Sample records for wind capabilities wind

  1. Extreme-Wind Observation Capability for the Next Generation Satellite Wind

    E-Print Network [OSTI]

    Haak, Hein

    Extreme-Wind Observation Capability for the Next Generation Satellite Wind Scatterometer Instrument ­ 6 June 2013 RadarSAT-2 observation of extreme-winds VH HH Gradual saturation at higher wind Better ­ Matera, Italy, 3 ­ 6 June 2013 VH-GMF for extreme-winds (1) RadarSAT-2 dual-polarisation images of 12

  2. Property:Wind Capabilities | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revisionEnvReviewNonInvasiveExploration JumpSanyalTempWellhead JumpCapabilities" Showing 25 pages using this

  3. A Robust STATCOM Control to Augment LVRT capability of Fixed Speed Wind Turbines

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    A Robust STATCOM Control to Augment LVRT capability of Fixed Speed Wind Turbines M. J. Hossain, H Compensator (STATCOM) to enhance the Low-Voltage Ride- Through (LVRT) capability of fixed-speed wind turbines cost and maintenance due to rugged brushless construction. Constant speed wind turbines equipped

  4. Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine

    E-Print Network [OSTI]

    Silva, Filipe Faria Da

    Coordination of Voltage and Frequency Feedback in Load-Frequency Control Capability of Wind Turbine-Frequency Control (LFC) is gradually shifted to Variable Speed Wind Turbines (VSWTs). In order to equip VSWT

  5. A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic simulations

    E-Print Network [OSTI]

    A next-generation modeling capability assesses wind turbine array fluid dynamics and aeroelastic of multi-megawatt turbines requires a new generation of modeling capability to assess individual turbine. Key Result The work is generating several models, including actuator line models of several wind

  6. Decentralized Control to Augment LVRT Capability of Wind Generators with STATCOM/ESS

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    Decentralized Control to Augment LVRT Capability of Wind Generators with STATCOM/ESS M. J. Hossain). In this paper it is shown that STATCOM with energy storage system (STATCOM/ESS), controlled via robust control

  7. Wind derivatives: hedging wind risk:.

    E-Print Network [OSTI]

    Hoyer, S.A.

    2013-01-01T23:59:59.000Z

    ??Wind derivatives are financial contracts that can be used to hedge or mitigate wind risk. In this thesis, the focus was on pricing these wind (more)

  8. Robust STATCOM Control for the Enhancement of Fault Ride-Through Capability of Fixed Speed Wind Generators

    E-Print Network [OSTI]

    Pota, Himanshu Roy

    -slip relationships as well as through simulations. The wind generator is a highly nonlinear system, which is modelled power generation. This type of wind generator always consumes reactive power from the grid. WhenRobust STATCOM Control for the Enhancement of Fault Ride-Through Capability of Fixed Speed Wind

  9. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    WIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary Correspondence M. Wächter, ForWind-Center for Wind Energy Research, Institute of Physics, Carl Von Ossietzky on the operation of wind energy converters (WECs) imposing different risks especially in terms of highly dynamic

  10. Oscillation Damping: A Comparison of Wind and Photovoltaic Power Plant Capabilities: Preprint

    SciTech Connect (OSTI)

    Singh, M.; Allen, A.; Muljadi, E.; Gevorgian, V.

    2014-07-01T23:59:59.000Z

    This work compares and contrasts strategies for providing oscillation damping services from wind power plants and photovoltaic power plants.

  11. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  12. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  13. Wasted Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    why turbulent airflows are causing power losses and turbine failures in America's wind farms-and what to do about it April 1, 2014 Wasted Wind This aerial photo of Denmark's Horns...

  14. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  15. Wind turbine

    SciTech Connect (OSTI)

    Abe, M.

    1982-01-19T23:59:59.000Z

    The improvement in a wind turbine comprises providing a tower with a freely liftable mount and adapting a nacelle which is fitted with a propeller windwheel consisting of a plurality of rotor blades and provided therein with means for conversion of wind energy to be shifted onto said mount attached to the tower. In case of a violent wind storm, the nacelle can be lowered down to the ground to protect the rotor blades from breakage due to the force of the wind. Required maintenance and inspection of the nacelle and replacement of rotor blades can be safely carried out on the ground.

  16. IMPROVED CAPABILITIES FOR SITING WIND FARMS AND MITIGATING IMPACTS ON RADAR OBSERVATIONS

    SciTech Connect (OSTI)

    Chiswell, S.

    2010-01-15T23:59:59.000Z

    The development of efficient wind energy production involves challenges in technology and interoperability with other systems critical to the national mission. Wind turbines impact radar measurements as a result of their large reflectivity cross section as well as through the Doppler phase shift of their rotating blades. Wind farms can interfere with operational radar in multiple contexts, with degradation impacts on: weather detection such as tornado location, wind shear, and precipitation monitoring; tracking of airplanes where air traffic control software can lose the tracks of aircraft; and in identification of other low flying targets where a wind farm located close to a border might create a dead zone for detecting intruding objects. Objects in the path of an electromagnetic wave affect its propagation characteristics. This includes actual blockage of wave propagation by large individual objects and interference in wave continuity due to diffraction of the beam by individual or multiple objects. As an evolving industry, and the fastest growing segment of the energy sector, wind power is poised to make significant contributions in future energy generation requirements. The ability to develop comprehensive strategies for designing wind turbine locations that are mutually beneficial to both the wind industry that is dependent on production, and radar sites which the nation relies on, is critical to establishing reliable and secure wind energy. The mission needs of the Department of Homeland Security (DHS), Department of Defense (DOD), Federal Aviation Administration (FAA), and National Oceanographic and Atmospheric Administration (NOAA) dictate that the nation's radar systems remain uninhibited, to the maximum extent possible, by man-made obstructions; however, wind turbines can and do impact the surveillance footprint for monitoring airspace both for national defense as well as critical weather conditions which can impact life and property. As a result, a number of potential wind power locations have been contested on the basis of radar line of site. Radar line of site is dependent on local topography, and varies with atmospheric refractive index which is affected by weather and geographic conditions.

