gender are critical factors in accelerating development of lymphoma in LET and gender are critical factors in accelerating development of lymphoma in irradiated Bax transgenic C57Bl/6 mice James A. Jacobus 1 , Chester Duda 2 , Sean M. Martin 3 , Mitchell C. Coleman 1 , Kranti Mapuskar 2 , Nukhet Aykin-Burns 1 , C. Michael Knudson 3 , Douglas R. Spitz 1 . 1 Free Radical and Radiation Biology Program, 2 Human Toxicology Program, Departments of Radiation Oncology and 3 Pathology, The University of Iowa Humans are exposed to sparsely ionizing (low LET) radiation from environmental sources and radiotherapy as well as densely ionizing (high LET) radiation during radiotherapy and from cosmic radiations, particularly during space travel. To test the hypothesis that defects in mitochondrial metabolism leading to increased ROS levels could alter responses to radiation, lymphoma-prone C57Bl/6 mice over expressing the

366

Offshore Wind Research (Fact Sheet), National Wind Technology Center (NWTC)  

NLE Websites -- All DOE Office Websites (Extended Search)

Offshore Offshore Wind Research The National Renewable Energy Laboratory is internationally recognized for offshore wind energy research and development (R&D). Its experience and capabilities cover a wide spectrum of wind energy disciplines. NREL's offshore wind R&D efforts focus on critical areas that address the long-term needs of the offshore wind energy industry and the Department of Energy (DOE). R&D efforts include: * Developing offshore design tools and methods * Collaborating with international partners * Testing offshore systems and developing standards * Conducting economic analyses * Characterizing offshore wind resources * Identifying and mitigating offshore wind grid integration challenges and barriers NREL documented the status of offshore wind energy in the United

367

NREL: Wind Research - Projects  

NLE Websites -- All DOE Office Websites (Extended Search)

Projects Projects NREL's wind energy research and development projects focus on reducing the cost of wind technology and expanding access to wind energy sites. Our specialized technical expertise, comprehensive design and analysis tools, and unique testing facilities help industry overcome challenges to bringing new wind technology to the marketplace. Some of these success stories are described in NREL's Wind R&D Success Stories. We also work closely with universities and other national laboratories supporting fundamental research in wind technologies, including aerodynamics, aeroacoustics, and material sciences essential in the development of new blade technologies and advanced controls, power electronics, and testing to further refine drivetrain topology.

368

Jobs and Economic Development Impacts of Offshore Wind Webinar Text Version  

Wind Powering America (EERE)

Impacts of Offshore Wind Impacts of Offshore Wind November 20, 2013 Coordinator: Thank you all for standing by. All lines have been placed on a listen-only mode throughout the duration of today's conference. Today's conference is being recorded. If you do have any objections, you may disconnect at this time. I would now like to turn the call over to Ian Baring-Gould. Thank you. You may begin. Ian Baring-Gould: Hi, this is Ian Baring-Gould from the National Renewable Energy Laboratory. I want to thank you all for joining us for our call - or on our webinar today. This is our standard monthly series of webinars for the stakeholder engagement and outreach activities of the wind program under the Department of Energy. And pleased today that we get to have a series of presentations on a

369

Offshore Wind Guidance Document: Oceanography and Sediment Stability (Version 1) Development of a Conceptual Site Model.  

SciTech Connect

This guidance document provide s the reader with an overview of the key environmental considerations for a typical offshore wind coastal location and the tools to help guide the reader through a thoro ugh planning process. It will enable readers to identify the key coastal processes relevant to their offshore wind site and perform pertinent analysis to guide siting and layout design, with the goal of minimizing costs associated with planning, permitting , and long - ter m maintenance. The document highlight s site characterization and assessment techniques for evaluating spatial patterns of sediment dynamics in the vicinity of a wind farm under typical, extreme, and storm conditions. Finally, the document des cribe s the assimilation of all of this information into the conceptual site model (CSM) to aid the decision - making processes.

Roberts, Jesse D.; Jason Magalen; Craig Jones

2014-06-01T23:59:59.000Z

370

Accelerators, Electrodynamics  

NLE Websites -- All DOE Office Websites (Extended Search)

Science and Innovation Capabilities Accelerators, Electrodynamics science-innovationassetsimagesicon-science.jpg Accelerators, Electrodynamics National security depends...

371

Diablo Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Diablo Winds Wind Farm Diablo Winds Wind Farm Facility Diablo Winds Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner NextEra Energy Resources Developer NextEra Energy Resources Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

372

Competitive Wind Grants (Vermont)  

Energy.gov (U.S. Department of Energy (DOE))

The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

373

Talbot County- Wind Ordinance  

Energy.gov (U.S. Department of Energy (DOE))

This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

374

WINDExchange: Wind Potential Capacity  

Wind Powering America (EERE)

area with a gross capacity factor1 of 35% and higher, which may be suitable for wind energy development. AWS Truepower LLC produced the wind resource data with a spatial...

375

Wind Program News | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

has selected seven projects that will accelerate the commercialization of innovative offshore wind technologies in the United States. Each project will receive up to 4 million...

376

Wind and Water Power Technologies FY'14 Budget At-a-Glance  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

1 WIND & WATER POWER TECHNOLOGIES WIND POWER PROGRAM FY14 BUDGET AT-A-GLANCE Wind and Water Power Technologies accelerates U.S. deployment of clean, affordable and reliable domestic wind power through research, development and demonstration. These advanced technology investments directly contribute to the President's goals for the United States to double renewable electricity generation again by 2020 and to achieve 80 percent of its electricity from clean, carbon-free energy sources by 2035 through reducing costs and increasing performance of wind energy systems. Wind power currently provides 3.5 percent of the nation's electricity, and more wind-powered electricity generation capacity was installed in the United States in 2012 than

377

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

Wind Powering America (EERE)

  Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 006 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 U.S. Wind Power Capacity Increased by 7% in 006 . . . . . . . . . . . . . . . .4 The United States Leads the World in Annual Capacity Growth . . . . . . . .4 Texas, Washington, and California Lead the U.S. in Annual Capacity Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 GE Wind Is the Dominant Turbine Manufacturer, with Siemens Gaining Market Share . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6 Average Turbine Size Continues to Increase . . . . . . . . . . . . . . . . . . . . . . .7 Developer Consolidation Accelerates . . . . . . . . . . . . . . . . . . . . . . . . . . . .8 Innovation and Competition in Non-Utility Wind Financing Persists . . . .9

378

Chu, Salazar to Announce Major Offshore Wind Energy Initiatives |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Salazar to Announce Major Offshore Wind Energy Initiatives Salazar to Announce Major Offshore Wind Energy Initiatives Chu, Salazar to Announce Major Offshore Wind Energy Initiatives February 4, 2011 - 12:00am Addthis NORFOLK,VA - On Monday, February 7, 2011 Energy Secretary Steven Chu and Secretary of the Interior Ken Salazar will announce major new initiatives to accelerate the responsible siting and development of offshore wind energy projects. WHAT: Offshore Wind Energy News Conference WHEN: Monday, February 7, 11:00 AM EST WHO: Steven Chu, Secretary of Energy Ken Salazar, Secretary of the Interior WHERE: Half Moone Center 11 Waterside Dr Norfolk, VA 23510 DIAL-IN: News media, state and local stakeholders, industry representatives and other interested parties can join a listen-only teleconference of the announcement by dialing 800-369-3311 and entering code: OFFSHORE.

379

Secretary Chu, Governor Patrick Announce $25 Million for Massachusetts Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chu, Governor Patrick Announce $25 Million for Chu, Governor Patrick Announce $25 Million for Massachusetts Wind Technology Testing Center Secretary Chu, Governor Patrick Announce $25 Million for Massachusetts Wind Technology Testing Center May 12, 2009 - 12:00am Addthis Washington, DC - U.S. Energy Secretary Steven Chu and Governor Deval Patrick today announced the Department of Energy's intent to award Massachusetts $25 million in funding from the American Recovery and Reinvestment Act to accelerate development of the state's Wind Technology Testing Center and create hundreds of new jobs in the area. The new center will test commercial-sized wind turbine blades to help reduce cost, improve technical advancements and speed deployment of the next generation of wind turbine blades into the marketplace. State Energy

380

Jilin Wind Power Stockholding Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Jilin Province, China Zip: 130021 Sector: Hydro, Wind energy Product: Wind and hydroelectric project developer.The company is developing the Changling wind farm. References:...

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Recent Developments on ALICE (Accelerators and Lasers In Combined Experiments) at Daresbury Laboratory  

SciTech Connect

Progress made in ALICE (Accelerators and Lasers In Combined Experiments) commissioning and a summary of the latest experimental results are presented in this paper. After an extensive work on beam loading effects in SC RF linac (booster) and linac cavities conditioning, ALICE can now operate in full energy recovery mode at the bunch charge of 40pC, the beam energy of 30MeV and train lengths of up to 100us. This improved operation of the machine resulted in generation of coherently enhanced broadband THz radiation with the energy of several tens of uJ per pulse and in successful demonstration of the Compton Backscattering x-ray source experiment. The next steps in the ALICE scientific programme are commissioning of the IR FEL and start of the research on the first non-scaling FFAG accelerator EMMA. Results from both projects will be also reported.

