Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Spain Installed Wind Capacity Website | Open Energy Information  

Open Energy Info (EERE)

Spain Installed Wind Capacity Website Spain Installed Wind Capacity Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.net/index.php?id=131 Equivalent URI: cleanenergysolutions.org/content/spain-installed-wind-capacity-website Language: English Policies: Regulations Regulations: Feed-in Tariffs This website presents an overview of total installed wind energy capacity in Spain per year from 2000 to 2010. The page also presents the main market developments from 2010; a policy summary; a discussion of the revision in feed-in tariffs in 2010; and a future market outlook. References Retrieved from "http://en.openei.org/w/index.php?title=Spain_Installed_Wind_Capacity_Website&oldid=514562"

2

Canadian Wind Energy Atlas Potential Website | Open Energy Information  

Open Energy Info (EERE)

Canadian Wind Energy Atlas Potential Website Canadian Wind Energy Atlas Potential Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canadian Wind Energy Atlas Potential Website Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: www.windatlas.ca/en/index.php Equivalent URI: cleanenergysolutions.org/content/canadian-wind-energy-atlas-potential- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance Environment Canada's Wind Energy Atlas website aims at developing new meteorological tools to be used by Canada's wind energy industry. It offers the possibility to browse through the results of the numerical simulations that were run on all of Canada in order to determine its wind energy potential. Consultants and the general public will find valuable data about

3

Measuring wind plant capacity value  

DOE Green Energy (OSTI)

Electric utility planners and wind energy researchers pose a common question: What is the capacity value of a wind plant? Tentative answers, which can be phrased in a variety of ways, are based on widely varying definitions and methods of calculation. From the utility`s point of view, a resource that has no capacity value also has a reduced economic value. Utility planners must be able to quantify the capacity value of a wind plant so that investment in conventional generating capacity can be potentially offset by the capacity value of the wind plant. Utility operations personnel must schedule its conventional resources to ensure adequate generation to meet load. Given a choice between two resources, one that can be counted on and the other that can`t, the utility will avoid the risky resource. This choice will be reflected in the price that the utility will pay for the capacity: higher capacity credits result in higher payments. This issue is therefore also important to the other side of the power purchase transaction -- the wind plant developer. Both the utility and the developer must accurately assess the capacity value of wind. This article summarizes and evaluates some common methods of evaluating capacity credit. During the new era of utility deregulation in the United States, it is clear that many changes will occur in both utility planning and operations. However, it is my judgement that the evaluation of capacity credit for wind plants will continue to play an important part in renewable energy development in the future.

Milligan, M.R.

1996-01-01T23:59:59.000Z

4

Capacity Value of Wind Power  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to overall system adequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America are highlighted with a description of open research questions also given.

Keane, Andrew; Milligan, Michael; Dent, Chris; Hasche, Bernhard; DAnnunzio, Claudine; Dragoon, Ken; Holttinen, Hannele; Samaan, Nader A.; Soder, Lennart; O'Malley, Mark J.

2011-05-04T23:59:59.000Z

5

Distributed Wind Policy Comparison Tool Website | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Distributed Wind Policy Comparison Tool Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Policy Comparison Tool Website Focus Area: Renewable Energy Topics: Security & Reliability Website: www.eformativeoptions.com/dwpolicytool/ Equivalent URI: cleanenergysolutions.org/content/distributed-wind-policy-comparison-to Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Project Development Regulations: "Utility/Electricity Service Costs,Feed-in Tariffs,Net Metering & Interconnection" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

6

wind power capacity | OpenEI  

Open Energy Info (EERE)

capacity capacity Dataset Summary Description These estimates are derived from a composite of high resolution wind resource datasets modeled for specific countries with low resolution data originating from the National Centers for Environmental Prediction (United States) and the National Center for Atmospheric Research (United States) as processed for use in the IMAGE model. The high resolution datasets were produced by the National Renewable Energy Laboratory (United States), Risø DTU National Laboratory (Denmark), the National Institute for Space Research (Brazil), and the Canadian Wind Energy Association. The data repr Source National Renewable Energy Laboratory Date Released Unknown Date Updated Unknown Keywords area capacity clean energy international

7

Capacity Value of Wind Power - Summary  

Science Conference Proceedings (OSTI)

Power systems are planned such that they have adequate generation capacity to meet the load, according to a defined reliability target. The increase in the penetration of wind generation in recent years has led to a number of challenges for the planning and operation of power systems. A key metric for generation system adequacy is the capacity value of generation. The capacity value of a generator is the contribution that a given generator makes to generation system aequacy. The variable and stochastic nature of wind sets it apart from conventional energy sources. As a result, the modeling of wind generation in the same manner as conventional generation for capacity value calculations is inappropriate. In this paper a preferred method for calculation of the capacity value of wind is described and a discussion of the pertinent issues surrounding it is given. Approximate methods for the calculation are also described with their limitations highlighted. The outcome of recent wind capacity value analyses in Europe and North America, along with some new analysis, are highlighted with a discussion of relevant issues also given.

O'Malley, M.; Milligan, M.; Holttinen, H.; Dent, C.; Keane, A.

2010-01-01T23:59:59.000Z

8

Wind Gains ground, hitting 33 GW of installed capacity  

Science Conference Proceedings (OSTI)

The U.S. currently has 33 GW of installed wind capacity. Wind continues to gain ground, accounting for 42 percent of new capacity additions in the US in 2008.Globally, there are now 146 GW of wind capacity with an impressive and sustained growth trajectory that promises to dominate new generation capacities in many developing countries. The U.S., however, lags many European countries, with wind providing roughly 2 percent of electricity generation.

NONE

2010-06-15T23:59:59.000Z

9

Capacity Requirements to Support Inter-Balancing Area Wind Delivery  

DOE Green Energy (OSTI)

Paper examines the capacity requirements that arise as wind generation is integrated into the power system and how those requirements change depending on where the wind energy is delivered.

Kirby, B.; Milligan, M.

2009-07-01T23:59:59.000Z

10

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources  

DOE Green Energy (OSTI)

This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

Laxson, A.; Hand, M. M.; Blair, N.

2006-10-01T23:59:59.000Z

11

Property:PotentialOnshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOnshoreWindCapacity PotentialOnshoreWindCapacity Jump to: navigation, search Property Name PotentialOnshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Onshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

12

Property:PotentialOffshoreWindCapacity | Open Energy Information  

Open Energy Info (EERE)

PotentialOffshoreWindCapacity PotentialOffshoreWindCapacity Jump to: navigation, search Property Name PotentialOffshoreWindCapacity Property Type Quantity Description The nameplate capacity technical potential from Offshore Wind for a particular place. Use this property to express potential electric energy generation, such as Nameplate Capacity. The default unit is megawatts (MW). For spatial capacity, use property Volume. Acceptable units (and their conversions) are: 1 MW,MWe,megawatt,Megawatt,MegaWatt,MEGAWATT,megawatts,Megawatt,MegaWatts,MEGAWATT,MEGAWATTS 1000 kW,kWe,KW,kilowatt,KiloWatt,KILOWATT,kilowatts,KiloWatts,KILOWATT,KILOWATTS 1000000 W,We,watt,watts,Watt,Watts,WATT,WATTS 1000000000 mW,milliwatt,milliwatts,MILLIWATT,MILLIWATTS 0.001 GW,gigawatt,gigawatts,Gigawatt,Gigawatts,GigaWatt,GigaWatts,GIGAWATT,GIGAWATTS

13

Stakeholder Engagement and Outreach: U.S. Installed Wind Capacity  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Installed Wind Capacity This page has maps of the United States that show installed wind capacity by state and its progression. This map shows the installed wind capacity in megawatts. As of September 30, 2012, 51,630 MW have been installed. Alaska, 16 MW; Hawaii, 112 MW; Washington, 2,699 MW; Oregon, 3,153 MW; California, 4,570 MW; Nevada, 152; Idaho, 675 MW; Utah, 325 MW; Arizona, 238 MW; Montana, 395 MW; Wyoming, 1,410 MW; Colorado, 1,805 MW; New Mexico, 778 MW; North Dakota, 1,469 MW; South Dakota, 784 MW; Nebraska, 337 MW; Kansas, 1,877 MW; Oklahoma, 2,400 MW; Texas, 10,929 MW; Minnesota, 2,717 MW; Iowa, 4,536 MW; Missouri, 459 MW; Wisconsin, 636 MW; Illinois, 3,055 MW; Tennessee, 29 MW; Michigan, 515 MW; Indiana, 1,343 MW; Ohio, 420 MW; West Virginia, 583 MW; Pennsylvania, 1,029 MW; Maryland, 120 MW; Delaware, 2 MW; New Jersey, 9 MW; New York, 1,418 MW; Vermont, 46 MW; New Hampshire, 125 MW; Massachusetts, 64 MW; Rhode Island, 3 MW; Maine, 397 MW.

14

Capacity Building in Wind Energy for PICs  

E-Print Network (OSTI)

of CO2 from fuel combustion · By contrast, the region is very vulnerable to severe weather events (biomass, hydro, and a bit of solar and wind). · Other half comes from imported oil, mainly dependency on petroleum are country specific but include wind, solar, small-scale hydro, biomass

15

Onshore wind max capacity 50.4% - what wind farm, what year? | OpenEI  

Open Energy Info (EERE)

Onshore wind max capacity 50.4% - what wind farm, what year? Onshore wind max capacity 50.4% - what wind farm, what year? Home How can I find more specific information about wind capacity? I can get the max/min/media stuff from the bar graphs. Is there any way to see individual wind farm capacity per year or get examples of performance? I'm helping run a tech site and some specific information would be helpful in dealing with skeptical individuals. Is there any more detailed information on capacity other than the graph summary statistics? (I do not know my way around this site, but I'm willing to learn.) Submitted by Bob Wallace on 15 June, 2013 - 00:23 1 answer Points: 0 Hi Bob- Thank you for posting your question. It seems that your question developed after viewing/using the Transparent Cost Database, however, I

16

OpenEI - wind power capacity  

Open Energy Info (EERE)

http:en.openei.orgdatasetstaxonomyterm4250 en Wind Resources By Class Per Country At 50m http:en.openei.orgdatasetsnode492

These estimates are derived from a...

17

Wind turbine cost of electricity and capacity factor  

Science Conference Proceedings (OSTI)

Wind turbines are currently designed to minimize the cost of electricity at the wind turbine (the busbar cost) in a given wind regime, ignoring constraints on the capacity factor (the ratio of the average power output to the maximum power output). The trade-off between these two quantities can be examined in a straightforward fashion; it is found that the capacity factor can be increased by a factor of 30 percent above its value at the cost minimum for a ten percent increase in the busbar cost of electricity. This has important implications for the large-scale integration of wind electricity on utility grids where the cost of transmission may be a significant fraction of the cost of delivered electricity, or where transmission line capacity may be limited.

Cavallo, A.J. [Cavallo (A.J.), Princeton, NJ (United States)

1997-11-01T23:59:59.000Z

18

Determining the Capacity Value of Wind: An Updated Survey of Methods and Implementation; Preprint  

DOE Green Energy (OSTI)

This paper summarizes state and regional studies examining the capacity value of wind energy, how different regions define and implement capacity reserve requirements, and how wind energy is defined as a capacity resource in those regions.

Milligan, M.; Porter, K.

2008-06-01T23:59:59.000Z

19

Wind industry installs almost 5,300 MW of capacity in December ...  

U.S. Energy Information Administration (EIA)

Approximately 40% of the total 2012 wind capacity additions (12,620 MW) came online in December, just before the scheduled expiration of the wind production tax ...

20

Examination of Capacity and Ramping Impacts of Wind Energy on Power Systems  

DOE Green Energy (OSTI)

When wind plants serve load within the balancing area, no additional capacity required to integrate wind power into the system. We present some thought experiments to illustrate some implications for wind integration studies.

Kirby, B.; Milligan, M.

2008-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY  

E-Print Network (OSTI)

36 SEPTEMBER | 2012 WiNd TURbiNE CAPACiTY FRONTiER FROM SCAdA ThE WORld hAS SEEN A significant contributor to this growth. The wind turbine generated energy depends on the wind potential and the turbine of wind turbines. Supervi- sory control and data acquisition (SCADA) systems record wind turbine

Kusiak, Andrew

22

Dynamic valuation model For wind development in regard to land value, proximity to transmission lines, and capacity factor  

E-Print Network (OSTI)

Developing a wind farm involves many variables that can make or break the success of a potential wind farm project. Some variables such as wind data (capacity factor, wind rose, wind speed, etc.) are readily available in ...

Nikandrou, Paul

2009-01-01T23:59:59.000Z

23

Wind capacity additions slowed during 2010 - Today in Energy - U.S ...  

U.S. Energy Information Administration (EIA)

Growth in wind-powered electric generating capacity slowed in 2010, increasing by 11% from 2009 after increasing 40% on an average annual basis from 2005-2009.

24

Wind industry installs almost 5,300 MW of capacity in ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual ... Search EIA.gov. ... Wind plant developers reported throughout 2012 increasing amounts of new capacity scheduled ...

25

Increasing wind capacity requires new approaches to electricity ...  

U.S. Energy Information Administration (EIA)

Electric power generation from wind is increasing rapidly in the United States. Wind power is attractive for its lack of emissions and low operating costs, but its ...

26

Wind generating capacity is distributed unevenly across the United ...  

U.S. Energy Information Administration (EIA)

The highest concentration of wind turbines in the United States is in the Great Plains states, where the best conditions for onshore wind power generation exist.

27

Capacity Value of PV and Wind Generation in the NV Energy System  

Science Conference Proceedings (OSTI)

Calculation of photovoltaic (PV) and wind power capacity values is important for estimating additional load that can be served by new PV or wind installations in the electrical power system. It also is the basis for assigning capacity credit payments in systems with markets. Because of variability in solar and wind resources, PV and wind generation contribute to power system resource adequacy differently from conventional generation. Many different approaches to calculating PV and wind generation capacity values have been used by utilities and transmission operators. Using the NV Energy system as a study case, this report applies peak-period capacity factor (PPCF) and effective load carrying capability (ELCC) methods to calculate capacity values for renewable energy sources. We show the connection between the PPCF and ELCC methods in the process of deriving a simplified approach that approximates the ELCC method. This simplified approach does not require generation fleet data and provides the theoretical basis for a quick check on capacity value results of PV and wind generation. The diminishing return of capacity benefit as renewable generation increases is conveniently explained using the simplified capacity value approach.

Lu, Shuai; Diao, Ruisheng; Samaan, Nader A.; Etingov, Pavel V.

2012-09-01T23:59:59.000Z

28

Wind Plant Capacity Credit Variations: A Comparison of Results Using Multiyear Actual and Simulated Wind-Speed Data  

DOE Green Energy (OSTI)

Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter- annual variation in capacity credit is still understated by the synthetic data technique.

Milligan, Michael

1997-06-01T23:59:59.000Z

29

Capacity Assessment of a Transmission Tower under Wind Loading.  

E-Print Network (OSTI)

??Transmission towers play a vital role in power distribution networks and are often subject to strong wind loads. Lattice tower design is often based on (more)

Mara, Thomas G

2013-01-01T23:59:59.000Z

30

Multi-Objective Capacity Planning of a Pv-Wind-Diesel-Battery Hybrid Power System  

E-Print Network (OSTI)

A new solution methodology of the capacity design problem of a PV-Wind-Diesel-Battery Hybrid Power System (HPS) is presented. The problem is formulated as a Linear Programming (LP) model with two objectives: minimizing ...

Saif, A.

31

An examination of capacity and ramping impacts of wind energy on power systems  

Science Conference Proceedings (OSTI)

When wind serves load outside of the host balancing area, there can be additional capacity requirements - mitigated by faster markets and exacerbated by slower markets. A series of simple thought experiments is useful in illustrating the implications for wind integration studies. (author)

Kirby, Brendan; Milligan, Michael

2008-08-15T23:59:59.000Z

32

Investment Timing and Capacity Choice for Small-Scale Wind PowerUnder Uncertainty  

DOE Green Energy (OSTI)

This paper presents a method for evaluation of investments in small-scale wind power under uncertainty. It is assumed that the price of electricity is uncertain and that an owner of a property with wind resources has a deferrable opportunity to invest in one wind power turbine within a capacity range. The model evaluates investment in a set of projects with different capacity. It is assumed that the owner substitutes own electricity load with electricity from the wind mill and sells excess electricity back to the grid on an hourly basis. The problem for the owner is to find the price levels at which it is optimal to invest, and in which capacity to invest. The results suggests it is optimal to wait for significantly higher prices than the net present value break-even. Optimal scale and timing depend on the expected price growth rate and the uncertainty in the future prices.

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-11-28T23:59:59.000Z

33

Determining the Capacity Value of Wind: A Survey of Methods and Implementation; Preprint  

DOE Green Energy (OSTI)

This paper focuses on methodologies for determining the capacity value of generating resources, including wind energy and summarizes several important state and regional studies. Regional transmission organizations, state utility regulatory commissions, the North American Electric Reliability Council, regional reliability councils, and increasingly, the Federal Energy Regulatory Commission all advocate, call for, or in some instances, require that electric utilities and competitive power suppliers not only have enough generating capacity to meet customer demand but also have generating capacity in reserve in case customer demand is higher than expected, or if a generator or transmission line goes out of service. Although the basic concept is the same across the country, how it is implemented is strikingly different from region to region. Related to this question is whether wind energy qualifies as a capacity resource. Wind's variability makes this a matter of great debate in some regions. However, many regions accept that wind energy has some capacity value, albeit at a lower value than other energy technologies. Recently, studies have been published in California, Minnesota and New York that document that wind energy has some capacity value. These studies join other initiatives in PJM, Colorado, and in other states and regions.

Milligan, M.; Porter, K.

2005-05-01T23:59:59.000Z

34

Portfolio Revenues in a Changing Power Infrastructure: Responses of Existing Generation to New Wind Capacity  

Science Conference Proceedings (OSTI)

Owners of generating units must frequently reevaluate the financial and physical operations of their units in order to assess impacts of changing business regulatory conditions and to consider how investments to improve efficiency, flexibility, and emissions will perform. A little understood development now occurring is growth in wind capacity in response to state renewable performance standards. This report describes a case study of how new wind generation can affect the revenues and operation of existi...

2004-12-27T23:59:59.000Z

35

High Wind Penetration Impact on U.S. Wind Manufacturing Capacity...  

NLE Websites -- All DOE Office Websites (Extended Search)

steel demanded by eliminating the gearbox. Assuming 1400 kgMW copper for a direct drive generator with permanent magnets, 579 GW of capacity would require 782,000 tonnes of...

36

PBA Transportation Websites  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Websites for Transportation from PBA From: Patterson, Philip (DOE HQ) Subject: Useful Websites for Transportation from PBA Here are some websites you might want to check...

37

Capacity Value of Wind Plants and Overview of U.S. Experience (Presentation)  

DOE Green Energy (OSTI)

This presentation provides an overview and summary of the capacity value of wind power plants, based primarily on the U.S. experience. Resource adequacy assessment should explicitly consider risk. Effective load carrying capability (ELCC) captures each generators contribution to resource adequacy. On their own, reserve margin targets as a percent of peak can't capture risks effectively. Recommend benchmarking reliability-based approaches with others.

Milligan, M.

2011-08-01T23:59:59.000Z

38

State and National Wind Resource Potential at Various Capacity Factor Ranges for 80 and 100 Meters  

Wind Powering America (EERE)

February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) February 4, 2010 (updated April 13, 2011 to add Alaska and Hawaii) State Total (km 2 ) Excluded 2 (km 2 ) Available (km 2 ) Available % of State % of Total Windy Land Excluded Installed Capacity 3 (MW) Annual Generation (GWh) Alabama 15.9 13.3 2.6 0.00% 83.4% 13.2 42 Alaska 267,897.7 209,673.4 58,224.3 3.87% 78.3% 291,121.3 1,051,210 Arizona 611.7 417.3 194.4 0.07% 68.2% 972.1 3,100 Arkansas 1,130.0 687.5 442.5 0.32% 60.8% 2,212.5 7,215 C lif i 11 456 4 8 650 1 2 806 3 0 69% 75 5% 14 031 7 49 073 Estimates of Windy 1 Land Area and Wind Energy Potential, by State, for areas >= 35% Capacity Factor at 80m These estimates show, for each of the 50 states and the total U.S., the windy land area with a gross capacity factor (without losses) of 35% and greater at 80-m height above ground and the wind energy potential that could be possible from development of the "available" windy land area

39

Investment Timing and Capacity Choice for Small-Scale Wind Power Under Uncertainty  

E-Print Network (OSTI)

INVESTMENT TIMING AND CAPACITY CHOICE FOR SMALL-SCALE WINDvalue as a func- tion of capacity is declining because ais reduced with increased capacity. A possible approach for

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-01-01T23:59:59.000Z

40

Investment Timing and Capacity Choice for Small-Scale Wind Power Under Uncertainty  

E-Print Network (OSTI)

REFERENCES [1] American Wind Power Association (AWEA), Road-CHOICE FOR SMALL-SCALE WIND POWER UNDER UNCERTAINTY Stein-Power production from wind power has stochastic inflows, and

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

GIZ-Best Practices in Capacity Building Approaches | Open Energy  

Open Energy Info (EERE)

GIZ-Best Practices in Capacity Building Approaches GIZ-Best Practices in Capacity Building Approaches Jump to: navigation, search Tool Summary LAUNCH TOOL Name: GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Agency/Company /Organization: Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH Sector: Energy, Climate Focus Area: Solar, Wind Resource Type: Publications, Training materials, Lessons learned/best practices Website: prod-http-80-800498448.us-east-1.elb.amazonaws.com/w/images/8/80/Best_ Cost: Free GIZ-Best Practices in Capacity Building Approaches: Recommendations for the Design of a Long -Term Capacity Building Strategy for the Wind and Solar Sectors by the MEF Working Group Screenshot

42

Energy Information Systems website  

NLE Websites -- All DOE Office Websites (Extended Search)

and visualize the energy use of their buildings. Please visit the recently updated Energy Information System website for EETD research papers, case studies, and a download...

43

Recycling Electronic Waste - Website  

Science Conference Proceedings (OSTI)

Jun 18, 2010 ... Joined: 2/13/2007. Below is a link to a website that has articles on recycling electronic waste. http://www.scientificamerican....ectronic-waste-...

44

DOE Announces Effort to Advance U.S. Wind Power Manufacturing Capacity  

Energy.gov (U.S. Department of Energy (DOE))

MOU Launches Government-Industry Effort to Define and Develop Technologies and Siting Strategies Necessary to Achieve 20% Wind Energy by 2030...

45

Useful Renewable Energy Websites  

E-Print Network (OSTI)

Objectives: The course introduces principles of wind power production, design of wind turbines, location and design of wind farms, control of turbines and wind farms, predictive modeling, diagnostics, operations and maintenance, condition monitoring, health monitoring and of turbine components and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling and analysis aspect of the topics discussed in the class will be illustrated with examples and case studies.

Small Wind

2009-01-01T23:59:59.000Z

46

Investment Timing and Capacity Choice for Small-Scale Wind Power Under Uncertainty  

E-Print Network (OSTI)

Scott Distributed power generation (New York, Marcel Dekker,the renewable share of power generation. The American Windin small-scale wind power generation, as well as the choice

Fleten, Stein-Erik; Maribu, Karl Magnus

2004-01-01T23:59:59.000Z

47

The Economic Implications of Adding Wind Capacity to a Bulk Power Transmission Network  

E-Print Network (OSTI)

for electricity are determined by the cost of the most expensive generating units in the market. Hence, the savings in fuel costs due to wind generation will only be passed on to customers through the wholesale-optimization framework to determine the net economic benefit of adding an intrinsically intermittent source of generation

48

SBIR Websites of Participating Agencies  

Science Conference Proceedings (OSTI)

*. Bookmark and Share. Participating Agency SBIR Websites. Department of Agriculture; Department of Commerce (NOAA); Department of Defense: ...

2011-08-10T23:59:59.000Z

49

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

Bolinger, Mark

2013-01-01T23:59:59.000Z

50

Minster Wind | Open Energy Information  

Open Energy Info (EERE)

Minster Wind Jump to: navigation, search Name Minster Wind Address 240 W. Fifth St Place Minster, Ohio Zip 45865 Sector Services, Wind energy Website http:www.minster.comwindwi...

51

SRS - Website Map  

NLE Websites -- All DOE Office Websites (Extended Search)

1/2011 1/2011 SEARCH GO menu spacer SRS Home Savannah River Site Website Map About SRS Mission & Vision Where We Are SRS History Fact Sheets Tour SRS Contact SRS SRS Organizations Savannah River Nuclear Solutions, LLC (SRNS) Savannah River Remediation LLC (SRR) Savannah River Ecology Laboratory (SREL) USDA Forest Service - Savannah River Wackenhut Services, Inc. Mixed Oxide Fuel Fabrication Facility (MOX) Parsons Related Links & Resources Department of Energy (DOE) Department of Energy - Environmental Management (DOE-EM) National Nuclear Security Administration (NNSA) American Recovery & Reinvestment Act (ARRA) News News Releases Video Releases Fact Sheets Photo Gallery Speakers Media Contacts Business Opportunities Community Reuse Organization Technology Transfer Savannah River National Laboratory (SRNL)

52

Summary of Time Period-Based and Other Approximation Methods for Determining the Capacity Value of Wind and Solar in the United States: September 2010 - February 2012  

DOE Green Energy (OSTI)

This paper updates previous work that describes time period-based and other approximation methods for estimating the capacity value of wind power and extends it to include solar power. The paper summarizes various methods presented in utility integrated resource plans, regional transmission organization methodologies, regional stakeholder initiatives, regulatory proceedings, and academic and industry studies. Time period-based approximation methods typically measure the contribution of a wind or solar plant at the time of system peak - sometimes over a period of months or the average of multiple years.

Rogers, J.; Porter, K.

2012-03-01T23:59:59.000Z

53

Cape Verde Archipelago Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Archipelago Wind Farm Archipelago Wind Farm Jump to: navigation, search Name Cape Verde Archipelago Wind Farm Agency/Company /Organization African Development Bank Sector Energy Focus Area Renewable Energy, Wind Topics Finance, Market analysis, Background analysis Website http://www.europa-eu-un.org/ar Program Start 2010 Country Cape Verde UN Region Western Africa References Cape Verde Archipelago Wind Farm[1] Summary "The European Investment Bank (EIB) and African Development Bank (AfDB) agreed to provide EUR 45 million to design, build and operate onshore wind farms on four islands in the Cape Verde archipelago. This will be the first large scale wind project in Africa and the first renewable energy public private partnership in sub-Saharan Africa. The project will provide over 28MW of electricity generating capacity and help

54

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network (OSTI)

Wind EnergyAssociationwebsite,available:http://www.ewea.org. 3 Althoughexactturbineprices

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

55

Useful Renewable Energy Websites Journals  

E-Print Network (OSTI)

Objectives: The course introduces principles of wind power production, design of wind turbines, location and design of wind farms, control of turbines and wind farms, predictive modeling, diagnostics, operations and maintenance, condition monitoring, health monitoring and of turbine components and systems, wind farm performance optimization, and integration of wind power with a grid. The modeling and analysis aspect of the topics discussed in the class will be illustrated with examples and case studies.

Mingyang Li; Phd Student; Small Wind

2010-01-01T23:59:59.000Z

56

EC/UNDP Climate Change Capacity Building Program | Open Energy Information  

Open Energy Info (EERE)

EC/UNDP Climate Change Capacity Building Program EC/UNDP Climate Change Capacity Building Program Jump to: navigation, search Name UNDP/EC Climate Change Capacity Building Program Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP) Partner Multiple Ministries Sector Climate Focus Area Renewable Energy, Agriculture, Biomass, Buildings, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind Topics Background analysis, Baseline projection, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity, GHG inventory, Implementation, -Roadmap, -TNA, Policies/deployment programs, Resource assessment Website http://www.lowemissiondevelopm

57

Surface Transportation Board Website Citations | Department of...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Surface Transportation Board Website Citations Surface Transportation Board Website Citations Presentation made by Ray English for the NTSF annual meeting held from May 14-16, 2013...

58

Feasibility Study: Potential Enhancements for the LLNL Renewables Website  

DOE Green Energy (OSTI)

This feasibility study investigates additional improvements/extensions to the LLNL Renewables Website. Currently, the Renewables Website focuses on wind energy in California. Future enhancements will include other renewable energy sources. The extensions described below are focused along two separate yet related avenues: (1) Forecasting wildfire risk in the regions of California where new development may occur, as a part of the 'Million Solar Roofs' program. (2) Gaining a better understanding of the ecological components and potential of biofuels from forests in California. These two avenues are further described in the report. Following is a technical description of the Center for Fire Research and Outreach computing and web service capabilities.

Kearns, F; Krawchuk, M; Moritz, M; Stephens, S; Goldstein, N

2008-01-25T23:59:59.000Z

59

Final Report - Facilitating Wind Energy: Addressing Challenges around Visual Impacts, Noise, Credible Data, and Local Benefits through Creative Stakeholder Engagement  

DOE Green Energy (OSTI)

The project team consisting of the Consensus Building Institute, Inc., Raab Associates, Ltd., and the MIT-Harvard Program on Negotiation created a model and set of tools for building the capacity of state officials to effectively collaborate with diverse stakeholders in advancing wind development policy formation, wind facility siting, and transmission policy and siting. The model was used to enhance the ability of state officials to advance wind development in their states. Training was delivered in Cambridge, MA, in Spring 2011. The training and associated materials, including a Wind Energy Workbook, website, and simulations, is available for ongoing and widespread dissemination throughout the US.