  17. New Report Characterizes Existing Offshore Wind Grid Interconnection...

    Office of Environmental Management (EM)

    New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities New Report Characterizes Existing Offshore Wind Grid Interconnection Capabilities September 3,...

  18. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  19. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  20. Wind retrieval capability of rotating, range-gated, fanbeam spaceborne scatterometer

    E-Print Network [OSTI]

    Stoffelen, Ad

    at different azimuth view-angles over the resolution cell, and inverting the backscatter model, a so-called geophysical model function (GMF), to extract the wind information using the azimuth anisotropy of the radar simulations and an investigation of advanced features such as multi-beam, dual-polarisation, dual- frequency

  1. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    that includes wind turbine towers. 2011 Wind TechnologiesSets Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    that includes wind turbine towers. 2010 Wind TechnologiesImports : Other Wind Turbine Components Towers Wind-Poweredselected wind turbine components includes towers as well as

  4. The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to

    E-Print Network [OSTI]

    turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy

  5. Balancing of Wind Power.

    E-Print Network [OSTI]

    lker, Muhammed Akif

    2011-01-01T23:59:59.000Z

    ?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

  6. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  7. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  8. NREL: Wind Research - Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Events Below are upcoming events related to wind energy technology. January 2015 2015 Wind Energy Systems Engineering Workshop January 14 - 15, 2015 Boulder, CO The third NREL Wind...

  9. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  10. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  11. Method and Case Study for Estimating the Ramping Capability of a Control Area or Balancing Authority and Implications for Moderate or High Wind Penetration: Preprint

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2005-05-01T23:59:59.000Z

    In several regions of the United States there has been a significant increase in wind generation capability over the past several years. As the penetration rate of wind capacity increases, grid operators and planners are increasingly concerned about accommodating the increased variability that wind contributes to the system. In this paper we examine the distinction between regulation, load following, hourly energy, and energy imbalance to understand how restructured power systems accommodate and value inter-hour ramps. We use data from two restructured markets, California and PJM, and from Western Area Power Administration's (WAPA's) Rocky Mountain control area to determine expected load-following capability in each region. Our approach is to examine the load-following capability that currently exists using data from existing generators in the region. We then examine the levels of wind penetration that can be accommodated with this capability using recently collected wind farm data. We discuss how load-following costs are captured in restructured markets, what resources are available to meet these requirements, why there are no explicit load-following tariffs, and the societal importance of being able to access generator ramping capability. Finally, the implications for wind plants and wind integration costs are examined.

  12. Incorporation of Multi-Member Substructure Capabilities in FAST for Analysis of Offshore Wind Turbines: Preprint

    SciTech Connect (OSTI)

    Song, H.; Robertson, A.; Jonkman, J.; Sewell, D.

    2012-05-01T23:59:59.000Z

    FAST, developed by the National Renewable Energy Laboratory (NREL), is an aero-hydro-servo-elastic tool widely used for analyzing onshore and offshore wind turbines. This paper discusses recent modifications made to FAST to enable the examination of offshore wind turbines with fixed-bottom, multi-member support structures (which are commonly used in transitional-depth waters).; This paper addresses the methods used for incorporating the hydrostatic and hydrodynamic loading on multi-member structures in FAST through its hydronamic loading module, HydroDyn. Modeling of the hydrodynamic loads was accomplished through the incorporation of Morison and buoyancy loads on the support structures. Issues addressed include how to model loads at the joints of intersecting members and on tapered and tilted members of the support structure. Three example structures are modeled to test and verify the solutions generated by the modifications to HydroDyn, including a monopile, tripod, and jacket structure. Verification is achieved through comparison of the results to a computational fluid dynamics (CFD)-derived solution using the commercial software tool STAR-CCM+.

  13. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  14. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Broader source: Energy.gov (indexed) [DOE]

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  15. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply U.S. Offshore Wind Manufacturing and Supply Chain Development Wind Program Accomplishments...

  16. Wind pro?le assessment for wind power purposes.

    E-Print Network [OSTI]

    Sointu, Iida

    2014-01-01T23:59:59.000Z

    ??Preliminary estimation of wind speed at the wind turbine hub height is critically important when planning new wind farms. Wind turbine power output is proportional (more)

  17. Wind Powering America Webinar: Wind Power Economics: Past, Present...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

  18. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Wind Resource and Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook...

  19. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and K. Porter. 2011. Wind Power and Electricity Markets.41 6. Wind Power Priceat Various Levels of Wind Power Capacity Penetration Wind

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Arizona Public Service Wind Integration Cost Impact Study.an Order Revising the Wind Integration Rate for Wind Powered

  3. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2010. SPP WITF Wind Integration Study. Little Rock,an Order Revising the Wind Integration Rate for Wind PoweredPacifiCorp. 2010. 2010 Wind Integration Study. Portland,

  4. Wind motor applications for transportation

    SciTech Connect (OSTI)

    Lysenko, G.P.; Grigoriev, B.V.; Karpin, K.B. [Moscow Aviation Inst. (Russian Federation)

    1996-12-31T23:59:59.000Z

    Motion equation for a vehicle equipped with a wind motor allows, taking into account the drag coefficients, to determine the optimal wind drag velocity in the wind motor`s plane, and hence, obtain all the necessary data for the wind wheel blades geometrical parameters definition. This optimal drag velocity significantly differs from the flow drag velocity which determines the maximum wind motor power. Solution of the motion equation with low drag coefficients indicates that the vehicle speed against the wind may be twice as the wind speed. One of possible transportation wind motor applications is its use on various ships. A ship with such a wind motor may be substantially easier to steer, and if certain devices are available, may proceed in autonomous control mode. Besides, it is capable of moving within narrow fairways. The cruise speed of a sailing boat and wind-motored ship were compared provided that the wind velocity direction changes along a harmonic law with regard to the motion direction. Mean dimensionless speed of the wind-motored ship appears to be by 20--25% higher than that of a sailing boat. There was analyzed a possibility of using the wind motors on planet rovers in Mars or Venus atmospheric conditions. A Mars rover power and motor system has been assessed for the power level of 3 kW.