Saveliev, Y M; Buckley, R K; Buckley, S R; Clarke, J A; Corlett, P A; Dunning, D J; Goulden, A R; Hill, S F; Jackson, F; Jamison, S P; Jones, J K; Jones, L B; Leonard, S; McIntosh, P A; McKenzie, J W; Middleman, K J; Militsyn, B L; Moss, A J; Muratori, B D; Orrett, J F; Pattalwar, S M; Phillips, P J; Scott, D J; Seddon, E A; Shepherd, B.J.A.; Smith, S L; Thompson, N; Wheelhouse, A E; Williams, P H; Harrison, P; Holder, D J; Holder, G M; Schofield, A L; Weightman, P; Williams, R L; Laundry, D; Powers, T; Priebe, G

2010-05-01T23:59:59.000Z

382

Texas Tech University is poised to take a leadership role in the development of wind power systems through research, economic development, job creation and education.  

E-Print Network (OSTI)

that will deal with offshore wind turbines in the Gulf of Mexico. "We have the offshore oil expertise here for testing, characterization and improvement of wind turbines and wind-driven water desalination systems and feed that high fidelity wind data in real time into an advanced wind turbine computer model

Gelfond, Michael

383

Fermilab | Science | Particle Accelerators | Leading Accelerator...  

NLE Websites -- All DOE Office Websites (Extended Search)

Fermilab scientists and engineers develop particle accelerators to produce beams to take particle physics to the next level, collaborating with scientists and...

384

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Research and Development Research and Development Click to download a PDF version of this document. PDF Focus Research Areas Fundamental Accelerator Physics: Theory Importance Accelerator physics research is normally associated with specific accelerator projects. As a scientific discipline, however, it is useful to study fundamental accelerator phenomena decoupled, as much as possible, from specific project aspects. Pursuit of fundamental accelerator physics in this sense has contributed significantly to the advance of the accelerator physics knowledgebase during the last several decades, clarifying the limitations and suggesting ways to overcome those limitations. Such basic research tends to be discouraged in a project-driven environment. For sustained and significant progress in

385

Wind Power Career Chat  

SciTech Connect

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

386

LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION  

E-Print Network (OSTI)

The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

Andrea Kircsi

387

Stakeholder Engagement and Outreach: Wind Farms  

Wind Powering America (EERE)

Wind Farms Wind Farms When establishing wind farms, wind energy developers generally approach landowners where they want to build. Interest in wind farms is frequently spurred by external pressures such as tax and other financial incentives and legislative mandates. Since each situation is influenced by local policies and permitting, we can only provide general guidance to help you learn about the process of installing wind turbines. Publications Wind Project Development Process Permitting of Wind Energy Facilities: A Handbook. (August 2002). National Wind Coordinating Collaborative. Landowner Frequently Asked Questions and Answers. (August 2003). "State Wind Working Group Handbook." pp. 130-133. Software Wind Energy Finance Calculator Tool for financial analysis of

388

Stakeholder Engagement and Outreach: Siting Wind Turbines  

Wind Powering America (EERE)

Resources & Tools Resources & Tools Siting Wind Turbines Wind Powering America works to increase deployment of wind energy. This page provides resources about wind turbine siting. American Wind Wildlife Institute The American Wind Wildlife Institute (AWWI) facilitates timely and responsible development of wind energy, while protecting wildlife and wildlife habitat. AWWI was created and is sustained by a unique collaboration of environmentalists, conservationists, state wildlife agencies, and wind industry leaders. Its purpose is to help lay the scientific groundwork and best practices for wind farm siting and operations, through targeted initiatives: wind-wildlife research, landscape assessment, mitigation, and education. Ordinances Regulating Development of Commercial Wind Energy Facilities

389

Fostering a Renewable Energy Technology Industry: An International Comparison of Wind Industry Policy Support Mechanisms  

E-Print Network (OSTI)

and Renewable Energy, Wind & Hydropower Technologiesand Renewable Energy, Wind & Hydropower Technologies2004. International Wind Energy Development, World Market

Lewis, Joanna; Wiser, Ryan

2005-01-01T23:59:59.000Z

390

Wind energy  

Science Journals Connector (OSTI)

Wind energy is rapidly growing. In 2006 the installed generating capacity in the world increased by 25%, a growth rate which has more or less been sustained during the last decade. And there is no reason to believe that this growth will slow significantly in the coming years. For example, the United Kingdom's goal for installed wind turbines by 2020 is 33 GW up from 2 GW in 2006, an average annual growth rate of 22% over that period. More than half of all turbines are installed in Europe, but United States, India and lately China are also rapidly growing markets. The cradle of modern wind energy was set by innovative blacksmiths in rural Denmark. Now the wind provides more than 20% of the electrical power in Denmark, the industry has professionalized and has close ties with public research at universities. This focus issue is concerned with research in wind energy. The main purposes of research in wind energy are to: decrease the cost of power generated by the wind; increase the reliability and predictability of the energy source; investigate and reduce the adverse environmental impact of massive deployment of wind turbines; build research based educations for wind energy engineers. This focus issue contains contributions from several fields of research. Decreased costs cover a very wide range of activities from aerodynamics of the wind turbine blades, optimal site selection for the turbines, optimization of the electrical grid and power market for a fluctuating source, more efficient electrical generators and gears, and new materials and production techniques for turbine manufacturing. The United Kingdom recently started the construction of the London Array, a 1 GW off-shore wind farm east of London consisting of several hundred turbines. To design such a farm optimally it is necessary to understand the chaotic and very turbulent flow downwind from a turbine, which decreases the power production and increases the mechanical loads on other nearby turbines. Also addressed within the issue is how much conventional power production can be replaced by the ceaseless wind, with the question of how Greece's target of 29% renewables by 2020 is to be met efficiently. Other topics include an innovative way to determine the power curve of a turbine experimentally more accurately, the use of fluid dynamics tools to investigate the implications of placing vortex generators on wind turbine blades (thereby possibly improving their efficiency) and a study of the perception of wind turbine noise. It turns out that a small but significant fraction of wind turbine neighbours feel that turbine generated noise impairs their ability to rest. The annoyance is correlated with a negative attitude towards the visual impact on the landscape, but what is cause and effect is too early to say. As mentioned there is a rush for wind turbines in many countries. However, this positive development for the global climate is currently limited by practical barriers. One bottleneck is the difficulties for the sub-suppliers of gears and other parts to meet the demand. Another is the difficulties to meet the demand for engineers specialized in wind. For that reason the Technical University of Denmark (DTU) recently launched the world's first Wind Energy Masters Program. Here and elsewhere in the world of wind education and research we should really speed up now, as our chances of contributing to emission free energy production and a healthier global climate have never been better. Focus on Wind Energy Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Wind turbines—low level noise sources interfering with restoration? Eja Pedersen and Kerstin Persson Waye On the effect of spatial dispersion of wind power plants on the wind energy capacity credit in Greece George Caralis, Yiannis Perivolaris, Konstantinos Rados and Arthouros Zervos Large-eddy simulation of spectral coherence in a wind turbine wake A Jimenez, A Crespo, E Migoya and J Garcia How to improve the estimation of

Jakob Mann; Jens Nørkær Sørensen; Poul-Erik Morthorst

2008-01-01T23:59:59.000Z

391

E-Print Network 3.0 - accelerated life-time testing Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

Summary: ,9 . Despite its impact on the performance and life- time of wind turbines, the published research on wind... for the drive average train acceleration...

392

Offshore wind energy systems  

Science Journals Connector (OSTI)

Wind energy systems deployed in the shallow but windy waters of the southern North Sea have the potential to provide more than 20% of UK electricity needs. With existing experience of windmills, and of aircraft and offshore structures, such wind energy systems could be developed within a relatively short timescale. A preliminary assessment of the economics of offshore wind energy systems is encouraging.

P Musgrove

1978-01-01T23:59:59.000Z

393

New Modeling Tool Analyzes Floating Platform Concepts for Offshore Wind Turbines (Fact Sheet), NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

at the National Renewable Energy Laboratory at the National Renewable Energy Laboratory (NREL) develop a new complex modeling and analysis tool capable of analyzing floating platform concepts for offshore wind turbines. The new modeling tool combines the computational methodologies used to analyze land-based wind turbines with the comprehensive hydrodynamic computer programs developed for offshore oil and gas industries. This new coupled dynamic simulation tool will enable the development of cost-effective offshore technologies capable of harvesting the rich offshore wind resources at water depths that cannot be reached using the current technology. Currently, most offshore wind turbines are installed in shallow water, less than 30 meters deep, on bottom-mounted substructures. But these substructures are not

394

Stakeholder Engagement and Outreach: State Wind Activities  

Wind Powering America (EERE)