Kate Harvey; Patrick Field; Elizabeth Fierman; Dr. Jonathan Raab; Dr. Lawrence Susskind

2011-08-04T23:59:59.000Z

60

Wind Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

FUPWG Meeting FUPWG Meeting NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy operated by the Alliance for Sustainable Energy, LLC Robi Robichaud November 18, 2009 Topics Introduction Review of the Current Wind Market Drivers for Wind Development Siting g Issues Wind Resource Assessment Wind Characteristics Wind Power Potential Basic Wind Turbine Theory Basic Wind Turbine Theory Types of Wind Turbines Facts About Wind Siting Facts About Wind Siting Wind Performance 1. United States: MW 1 9 8 2 1 9 8 3 1 9 8 4 1 9 8 5 1 9 8 6 1 9 8 7 1 9 8 8 1 9 8 9 1 9 9 0 1 9 9 1 1 9 9 2 1 9 9 3 1 9 9 4 1 9 9 5 1 9 9 6 1 9 9 7 1 9 9 8 1 9 9 9 2 0 0 0 2 0 0 1 2 0 0 2 2 0 0 3 2 0 0 4 2 0 0 5 2 0 0 6 2 0 0 7 2 0 0 8 Current Status of the Wind Industry Total Global Installed Wind Capacity Total Global Installed Wind Capacity Total Global Installed Wind Capacity

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Part of the Climate Change Problem . . . and the Solution? Chinese-Made Wind Power Technology and Opportunities for Dissemination  

E-Print Network (OSTI)

Lin Gan. 2002. Wind energy development in China:4. 24 Canadian Wind Energy Association (CanWEA). ofOxford;XinjiangWind EnergyCompanywebsite:http://

Lewis, Joanna I.

2005-01-01T23:59:59.000Z

62

Wind Economic Development (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

Not Available

2011-08-01T23:59:59.000Z

63

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

market for new wind power additions in 2011. India, Germany,wind-powered generating sets were: Denmark (42%), Spain (16%), Japan (13%), India (Wind Power Capacity Annual Capacity (2011, MW) China U.S. India

Bolinger, Mark

2013-01-01T23:59:59.000Z

64

Institution Name Institution Name Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Institution Name Institution Name Address Place Zip Notes Website Region Institution Name Institution Name Address Place Zip Notes Website Region ARCH Venture Partners Texas ARCH Venture Partners Texas Bridgepoint Parkway Bldg Suite Austin Texas http www archventure com Texas Area ARCH Venture Partners Washington ARCH Venture Partners Washington Second Avenue Suite Seattle Washington http www archventure com Pacific Northwest Area African Wind Energy Association South Africa African Wind Energy Association South Africa South Africa http www afriwea org en south africa htm Alternative Energy Institute Alternative Energy Institute russell long blvd Canyon Texas http www windenergy org Texas Area Applied Process Engineering Laboratory Applied Process Engineering Laboratory Hills Street Suite Richland Washington http www apel org

65

NREL's Renewable Energy Project Finance Website | Open Energy Information  

Open Energy Info (EERE)

NREL's Renewable Energy Project Finance Website NREL's Renewable Energy Project Finance Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL's RE Project Finance Website Agency/Company /Organization: NREL Sector: Energy Focus Area: Renewable Energy, Biomass, Energy Efficiency, Geothermal, Solar, - Concentrating Solar Power, - Solar Hot Water, - Solar PV, Wind Phase: Determine Baseline, Evaluate Options Topics: Background analysis, Finance, Market analysis, Policies/deployment programs Resource Type: Case studies/examples, Guide/manual, Lessons learned/best practices, Publications, Software/modeling tools User Interface: Website Website: financere.nrel.gov/finance/ Country: United States Cost: Free Northern America Coordinates: 39.7444909°, -105.1520004° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7444909,"lon":-105.1520004,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

66

2010 Wind Technologies Market Report  

E-Print Network (OSTI)

wind-powered generating sets were: Denmark (41%), Spain (17%), Japan (14%), India (Wind Power Capacity Annual Capacity (2010, MW) China U.S. Indiawind capacity additions in 2010 would have shrunk considerably relative to 2009. India,

Wiser, Ryan

2012-01-01T23:59:59.000Z

67

Talkin' Bout Wind Generation | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Administration Solar Generation Has a Bright Future Talkin' Bout Wind Generation Get Daily Energy Analysis Delivered to Your Website Natural Gas Production and U.S. Oil Imports...

68

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

TRANSPORTATIONPHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

69

Rural Living Canada Website | Open Energy Information  

Open Energy Info (EERE)

Rural Living Canada Website Rural Living Canada Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Rural Living Canada Website Focus Area: Renewable Energy Topics: Policy, Deployment, & Program Impact Website: rurallivingcanada.4t.com/Pag00167.htm Equivalent URI: cleanenergysolutions.org/content/rural-living-canada-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Net Metering & Interconnection This website is a compendium of Canadian non-urban energy access resources and websites since 1998. The website lists several resources for rural communities that cover more than just energy related technologies or

70

Vietnam-GTZ RE Policy and Wind Power Development Project | Open Energy  

Open Energy Info (EERE)

Vietnam-GTZ RE Policy and Wind Power Development Project Vietnam-GTZ RE Policy and Wind Power Development Project Jump to: navigation, search Logo: Vietnam-GTZ Wind Power Development Project Name Vietnam-GTZ Wind Power Development Project Agency/Company /Organization GTZ on behalf of the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) Partner Ministry of Industry and Trade (MoIT), The Electricity Regulatory Authority of Vietnam (ERAV), Electricity of Vietnam (EVN) Sector Energy Focus Area Wind Topics Policies/deployment programs, Background analysis Website http://www.gtz.de/en/themen/26 Program Start 2008 Program End 2011 Country Vietnam UN Region South-Eastern Asia References Establishment of a Legal Framework and Improvement of Technical Capacities for Grid - connected Wind Power Development in Viet Nam[1]

71

Renewable Energy and Energy Efficiency Partnership Ongoing Project Website  

Open Energy Info (EERE)

and Energy Efficiency Partnership Ongoing Project Website and Energy Efficiency Partnership Ongoing Project Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Renewable Energy and Energy Efficiency Partnership Ongoing Project Website Focus Area: Wind Topics: Deployment Data Website: www.reeep.org/16085/completed-projects.htm Equivalent URI: cleanenergysolutions.org/content/renewable-energy-and-energy-efficienc Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Public-Private Partnerships Regulations: "Fuel Efficiency Standards,Appliance & Equipment Standards and Required Labeling,Audit Requirements,Building Certification,Energy Standards,Feed-in Tariffs" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

72

Success Stories (Postcard), Wind Powering America (WPA)  

DOE Green Energy (OSTI)

Wind Powering America shares best practices and lessons learned on the Wind Powering America website. This postcard is an outreach tool that provides a brief description of the success stories as well as the URL.

Not Available

2012-02-01T23:59:59.000Z

73

Small Wind Information (Postcard)  

DOE Green Energy (OSTI)

The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

Not Available

2011-08-01T23:59:59.000Z

74

Miljoforden Website | Open Energy Information  

Open Energy Info (EERE)

Miljoforden Website Miljoforden Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Miljoforden Website Focus Area: Natural Gas Topics: Deployment Data Website: www.miljofordon.se/in-english/this-is-miljofordon-se Equivalent URI: cleanenergysolutions.org/content/miljoforden-website Language: "English,Swedish" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

75

Economic Impacts of Wind Turbine Development in U.S. Counties  

E-Print Network (OSTI)

15 percent)). Cumulative wind turbine capacity installed inper capita income of wind turbine development (measured inour sample, cumulative wind turbine capacity on a per person

J., Brown

2012-01-01T23:59:59.000Z

76

Geothermal: Website Policies and Important Links  

NLE Websites -- All DOE Office Websites (Extended Search)

GEOTHERMAL TECHNOLOGIES LEGACY COLLECTION - Website Policies and Important Links Geothermal Technologies Legacy Collection HelpFAQ | Site Map | Contact Us | Admin Log On Home...

77

New and Underutilitized Technologies Website Update  

NLE Websites -- All DOE Office Websites (Extended Search)

Technologies Website Update September 15, 2011 2 | FEDERAL ENERGY MANAGEMENT PROGRAM femp.energy.gov * Updated Technology Deployment Matrix - Phase 1: Moved from Excel to HTML *...

78

Developing Websites in the Environmental Energy Technologies...  

NLE Websites -- All DOE Office Websites (Extended Search)

Office EETD Safety Program Development Contact Us Department Contacts Media Contacts Developing Websites in the Environmental Energy Technologies Division: A Brown Bag Lunch...

79

QuarkNet Classroom Website Flowchart  

NLE Websites -- All DOE Office Websites (Extended Search)

Indicators of "Publishable Quality" Instructional Website Project Contact: Thomas Jordan - jordant@fnal.gov Web Maintainer: qnet-webmaster@fnal.gov Last Update: July 19, 1999...

80

Environmental Energy Technologies Division Energy Analysis Department Community Wind Power  

E-Print Network (OSTI)

Environmental Energy Technologies Division · Energy Analysis Department Community Wind Power projects * standard US commercial wind development #12;Environmental Energy Technologies Division · Energy % Community- Owned Community- Owned Wind Capacity (MW) Total Wind Capacity (MW) #12;Environmental Energy

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

NREL: Wind Research - Wind Powering America Hosts 12th Annual...  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Powering America Hosts 12th Annual All-States Summit: A Wind Powering America Success Story May 21, 2013 In 2012, the wind energy industry saw great expansion in capacity as...

82

Website Complexity Metrics for Measuring Navigability  

Science Conference Proceedings (OSTI)

In recent years, navigability has become the pivot of website designs. Existing works fall into two categories. The first is to evaluate and assess a website's navigability against a set of criteria or check list. The second is to analyse usage data ...

Yanlong Zhang; Hong Zhu; Sue Greenwood

2004-09-01T23:59:59.000Z

83

Website engineering in the real world  

Science Conference Proceedings (OSTI)

The website has become a staple in the business environment, to provide information and services, and connect business-to-business and business-to-customers. Many sites require re-engineering in order to facilitate the needed complexities and frequent ... Keywords: agility, design, development, usability, website

Chris Gibson

2006-03-01T23:59:59.000Z

84

Renewable Energy RFPs: Solicitation Response and Wind Contract Prices  

E-Print Network (OSTI)

Energy RFPs: Solicitation Response and Wind Contract Pricesenergy capacity (especially wind). Though detailed information on bid prices

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

85

Building Technologies Program Website | Open Energy Information  

Open Energy Info (EERE)

Building Technologies Program Website Building Technologies Program Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building Technologies Program Website Focus Area: Energy Efficiency Topics: Best Practices Website: www1.eere.energy.gov/buildings/index.html Equivalent URI: cleanenergysolutions.org/content/building-technologies-program-website Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Technical Assistance Regulations: "Building Codes,Appliance & Equipment Standards and Required Labeling" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

86

New England Wind Forum: Wind Power Economics  

Wind Powering America (EERE)

State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Cost Components Determining Factors Influencing Wind Economics in New England How does wind compare to the cost of other electricity options? Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share Wind Power Economics Long-Term Cost Trends Since the first major installations of commercial-scale wind turbines in the 1980s, the cost of energy from wind power projects has decreased substantially due to larger turbine generators, towers, and rotor lengths; scale economies associated with larger projects; improvements in manufacturing efficiency, and technological advances in turbine generator and blade design. These technological advances have allowed for higher generating capacities per turbine and more efficient capture of wind, especially at lower wind speeds.

87

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

with the section on offshore wind; Donna Heimiller and Billythe end of 2011, global offshore wind power capacity stoodEnergy's investments in offshore wind R&D. Interest exists

Bolinger, Mark

2013-01-01T23:59:59.000Z

88

Capacity Value of Solar Power  

Science Conference Proceedings (OSTI)

Evaluating the capacity value of renewable energy sources can pose significant challenges due to their variable and uncertain nature. In this paper the capacity value of solar power is investigated. Solar capacity value metrics and their associated calculation methodologies are reviewed and several solar capacity studies are summarized. The differences between wind and solar power are examined, the economic importance of solar capacity value is discussed and other assessments and recommendations are presented.

Duignan, Roisin; Dent, Chris; Mills, Andrew; Samaan, Nader A.; Milligan, Michael; Keane, Andrew; O'Malley, Mark

2012-11-10T23:59:59.000Z

89

EU-UNDP Climate Change Capacity Building Program | Open Energy Information  

Open Energy Info (EERE)

Building Program Building Program Jump to: navigation, search Name UNDP/EC Climate Change Capacity Building Program Agency/Company /Organization The European Union (EU), United Nations Development Programme (UNDP) Partner Multiple Ministries Sector Climate, Energy Focus Area Renewable Energy, Agriculture, Biomass, Buildings, Energy Efficiency, Forestry, Geothermal, Greenhouse Gas, Industry, Land Use, Offsets and Certificates, People and Policy, Solar, Transportation, Water Power, Wind Topics Background analysis, Baseline projection, Co-benefits assessment, - Energy Access, - Environmental and Biodiversity, GHG inventory, Implementation, Low emission development planning, -LEDS, -NAMA, -Roadmap, -TNA, Policies/deployment programs, Resource assessment Website http://www.lowemissiondevelopm

90

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

Wind Power Capacity Incremental Capacity (2007, MW) United States China Spain Germany Indiaand India (Table 3). With major development now occurring on several continents, wind

Wiser, Ryan H

2010-01-01T23:59:59.000Z

91

Wind energy | Open Energy Information  

Open Energy Info (EERE)

(Redirected from Wind) (Redirected from Wind) Jump to: navigation, search Wind energy is a form of solar energy.[1] Wind energy (or wind power) describes the process by which wind is used to generate electricity. Wind turbines convert the kinetic energy in the wind into mechanical power. A generator can convert mechanical power into electricity[2]. Mechanical power can also be utilized directly for specific tasks such as pumping water. The US DOE developed a short wind power animation that provides an overview of how a wind turbine works and describes the wind resources in the United States. Contents 1 Wind Energy Basics 1.1 Equation for Wind Power 2 DOE Wind Programs and Information 3 Worldwide Installed Capacity 3.1 United States Installed Capacity 4 Wind Farm Development 4.1 Land Requirements

92

Factors driving wind power development in the United States  

E-Print Network (OSTI)

1: CUMULATIVE U.S. WIND ENERGY CAPACITY policies and broadof wind energy development, resource potential, and policythe states tax policy, the Mountaineer Wind Energy Center

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

93

RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT  

E-Print Network (OSTI)

Coincidence of Demand and Wind Resource Diurnal PowerOutput Variations for Three Wind Regimes List of TablesCAPACITY CREDIT FOR WIND ARRAYS: THE PROBLEM . . . . . . .

Kahn, E.

2011-01-01T23:59:59.000Z

94

Wind Power: How Much, How Soon, and At What Cost?  

E-Print Network (OSTI)

been located on land; offshore wind capacity surpassed 1 G Woffshore, and deep offshore wind potential. Even assumingthe potential for offshore wind. As such, the size of the

Wiser, Ryan H

2010-01-01T23:59:59.000Z

95

Factors driving wind power development in the United States  

E-Print Network (OSTI)

s Largest Purchase of Wind Power, September 17, 2001.FACTORS DRIVING WIND POWER DEVELOPMENT IN THE UNITED STATESthe United States third in wind power capacity globally,

Bird, Lori A.; Parsons, Brian; Gagliano, Troy; Brown, Matthew H.; Wiser, Ryan H.; Bolinger, Mark

2003-01-01T23:59:59.000Z

96

DOE Launches Gasifipedia Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Gasifipedia Website Launches Gasifipedia Website DOE Launches Gasifipedia Website July 23, 2010 - 1:00pm Addthis Washington, DC - The Office of Fossil Energy's National Energy Technology Laboratory (NETL) has launched a new public website called "Gasifipedia," a comprehensive online collection of resources to promote better understanding of gasification technology. Gasification offers an alternative to more established ways of converting feedstocks such as coal and biomass into useful products such as electricity or fuels. It is anticipated to be the technology of choice for future near zero-emissions, coal-based plants that produce power, fuels, and/or chemicals. Gasification is a technological process that uses heat, pressure, and steam to convert any carbon-based raw material into synthesis gas, or syngas.

97

Updated Website - Data Management for Data Providers  

NLE Websites -- All DOE Office Websites (Extended Search)

Website: Data Management for Data Providers Website: Data Management for Data Providers Data providers have a newly designed section on the ORNL DAAC website. The ORNL DAAC team has reworked the data provider information pages on the website to create a well-defined path through the data management process-- from planning to creation to active archiving. The new web pages explain the practical steps to be taken by providers and ORNL DAAC staff to efficiently manage your data to prepare them for successful archiving and sharing. Building on the DAAC Best Practices for preparing environmental data sets, these steps guide beginning and experienced data providers through practical methods to share and archive your data. Please look through the new data management pages-- Overview, Plan, Manage, Archive, and DAAC Curation. If you have questions and would like to discuss

98

Rainbow - Multiway Semantic Analysis of Websites  

Science Conference Proceedings (OSTI)

The Rainbow project aims at the development of areusable, modular architecture for web (particularly,website) analysis. Individual knowledge-based modulesseparately analyse different types of web data andcommunicate the results via web-service interface. ...

Vojtech Svtek; Jirka Kosek; Martin Labsk; Jir Brza; Martin Kavalec; Miroslav Vacura; Vladimr Vvra; Vclav Snsel

2003-09-01T23:59:59.000Z

99

Property:Incentive/Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Property Type String Description Website for incentives. Could also contain additional information so making it a string type. Specifically,created for EZFeed but could be used for others. Pages using the property "Incentive/Website" Showing 25 pages using this property. (previous 25) (next 25) 4 401 Certification (Vermont) + http://www.nrb.state.vt.us/wrp/rules.htm + A Abatement of Air Pollution: Air Pollution Control Equipment and Monitoring Equipment Operation (Connecticut) + http://www.ct.gov/dep/lib/dep/air/regulations/mainregs/sec7.pdf + Abatement of Air Pollution: Connecticut Primary and Secondary Standards (Connecticut) + http://www.ct.gov/dep/lib/dep/air/regulations/mainregs/sec24.pdf + Abatement of Air Pollution: Control of Carbon Dioxide Emissions/Carbon Dioxide Budget Trading Program (Connecticut) + http://www.ct.gov/dep/lib/dep/air/regulations/mainregs/22a-174-31.pdf +

100

Laboratory Equipment Donation Program - Website Policies and...  

Office of Scientific and Technical Information (OSTI)

Javascript Not Enabled OSTI Security Website Policies and Important Links U.S. Department of Energy U.S. Deparment of Energy Office of Science Office of Scientific and Technical...

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Environmental Information Sources: Websites and Books  

E-Print Network (OSTI)

research and development projects on various forms of green energy, including solar, wind, bioenergy, hydroelectric,

Shrode, Flora

2010-01-01T23:59:59.000Z

102

DOE Patents Database - Website Policies and Important Links  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Javascript Not Enabled OSTI Security Website Policies and Important Links Some links on this page may take you to non-federal websites. Their...

103

Wind Powering America Podcasts, Wind Powering America (WPA)  

SciTech Connect

Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

Not Available

2012-04-01T23:59:59.000Z

104

Ocean Wave Wind Energy Ltd OWWE | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Ltd OWWE Jump to: navigation, search Name Ocean Wave Wind Energy Ltd OWWE Sector Marine and Hydrokinetic Website http:www.owwe.net Region Norway LinkedIn Connections...

105

Department of Energy Launches Website Supporting Energy-Saving...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Website Supporting Energy-Saving Reconstruction in the Gulf Coast Department of Energy Launches Website Supporting Energy-Saving Reconstruction in the Gulf Coast November...

106

Network-Driven Demand Side Management Website | Open Energy Informatio...  

Open Energy Info (EERE)

Side Management Website Jump to: navigation, search Name Network-Driven Demand Side Management Website Abstract This task of the International Energy Agency is a broad,...

107

Low Dose Radiation Research Program Website ?? Highlighting...  

NLE Websites -- All DOE Office Websites (Extended Search)

Website Highlighting Low Dose Research Bill Morgan Pacific Northwest National Laboratory Abstract The Low Dose Radiation Research Programs website is found at http:...

108

Low Dose Radiation Research Program Website ? Highlighting Low...  

NLE Websites -- All DOE Office Websites (Extended Search)

Research Program Website - Highlighting Low Dose Research Bill Morgan, Principal Investigator; Julie Wiley, Website Content Manager; Christine Novak, Webmaster The Low Dose...

109

New England Wind Forum: New England Wind Forum Newsletter  

Wind Powering America (EERE)

Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Forum Newsletter Follow news from the New England Wind Forum by subscribing to its newsletter. Newsletter The New England Wind Forum Newsletter informs stakeholders of New England Wind Energy Education Project announcements, plus, events, project, siting, and policy updates. Enter your email address below to begin the registration process. After you subscribe to the New England Wind Forum Newsletter, you can choose to subscribe to other energy efficiency and renewable energy news. Archived copies of this e-newsletter are not available, but all of the news items can be found on this website under news, events, and publications. If you have ideas or news items to contribute for future issues, please contact Sustainable Energy Advantage.

110

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

1992). Capacity credit of wind power in the Netherlands. the capacity credit of wind power in the presence ofSimulating Long-Term Wind- Power Output. Wind Engineering

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

111

Property:Event/Website | Open Energy Information  

Open Energy Info (EERE)

Event/Website Event/Website Jump to: navigation, search Property Name Event/Website Property Type URL Description A link to an external website devoted to the event. Pages using the property "Event/Website" Showing 25 pages using this property. (previous 25) (next 25) 1 11th Annual Workshop on Greenhouse Gas Emission Trading + http://www.iea.org/work/workshopdetail.asp?WS_ID=517 + 11th Annual Workshop on Greenhouse Gas Emission Trading Day 2 + http://www.iea.org/work/workshopdetail.asp?WS_ID=517 + 15th International Business Forum: Low Carbon High Growth - Business Models for a Changing Climate + https://gc21.giz.de/ibt/gc21/area=gc21/style=liny/paint=bizyb/en/usr/modules/gc21/ws-FLEXdialogue/info/ibt/ibf2012.sxhtml + 18th Africa Partnership Forum + http://www.africapartnershipforum.org/pages/0%2C2987%2Cen_37489563_37489442_1_1_1_1_1%2C00.html +

112

Stakeholder Engagement and Outreach: Learn About Wind  

Wind Powering America (EERE)

About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources Learn About Wind Learn about how wind energy generates power; where the best wind resources are; how you can own, host, partner with, and support wind power; and how and where wind energy has increased over the past decade. What Is Wind Power? Learn about how wind energy generates power, about wind turbine sizes and how wind turbines work, and how wind energy can be used. Also read examples of financial and business decisions. Where Is Wind Power? Go to maps to see the wind resource for utility-, community-, and residential-scale wind development. Or, see how much energy wind projects

113

Customer experience requirements for e-commerce websites  

Science Conference Proceedings (OSTI)

With the emergence of highly interactive applications on the World Wide Web has come a realisation that customer engagement is an increasingly important requirements consideration. It is currently not clear, however, what kinds of requirements websites ... Keywords: aesthetics, customer experience, e-commerce, electronic commerce, heuristics, purchase intentions, requirements engineering, usability, user satisfaction, web requirements, website content, website presentation, website usability

Oscar De Bruijn; Antonella De Angeli; Alistair Sutcliffe

2007-07-01T23:59:59.000Z

114

A task-based model of perceived website complexity  

Science Conference Proceedings (OSTI)

In this study, we propose that perceived website complexity (PWC) is central to understanding how sophisticated features of a website (such as animation, audio, video, and rollover effects) affect a visitor's experience at the site. Although previous ... Keywords: perceived website complexity, user perception, website usability

Sucheta Nadkarni; Reetika Gupta

2007-09-01T23:59:59.000Z

115

Detecting fake websites: the contribution of statistical learning theory  

Science Conference Proceedings (OSTI)

Fake websites have become increasingly pervasive, generating billions of dollars in fraudulent revenue at the expense of unsuspecting Internet users. The design and appearance of these websites makes it difficult for users to manually identify them as ... Keywords: design science, fake website detection, information systems development, internet fraud, statistical learning theory, website classification

Ahmed Abbasi; Zhu Zhang; David Zimbra; Hsinchun Chen; Jay F. Nunamaker

2010-09-01T23:59:59.000Z

116

On the Effective Capacity of the Dense-Water Reservoir for the Nordic Seas Overflow: Some Effects of Topography and Wind Stress  

Science Conference Proceedings (OSTI)

The overflow of the dense water mass across the GreenlandScotland Ridge (GSR) from the Nordic Seas drives the Atlantic meridional overturning circulation (AMOC). The Nordic Seas is a large basin with an enormous reservoir capacity. The volume of ...

Jiayan Yang; Lawrence J. Pratt

2013-02-01T23:59:59.000Z

117

Advanced Coal Wind Hybrid: Economic Analysis  

E-Print Network (OSTI)

Wind Power Installation, Cost, and Performance Trend: 2007 Office of Renewable Energycost of the additional capacity required to make the capacity contributions per unit of energy produced by wind

Phadke, Amol

2008-01-01T23:59:59.000Z

118

Wind Waves and Sun | Open Energy Information  

Open Energy Info (EERE)

Waves and Sun Jump to: navigation, search Name Wind Waves and Sun Sector Marine and Hydrokinetic Website http:www.windwavesandsun.com Region United States LinkedIn Connections...

119

Test Preparation Options Free Test Prep Websites  

E-Print Network (OSTI)

Test Preparation Options Free Test Prep Websites ACT: http: http://www.collegeboard.com/student/testing/sat/prep_one/test.html http://www.number2.com://testprep.princetonreview.com/CourseSearch/Search.aspx?itemCode=17&productType=F&rid=1&zip=803 02 Test Prep Classes Front Range Community College: Classes

Stowell, Michael

120

Programmer-focused website accessibility evaluations  

Science Conference Proceedings (OSTI)

Suggested methods for conducting website accessibility evaluations have typically focused on the needs of end-users who have disabilities. However, programmers, not people with disabilities, are the end-users of evaluations reports generated by accessibility ... Keywords: accessibility, evaluation, internet, reporting

Chris Law; Julie Jacko; Paula Edwards

2005-10-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Cultural differences across governmental website design  

Science Conference Proceedings (OSTI)

In this paper, we study the relevance of Hall and Hofstede's works to the web design beyond traditional domain areas like e-commerce, and advertising. Existing theories explain how design may be affected by cultural differences, and we explore how those ... Keywords: culture, design, website design

Nitesh Goyal; William Miner; Nikhil Nawathe

2012-03-01T23:59:59.000Z

122

Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

7 2.2.3 Wind Farm Production1. Rated Capacity of Wind Farms for which Monthly Productionpower from potential wind farm locations in California and

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

123

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest  

E-Print Network (OSTI)

1992). Capacity credit of wind power in the Netherlands. modeling as a tool for wind resource assessment andBurton, T. , et al. (2001). Wind Energy Handbook, John

Fripp, Matthias; Wiser, Ryan

2006-01-01T23:59:59.000Z

124

Definition: Small Scale Wind | Open Energy Information  

Open Energy Info (EERE)

Small scale wind projects are typically defined as projects with capacity ratings of 1 - 100 kW.1 View on Wikipedia Wikipedia Definition Related Terms wind power, wind energy,...

125

Providing Advice to Website Designers Towards Effective Websites Re-Organization  

Science Conference Proceedings (OSTI)

This paper presents a method to help website designers to reorganize sites towards making pages that are "hidden" from site visitors but contain information that is of high importance for them, more accessible to future visitors. Towards this aim we ...

Peter Tselios; Agapios Platis; George A. Vouros

2000-09-01T23:59:59.000Z

126

Wind Energy Developments: Incentives In Selected Countries  

Reports and Publications (EIA)

This paper discusses developments in wind energy for the countries with significant wind capacity. After a brief overview of world capacity, it examines development trends, beginning with the United States - the number one country in wind electric generation capacity until 1997.

Information Center

1999-02-01T23:59:59.000Z

127

Wind Power Development in the United States: Current Progress, Future Trends  

E-Print Network (OSTI)

and India. The technology has matured and, in good windWind Power Capacity Incremental Capacity (2007, MW) United States China Spain Germany India

Wiser, Ryan H

2009-01-01T23:59:59.000Z

128

Tax Credit for Solar and Wind Energy Systems on Residential Property...  

Open Energy Info (EERE)

of Revenue Website http:www.revenue.louisiana.govsectionsfaqdefault.aspx?typeGEN&catWIND Date added to DSIRE 2007-07-18 Last DSIRE Review 02052013 Last Substantive...

129

NREL: Wind Research - Midsize Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Midsize Wind Turbine Research Midsize Wind Turbine Research To facilitate the development and commercialization of midsize wind turbines (turbines with a capacity rating of more than 100 kW up to 1 MW), the U.S. Department of Energy (DOE) and NREL launched the Midsize Wind Turbine Development Project. In its latest study, NREL determined that there is a substantial market for midsize wind turbines. One of the most significant barriers to the midsize turbine market is the lack of turbines available for deployment; there are few midsize turbines on the market today. The objectives of the Midsize Wind Turbine Development Project are to reduce the barriers to wind energy expansion by filling an existing domestic technology gap; facilitate partnerships; accelerate maturation of existing U.S. wind energy businesses; and incorporate process improvement

130

Survey of Wind Integration Study Results  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25% during 2006 and reached almost 74,000 MW worldwide by the end of the year. This rapid growth is forecasted to continue for several years and result in large regional concentrations of wind generation capacity. An increasing amount of this wind energy is expected to come from offshore wind plants, especially in Europe. Because wind generation is an intermittent resource, and can not be dispatched, wind energy will affect the operation of th...

2007-03-19T23:59:59.000Z

131

20% Wind Energy by 2030  

DOE Green Energy (OSTI)

This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

Not Available

2008-07-01T23:59:59.000Z

132

Reconnecting America's Resource Center Website | Open Energy Information  

Open Energy Info (EERE)

Reconnecting America's Resource Center Website Reconnecting America's Resource Center Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Reconnecting America's Resource Center Website Focus Area: Clean Transportation Topics: Best Practices Website: www.reconnectingamerica.org/resource-center/ Equivalent URI: cleanenergysolutions.org/content/reconnecting-americas-resource-center Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation This website hosts Reconnecting America's Resource Center Website. Reconnecting America is a non-profit organization that promotes best practices in transit. This clearinghouse provides research, tools and case

133

The Energy Efficiency Exchange Website | Open Energy Information  

Open Energy Info (EERE)

The Energy Efficiency Exchange Website The Energy Efficiency Exchange Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Energy Efficiency Exchange Website Focus Area: Other Energy Efficiency Topics: Training Material Website: eex.gov.au/ Equivalent URI: cleanenergysolutions.org/content/energy-efficiency-exchange-website Language: English Policies: "Deployment Programs,Financial Incentives" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Retrofits This online joint initiative of Australia's national, state, and territorial governments aims to support the development and implementation of energy management and energy efficiency strategies among medium to large businesses. The website accomplishes this by providing information from

134

Script Handbook for Interactive Scientific Website Building  

E-Print Network (OSTI)

In this handbook, I collect the basic (and eventually upgraded) PHP scripts used for building the AMIDAS website (http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas/), an online interactive simulation/data analysis system for direct Dark Matter detection experiments. Some basic, often used commands of (X)HTML, CSS, JavaScript, HTML DOM, and PHP are also given in an appendix.