  5. Airborne Wind Turbine

    SciTech Connect (OSTI)

    None

    2010-09-01T23:59:59.000Z

    Broad Funding Opportunity Announcement Project: Makani Power is developing an Airborne Wind Turbine (AWT) that eliminates 90% of the mass of a conventional wind turbine and accesses a stronger, more consistent wind at altitudes of near 1,000 feet. At these altitudes, 85% of the country can offer viable wind resources compared to only 15% accessible with current technology. Additionally, the Makani Power wing can be economically deployed in deep offshore waters, opening up a resource which is 4 times greater than the entire U.S. electrical generation capacity. Makani Power has demonstrated the core technology, including autonomous launch, land, and power generation with an 8 meter wingspan, 20 kW prototype. At commercial scale, Makani Power aims to develop a 600 kW, 28 meter wingspan product capable of delivering energy at an unsubsidized cost competitive with coal, the current benchmark for low-cost power.

  6. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

  7. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes aboutWind Energy

  8. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  9. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  10. Commonwealth Wind Incentive Program Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  11. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  12. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01T23:59:59.000Z

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  13. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines Credit points 8 CP

  14. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  15. Adding Complex Terrain and Stable Atmospheric Condition Capability to the Simulator for On/Offshore Wind Farm Applications (SOWFA) (Presentation)

    SciTech Connect (OSTI)

    Churchfield, M. J.

    2013-06-01T23:59:59.000Z

    This presentation describes changes made to NREL's OpenFOAM-based wind plant aerodynamics solver so that it can compute the stably stratified atmospheric boundary layer and flow over terrain. Background about the flow solver, the Simulator for Off/Onshore Wind Farm Applications (SOWFA) is given, followed by details of the stable stratification/complex terrain modifications to SOWFA, along with some preliminary results calculations of a stable atmospheric boundary layer and flow over a simple set of hills.

  16. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  17. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  18. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  19. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  20. Wind Resource Maps (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides high-resolution wind maps and estimates of the wind resource potential that would be possible from development of the available windy land areas after excluding areas unlikely to be developed. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to Wind Powering America's online wind energy resource maps.

  1. Surface wind speed distributions| Implications for climate and wind power.

    E-Print Network [OSTI]

    Capps, Scott Blair

    2010-01-01T23:59:59.000Z

    ?? Surface constituent and energy fluxes, and wind power depend non-linearly on wind speed and are sensitive to the tails of the wind distribution. Until (more)

  2. NREL: Wind Research - Boosting Wind Plant Power Output by 4%...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Boosting Wind Plant Power Output by 4%-5% through Coordinated Turbine Controls July 30, 2014 Wind plant underperformance has plagued wind plant developers for years. To address...

  3. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  4. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  5. Next-Generation Wind Technology

    Broader source: Energy.gov [DOE]

    The Wind Program works with industry partners to increase the performance and reliability of next-generation wind technologies while lowering the cost of wind energy.

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty cost, performance, and price of wind energy, some of these

  7. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    The Effects of Integrating Wind Power on Transmission Systemat Various Levels of Wind Power Capacity Penetration 201242 6. Wind Power Price

  8. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    About Large Offshore Wind Power: Underlying Factors. EnergyOpinion on Offshore Wind Power - Interim Report. University2002) Economic Impacts of Wind Power in Kittitas County, Wa.

  9. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  11. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  13. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  14. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  15. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  16. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  17. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  18. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  19. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  20. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  1. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    2010. SPP WITF Wind Integration Study. Little Rock,GE Energy. 2011a. Oahu Wind Integration Study Final Report.PacifiCorp. 2010. 2010 Wind Integration Study. Portland,

  3. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  4. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Colorado: Xcel Energy. 2012 Wind Technologies Market ReportOperator. 2012 Wind Technologies Market Report Chadbourne &Power Company. 2012 Wind Technologies Market Report EnerNex

  5. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Market Report vii potential wind energy generation withinthat nearly 8% of potential wind energy generation withinAreas, in GWh (and % of potential wind generation) Electric

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    capacity), with 17% of all potential wind energy generationthat roughly 17% of potential wind energy generation withinexample, roughly 1% of potential wind energy output in 2009

  7. State of the Art in Floating Wind Turbine Design Tools

    SciTech Connect (OSTI)

    Cordle, A.; Jonkman, J.

    2011-10-01T23:59:59.000Z

    This paper presents an overview of the simulation codes available to the offshore wind industry that are capable of performing integrated dynamic calculations for floating offshore wind turbines.

  8. Wind energy information guide

    SciTech Connect (OSTI)

    NONE

    1996-04-01T23:59:59.000Z

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  9. Wind Power Career Chat

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

  10. EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...

    Broader source: Energy.gov (indexed) [DOE]

    6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

  11. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01T23:59:59.000Z

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  12. Argonne National Laboratory Develops Extreme-Scale Wind Farm...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Farm Simulation Capabilities October 1, 2013 - 3:42pm Addthis A wake of a wind turbine modeled by the actuator line model in Nek5000 A wake of a wind turbine modeled by the...

  13. Competitive Wind Grants (Vermont)

    Broader source: Energy.gov [DOE]

    The Clean Energy Development Fund Board will offer a wind grant program beginning October 1, 2013. The grant program will replace the wind incentives that were originally part of the [http:/...

  14. Residential Wind Power

    E-Print Network [OSTI]

    Willis, Gary

    2011-12-16T23:59:59.000Z

    This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

  15. See the Wind

    Broader source: Energy.gov (indexed) [DOE]

    See the Wind Grades: 5-8 , 9-12 Topic: Wind Energy Owner: Kidwind Project This educational material is brought to you by the U.S. Department of Energy's Office of Energy Efficiency...

  16. Talbot County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance amends the Talbot County Code, Chapter 190, Zoning, Subdivision and Land Development, to permit small wind turbine systems with wind turbine towers not to exceed 160 feet in total...

  17. Wind Energy Act (Maine)

    Broader source: Energy.gov [DOE]

    The Maine Wind Energy Act is a summary of legislative findings that indicate the state's strong interest in promoting the development of wind energy and establish the state's desire to ease the...