Federal, Federal, State, & Local Printable Version Bookmark and Share Economic Development Policy Public Lands Public Power Regional Activities State Activities State Lands Siting State Wind Activities The U.S. map below summarizes Wind Powering America's state activities as of February 2010, which include Wind Working Groups, validated wind maps, anemometer loan programs, small wind guides, Wind for Schools Wind Applications Centers, exhibits, and workshops or webcasts. To read more state-specific news, click on a state. You can also view an enlarged map or print the state wind activities map. U.S. map showing Wind Powering America's activities in each state. Washington has an inactive/evolved wind working group, validated wind map, and a small wind guide. Exhibits have been displayed. Oregon has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. California has an inactive/evolved wind working group and valided wind map. Exhibits have been displayed. Idaho has an inactive/evolved wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nevada has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Montana has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Wyoming has a wind working group, validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts and exhibits. Utah has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arizona has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. Colorado has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. New Mexico has a wind working group, validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and exhibits have been displayed. North Dakota has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. South Dakota has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Nebraska has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Kansas has a wind working group, a validated wind map, a small wind guide, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Oklahoma has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Texas currently does not have any Wind Powering America activities. Minnesota has a small wind guide. Iowa has a small wind guide and has had exhibits. Missouri has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Arkansas has a wind working group, validated wind map, and workshops or Webcasts. Lousiana currently does not have any Wind Powering America activities. Mississippi currently does not have any Wind Powering America activities. Alabama currently does not have any Wind Powering America activities. Georgia has a wind working group, a validated wind map, and has had workshops or Webcasts. Florida currently does not have any Wind Powering America activities. South Carolina has a wind working group. Alaska has a wind working group, validated wind map, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Hawaii has a wind working group, validated wind map, a small wind guide, and has had exhibits. Puerto Rico has a validated wind map and a planned wind working group. Wisconsin has a wind working group, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Illinois has a wind working group, validated wind map, a small wind guide, and has had workshops or Webcasts. Michigan has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts and exhibits. Indiana has a wind working group, a validated wind map, a small wind guide, and has had workshops or Webcasts and exhibits. Kentucky has a wind working group and a validated wind map. Tennessee has a wind working group, a validated wind map, small wind guide, anemometer loan program, and has had workshops or Webcasts. North Carolina has a wind working group, validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. Virginia has a wind working group, a validated wind map, a small wind guide, an anemometer loan program, has had workshops or Webcasts, exhibits have been displayed, and it has a Wind for Schools Wind Applications Center. West Virginia has a wind working group, a validated wind map, and has had workshops or Webcasts. Ohio has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Maryland has a wind working group, a validated wind map, a small wind guide, and an anemometer loan program. Pennsylvania has a wind working group, a validated wind map, small wind guide, an anemometer loan program, has had workshops or Webcasts, and it has a Wind for Schools Wind Applications Center. Delaware has a validated wind map and a small wind guide. New Jersey has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had workshops or Webcasts. Connecticut has a wind working group and a validated wind map. New York has a small wind guide. Vermont has a validated wind map and a small wind guide. Massachusetts has a wind working group, validated wind map, a small wind guide, an anemometer loan program, and has had exhibits. New Hampshire has a validated wind map and small wind guide. Maine has a wind working group, validated wind map, small wind guide, an anemometer loan program, and has had workshops or Webcasts. Rhode Island has a validated wind map and small wind guide. The U.S. Virgin Islands have a validated wind map.

395

West Winds Wind Farm | Open Energy Information  

Open Energy Info (EERE)

West Winds Wind Farm West Winds Wind Farm Facility West Winds Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Caithness Developer SeaWest Energy Purchaser Southern California Edison/PacifiCorp Location San Gorgonio CA Coordinates 33.9095°, -116.734° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.9095,"lon":-116.734,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

New England Wind Forum: Markets  

Wind Powering America (EERE)

Markets Markets Selling Wind Power Wind generators interconnected directly to the transmission or distribution grid, or sized in excess of the load of a host end-user, interact with either well-developed or developing markets for the products produced by wind generators: electricity and generation attributes. Buying Wind Power Individuals, companies, institutions, and governments throughout New England have a number of opportunities to buying wind power or support the development of wind power. The links below take you to information on opportunities and guidance for buying wind power in New England. Motivations for Buying Wind Power Buying Wind Power Resources and Tools for Large Energy Users Printable Version Skip footer navigation to end of page. New England Wind Forum Home | Wind Program Home | EERE Home | U.S. Department of Energy

397

Wind derivatives: hedging wind risk:.  

E-Print Network (OSTI)

??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind… (more)

Hoyer, S.A.

2013-01-01T23:59:59.000Z

398

Michigan Wind II Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind II Wind Farm Wind II Wind Farm Jump to: navigation, search Name Michigan Wind II Wind Farm Facility Michigan Wind II Wind Farm Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer Exelon Wind Energy Purchaser Consumers Energy Location Minden City MI Coordinates 43.6572421°, -82.7681278° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.6572421,"lon":-82.7681278,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Planning For Wind Energy: Evaluating Municipal Wind Energy Land Use Planning Frameworks in Southwestern Ontario with a Focus on Developing Wind Energy Planning Policies for the City of Stratford.  

E-Print Network (OSTI)

??Wind energy provides an environmentally friendly and renewable source of electricity, that can help meet Canada's Kyoto commitments, help safeguard against future blackouts, reduce air… (more)

Longston, Kristopher, J.

2007-01-01T23:59:59.000Z

400

Wind Powering America - Outreach in Priority States (Poster)  

SciTech Connect

WPA works with 33 State Wind Working Groups to educate stakeholders on wind energy topics and to achieve the basics needed for effective wind development in a state. WPA has accelerated outreach and communication efforts with 13 priority states: Alaska, Arizona, Indiana, Maryland, Massachussetts, Michigan, Nebraska, Nevada, North Carolina, Ohio, South Dakota, Utah, and Virginia. These states have the potential to contribute substantially to the national portfolio of wind energy but do not yet have large amounts of wind energy applications on the ground. This is often due to barriers in in-state knowledge and understanding of wind energy issues and potential that impact the policy environment and the market environment. There are common regional issues among the states, and important learning opportunities can be gained by cross-training and sharing experiences. The Regional Wind Energy Institutes (RWEIs) are train-the-trainer organizations that work to develop a cadre of in-state outreach specialists who reach out to audiences of decisionmakers (e.g., the ag community, state and local officials, utilities, regulatory bodies) to build understanding, create public acceptance, take advantage of regional synergies, and eventually to impact polices and the market environment for effective wind implementation.

Kelly, M.; Flowers, L.

2009-04-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Cielo Wind Power LLC | Open Energy Information  

Open Energy Info (EERE)

Austin, Texas Zip: 78701 2459 Sector: Wind energy Product: Currently the largest wind power developer in the US Southwest, with developments equaling approximately 600...

402

Development of a Rating System for a Comparative Accelerated Test Standard (Presentation)  

SciTech Connect

This presentation discusses methods of developing and structuring a useful rating system and communicating the results.

Kurtz, S.

2013-06-01T23:59:59.000Z

403

Offshore wind metadata management  

Science Journals Connector (OSTI)

Offshore wind energy is gaining more and more attention from industry and research community due to its high potential in producing green energy and lowering price on electricity consumption. However, offshore wind is facing many challenges, and hence it is still expensive to install in large scale. It therefore needs to be considered from different aspects of technologies in order to overcome these challenges. One of the problems of the offshore wind is that information comes from different sources with diversity in types and format. Besides, there are existing wind databases that should be utilised in order to enrich the knowledge base of the wind domain. This paper describes an approach to managing offshore wind metadata effectively using semantic technologies. An offshore wind ontology has been developed. The semantic gap between the developed ontology and the relational database is investigated. A prototype system has been developed to demonstrate the use of the ontology.

Trinh Hoang Nguyen; Rocky Dunlap; Leo Mark; Andreas Prinz; Bjørn Mo �stgren; Trond Friisø

2014-01-01T23:59:59.000Z

404

Wind | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Wind Wind EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. EERE plays a key role in advancing America's "all of the above" energy strategy, leading a large network of researchers and other partners to deliver innovative technologies that will make renewable electricity generation cost-competitive with traditional sources of energy. Image of a wind turbine against a partly cloudy sky. The U.S. Department of Energy (DOE) leads national efforts to improve the performance, lower the costs, and accelerate the deployment of wind energy technologies-both on

405

U.S. Department of Energy Wind and Water Power Program Funding...  

Energy Savers (EERE)

wind turbines. The Cyber Wind Facility will model the impacts of complex wind and wave dynamics on wind turbine structures and energy performance, enabling developers to...

406

Saturation wind power potential and its implications for wind energy  

Science Journals Connector (OSTI)

...and natural gas produce electricity...As such, wind turbines reduce direct...power, part I: Technologies, energy resources...arrays of wind turbines . J Wind Eng Ind...Yamada T (1982) Development of a turbulence...biofuel soot and gases, and methane...a single wind turbine intersects...

Mark Z. Jacobson; Cristina L. Archer

2012-01-01T23:59:59.000Z

407

The effect of the 2010 Gulf oil spill on public attitudes toward offshore oil drilling and wind development  

Science Journals Connector (OSTI)

Abstract In April 2010, the Deepwater Horizon oil well exploded, releasing over four million barrels of oil into the Gulf of Mexico. This paper presents data from two national mail surveys undertaken in 2008 and 2010 that compare public attitudes to both offshore oil drilling and offshore wind development pre- and post-spill. The results show that while there was a drop in support for expanded drilling (from 66% in 2008 to 59% in 2010) the change was not significant. There was, however, a significant decrease in support for offshore drilling among coastal residents. There was a slight, non-significant increase in support for offshore wind development which remained significantly higher than support for offshore oil (80% in 2008 and 82% in 2010). Despite there being no significant change in overall support levels, there was a shift in the strength of feeling regarding offshore oil, with 80% of Americans either less supportive or more opposed to expanded drilling in 2010 than they were in 2008.

Jonathan Lilley; Jeremy Firestone

2013-01-01T23:59:59.000Z

408

United States Wind Resource Map: Annual Average Wind Speed at...  

Wind Powering America (EERE)

5.5 5.0 4.5 4.0 < 4.0 Source: Wind resource estimates developed by AWS Truepower, LLC. Web: http:www.awstruepower.com. Map developed by NREL. Spatial resolution of wind...