Chung-Lin Shan

2010-08-06T23:59:59.000Z

135

Script Handbook for Interactive Scientific Website Building  

E-Print Network (OSTI)

In this handbook, I collect the basic (and eventually upgraded) PHP scripts used for building the AMIDAS website (http://pisrv0.pit.physik.uni-tuebingen.de/darkmatter/amidas/), an online interactive simulation/data analysis system for direct Dark Matter detection experiments. Some basic, often used commands of (X)HTML, CSS, JavaScript, HTML DOM, and PHP are also given in the appendix.

Shan, Chung-Lin

2010-01-01T23:59:59.000Z

136

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

New England Wind Energy Education Project Conference and Workshop New England Wind Energy Education Project Conference and Workshop The New England Wind Energy Education Project (NEWEEP) held its one-day Conference and Workshop on June 7, 2011 in Marlborough, Massachusetts. The conference and workshop focused on presenting objective information relevant to issues of importance to individuals affected by wind energy proposals throughout New England. The conference was featured on the website of the Department of Energy's former Wind Powering America initiative: NEWEEP Convenes Conference and Workshop to Advance Social Acceptance of Well-Sited Wind Projects in New England: A Wind Powering America Success Story. Session I: Opening Plenary: Welcoming Remarks and Overview of New England Wind Project Development Activity

137

New England Wind Forum: New England Wind Energy Education Project  

Wind Powering America (EERE)

Webinars Webinars Conference Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share New England Wind Energy Education Project The New England Wind Energy Education Project (NEWEEP) is designed to complement the New England Wind Forum website and newsletter as a comprehensive source of objective information on wind energy issues in the New England region. The project, funded by the U.S. Department of Energy's (DOE's) former Wind Powering America Initiative under a 2-year grant, began as an eight-part webinar series and a conference. The NEWEEP webinar series provides the public with objective information to allow informed decisions about proposed wind energy projects throughout the New England region.

138

Generation of policy-rich websites from declarative models  

E-Print Network (OSTI)

Protecting sensitive data stored behind online websites is a major challenge, but existing techniques are inadequate. Automated website builders typically offer very limited options for specifying custom access policies. ...

Chang, Felix Sheng-Ho

2009-01-01T23:59:59.000Z

139

Home Energy Saver Website Leads the Way to Savingstown | Department...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Saver Website Leads the Way to Savingstown Home Energy Saver Website Leads the Way to Savingstown November 28, 2012 - 11:18am Addthis Visit the Home Energy Saver...

140

International Workshop on Small Scale Wind Energy for Developing Countries  

Open Energy Info (EERE)

Scale Wind Energy for Developing Countries Scale Wind Energy for Developing Countries Jump to: navigation, search Name International Workshop on Small Scale Wind Energy for Developing Countries Agency/Company /Organization Risoe DTU Sector Energy Focus Area Renewable Energy, Wind Topics Implementation, Technology characterizations Resource Type Workshop, Training materials, Lessons learned/best practices Website http://www.risoe.dtu.dk/~/medi References International Workshop on Small Scale Wind Energy for Developing Countries[1] Background "The workshop covers the following main themes: Wind energy technologies, their perspectives and applications in developing countries. Reliability of wind turbines, lifetime and strength of wind turbine components. Low cost and natural materials for wind turbines.

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Key website factors in e-business strategy  

Science Conference Proceedings (OSTI)

The design of a quality website, as part of e-business strategy, has become a key element for success in the online market. This article analyzes the main factors that must be taken into account when designing a commercial website, concentrating on the ... Keywords: Accessibility, Content, Navigability, Speed, Web Assessment Index (WAI), Website

Blanca HernNdez; Julio JimNez; M. Jos MartN

2009-10-01T23:59:59.000Z

142

Wind Powering America: Document Not Found  

Wind Powering America (EERE)

navigation to main content. U.S. Department of Energy Energy Efficiency and Renewable Energy navigation to main content. U.S. Department of Energy Energy Efficiency and Renewable Energy Wind Powering America Document Not Found This is a temporary URL for the U.S. Department of Energy's Wind Powering America website. Either this page does not reside on this temporary server or it does not actually exist. You may try to find it using the search engine. Your page may be located at this URL Illinois 50-Meter Wind Resource Map Indiana 50-Meter Wind Resource Map Missouri 50-Meter Wind Resource Map New Jersey 50-Meter Wind Resource Map Ohio 50-Meter Wind Resource Map New England Wind Projects Wind Energy for Schools - Project Locations Wind Energy Educational Programs and Training You may also find this page by manually navigating to it via Wind Powering

143

Wind Powering America Newsletter (Postcard)  

DOE Green Energy (OSTI)

Wind Powering America is a nationwide initiative of the U.S. Department of Energy's Wind Program designed to educate, engage, and enable critical stakeholders to make informed decisions about how wind energy contributes to the U.S. electricity supply. As part of Wind Powering America's outreach efforts, the team publishes a biweekly e-newsletter. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the a website page at which they can sign up for the e-newsletter.

Not Available

2012-08-01T23:59:59.000Z

144

installed capacity | OpenEI  

Open Energy Info (EERE)

installed capacity installed capacity Dataset Summary Description Estimates for each of the 50 states and the entire United States show Source Wind Powering America Date Released February 04th, 2010 (4 years ago) Date Updated April 13th, 2011 (3 years ago) Keywords annual generation installed capacity usa wind Data application/vnd.ms-excel icon Wind potential data (xls, 102.4 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period License License Other or unspecified, see optional comment below Comment Work of the U.S. Federal Government. Rate this dataset Usefulness of the metadata Average vote Your vote Usefulness of the dataset Average vote Your vote Ease of access Average vote Your vote Overall rating Average vote Your vote Comments

145

Heavy Section Ductile Iron Castings for Use in Wind Turbine ...  

Science Conference Proceedings (OSTI)

However, wind power still accounts for less than 2% of total energy production in the US. One hurdle to producing larger capacity wind turbine generators lies in...

146

Equilibrium pricing in electricity markets with wind power.  

E-Print Network (OSTI)

?? Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

147

Equilibrium pricing in electricity markets with wind power.  

E-Print Network (OSTI)

??Estimates from the World Wind Energy Association assert that world total wind power installed capacity climbed from 18 Gigawatt (GW) to 152 GW from 2000 (more)

Rubin, Ofir David

2010-01-01T23:59:59.000Z

148

Modeling and analysis of wind farm impacts on power systems.  

E-Print Network (OSTI)

??The wind energy industry has undergone a dramatic transformation during the last decade. The total operating wind power capacity in the world has increased greatly. (more)

Zhou, Fengquan, 1969-

2005-01-01T23:59:59.000Z

149

Building Technologies Office: Field Test Best Practices Website  

NLE Websites -- All DOE Office Websites (Extended Search)

Field Test Best Field Test Best Practices Website to someone by E-mail Share Building Technologies Office: Field Test Best Practices Website on Facebook Tweet about Building Technologies Office: Field Test Best Practices Website on Twitter Bookmark Building Technologies Office: Field Test Best Practices Website on Google Bookmark Building Technologies Office: Field Test Best Practices Website on Delicious Rank Building Technologies Office: Field Test Best Practices Website on Digg Find More places to share Building Technologies Office: Field Test Best Practices Website on AddThis.com... About Take Action to Save Energy Partner With DOE Activities Solar Decathlon Building America Research Innovations Research Tools Building Science Education Climate-Specific Guidance Solution Center

150

Energy.TooManyWebsites.gov | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy.TooManyWebsites.gov Energy.TooManyWebsites.gov Energy.TooManyWebsites.gov June 14, 2011 - 12:52pm Addthis Cammie Croft Cammie Croft Senior Advisor, Director of New Media & Citizen Engagement What are the steps? Identify our website footprint. Eliminate wasteful spending by consolidating and reducing websites. Establish clear governance and guidance. Yesterday, in a blog post titled TooManyWebsites.gov, my counterpart at the White House, Macon Phillips outlined the President and Vice-President's plans to improve how the federal government delivers information and services to the public online by reducing the number of websites it maintains. It's part of the Campaign to Cut Waste -- a new effort to root out wasteful spending at every agency and department in the federal government.

151

Canada's Fuel Consumption Guide Website | Open Energy Information  

Open Energy Info (EERE)

Canada's Fuel Consumption Guide Website Canada's Fuel Consumption Guide Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Canada's Fuel Consumption Guide Website Focus Area: Fuel Efficiency Topics: Market Analysis Website: oee.nrcan.gc.ca/transportation/tools/fuelratings/ratings-search.cfm Equivalent URI: cleanenergysolutions.org/content/canadas-fuel-consumption-guide-websit Language: English Policies: Regulations Regulations: Fuel Efficiency Standards This website provides a compilation of fuel consumption ratings for passenger cars and light-duty pickup trucks, vans and special purpose vehicles sold in Canada. The website links to the Fuel Consumption Guide and allows users to search for vehicles from current and past model years. It also provides information about vehicle maintenance and other practices

152

Standards for Municipal Small Wind Regulations and Small Wind Model Wind  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance < Back Eligibility Agricultural Commercial Fed. Government Industrial Institutional Local Government Nonprofit Residential Schools State Government Tribal Government Utility Savings Category Wind Buying & Making Electricity Program Info State New Hampshire Program Type Solar/Wind Permitting Standards In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy systems up to 100 kilowatts (kW) in capacity. Such wind turbines must be used primarily to produce energy for on-site consumption. The law identifies a several

153

Wind Energy Forecasting Technology Update: 2006  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25 and reached almost 60,000 MW worldwide during 2005. As wind capacity continues to grow and large regional concentrations of wind generation emerge, utilities and regional transmission organizations will increasingly need accurate same-day and next-day forecasts of wind energy generation to dispatch system generation and transmission resource and anticipate rapid changes of wind generation.

2006-12-05T23:59:59.000Z

154

Wind Energy Forecasting Technology Update: 2005  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25 and reached almost 60,000 MW worldwide during 2005. As wind capacity continues to grow and large regional concentrations of wind generation emerge, utilities and regional transmission organizations will increasingly need accurate same-day and next-day forecasts of wind energy generation to dispatch system generation and transmission resource and anticipate rapid changes of wind generation. The project objective is to summarize the results o...

2006-03-31T23:59:59.000Z

155

Alta Wind Energy Center | Open Energy Information  

Open Energy Info (EERE)

Alta Wind Energy Center Alta Wind Energy Center Address 10315 Oak Creek Road Place Mojave, California Zip 93501 Sector Wind energy Phone number 1-877-4WI-ND88 (1-877-494-6388) Website http://altawindenergycenter.co Region Southern CA Area References Alta Wind Energy Center[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! The Alta Wind Energy Center (AWEC) is located in the heart of one of the most proven wind resources in the United States - the Tehachapi-Mojave Wind Resource Area. Terra-Gen is developing the AWEC, California's largest wind energy project, adjacent to existing wind projects between the towns of Mojave and Tehachapi. Due to a welcoming community and the participation of a diverse group of landowners (private and public, local and non-local,

156

Wind Resource Map: Mexico | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Map: Mexico Wind Resource Map: Mexico Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Map: Mexico Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.altestore.com/howto/Reference-Materials/Wind-Resource-Map-Mexico/a Equivalent URI: cleanenergysolutions.org/content/wind-resource-map-mexico,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is on-shore wind resource map for rural power applications in Mexico. The map can be used to aid in appropriate siting of wind power installations. Please note that the wind speed classes are taken at 30 m (100 feet [ft]), instead of the usual 10 m (33 ft). Each wind power class should span two power densities. For example, Wind Power Class = 3

157

Property:Website | Open Energy Information  

Open Energy Info (EERE)

URL. URL. Pages using the property "Website" Showing 25 pages using this property. (previous 25) (next 25) 1 1366 Technologies + http://www.1366tech.com/ + 1st Light Energy, Inc. + http://1stlightenergy.com + 1st Mile + http://www.1stmile.dk/ + 2 2003 Climate Change Fuel Cell Buy-Down Program (Federal) + http://doe-iips.pr.doe.gov/iips/busopor.nsf/Solicitation%2BBy%2BNumber/398A9D69EEE9E3CB85256CAA006CE1C9?OpenDocument + 2008 Solar Technologies Market Report + http://www1.eere.energy.gov/solar/pdfs/46025.pdf + 2010 Carbon Sequestration Atlas of the United States and Canada: Third Edition + http://www.netl.doe.gov/technologies/carbon_seq/refshelf/atlasIII/2010atlasIII.pdf + 2010 Solar Market Transformation Analysis and Tools + http://www1.eere.energy.gov/solar/pdfs/2010_mt_overview.pdf +

158

Commonwealth Wind Incentive Program - Micro Wind Initiative | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commonwealth Wind Incentive Program - Micro Wind Initiative Commonwealth Wind Incentive Program - Micro Wind Initiative Commonwealth Wind Incentive Program - Micro Wind Initiative < Back Eligibility Commercial Fed. Government Industrial Institutional Local Government Multi-Family Residential Nonprofit Residential Schools State Government Tribal Government Savings Category Wind Buying & Making Electricity Maximum Rebate Public Projects: up to 4/W with maximum of $130,000 Non-Public Projects: up to 5.20/W with a maximum of $100,000 Program Info Funding Source Massachusetts Renewable Energy Trust Fund Start Date 4/1/2005 State Massachusetts Program Type State Rebate Program Rebate Amount Capacity-based Rebate = Rated Capacity (kW) * 460 +3200 Estimated Performance Rebate = Expected Production * 2.8 * (Rated Capacity^-0.29)

159

Stakeholder Engagement and Outreach: Regional Wind Activities  

Wind Powering America (EERE)

Regional Activities Regional Activities State Activities State Lands Siting Regional Wind Activities Learn more about regional activities in New England. New England Wind Forum The New England Wind Forum has its own website with information particular to the region and its own unique circumstances. Find regional events, news, projects, and information about wind technology, economics, markets for wind energy, siting considerations, policies and public acceptance issues as they all pertain to the New England region. The site was launched in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. Contacts | Website Policies | U.S. Department of Energy | USA.gov Content Last Updated: 9/2

160

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

Wind belt states include Colorado, Iowa, Kansas, Minnesota, Missouri, Montana, Nebraska, New Mexico, North Dakota, Oklahoma,Oklahoma all with more than 2,000 MW. Twenty-nine states had more than 100 MW of windWind Power Rankings: The Top 20 States Capacity (MW) Percentage of In-State Generation Annual (2011) California Illinois Iowa Minnesota Oklahoma

Bolinger, Mark

2013-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Science Open Access Journals - Website Policies/Important Links  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Website Policies and Important Links This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

162

Department of Energy Launches Website Supporting Energy-Saving  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Website Supporting Energy-Saving Website Supporting Energy-Saving Reconstruction in the Gulf Coast Department of Energy Launches Website Supporting Energy-Saving Reconstruction in the Gulf Coast November 22, 2005 - 2:55pm Addthis WASHINGTON, DC - The U.S. Department of Energy (DOE) today launched a Disaster Recovery and Building Reconstruction website at http://www.eere.energy.gov/buildings/ as part of its continuing effort to support hurricane victims in the Gulf Coast. The website provides relevant resources and information for consumers, state and local officials, builders and contractors, and encourages cost-effective, durable and energy-efficient reconstruction in areas devastated by recent hurricanes. "The Department of Energy's Disaster Recovery and Building Reconstruction website brings together collective resources, building research and lessons

163

Website Policies and Important Links | Scientific and Technical Information  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Website Policies and Important Links Print page Print page Email page Email page This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of

164

SC e-journals Website Policies and Important Links  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Website Policies and Important Links This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

165

First Wind (Formerly UPC Wind) | Open Energy Information  

Open Energy Info (EERE)

First Wind (Formerly UPC Wind) First Wind (Formerly UPC Wind) Address 2 Shaw Alley Place San Francisco, California Zip 94105 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 37.7889736°, -122.3985675° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.7889736,"lon":-122.3985675,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

166

ERCOT Wind Development  

Science Conference Proceedings (OSTI)

At present, Texas leads the nation in wind development. Capacity reached 8005 MW in 2008, an addition of over 5000 MW in two years. Further, the state is committed to expanding the transmission system to tap as much as 18,456 MW of wind power. Focusing on the period 2008-2012, this study examines the market response to wind capacity, particularly in the time leading up to the expansion of the Texas transmission system. The study is introductory in nature, providing a foundation for more extensive analysi...

2009-03-30T23:59:59.000Z

167

Short-term Wind Power Prediction for Offshore Wind Farms -Evaluation of Fuzzy-Neural Network Based Models  

E-Print Network (OSTI)

Short-term Wind Power Prediction for Offshore Wind Farms - Evaluation of Fuzzy-Neural Network Based of wind power capacities are likely to take place offshore. As for onshore wind parks, short-term wind of offshore farms and their secure integration to the grid. Modeling the behavior of large wind farms

Paris-Sud XI, Université de

168

Freight Best Practice Website | Open Energy Information  

Open Energy Info (EERE)

Freight Best Practice Website Freight Best Practice Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Freight Best Practice Website Focus Area: Public Transit Topics: Policy, Deployment, & Program Impact Website: www.freightbestpractice.org.uk/ Equivalent URI: cleanenergysolutions.org/content/freight-best-practice-website Language: "English,Welsh" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

169

Sustainable Logistics Website | Open Energy Information  

Open Energy Info (EERE)

Sustainable Logistics Website Sustainable Logistics Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Sustainable Logistics Website Focus Area: Clean Transportation Topics: Best Practices Website: www.duurzamelogistiek.nl/ Equivalent URI: cleanenergysolutions.org/content/sustainable-logistics-website Language: "English,Dutch" is not in the list of possible values (Abkhazian, Achinese, Acoli, Adangme, Adyghe; Adygei, Afar, Afrihili, Afrikaans, Afro-Asiatic languages, Ainu, Akan, Akkadian, Albanian, Aleut, Algonquian languages, Altaic languages, Amharic, Angika, Apache languages, Arabic, Aragonese, Arapaho, Arawak, Armenian, Aromanian; Arumanian; Macedo-Romanian, Artificial languages, Assamese, Asturian; Bable; Leonese; Asturleonese, Athapascan languages, Australian languages, Austronesian languages, Avaric, Avestan, Awadhi, Aymara, Azerbaijani, Balinese, Baltic languages, Baluchi, Bambara, Bamileke languages, Banda languages, Bantu (Other), Basa, Bashkir, Basque, Batak languages, Beja; Bedawiyet, Belarusian, Bemba, Bengali, Berber languages, Bhojpuri, Bihari languages, Bikol, Bini; Edo, Bislama, Blin; Bilin, Blissymbols; Blissymbolics; Bliss, Bosnian, Braj, Breton, Buginese, Bulgarian, Buriat, Burmese, Caddo, Catalan; Valencian, Caucasian languages, Cebuano, Celtic languages, Central American Indian languages, Central Khmer, Chagatai, Chamic languages, Chamorro, Chechen, Cherokee, Cheyenne, Chibcha, Chichewa; Chewa; Nyanja, Chinese, Chinook jargon, Chipewyan; Dene Suline, Choctaw, Chuukese, Chuvash, Classical Newari; Old Newari; Classical Nepal Bhasa, Classical Syriac, Coptic, Cornish, Corsican, Cree, Creek, Creoles and pidgins , Crimean Tatar; Crimean Turkish, Croatian, Cushitic languages, Czech, Dakota, Danish, Dargwa, Delaware, Dinka, Divehi; Dhivehi; Maldivian, Dogri, Dogrib, Dravidian languages, Duala, Dutch; Flemish, Dyula, Dzongkha, Eastern Frisian, Efik, Egyptian (Ancient), Ekajuk, Elamite, English, Erzya, Esperanto, Estonian, Ewe, Ewondo, Fang, Fanti, Faroese, Fijian, Filipino; Pilipino, Finnish, Finno-Ugrian languages, Fon, French, Friulian, Fulah, Ga, Gaelic; Scottish Gaelic, Galibi Carib, Galician, Ganda, Gayo, Gbaya, Geez, Georgian, German, Germanic languages, Gilbertese, Gondi, Gorontalo, Gothic, Grebo, Greek, Modern, Guarani, Gujarati, Gwich'in, Haida, Haitian; Haitian Creole, Hausa, Hawaiian, Hebrew, Herero, Hiligaynon, Himachali languages; Western Pahari languages, Hindi, Hiri Motu, Hittite, Hmong; Mong, Hungarian, Hupa, Iban, Icelandic, Ido, Igbo, Ijo languages, Iloko, Inari Sami, Indic languages, Indo-European languages, Indonesian, Ingush, Interlingue; Occidental, Inuktitut, Inupiaq, Iranian languages, Irish, Iroquoian languages, Italian, Japanese, Javanese, Judeo-Arabic, Judeo-Persian, Kabardian, Kabyle, Kachin; Jingpho, Kalaallisut; Greenlandic, Kalmyk; Oirat, Kamba, Kannada, Kanuri, Kara-Kalpak, Karachay-Balkar, Karelian, Karen languages, Kashmiri, Kashubian, Kawi, Kazakh, Khasi, Khoisan languages, Khotanese; Sakan, Kikuyu; Gikuyu, Kimbundu, Kinyarwanda, Kirghiz; Kyrgyz, Klingon; tlhIngan-Hol, Komi, Kongo, Konkani, Korean, Kosraean, Kpelle, Kru languages, Kuanyama; Kwanyama, Kumyk, Kurdish, Kurukh, Kutenai, Ladino, Lahnda, Lamba, Land Dayak languages, Lao, Latin, Latvian, Lezghian, Limburgan; Limburger; Limburgish, Lingala, Lithuanian, Lojban, Lower Sorbian, Lozi, Luba-Katanga, Luba-Lulua, Luiseno, Lule Sami, Lunda, Luo (Kenya and Tanzania), Lushai, Luxembourgish; Letzeburgesch, Macedonian, Madurese, Magahi, Maithili, Makasar, Malagasy, Malay, Malayalam, Maltese, Manchu, Mandar, Mandingo, Manipuri, Manobo languages, Manx, Maori, Mapudungun; Mapuche, Marathi, Mari, Marshallese, Marwari, Masai, Mayan languages, Mende, Mi'kmaq; Micmac, Minangkabau, Mirandese, Mohawk, Moksha, Mon-Khmer languages, Mongo, Mongolian, Mossi, Multiple languages, Munda languages, N'Ko, Nahuatl languages, Nauru, Navajo; Navaho, Ndebele, North; North Ndebele, Ndebele, South; South Ndebele, Ndonga, Neapolitan, Nepal Bhasa; Newari, Nepali, Nias, Niger-Kordofanian languages, Nilo-Saharan languages, Niuean, North American Indian languages, Northern Frisian, Northern Sami, Norwegian, Nubian languages, Nyamwezi, Nyankole, Nyoro, Nzima, Occitan (post 1500); Provençal, Ojibwa, Oriya, Oromo, Osage, Ossetian; Ossetic, Otomian languages, Pahlavi, Palauan, Pali, Pampanga; Kapampangan, Pangasinan, Panjabi; Punjabi, Papiamento, Papuan languages, Pedi; Sepedi; Northern Sotho, Persian, Philippine languages, Phoenician, Pohnpeian, Polish, Portuguese, Prakrit languages, Pushto; Pashto, Quechua, Rajasthani, Rapanui, Rarotongan; Cook Islands Maori, Romance languages, Romanian; Moldavian; Moldovan, Romansh, Romany, Rundi, Russian, Salishan languages, Samaritan Aramaic, Sami languages, Samoan, Sandawe, Sango, Sanskrit, Santali, Sardinian, Sasak, Scots, Selkup, Semitic languages, Serbian, Serer, Shan, Shona, Sichuan Yi; Nuosu, Sicilian, Sidamo, Sign Languages, Siksika, Sindhi, Sinhala; Sinhalese, Sino-Tibetan languages, Siouan languages, Skolt Sami, Slave (Athapascan), Slavic languages, Slovak, Slovenian, Sogdian, Somali, Songhai languages, Soninke, Sorbian languages, Sotho, Southern, South American Indian (Other), Southern Altai, Southern Sami, Spanish; Castilian, Sranan Tongo, Sukuma, Sumerian, Sundanese, Susu, Swahili, Swati, Swedish, Swiss German; Alemannic; Alsatian, Syriac, Tagalog, Tahitian, Tai languages, Tajik, Tamashek, Tamil, Tatar, Telugu, Tereno, Tetum, Thai, Tibetan, Tigre, Tigrinya, Timne, Tiv, Tlingit, Tok Pisin, Tokelau, Tonga (Nyasa), Tonga (Tonga Islands), Tsimshian, Tsonga, Tswana, Tumbuka, Tupi languages, Turkish, Turkmen, Tuvalu, Tuvinian, Twi, Udmurt, Ugaritic, Uighur; Uyghur, Ukrainian, Umbundu, Uncoded languages, Undetermined, Upper Sorbian, Urdu, Uzbek, Vai, Venda, Vietnamese, Volapük, Votic, Wakashan languages, Walamo, Walloon, Waray, Washo, Welsh, Western Frisian, Wolof, Xhosa, Yakut, Yao, Yapese, Yiddish, Yoruba, Yupik languages, Zande languages, Zapotec, Zaza; Dimili; Dimli; Kirdki; Kirmanjki; Zazaki, Zenaga, Zhuang; Chuang, Zulu, Zuni) for this property.

170

Preparing Guyana's REDD+ Participation: Developing Capacities for  

Open Energy Info (EERE)

Guyana's REDD+ Participation: Developing Capacities for Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Jump to: navigation, search Name Preparing Guyana's REDD+ Participation: Developing Capacities for Monitoring, Reporting and Verification Agency/Company /Organization Guyana Forestry Commission, The Government of Norway Sector Land Focus Area Forestry Topics Implementation, Policies/deployment programs, Background analysis Resource Type Workshop, Guide/manual Website http://unfccc.int/files/method Country Guyana UN Region Latin America and the Caribbean References Preparing Guyana's REDD+ Participation[1] Overview "In this context, the overall goal of the activities reported here are to develop a road map for the establishment of a MRV system for REDD+

171

University Launches Website for FIU Research Sponsored by EM | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

University Launches Website for FIU Research Sponsored by EM University Launches Website for FIU Research Sponsored by EM University Launches Website for FIU Research Sponsored by EM July 11, 2013 - 12:00pm Addthis The Applied Research Center at Florida International University covers four major environmental cleanup areas: radioactive waste processing, facility deactivation and decommissioning, soil and groundwater remediation and information technology development for environmental management. The Applied Research Center at Florida International University covers four major environmental cleanup areas: radioactive waste processing, facility deactivation and decommissioning, soil and groundwater remediation and information technology development for environmental management. MIAMI - A new website features research performed under a cooperative

172

TopTen Energy Efficient Products Website | Open Energy Information  

Open Energy Info (EERE)

TopTen Energy Efficient Products Website TopTen Energy Efficient Products Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: TopTen Energy Efficient Products Website Focus Area: Energy Efficiency Topics: Market Analysis Website: www.topten.info/ Equivalent URI: cleanenergysolutions.org/content/topten-energy-efficient-products-webs Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Industry Codes & Standards Regulations: Appliance & Equipment Standards and Required Labeling This Web portal intends to: 1) guide consumers to the most energy efficient products in Europe, China, and the United States; 2) provide policy

173

Property:Geothermal/NewsWebsite | Open Energy Information  

Open Energy Info (EERE)

search Property Name GeothermalNewsWebsite Property Type URL Description News Web URL Retrieved from "http:en.openei.orgwindex.php?titleProperty:Geothermal...

174

Berkeley Lab Cyber Security - Cyber Security Website - Berkeley...  

NLE Websites -- All DOE Office Websites (Extended Search)

Department of Energy logo Phone Book Jobs Search Contact Us About CPIC Intranet Cyber Home Resources Training Requirements Search Cyber Security Cyber Security Website FAQs...

175

EPA Fish Consumption Advisories Website | Data.gov  

NLE Websites -- All DOE Office Websites (Extended Search)

EPA Fish Consumption Advisories Website Safety DataTools Apps Challenges Resources Blogs Let's Talk Safety You are here Data.gov Communities Safety Data EPA Fish...

176

Low Dose Radiation Program: Links - Websites about Radiation  

NLE Websites -- All DOE Office Websites (Extended Search)

Websites About Radiation The ABC's of Nuclear Science A Teacher's Guide To The Nuclear Science Wall Chart Answers to Questions about Radiation and You Background Radiation:...

177

Royal Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Royal Wind Place Denver, Colorado Sector Wind energy Product Vertical Wind Turbines Year founded 2008 Website http://www.RoyalWindTurbines.c Coordinates 39.7391536°, -104.9847034° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7391536,"lon":-104.9847034,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

178

NREL: Wind Research - News Release Archives  

NLE Websites -- All DOE Office Websites (Extended Search)

09 09 September 14, 2009 IEA Wind Energy 2008 Annual Report Now Available for Free Download The IEA Annual Report for 2008 provides the latest information on wind industries in 20 International Energy Agency (IEA) Wind member countries. August 26, 2009 NWTC Installs Multimegawatt Research Turbines NREL's National Wind Technology Center installed the first of two multimegawatt wind turbines last week to be used for research to advance wind turbine performance and reliability. February 3, 2009 U.S. Wind Industry Takes Global Lead The U.S. wind energy industry broke another global record in 2008 by installing 8,358 megawatts (MW) of new capacity, bringing our nation's total wind energy capacity to 25,170 MW. The United States now claims the largest wind energy capacity in the world, taking the lead from Germany.