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    AWEA?s Wind Energy Weekly, DOE/EPRI?s Turbine Verification10% Wind Energy Penetration New large-scale 9 wind turbineswind energy continues to decline as a result of lower wind turbine

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine Verification10% Wind Energy Penetration New large-scale 8 wind turbinesTurbine Market Report. Washington, D.C. : American Wind Energy

  20. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Wind Logics, Inc. 2004. Wind Integration StudyFinal Report.EnerNex Corp. 2006. Wind Integration Study for Public

  1. Kent County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance establishes provisions and standards for small wind energy systems in various zoning districts in Kent County, Maryland.

  2. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    is located in Europe. In contrast, all wind power projectsin Europe. In 2009, for example, more wind power was

  3. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  4. Wind power outlook 2006

    SciTech Connect (OSTI)

    anon.

    2006-04-15T23:59:59.000Z

    This annual brochure provides the American Wind Energy Association's up-to-date assessment of the wind industry in the United States. This 2006 general assessment shows positive signs of growth, use and acceptance of wind energy as a vital component of the U.S. energy mix.

  5. Wind Economic Development (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative provides information on the economic development benefits of wind energy. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to the economic development benefits section on the Wind Powering America website.

  6. Wind farm electrical system

    DOE Patents [OSTI]

    Erdman, William L.; Lettenmaier, Terry M.

    2006-07-04T23:59:59.000Z

    An approach to wind farm design using variable speed wind turbines with low pulse number electrical output. The output of multiple wind turbines are aggregated to create a high pulse number electrical output at a point of common coupling with a utility grid network. Power quality at each individual wind turbine falls short of utility standards, but the aggregated output at the point of common coupling is within acceptable tolerances for utility power quality. The approach for aggregating low pulse number electrical output from multiple wind turbines relies upon a pad mounted transformer at each wind turbine that performs phase multiplication on the output of each wind turbine. Phase multiplication converts a modified square wave from the wind turbine into a 6 pulse output. Phase shifting of the 6 pulse output from each wind turbine allows the aggregated output of multiple wind turbines to be a 24 pulse approximation of a sine wave. Additional filtering and VAR control is embedded within the wind farm to take advantage of the wind farm's electrical impedence characteristics to further enhance power quality at the point of common coupling.

  7. Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind

    E-Print Network [OSTI]

    Nebraska-Lincoln, University of

    Fun Facts Why do meteorologists use wind vanes? Wind vanes are used to determine the direction of the wind. Wind· vanes are also called weather vanes. What do wind vanes look like on a weather station? Wind vanes that are on weather stations look a lot like the one you· made! The biggest differences

  8. Wind: wind speed and wind power density maps at 10m and 50m above...

    Open Energy Info (EERE)

    files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikSCAT SeaWinds scatterometer....

  9. Wind: wind speed and wind power density GIS data at 10m and 50m...

    Open Energy Info (EERE)

    files of wind speed and wind power density at 10 and 50 m heights. Global data of offshore wind resource as generated by NASA's QuikScat SeaWinds scatterometer....

  10. Vertical axis wind turbine

    SciTech Connect (OSTI)

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27T23:59:59.000Z

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with a starting and braking control system. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotary axis by keeping the blade span-wise direction in parallel with the axis and being provided with a low speed control windmill in which the radial position of each operating piece varies with a centrifugal force produced by the rotation of the vertical rotary axis.

  11. Vertical axis wind turbine

    SciTech Connect (OSTI)

    Kato, Y.; Seki, K.; Shimizu, Y.

    1981-01-27T23:59:59.000Z

    Wind turbines are largely divided into vertical axis wind turbines and propeller (Horizontal axis) wind turbines. The present invention discloses a vertical axis high speed wind turbine provided with rotational speed control systems. This vertical axis wind turbine is formed by having blades of a proper airfoil fitted to respective supporting arms provided radially from a vertical rotating shaft by keeping the blade span-wise direction in parallel with the shaft and being provided with aerodynamic control elements operating manually or automatically to control the rotational speed of the turbine.

  12. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01T23:59:59.000Z

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  13. Wind Program: Wind Vision | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind PowerWind

  14. Wind energy conversion system

    DOE Patents [OSTI]

    Longrigg, Paul (Golden, CO)

    1987-01-01T23:59:59.000Z

    The wind energy conversion system includes a wind machine having a propeller connected to a generator of electric power, the propeller rotating the generator in response to force of an incident wind. The generator converts the power of the wind to electric power for use by an electric load. Circuitry for varying the duty factor of the generator output power is connected between the generator and the load to thereby alter a loading of the generator and the propeller by the electric load. Wind speed is sensed electro-optically to provide data of wind speed upwind of the propeller, to thereby permit tip speed ratio circuitry to operate the power control circuitry and thereby optimize the tip speed ratio by varying the loading of the propeller. Accordingly, the efficiency of the wind energy conversion system is maximized.

  15. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13T23:59:59.000Z

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  16. the risk issue of wind measurement for wind turbine operation

    E-Print Network [OSTI]

    Leu, Tzong-Shyng "Jeremy"

    Sciences, National Taiwan University #12;outline Wind measurement in meteorology and wind farm design-related issues on wind turbine operation 3/31/2011 2 #12;WIND MEASUREMENT IN METEOROLOGY & WIND FARM DESIGN 3.brainybetty.com 11 wind farm at ChangHwa Coastal Industrial Park 70m wind tower 70m 50m 30m 10m #12;1 2 3 4 5 1 (70M

  17. NREL: Wind Research - WindPACT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the cost of wind energy Determine probable size ranges of advanced utility-scale turbines over the next decade for U.S. application Evaluate advanced concepts that are...

  18. Wind energy conversion system

    SciTech Connect (OSTI)

    Longrigg, P.

    1987-03-17T23:59:59.000Z

    This patent describes a wind energy conversion system comprising: a propeller rotatable by force of wind; a generator of electricity mechanically coupled to the propeller for converting power of the wind to electric power for use by an electric load; means coupled between the generator and the electric load for varying the electric power drawn by the electric load to alter the electric loading of the generator; means for electro-optically sensing the speed of the wind at a location upwind from the propeller; and means coupled between the sensing means and the power varying means for operating the power varying means to adjust the electric load of the generator in accordance with a sensed value of wind speed to thereby obtain a desired ratio of wind speed to the speed of a tip of a blade of the propeller.