409

European Particle Accelerator Conference -Rome, Italy -June 7-12, 1988 DEVELOPMENT OFA HIGH BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT  

E-Print Network (OSTI)

BRIGHTNESS ELECTRON GUN FOR THE ACCELERATOR TEST FACILITY AT BROOKHAVEN NATIONAL LABORATORY* K. Batchelor, HDonald Princeton University At innBNL--41767 DE89 002179 Abstract An electron gun utilizing aradio frequency on the design of (he electron gun which will provide r.f. bunches of upto 101 electrons synchronized

McDonald, Kirk

410

Inner Mongolia Wind Power Corporation | Open Energy Information  

Open Energy Info (EERE)

Wind Power Corporation Place: Inner Mongolia Autonomous Region, China Sector: Wind energy Product: A company engages in wind power project development. References: Inner Mongolia...

411

Datang Zhangzhou Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Zhangzhou Wind Power Co Ltd Place: Zhangzhou, Fujian Province, China Sector: Wind energy Product: Project developer of the Datang Zhangpu Liuao wind farm in Fujian province, China...

412

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet...  

Office of Environmental Management (EM)

research and development efforts. eerewindwater.pdf More Documents & Publications Wind Program Accomplishments Offshore Wind Projects Wind Program FY 2015 Budget At-A-Glance...

413

NREL-Philippine Wind Farm Analysis and Site Selection Analysis...  

Open Energy Info (EERE)

Philippine wind energy potential and foster wind farm development. Work to date includes completion of the NREL wind atlas for the Philippines as well as training courses and...

414

Pre?design of MYRRHA, A Multipurpose Accelerator Driven System for Research and Development  

Science Journals Connector (OSTI)

One of the main SCK•CEN research facility namely BR2 is nowadays arriving at an age of 40 years just like the major materials testing reactors (MTR) in the world and in Europe (i.e. BR2 (B?Mol) HFR (EU?Petten) OSIRIS (F?Saclay) R2 (S?Studsvik)). The MYRRHA facility in planning has been conceived as potentially replacing BR2 and to be a fast spectrum facility complementary to the thermal spectrum RJH (Réacteur Jules Horowitz) facility in planning in France. This situation would give Europe a full research capability in terms of nuclear R&D. Furthermore the disposal of radioactive wastes resulting from industrial nuclear energy production has still to find a fully satisfactory solution especially in terms of environmental and social acceptability. Scientists are looking for ways to drastically reduce (by a factor of 100 or more) the radio?toxicity of the High Level Waste (HLW) to be stored in a deep geological repository. This can be achieved via burning of minor actinides (MA) and to a less extent of long?lived fission products (LLFP) in Accelerator Driven Systems. The MYRRHA project contribution will be in helping to demonstrate the ADS concept at reasonable power level and the demonstration of the technological feasibility of MA and LLFP transmutation under real conditions.

P. D’hondt; H. Aït Abderrahim; P. Kupschus; E. Malambu; Th. Aoust; Ph. Benoit; V. Sobolev; K. Van Tichelen; B. Arien; F. Vermeersch; Y. Jongen; S. Ternier; D. Vandeplassche

2003-01-01T23:59:59.000Z

415

Stetson Wind Expansion Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Stetson Wind Expansion Wind Farm Stetson Wind Expansion Wind Farm Jump to: navigation, search Name Stetson Wind Expansion Wind Farm Facility Stetson Wind Expansion Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner First Wind Developer First Wind Location Washington County ME Coordinates 45.595833°, -67.928628° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.595833,"lon":-67.928628,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

416

An Analysis of the Economic Impact on Tooele County, Utah, from the Development of Wind Power Plants  

Wind Powering America (EERE)

An Analysis of the Economic Impact on Tooele County, Utah, from the Development of Wind Power Plants Nikhil Mongha, MBA, MS Carollo Engineers Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Renewable Energy for Rural Economic Development College of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 August 2006 DOE/GO-102006-2353 Contract No. DE-FG48-05R810736 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

417

An Analysis of the Economic Impact on Utah County, Utah from the Development of Wind Power Plants  

Wind Powering America (EERE)

An Analysis of the Economic Impact on Utah County, Utah from the Development of Wind Power Plants Nikhil Mongha, MBA, MS Carollo Engineers Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Renewable Energy for Rural Economic Development College of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 May 2006 DOE/GO-102006-2316 DE-FG48-05R810736 ACKNOWLEDGMENTS Special thanks to Marshall Goldberg for his assistance with the analysis and Sarah Wright and Christine Watson Mikell for their review of this report. ii NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or

418

Analysis of the Economic Impact on Box Elder County, Utah, from the Development of Wind Power Plants  

Wind Powering America (EERE)

An Analysis of the Economic Impact on Box Elder County, Utah, from the Development of Wind Power Plants Nikhil Mongha, MBA, MS Carollo Engineers Cathy L. Hartman, Ph.D. Edwin R. Stafford, Ph.D. Renewable Energy for Rural Economic Development College of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 August 2006 DOE/GO-102006-2350 Contract No. DE-FG48-05R810736 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents

419

Analysis of State-Level Economic Impacts from the Development of Wind Power Plants in San Juan County, Utah  

Wind Powering America (EERE)

An Analysis of State-Level Economic Impacts from the Development An Analysis of State-Level Economic Impacts from the Development of Wind Power Plants in San Juan County, Utah David J. Ratliff, Captain United States Air Force Cathy L. Hartman, Ph.D. Edwin R. Stafford, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 DOE/GO-102010-3005 March 2010 The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. The authors thank Marshall Goldberg and Elise Brown for assistance with data collection and analysis and Sandra Reategui, Suzanne Tegen, and Sara Baldwin for the helpful comments on

420

Development, Implementation, and Testing of Fault Detection Strategies on the National Wind Technology Center's Controls Advanced Research Turbines  

SciTech Connect

The National Renewable Energy Laboratory's National Wind Technology Center dedicates two 600 kW turbines for advanced control systems research. A fault detection system for both turbines has been developed, analyzed, and improved across years of experiments to protect the turbines as each new controller is tested. Analysis of field data and ongoing fault detection strategy improvements have resulted in a system of sensors, fault definitions, and detection strategies that have thus far been effective at protecting the turbines. In this paper, we document this fault detection system and provide field data illustrating its operation while detecting a range of failures. In some cases, we discuss the refinement process over time as fault detection strategies were improved. The purpose of this article is to share field experience obtained during the development and field testing of the existing fault detection system, and to offer a possible baseline for comparison with more advanced turbine fault detection controllers.

Johnson, K. E.; Fleming, P. A.

2011-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

How the Accelerated Reading Program Supports the Comprehension Development of Struggling Readers.  

E-Print Network (OSTI)

?? When a student is identified as a struggling reader, it not only affects their literacy development but learning across all content areas as well.… (more)

McLean, Emily A

2012-01-01T23:59:59.000Z

422

Numerical simulations of radiatively driven dusty winds  

Science Journals Connector (OSTI)

......find that, after wind acceleration begins...that the asymptotic wind momentum flux from...constrains the expected mass-loss rates from...we provide a first map of the column density...radiatively driven wind as a function of velocity, and velocity dispersion......

Mark R. Krumholz; Todd A. Thompson

2013-01-01T23:59:59.000Z

423

The lessons learned from the development of the wind energy industry that might be applied to marine industry renewables  

Science Journals Connector (OSTI)

...lessons. Although there is much offshore wind activity now, and there is no doubt...turbines for application in commercial wind farms, the UK market mechanism was the...with their blades, and the entire wind farm was re-bladed at Howden's costs...

2012-01-01T23:59:59.000Z

424

Access Framework: Model Text (November 2011) An Act to Establish a Framework for Development of Offshore Wind Power  

E-Print Network (OSTI)

of Offshore Wind Power Whereas, the offshore waters of [State] are ecologically and economically vital public, Whereas, offshore wind power provides utility-scale renewable energy at competitive costs, helps to meet consequences; and Whereas, offshore wind power, being a domestic source of energy enhances U.S. energy

Firestone, Jeremy

425

New England Wind Forum: Building Wind Energy in New England  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Building Wind Energy in New England Many factors influence the ability to develop wind power in the New England region. A viable project requires the right site and the right technology for the application. It must provide suitable revenue or economic value to justify investment in this capital-intensive but zero-fuel technology. Policy initiatives are in place throughout the region to support the expansion of wind power's role in the regional supply mix. However, issues affecting public acceptance of wind projects in host communities must be addressed. Information on topics affecting wind power development in New England can be found by using the navigation to the left.

426

Acceleration of bone development and regeneration through the Wnt/?-catenin signaling pathway in mice heterozygously deficient for GSK-3?  