179

GENERATING CAPACITY  

E-Print Network (OSTI)

Evidence from the U.S. and some other countries indicates that organized wholesale markets for electrical energy and operating reserves do not provide adequate incentives to stimulate the proper quantity or mix of generating capacity consistent with mandatory reliability criteria. A large part of the problem can be associated with the failure of wholesale spot market prices for energy and operating reserves to rise to high enough levels during periods when generating capacity is fully utilized. Reforms to wholesale energy markets, the introduction of well-design forward capacity markets, and symmetrical treatment of demand response and generating capacity resources to respond to market and institutional imperfections are discussed. This policy reform program is compatible with improving the efficiency of spot wholesale electricity markets, the continued evolution of competitive retail markets, and restores incentives for efficient investment in generating capacity consistent with operating reliability criteria applied by system operators. It also responds to investment disincentives that have been associated with volatility in wholesale energy prices, limited hedging opportunities and to concerns about regulatory opportunism. 1

Paul L. Joskow; Paul L. Joskow; Paul L. Joskow

2006-01-01T23:59:59.000Z

180

Mountain Wind | Open Energy Information  

Open Energy Info (EERE)

Mountain Wind Mountain Wind Jump to: navigation, search Mountain Wind is a wind farm located in Uinta County, Wyoming. It consists of 67 turbines and has a total capacity of 140.7 MW. It is owned by Edison Mission Group.[1] Based on assertions that the site is near Fort Bridger, its approximate coordinates are 41.318716°, -110.386418°.[2] References ↑ http://www.wsgs.uwyo.edu/Topics/EnergyResources/wind.aspx ↑ http://www.res-americas.com/wind-farms/operational-/mountain-wind-i-wind-farm.aspx Retrieved from "http://en.openei.org/w/index.php?title=Mountain_Wind&oldid=132229" Category: Wind Farms What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load) Throttled (bot load)

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind Power Price Trends in the United States  

E-Print Network (OSTI)

Review] Wind Power Price Trends in the United States Markof these drivers i.e. , trends in U.S. wind power prices Capacity Wind Power Price Trends in the U.S. Berkeley Lab

Bolinger, Mark

2010-01-01T23:59:59.000Z

182

Wind Power Price Trends in the United States  

E-Print Network (OSTI)

should eventually help wind power regain the downward priceModern Energy Review] Wind Power Price Trends in the Unitedled the world in adding new wind power capacity in 2008, and

Bolinger, Mark

2010-01-01T23:59:59.000Z

183

A Review of Wind Project Financing Structures in the USA  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, andand Cumulative Growth in U.S. Wind Power Capacity CumulativeAbstract The rapid pace of wind power development in the

Bolinger, Mark A

2009-01-01T23:59:59.000Z

184

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

adds 18.9 GW of new wind power capacity in 2010. ? GlobalEnd Challenged Subsidies in Wind Power Case. ? Internationalemergence in the global wind power industry. ? Ph. D.

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

185

New England Wind Forum: Selling Wind Power  

Wind Powering America (EERE)

Selling Wind Power Selling Wind Power Markets are either well-developed or developing for each of the 'products' produced by wind generators. These include electricity products and generation attributes. Electricity Electricity can be used in two ways: on-site (interconnected behind a retail customer's meter) of for sales of electricity over the electric grid. On-site generation can displace a portion of a customer's purchases of electricity from the grid. In addition, net metering rules are in place at the state level that in some cases allow generation in excess of on-site load to be sold back to the local utility (see state pages for net metering specifics). For sales over the electricity grid, the Independent System Operator of New England (ISO New England) creates and manages a wholesale market for electric energy, capacity, and ancillary services within the New England Power Pool (NEPOOL). Wind generators may sell their electric energy and capacity in spot markets organized by the ISO, or they may contract with wholesale buyers to sell these products for any term to buyers operating in the ISO New England marketplace. Wind generators do not generally produce other marketable ancillary services. The ISO has rules specific to the operation of wind generators reflecting operations, scheduling, calculation of installed capacity credit, and so forth.

186

11march2007 Blowing in the wind  

E-Print Network (OSTI)

11march2007 Blowing in the wind Part of the answer to rising energy needs and costs may literally be blowing in the wind. Among sustainable sources of electricity, only wind energy has the capacity and technology needed to compete in the open marketplace. The largest onshore wind farm in Europe is being built

Genton, Marc G.

187

Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest  

E-Print Network (OSTI)

Modeling Utility-Scale Wind Power Plants Part 2: Capac- ityNakafuji, "Grid Im- pacts of Wind Power Variability: RecentParsons, and M. Milligan, "Wind Power Impacts on Electric-

Wiser, Ryan H

2008-01-01T23:59:59.000Z

188

United States Wind Resource Potential Chart  

Wind Powering America (EERE)

18,000 18,000 Rated Capacity Above Indicated CF (GW) United States - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

189

An Investigation of User's Mental Models on Website  

Science Conference Proceedings (OSTI)

Since mid 1990s Internet has been developing rapidly to become the most booming and emerging media in recent history and played an important role in human livelihood. People's demands on website interface interaction have thus been increasing. How to ... Keywords: Interactive Qualitative Analysis (IQA), Mental model, website user

Hui-Jiun Hu; Jen Yen

2009-07-01T23:59:59.000Z

190

A Reusable Multi-Agent Architecture for Active Intelligent Websites  

Science Conference Proceedings (OSTI)

In this paper a reusable multi-agent architecture for intelligent Websites is presented and illustrated for an electronic department store. The architecture has been designed and implemented using the compositional design method for multi-agent systems ... Keywords: information agent, intelligent website

Catholijn M. Jonker; Remco A. Lam; Jan Treur

2001-06-01T23:59:59.000Z

191

Property:Geothermal/Partner2Website | Open Energy Information  

Open Energy Info (EERE)

Partner2Website Partner2Website Jump to: navigation, search Property Name Geothermal/Partner2Website Property Type URL Description Partner 2 Website (URL) Pages using the property "Geothermal/Partner2Website" Showing 19 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.dri.edu/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.climatemaster.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://optimsoftware.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.altarockenergy.com/ +

192

Property:Geothermal/Partner5Website | Open Energy Information  

Open Energy Info (EERE)

Partner5Website Partner5Website Jump to: navigation, search Property Name Geothermal/Partner5Website Property Type URL Description Partner 5 Website (URL) Pages using the property "Geothermal/Partner5Website" Showing 6 pages using this property. A Alum Innovative Exploration Project Geothermal Project + http://www.westerngeco.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.thermasource.com/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://- + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

193

Property:Geothermal/Partner1Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Jump to: navigation, search Property Name Geothermal/Partner1Website Property Type URL Description Partner 1 Website (URL) Pages using the property "Geothermal/Partner1Website" Showing 25 pages using this property. (previous 25) (next 25) A Alum Innovative Exploration Project Geothermal Project + http://www.spectir.com/ + Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://www.fpl.com/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.apexhipoint.com/ + Application of a New Structural Model and Exploration Technologies to Define a Blind Geothermal System: A Viable Alternative to Grid-Drilling for Geothermal Exploration: McCoy, Churchill County, NV Geothermal Project + http://www.unr.edu/Geothermal/ +

194

BUILD UP: Energy Solutions for Better Buildings (Website) | Open Energy  

Open Energy Info (EERE)

BUILD UP: Energy Solutions for Better Buildings (Website) BUILD UP: Energy Solutions for Better Buildings (Website) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: BUILD UP: Energy Solutions for Better Buildings (Website) Focus Area: Energy Efficiency Topics: Best Practices Website: www.buildup.eu/home Equivalent URI: cleanenergysolutions.org/content/build-energy-solutions-better-buildin Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Training & Education Regulations: Building Certification This website serves as a forum for the exchange of best working practices and knowledge and the transfer of tools and resources. The BUILD UP initiative was established by the European Commission to support European

195

Property:Geothermal/Partner4Website | Open Energy Information  

Open Energy Info (EERE)

Partner4Website Partner4Website Jump to: navigation, search Property Name Geothermal/Partner4Website Property Type URL Description Partner 4 Website (URL) Pages using the property "Geothermal/Partner4Website" Showing 7 pages using this property. A Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.smu.edu/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sandia.gov/ + D Development of Exploration Methods for Engineered Geothermal Systems through Integrated Geophysical, Geologic and Geochemical Interpretation. Geothermal Project + http://www.utah.edu/portal/site/uuhome/ +

196

Property:Geothermal/Partner6Website | Open Energy Information  

Open Energy Info (EERE)

Partner6Website Partner6Website Jump to: navigation, search Property Name Geothermal/Partner6Website Property Type URL Description Partner 6 Website (URL) Pages using the property "Geothermal/Partner6Website" Showing 4 pages using this property. C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.sensortran.com/ + I Innovative Exploration Techniques for Geothermal Assessment at Jemez Pueblo, New Mexico Geothermal Project + http://www.pitt.edu/ + S Seismic Technology Adapted to Analyzing and Developing Geothermal Systems Below Surface-Exposed High-Velocity Rocks Geothermal Project + http://www.sercel.com/ + T The Snake River Geothermal Drilling Project - Innovative Approaches to Geothermal Exploration Geothermal Project + http://www.icdp-online.org/contenido/icdp/front_content.php +

197

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website | Open  

Open Energy Info (EERE)

Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bioenergy and Food Security Criteria and Indicators (BEFSCI) Website Focus Area: Other Biofuels Topics: Training Material Website: www.fao.org/bioenergy/foodsecurity/befsci/en/ Equivalent URI: cleanenergysolutions.org/content/bioenergy-and-food-security-criteria- Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This website-created by the Bioenergy and food Security project of the Food and Agriculture Organization of the United Nations (FAO)-provides policymakers and practitioners a set of criteria, indicators, good practices, and policy options for sustainable bioenergy production to

198

Property:Geothermal/Partner3Website | Open Energy Information  

Open Energy Info (EERE)

Partner3Website Partner3Website Jump to: navigation, search Property Name Geothermal/Partner3Website Property Type URL Description Partner 3 Website (URL) Pages using the property "Geothermal/Partner3Website" Showing 14 pages using this property. A Analysis of Energy, Environmental and Life Cycle Cost Reduction Potential of Ground Source Heat Pump (GSHP) in Hot and Humid Climate Geothermal Project + http://jobs.ornl.gov/ + Application of 2D VSP Imaging Technology to the Targeting of Exploration and Production Wells in a Basin and Range Geothermal System Humboldt House-Rye Patch Geothermal Area Geothermal Project + http://www.unr.edu/home/ + C Complete Fiber/Copper Cable Solution for Long-Term Temperature and Pressure Measurement in Supercritical Reservoirs and EGS Wells Geothermal Project + http://www.tetramertechnologies.com/ +

199

Property:Geothermal/AwardeeWebsite | Open Energy Information  

Open Energy Info (EERE)

AwardeeWebsite AwardeeWebsite Jump to: navigation, search Property Name Geothermal/AwardeeWebsite Property Type URL Description Awardee Website Pages using the property "Geothermal/AwardeeWebsite" Showing 25 pages using this property. (previous 25) (next 25) A A 3D-3C Reflection Seismic Survey and Data Integration to Identify the Seismic Response of Fractures and Permeable Zones Over a Known Geothermal Resource at Soda Lake, Churchill Co., NV Geothermal Project + http://www.magmaenergycorp.com/s/Home.asp + A Demonstration System for Capturing Geothermal Energy from Mine Waters beneath Butte, MT Geothermal Project + http://www.mtech.edu/ + A Geothermal District-Heating System and Alternative Energy Research Park on the NM Tech Campus Geothermal Project + http://www.nmt.edu/ +

200

Office of Nuclear Energy Launches New Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website Office of Nuclear Energy Launches New Website February 11, 2013 - 4:01pm Addthis The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. The Office of Nuclear Energy's mission is to advance nuclear power as a resource that can meet the United State's energy, environmental and national security needs. Assistant Secretary Lyons Assistant Secretary Lyons Assistant Secretary for Nuclear Energy What does this mean for me? Visit the new Office of Nuclear Energy website at energy.gov/ne. The Office of Nuclear Energy (NE) is pleased to introduce our new, updated public website: energy.gov/ne. The new site was designed to help facilitate users' access to NE

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Help Build a Better Energy Information Administration Website | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Help Build a Better Energy Information Administration Website Help Build a Better Energy Information Administration Website Help Build a Better Energy Information Administration Website February 10, 2012 - 1:11pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How can I participate? Visit EIA's beta site and offer feedback on their new tools. The U.S. Energy Information Administration (EIA) is launching a beta website that encourages the public, researchers, analysts and others to test and comment on the agency's latest product enhancements, and review other users' comments. This approach allows EIA to "crowd test" innovations before they are introduced on the agency's official website. The first features you can test on the beta site allow you to easily create

202

Help Build a Better Energy Information Administration Website | Department  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Help Build a Better Energy Information Administration Website Help Build a Better Energy Information Administration Website Help Build a Better Energy Information Administration Website February 10, 2012 - 1:11pm Addthis Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How can I participate? Visit EIA's beta site and offer feedback on their new tools. The U.S. Energy Information Administration (EIA) is launching a beta website that encourages the public, researchers, analysts and others to test and comment on the agency's latest product enhancements, and review other users' comments. This approach allows EIA to "crowd test" innovations before they are introduced on the agency's official website. The first features you can test on the beta site allow you to easily create

203

NREL-International Wind Resource Maps | Open Energy Information  

Open Energy Info (EERE)

International Wind Resource Maps International Wind Resource Maps Jump to: navigation, search Tool Summary Name: NREL-International Wind Resource Maps Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Website: www.nrel.gov/wind/international_wind_resources.html NREL-International Wind Resource Maps Screenshot References: International Wind Resource Maps [1] Logo: NREL-International Wind Resource Maps This resource provides access to NREL-developed wind resource maps and atlases for several countries. NREL's wind mapping projects have been supported by the U.S. Department of Energy, U.S. Agency for International Development, and United Nations International Programme. "NREL is helping to develop high-resolution projections of wind resources

204

electricity generating capacity | OpenEI  

Open Energy Info (EERE)

generating capacity generating capacity Dataset Summary Description The New Zealand Ministry of Economic Development publishes energy data including many datasets related to electricity. Included here are three electricity generating capacity datasets: annual operational electricity generation capacity by plant type (1975 - 2009); estimated generating capacity by fuel type for North Island, South Island and New Zealand (2009); and information on generating plants (plant type, name, owner, commissioned date, and capacity), as of December 2009. Source New Zealand Ministry of Economic Development Date Released Unknown Date Updated July 03rd, 2009 (5 years ago) Keywords biomass coal Electric Capacity electricity generating capacity geothermal Hydro Natural Gas wind Data application/vnd.ms-excel icon Operational Electricity Generation Capacity by Plant Type (xls, 42.5 KiB)

205

Wind Power Project Repowering: Financial Feasibility, Decision...  

NLE Websites -- All DOE Office Websites (Extended Search)

advancements, have resulted in significant increases in net capacity factors for utility-scale wind plants over the past 13 years (Lantz et al. 2012). Changes are...

206

ERCOT Wind Scraper | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » ERCOT Wind Scraper Jump to: navigation, search Tool Summary Name: ERCOT Wind Scraper Agency/Company /Organization: Prof. Mack Grady, Baylor University Sector: Energy Focus Area: Wind Resource Type: Software/modeling tools User Interface: Desktop Application Website: web.ecs.baylor.edu/faculty/grady/ OpenEI Keyword(s): Community Generated ERCOT Wind Scraper Screenshot References: W. Mack Grady[1] ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. ERCOT Wind Scraper retrieves, displays, and logs minute-by-minute system generation, load, and wind generation from ERCOT's public web site. Instructions are included in a zipped file along with the program.

207

European Wind Atlas: Offshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Offshore European Wind Atlas: Offshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Offshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/oceanmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-offshore,http://c Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European offshore wind resources over open sea map developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on the large scale are

208

European Wind Atlas: Onshore | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: Onshore European Wind Atlas: Onshore Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: Onshore Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.windatlas.dk/Europe/landmap.html Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-onshore,http://cl Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This is a European on-shore wind resources at 50 meters of altitude map, developed by Riso National Laboratory in 1989. The map shows the so-called generalised wind climate over Europe, also sometimes referred to as the regional wind climate or simply the wind atlas. In such a map, the influences of local topography have been removed and only the variations on

209

Community Wind Development Handbook | Open Energy Information  

Open Energy Info (EERE)

Community Wind Development Handbook Community Wind Development Handbook Jump to: navigation, search Tool Summary Name: Community Wind Development Handbook Agency/Company /Organization: Windustry Partner: AURI AG Innovations, The Minnesota Project, MC&PC, Clean Energy Resource Teams, Southwest Initiative Foundation Sector: Energy Focus Area: Wind, Economic Development Phase: Evaluate Options, Develop Goals, Prepare a Plan, Create Early Successes Resource Type: Guide/manual User Interface: Other Website: www.auri.org/research/Community%20Wind%20Handbook.pdf Cost: Free References: Community Wind Development Handbook[1] Provides developers practical knowledge of what to expect when developing commercial-scale community wind energy projects in the range of 2 to 50 Megawatts. Overview The Community Wind Development Handbook "is designed to give developers of

210

UNDP-Low Emission Capacity Building Programme | Open Energy Information  

Open Energy Info (EERE)

Programme Programme Jump to: navigation, search Logo: UNDP-Low Emission Capacity Building Programme Name UNDP-Low Emission Capacity Building Programme Agency/Company /Organization United Nations Development Programme (UNDP), European Union Sector Climate, Energy, Land, Water Topics Low emission development planning Resource Type Training materials Website http://www.undp.org/climatestr References UNDP-Low Emission Capacity Building Programme[1] UNDP-Low Emission Capacity Building Programme Screenshot "This collaborative programme aims to strengthen technical and institutional capacities at the country level, while at the same time facilitating inclusion and coordination of the public and private sector in national initiatives addressing climate change. It does so by utilizing the

211

Cape Wind | Open Energy Information  

Open Energy Info (EERE)

Wind Wind Jump to: navigation, search Name Cape Wind Address 75 Arlington Street Place Boston, Massachusetts Zip 02116 Sector Wind energy Product Developing America's first offshore wind farm Website http://www.capewind.org/ Coordinates 42.3511372°, -71.0703224° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3511372,"lon":-71.0703224,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

212

Deepwater Wind | Open Energy Information  

Open Energy Info (EERE)

Deepwater Wind Deepwater Wind Name Deepwater Wind Address 36-42 Newark Street Suite 402 Place Hoboken, New Jersey Zip 07030 Sector Wind energy Product offshore wind Phone number 201.850.1717 Website http://dwwind.com/ Coordinates 40.7366674°, -74.0295985° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.7366674,"lon":-74.0295985,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

213

Coriolis Wind | Open Energy Information  

Open Energy Info (EERE)

Coriolis Wind Coriolis Wind Jump to: navigation, search Logo: Coriolis Wind Name Coriolis Wind Place Great Falls, Virginia Zip 22066 Product Mid-Scale Wind Turbine Year founded 2007 Website http://www.corioliswind.com/ Coordinates 38.9981652°, -77.2883157° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.9981652,"lon":-77.2883157,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

214

Wind in the Electricity Infrastructure  

NLE Websites -- All DOE Office Websites (Extended Search)

Electrolysis-Utility Electrolysis-Utility Integration Workshop September 22, 2004 Mark McGree Director Resource Planning Xcel Energy September 22, 2004 Xcel Energy 2 Xcel Energy and Wind *Who we are? *Amount of wind? *Issues and Experiences September 22, 2004 Xcel Energy 3 Xcel Energy Utilities *Northern States Power *Cheyenne Light *PSC of Colorado *Southwestern PSC September 22, 2004 Xcel Energy 4 Wind on Xcel Energy Systems 1.8% 3.5% 165 SPS 2.0% 3.6% 222 PSCo 3.1% 5.8% 481 NSP 2004 Energy Penetration 2004 Capacity Penetration Contracted Wind System September 22, 2004 Xcel Energy 5 Planned Wind on System 4.3% 9.0% 445 SPS 5.8% 10.2% 722 PSCo 6.5% 12.3% 1125 NSP 2010 Energy Penetration 2010 Capacity Penetration 2010 Wind System September 22, 2004 Xcel Energy 6 Wind's Value *Cheapest resource with federal production tax credit - SPS

215

Wind turbine | Open Energy Information  

Open Energy Info (EERE)

turbine turbine Jump to: navigation, search Dictionary.png Wind turbine: A machine that converts wind energy to mechanical energy; typically connected to a generator to produce electricity. Other definitions:Wikipedia Reegle Contents 1 Types of Wind Turbines 1.1 Vertical Axis Wind Turbines 1.2 Horizontal Axis Wind Turbines 2 Wind Turbine Sizes 3 Components of a Wind Turbine 4 References Types of Wind Turbines There are two basic wind turbine designs: those with a vertical axis (sometimes referred to as VAWTs) and those with a horizontal axis (sometimes referred to as HAWTs). There are several manufacturers of vertical axis turbines, but they have not penetrated the "utility scale" (100 kW capacity and larger) market to the same degree as horizontal axis turbines.[1]

216

Wind Power Price Trends in the United States: Struggling to Remain Competitive in the Face of Strong Growth  

E-Print Network (OSTI)

Wind Power Capacity Incremental Capacity (2007, MW) United States China Spain Germany IndiaWind Generation as % of Electricity Consumption Austria Germany Denmark Australia Canada Norway Indiaand India (BTM Consult, 2008). With major development now occurring on several continents, wind

Bolinger, Mark A

2009-01-01T23:59:59.000Z

217

Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint  

DOE Green Energy (OSTI)

Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

2013-10-01T23:59:59.000Z

218

Website design in an international context: The role of gender in masculine versus feminine oriented countries  

Science Conference Proceedings (OSTI)

Previous research confirms there are differences between men and women concerning website design preferences. A few researchers have further suggested website preferences based on gender (i.e. whether one is a man or a woman) differ in countries that ... Keywords: Culture, Gender, Website design, Website satisfaction, Website trust

Dianne Cyr, Milena Head

2013-07-01T23:59:59.000Z

219

Wind Resource Atlas of Oaxaca | Open Energy Information  

Open Energy Info (EERE)

Resource Atlas of Oaxaca Resource Atlas of Oaxaca Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Resource Atlas of Oaxaca Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: www.nrel.gov/wind/pdfs/34519.pdf Equivalent URI: cleanenergysolutions.org/content/wind-resource-atlas-oaxaca,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource atlas identifies wind characteristics and distribution of wind resources in Oaxaca, Mexico, at a wind power density of 50 meters above ground. The detailed wind resource maps contained in the atlas facilitate the identification of prospective areas for use of wind energy technologies for utility-scale power generation, village power, and off-grid wind energy applications. The wind maps were created using a

220

NREL-Wind Resource Assessment Handbook | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessment Handbook Wind Resource Assessment Handbook Jump to: navigation, search Tool Summary LAUNCH TOOL Name: NREL-Wind Resource Assessment Handbook Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Focus Area: Wind Topics: Resource assessment Resource Type: Guide/manual, Training materials Website: www.nrel.gov/docs/legosti/fy97/22223.pdf NREL-Wind Resource Assessment Handbook Screenshot References: Wind Resource Assessment Handbook[1] Logo: NREL-Wind Resource Assessment Handbook This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy feasibility initiative. About "This handbook presents industry-accepted guidelines for planning and conducting a wind resource measurement program to support a wind energy

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Systems Performance Analyses of Alaska Wind-Diesel Projects; Toksook Bay, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Toksook Bay, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

222

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kotzebue, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kotzebue, Alaska. Data provided for this project include wind turbine output, average wind speed, average net capacity factor, and optimal net capacity factor based on Alaska Energy Authority wind data, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

223

Systems Performance Analyses of Alaska Wind-Diesel Projects; Selawik, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Selawik, Alaska. Data provided for this project include community load data, wind turbine output, diesel plant output, thermal load data, average wind speed, average net capacity factor, optimal net capacity factor based on Alaska Energy Authority wind data, average net wind penetration, and estimated fuel savings.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

224

Wind Energy Education and Training Programs (Postcard)  

SciTech Connect

As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce to support it. The Wind Powering America website features a map of wind energy education and training program locations at community colleges, universities, and other institutions in the United States. The map includes links to contacts and program details. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for wind energy education and training programs episodes.

Not Available

2012-07-01T23:59:59.000Z

225

EFRC Websites | U.S. DOE Office of Science (SC)  

NLE Websites -- All DOE Office Websites (Extended Search)

EFRC Websites EFRC Websites Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights News & Events Publications Contact BES Home Centers EFRC Websites Print Text Size: A A A RSS Feeds FeedbackShare Page External Websites of the Energy Frontier Research Centers Centers ordered alphabetically by state and then by center name Arizona Center for Bio-Inspired Solar Fuel Production (BISfuel) External link Devens Gust, Arizona State University Center for Interface Science: Solar Electric Materials (CISSEM) External link Neal R. Armstrong, University of Arizona California Center for Energy Efficient Materials (CEEM) External link John Bowers, University of California, Santa Barbara Center for Energy Nanoscience (CEN) External link P. Daniel Dapkus, University of Southern California

226

Field Test Best Practices Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Residential Buildings » Building America » Field Test Best Residential Buildings » Building America » Field Test Best Practices Website Field Test Best Practices Website Photo of a man standing in front of a door performing a blower door test. The Field Test Best Practices website is a start-to-finish best practice guide for building science researchers engaged in field evaluations of energy efficiency measures. Developed by the National Renewable Energy Laboratory (NREL), this site is a collaborative effort to improve the quality of research methods that aim to improve energy efficiency of homes. On this website, find detailed guidance on: Defining the research objectives Planning for and conducting a field test Choosing, testing, and installing components Selecting equipment and knowing when and how to use it.

227

Invert/EE-Lab Website | Open Energy Information  

Open Energy Info (EERE)

Page Page Edit with form History Facebook icon Twitter icon » Invert/EE-Lab Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Invert/EE-Lab Website Focus Area: Renewable Energy Topics: Policy Impacts Website: www.invert.at Equivalent URI: cleanenergysolutions.org/content/invertee-lab-website Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Project Development Regulations: Mandates/Targets This tool can be used to evaluate support schemes for renewable energy heating and cooling systems. It can help users simulate the effects of promotional programs on the energy carrier mix, CO2 reductions, and costs

228

Greenhouse Gas Regional Inventory Protocol (GRIP) Website | Open Energy  

Open Energy Info (EERE)

Greenhouse Gas Regional Inventory Protocol (GRIP) Website Greenhouse Gas Regional Inventory Protocol (GRIP) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Greenhouse Gas Regional Inventory Protocol (GRIP) Website Focus Area: Other Crosscutting Topics: Potentials & Scenarios Website: www.getagriponemissions.com/index-cycle.html Equivalent URI: cleanenergysolutions.org/content/greenhouse-gas-regional-inventory-pro Language: English Policies: Deployment Programs DeploymentPrograms: "Lead by Example" is not in the list of possible values (Audit Programs, Demonstration & Implementation, Green Power/Voluntary RE Purchase, High Performance Buildings, Industry Codes & Standards, Project Development, Public Tenders, Procurement, & Lead Examples, Public-Private Partnerships, Retrofits, Ride Share, Bike Share, etc., Technical Assistance, Training & Education, Voluntary Appliance & Equipment Labeling, Voluntary Industry Agreements) for this property.

229

Property:Incentive/Cont4Website | Open Energy Information  

Open Energy Info (EERE)

Website Website Jump to: navigation, search Property Name Incentive/Cont4Website Property Type URL Pages using the property "Incentive/Cont4Website" Showing 19 pages using this property. A AEP (Central and North) - CitySmart Program (Texas) + http://www.aepefficiency.com/projectsponsorlist/tnc.asp + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + http://www.aepefficiency.com/projectsponsorlist/tcc.asp + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + http://www.aepefficiency.com/projectsponsorlist/tnc.asp + B Blue Ridge Electric Cooperative - Heat Pump Loan Program (South Carolina) + http://www.blueridge.coop/ + C Chatham County - Green Building Rebate Program + http://www.chathamnc.org/Index.aspx?page=112 + ComEd, Nicor Gas, Peoples Gas & North Shore Gas - Bonus Rebate Program (Illinois) + http://www.peoplesgasdelivery.com +

230

Property:Incentive/ContWebsite | Open Energy Information  

Open Energy Info (EERE)

ContWebsite ContWebsite Jump to: navigation, search Property Name Incentive/ContWebsite Property Type URL Pages using the property "Incentive/ContWebsite" Showing 25 pages using this property. (previous 25) (next 25) 3 30% Business Tax Credit for Solar (Vermont) + http://www.state.vt.us/tax + 4 401 Certification (Vermont) + http://www.nrb.state.vt.us/wrp/index.htm + A AEP (Central and North) - CitySmart Program (Texas) + http://www.aepefficiency.com/TCC.html + AEP (Central and North) - Residential Energy Efficiency Programs (Texas) + http://www.clearesult.com/ + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + http://www.CLEAResult.com + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + http://www.aepefficiency.com/TCC.html +

231

DOE Showcases Websites for Tight Gas Resource Development | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Showcases Websites for Tight Gas Resource Development Showcases Websites for Tight Gas Resource Development DOE Showcases Websites for Tight Gas Resource Development July 30, 2009 - 1:00pm Addthis Washington, D.C. -- Two U.S. Department of Energy (DOE) projects funded by the Office of Fossil Energy's National Energy Technology Laboratory provide quick and easy web-based access to sought after information on tight-gas sandstone plays. Operators can use the data on the websites to expand natural gas recovery in the San Juan Basin of New Mexico and the central Appalachian Basin of West Virginia and Pennsylvania. As production from conventional natural gas resources declines, natural gas from tight-gas sandstone formations is expected to contribute a growing percentage to the nation's energy supply. "Tight gas" is natural gas

232

Find software developed by the DOE labs via updated website,...  

Office of Scientific and Technical Information (OSTI)

Find software developed by the DOE labs via updated website, ESTSC You can find scientific and technical software resulting from DOE-funded research at the Energy Science and...