  19. WINDExchange Offshore Wind Webinar: Transmission Planning and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind WINDExchange Offshore Wind Webinar: Transmission Planning and Interconnection for Offshore Wind...

  20. wind_guidance

    Broader source: Energy.gov [DOE]

    Guidance to Accompany Non-Availability Waiver of the Recovery Act Buy American Provisions for 5kW and 50kW Wind Turbines

  1. Barstow Wind Turbine Project

    Broader source: Energy.gov [DOE]

    Presentation covers the Barstow Wind Turbine project for the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  2. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08T23:59:59.000Z

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  3. Wind Wave Float

    Broader source: Energy.gov (indexed) [DOE]

    Weinstein Principle Power, Inc. aweinstein@principlepowerinc.com November 1, 2011 2 | Wind and Water Power Program eere.energy.gov Purpose, Objectives, & Integration Project...

  4. Talkin Bout Wind Generation

    Broader source: Energy.gov [DOE]

    The amount of electricity generated by the wind industry started to grow back around 1999, and since 2007 has been increasing at a rapid pace.

  5. Wind Engineering & Natural Disaster Mitigation

    E-Print Network [OSTI]

    Denham, Graham

    Wind Engineering & Natural Disaster Mitigation For more than 45 years, Western University has been internationally recognized as the leading university for wind engineering and wind- related research. Its of environmental disaster mitigation, with specific strengths in wind and earthquake research. Boundary Layer Wind

  6. Wind Energy and Spatial Technology

    E-Print Network [OSTI]

    Schweik, Charles M.

    2/3/2011 1 Wind Energy and Spatial Technology Lori Pelech Why Wind Energy? A clean, renewable 2,600 tons of carbon emissions annually ­ The economy · Approximately 85,000 wind energy workers to Construct a Wind Farm... Geo-Spatial Components of Wind Farm Development Process Selecting a Project Site

  7. Proceedings Nordic Wind Power Conference

    E-Print Network [OSTI]

    Estimation of Possible Power for Wind Plant Control Power Fluctuations from Offshore Wind Farms; Model Validation System grounding of wind farm medium voltage cable grids Faults in the Collection Grid of Offshore systems of wind turbines and wind farms. NWPC presents the newest research results related to technical

  8. Wind Power Today, 2010, Wind and Water Power Program (WWPP)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

  9. American Wind Energy Association Wind Energy Finance and Investment...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT to October 21, 2014 5:00PM EDT...

  10. Wind Powering America's Wind for Schools Team Honored with Wirth...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    America's Wind for Schools Team Honored with Wirth Chair Award Wind Powering America's Wind for Schools Team Honored with Wirth Chair Award May 1, 2012 - 2:46pm Addthis This is an...

  11. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply Here you will find the...

  12. LARGE SCALE WIND CLIMATOLOGICAL EXAMINATIONS OF WIND ENERGY UTILIZATION

    E-Print Network [OSTI]

    Andrea Kircsi

    The aim of this article is to describe the particular field of climatology which analyzes air movement characteristics regarding utilization of wind for energy generation. The article describes features of wind energy potential available in Hungary compared to wind conditions in other areas of the northern quarter sphere in order to assist the wind energy use development in Hungary. Information on wind climate gives a solid basis for financial and economic decisions of stakeholders in the field of wind energy utilization.

  13. Q-Winds satellite hurricane wind retrievals and H*Wind comparisons

    E-Print Network [OSTI]

    Hennon, Christopher C.

    tailored to extreme wind events. Because of this and precipitation effects, scatterometers have failed/passive scatterometer retrieval algorithm designed specifically for extreme wind events, hereafter identified1 Q-Winds satellite hurricane wind retrievals and H*Wind comparisons Pet Laupattarakasem and W

  14. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) Executive summary of a report on the requirements needed...

  15. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine Verification10% Wind Energy Penetration New large-scale 10 wind turbineswind energy became more challenging, orders for new turbines

  16. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    P. and Mueller, A. (2010) Wind Farm Announcements and RuralProposed Rail Splitter Wind Farm. Prepared for Hinshaw &Economic Analysis of a Wind Farm in Nantucket Sound. Beacon

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy from the bottom toover the cost and price of wind energy that it receives. Asweighted-average price of wind energy in 1999 was $65/MWh (

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    natural gas prices, though the economic value of wind energyenergy and climate policy initiatives. With wind turbine pricesprices reported here would be at least $20/MWh higher without the PTC), they do not represent wind energy

  19. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    weighted-average price of wind energy in 1999 was roughly $reduced near-term price expectations, wind energy?s primaryelectricity prices in 2009 pushed wind energy to the top of

  20. Fort Carson Wind Resource Assessment

    SciTech Connect (OSTI)

    Robichaud, R.

    2012-10-01T23:59:59.000Z

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    and the drop in wind power plant installations since 2009and the drop in wind power plant installations since 2009towers used in U.S. wind power plants increases from 80% in

  2. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    and the drop in wind power plant installations, for example,the decrease in new wind power plant construction. A GrowingRelative Economics of Wind Power Plants Installed in Recent

  3. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    AWEA). 2010b. AWEA Small Wind Turbine Global Market Survey,html David, A. 2009. Wind Turbines: Industry and Tradewhich new large-scale wind turbines were installed in 2009 (

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportAssociates. 2010. SPP WITF Wind Integration Study. Little10, 2010. David, A. 2009. Wind Turbines: Industry and Trade

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Associates. 2010. SPP WITF Wind Integration Study. LittlePool. David, A. 2011. U.S. Wind Turbine Trade in a Changing2011. David, A. 2010. Impact of Wind Energy Installations on

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    shows that 8.5% of potential wind energy generation withinin GWh (and as a % of potential wind generation) Electricreport also laid out a potential wind power deployment path

  7. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind EnergyWind

  8. West Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place: SaltTroyer & AssociatesWest CentralUkinrekWest Winds Wind

  9. Wind Vision Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 NoPublic Utilities Address: 160 East 300 South Place:ReferenceEdit JumpWill County, Illinois:4 Sector WindOaxacaWind

  10. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01T23:59:59.000Z

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  11. Small Wind Information (Postcard)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative maintains a website section devoted to information about small wind turbines for homeowners, ranchers, and small businesses. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource.