SciTech Connect

Highlights: •The Wnt/?-catenin signaling pathway was activated in GSK-3?{sup +/?} mice. •The cortical and trabecular bone volumes were increased in GSK-3?{sup +/?} mice. •Regeneration of a partial bone defect was accelerated in GSK-3?{sup +/?} mice. -- Abstract: Glycogen synthase kinase (GSK)-3? plays an important role in osteoblastogenesis by regulating the Wnt/?-catenin signaling pathway. Therefore, we investigated whether GSK-3? deficiency affects bone development and regeneration using mice heterozygously deficient for GSK-3? (GSK-3?{sup +/?}). The amounts of ?-catenin, c-Myc, cyclin D1, and runt-related transcription factor-2 (Runx2) in the bone marrow cells of GSK-3?{sup +/?} mice were significantly increased compared with those of wild-type mice, indicating that Wnt/?-catenin signals were enhanced in GSK-3?{sup +/?} mice. Microcomputed tomography of the distal femoral metaphyses demonstrated that the volumes of both the cortical and trabecular bones were increased in GSK-3?{sup +/?} mice compared with those in wild-type mice. Subsequently, to investigate the effect of GSK-3? deficiency on bone regeneration, we established a partial bone defect in the femur and observed new bone at 14 days after surgery. The volume and mineral density of the new bone were significantly higher in GSK-3?{sup +/?} mice than those in wild-type mice. These results suggest that bone formation and regeneration in vivo are accelerated by inhibition of GSK-3?, probably through activation of the Wnt/?-catenin signaling pathway.

Arioka, Masaki [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan) [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Takahashi-Yanaga, Fumi, E-mail: yanaga@clipharm.med.kyushu-u.ac.jp [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan) [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Global Medical Science Education Unit, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Sasaki, Masanori [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan)] [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Yoshihara, Tatsuya; Morimoto, Sachio [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan); Takashima, Akihiko [Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Oobu (Japan)] [Department of Aging Neurobiology, National Center for Geriatrics and Gerontology, Oobu (Japan); Mori, Yoshihide [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan)] [Department of Oral and Maxillofacial Surgery, Faculty of Dental Science, Kyushu University, Fukuoka (Japan); Sasaguri, Toshiyuki [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)] [Department of Clinical Pharmacology, Faculty of Medical Sciences, Kyushu University, Fukuoka (Japan)

2013-11-01T23:59:59.000Z

427

Intraoperative Avidination for Radionuclide Therapy: A Prospective New Development to Accelerate Radiotherapy in Breast Cancer  

Science Journals Connector (OSTI)

...HRQoL, using the Energy for life after ColoRectal...transfer of results for development, evaluation, and implementation...initiated in 2012: the Energy for life after ColoRectal...approved by the Medical Ethics Committee of the University...provide new leads for the development of personalized lifestyle...

Giovanni Paganelli; Mahila Ferrari; Laura Ravasi; Marta Cremonesi; Concetta De Cicco; Viviana Galimberti; Gregory Sivolapenko; Alberto Luini; Rita De Santis; Laura Lavinia Travaini; Maurizio Fiorenza; Marco Chinol; Stefano Papi; Claudio Zanna; Paolo Carminati; and Umberto Veronesi

2007-09-15T23:59:59.000Z

428

Accelerated Geothermal Resource Development in the Great Basin Through Enhanced Public Awareness and Outreach to Shareholders.  

SciTech Connect

The Great Basin Center for Geothermal Energy conducted work encompassing two main tasks. We (1) produced a web-based, stakeholder geothermal information system for Nevada geothermal data relevant to assessing and developing geothermal resources, and (2) we held informational stakeholder workshops (both as part of GeoPowering the West Initiative). The objective of this grant was to conduct workshops and fund database and web development activities. This grant funds salaries for web and database developers and part of the administrative assistant who helps to coordinate and organize workshops, and maintain selected databases.

Taranik, James V.; Oppliger, Gary; Sawatsky, Don

2002-04-10T23:59:59.000Z

429

Time Series Models to Simulate and Forecast Wind Speed and Wind Power  

Science Journals Connector (OSTI)

A general approach for modeling wind speed and wind power is described. Because wind power is a function of wind speed, the methodology is based on the development of a model of wind speed. Values of wind power are estimated by applying the ...

Barbara G. Brown; Richard W. Katz; Allan H. Murphy

1984-08-01T23:59:59.000Z

430

WIND/RAIN BACKSCATTER MODELING AND WIND/RAIN RETRIEVAL FOR SCATTEROMETER AND  

E-Print Network (OSTI)

/rain backscatter model is developed that has inputs of surface rain rate, incidence angle, wind speed, wind from rain causes estimated wind speeds to be biased high and estimated wind directions to be biased directions are used as the wind direction estimate and the wind speed is derived from SAR by inversion

Long, David G.

431

Wind Integration, Transmission, and Resource Assessment andCharacteri...  

Energy Savers (EERE)

& Publications Wind Integration, Transmission, and Resource Assessment and Characterization Projects Offshore Wind Projects Testing, Manufacturing, and Component Development...

432

Energy Department Announces National Geothermal Data System to Accelerate Geothermal Energy Development  

Energy.gov (U.S. Department of Energy (DOE))

The National Geothermal Data System is online open-source platform that facilitates the discovery and use of geothermal data. It will help address one of the greatest barriers to development and deployment of this promising clean energy source.

433

Development of a comprehensive reporting system for a school reform organization: The Accelerated Schools Project  

E-Print Network (OSTI)

theoretical framework for the reporting system, (b) identified data that should be collected in the reporting system, (c) performed a field test with an expert panel of educational professionals, (d) developed a preliminary form of the reporting system, (e...

Stephens, Jennifer Anne

2006-04-12T23:59:59.000Z

434

Corotating solar wind streams and recurrent geomagnetic activity: Bruce T. Tsurutani,1,2  

E-Print Network (OSTI)

´n waves is the solar wind energy transfer mechanism. The acceleration of relativistic electrons occurs

Bergen, Universitetet i

435

Recent developments of the ion sources at Tri University Meson Factory/Isotope Separator and ACcelerator Facility  

SciTech Connect

This paper describes the recent progresses concerning the on-line ion source at the Tri University Meson Factory/Isotope Separator and ACcelerator (TRIUMF/ISAC) Radioactive Ion-Beam Facility; description of the new design of the surface-ion-source for improved stability of the beam intensity, description of the transport path to the east target station at ISAC, description of the new brazing techniques that solved recurrent problems with water leaks on the target/ion source assembly in the vacuum system, finally, recent developments concerning the Forced Electron Beam Induced Arc Discharge (FEBIAD) ion source are reported. In particular, a study on the effect of the plasma chamber volume on the ionization efficiency was completed.

Bricault, P. G.; Ames, F.; Dombsky, M.; Labrecque, F.; Lassen, J.; Mjos, A.; Minor, G. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Tigelhoefer, A. [TRIUMF, 4004 Wesbrook Mall, Vancouver, British Columbia V6T 2A3 (Canada); Department Of Physics, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

2012-02-15T23:59:59.000Z

436

Research proposal for development of an electron stripper using a thin liquid lithium film for rare isotope accelerator.  

SciTech Connect

Hydrodynamic instability phenomena in a thin liquid lithium film, which has been proposed for the first stripper in the driver linac of Rare Isotope Accelerator (RIA), were discussed. Since it was considered that film instability could significantly impair the feasibility of the liquid lithium film stripper concept, potential issues and research tasks in the RIA project due to these instability phenomena were raised. In order to investigate these instability phenomena, a research proposal plan was developed. In the theoretical part of this research proposal, a use of the linear stability theory was suggested. In the experimental part, it was pointed out that the concept of Reynolds number and Weber number scaling may allow conducting a preliminary experiment using inert simulants, hence reducing technical difficulty, complexity, and cost of the experiments. After confirming the thin film formation in the preliminary experiment using simulants, demonstration experiments using liquid lithium were proposed.

Momozaki, Y.; Nuclear Engineering Division

2006-03-06T23:59:59.000Z

437

Development of a cryogenic load frame for the neutron diffractometer at Takumi in Japan Proton Accelerator Research Complex  

SciTech Connect

To prepare for projects such as the Large Hadron Collider upgrade, International Thermonuclear Experimental Reactor and Demonstration reactor, it is important to form a clear understanding of stress-strain properties of the materials that make up superconducting magnets. Thus, we have been studying the mechanical properties of superconducting wires using neutron diffraction measurements. To simulate operational conditions such as temperature, stress, and strain, we developed a cryogenic load frame for stress-strain measurements of materials using a neutron diffractometer at Japan Proton Accelerator Research Complex (J-PARC) Takumi beam line. The maximum load that can be applied to a sample using an external driving machine is 50 kN. Using a Gifford-MacMahon cryocooler, samples can be measured down to temperatures below 10 K when loaded. In the present paper, we describe the details of the cryogenic load frame with its test results by using type-304 stainless steel wire.

Jin, Xinzhe; Nakamoto, Tatsushi; Ogitsu, Toru; Yamamoto, Akira; Sugano, Michinaka [High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Harjo, Stefanus; Aizawa, Kazuya; Abe, Jun; Gong, Wu; Iwahashi, Takaaki [Japan Atomic Energy Agency, Tokai-mura, Naka-gun, Ibaraki 319-1195 (Japan); Hemmi, Tsutomu [Japan Atomic Energy Agency, Naka-shi, Ibaraki 311-0193 (Japan); Umeno, Takahiro [Taiyo Nippon Sanso Corporation, Tsukuba, Ibaraki 306-2611 (Japan)

2013-06-15T23:59:59.000Z

438

NREL: Wind Research - National Wind Technology Center  

NLE Websites -- All DOE Office Websites (Extended Search)

Center Center The National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC), located at the base of the foothills just south of Boulder, Colorado, is the nation's premier wind energy technology research facility. Built in 1993, the center provides an ideal environment for the development of advanced wind energy technologies. The goal of the research conducted at the center is to help industry reduce the cost of energy so that wind can compete with traditional energy sources, providing a clean, renewable alternative for our nation's energy needs. Research at the NWTC is organized under two main categories, Wind Technology Development and Testing and Operations. Illustration of the National Wind Technology Center's organization chart. Fort Felker is listed as the Center Director, with Mike Robinson, Deputy Center Director; Paul Veers, Chief Engineer, and Laura Davis and Dorothy Haldeman beneath him. The Associate Director position is empty. Beneath them is the Wind Technology Research and Development Group Manager, Mike Robinson; the Testing and Operations Group Manager, Dave Simms; and the Offshore Wind and Ocean Power Systems Acting Supervisor, Fort Felker.