233

NETL: News Release - Interactive Website Pinpoints Areas to Recover...  

NLE Websites -- All DOE Office Websites (Extended Search)

November 4, 2004 Interactive Website Pinpoints Areas to Recover More Oil, Gas TULSA, OK - A software program that projects how much oil or natural gas lies in a reservoir, and how...

234

Using the United States Patent Office Website as a Research ...  

Science Conference Proceedings (OSTI)

The ability to view and print full patent images is a great time- and money-saver because, prior to the availability of these patents on the USPTO website, copies...

235

Analyzing websites for user-visible security design flaws  

Science Conference Proceedings (OSTI)

An increasing number of people rely on secure websites to carry out their daily business. A survey conducted by Pew Internet states 42% of all internet users bank online. Considering the types of secure transactions being conducted, businesses are rigorously ...

Laura Falk; Atul Prakash; Kevin Borders

2008-07-01T23:59:59.000Z

236

Website Policies and Important Links | OSTI, US Dept of Energy...  

Office of Scientific and Technical Information (OSTI)

data that is collected is retained for as long as is needed for proper analysis and optimization of the website and is accessible only to employees whose job function...

237

Business Specific Online Information Extraction from German Websites  

Science Conference Proceedings (OSTI)

This paper presents a system that uses the domain name of a German business website to locate its information pages (e.g. company profile, contact page, imprint) and then identifies business specific information. We therefore concentrate on the extraction ...

Yeong Su Lee; Michaela Geierhos

2009-02-01T23:59:59.000Z

238

Redesigned CCS Website Offers Wealth of Information on Worldwide  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Redesigned CCS Website Offers Wealth of Information on Worldwide Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects Redesigned CCS Website Offers Wealth of Information on Worldwide Technology, Projects June 28, 2011 - 1:00pm Addthis Washington, DC - A wealth of information about worldwide carbon capture and storage (CCS) technologies and projects is available on the newly launched, updated and redesigned National Carbon Sequestration Database and Geographic Information System (NATCARB) website. NATCARB is an interactive virtual encyclopedia of key CCS information, including locations and information on field projects, a map of all publically announced worldwide CCS projects and their status; and the complete latest edition of NETL's assessment of carbon storage resource potential in the United States and portions of Canada.

239

State Government Websites With Indian Tribe Information | Department of  

NLE Websites -- All DOE Office Websites (Extended Search)

State Government Websites With Indian Tribe Information State Government Websites With Indian Tribe Information State Government Websites With Indian Tribe Information This list was compiled by the federal government's Interagency Working Group on Indian Affairs (IWGIA) as an aid to federal agency consultation with federally recognized Indian tribes. It is not intended to be an exhaustive source of information about Indian tribes in each state or about which tribes must be consulted by federal agencies for a proposed action or program within a particular state. The IWGIA has not verified the accuracy of the information. It is intended only to provide possible sources to learn about which tribes may be ancestral to a particular state. If an Indian tribe is not mentioned on a state's website, it cannot be assumed that the tribe has no interest in

240

DOE Launches New Website Aimed at Improving Industrial Energy Savings |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

New Website Aimed at Improving Industrial Energy New Website Aimed at Improving Industrial Energy Savings DOE Launches New Website Aimed at Improving Industrial Energy Savings November 8, 2005 - 2:19pm Addthis Washington, D.C. - Energy Secretary Samuel W. Bodman today announced the launch of a new website providing U.S. manufacturing plants a quick and easy way to sign up for the Department of Energy's Industrial Energy Saving Teams program. The program, launched on October 3, 2005 as part of a national energy saving effort, seeks to improve the energy efficiency of America's most energy-intensive manufacturing facilities through comprehensive energy assessments. "President Bush has called on all Americans to improve efficiency in light of expected higher energy prices this fall. Because they are so energy

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Final Scientific/Technical Report for Building Transmission Capacity in the Western Interconnection to Support a Low Carbon Future  

SciTech Connect

The Building Transmission Capacity grant activities focused on educating both policy makers (primarily at Public Utility Commissions) and utilities across the West. Western Grid Group (WGG), the grant recipient, chose three methods to reach these audiences - direct outreach, a website that contains information on policies and strategies to integrate more variable generation resources, and a report - The Best of the West, Policies and Practices to Support Transition to a Lower-Carbon Electric Sector in the Western Interconnection and that highlights what is working in the West. While all avenues for education are effective the Best of the West report is the first west-wide assessment of its kind. The report details incremental changes that are working to integrate variable generation but it also expounds on what fundamental or transformative changes are needed to get to the 20% wind penetration and beyond.

Amanda Ormond; Merrisa Walker

2011-03-31T23:59:59.000Z

242

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Powering America Webinar: Wind Power Economics: Past, Present, Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

243

NREL's Wind Powering America Team Helps Indiana Develop Wind Resources (Fact Sheet)  

SciTech Connect

How does a state advance, in just five years, from having no installed wind capacity to having more than 1000 megawatts (MW) of installed capacity? The Wind Powering America (WPA) initiative, based at the National Renewable Energy Laboratory (NREL), employs a state-focused approach that has helped accelerate wind energy deployment in many states. One such state is Indiana, which is now home to the largest wind plant east of the Mississippi.

2010-10-01T23:59:59.000Z

244

2011 Wind Technologies Market Report  

E-Print Network (OSTI)

part because 3.3% is a projection based on end-of-year 2011Power Monthly. ** Based on a projection of wind electricitydesign. Berkeley Labs projections of new renewable capacity

Bolinger, Mark

2013-01-01T23:59:59.000Z

245

How to Build a Small Wind Energy Business: Lessons from California; Preprint  

DOE Green Energy (OSTI)

This paper highlights the experience of one small wind turbine installer in California that installed more than 1 MW of small wind capacity in 6 years.

Sinclair, K.

2007-07-01T23:59:59.000Z

246

Summary World Wind Energy Data (from World on the Edge) | OpenEI  

Open Energy Info (EERE)

the Earth Policy Institute. This wind energy dataset includes the following cumulative installed wind power capacity datasets: World (1980 - 2009); Top ten countries (1980 -...

247

Design of resource to backbone transmission for a high wind penetration future.  

E-Print Network (OSTI)

??In a high wind penetration future, transmission must be designed to integrate groups of new wind farms with a high capacity inter-regional ``backbone" transmission system. (more)

Slegers, James Michael

2013-01-01T23:59:59.000Z

248

Analysis and Comparison of Low Voltage Ride Through Capability of Wind Power Generators.  

E-Print Network (OSTI)

??When the wind power accounted for a total generating capacity reaches a certain percentage, wind turbine's ability to maintain operation during a fault will affect (more)

Wu, Tung-Sheng

2013-01-01T23:59:59.000Z

249

I WIND POWER, SOCIETY, THIS BOOK: an introduction  

E-Print Network (OSTI)

Core turbine from the Energy Commission's "List of Eligible Small Wind Turbines" on the ERP website; 2. Energy Commission issued 249 R2 Forms for small wind systems that use the DyoCore turbine. Some of these R2 Forms1 BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

Groningen, Rijksuniversiteit

250

Model-based fault detection and isolation of a liquid-cooled frequency converter on a wind turbine  

Science Conference Proceedings (OSTI)

With the rapid development of wind energy technologies and growth of installed wind turbine capacity in the world, the reliability of the wind turbine becomes an important issue for wind turbine manufactures, owners, and operators. The reliability of ...

Peng Li, Peter Fogh Odgaard, Jakob Stoustrup, Alexander Larsen, Kim Mrk

2012-01-01T23:59:59.000Z

251

Wind Energy Update  

Wind Powering America (EERE)

by the Alliance for Sustainable Energy, LLC. by the Alliance for Sustainable Energy, LLC. Wind Energy Update Wind Powering America January 2012 NATIONAL RENEWABLE ENERGY LABORATORY Evolution of Commercial Wind Technology NATIONAL RENEWABLE ENERGY LABORATORY Small (≤100 kW) Homes Farms Remote Applications (e.g. water pumping, telecom sites, icemaking) Midscale (100-1000 kW) Village Power Hybrid Systems Distributed Power Large, Land-based (1-3 MW) Utility-scale wind farms Large Distributed Power Sizes and Applications Large, Offshore (3-7 MW) Utility-scale wind farms, shallow coastal waters No U.S. installations NATIONAL RENEWABLE ENERGY LABORATORY Capacity & Cost Trends As of January 2012 (AWEA) 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 $- $200 $400 $600 $800 $1,000 $1,200

252

Illinois Wind Workers Group  

Science Conference Proceedings (OSTI)

The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

David G. Loomis

2012-05-28T23:59:59.000Z

253

First Wind (Formerly UPC Wind) (Massachusetts) | Open Energy Information  

Open Energy Info (EERE)

(Massachusetts) (Massachusetts) Jump to: navigation, search Name First Wind (Formerly UPC Wind) Address 85 Wells Ave Place Newton Center, Massachusetts Zip 02459 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 42.293376°, -71.197719° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.293376,"lon":-71.197719,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

254

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. The Engineering ... section. I. Extreme Winds: ... II. Wind Effects on Buildings. Database ...

2013-01-17T23:59:59.000Z

255

Georgia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Georgia/Wind Resources/Full Version Georgia/Wind Resources/Full Version < Georgia‎ | Wind Resources Jump to: navigation, search Print PDF Georgia Wind Resources GeorgiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

256

California/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

California/Wind Resources/Full Version California/Wind Resources/Full Version < California‎ | Wind Resources Jump to: navigation, search Print PDF California Wind Resources CaliforniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

257

Kansas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kansas/Wind Resources/Full Version Kansas/Wind Resources/Full Version < Kansas‎ | Wind Resources Jump to: navigation, search Print PDF Kansas Wind Resources KansasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

258

Wisconsin/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wisconsin/Wind Resources/Full Version Wisconsin/Wind Resources/Full Version < Wisconsin‎ | Wind Resources Jump to: navigation, search Print PDF Wisconsin Wind Resources WisconsinMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

259

Nebraska/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Nebraska/Wind Resources/Full Version Nebraska/Wind Resources/Full Version < Nebraska‎ | Wind Resources Jump to: navigation, search Print PDF Nebraska Wind Resources NebraskaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

260

Michigan/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Michigan/Wind Resources/Full Version Michigan/Wind Resources/Full Version < Michigan‎ | Wind Resources Jump to: navigation, search Print PDF Michigan Wind Resources MichiganMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Texas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Texas/Wind Resources/Full Version Texas/Wind Resources/Full Version < Texas‎ | Wind Resources Jump to: navigation, search Print PDF Texas Wind Resources TexasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

262

Wyoming/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Wyoming/Wind Resources/Full Version Wyoming/Wind Resources/Full Version < Wyoming‎ | Wind Resources Jump to: navigation, search Print PDF Wyoming Wind Resources WyomingMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

263

Mississippi/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Mississippi/Wind Resources/Full Version Mississippi/Wind Resources/Full Version < Mississippi‎ | Wind Resources Jump to: navigation, search Print PDF Mississippi Wind Resources MississippiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

264

Washington/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Washington/Wind Resources/Full Version Washington/Wind Resources/Full Version < Washington‎ | Wind Resources Jump to: navigation, search Print PDF Washington Wind Resources WashingtonMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

265

Vermont/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Vermont/Wind Resources/Full Version Vermont/Wind Resources/Full Version < Vermont‎ | Wind Resources Jump to: navigation, search Print PDF Vermont Wind Resources VermontMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

266

Missouri/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Missouri/Wind Resources/Full Version Missouri/Wind Resources/Full Version < Missouri‎ | Wind Resources Jump to: navigation, search Print PDF Missouri Wind Resources MissouriMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

267

Idaho/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Idaho/Wind Resources/Full Version Idaho/Wind Resources/Full Version < Idaho‎ | Wind Resources Jump to: navigation, search Print PDF Idaho Wind Resources IdahoMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

268

Louisiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Louisiana/Wind Resources/Full Version Louisiana/Wind Resources/Full Version < Louisiana‎ | Wind Resources Jump to: navigation, search Print PDF Louisiana Wind Resources LouisianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

269

Massachusetts/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Massachusetts/Wind Resources/Full Version Massachusetts/Wind Resources/Full Version < Massachusetts‎ | Wind Resources Jump to: navigation, search Print PDF Massachusetts Wind Resources MassachusettsMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

270

Connecticut/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Connecticut/Wind Resources/Full Version Connecticut/Wind Resources/Full Version < Connecticut‎ | Wind Resources Jump to: navigation, search Print PDF Connecticut Wind Resources ConneticutMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

271

Tennessee/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Tennessee/Wind Resources/Full Version Tennessee/Wind Resources/Full Version < Tennessee‎ | Wind Resources Jump to: navigation, search Print PDF Tennessee Wind Resources Tennessee.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

272

ANL Wind Power Forecasting and Electricity Markets | Open Energy  

Open Energy Info (EERE)

ANL Wind Power Forecasting and Electricity Markets ANL Wind Power Forecasting and Electricity Markets Jump to: navigation, search Logo: Wind Power Forecasting and Electricity Markets Name Wind Power Forecasting and Electricity Markets Agency/Company /Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator and Horizon Wind Energy LLC, funded by U.S. Department of Energy Sector Energy Focus Area Wind Topics Pathways analysis, Technology characterizations Resource Type Software/modeling tools Website http://www.dis.anl.gov/project References Argonne National Laboratory: Wind Power Forecasting and Electricity Markets[1] Abstract To improve wind power forecasting and its use in power system and electricity market operations Argonne National Laboratory has assembled a team of experts in wind power forecasting, electricity market modeling, wind farm development, and power system operations.

273

Pennsylvania/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Pennsylvania/Wind Resources/Full Version Pennsylvania/Wind Resources/Full Version < Pennsylvania‎ | Wind Resources Jump to: navigation, search Print PDF Pennsylvania Wind Resources PennsylvaniaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

274

Virginia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Virginia/Wind Resources/Full Version Virginia/Wind Resources/Full Version < Virginia‎ | Wind Resources Jump to: navigation, search Print PDF Virginia Wind Resources VirginiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

275

Kentucky/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Kentucky/Wind Resources/Full Version Kentucky/Wind Resources/Full Version < Kentucky‎ | Wind Resources Jump to: navigation, search Print PDF Kentucky Wind Resources KentuckyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

276

Utah/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Utah/Wind Resources/Full Version Utah/Wind Resources/Full Version < Utah‎ | Wind Resources Jump to: navigation, search Print PDF Utah Wind Resources UtahMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

277

Hawaii/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Hawaii/Wind Resources/Full Version Hawaii/Wind Resources/Full Version < Hawaii‎ | Wind Resources Jump to: navigation, search Print PDF Hawaii Wind Resources HawaiiMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

278

Oklahoma/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Oklahoma/Wind Resources/Full Version Oklahoma/Wind Resources/Full Version < Oklahoma‎ | Wind Resources Jump to: navigation, search Print PDF Oklahoma Wind Resources OklahomaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

279

Maryland/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Maryland/Wind Resources/Full Version Maryland/Wind Resources/Full Version < Maryland‎ | Wind Resources Jump to: navigation, search Print PDF Maryland Wind Resources MarylandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

280

Indiana/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Indiana/Wind Resources/Full Version Indiana/Wind Resources/Full Version < Indiana‎ | Wind Resources Jump to: navigation, search Print PDF Indiana Wind Resources IndianaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Illinois/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Illinois/Wind Resources/Full Version Illinois/Wind Resources/Full Version < Illinois‎ | Wind Resources Jump to: navigation, search Print PDF Illinois Wind Resources IllinoisMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

282

Capacity Markets for Electricity  

E-Print Network (OSTI)

ternative Approaches for Power Capacity Markets, Papers andand Steven Stoft, Installed Capacity and Price Caps: Oil onElectricity Markets Have a Capacity requirement? If So, How

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

283

2. Gas Productive Capacity  

U.S. Energy Information Administration (EIA)

2. Gas Productive Capacity Gas Capacity to Meet Lower 48 States Requirements The United States has sufficient dry gas productive capacity at the wellhead to meet ...

284

EM Launches Revamped Website: New cutting-edge platform with sleek  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Revamped Website: New cutting-edge platform with sleek Launches Revamped Website: New cutting-edge platform with sleek appearance focuses on ease-of-use EM Launches Revamped Website: New cutting-edge platform with sleek appearance focuses on ease-of-use January 7, 2013 - 12:00pm Addthis A screenshot of the newly revamped EM website. A screenshot of the newly revamped EM website. EM's previous website EM's previous website A screenshot of the newly revamped EM website. EM's previous website WASHINGTON, D.C. - EM entered 2013 with a bold transition to a more user-friendly public website, http://energy.gov/em. EM launched the redesigned site after an extensive effort to recreate its old EM web pages and provide a modern Internet experience for website visitors. Based on Energy.gov's fresh innovative appearance and effective

285

EM Launches Revamped Website: New cutting-edge platform with sleek  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

EM Launches Revamped Website: New cutting-edge platform with sleek EM Launches Revamped Website: New cutting-edge platform with sleek appearance focuses on ease-of-use EM Launches Revamped Website: New cutting-edge platform with sleek appearance focuses on ease-of-use January 7, 2013 - 12:00pm Addthis A screenshot of the newly revamped EM website. A screenshot of the newly revamped EM website. EM's previous website EM's previous website A screenshot of the newly revamped EM website. EM's previous website WASHINGTON, D.C. - EM entered 2013 with a bold transition to a more user-friendly public website, http://energy.gov/em. EM launched the redesigned site after an extensive effort to recreate its old EM web pages and provide a modern Internet experience for website visitors. Based on Energy.gov's fresh innovative appearance and effective

286

United States (48 Contiguous States) Wind Resource Potential Chart  

Wind Powering America (EERE)

Rated Capacity Above Indicated CF (GW) Rated Capacity Above Indicated CF (GW) United States (48 Contiguous States) - Wind Resource Potential Cumulative Rated Capacity vs. Gross Capacity Factor (CF) 80 m The estimates show the potential gigawatts of rated capacity that could be installed on land above a given gross capacity factor (without losses) at 80-m and 100-m heights above ground. Areas greater than 30% at 80 m are generally considered to have suitable wind resource for potential wind development with today's advanced wind turbine technology. AWS Truewind, LLC developed the wind resource data for windNavigator® (http://navigator.awstruewind.com) with a spatial resolution of 200 m. NREL filtered the wind potential estimates to

287

U.S. wind generation increased 27% in 2011 | U.S. Energy ...  

U.S. Energy Information Administration (EIA)

tags: capacity electricity generation generation capacity renewable wind. Email Updates. RSS Feeds. Facebook. Twitter. YouTube. Add us to your site.

288

NREL: Renewable Resource Data Center - Wind Resource Information  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Resource Information Wind Resource Information Photo of five wind turbines at the Nine Canyon Wind Project. The Nine Canyon Wind Project in Benton County, Washington, includes 37 wind turbines and 48 MW of capacity. Detailed wind resource information can be found on NREL's Wind Research Web site. This site provides access to state and international wind resource maps. Wind Integration Datasets are provided to help energy professionals perform wind integration studies and estimate power production from hypothetical wind plants. In addition, RReDC offers Meteorological Field Measurements at Potential and Actual Wind Turbine Sites and a Wind Energy Resource Atlas of the United States. Wind resource maps are also available from the NREL Dynamic Maps, GIS Data, and Analysis Tools Web site.

289

AWEA Small Wind Turbine Global Market Study  

E-Print Network (OSTI)

wind turbines ­ those with rated capacities of 100 kilowatts (kW)1 and less ­ grew 15% in 2009 with 20 small wind turbines, 95 of which-- more than one-third--are based in the u.S. An estimated 100,000 unitsAWEA Small Wind Turbine Global Market Study YEAR ENDING 2009 #12;Summary 3 Survey Findings

Leu, Tzong-Shyng "Jeremy"

290

Stakeholder Engagement and Outreach: Wind Resource Potential  

Wind Powering America (EERE)

Wind Resource Potential Offshore Maps Community-Scale Maps Residential-Scale Maps Anemometer Loan Programs & Data Wind Resource Potential State Wind Resource Potential Tables Find state wind resource potential tables in three versions: Microsoft Excel 2007, 2003, and Adobe Acrobat PDF. 30% Capacity Factor at 80-Meters Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF Additional 80- and 100-Meter Wind Resource Potential Tables Microsoft 2007 Microsoft 2003 Adobe Acrobat PDF The National Renewable Energy Laboratory (NREL) estimated the windy land area and wind energy potential for each state using AWS Truepower's gross capacity factor data. This provides the most up to date estimate of how wind energy can support state and national energy needs. The table lists the estimates of windy land area with a gross capacity of

291

Wind Power in China | Open Energy Information  

Open Energy Info (EERE)

in China in China Jump to: navigation, search This article is a stub. You can help OpenEI by expanding it. Contents 1 Summary 2 Estimate Potential 3 Current Projects 4 China Manufacturers 4.1 Wind Companies in Wind Power in China 5 China's Wind Goals 6 References Summary Installed wind capacity: approximately 30 GW by end of 2010 (est), added 13.8 GW in 2009 Installed wind capacity doubled each year, Min Deqing China_2050_Wind_Technology_Roadmap Estimate Potential Offshore wind energy generation potential in China estimate to be 11,000 terawatt-hours (TWh) similar to that of the North Sea in western Europe.[1][2] Current Projects 7 large projects or "megabases" (2010) [3] Inner Mongolia approximately 4.3 GW capacity in 2010 (66 projects; 40 more planned)[4] 1.25 GW offshore project in Guangdong

292

DOE Gasoline Price Watch Website and Hotline | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Gasoline Price Watch Website and Hotline Gasoline Price Watch Website and Hotline DOE Gasoline Price Watch Website and Hotline April 20, 2006 - 12:26pm Addthis WASHINGTON, DC - Secretary of Energy Samuel W. Bodman today is reminding consumers about the Department of Energy's (DOE) gasoline price reporting system. Consumers can report activity at local gasoline filling stations that they believe may constitute "gouging" or "price fixing" by visiting gaswatch.energy.gov/. "There are many legitimate factors influencing the price consumers are paying at the pump, including growing demand, the high price of crude oil, the lingering effects of last summer's hurricanes on our refining sector and the regular transition of fuel blends as we head into the summer," said Secretary Bodman. "And while the majority of local merchants are fair and

293

Property:Incentive/Cont2Website | Open Energy Information  

Open Energy Info (EERE)

Cont2Website Cont2Website Property Type URL Pages using the property "Incentive/Cont2Website" Showing 25 pages using this property. (previous 25) (next 25) A AEP (Central and North) - CitySmart Program (Texas) + http://www.aepefficiency.com/SWEPCO.html + AEP (Central and SWEPCO) - Coolsaver A/C Tune Up (Texas) + https://www.aeptexas.com/Default.aspx + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + http://www.aepefficiency.com/SWEPCO.html + AEP SWEPCO - CitySmart Program (Texas) + http://www.centerpointenergy.com/about/contact/ + AEP SWEPCO - Commercial Solutions Program (Texas) + http://www.aepefficiency.com/SWEPCO.html + AEP SWEPCO - SCORE Program (Texas) + https://www.aeptexas.com/Default.aspx + AEP Texas - Commercial and Industrial Energy Efficiency Rebate Program (Texas) + http://www.aepefficiency.com/projectsponsorlist/tnc.asp +

294

Cosmological toolkit project featured on DOE energy website | Argonne  

NLE Websites -- All DOE Office Websites (Extended Search)

Cosmological toolkit project featured on DOE energy website Cosmological toolkit project featured on DOE energy website October 2, 2013 Tweet EmailPrint Researchers from Argonne National Laboratory, in partnership with Fermilab and Lawrence Berkeley National Laboratory, are developing a state-of-the-art toolkit for analyzing cosmological simulation data. The work was recently featured on the DOE website Energy.gov. Leading the Argonne team are Salman Habib, senior physicist and computational scientist in Argonne's High Energy Physics and Mathematics and Computer Science Divisions, and Ravi Madduri, project manager in the MCS Division. The multilaboratory team seeks to create an open platform with a web-based front end that will allow scientists to transfer, search, and analyze the complex data being generated by galaxy-formation simulations. Key to this

295

Property:Incentive/Cont3Website | Open Energy Information  

Open Energy Info (EERE)

Property Property Edit with form History Facebook icon Twitter icon » Property:Incentive/Cont3Website Jump to: navigation, search Property Name Incentive/Cont3Website Property Type URL Pages using the property "Incentive/Cont3Website" Showing 25 pages using this property. (previous 25) (next 25) A AEP (Central and North) - CitySmart Program (Texas) + http://www.clearesult.com/ + AEP (Central, North and SWEPCO) - Commercial Solutions Program (Texas) + http://www.clearesult.com/ + AEP Texas - Commercial and Industrial Energy Efficiency Rebate Program (Texas) + http://www.aepefficiency.com/projectsponsorlist/tcc.asp + B Belle Fourche River Compact (South Dakota) + http://www.bellefourchewatershed.org/ + Blue Ridge Electric Cooperative - Heat Pump Loan Program (South Carolina) + http://www.blueridge.coop/ +

296

DOE Launches Public Test Procedure Guidance Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches Public Test Procedure Guidance Website Launches Public Test Procedure Guidance Website DOE Launches Public Test Procedure Guidance Website July 22, 2010 - 4:14pm Addthis The Department of Energy this week launched a new online database offering guidance on the Department's test procedures for appliances and commercial equipment. The new database will provide a publicly accessible forum for anyone with questions about -- or needing clarification of -- DOE's test procedures. This new online resource will also ensure that all manufacturers and members of the public are equally and immediately aware of the Department's interpretations of its test procedures. The database is available here. The database -- which is searchable by product category -- is designed to enable manufacturers, trade associations, and all other interested members

297

DOE Launches Public Test Procedure Guidance Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Public Test Procedure Guidance Website Public Test Procedure Guidance Website DOE Launches Public Test Procedure Guidance Website July 22, 2010 - 4:14pm Addthis The Department of Energy this week launched a new online database offering guidance on the Department's test procedures for appliances and commercial equipment. The new database will provide a publicly accessible forum for anyone with questions about -- or needing clarification of -- DOE's test procedures. This new online resource will also ensure that all manufacturers and members of the public are equally and immediately aware of the Department's interpretations of its test procedures. The database is available here. The database -- which is searchable by product category -- is designed to enable manufacturers, trade associations, and all other interested members

298

New Study Finds that the Price of Wind Energy in the United States...  

NLE Websites -- All DOE Office Websites (Extended Search)

New Study Finds that the Price of Wind Energy in the United States Is Near an All-Time Low NOTICE Due to the current lapse of federal funding, Berkeley Lab websites are accessible,...

299

Name Name Address Place Zip Category Sector Telephone number Website  

Open Energy Info (EERE)

Category Sector Telephone number Website Category Sector Telephone number Website Coordinates Testing Facilities Overseen References Alden Research Laboratory Inc Alden Research Laboratory Inc Shrewsbury Street Shrewsbury Street Holden Massachusetts Category Testing Facility Operators Hydro Hydro http www aldenlab com http www aldenlab com Alden Tow Tank Alden Wave Basin Alden Small Flume Alden Large Flume Bucknell University Bucknell University Civil Mechanical Engineering Departments Hydraulic Flume Moore Avenue Dana Engineering Building Lewisburg Pennsylvania Category Testing Facility Operators Hydro http www bucknell edu x16287 xml Bucknell Hydraulic Flume Colorado State University Hydrodynamics Colorado State University Hydrodynamics Daryl B Simons Building Engineering Research Center Campus Delivery

300

Entegrity Wind Systems Inc | Open Energy Information  

Open Energy Info (EERE)

Entegrity Wind Systems Inc Entegrity Wind Systems Inc Jump to: navigation, search Logo: Entegrity Wind Systems Inc Name Entegrity Wind Systems Inc Address 4855 Riverbend Rd Place Boulder, Colorado Zip 80301 Sector Wind energy Product Manufactures 50kW wind turbines Website http://www.entegritywind.com/ Coordinates 40.01627°, -105.234018° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.01627,"lon":-105.234018,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Second Wind Inc | Open Energy Information  

Open Energy Info (EERE)

Second Wind Inc Second Wind Inc Jump to: navigation, search Name Second Wind Inc Address 366 Summer Street Place Somerville, Massachusetts Zip 02144 Sector Wind energy Product Provides systems for wind measurement and wind resource assessment Website http://www.secondwind.com/ Coordinates 42.3991718°, -71.1240559° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.3991718,"lon":-71.1240559,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

302

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind  

Open Energy Info (EERE)

IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy, Work Package 1, Final Report Jump to: navigation, search Tool Summary Name: IEA Wind Task 26 - Multi-national Case Study of the Financial Cost of Wind Energy, Work Package 1, Final Report Agency/Company /Organization: National Renewable Energy Laboratory Partner: International Energy Agency Sector: Energy Focus Area: Wind Topics: Market analysis, Technology characterizations Resource Type: Case studies/examples, Dataset, Technical report Website: nrelpubs.nrel.gov/Webtop/ws/nich/www/public/Record?rpp=25&upp=0&m=2&w= Country: Denmark, United States, Spain, Netherlands, Germany, Sweden, Switzerland Cost: Free UN Region: Northern America, Northern Europe, Western Europe

303

Wind Powering America Podcasts (Postcards), Wind Powering America (WPA), Energy Efficiency & Renewable Energy (EERE)  

Wind Powering America (EERE)

Photo from iStock/ 6495435 Photo from iStock/ 6495435 Wind Powering America Podcasts Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: * Keys to Local Wind Energy Development Success * What to Know about Installing a Wind Energy System on Your Farm * Wind Energy Development Can Revitalize Rural America. Printed with a renewable-source ink on paper containing at least 50% wastepaper, including 10% post consumer waste. DOE/GO-102012-3585 · April 2012 windpoweringamerica.gov/podcasts_agricultural.asp

304

Website success comparison in the context of e-recruitment: An analytic network process (ANP) approach  

Science Conference Proceedings (OSTI)

This study investigates relative importance of website success factors in selecting the most preferred website. To identify relative importance of website success factors and to rank alternative websites with respect to success factors, Updated Delone ... Keywords: e-Commerce, e-Recruitment, Analytic network process (ANP), Updated Delone and McLean IS Success Model

Abbas Keramati; Mona Salehi

2013-01-01T23:59:59.000Z

305

Application of Quality Function Deployment in redesigning website: a case study on TV3  

Science Conference Proceedings (OSTI)

Internet technology has been used by most of the organisations in the world today. One of the primary vehicles of information gathering and dissemination in today's world is the organisational website. This research evaluates the performance of the ... Keywords: Malaysia, QDF, TV3, business information, quality function deployment, viewers, website design, website development, website quality evaluation

Rafikul Islam; Mohiuddin Ahmed; Masliza Hj. Alias

2007-02-01T23:59:59.000Z

306

New England Wind Forum: Determining Factors Influencing Wind Economics in  

Wind Powering America (EERE)

Determining Factors Influencing Wind Economics in New England Determining Factors Influencing Wind Economics in New England Figure 1: Installed Wind Project Costs by Region: 2003 through 2006 Projects Only New England's high land values, smaller land parcels, varied terrain, and more moderate wind speeds make for projects of smaller scale and higher unit cost than those likely to be built in Texas or the Great Plains states. Click on the graph to view a larger version. New England's high land values, smaller land parcels, varied terrain, and more moderate wind speeds make for projects of smaller scale and higher unit cost than those likely to be built in Texas or the Great Plains states. View a larger version of the graph. Figure 2: 2006 Project Capacity Factors by Region: 2002 through 2005 Projects Only The chart depicts project capacity factor by region. Click on the graph to view a larger version.