  12. Offshore Wind Geoff Sharples

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Offshore Wind Geoff Sharples geoff@clearpathenergyllc.com #12;Frequently Unanswered Ques?ons · Why don't "they" build more offshore wind? · Why not make the blades bigger? · How big will turbines get? #12;Offshore Resource is Good #12

  13. Carbon smackdown: wind warriors

    ScienceCinema (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-09-01T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  14. Carbon smackdown: wind warriors

    SciTech Connect (OSTI)

    Glen Dahlbacka of the Accelerator & Fusion Research Division and Ryan Wiser of the Environmental Energy Technologies Division are the speakers.

    2010-07-21T23:59:59.000Z

    July 16. 2010 carbon smackdown summer lecture: learn how Berkeley Lab scientists are developing wind turbines to be used in an urban setting, as well as analyzing what it will take to increase the adoption of wind energy in the U.S.

  15. VARIABLE SPEED WIND TURBINE

    E-Print Network [OSTI]

    Chatinderpal Singh

    Wind energy is currently the fastest-growing renewable source of energy in India; India is a key market for the wind industry, presenting substantial opportunities for both the international and domestic players. In India the research is carried out on wind energy utilization on big ways.There are still many unsolved challenges in expanding wind power, and there are numerous problems of interest to systems and control researchers. In this paper we study the pitch control mechanism of wind turbine. The pitch control system is one of the most widely used control techniques to regulate the output power of a wind turbine generator. The pitch angle is controlled to keep the generator power at rated power by reducing the angle of the blades. By regulating, the angle of stalling, fast torque changes from the wind will be reutilized. It also describes the design of the pitch controller and discusses the response of the pitch-controlled system to wind velocity variations. The pitch control system is found to have a large output power variation and a large settling time.

  16. Illinois Wind Workers Group

    SciTech Connect (OSTI)

    David G. Loomis

    2012-05-28T23:59:59.000Z

    The Illinois Wind Working Group (IWWG) was founded in 2006 with about 15 members. It has grown to over 200 members today representing all aspects of the wind industry across the State of Illinois. In 2008, the IWWG developed a strategic plan to give direction to the group and its activities. The strategic plan identifies ways to address critical market barriers to the further penetration of wind. The key to addressing these market barriers is public education and outreach. Since Illinois has a restructured electricity market, utilities no longer have a strong control over the addition of new capacity within the state. Instead, market acceptance depends on willing landowners to lease land and willing county officials to site wind farms. Many times these groups are uninformed about the benefits of wind energy and unfamiliar with the process. Therefore, many of the project objectives focus on conferences, forum, databases and research that will allow these stakeholders to make well-educated decisions.

  17. Wind Wildlife Research Meeting X

    Broader source: Energy.gov [DOE]

    The biennial Wind Wildlife Research Meeting provides an internationally recognized forum for researchers and wind-wildlife stakeholders to hear contributed papers, view research posters, and listen...

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    AWEAs Wind Energy Weekly, DOE/EPRIs Turbine VerificationTurbine Global Market Study: Year Ending 2008. Washington, DC: American Wind Energy

  19. Wind and Solar Curtailment: Preprint

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Integration of Wind Power Into Power Systems as Well as on Transmission Networks for Offshore Wind Power Plants London, England October 22 - 24, 2013 Conference Paper NREL...

  20. Wind Energy Resources and Technologies

    Broader source: Energy.gov [DOE]

    This page provides a brief overview of wind energy resources and technologies supplemented by specific information to apply wind energy within the Federal sector.

  1. Large Wind Property Tax Reduction

    Broader source: Energy.gov [DOE]

    In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

  2. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine equipment-related costs are assumed to equal 85% of 2010 Wind Technologies Market Report periods to further avoid noise

  3. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    selected wind turbine components that include towers (tradeWind turbine transactions differ in the services offered (e.g. , whether towers

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    wind turbine manufacturers: Vestas (nacelles, blades, and towersWind turbine transactions differ in the services offered (e.g. , whether towers

  5. Wind Events | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Below is an industry calendar with meetings, conferences, and webinars of interest to the wind energy technology communities. IEA Wind Task 34 (WREN) Quarterly Webinar 3:...

  6. Switching transients in wind farm grids Poul Srensen1)

    E-Print Network [OSTI]

    's point of view seems to have been on the fault- ride-through capability of the wind turbines, in order offshore wind farms than from distributed wind turbines on land sites [4], [5]. However according the internal sub-sea cable grid interconnecting the wind turbines, often referred to as the power collection

  7. On the Fatigue Analysis of Wind Turbines

    SciTech Connect (OSTI)

    Sutherland, Herbert J.

    1999-06-01T23:59:59.000Z

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. Operational experiences with these large rotating machines indicated that their components (primarily blades and blade joints) were failing at unexpectedly high rates, which led the wind turbine community to develop fatigue analysis capabilities for wind turbines. Our ability to analyze the fatigue behavior of wind turbine components has matured to the point that the prediction of service lifetime is becoming an essential part of the design process. In this review paper, I summarize the technology and describe the ''best practices'' for the fatigue analysis of a wind turbine component. The paper focuses on U.S. technology, but cites European references that provide important insights into the fatigue analysis of wind turbines.