439

Session: Offshore wind  

SciTech Connect

This session at the Wind Energy and Birds/Bats workshop consisted of two presentations. Due to time constraints, a discussion period was not possible. The session addressed the current state of offshore wind energy development. The first presentation ''Monitoring Program and Results: Horns Rev and Nysted'' by Jette Gaarde summarized selected environmental studies conducted to date at operating offshore wind turbine projects in Denmark and lessons from other offshore wind developments in Europe. Wildlife impacts studies from the Danish sites focused on birds, fish, and mammals. The second presentation ''What has the U.S. Wind Industry Learned from the European Example'' by Bonnie Ram provided an update on current permit applications for offshore wind developments in the U.S. as well as lessons that may be drawn from the European experience.

Gaarde, Jette; Ram, Bonnie

2004-09-01T23:59:59.000Z

440

C-AD Accelerator Division  

NLE Websites -- All DOE Office Websites (Extended Search)

Accelerator Division Accelerator Division The Accelerator Division operates and continually upgrades a complex of eight accelerators: 2 Tandem Van de Graaff electrostatic accelerators, an Electron Beam Ion Source (EBIS), a 200 MeV proton Linac, the AGS Booster, the Alternating Gradient Synchrotron (AGS), and the 2 rings of the Relativistic Heavy Ion Collider (RHIC). These machines serve user programs at the Tandems, the Brookhaven Linac Isotope Producer (BLIP), the NASA Space Radiation Laboratory (NSRL), and the 2 RHIC experiments STAR, and PHENIX. The Division also supports the development of new accelerators and accelerator components. Contact Personnel Division Head: Wolfram Fischer Deputy Head: Joe Tuozzolo Division Secretary: Anna Petway Accelerator Physics: Michael Blaskiewicz

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Fermilab | Illinois Accelerator Research Center | Illinois Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

photo: IARC photo: IARC As envisioned, the Illinois Accelerator Research Center will provide approximately 83,000 square feet of technical, office and classroom space for scientists and industrial partners. The Illinois Accelerator Research Center (IARC) is a new accelerator research facility being built at Fermi National Accelerator Laboratory. At the Illinois Accelerator Research Center, scientists and engineers from Fermilab, Argonne and Illinois universities will work side by side with industrial partners to research and develop breakthroughs in accelerator science and translate them into applications for the nation's health, wealth and security. Located on the Fermilab campus this 83,000 square foot, state-of-the-art facility will house offices, technical and educational space to study

442

NREL: Wind Research - Publications  

NLE Websites -- All DOE Office Websites (Extended Search)

Publications Publications The NREL wind research program develops publications about its R&D activities in wind energy technologies. Below you'll find links to recently published publications, links to the NREL Avian Literature and Publications Databases, and information about the Technical Library at the National Wind Technology Center (NWTC). The NWTC's quarterly newsletter, @NWTC, contains articles on current wind energy research projects and highlights the latest reports, papers, articles, and events published or sponsored by NREL. Subscribe to @NWTC. Selected Publications Featured Publication Large-scale Offshore Wind Power in the United States: Assessment of Opportunities and Barriers Here are some selected NWTC publications: 2011 Cost of Wind Energy Review Built-Environment Wind Turbine Roadmap

443

Job and Economic Development Impact (JEDI) Model: A User-Friendly Tool to Calculate Economic Impacts from Wind Projects; Preprint  

Wind Powering America (EERE)

Job and Economic Job and Economic Development Impact (JEDI) Model: A User-Friendly Tool to Calculate Economic Impacts from Wind Projects Preprint March 2004 * NREL/CP-500-35953 M. Goldberg MRG & Associates K. Sinclair and M. Milligan (Consultant) National Renewable Energy Laboratory To be presented at the 2004 Global WINDPOWER Conference Chicago, Illinois March 29-31, 2004 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US

444

Analysis of State-Level Economic Impacts from the Development of Wind Power Plants in Summit County, Utah  

Wind Powering America (EERE)

An Analysis of State-Level Economic Impacts from the An Analysis of State-Level Economic Impacts from the Development of Wind Power Plants in Summit County, Utah David J. Ratliff, Captain United States Air Force Cathy L. Hartman, Ph.D. Edwin R. Stafford, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 DOE/GO-102009-2918 October 2009 The views expressed in this article are those of the author and do not reflect the official policy or position of the United States Air Force, Department of Defense, or the U.S. Government. The authors thank Marshall Goldberg and Elise Brown for assistance with data collection and analysis and Sandra Reategui and Sara Baldwin for the helpful comments on an earlier draft of

445

LASER ACCELERATORS  

E-Print Network (OSTI)

UNIVERSITY OF CALIFORNIA Accelerator & Fusion Researchat the 1983 Particle Accelerator Conference, Santa Fe, NM,March 21-23, 1983 LASER ACCELERATORS A.M. Sessler TWO-WEEK

Sessler, A.M.

2008-01-01T23:59:59.000Z

446

Multicore and accelerator development for a leadership-class stellar astrophysics code  

Science Journals Connector (OSTI)

We describe recent development work on the core-collapse supernova code CHIMERA. CHIMERA has consumed more than 100 million cpu-hours on Oak Ridge Leadership Computing Facility (OLCF) platforms in the past 3 years, ranking it among the most important ... Keywords: GPU, OpenACC, openMP, stellar astrophysics, supernovae

O. E. Bronson Messer; J. Austin Harris; Suzanne Parete-Koon; Merek A. Chertkow

2012-06-01T23:59:59.000Z

447

NREL Develops Accelerated Sample Activation Process for Hydrogen Storage Materials (Fact Sheet)  

SciTech Connect

This fact sheet describes NREL's accomplishments in developing a new sample activation process that reduces the time to prepare samples for measurement of hydrogen storage from several days to five minutes and provides more uniform samples. Work was performed by NREL's Chemical and Materials Science Center.

Not Available

2010-12-01T23:59:59.000Z

448

WIND ENERGY Wind Energ. (2014)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

Peinke, Joachim

449

Generating Economic Development from a Wind Power Plant in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts  

Wind Powering America (EERE)

Generating Economic Development from a Wind Power Generating Economic Development from a Wind Power Project in Spanish Fork Canyon, Utah: A Case Study and Analysis of State-Level Economic Impacts Sandra Reategui Edwin R. Stafford, Ph.D. Cathy L. Hartman, Ph.D. Center for the Market Diffusion of Renewable Energy and Clean Technology Jon M. Huntsman School of Business Utah State University 3560 Old Main Hill Logan, Utah 84322-3560 January 2009 DOE/GO-102009-2760 Acknowledgements ....................................................................................................................... 1 Introduction ................................................................................................................................... 2 Report Overview ......................................................................................................................... 2

450

Low Wind Speed Technology Phase I: Clipper Turbine Development Project; Clipper Windpower Technology, Inc.  

SciTech Connect

This fact sheet describes a subcontract with Clipper Windpower Technology, Inc. to develop a new turbine design that incorporates advanced elements.

Not Available

2006-03-01T23:59:59.000Z

451

Michigan Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Michigan Wind I Wind Farm Facility Michigan Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer Noble Environmental Power Energy Purchaser Consumers Energy Location Huron County MI Coordinates 43.7099°, -82.9388° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.7099,"lon":-82.9388,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

452

Cisco Wind Energy Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Cisco Wind Energy Wind Farm Cisco Wind Energy Wind Farm Jump to: navigation, search Name Cisco Wind Energy Wind Farm Facility Cisco Wind Energy Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Energy Developer Community Energy Purchaser Northern States Power Location Brewster MN Coordinates 43.696164°, -95.467078° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.696164,"lon":-95.467078,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

453

New England Wind Forum: Interviews with Wind Industry Stakeholders and  

Wind Powering America (EERE)

Small Wind Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Interviews With Wind Industry Stakeholders and Pioneers in New England The New England Wind Forum will interview different stakeholders actively shaping the wind power landscape in New England and wind pioneers to examine how they have laid the groundwork for today's New England wind energy market. Stephan Wollenburg, Green Energy Program Director of Energy Consumers Alliance of New England January 2013 A Panel of Seven Offer Insight into the Evolving Drivers and Challenges Facing Wind Development in New England June 2011 John Norden, Manager of Renewable Resource Integration, Independent System Operator-New England September 2010 Angus King, Former Governor of Maine and Co-Founder of Independence Wind

454

wind energy  

National Nuclear Security Administration (NNSA)

5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

455

Wind speed equalization-based incoming wind classification by aggregating DFIGs  

Science Journals Connector (OSTI)

With the development of wind energy, it is necessary to develop equivalent models to represent dynamic behaviors of wind farms in power systems. The equivalent wind method is investigated for the aggregation o...

Zhaojun Meng; Feng Xue; Xueming Li

2013-06-01T23:59:59.000Z

456

NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)  

SciTech Connect

Wind energy research, development, and deployment have reduced the cost of large and small wind turbine technologies, increased wind energy system reliability and operability, lowered risk by validating performance and design, increased the understanding of the true impacts of wind energy on the U.S. electrical infrastructure, and expanded wind energy markets. A synopsis of research conducted on utility-scale wind turbines, small wind turbines, software, components, market development and grid integration are detailed.