307

EERE: Wind  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

EERE: Buildings The U.S. Department of Energy funds R&D to develop wind energy. Learn about the DOE Wind Program, how to use wind energy and get financial incentives, and access...

308

WIND ENERGY Wind Energ. (2012)  

E-Print Network (OSTI)

WIND ENERGY Wind Energ. (2012) Published online in Wiley Online Library (wileyonlinelibrary since energy production depends non-linearly on wind speed (U ), and wind speed observa- tions for the assessment of future long-term wind supply A. M. R. Bakker1 , B. J. J. M. Van den Hurk1 and J. P. Coelingh2 1

Haak, Hein

309

Africa - CCS capacity building | Open Energy Information  

Open Energy Info (EERE)

Africa - CCS capacity building Africa - CCS capacity building Jump to: navigation, search Name Africa - CCS capacity building Agency/Company /Organization Energy Research Centre of the Netherlands Partner EECG Consultants, the University of Maputo, the Desert Research Foundation Namibia and the South Africa New Energy Research Institute Sector Energy Focus Area Conventional Energy Resource Type Training materials Website http://www.ccs-africa.org/ Program Start 2010 Program End 2011 Country Botswana, Mozambique, Namibia UN Region "Sub-Saharan Africa" is not in the list of possible values (Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa, Caribbean, Central America, South America, Northern America, Central Asia, Eastern Asia, Southern Asia, South-Eastern Asia, Western Asia, Eastern Europe, Northern Europe, Southern Europe, Western Europe, Australia and New Zealand, Melanesia, Micronesia, Polynesia, Latin America and the Caribbean) for this property.

310

Arkansas/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Arkansas/Wind Resources/Full Version < Arkansas‎ | Wind Resources Jump to: navigation, search Print PDF Arkansas Wind Resources ArkansasMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

311

Alabama/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Alabama/Wind Resources/Full Version < Alabama‎ | Wind Resources Jump to: navigation, search Print PDF Alabama Wind Resources AlabamaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

312

Florida/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Florida/Wind Resources/Full Version < Florida‎ | Wind Resources Jump to: navigation, search Print PDF Florida Wind Resources FloridaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

313

Oregon/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Oregon/Wind Resources/Full Version < Oregon‎ | Wind Resources Jump to: navigation, search Print PDF Oregon Wind Resources OregonMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

314

Maine/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Maine/Wind Resources/Full Version < Maine‎ | Wind Resources Jump to: navigation, search Print PDF Maine Wind Resources MaineMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

315

Nevada/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Nevada/Wind Resources/Full Version < Nevada‎ | Wind Resources Jump to: navigation, search Print PDF Nevada Wind Resources NevadaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

316

Global Offshore Wind Farms Database | Open Energy Information  

Open Energy Info (EERE)

Global Offshore Wind Farms Database Global Offshore Wind Farms Database Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Global Offshore Wind Farms Database Focus Area: Renewable Energy Topics: Deployment Data Website: www.4coffshore.com/offshorewind/ Equivalent URI: cleanenergysolutions.org/content/global-offshore-wind-farms-database,h Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This online database and interactive map for global offshore wind development contains details on over 900 wind farms in 36 countries. The 4C Offshore Interactive Map provides an interactive map-based view of wind farm data, as well as wind farm-related news and career information. References Retrieved from "http://en.openei.org/w/index.php?title=Global_Offshore_Wind_Farms_Database&oldid=514428"

317

Delaware/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

source source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit History Facebook icon Twitter icon » Delaware/Wind Resources/Full Version < Delaware‎ | Wind Resources Jump to: navigation, search Print PDF Delaware Wind Resources DelawareMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the

318

Large Wind Technology | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Wind Technology Large Wind Technology Large Wind Technology The Wind Program works with industry partners to increase the performance and reliability of large wind technologies while lowering the cost of wind energy. The program's research efforts have helped to increase the average capacity factor (a measure of power plant productivity) from 22% for wind turbines installed before 1998 to 35% for turbines installed between 2004 and 2007. Wind energy costs have been reduced from over 55 cents (current dollars) per kilowatt-hour (kWh) in 1980 to under six cents/kWh today. To ensure future industry growth, the technology must continue to evolve, building on earlier successes to further improve reliability, increase capacity factors, and reduce costs. This page describes the goal of the

319

Applications of operation research to the analysis for the impacts of the transmission line capacity limitation on  

E-Print Network (OSTI)

of the wind power generated from wind turbines or released from its storage system out of the total power and the transmission line capacity. If the power supply from wind turbines cannot be transmitted online in real and the total wind power that can be captured by wind turbines at hour t. It is also impacted

320

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Wind Power Rankings: The Top 20 States Cumulative Capacity (end of 2006, MW) Texas California Iowa Minnesota Washington Oklahoma

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

The coal-wind connection  

Science Conference Proceedings (OSTI)

The USA now has more than 10,000 MW of wind capacity and more wind farms are expected to be built. However transmissions constraints are great, especially in the Northwest and upper Midwest, where abundant wind resources span sparsely populated regions. These areas also hold major deposits of coal. Partnerships are being developed to share transmission to accommodate both new wind and new coal-fired capacity. Wyoming may well be the epicentre of the issue. Another idea, in wind-prone Texas, is to further integrate wind with baseload fossil power resources by creation of competitive renewable energy zones (CREZs). New transmission corridors will be set up linking the renewable energy zones to power markets in ERCOT, the Electric Reliability Council of Texas. There are problems of co-developing coal and wind capacity with common transmission. If coal gasification technology emerges on a commercial scale there would be a good opportunity for integrated gasification combined cycle which can cycle to firm up variable wind generation. Several coal companies in Wyoming are considering gasifying coal and putting it into the pipeline. 2 photos.

Blankinship, S.

2007-01-15T23:59:59.000Z

322

Airborne Wind Turbine  

Science Conference Proceedings (OSTI)

Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

None

2010-09-01T23:59:59.000Z

323

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

basis. Text Box 1. Offshore Wind Development Activities Inis some interest in offshore wind in several parts of theGeorgia TOTAL Proposed Offshore Wind Capacity 735 MW 650 MW

2008-01-01T23:59:59.000Z

324

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

not represent wind energy generation costs, and generationXcel-UWIG We Energies Wind Capacity Penetration Cost ($/MWh)Wind Energy Program is currently funding additional efforts to better understand the drivers for O&M costs and

2008-01-01T23:59:59.000Z

325

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2006  

E-Print Network (OSTI)

Annual Report on U.S. Wind Power Installation, Cost, and3 U.S. Wind Power Capacity Increased by 27% inAre Significant. . . . . . . 9 Wind Power Prices Are Up in

2008-01-01T23:59:59.000Z

326

FAQs about Storage Capacity  

Gasoline and Diesel Fuel Update (EIA)

about Storage Capacity about Storage Capacity How do I determine if my tanks are in operation or idle or non-reportable? Refer to the following flowchart. Should idle capacity be included with working capacity? No, only report working capacity of tanks and caverns in operation, but not for idle tanks and caverns. Should working capacity match net available shell in operation/total net available shell capacity? Working capacity should be less than net available shell capacity because working capacity excludes contingency space and tank bottoms. What is the difference between net available shell capacity in operation and total net available shell capacity? Net available shell capacity in operation excludes capacity of idle tanks and caverns. What do you mean by transshipment tanks?

327

Bureau of Energy Efficiency Standard & Labelling (India) Website | Open  

Open Energy Info (EERE)

Bureau of Energy Efficiency Standard & Labelling (India) Website Bureau of Energy Efficiency Standard & Labelling (India) Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Bureau of Energy Efficiency Standard & Labelling (India) Website Focus Area: Energy Efficiency, - Utility Topics: Policy, Deployment, & Program Impact Website: www.beeindia.in/ Equivalent URI: cleanenergysolutions.org/content/bureau-energy-efficiency-standard-lab Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Voluntary Appliance & Equipment Labeling Regulations: "Building Codes,Energy Standards,Incandescent Phase-Out" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

328

DOE Research and Development Accomplishments Website Policies/Important  

NLE Websites -- All DOE Office Websites (Extended Search)

This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned right. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of originators expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

329

European Smart Power Market Project Report Website | Open Energy  

Open Energy Info (EERE)

European Smart Power Market Project Report Website European Smart Power Market Project Report Website Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Smart Power Market Project Report Website Focus Area: Renewable Energy Topics: Market Analysis Website: climatepolicyinitiative.org/publication/smart-power-market-project/ Equivalent URI: cleanenergysolutions.org/content/european-smart-power-market-project-r Language: English Policies: "Deployment Programs,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: "Resource Integration Planning,Utility/Electricity Service Costs" is not in the list of possible values (Agriculture Efficiency Requirements, Appliance & Equipment Standards and Required Labeling, Audit Requirements, Building Certification, Building Codes, Cost Recovery/Allocation, Emissions Mitigation Scheme, Emissions Standards, Enabling Legislation, Energy Standards, Feebates, Feed-in Tariffs, Fuel Efficiency Standards, Incandescent Phase-Out, Mandates/Targets, Net Metering & Interconnection, Resource Integration Planning, Safety Standards, Upgrade Requirements, Utility/Electricity Service Costs) for this property.

330

Building a companion website in the semantic web  

Science Conference Proceedings (OSTI)

A problem facing many textbook authors (including one of the authors of this paper) is the inevitable delay between new advances in the subject area and their incorporation in a new (paper) edition of the textbook. This means that some textbooks are ... Keywords: bloom's taxonomy, companion website, electronic publishing, semantic web, textbook

Timothy J. Miles-Board; Christopher P. Bailey; Wendy Hall; Leslie A. Carr

2004-05-01T23:59:59.000Z

331

Survey of Wind Power Integration Studies  

Science Conference Proceedings (OSTI)

The worldwide installed wind generation capacity increased by 25% and reached almost 60,000 MW worldwide and 9150 MW in the United States during 2005, and the high growth rate is forecast to continue for several years. Wind generation is an intermittent resource and can't be dispatched. Therefore, large blocks of wind generation concentrated in a region can affect the operation of the electricity grid with regard to ancillary service requirements and cost. Because the numerous wind power integration stud...

2006-03-31T23:59:59.000Z

332

NEDO Research Related to Battery Storage Applications for Integration...  

Open Energy Info (EERE)

TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.netindex.php?id131 Equivalent URI:...

333

Cost-Benefit Analysis of Smart Grid Technologies Through System...  

Open Energy Info (EERE)

TOOL Name: Spain Installed Wind Capacity Website Focus Area: Renewable Energy Topics: Market Analysis Website: www.gwec.netindex.php?id131 Equivalent URI:...

334

Indonesia-ECN Capacity building for energy policy formulation and  

Open Energy Info (EERE)

ECN Capacity building for energy policy formulation and ECN Capacity building for energy policy formulation and implementation of sustainable energy projects Jump to: navigation, search Name CASINDO: Capacity development and strengthening for energy policy formulation and implementation of Sustainable energy projects in Indonesia Agency/Company /Organization Energy Research Centre of the Netherlands Sector Energy Focus Area Energy Efficiency Topics Policies/deployment programs Resource Type Software/modeling tools, Workshop, Publications, Guide/manual, Training materials Website http://www.ecn.nl/en/ Program Start 2009 Program End 2011 Country Indonesia South-Eastern Asia References ECN Policy Studies[1] CASINDO website[2] A key component of the political and economic reforms that are currently being implemented in Indonesia is the devolution of responsibilities for

335

Annual Report on U.S. Wind Power Installation, Cost, and  

E-Print Network (OSTI)

industry trends · Evolution of wind pricing · Installed wind project costs · Wind turbine transaction turbines and projects over 50 kW in size · Data sources include AWEA, EIA, FERC, SEC, etc. (see full report PercentofAnnualCapacityAdditions 0 20 40 60 80 100 TotalAnnualCapacityAdditions(GW) Wind Other Renewable Gas

336

Property:Incentive/WindResMaxKW | Open Energy Information  

Open Energy Info (EERE)

search Property Name IncentiveWindResMaxKW Property Type String Description The maximum installed residential wind capacity in kW that is eligible for a rebate. Ex: The maximum...

337

Property:Incentive/WindComMaxKW | Open Energy Information  

Open Energy Info (EERE)

search Property Name IncentiveWindComMaxKW Property Type String Description The maximum installed commercial wind capacity in kW that is eligible for a rebate. This also applies...

338

Property:Incentive/WindResDolKW | Open Energy Information  

Open Energy Info (EERE)

Name IncentiveWindResDolKW Property Type String Description The amount per kW of installed capacity of a residential wind system disbursed as an upfront incentive. Ex:...

339

Property:Incentive/WindComDolKW | Open Energy Information  

Open Energy Info (EERE)

Name IncentiveWindComDolKW Property Type String Description The amount per kW of installed capacity of a commercial wind system disbursed as an upfront incentive. Ex: OR's...

340

Designing Electricity Markets with Large Shares of Wind Power  

E-Print Network (OSTI)

-time (RT) prices in Iowa (MEC interface), May 11­17, 2009. MISO NYISO PJM ERCOT CAISO Wind Power Capacity) and PJM have already introduced rules for mandatory real-time bidding and control of wind power

Kemner, Ken

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products st century Green Solutions LLC st century Green Solutions LLC Grand Blanc Michigan Wind energy Exclusive rights to manufacture and distribute kW wind turbine technology in North America Degrees Degrees Embarcadero Center Suite San Francisco California Bioenergy Buildings Carbon Geothermal energy Services Gateway Solar Wind energy Environmental Commodities http www degreesinc com Bay Area E E Brussels Belgium Buildings Hydro Services Gateway Solar Wind energy

342

Worldwide Energy Efficiency Action through Capacity Building and Training  

Open Energy Info (EERE)

Worldwide Energy Efficiency Action through Capacity Building and Training Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Jump to: navigation, search Logo: Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Name Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT) Agency/Company /Organization National Renewable Energy Laboratory, The International Partnership for Energy Efficiency Cooperation Sector Energy Focus Area Energy Efficiency Topics Background analysis Resource Type Training materials Website http://www.nrel.gov/ce/ipeec/w Country Mexico, India UN Region Northern America References Worldwide Energy Efficiency Action through Capacity Building and Training (WEACT)[1] Abstract Included are training materials for the Worldwide Energy Efficiency Action through Capacity Building & Training (WEACT) Workshop in Mexico City, 28-30 September 2010.

343

FAO-Capacity Development on Climate Change | Open Energy Information  

Open Energy Info (EERE)

FAO-Capacity Development on Climate Change FAO-Capacity Development on Climate Change Jump to: navigation, search Tool Summary LAUNCH TOOL Name: FAO-Capacity Development on Climate Change Agency/Company /Organization: Food and Agriculture Organization of the United Nations Sector: Land, Climate Focus Area: Forestry, Agriculture Resource Type: Training materials, Lessons learned/best practices, Case studies/examples Website: www.fao.org/climatechange/learning/en/ Cost: Free FAO-Capacity Development on Climate Change Screenshot References: FAO-Capacity Development on Climate Change[1] Logo: FAO-Capacity Development on Climate Change This portal provides a one-stop window for Member States, partners, UN staff and other development actors to access FAO climate change learning resources to facilitate experience-sharing.

344

How much electric supply capacity is needed to keep U.S ...  

U.S. Energy Information Administration (EIA)

Solar Energy in Brief ... additions in wind and solar capacity were spurred by both state-level Renewable Portfolio Standards and federal tax incentives.

345

Why Are We Talking About Capacity Markets? (Presentation)  

DOE Green Energy (OSTI)

Capacity markets represent a new and novel way to achieve greater economic use of variable generation assets such as wind and solar, and this concept is discussed in this presentation.

Milligan, M.

2011-06-01T23:59:59.000Z

346

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

biz is an international group that produces electric energy from renewable sources biogas biomasses wind sun water Astonfield Renewable Resources Ltd ARRL Astonfield Renewable...

347

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Gelsenkirchen Germany D Services Wind energy BBB Umwelttechnik is a middle sized enterprise acting all over Europe and offers its customers a complete range of services for the...

348

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

ALDACOR ALDACOR E th St Suite Idaho Falls Idaho Buildings Efficiency Geothermal energy Hydro Renewable Energy Services Gateway Solar Wind energy http www aldacor com ALDACOR INC...

349

2010 Wind Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

2010 Wind Technologies Market Report 2010 Wind Technologies Market Report Title 2010 Wind Technologies Market Report Publication Type Report Refereed Designation Unknown Year of Publication 2011 Authors Wiser, Ryan H., and Mark Bolinger Tertiary Authors Darghouth, Naïm, Kevin Porter, Michael Buckley, Sari Fink, Russell Raymond, Frank Oteri, Galen L. Barbose, Joachim Seel, Andrew D. Mills, and Ben Hoen Pagination 98 Date Published 06/2011 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department, power system economics, renewable energy, wind power Abstract The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the "inertia" in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

350

Wind load reduction for heliostats  

DOE Green Energy (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

1986-05-01T23:59:59.000Z

351

Stakeholder Engagement and Outreach: How Do I Get Wind Power?  

Wind Powering America (EERE)

Education Education Printable Version Bookmark and Share Learn About Wind About Wind Power Locating Wind Power Getting Wind Power Installed Wind Capacity Wind for Schools Project Collegiate Wind Competition School Project Locations Education & Training Programs Curricula & Teaching Materials Resources How do I get Wind Power? Learn how you can own, partner with, host, and support wind power. Construct A Wind Project On Your Own Land There are wind turbines designed for everyone from residential homeowners to utilities, and from private to corporate use. Small wind turbines can be bought with cash, and commercial-scale projects can be financed. To learn more about small projects, such as those for a home or ranch or business that are less than or equal to 100 kilowatts (kW), see the small wind

352

The Political Economy of Wind Power in China  

E-Print Network (OSTI)

biores/108435/. ?Chinas power generation capacity leapshtm. ?Analysis of UK Wind Power Generation: November 2008 tofor Renewable Energy Power Generation Prices and Expenses? [

Swanson, Ryan Landon

2011-01-01T23:59:59.000Z

353

Planned wind turbine additions rise in advance of ...  

U.S. Energy Information Administration (EIA)

Short-Term Energy Outlook Annual ... Search EIA.gov. A-Z ... Wind plant developers reported increasing amounts of new capacity scheduled to enter ...

354

The Economics of Wind Energy | Open Energy Information  

Open Energy Info (EERE)

Economics of Wind Energy Economics of Wind Energy Jump to: navigation, search Tool Summary LAUNCH TOOL Name: The Economics of Wind Energy Agency/Company /Organization: European Wind Energy Association Sector: Energy Focus Area: Renewable Energy, Wind Topics: Market analysis Resource Type: Publications Website: www.ewea.org/fileadmin/ewea_documents/documents/publications/reports/E The Economics of Wind Energy Screenshot References: The Economics of Wind Energy [1] Overview "This report provides a systematic framework for the economic dimension of wind energy and of the energy policy debate when comparing different power generation technologies. A second contribution is to put fuel price risk directly into the analysis of the optimal choice of energy sources for power generation."

355

Mexico-NREL Wind Resource Assessments | Open Energy Information  

Open Energy Info (EERE)

Wind Resource Assessments Wind Resource Assessments Jump to: navigation, search Logo: Mexico-NREL Initiatives Name Mexico-NREL Initiatives Agency/Company /Organization National Renewable Energy Laboratory Sector Energy Focus Area Wind Topics Background analysis Resource Type Dataset, Maps, Software/modeling tools Website http://www.nrel.gov/internatio Country Mexico Central America References NREL International Program Overview [1] Abstract Currently NREL is working with Mexico to develop wind resource assessments including wind maps for Tamuilipas and & Baja California (10/10) and to prepare wind development scenarios for these regions. Currently NREL is working with Mexico to develop wind resource assessments including wind maps for Tamuilipas and & Baja California (10/10) and to

356

Stakeholder Engagement and Outreach: School Wind Project Locations  

Wind Powering America (EERE)

School Wind Project Locations School Wind Project Locations This map shows the location of installed and planned school wind energy projects in the United States. Find school wind projects for K-12, community colleges, universities, and more. You can also learn how to use the Google Map and how to add your school wind project to the map. For more information and data from the schools, see the OpenEI website. Text Version School Wind Project Locations , Northern Alberta Institute of Technology Alaska, Alaska Wind-Diesel Wind Application Center (University of Alaska) Alaska, Begich Middle School Alaska, Kodiak High School Alaska, Mt. Edgecumbe High School Alaska, Northwestern Alaska Career and Technical Center Alaska, Sherrod Elementary School Alaska, U.S. Coast Guard - Juneau Alaska, University of Alaska Anchorage - Mat-Su College

357

European Wind Atlas: France | Open Energy Information  

Open Energy Info (EERE)

European Wind Atlas: France European Wind Atlas: France Jump to: navigation, search Tool Summary LAUNCH TOOL Name: European Wind Atlas: France Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: 130.226.17.201/extra/web_docs/windmaps/france.jpg Equivalent URI: cleanenergysolutions.org/content/european-wind-atlas-france,http://cle Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance This wind resource map shows resources at 50 meters above ground level for four different topographic conditions, including sheltered terrain, open plain, coastal and hills and ridges. The greatest resources appear to be near the Mediterranean Sea coast, and the second greatest resources are near the English Channel and northern Atlantic coast.

358

Alaskan Wind Industries | Open Energy Information  

Open Energy Info (EERE)

Alaskan Wind Industries Alaskan Wind Industries Jump to: navigation, search Name Alaskan Wind Industries Address 51235 Kenai Spur Highway Place Nikiski, Alaska Zip 99635 Sector Wind energy Product Wind Turbines & Solar Products. Installation and Procurement Website http://www.akwindindustries.co Coordinates 60.722798°, -151.325844° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":60.722798,"lon":-151.325844,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

359

Comparison of Productive Capacity  

U.S. Energy Information Administration (EIA)

Appendix B Comparison of Productive Capacity Comparisons of base case productive capacities for this and all previous studies were made (Figure B1).

360

Tables - Refinery Capacity Report  

U.S. Energy Information Administration (EIA)

Tables: 1: Number and Capacity of Operable Petroleum Refineries by PAD District and State as of January 1, 2009: PDF: 2: Production Capacity of Operable ...

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

Organization Organization Address Place Zip Notes Website Region Organization Organization Address Place Zip Notes Website Region Adirondack North Country Association Adirondack North Country Association Main Street Suite Saranac Lake New York http www adirondack org Northeast NY NJ CT PA Area African Renewable Energy Alliance AREA African Renewable Energy Alliance AREA Online http area network ning com xg source msg mes network Alliance for Sustainable Colorado Alliance for Sustainable Colorado Wynkoop Street Denver Colorado Mission of is to catalyze the shift to a truly sustainable world by fostering collaboration among nonprofits businesses governments and academia http www sustainablecolorado org Rockies Area American Clean Skies Foundation American Clean Skies Foundation st Street NE Suite Washington District of Columbia http www cleanskies

362

Wind Opportunities for Idaho State Lands  

Wind Powering America (EERE)

and Local Initiatives Group and Local Initiatives Group National Renewable Energy Laboratory Terri Walters Carol Tombari 303-275-3005 303-275-3821 terri_walters@nrel.gov carol_tombari@nrel.gov Wind Opportunities For Idaho State Lands March 3, 2004 Wind Overview Wind Overview * Technology * Resources * Markets and Drivers * Economic Development Opportunities * Wind Powering America U.S. Electricity Fuel Mix U.S. Electricity Fuel Mix Coal 51.8% Nuclear 19.8% Hydro 7.2% Petroleum 2.9% Gas 16.1% Other/Renewables 2.2% Sizes and Applications Sizes and Applications Small (≤10 kW) * Homes * Farms * Remote Applications (e.g. water pumping, telecom sites, icemaking) Intermediate (10-100 kW) * Village Power * Hybrid Systems * Distributed Power Large (660 kW - 2+MW) * Central Station Wind Farms * Distributed Power Growth of Wind Energy Capacity Growth of Wind Energy Capacity

363

Role of wind power in electric utilities  

SciTech Connect

Current estimates suggest that the cost of wind-generated power is likely to be competitive with conventionally generated power in the near future in regions of the United States with favorable winds and high costs for conventionally generated electricity. These preliminary estimates indicate costs of $500 to 700 per installed kW for mass-produced wind turbines. This assessment regarding competitiveness includes effects of reduced reliability of wind power compared to conventional sources. Utilities employing wind power are likely to purchase more peaking capacity and less baseload capacity than they would have otherwise to provide the lowest-cost reserve power. This reserve power is needed mainly when wind outages coincide with peak loads. The monetary savings associated with this shift contribute substantially to the value of wind energy to a utility.

Davitian, H

1977-09-01T23:59:59.000Z

364

In search of information on websites: a question of age?  

Science Conference Proceedings (OSTI)

To fight against info-exclusion in an aging society, it is important to make website information available to all generations. If we want to achieve this goal we need to know the impact of not only age but also gender, educational background and frequency ... Keywords: age differences, digital immigrants, digital natives, digital spectrum, digitalgap, eye-tracking, information search behaviour, navigation patterns, usability, web design

Eugne Loos

2011-07-01T23:59:59.000Z

365

1. Sector Description Wind Energy  

E-Print Network (OSTI)

Wind power is todays most rapidly growing renewable power source. In the United States, new wind farms were the second-largest source of new power generation in 2005, after new natural gas power plants. In 2005, 2,431 megawatts (MW) of new capacity were installed in 22 states, increasing total wind generating capacity by more than a third to 9,149 MW, or enough to power 2.3 million average American households. Wind energy is a clean, domestic, renewable resource. It often displaces electricity that would otherwise have been produced by natural gas, thus helping to reduce gas demand and limit gas price hikes (DOE 2006a). It also can serve as a partial replacement for the electricity produced by the aging U.S. coal-fired power plant fleet. In the future, surplus wind power can be used for desalination and hydrogen production, and may be stored as hydrogen for use in fuel cells or gas turbines to generate electricity, leveling supply when winds are variable. Last February, the President said that wind energy could provide as much as 20 % of our electricity demands, up from less than 1 % today. Dozens of states have passed renewable portfolio standards setting goals similar to that stated by the President, giving broad-based public support for development of wind resources.

unknown authors

2006-01-01T23:59:59.000Z

366

California Regional Wind Energy Forecasting System Development, Volume 4: California Wind Generation Research Dataset (CARD)  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 megawatts in place at the end of 2005. The main drivers are the state's 20 percent renewable portfolio standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forec...

2006-11-13T23:59:59.000Z

367

Wind Farm Growth Through the Years | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Wind Farm Growth Through the Years Wind Farm Growth Through the Years Wind Farm Growth Through the Years August 6, 2013 - 8:32am Addthis 1975 Start Slow Stop Year Wind Farms Homes Powered Added Current Year 815 Wind Farms Online. Enough to Power 15 M Homes Data provided by the EIA. The number of homes powered is estimated through conversion factors provided by the EIA. Daniel Wood Daniel Wood Data Integration Specialist As we publish the 2012 Wind Technologies Market Report, we are excited to break down some recent EIA data not included in the report that shows significant wind farm growth across the nation. 2012 was a big year for wind energy. In total, 143 wind farms either came on line or added capacity in 2012, bringing the total number to 815. This brought the country's total wind capacity to more than 60 GW, enough energy to power about 15

368

Short-term wind speed forecasting based on a hybrid model  

Science Conference Proceedings (OSTI)

Wind power is currently one of the types of renewable energy with a large generation capacity. However, operation of wind power generation is very challenging because of the intermittent and stochastic nature of the wind speed. Wind speed forecasting ... Keywords: Forecasting, RBF neural networks, Seasonal adjustment, Wavelet transform, Wind speed

Wenyu Zhang, Jujie Wang, Jianzhou Wang, Zengbao Zhao, Meng Tian

2013-07-01T23:59:59.000Z

369

Wind power is a rapidly growing con-tributor to worldwide energy supplies and  

E-Print Network (OSTI)

the U.S., represent- ing nearly one-third of the total installed wind energy capacity in the country for wind turbine siting and wind source prediction. Ironically, PPM has hired 3TIER to provide wind energy and operates wind farms in Ireland, Scotland, England, Wales and the United States. With the recent extension

370

FRP INTERNATIONALthe official newsletter of the International Institute for FRP in Construction IIFC Website Development  

E-Print Network (OSTI)

IIFC Website Development More than a year has passed since the launch of the new IIFC website ­ www.iifc-hq to better showcase the IIFC organization to the world and to provide IIFC members with improved services

371

U.S. Department of Energy Launches New Website for Asset Revitalizatio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Revitalization Initiative (ARI) website. WASHINGTON, D.C. - Today, the U.S.Department of Energy (DOE) launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide...