  8. Ris National Laboratory DTU Wind Energy Department

    E-Print Network [OSTI]

    wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around

  9. Lake Michigan Offshore Wind Feasibility Assessment

    SciTech Connect (OSTI)

    Boezaart, Arnold [GVSU; Edmonson, James [GVSU; Standridge, Charles [GVSU; Pervez, Nahid [GVSU; Desai, Neel [University of Michigan; Williams, Bruce [University of Delaware; Clark, Aaron [GVSU; Zeitler, David [GVSU; Kendall, Scott [GVSU; Biddanda, Bopi [GVSU; Steinman, Alan [GVSU; Klatt, Brian [Michigan State University; Gehring, J. L. [Michigan State University; Walter, K. [Michigan State University; Nordman, Erik E. [GVSU

    2014-06-30T23:59:59.000Z

    The purpose of this project was to conduct the first comprehensive offshore wind assessment over Lake Michigan and to advance the body of knowledge needed to support future commercial wind energy development on the Great Lakes. The project involved evaluation and selection of emerging wind measurement technology and the permitting, installation and operation of the first mid-lake wind assessment meteorological (MET) facilities in Michigans Great Lakes. In addition, the project provided the first opportunity to deploy and field test floating LIDAR and Laser Wind Sensor (LWS) technology, and important research related equipment key to the sitting and permitting of future offshore wind energy development in accordance with public participation guidelines established by the Michigan Great Lakes Wind Council (GLOW). The project created opportunities for public dialogue and community education about offshore wind resource management and continued the dialogue to foster Great Lake wind resource utilization consistent with the focus of the GLOW Council. The technology proved to be effective, affordable, mobile, and the methods of data measurement accurate. The public benefited from a substantial increase in knowledge of the wind resources over Lake Michigan and gained insights about the potential environmental impacts of offshore wind turbine placements in the future. The unique first ever hub height wind resource assessment using LWS technology over water and development of related research data along with the permitting, sitting, and deployment of the WindSentinel MET buoy has captured public attention and has helped to increase awareness of the potential of future offshore wind energy development on the Great Lakes. Specifically, this project supported the acquisition and operation of a WindSentinel (WS) MET wind assessment buoy, and associated research for 549 days over multiple years at three locations on Lake Michigan. Four research objectives were defined for the project including to: 1) test and validate floating LIDAR technology; 2) collect and access offshore wind data; 3) detect and measure bird and bat activity over Lake Michigan; 4) conduct an over water sound propagation study; 5) prepare and offer a college course on offshore energy, and; 6) collect other environmental, bathometric, and atmospheric data. Desk-top research was performed to select anchorage sites and to secure permits to deploy the buoy. The project also collected and analyzed data essential to wind industry investment decision-making including: deploying highly mobile floating equipment to gather offshore wind data; correlating offshore wind data with conventional on-shore MET tower data; and performing studies that can contribute to the advancement and deployment of offshore wind technologies. Related activities included: Siting, permitting, and deploying an offshore floating MET facility; Validating the accuracy of floating LWS using near shoreline cup anemometer MET instruments; Assessment of laser pulse technology (LIDAR) capability to establish hub height measurement of wind conditions at multiple locations on Lake Michigan; Utilizing an extended-season (9-10 month) strategy to collect hub height wind data and weather conditions on Lake Michigan; Investigation of technology best suited for wireless data transmission from distant offshore structures; Conducting field-validated sound propagation study for a hypothetical offshore wind farm from shoreline locations; Identifying the presence or absence of bird and bat species near wind assessment facilities; Identifying the presence or absence of benthic and pelagic species near wind assessment facilities; All proposed project activities were completed with the following major findings: Floating Laser Wind Sensors are capable of high quality measurement and recordings of wind resources. The WindSentinel presented no significant operational or statistical limitations in recording wind data technology at a at a high confidence level as compared to traditional an

  10. Wind Energy Kit | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Kit Wind Energy Kit Wind Energy :: Kit Materials List Below is a list of the different Wind Energy kits available. For more details, download the Wind Energy Kit List....

  11. Wind Energy Program: Top 10 Program Accomplishments

    Broader source: Energy.gov [DOE]

    Brochure on the top accomplishments of the Wind Energy Program, including the development of large wind machines, small machines for the residential market, wind tunnel testing, computer codes for modeling wind systems, high definition wind maps, and successful collaborations.

  12. Utilizing Wind: Optimal Wind Farm Placement in the United States

    E-Print Network [OSTI]

    Powell, Warren B.

    Utilizing Wind: Optimal Wind Farm Placement in the United States By: Yintao Sun Advisor: Professor Acknowledgements First and foremost, I would like to thank my advisor, Professor Warren Powell, for all the help he An Introduction to Wind Energy 1 1.1 Wind, a Brief History . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

  13. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  14. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  15. Reference wind farm selection for regional wind power prediction models

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Reference wind farm selection for regional wind power prediction models Nils Siebert George.siebert@ensmp.fr, georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting is recognized today as a major requirement for a secure and economic integration of wind generation in power systems. This paper deals

  16. WIND ENERGY Wind Energ. 2013; 00:112

    E-Print Network [OSTI]

    WIND ENERGY Wind Energ. 2013; 00:1­12 DOI: 10.1002/we RESEARCH ARTICLE Model predictive control in wind speed, ensuring certain power gradients, with an insignificant loss in energy production rejection, model predictive control, convex optimization, wind power control, energy storage, power output

  17. WIND ENERGY Wind Energ. 2013; 16:7790

    E-Print Network [OSTI]

    Papalambros, Panos

    energy industry lags far behind the wind energy industry, it has the potential to become a role player is equal to the long-term potential of onshore wind energy.1,2 Therefore, the utilisation of marineWIND ENERGY Wind Energ. 2013; 16:77­90 Published online 19 March 2012 in Wiley Online Library

  18. Wind Power Outreach Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power Wind

  19. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy, Wind and Hydropowerin Spain. Spanish Wind Energy Association (AEE) contributionin a Wind Turbine. Wind Energy (9:12); pp. 141161.

  20. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Broader source: Energy.gov (indexed) [DOE]

    6: Wind Power Markets Summary Slides 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary Slides Summary slides overviewing wind power markets, growth, applications, and...

  1. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Broader source: Energy.gov (indexed) [DOE]

    This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition. This wind tunnel...

  2. Community Wind Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-11-01T23:59:59.000Z

    This fact sheet explores the benefits of community wind projects, including citations to published research.

  3. wind engineering & natural disaster mitigation

    E-Print Network [OSTI]

    Denham, Graham

    wind engineering & natural disaster mitigation #12;wind engineering & natural disaster mitigation Investment WindEEE Dome at Advanced Manufacturing Park $31million Insurance Research Lab for Better Homes $8million Advanced Facility for Avian Research $9million #12;wind engineering & natural disaster mitigation

  4. Wind Electrolysis: Hydrogen Cost Optimization

    SciTech Connect (OSTI)

    Saur, G.; Ramsden, T.