Not Available

2010-01-01T23:59:59.000Z

457

Utility Wind Interest Group | Open Energy Information  

Open Energy Info (EERE)

Wind Interest Group Wind Interest Group Jump to: navigation, search Name Utility Wind Interest Group Place Reston, Virginia Zip VI 20195 Sector Wind energy Product The Utility Wind Interest Group (UWIG) is a non-profit corporation whose mission is to accelerate the appropriate integration of wind power into the electric system. References Utility Wind Interest Group[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Wind Interest Group is a company located in Reston, Virginia . References ↑ "Utility Wind Interest Group" Retrieved from "http://en.openei.org/w/index.php?title=Utility_Wind_Interest_Group&oldid=352690" Categories: Clean Energy Organizations

458

History of Proton Linear Accelerators  

DOE R&D Accomplishments (OSTI)

Some personal recollections are presented that relate to the author`s experience developing linear accelerators, particularly for protons. (LEW)

Alvarez, L. W.

1987-01-00T23:59:59.000Z

459

Argonne Accelerator Institute  

NLE Websites -- All DOE Office Websites (Extended Search)

Welcome Welcome In 2006, Argonne laboratory director Robert Rosner formed the AAI as a focal point for accelerator initiatives. The institute works to utilize Argonne's extensive accelerator resources, to enhance existing facilities, to determine the future of accelerator development and construction, and to oversee a dynamic and acclaimed accelerator physics portfolio. I invite you to look around the content of this web site. Accelerators at Argonne describes our rich heritage in this field, particularly with respect to the development and support of user facilities. Initiatives describes the things we are hoping to do, and Research & Development discusses our research portfolio. If you are a graduate or undergraduate student wishing to pursue a career in accelerator science or technology, please see Educational

460

Wind Energy Status and Future Wind Engineering Challenges: Preprint  

SciTech Connect

This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

2008-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Parametric design of floating wind turbines  

E-Print Network (OSTI)

As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

Tracy, Christopher (Christopher Henry)

2007-01-01T23:59:59.000Z

462

Diffuser Augmented Wind Turbine Analysis Code  

E-Print Network (OSTI)

, it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one...

Carroll, Jonathan

2014-05-31T23:59:59.000Z

463

Community-Owned wind power development: The challenge of applying the European model in the United States, and how states are addressing that challenge  

E-Print Network (OSTI)

will simply sell the wind power to cooperative members asand sells power to Xcel under the small wind tariff. Thecommunity wind projects are currently selling power to the

Bolinger, Mark

2004-01-01T23:59:59.000Z

464

Particle acceleration in the heliosphere  

Science Journals Connector (OSTI)

The heliosphere is filled with supersonic solar wind that forms shocks wherever it encounters obstacles be they a high speed Coronal Mass Ejection (CME) or regions where fastsolar wind encounters slower-moving solar wind. Energetic particles (> 10s of keV/nuc to 10s of MeV/nuc) associated with these shocks form a test bed for understanding particle acceleration since the shock properties can often be measured and energetic particle composition compared to candidate seed populations. Over the past 15-20 years a wide body of evidence has emerged showing that generally the seed population is the suprathermal ion pool at energies above the bulk solar wind. Understanding the interplanetary suprathermal ion population is therefore a critical step in fully understanding the physical mechanisms that accelerate particles in interplanetary space.

G. M. Mason; M. I. Desai; R. A. Mewaldt; C. M. S. Cohen

2013-01-01T23:59:59.000Z

465

Development and Commissioning of a Small/Mid-Size Wind Turbine Test Facility: Preprint  

SciTech Connect

This paper describes the development and commissioning tests of the new Clarkson University/Center for Evaluation of Clean Energy Technology Blade Test Facility. The facility is a result of the collaboration between the New York State Energy Research and Development Authority and Intertek, and is supported by national and international partners. This paper discusses important aspects associated with blade testing and includes results associated with modal, static, and fatigue testing performed on the Sandia National Laboratories' Blade Systems Design Studies blade. An overview of the test capabilities of the Blade Test Facility are also provided.

Valyou, D.; Arsenault, T.; Janoyan, K.; Marzocca, P.; Post, N.; Grappasonni, G.; Arras, M.; Coppotelli, G.; Cardenas, D.; Elizalde, H.; Probst, O.

2015-01-01T23:59:59.000Z

466

Gold SolarWind GmbH | Open Energy Information  

Open Energy Info (EERE)

Gold SolarWind GmbH Place: Aiterhofen, Germany Zip: 94330 Sector: Wind energy Product: German project developer of PV and wind plants. References: Gold SolarWind GmbH1 This...

467

Gansu Xin an Wind Power Co Ltd | Open Energy Information  

Open Energy Info (EERE)

Xin an Wind Power Co Ltd Jump to: navigation, search Name: Gansu Xin'an Wind Power Co Ltd Place: Gansu Province, China Sector: Wind energy Product: A wind power project developer....

468

20% Wind Energy By 2030 Meeting The Challenges Proceedings of...  

Office of Environmental Management (EM)

from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 U.S. Offshore Wind Manufacturing and Supply Chain Development Offshore Wind Projects...

469

NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)  

NLE Websites -- All DOE Office Websites (Extended Search)

REL's wind energy research and development efforts at REL's wind energy research and development efforts at the National WInd Technology Center (NWTC) have contributed to numerous successes for the wind industry. In addition to helping its industry partners develop commercially successful wind turbines, NREL has developed award-winning components and modeling software. The Laboratory also engages in deployment activities that help schools, communities, and utilities understand the benefits of wind energy and how it can be successfully integrated into our nation's electrical system to provide for a cleaner, more secure energy future. NREL's successes in wind energy research, development, and deployment have: * Reduced the cost of large and small wind turbine technologies

470

EXOTIC MAGNETS FOR ACCELERATORS.  

SciTech Connect

Over the last few years, several novel magnet designs have been introduced to meet the requirements of new, high performance accelerators and beam lines. For example, the FAIR project at GSI requires superconducting magnets ramped at high rates ({approx} 4 T/s) in order to achieve the design intensity. Magnets for the RIA and FAIR projects and for the next generation of LHC interaction regions will need to withstand high doses of radiation. Helical magnets are required to maintain and control the polarization of high energy protons at RHIC. In other cases, novel magnets have been designed in response to limited budgets and space. For example, it is planned to use combined function superconducting magnets for the 50 GeV proton transport line at J-PARC to satisfy both budget and performance requirements. Novel coil winding methods have been developed for short, large aperture magnets such as those used in the insertion region upgrade at BEPC. This paper will highlight the novel features of these exotic magnets.

WANDERER, P.

2005-09-18T23:59:59.000Z

471

Technical and management support for the development of Small Wind Systems. Fiscal year 1980 annual report, October 1, 1979-September 30, 1980  

SciTech Connect

The status and achievements of a program for the development, testing, and commercialization of wind energy systems rated under 100 kilowatts are described. The organization structure and task definition used to promote the production, marketing, and acceptance of small systems are described, and the Work Breakdown Structure under which the program is organized is detailed. Reports are given which describe the status of contracts funded by the Federal Wind Energy Program and managed by the Rocky Flats Wind Systems Program. These project reports, sequenced according to the Department of Energy Work Breakdown Structure, name the principal investigators involved, and discuss achievements and progress made during Fiscal Year 1980. Of fourty-four projects, seven were completed during the Fiscal Year. The Work Breakdown Structure Index details the organization sequence.

Not Available

1981-08-01T23:59:59.000Z

472

Model Development and Loads Analysis of an Offshore Wind Turbine on a Tension Leg Platform with a Comparison to Other Floating Turbine Concepts: April 2009  

SciTech Connect

This report presents results of the analysis of a 5-MW wind turbine located on a floating offshore tension leg platform (TLP) that was conducted using the fully coupled time-domain aero-hydro-servo-elastic design code FAST with AeroDyn and HydroDyn. The report also provides a description of the development process of the TLP model. The model has been verified via comparisons to frequency-domain calculations. Important differences have been identified between the frequency-domain and time-domain simulations, and have generated implications for the conceptual design process. An extensive loads and stability analysis for ultimate and fatigue loads according to the procedure of the IEC 61400-3 offshore wind turbine design standard was performed with the verified TLP model. This report compares the loads for the wind turbine on the TLP to those of an equivalent land-based turbine. Major instabilities for the TLP are identified and described.

Matha, D.