372

Short-Term Power Fluctuations of Large Wind Power Plants: Preprint  

DOE Green Energy (OSTI)

With electric utilities and other power providers showing increased interest in wind power and with growing penetration of wind capacity into the market, questions about how wind power fluctuations affect power system operations and about wind power's ancillary services requirements are receiving lots of attention. The project's purpose is to acquire actual, long-term wind power output data for analyzing wind power fluctuations, frequency distribution of the changes, the effects of spatial diversity, and wind power ancillary services.

Wan, Y.; Bucaneg, D.

2002-01-01T23:59:59.000Z

373

Building MRV Standards and Capacity in Key Countries | Open Energy  

Open Energy Info (EERE)

MRV Standards and Capacity in Key Countries MRV Standards and Capacity in Key Countries Jump to: navigation, search Name Building MRV Standards and Capacity in Key Countries Agency/Company /Organization World Resources Institute (WRI) Sector Climate Focus Area Renewable Energy Topics Implementation Website http://www.wri.org/topics/mrv Program Start 2011 Program End 2014 Country Brazil, Colombia, Ethiopia, India, South Africa, Thailand South America, South America, Eastern Africa, Southern Asia, Southern Africa, South-Eastern Asia References World Resources Institute (WRI)[1] Program Overview Developing countries will be required to measure, report, and verify (MRV) mitigation actions according to international guidelines, but few have the capacity to do so. The goal of this project is to build the capacity of a

374

NREL: Energy Analysis - Utility-Scale Energy Technology Capacity Factors  

NLE Websites -- All DOE Office Websites (Extended Search)

Utility-Scale Energy Technology Capacity Factors Utility-Scale Energy Technology Capacity Factors This chart indicates the range of recent capacity factor estimates for utility-scale renewable energy technologies. The dots indicate the average, and the vertical lines represent the range: Average +1 standard deviation and average -1 standard deviation. If you are seeking utility-scale technology cost and performance estimates, please visit the Transparent Cost Database website for NREL's information regarding vehicles, biofuels, and electricity generation. Capital Cost (September 2013 Update) Operations & Maintenance (September 2013 Update) Utility-Scale Capacity Factors Useful Life Land Use by System Technology LCOE Calculator Capacity factor for energy technologies. For more information, please download supporting data for energy technology costs.

375

India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate  

Open Energy Info (EERE)

Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Jump to: navigation, search Name India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Agency/Company /Organization Swiss Agency for Development and Cooperation Sector Energy, Land, Water Focus Area Agriculture Topics Co-benefits assessment, Background analysis Resource Type Lessons learned/best practices Website http://www.intercooperation.or Country India Southern Asia References India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change[1] India-Vulnerability Assessment and Enhancing Adaptive Capacities to Climate Change Screenshot Contents 1 Introduction [1] 2 Community-based Institutions [2] 3 Pasture Land Development [3]

376

The critical success factors for websites for Chinese migrant farmer workers: a multi-case study  

Science Conference Proceedings (OSTI)

This paper is to explore the critical success factors for the websites for Chinese migrant farmer workers. A theoretical framework was put forward according to the theories of usability, information architecture, webometrics and business model. A multi-case ... Keywords: Chinese farmer workers, managerial-technical perspective, multi-case study, special website, vulnerable groups, website effect

Fang Wang, Lihong Gu

2012-10-01T23:59:59.000Z

377

Sirius: A heuristic-based framework for measuring web usability adapted to the type of website  

Science Conference Proceedings (OSTI)

The unquestionable relevance of the web in our society has led to an enormous growth of websites offering all kinds of services to users. In this context, while usability is crucial in the development of successful websites, many barely consider the ... Keywords: Heuristic evaluation, Usability measurement, Usability metric, Website classification

M. Carmen SuRez Torrente; A. BelN MartNez Prieto; DarO Alvarez GutiRrez; M. Elena Alva De Sagastegui

2013-03-01T23:59:59.000Z

378

EIA: Wind  

U.S. Energy Information Administration (EIA)

Technical information and data on the wind energy industry from the U.S. Energy Information Administration (EIA).

379

2008 WIND TECHNOLOGIES MARKET REPORT  

SciTech Connect

The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

2009-07-15T23:59:59.000Z

380

NREL: Wind Research - ISO New England Updates  

NLE Websites -- All DOE Office Websites (Extended Search)

(ISO-NE) is working on a series of wholesale market reforms that pertain to or impact wind power in New England. Topics include forward capacity market (FCM) re-design, negative...

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

2010 Wind Technologies Market Report  

DOE Green Energy (OSTI)

The U.S. wind power industry experienced a trying year in 2010, with a significant reduction in new builds compared to both 2008 and 2009. The delayed impact of the global financial crisis, relatively low natural gas and wholesale electricity prices, and slumping overall demand for energy countered the ongoing availability of existing federal and state incentives for wind energy deployment. The fact that these same drivers did not impact capacity additions in 2009 can be explained, in part, by the 'inertia' in capital-intensive infrastructure investments: 2009 capacity additions were largely determined by decisions made prior to the economy-wide financial crisis that was at its peak in late 2008 and early 2009, whereas decisions on 2010 capacity additions were often made at the height of the financial crisis. Cumulative wind power capacity still grew by a healthy 15% in 2010, however, and most expectations are for moderately higher wind power capacity additions in 2011 than witnessed in 2010, though those additions are also expected to remain below the 2009 high.

Exeter Associates; National Renewable Energy Laboratory; Energetics Incorporated; Wiser, Ryan; Bolinger, Mark; Barbose, Galen; Darghouth, Naim; Hoen, Ben; Mills, Andrew; Seel, Joachim; Porter, Kevin; Buckley, Michael; Fink, Sari; Oteri, Frank; Raymond, Russell

2011-06-27T23:59:59.000Z

382

Battery Voltage Stability Effects on Small Wind Turbine Energy Capture: Preprint  

DOE Green Energy (OSTI)

Previous papers on small wind turbines have shown that the ratio of battery capacity to wind capacity (known as battery-wind capacity ratio) for small wind systems with battery storage has an important effect on wind turbine energy output. Data analysis from pilot project performance monitoring has revealed shortcomings in wind turbine energy output up to 75% of expected due to the effect of a''weak'' battery grid. This paper presents an analysis of empirical test results of small wind battery systems, showing the relationships among wind turbine charging rate, battery capacity, battery internal resistance, and the change in battery voltage. By understanding these relationships, small wind systems can be designed so as to minimize''dumped'' or unused energy from small wind turbines.

Corbus, D.; Newcomb, C.; Baring-Gould, E. I.; Friedly, S.

2002-05-01T23:59:59.000Z

383

Wind Energy Atlas of Brazil | Open Energy Information  

Open Energy Info (EERE)

Energy Atlas of Brazil Energy Atlas of Brazil Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Atlas of Brazil Focus Area: Renewable Energy Topics: Potentials & Scenarios Website: 130.226.17.201/extra/web_docs/windmaps/Brazil_wind_map.pdf Equivalent URI: cleanenergysolutions.org/content/wind-energy-atlas-brazil,http://clean Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The maps provided in this resource result from a surface wind modelling tool called MesoMap that estimates the wind potential over the Brazilian territory by simulating the atmosphere dynamics of the wind regime and the related meteorological variables from validated atmosphere pressure-data samples. References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Atlas_of_Brazil&oldid=514616

384

NYSERDA-Wind Energy Toolkit | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » NYSERDA-Wind Energy Toolkit Jump to: navigation, search Tool Summary Name: NYSERDA-Wind Energy Toolkit Agency/Company /Organization: New York State Energy Research and Development Authority Sector: Energy Focus Area: Renewable Energy, Wind Topics: Resource assessment, Technology characterizations Website: www.powernaturally.org/Programs/Wind/Wind%20Energy%20Toolkit.pdf Cost: Free NYSERDA-Wind Energy Toolkit Screenshot References: NYSERDA[1] "The Wind Energy Toolkit was developed for the New York State Energy Research & Development Authority (NYSERDA) by AWS Truewind, LLC, to provide

385

Wind Energy Data and Information Gateway (WENDI) | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Data and Information Gateway (WENDI) Wind Energy Data and Information Gateway (WENDI) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Wind Energy Data and Information Gateway (WENDI) Agency/Company /Organization: United States Department of Energy, Oak Ridge National Laboratory Sector: Energy Focus Area: Wind Topics: Market analysis, Resource assessment, Technology characterizations Resource Type: Dataset, Maps Website: windenergy.ornl.gov/ References: Wind Energy Data and Information Gateway (WENDI)[1] Logo: Wind Energy Data and Information Gateway (WENDI) The WENDI Gateway is an integrated system for the archival, discovery, access, integration, and delivery of wind energy-related data and information. NOTE The WENDI Gateway has been discontinued due to an absence of funding. Oak

386

Wind resource analysis. Annual report  

SciTech Connect

FY78 results of the Wind Resource Analyses task of the ERAB are described. Initial steps were taken to acquire modern atmosphere models of near-surface wind flow and primary data sets used in previous studies of national and regional wind resources. Because numerous assumptions are necessary to interpret available data in terms of wind energy potential, conclusions of previous studies differ considerably. These data analyses may be improved by future SERI research. State-of-the-art atmosphere models are a necessary component of the SERI wind resource analyses capacity. However, these methods also need to be tested and verified in diverse applications. The primary data sets and principal features of the models are discussed.

Hardy, D. M.

1978-12-01T23:59:59.000Z

387

CREST Wind | Open Energy Information  

Open Energy Info (EERE)

CREST Wind CREST Wind Jump to: navigation, search Tool Summary LAUNCH TOOL Name: CREST Wind Agency/Company /Organization: Sustainable Energy Advantage Partner: NREL Sector: Energy Focus Area: Wind Topics: Finance Resource Type: Software/modeling tools User Interface: Spreadsheet Website: financere.nrel.gov/finance/webfm_send/42/NREL_CREST_Wind_version1.1_Pr Country: United States RelatedTo: CREST Solar, CREST Geothermal Cost: Free UN Region: Northern America Coordinates: 37.09024°, -95.712891° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.09024,"lon":-95.712891,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

388

Network Routing Capacity  

E-Print Network (OSTI)

We define the routing capacity of a network to be the supremum of all possible fractional message throughputs achievable by routing. We prove that the routing capacity of every network is achievable and rational, we present an algorithm for its computation, and we prove that every non-negative rational number is the routing capacity of some network. We also determine the routing capacity for various example networks. Finally, we discuss the extension of routing capacity to fractional coding solutions and show that the coding capacity of a network is independent of the alphabet used.

Jillian Cannons; Randall Dougherty; Christopher Freiling; Kenneth Zeger

2005-01-01T23:59:59.000Z

389

First Wind (Formerly UPC Wind) (New York) | Open Energy Information  

Open Energy Info (EERE)

535 Rynders Road 535 Rynders Road Place Cohocton, New York Zip 14826 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 42.499884°, -77.444995° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.499884,"lon":-77.444995,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

390

First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information  

Open Energy Info (EERE)

01 S.W. Fifth Avenue 01 S.W. Fifth Avenue Place Portland, Oregon Zip 97204 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 45.51661°, -122.679357° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.51661,"lon":-122.679357,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

391

First Wind (Formerly UPC Wind) (California) | Open Energy Information  

Open Energy Info (EERE)

600 B Street 600 B Street Place San Diego, California Zip 92101 Sector Wind energy Product Wind power developer Website http://www.firstwind.com/ Coordinates 32.718218°, -117.158821° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.718218,"lon":-117.158821,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

392

NREL: Awards and Honors - North Wind 100/20 Wind Turbine  

NLE Websites -- All DOE Office Websites (Extended Search)

North Wind 100/20 Wind Turbine North Wind 100/20 Wind Turbine Developers: Gerry Nix and Brian Smith, National Renewable Energy Laboratory; Johnathan Lynch, Clint Coleman, Garrett Bywaters, and Rob Roland, Norhtern Power Systems; Dr. David Bubenheim and Michael Flynn, NASA Ames Research Center; and John Rand, National Science Foundation. The North Wind 100/20 Wind Turbine is a state-of-the-art wind turbine that is ideal for extreme cold conditions perfect for remote locations that may be off-grid or local-grid. The numeric designations represent the North Wind's capacity, 100-kilowatts (which is enough energy for 25-50 homes), and 20-meter diameter blades. The size of the North Wind 100/20 is unique, fitting an important market niche between large and small turbines. Large turbines (400-kilowatts and

393

Wind Blog  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

wind-blog Office of Energy Efficiency & Renewable wind-blog Office of Energy Efficiency & Renewable Energy Forrestal Building 1000 Independence Avenue, SW Washington, DC 20585 en Two Facilities, One Goal: Advancing America's Wind Industry http://energy.gov/eere/articles/two-facilities-one-goal-advancing-america-s-wind-industry wind-industry" class="title-link">Two Facilities, One Goal: Advancing America's Wind Industry

394

Wind Powering America  

DOE Green Energy (OSTI)

At the June 1999 Windpower Conference, the Secretary of Energy launched the Office of Energy Efficiency and Renewable Energy's Wind Powering America (WPA) initiative. The goals of the initiative are to meet 5% of the nation's energy needs with wind energy by 2020 (i.e., 80,000 megawatts installed), to double the number of states that have more than 20 megawatts (MW) of wind capacity to 16 by 2005 and triple it to 24 by 2010, and to increase wind's contribution to Federal electricity use to 5% by 2010. To achieve the Federal government's goal, DOE would take the leadership position and work with its Federal partners. Subsequently, the Secretary accelerated the DOE 5% commitment to 2005. Achieving the 80,000 MW goal would result in approximately $60 billion investment and $1.5 billion of economic development in our rural areas (where the wind resources are the greatest). The purpose of this paper is to provide an update on DOE's strategy for achieving its goals and the activities it has undertaken since the initiative was announced.

Flowers, L. (NREL); Dougherty, P. J. (DOE)

2001-07-07T23:59:59.000Z

395

European Wind Energy Association | Open Energy Information  

Open Energy Info (EERE)

European Wind Energy Association European Wind Energy Association Jump to: navigation, search Logo: European Wind Energy Association Name European Wind Energy Association Address Rue d'Arlon 80 B-1040 Place Brussels, Belgium Phone number +32 2 213 1811 Website http://www.ewea.org/index.php Coordinates 50.8415917°, 4.3733281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8415917,"lon":4.3733281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

396

Nebraska Wind and Solar | Open Energy Information  

Open Energy Info (EERE)

Solar Solar Jump to: navigation, search Logo: Nebraska Wind and Solar Name Nebraska Wind and Solar Address 2026 East 29th Street Place Scottsbluff, Nebraska Zip 69361 Sector Wind energy Product Small Wind and Solar Year founded 2006 Number of employees 1-10 Website http://www.nebraskawindandsola Coordinates 41.8754°, -103.637° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.8754,"lon":-103.637,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

397

California Wind Systems | Open Energy Information  

Open Energy Info (EERE)

Wind Systems Wind Systems Address 3411 Camino Corte Place Carlsbad, California Zip 92008 Sector Wind energy Product Developing a patented wind impeller system for residential and commercial rooftop installations Website http://www.californiawindsyste Coordinates 33.1412124°, -117.3205123° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.1412124,"lon":-117.3205123,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

398

Global Wind Energy Council | Open Energy Information  

Open Energy Info (EERE)

Global Wind Energy Council Global Wind Energy Council Name Global Wind Energy Council Address Wind Power House Rue d'Arlon 80 Place Brussels, Belgium Phone number +32 2 213 1897 Website http://www.gwec.net/ Coordinates 50.8415917°, 4.3733281° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":50.8415917,"lon":4.3733281,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

399

Cielo Wind Power | Open Energy Information  

Open Energy Info (EERE)

Cielo Wind Power Cielo Wind Power Address 823 Congress Avenue Place Austin, Texas Zip 78701 Sector Wind energy Product Wind energy developer Website http://www.cielowind.com/ Coordinates 30.270585°, -97.741444° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":30.270585,"lon":-97.741444,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

400

Patriot Wind Inc | Open Energy Information  

Open Energy Info (EERE)

Patriot Wind Inc Patriot Wind Inc Address 1919 14th Street Place Boulder, Colorado Zip 80302 Sector Wind energy Product Developer, owner and operator of wind farms for municipalities Website http://www.patriotwind.com/ Coordinates 40.017605°, -105.27761° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.017605,"lon":-105.27761,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

West Virginia/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

West Virginia/Wind Resources/Full Version West Virginia/Wind Resources/Full Version < West Virginia‎ | Wind Resources Jump to: navigation, search Print PDF West Virginia Wind Resources WestVirginiaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

402

New Jersey/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

New Jersey/Wind Resources/Full Version New Jersey/Wind Resources/Full Version < New Jersey‎ | Wind Resources Jump to: navigation, search Print PDF New Jersey Wind Resources NewJerseyMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

403

South Carolina/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

South Carolina/Wind Resources/Full Version South Carolina/Wind Resources/Full Version < South Carolina‎ | Wind Resources Jump to: navigation, search Print PDF South Carolina Wind Resources SouthCarolinaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

404

Wind Atlas Analysis and Application Program (WAsP) | Open Energy  

Open Energy Info (EERE)

Wind Atlas Analysis and Application Program (WAsP) Wind Atlas Analysis and Application Program (WAsP) Jump to: navigation, search Tool Summary Name: Wind Atlas Analysis and Application Program (WAsP) Agency/Company /Organization: Risoe DTU Sector: Energy Focus Area: Renewable Energy, Wind Topics: GHG inventory, Resource assessment Resource Type: Maps, Software/modeling tools User Interface: Desktop Application Website: www.wasp.dk/ Cost: Paid Wind Atlas Analysis and Application Program (WAsP) Screenshot References: WAsP[1] Background "WAsP is a PC program for predicting wind climates, wind resources and power productions from wind turbines and wind farms. The predictions are based on wind data measured at stations in the same region. The program includes a complex terrain flow model, a roughness change model and a model

405

South Dakota/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

South Dakota/Wind Resources/Full Version South Dakota/Wind Resources/Full Version < South Dakota‎ | Wind Resources Jump to: navigation, search Print PDF South Dakota Wind Resources SouthDakotaMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

406

Rhode Island/Wind Resources/Full Version | Open Energy Information  

Open Energy Info (EERE)

Rhode Island/Wind Resources/Full Version Rhode Island/Wind Resources/Full Version < Rhode Island‎ | Wind Resources Jump to: navigation, search Print PDF Rhode Island Wind Resources RhodeIslandMap.jpg More information about these 30-m height wind resource maps is available on the Wind Powering America website. Introduction Can I use wind energy to power my home? This question is being asked across the country as more people look for a hedge against increasing electricity rates and a way to harvest their local wind resources. Small wind electric systems can make a significant contribution to our nation's energy needs. Although wind turbines large enough to provide a significant portion of the electricity needed by the average U.S. home generally require 1 acre of property or more, approximately 21 million U.S. homes are built on 1-acre

407

Architectural Wind Fact Sheet Harvard Green Campus Initiative  

E-Print Network (OSTI)

. There are a few different types of wind turbine options: · Large scale: capacities of 1,000 kW or more · Small scale: capacities of 100kW or less · Architectural: smaller turbines that are placed directly turbines convert the energy created by the wind's rotation of turbine blades into electricity by means

Paulsson, Johan

408

Home Energy Saver Website Leads the Way to Savingstown | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Energy Saver Website Leads the Way to Savingstown Energy Saver Website Leads the Way to Savingstown Home Energy Saver Website Leads the Way to Savingstown November 28, 2012 - 11:18am Addthis Visit the Home Energy Saver website to learn energy-saving specifics about your home. Visit the Home Energy Saver website to learn energy-saving specifics about your home. Eric Barendsen Energy Technology Program Specialist, Office of Energy Efficiency and Renewable Energy What does this mean for me? The Home Energy Saver website pinpoints the inefficient aspects of your home and makes recommendations that could save you hundreds of dollars. Energy Saver Blog readers interested in saving energy in their homes and starting to take back some of the hard cash they're spending on power should check out this website called Home Energy Saver.

409

EIA - Electricity Generating Capacity  

U.S. Energy Information Administration (EIA) Indexed Site

imports and exports. Renewable & Alternative Fuels Includes hydropower, solar, wind, geothermal, biomass and ethanol. Nuclear & Uranium Uranium fuel, nuclear reactors, generation,...

410

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITYFOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

411

"YEAR","MONTH","STATE","UTILITY CODE","UTILITY NAME","RESIDENTIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL PHOTOVOLTAIC ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","TOTAL PHOTOVOLTAIC INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","COMMERCIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","INDUSTRIAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TRANSPORTATION PHOTOVOLTAIC NET METERING CUSTOMER COUNT","TOTAL PHOTOVOLTAIC NET METERING CUSTOMER COUNT","RESIDENTIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION WIND ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL WIND ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL WIND INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL WIND INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL WIND INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION WIND INSTALLED NET METERING CAPACITY (MW)","TOTAL WIND INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL WIND NET METERING CUSTOMER COUNT","COMMERCIAL WIND NET METERING CUSTOMER COUNT","INDUSTRIAL WIND NET METERING CUSTOMER COUNT","TRANSPORTATION WIND NET METERING CUSTOMER COUNT","TOTAL WIND NET METERING CUSTOMER COUNT","RESIDENTIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","COMMERCIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION OTHER ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL OTHER ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL OTHER INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL OTHER INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL OTHER INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION OTHER INSTALLED NET METERING CAPACITY (MW)","TOTAL OTHER INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL OTHER NET METERING CUSTOMER COUNT","COMMERCIAL OTHER NET METERING CUSTOMER COUNT","INDUSTRIAL OTHER NET METERING CUSTOMER COUNT","TRANSPORTATION OTHER NET METERING CUSTOMER COUNT","TOTAL OTHER NET METERING CUSTOMER COUNT","RESIDENTIAL TOTAL ENERGY SOLD BACK TO THE UTILITY (MWh)","COMMERCIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","INDUSTRIAL TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TRANSPORTATION TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","TOTAL ELECTRIC ENERGY SOLD BACK (MWh)","RESIDENTIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","COMMERCIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","INDUSTRIAL TOTAL INSTALLED NET METERING CAPACITY (MW)","TRANSPORTATION TOTAL INSTALLED NET METERING CAPACITY (MW)","TOTAL INSTALLED NET METERING CAPACITY (MW)","RESIDENTIAL TOTAL NET METERING CUSTOMER COUNT","COMMERCIAL TOTAL NET METERING CUSTOMER COUNT","INDUSTRIAL TOTAL NET METERING CUSTOMER COUNT","TRANSPORTATION TOTAL NET METERING CUSTOMER COUNT","TOTAL NET METERING CUSTOMER COUNT","RESIDENTIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","COMMERCIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","INDUSTRIAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TRANSPORTATION ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","TOTAL ELECTRIC ENERGY SOLD BACK TO THE UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"  

U.S. Energy Information Administration (EIA) Indexed Site

UTILITY FOR ALL STATES SERVED(MWh)","RESIDENTIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","COMMERCIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INDUSTRIAL INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","TRANSPORTATION INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","INSTALLED NET METERING CAPACITY FOR ALL STATES SERVED(MW)","RESIDENTIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","COMMERCIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","INDUSTRIAL NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","TRANSPORTATION NET METERING CUSTOMER COUNT FOR ALL STATES SERVED","NET METERING CUSTOMER COUNT FOR ALL STATES SERVED"

412

Small Wind Guidebook/Image Library | Open Energy Information  

Open Energy Info (EERE)

Image Library Image Library < Small Wind Guidebook Jump to: navigation, search Print PDF WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHSmall Wind Guidebook Home WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical for Me? * What Size Wind Turbine Do I Need? * What Are the Basic Parts of a Small Wind Electric System? * What Do Wind Systems Cost? * Where Can I Find Installation and Maintenance Support? * How Much Energy Will My System Generate? * Is There Enough Wind on My Site? * How Do I Choose the Best Site for My Wind Turbine? * Can I Connect My System to the Utility Grid? * Can I Go Off-Grid? * State Information Portal * Glossary of Terms * For More Information *Capacity-10 kilowatts *Turbine manufacturer-Bergey Windpower Company

413

TMCC WIND RESOURCE ASSESSMENT  

DOE Green Energy (OSTI)

North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

Turtle Mountain Community College

2003-12-30T23:59:59.000Z

414

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

A P van den Berg A P van den Berg Heerenveen Netherlands P O Box AB A P van den Berg A P van den Berg Heerenveen Netherlands P O Box AB Geothermal energy Gateway Solar Designs and installs soil investigation systems geothermal systems producer of heat pumps heat pump boilers solar collectors and solar boilers ALDACOR ALDACOR E th St Suite Idaho Falls Idaho Buildings Efficiency Geothermal energy Hydro Renewable Energy Services Gateway Solar Wind energy http www aldacor com ALDACOR INC ALDACOR INC E th St Suite Idaho Falls Idaho Geothermal energy Hydro Renewable Energy Services Gateway Solar Wind energy http www aldacor com Advanced Solar LLC Advanced Solar LLC E Lincoln Street Westerville Ohio Geothermal energy Renewable Energy Gateway Solar Wind energy Agriculture Consulting Engineering architectural design Installation Maintenance

415

Energy Basics: Wind Turbines  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Energy Basics Renewable Energy Printable Version Share this resource Biomass Geothermal Hydrogen Hydropower Ocean Solar Wind Wind Turbines Wind Resources Wind Turbines...

416

Standards for Municipal Small Wind Regulations and Small Wind...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance Eligibility...

417

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute for Science and Education (ORISE) helps government agencies and organizations develop a solid infrastructure through capacity building. Capacity building refers to activities that improve an organization's ability to achieve its mission or a person's ability do his or her job more effectively. For organizations, capacity building may relate to almost any aspect of its work-from leadership and administration to program development and implementation. Strengthening an organizational infrastructure can help agencies and community-based organizations more quickly identify targeted audiences for

418

The Ecological Society of America wwwwww..ffrroonnttiieerrssiinneeccoollooggyy..oorrgg Wind energy has become an increasingly important  

E-Print Network (OSTI)

existing wind energy facili- ties in the US include turbines with installed capacity rang- ing from 600 kW 000 MW, or the equivalent 48 000 1.5 MW wind turbines. This is enough, according REVIEWS REVIEWS to 2 MW per turbine. Wind turbines up to about 3 MW of installed capacity for onshore applications

Wilmers, Chris

419

Modeling Capacity Reservation Contract  

E-Print Network (OSTI)

In this paper we model a scenario where a chip designer (buyer) buys capacity from chip manufacturers (suppliers) in the presence of demand uncertainty faced by the buyer. We assume that the buyer knows the probability distribution of his demand. The supplier offers the buyer to reserve capacity in advance at a price that is lower than the historical average of the spot price. The suppliers price (if the buyer reserves capacity in advance) is function of her capacity, demand for her capacity, unit production cost, the average spot market price and the amount of capacity reserved by the buyer. Based on these parameters we derive the price the suppliers will charge. We formulate the problem from the buyers perspective. The buyers decisions are how much capacity to reserve and from how many suppliers. The optimal solution is obtained numerically. Our model addresses the following issues that are not covered in the current literature on capacity reservation models. In the existing literature the suppliers price is an exogenous parameter. We model the suppliers price from relevant parameters mentioned above. This makes our model richer. For example, if the expected capacity utilization for the supplier is likely to be low then the supplier will charge a lower price for capacity reservation. In reality, the buyer sources from multiple suppliers. Most mathematical models on capacity reservation, we are aware of, assumes a single buyer and a single supplier. We generalize this to a single buyer and multiple suppliers.

Jishnu Hazra; B. Mahadevan; Sudhi Seshadri

2002-01-01T23:59:59.000Z

420

Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends: 2007  

NLE Websites -- All DOE Office Websites (Extended Search)

7 7 Contents Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 U.S. Wind Power Capacity Surged by 46% in 2007, with 5,329 MW Added and $9 Billion Invested . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 Wind Power Contributed 35% of All New U.S. Electric Generating Capacity in 2007 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4 The United States Continued to Lead the World in Annual Capacity Growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5 Texas Easily Exceeded Other States in Annual Capacity Growth . . . . . . .6 Data from Interconnection Queues Demonstrate that an Enormous Amount of Wind Capacity Is Under Development . . . . . . . . . .9 GE Wind Remained the Dominant Turbine Manufacturer, but a Growing Number of Other Manufacturers Are Capturing Market Share .

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Building REDD Capacity in Developing Countries | Open Energy Information  

Open Energy Info (EERE)

Building REDD Capacity in Developing Countries Building REDD Capacity in Developing Countries Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Building REDD Capacity in Developing Countries Agency/Company /Organization: International Institute for Sustainable Development (IISD) Sector: Land Focus Area: Forestry Topics: Policies/deployment programs Resource Type: Workshop, Lessons learned/best practices Website: www.iisd.org/climate/land_use/redd/ Country: Kenya, Vietnam Eastern Africa, South-Eastern Asia References: IISD Building REDD Capacity in Developing Countries[1] Background "To provide developing countries with this support, IISD has partnered with the Alternatives to Slash and Burn Partnership for the Tropical Forest Margins, World Agroforesty Centre (ASB-ICRAF), to deliver a series of

422

Africa Adaptation Programme: Capacity Building Experiences-Improving  

Open Energy Info (EERE)

Africa Adaptation Programme: Capacity Building Experiences-Improving Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Jump to: navigation, search Tool Summary Name: Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Agency/Company /Organization: United Nations Development Programme (UNDP) Sector: Climate, Energy Topics: Adaptation, Co-benefits assessment, - Energy Access Resource Type: Dataset, Lessons learned/best practices Website: www.undp.org/environment/library.shtml Cost: Free UN Region: Eastern Africa, Middle Africa, Northern Africa, Southern Africa, Western Africa Language: English Africa Adaptation Programme: Capacity Building Experiences-Improving Access, Understanding and Application of Climate Data and Information Screenshot

423

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS):  

Open Energy Info (EERE)

Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation Agency/Company /Organization: National Renewable Energy Laboratory Sector: Energy Topics: Low emission development planning, -LEDS Resource Type: Webinar Website: eeredev.nrel.gov/_proofs/video/2013_EC-LEDS/ Cost: Free References: Enhancing Capacity for Low Emission Development Strategies (EC-LEDS): Distributed Generation[1] Overview A webinar on distributed generation, presented by the National Renewable Energy Laboratory, with funding from the U.S. Agency for International Development. This webinar covers the basics of distributed generation, with an emphasis

424

Wind Turbines  

Energy.gov (U.S. Department of Energy (DOE))

Although all wind turbines operate on similar principles, several varieties are in use today. These include horizontal axis turbines and vertical axis turbines.

425

NREL: Wind Research - Large Wind Turbine Research  

NLE Websites -- All DOE Office Websites (Extended Search)

Wind Research Search More Search Options Site Map Printable Version Large Wind Turbine Research NREL's utility scale wind system research addresses performance and...

426

About EIA - Website - U.S. Energy Information Administration (EIA)  

Gasoline and Diesel Fuel Update (EIA)

About EIA.gov About EIA.gov Screen capture of www.eia.gov Our website, EIA.gov, is the primary communication channel for the U.S. Energy Information Administration (EIA) and serves as the agency's world-wide energy information point of contact for: Federal, state, and local governments The academic and research communities Businesses and industry Foreign governments and international organizations The news media Financial institutions The general public From January-December 2012, there were 22 million visitor sessions to the site, averaging 183 million visits per month. The site consists of approximately 500K files of all types that support our wide range of products, 41 email subscription lists, four Application Programming Interface (API) data sets, and 11 RSS feeds. EIA has forged a tradition of

427

New England Wind Forum: Technical Challenges  

Wind Powering America (EERE)

Technical Challenges Technical Challenges Wind power is by its nature variable, and as a result, it differs from the majority of generation supplying the electric grid. Aspects of this variability are often cited as shortcomings. For instance, the fact that wind power will not be as regularly and reliably available at system peak times as most other generators is sometimes used to argue that wind power requires additional backup resources by other generation on a one-to-one basis. And wind's relatively low capacity factor (a ratio of the total energy output relative to the theoretical sustained peak output) is sometimes used to characterize wind generators as inefficient. It's been stated that other generation will have to be operated in such an inefficient manner to react to wind that it will not reduce fossil fuel usage or emissions. Here we address concerns that wind power's variability will eradicate any expected benefit.

428

Wind Energy Myths | Open Energy Information  

Open Energy Info (EERE)

Wind Energy Myths Wind Energy Myths Jump to: navigation, search Glacier Wind Project is located 10 miles west of Shelby, Montana, 2 miles south of Ethridge, in Glacier and Toole Counties, and is the largest wind farm in Montana. This project is comprised of 71 machines in phase 1 and 69 machines in phase 2 for a total of 140 Acciona AW-1500, capable of producing 210 MW at full capacity. Photo from Todd Spink, NREL 16521 U.S. Department of Energy. (July 10, 2011). Myths and Benefits of Wind Energy Wind Powering America hosted this webinar featuring speakers Ian Baring-Gould (National Renewable Energy Laboratory), Ed DeMeo, and Ben Hoen (Lawrence Berkeley National Laboratory). References Retrieved from "http://en.openei.org/w/index.php?title=Wind_Energy_Myths&oldid=700129"

429

Microsoft Word - 080530Wind.doc  

NLE Websites -- All DOE Office Websites (Extended Search)

FOR IMMEDIATE RELEASE FOR IMMEDIATE RELEASE Jennifer Scoggins, (202) 586-4940 Thursday, May 29, 2008 U.S. Continues to Lead the World in Wind Power Growth DOE Report Shows Rapidly Growing U.S. Wind Power Market WASHINGTON - The U.S. Department of Energy (DOE) today released the 2007 edition of its Annual Report on U.S. Wind Power Installation, Cost, and Performance Trends, which provides a comprehensive overview of developments in the rapidly evolving U.S. wind power market. Notably, the report finds that U.S. wind power capacity increased by 46 percent in 2007, with $9 billion invested in U.S. wind plants in 2007 alone, making the U.S. the fastest-growing wind power market in the world for the third straight

430

Community Renewable Energy Deployment: Haxtun Wind Project | Open Energy  

Open Energy Info (EERE)

Haxtun Wind Project Haxtun Wind Project Jump to: navigation, search Name Community Renewable Energy Deployment: Haxtun Wind Project Agency/Company /Organization US Department of Energy Focus Area Economic Development, Renewable Energy, Wind Phase Evaluate Options, Get Feedback, Develop Finance and Implement Projects Resource Type Case studies/examples Availability Publicly Available--Free Publication Date 2/7/2011 Website http://www1.eere.energy.gov/co Locality Phillips County, Colorado References Community Renewable Energy Deployment: Haxtun Wind Project[1] Contents 1 Overview 2 Highlights 3 Environmental Aspects 4 Related Tools 5 References Overview This short case study describes Phillips County's Haxtun Wind Project efforts through the Department of Energy's Community Renewable Energy

431

Distributed Wind Site Analysis Tool (DSAT) | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Site Analysis Tool (DSAT) Distributed Wind Site Analysis Tool (DSAT) Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Site Analysis Tool (DSAT) Focus Area: Renewable Energy Topics: Opportunity Assessment & Screening Website: dsat.cadmusgroup.com/Default.aspx Equivalent URI: cleanenergysolutions.org/content/distributed-wind-site-analysis-tool-d Language: English Policies: Deployment Programs DeploymentPrograms: Technical Assistance The Distributed Wind Site Analysis Tool (DSAT) is a powerful online tool for conducting detailed site assessments for single turbine projects, from residential to community scale. The tool offers users the ability to analyse potential wind turbine installment projects based on the type of turbine being installed, the terrain of the installment site, and the

432

Distributed Wind Policy Comparison Tool | Open Energy Information  

Open Energy Info (EERE)

Distributed Wind Policy Comparison Tool Distributed Wind Policy Comparison Tool Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Distributed Wind Policy Comparison Tool Focus Area: Renewable Energy Topics: Policy Impacts Website: www.eformativeoptions.com/distributed-wind-policy-comparison-tool-news Equivalent URI: cleanenergysolutions.org/content/distributed-wind-policy-comparison-to Language: English Policies: "Deployment Programs,Financial Incentives,Regulations" is not in the list of possible values (Deployment Programs, Financial Incentives, Regulations) for this property. DeploymentPrograms: Demonstration & Implementation Regulations: Feed-in Tariffs This Web-based tool allows users to identify policies that have had the most (and least) impact on improving the bottom line economics of wind

433

EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41: Mohave County Wind Farm Project, Mohave County, Arizona 41: Mohave County Wind Farm Project, Mohave County, Arizona EIS-0441: Mohave County Wind Farm Project, Mohave County, Arizona Summary This EIS, prepared by the Bureau of Land Management with DOE's Western Area Power Administration as a cooperating agency, evaluated the environmental impacts of a proposed wind energy project on public lands in Mohave County, Arizona. Power generated by this project would tie to the electrical power grid through an interconnection to one of Western's transmission lines.The project website is http://www.blm.gov/az/st/en/prog/energy/wind/mohave.html. Public Comment Opportunities None available at this time. Documents Available for Download Draft EIS posted at http://www.blm.gov/az/st/en/prog/energy/wind/mohave/reports/DEIS.html.

434

International Energy Agency Technology Roadmap for Wind Energy | Open  

Open Energy Info (EERE)

Technology Roadmap for Wind Energy Technology Roadmap for Wind Energy Jump to: navigation, search Name International Energy Agency Technology Roadmap for Wind Energy Agency/Company /Organization International Energy Agency Sector Energy Focus Area Renewable Energy, Wind Topics Market analysis, Technology characterizations Resource Type Guide/manual Website http://www.iea.org/Papers/2009 References Technology Roadmap for Wind Energy[1] Summary "To achieve this ambitious goal, the IEA has undertaken an effort to develop a series of global technology roadmaps covering 19 technologies, under international guidance and in close consultation with industry. These technologies are evenly divided among demand side and supply side technologies. This wind roadmap is one of the initial roadmaps being

435

Wind Powering America: Wind Events  

Wind Powering America (EERE)

calendar.asp Lists upcoming wind calendar.asp Lists upcoming wind power-related events. en-us julie.jones@nrel.gov (Julie Jones) http://www.windpoweringamerica.gov/images/wpa_logo_sm.jpg Wind Powering America: Wind Events http://www.windpoweringamerica.gov/calendar.asp Pennsylvania Wind for Schools Educator Workshop https://www.regonline.com/builder/site/Default.aspx?EventID=1352684 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4068 Wed, 4 Dec 2013 00:00:00 MST 2014 Joint Action Workshop http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=3996 Mon, 21 Oct 2013 00:00:00 MST AWEA Wind Project Operations and Maintenance and Safety Seminar http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 http://www.windpoweringamerica.gov/filter_detail.asp?itemid=4009 Mon, 21

436

Wind Powering America Webinar: Wind Power Economics: Past, Present, and  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Power Economics: Past, Present, Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November 23, 2011 - 1:43pm Addthis Wind turbine prices in the United States have declined, on average, by nearly one-third since 2008, after doubling from 2002 through 2008. Over this entire period, the average nameplate capacity rating, hub height, and rotor swept area of turbines installed in the United States have increased significantly, while other design improvements have also boosted turbine energy production. In combination, these various trends have had a significant-and sometimes surprising-impact on the levelized cost of energy delivered by wind projects. This webinar will feature three related presentations that explore these

437

Grid-Connected Renewable Energy Generation Toolkit-Wind | Open Energy  

Open Energy Info (EERE)

Grid-Connected Renewable Energy Generation Toolkit-Wind Grid-Connected Renewable Energy Generation Toolkit-Wind Jump to: navigation, search Tool Summary Name: Grid-Connected Renewable Energy Generation Toolkit-Wind Agency/Company /Organization: United States Agency for International Development Sector: Energy Focus Area: Wind Resource Type: Training materials Website: www.energytoolbox.org/gcre/mod_6/index.shtml Grid-Connected Renewable Energy Generation Toolkit-Wind Screenshot References: Grid-Connected Renewable Energy Generation Toolkit-Wind[1] Logo: Grid-Connected Renewable Energy Generation Toolkit-Wind GCREwind.JPG References ↑ "Grid-Connected Renewable Energy Generation Toolkit-Wind" Retrieved from "http://en.openei.org/w/index.php?title=Grid-Connected_Renewable_Energy_Generation_Toolkit-Wind&oldid=375084"

438

Get Daily Energy Analysis Delivered to Your Website | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website Get Daily Energy Analysis Delivered to Your Website August 8, 2011 - 3:39pm Addthis Get Daily Energy Analysis Delivered to Your Website Matthew Loveless Matthew Loveless Data Integration Specialist, Office of Public Affairs How can I participate? Go to EIA's outreach page for Today in Energy widgets, badges and banners. Now everyone can feature the U.S. Energy Information Administration's (EIA) Today in Energy content on their website and favorite social networking sites. Today in Energy, the agency's education product published every weekday, highlights current energy issues, topics, and data trends in short articles written in plain language. EIA has banners and widgets in different colors and sizes to fit many different websites.

439

Website Policies and Important Links | OSTI, US Dept of Energy, Office of  

Office of Scientific and Technical Information (OSTI)

Website Policies and Important Links Website Policies and Important Links This page provides a comprehensive overview of the policies of this federally sponsored website, consistent with guidance established by the U.S. Office of Management and Budget (OMB) as implemented by the U.S. Department of Energy. Disclaimer Acceptable Use Policy User Privacy Copyright, Restrictions, and Permissions Notice Accessibility/Section 508 Website Security Linking to OSTI Website Linking to Outside Websites Data Rights Freedom of Information Information Quality No Fear Act Schedule for Posting Information Comments Policy USAJOBS Grants Regulations USA.gov Disclaimer This system is made available by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any

440

U.S. Department of Energy Launches New Website for Asset Revitalization  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Launches New Website for Asset Launches New Website for Asset Revitalization Initiative (ARI) U.S. Department of Energy Launches New Website for Asset Revitalization Initiative (ARI) July 3, 2013 - 12:00pm Addthis Screenshot of Asset Revitalization Initiative (ARI) website. Screenshot of Asset Revitalization Initiative (ARI) website. WASHINGTON, D.C. - Today, the U.S.Department of Energy (DOE) launched a website for the Asset Revitalization Initiative (ARI), a DOE-wide effort to advance the beneficial reuse of its unique and diverse mix of assets, including land, facilities, infrastructure, equipment, technologies, natural resources and a highly skilled workforce. ARI promotes a more efficient business environment to encourage collaboration between public and private resources. ARI efforts will

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Wind Power Plant Monitoring Project Annual Report  

DOE Green Energy (OSTI)

The intermittent nature of the wind resource, together with short-term power fluctuations, are the two principal issues facing a utility with wind power plants in its power grid. To mitigate these issues, utilities, wind power plant developers, and operators need to understand the nature of wind power fluctuations and how they affect the electrical power system, as well as to analyze ancillary service requirements with real wind power plant output data. To provide the necessary data, NREL conducted a study to collect at least 2 years of long-term, high-frequency (1-hertz [Hz]) data from several medium- to large-scale wind power plants with different wind resources, terrain features, and turbine types. Researchers then analyzed the data for power fluctuations, frequency distribution of wind power (by deriving a probability distribution function of wind power plant output variations), spatial and temporal diversity of wind power, and wind power capacity credit issues. Results of these analyses can provide data on the potential effects of wind power plants on power system regulation.

Wan, Y.

2001-07-11T23:59:59.000Z

442

Natural Gas Underground Storage Capacity (Summary)  

Gasoline and Diesel Fuel Update (EIA)

Salt Caverns Storage Capacity Aquifers Storage Capacity Depleted Fields Storage Capacity Total Working Gas Capacity Working Gas Capacity of Salt Caverns Working Gas Capacity of...

443

Increasing State Capacity Through Clans  

E-Print Network (OSTI)

their role in increasing state capacity With the decline ofhere focus on state capacity and the associated discussionselements of state capacity during the transition from one

Doyle, Jr, Thomas Martin

2009-01-01T23:59:59.000Z

444

New England Wind Forum: Cost Trends  

Wind Powering America (EERE)

Cost Trends Cost Trends Figure 1: Cost of Energy and Cumulative Domestic Capacity This graph shows how the cumulative domestic wind capacity (MW) has increased since 1980, while the cost of energy from wind power has declined by a factor of approximately 20 times during the same period but has increased slightly since 2001. Click on the image to view a larger version. This graph shows how the cumulative domestic wind capacity (MW) has increased since 1980, while the cost of energy from wind power has declined by a factor of approximately 20 times during the same period but has increased slightly since 2001. View a larger version of the graph. Overall, the wind industry is experiencing long-term decreases in the cost to produce wind-generated electricity (Figure 1), despite recent short-term increases in upfront equipment costs. Even in the short term, however, the effect of increases in up-front capital costs on the cost of energy from wind power projects has been dampened by improvements in energy capture from the wind and decreases in operating and maintenance costs.

445

Global wind energy market report. Wind energy industry grows at steady pace, adds over 8,000 MW in 2003  

Science Conference Proceedings (OSTI)

Cumulative global wind energy generating capacity topped 39,000 megawatts (MW) by the end of 2003. New equipment totally over 8,000 MW in capacity was installed worldwide during the year. The report, updated annually, provides information on the status of the wind energy market throughout the world and gives details on various regions. A listing of new and cumulative installed capacity by country and by region is included as an appendix.

anon.

2004-03-01T23:59:59.000Z

446

Exploring the digital capital of mobile phone service websites by the user's perspective  

Science Conference Proceedings (OSTI)

The purpose of this research is to construct the digital capital measures of mobile phone service websites. An in-depth interview is used to collect data. Content analysis and Analytic Hierarchy Process are employed to analyse data. According to ... Keywords: AHP, analytical hierarchy process, cell phones, content analysis, digital capital, in-depth interviewing, mobile communications, mobile phone service websites, mobile phones, service quality, website evaluation

Chung-Chu Liu

2008-04-01T23:59:59.000Z

447

2009 Wind Technologies Market Report  

Science Conference Proceedings (OSTI)

The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

Wiser, R.; Bolinger, M.

2010-08-01T23:59:59.000Z

448

wind offshore | OpenEI  

Open Energy Info (EERE)

offshore offshore Dataset Summary Description This dataset presents summary information related to world wind energy. It is part of a supporting dataset for the book World On the Edge: How to Prevent Environmental and Economic Collapse by Lester R. Brown, available from the Earth Policy Institute. Source Earth Policy Institute Date Released January 12th, 2011 (3 years ago) Date Updated Unknown Keywords EU wind offshore Wind Power wind power capacity world Data application/vnd.ms-excel icon Excel spreadsheet, data on multiple tabs (xls, 114.7 KiB) Quality Metrics Level of Review Some Review Comment Temporal and Spatial Coverage Frequency Time Period through 2009 License License Open Data Commons Attribution License Comment "Reuse of our data is permitted. We merely ask that wherever it is listed, it be appropriately cited"

449

Capacity Markets for Electricity  

E-Print Network (OSTI)

Designing Markets for Electricity. Wiley IEEE Press. [25]in the England and Wales Electricity Market, Power WorkingFelder (1996), Should Electricity Markets Have a Capacity

Creti, Anna; Fabra, Natalia

2004-01-01T23:59:59.000Z

450

ORISE: Capacity Building  

NLE Websites -- All DOE Office Websites (Extended Search)

Capacity Building Because public health agencies must maintain the resources to respond to public health challenges, critical situations and emergencies, the Oak Ridge Institute...

451

Advanced Wind Turbine Technology Assessment 2010  

Science Conference Proceedings (OSTI)

Wind power is one of the fastest growing generation resources in the United States and elsewhere in the world. As of December 2009, installed wind capacity was over 35 GW in the United States and over 160 GW worldwide; and it is forecast to nearly triple to 100 GW in the United States and to 450 GW worldwide by 2014. The worldwide potential for new wind project development remains enormous. The industry expects wind to become a significant component of future power generation portfolios, both to reduce d...

2010-12-31T23:59:59.000Z

452

Wind: monthly and annual average wind GIS data at one-degree resolution of  

Open Energy Info (EERE)

monthly and annual average wind GIS data at one-degree resolution of monthly and annual average wind GIS data at one-degree resolution of the World from NASA/SSE Dataset Summary Description (Abstract): Wind Speed At 50 m Above The Surface Of The Earth (m/s)NASA Surface meteorology and Solar Energy (SSE) Release 5 Data Set (Jan. 2005)10-year Monthly & Annual Average (July 1983 - June 1993) Parameter: Wind Speed At 50 m Above The Surface Of The Earth (m/s) Internet: http://eosweb.larc.nasa.gov/sse/ Note: SSE Methodology & Accuracy sections online Created: October 4, 2005 See the NASA Surface meteorology and Solar Energy (SSE) web site at http://eosweb.larc.nasa.gov/sse/. The source data was downloaded from the SSE website at Data Retrieval: Meteorology and Solar Energy > Global data sets as text files. The tabular data was then converted to the shapefile format.

453

Extreme Winds and Wind Effects on Structures  

Science Conference Proceedings (OSTI)

Extreme Winds and Wind Effects on Structures. Description/Summary: The Building and Fire Research Laboratory has an ...

2010-10-04T23:59:59.000Z

454

The website_judgements.csv file is a judgment file for the ...  

Science Conference Proceedings (OSTI)

... of judged profile-context pairs) -3 = Not judged (part of judged profile-context pairs, but no judgment assigned) -2 = Website didn't load at judgment ...

2013-03-13T23:59:59.000Z

455

Today in Energy - Nearly 80% of EIAs website users come ...  

U.S. Energy Information Administration (EIA)

EIA's website, which provides independent and impartial energy information, has about 50,000 visitors each day. In August 2013 EIA conducted a voluntary customer ...

456

Wind Power Integration Technology Assessment and Case Studies  

Science Conference Proceedings (OSTI)

Application of power electronics, energy storage, and other wind integration technologies can mitigate the impacts of adding large blocks of wind generation and raise the amount of wind capacity that can be connected to the grid without adversely affecting grid reliability, reserve and regulation requirements, and ancillary service costs. The engineering and economic data and case studies presented in this report can be used to address the available wind integration technology options.

2004-03-30T23:59:59.000Z

457

California Regional Wind Energy Forecasting System Development, Vol. 3  

Science Conference Proceedings (OSTI)

The rated capacity of wind generation in California is expected to grow rapidly in the future beyond the approximately 2100 MW in place at the end of 2005. The main drivers are the state's 20 percent Renewable Portfolio Standard requirement in 2010 and the low cost of wind energy relative to other renewable energy sources. As wind is an intermittent generation resource and weather changes can cause large and rapid changes in output, system operators will need accurate and robust wind energy forecasting ...

2006-11-15T23:59:59.000Z

458

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Charge Inc Charge Inc Dallas Texas Developer of patented technology Charge Inc Charge Inc Dallas Texas Developer of patented technology for faster battery charging time which also extends battery lifetime Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products Technologies Technologies Hartwell Avenue North Lexington Massachusetts Gateway Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com Soltech Inc Soltech Inc Richardson Texas Texas based PV module maker st Light Energy Inc st Light Energy Inc McHennry Ave Suite F Modesto

459

Organization Organization Address Place Zip Notes Website Region  

Open Energy Info (EERE)

AWEA American Wind Energy Association AWEA American Wind Energy Association AWEA M Street NW Suite Washington District of Columbia http www awea org Asociacion Argentina de Energia Eolica Asociacion Argentina de Energia Eolica Buenos Aires Argentina http www argentinaeolica org ar Clean Tech Trade Alliance Clean Tech Trade Alliance Wheaton Way Bremerton Washington Internationally focused hybrid trade alliance that will create a successful Clean Technology business cluster http www cleantechtradealliance org Pacific Northwest Area Clean Technology Sustainable Industries Organization Clean Technology Sustainable Industries Organization Coolidge Hwy Royal Oak Michigan http www ct si org Green Integrated Design Green Integrated Design Tempe Arizona http www GreenIntegratedDesign com Massachusetts Hydrogen Coalition Massachusetts Hydrogen Coalition Cummings

460

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products Technologies Technologies Hartwell Avenue North Lexington Massachusetts Gateway Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com st Light Energy Inc st Light Energy Inc McHennry Ave Suite F Modesto California Gateway Solar http stlightenergy com Southern CA Area Century Solar Inc Century Solar Inc Garland Texas Gateway Solar Privately owned Garland based manufacturer of solar grade polysilicon

Note: This page contains sample records for the topic "wind capacity website" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Century Silicon Inc Century Silicon Inc Firman Drive Suite Richardson Century Silicon Inc Century Silicon Inc Firman Drive Suite Richardson Texas Gateway Solar Solar Grade Silicon purity http www CenturySilicon com Texas Area Degrees Degrees Embarcadero Center Suite San Francisco California Bioenergy Buildings Carbon Geothermal energy Services Gateway Solar Wind energy Environmental Commodities http www degreesinc com Bay Area A1 Sun Inc A1 Sun Inc th St Berkeley California Gateway Solar Solar PV Design and Installation http www a1suninc com Bay Area ALDACOR INC ALDACOR INC E th St Suite Idaho Falls Idaho Geothermal energy Hydro Renewable Energy Services Gateway Solar Wind energy http www aldacor com Acela Energy Group Inc Acela Energy Group Inc Main St Norfolk Massachusetts Efficiency Aims to reduce energy costs via rate negotiation conservation

462

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

American Photovoltaics American Photovoltaics Houston Texas Gateway American Photovoltaics American Photovoltaics Houston Texas Gateway Solar Will manufacture thin film solar modules http apv us com Texas Area C Voltaics C Voltaics Cullen Blvd Science and Research Building Houston Texas Gateway Solar Novel manufacturing process for solar cells with initial focus on OPV http www c voltaics com Texas Area CMNA Power CMNA Power Technology Blvd Austin Texas Wind energy Developing non turbine wind power technology http www cmnapower com Texas Area CPower Texas CPower Texas Congress Avenue Suite Austin Texas Efficiency Provides various energy efficiency management services http www cpowered com Texas Area Celestial Power Celestial Power Hermitage Drive Austin Texas Gateway Solar Solar energy contractor http celestialpower biz Texas Area

463

Company Name Company Name Address Place Zip Sector Product Website  

Open Energy Info (EERE)

Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Voltz Limited Voltz Limited Cumbria United Kingdom LA8 NH Renewable Energy Gateway Solar Wind energy Selling and delivering broad range of advanced energy generating systems and accessories including wind turbines solar panels batteries regulators and stables and as well as developing renewable energy technology and related products Technologies Technologies Hartwell Avenue North Lexington Massachusetts Gateway Solar Developer of technologies for enhancing PV efficiency including new cell wiring and wafer packaging systems http www tech com st Light Energy Inc st Light Energy Inc McHennry Ave Suite F Modesto California Gateway Solar http stlightenergy com Southern CA Area Century Solar Inc Century Solar Inc Garland Texas Gateway Solar Privately owned Garland based manufacturer of solar grade polysilicon

464

An assessment of the economic impact of the wind turbine supply chain in Illinois  

SciTech Connect

The enormous growth of wind energy in Illinois and around the country has led to a shortage of wind turbines. Turbine manufacturers have sold out their capacity into 2010. To the extent that Illinois manufacturing can integrate itself into the wind turbine supply chain, Illinois can enjoy the economic benefits from both having wind farms and supplying the parts to build them. (author)

Carlson, J. Lon; Loomis, David G.; Payne, James

2010-08-15T23:59:59.000Z

465

Texas Wind Energy Forecasting System Development and Testing: Phase 2: 12-Month Testing  

Science Conference Proceedings (OSTI)

Wind energy forecasting systems are expected to support system operation in cases where wind generation contributes more than a few percent of total generating capacity. This report presents final results from the Texas Wind Energy Forecasting System Development and Testing Project at a 75-MW wind project in west Texas.

2004-09-30T23:59:59.000Z

466

Systems Performance Analyses of Alaska Wind-Diesel Projects; Kasigluk, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in Kasigluk, Alaska. Data provided for this project include community load data, average wind turbine output, average diesel plant output, thermal load data, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

467

Systems Performance Analyses of Alaska Wind-Diesel Projects; St. Paul, Alaska (Fact Sheet)  

DOE Green Energy (OSTI)

This fact sheet summarizes a systems performance analysis of the wind-diesel project in St. Paul, Alaska. Data provided for this project include load data, average wind turbine output, average diesel plant output, dump (controlling) load, average net capacity factor, average net wind penetration, estimated fuel savings, and wind system availability.

Baring-Gould, I.

2009-04-01T23:59:59.000Z

468

The impact of electricity market schemes on predictability being a decision factor in the wind farm  

E-Print Network (OSTI)

sources. Wind energy is anticipated to be a major contributor to this target with an installed capacity (see [1]). Such large-scale integration of wind energy raises several challenges in operating #12;References [1] A report by the European Wind Energy Association EWEA. Pure power wind energy

469

Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara a  

E-Print Network (OSTI)

Data Bank Statistical analysis of wind energy in Chile David Watts a,b,*, Danilo Jara December 2010 Keywords: Wind Wind speed Energy Capacity factor Electricity Chile a b s t r a c t Bearing role in any future national energy generation matrix. With a view to understanding the local wind

Catholic University of Chile (Universidad Católica de Chile)

470

Wind Energy Leasing Handbook  

E-Print Network (OSTI)

Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

Balasundaram, Balabhaskar "Baski"

471

Commercial Scale Wind Incentive Program | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program Commercial Scale Wind Incentive Program < Back Eligibility Agricultural Commercial Local Government Nonprofit Residential Schools State Government Savings Category Wind Buying & Making Electricity Maximum Rebate Project Development Assistance: $40,000 Program Info State Oregon Program Type State Rebate Program Rebate Amount Varies Provider Energy Trust of Oregon Energy Trust of Oregon's Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up to 20 megawatts (MW) in capacity. Projects may consist of a single turbine or a small group of turbines. A variety of ownership models are allowed. Incentive programs

472

2009 Wind Technologies Market Report  

NLE Websites -- All DOE Office Websites (Extended Search)

9 Wind Technologies Market Report 9 Wind Technologies Market Report Title 2009 Wind Technologies Market Report Publication Type Report Refereed Designation Unknown Year of Publication 2010 Authors Wiser, Ryan H., Mark Bolinger, Galen L. Barbose, Naïm Darghouth, Ben Hoen, Andrew D. Mills, Kevin Porter, Sari Fink, and Suzanne Tegen Pagination 88 Date Published 08/2010 Publisher LBNL City Berkeley Keywords electricity markets and policy group, energy analysis and environmental impacts department, power system economics, renewable energy, wind power Abstract The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry towards continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater.

473

An Intercomparison of TOPEX, NSCAT, and ECMWF Wind Speeds: Illustrating and Understanding Systematic Discrepancies  

Science Conference Proceedings (OSTI)

The availability of multiple satellite missions with wind measuring capacity has made it more desirable than ever before to integrate wind data from various sources in order to achieve an improved accuracy, resolution, and duration. A clear ...

Ge Chen

2004-03-01T23:59:59.000Z

474

Wind Powering America: New England Wind Forum  

Wind Powering America (EERE)

About the New England Wind Forum About the New England Wind Forum New England Wind Energy Education Project Historic Wind Development in New England State Activities Projects in New England Building Wind Energy in New England Wind Resource Wind Power Technology Economics Markets Siting Policy Technical Challenges Issues Small Wind Large Wind Newsletter Perspectives Events Quick Links to States CT MA ME NH RI VT Bookmark and Share The New England Wind Forum was conceived in 2005 as a platform to provide a single, comprehensive and objective source of up-to-date, Web-based information on a broad array of wind-energy-related issues pertaining to New England. The New England Wind Forum provides information to wind energy stakeholders through Web site features, periodic newsletters, and outreach activities. The New England Wind Forum covers the most frequently discussed wind energy topics.

475

Capacity on Finsler Spaces  

E-Print Network (OSTI)

Here, the concept of electric capacity on Finsler spaces is introduced and the fundamental conformal invariant property is proved, i.e. the capacity of a compact set on a connected non-compact Finsler manifold is conformal invariant. This work enables mathematicians and theoretical physicists to become more familiar with the global Finsler geometry and one of its new applications.

Bidabad, B

2009-01-01T23:59:59.000Z