2010-02-01T23:59:59.000Z

473

JD Wind 10 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

10 Wind Farm 10 Wind Farm Jump to: navigation, search Name JD Wind 10 Wind Farm Facility JD Wind 10 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner DWS/John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Southwestern Public Service Location TX Coordinates 35.808304°, -101.994807° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.808304,"lon":-101.994807,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

474

JD Wind 4 Wind Farm | Open Energy Information  

Open Energy Info (EERE)

4 Wind Farm 4 Wind Farm Jump to: navigation, search Name JD Wind 4 Wind Farm Facility JD Wind 4 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner John Deere Wind Developer DWS/John Deere Wind Energy Purchaser Xcel Energy Location Hansford County TX Coordinates 36.398384°, -101.376997° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.398384,"lon":-101.376997,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

475

NREL: Wind Research - NREL's Wind Technology Patents Boost Efficiency and  

NLE Websites -- All DOE Office Websites (Extended Search)

NREL's Wind Technology Patents Boost Efficiency and Lower Costs NREL's Wind Technology Patents Boost Efficiency and Lower Costs March 22, 2013 Wind energy research conducted at the National Wind Technology Center (NWTC) at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) during the last decade has earned the lab two patents, one for adaptive pitch control and one for a resonance blade test system that will ultimately help its industry partners increase the efficiency of wind technologies and reduce the cost of wind energy. The most recent patent for adaptive pitch control for variable-speed wind turbines was granted in May 2012. Variable-speed wind turbines use rotor blade pitch control to regulate rotor speed at the high wind speed limit. Although manufacturers and operators have been interested in developing a nominal pitch to improve

476

Venture Wind I Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Wind I Wind Farm Wind I Wind Farm Jump to: navigation, search Name Venture Wind I Wind Farm Facility Venture Wind I Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner SeaWest Developer SeaWest Energy Purchaser Pacific Gas & Electric Co Location Altamont Pass CA Coordinates 37.7347°, -121.652° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7347,"lon":-121.652,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

477

Carbon smackdown: wind warriors  

ScienceCinema (OSTI)

July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

2010-09-01T23:59:59.000Z

478

Development of a bellows chamber with a comb-type RF shield for high-current accelerators  

Science Journals Connector (OSTI)

An all-metal bellows chamber with a comb-type Radio Frequency (RF) shield for a high-current accelerator was developed and tested at the KEK B-factory (KEKB). The comb-type RF shield has no thin fingers but has nested comb teeth instead at an inner surface. The comb-type RF-shield has a higher thermal strength structurally compared to the conventional finger-type one. Leakage of the TE mode like HOM through the RF shield is almost suppressed. Two test models of bellows chambers installed in the 3.5 GeV positron ring of KEKB showed good properties up to a stored beam current of 1.5 A. The temperature rise of the corrugation was about 7°C and the temperature rise was about 16 of that of the bellows chamber with a conventional finger-type RF shield located under the same condition. The temperature rise of the comb teeth was about 22°C, while that of fingers of the finger-type RF shield was estimated to be about 105°C for the equivalent HOM power. No vacuum arcing was detected during beam operation.

Y. Suetsugu; M. Shirai; K. Shibata; K. Murata; M. Kaneko; K. Sakamoto; K. Sugisaki; M. Kawahara

2004-01-01T23:59:59.000Z

479

Securing Clean, Domestic, Affordable Energy with Wind (Fact Sheet), Wind Program (WP)  

Energy.gov (U.S. Department of Energy (DOE))

This fact sheet provides a brief description of the Wind Energy Market and describes the U.S. Department of Energy's Wind Program research and development efforts.

480

2013 Wind Technologies Market Report  

SciTech Connect

This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

2014-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind development accelerating" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

Early Days of Accelerator Mass Spectrometry  

DOE R&D Accomplishments (OSTI)

Alvarez reviews his role in the development of the tandem Van de Graaff accelerator and the technique of accelerator mass spectrometry as a technique for isotope dating. (GHT)

Alvarez, L. W.

1981-05-00T23:59:59.000Z

482

Testing, Manufacturing, and Component Development Projects |...  

Office of Environmental Management (EM)

Projects for Utility-Scale and Distributed Wind Energy.pdf More Documents & Publications Offshore Wind Projects Environmental Wind Projects Workforce Development Wind Projects...

483

Final Report on "Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz"  

SciTech Connect

This is the final report on the research program ?Development and Testing of Advanced Accelerator Structures and Technologies at 11.424 GHz,? which was carried out by the Naval Research Laboratory (NRL) under Interagency Agreement DE?AI02?01ER41170 with the Department of Energy. The period covered by this report is 15 July 2010 ? 14 July 2013. The program included two principal tasks. Task 1 involved a study of the key physics issues related to the use of high gradient dielectric-loaded accelerating (DLA) structures in rf linear accelerators and was carried out in collaboration with Argonne National Laboratory (ANL) and Euclid Techlabs LLC. Task 2 involved a study of high power active microwave pulse compressors and was carried out in collaboration with Omega-P, Inc. and the Institute of Applied Physics of the Russian Academy of Sciences in Nizhny Novgorod. The studies under Task 1 were focused on rf-induced multipactor and breakdown in externally driven DLA structures at the 200-ns timescale. Suppression of multipactor and breakdown are essential to the practical application of dielectric structures in rf linear accelerators. The structures that were studied were developed by ANL and Euclid Techlabs and their performance was evaluated at high power in the X-band Magnicon Laboratory at NRL. Three structures were designed, fabricated, and tested, and the results analyzed in the first two years of the program: a clamped quartz traveling-wave (TW) structure, a externally copper-coated TW structure, and an externally copper-coated dielectric standing-wave (SW) structure. These structures showed that rf breakdown could be largely eliminated by eliminating dielectric joints in the structures, but that the multipactor loading was omnipresent. In the third year of the program, the focus of the program was on multipactor suppression using a strong applied axial magnetic field, as proposed by Chang et al. [C. Chang et al., J. Appl. Phys. 110, 063304 (2011).], and a successful experiment was carried out that demonstrated suppression of multipactor in the uniform-field region of a TW DLA structure. However, in accordance with theory, the multipactor was enhanced in regions of the structure with lower values of axial magnetic field. Under Task 2, there were two two-month experimental runs at NRL that were used to characterize the performance of high power two-channel dual-mode active microwave pulse compressor configurations that used electron-beam triggered switch cavities. The pulse compressors were designed and fabricated by Omega-P, Inc. and the Russian Institute of Applied Physics and tested in the Magnicon Laboratory at NRL. These pulse compressors made use of an electron beam discharge from a cylindrical knife-edged Mo cathode coated with a CVD diamond film that was driven by a ?100 kV, 100 ns high voltage pulse. The electron beam was used to change the resonant frequency of the switch cavities in order to create the output microwave pulse. The compressor channels included a TE01 input and output section and a TE02 energy storage cavity, followed by a switch assembly that controlled the coupling between the TE01 and TE02 modes. In the initial state, the switch cavity was in resonance, the reflection from the cavity was out of phase, and the mode conversion was only ~2-3%, allowing the energy storage cavity to fill. When the electron beam was discharged into the switch cavity, the cavity was shifted out of resonance, causing the phase of the reflection to change by ~?. As a result of the change in the reflection phase, the mode coupling in the conical taper was greatly increased, and could approach ~100%, permitting the energy storage cavity to empty in one cavity round trip time of the TE02 mode to produce a high power output pulse. The second experiment runs demonstrated a 190 MW, ~20 ns compressed pulse at 25.7 gain and ~50% efficiency, using a 7.4 MW, 1 ?s drive pulse from the magnicon. The success of this experiment suggests a path to future high gain active versions of the SLED 2 pulse compressor at SLAC.

Gold, Steven H. [Naval Research Laboratory

2013-10-13T23:59:59.000Z

484

WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy  

E-Print Network (OSTI)

Developments in the Levelized Cost of Energy From U.S. WindA; Simonot, E. (2011). The Cost of Wind Energy. Spanish WindUtility Construction Costs: Sources and Impacts. Prepared by

Lantz, Eric

2014-01-01T23:59:59.000Z

485

10MW Class Direct Drive HTS Wind Turbine: Cooperative Research and Development Final Report, CRADA Number CRD-08-00312  

SciTech Connect

This paper summarizes the work completed under the CRADA between NREL and American Superconductor (AMSC). The CRADA combined NREL and AMSC resources to benchmark high temperature superconducting direct drive (HTSDD) generator technology by integrating the technologies into a conceptual wind turbine design, and comparing the design to geared drive and permanent magnet direct drive (PMDD) wind turbine configurations. Analysis was accomplished by upgrading the NREL Wind Turbine Design Cost and Scaling Model to represent geared and PMDD turbines at machine ratings up to 10 MW and then comparing cost and mass figures of AMSC's HTSDD wind turbine designs to theoretical geared and PMDD turbine designs at 3.1, 6, and 10 MW sizes.

Musial, W.

2011-05-01T23:59:59.000Z

486

Future Accelerators (?)  

E-Print Network (OSTI)

I describe the future accelerator facilities that are currently foreseen for electroweak scale physics, neutrino physics, and nuclear structure. I will explore the physics justification for these machines, and suggest how the case for future accelerators can be made.

John Womersley

2003-08-09T23:59:59.000Z

487

Linear Accelerator  

NLE Websites -- All DOE Office Websites (Extended Search)

Linear Accelerator (LINAC) The core of the LANSCE facility is one of the nation's most powerful proton linear accelerators or LINAC. The LINAC at LANSCE has served the nation since...

488

Students Learn about Wind Power First-Hand through Wind for Schools Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Learn about Wind Power First-Hand through Wind for Schools Learn about Wind Power First-Hand through Wind for Schools Program Students Learn about Wind Power First-Hand through Wind for Schools Program February 18, 2011 - 3:48pm Addthis JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy JMU student Greg Miller shows Northumberland students how the blades of a wind turbine work | courtesy of Virginia Center for Wind Energy April Saylor April Saylor Former Digital Outreach Strategist, Office of Public Affairs What will the project do? Wind for Schools raises awareness in rural America about the benefits of wind energy while simultaneously developing a wind energy knowledge base in communities across the nation. For years, Jenny Christman tried to find a way to get a wind turbine to

489