    2011-05-01T23:59:59.000Z

    This report describes a hydrogen production cost analysis of a collection of optimized central wind based water electrolysis production facilities. The basic modeled wind electrolysis facility includes a number of low temperature electrolyzers and a co-located wind farm encompassing a number of 3MW wind turbines that provide electricity for the electrolyzer units.

  5. Optimization of Wind Turbine Operation

    E-Print Network [OSTI]

    Optimization of Wind Turbine Operation by Use of Spinner Anemometer TF Pedersen, NN Sørensen, L Title: Optimization of Wind Turbine Operation by Use of Spinner Anemometer Department: Wind Energy prototype wind turbine. Statistics of the yaw error showed an average of about 10°. The average flow

  6. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    some wind turbine manufacturers experienced blade andwind turbine manufacturers: Vestas (nacelles, blades, and

  7. Kentish Flats Offshore Wind Farm

    E-Print Network [OSTI]

    Firestone, Jeremy

    Kentish Flats Offshore Wind Farm #12;By August 2005 the offshore wind farm at Kentish Flats plateau just outside the main Thames shipping lanes. The Kentish Flats wind farm will comprise 30 of the wind farm could be up to 90 MW. For the benefit of the environment The British Government has set

  8. Wind Power in Alaska

    Broader source: Energy.gov [DOE]

    In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

  9. DOE Collegiate Wind Competition

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) Collegiate Wind Competition will take place concurrently with the 2014 AWEA WINDPOWER Conference and Exhibition in Las Vegas. Spectators are encouraged to attend...

  10. Wind Turbines Benefit Crops

    ScienceCinema (OSTI)

    Takle, Gene

    2013-03-01T23:59:59.000Z

    Ames Laboratory associate scientist Gene Takle talks about research into the effect of wind turbines on nearby crops. Preliminary results show the turbines may have a positive effect by cooling and drying the crops and assisting with carbon dioxide uptake.

  11. Wind Agreements (Nebraska)

    Broader source: Energy.gov [DOE]

    These regulations address leases or lease options securing land for the study or production of wind-generated energy. The regulations describe agreement terms, compliance, and a prohibition on land...

  12. Model Wind Ordinance

    Broader source: Energy.gov [DOE]

    ''Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

  13. Solar and Wind Rights

    Broader source: Energy.gov [DOE]

    Wisconsin has several laws that protect a resident's right to install and operate a solar or wind energy system. These laws cover zoning restrictions by local governments, private land use...

  14. Wind Energy Systems Exemption

    Broader source: Energy.gov [DOE]

    Tennessee House Bill 809, enacted into law in Public Chapter 377, Acts of 2003 and codified under Title 67, Chapter 5, states that wind energy systems operated by public utilities, businesses or...

  15. Wind Energy Permitting Standards

    Broader source: Energy.gov [DOE]

    All wind facilities larger than 0.5 megawatts (MW) that begin construction after July 1, 2010, must obtain a permit from any county in which the facility is located. Facilities must also obtain...

  16. County Wind Ordinance Standards

    Broader source: Energy.gov [DOE]

    [http://www.leginfo.ca.gov/pub/09-10/bill/asm/ab_0001-0050/ab_45_bill_200... Assembly Bill 45] of 2009 authorized counties to adopt ordinances to provide for the installation of small wind systems ...

  17. Wind Energy Teachers Guide

    SciTech Connect (OSTI)

    anon.

    2003-01-01T23:59:59.000Z

    This guide, created by the American Wind Association, with support from the U.S. Department of Energy, is a learning tool about wind energy targeted toward grades K-12. The guide provides teacher information, ideas for sparking children's and students' interest, suggestions for activities to undertake in and outside the classroom, and research tools for both teachers and students. Also included is an additional resources section.

  18. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data CenterEnergyAuthorizationSunShot Initiative SolarVehiclesWind Wind EERE

  19. Tornado type wind turbines

    DOE Patents [OSTI]

    Hsu, Cheng-Ting (Ames, IA)

    1984-01-01T23:59:59.000Z

    A tornado type wind turbine has a vertically disposed wind collecting tower with spaced apart inner and outer walls and a central bore. The upper end of the tower is open while the lower end of the structure is in communication with a wind intake chamber. An opening in the wind chamber is positioned over a turbine which is in driving communication with an electrical generator. An opening between the inner and outer walls at the lower end of the tower permits radially flowing air to enter the space between the inner and outer walls while a vertically disposed opening in the wind collecting tower permits tangentially flowing air to enter the central bore. A porous portion of the inner wall permits the radially flowing air to interact with the tangentially flowing air so as to create an intensified vortex flow which exits out of the top opening of the tower so as to create a low pressure core and thus draw air through the opening of the wind intake chamber so as to drive the turbine.

  20. Winding for linear pump

    DOE Patents [OSTI]

    Kliman, Gerald B. (Schenectady, NY); Brynsvold, Glen V. (San Jose, CA); Jahns, Thomas M. (Schenectady, NY)

    1989-01-01T23:59:59.000Z

    A winding and method of winding for a submersible linear pump for pumping liquid sodium is disclosed. The pump includes a stator having a central cylindrical duct preferably vertically aligned. The central vertical duct is surrounded by a system of coils in slots. These slots are interleaved with magnetic flux conducting elements, these magnetic flux conducting elements forming a continuous magnetic field conduction path along the stator. The central duct has placed therein a cylindrical magnetic conducting core, this core having a cylindrical diameter less than the diameter of the cylindrical duct. The core once placed to the duct defines a cylindrical interstitial pumping volume of the pump. This cylindrical interstitial pumping volume preferably defines an inlet at the bottom of the pump, and an outlet at the top of the pump. Pump operation occurs by static windings in the outer stator sequentially conveying toroidal fields from the pump inlet at the bottom of the pump to the pump outlet at the top of the pump. The winding apparatus and method of winding disclosed uses multiple slots per pole per phase with parallel winding legs on each phase equal to or less than the number of slots per pole per phase. The slot sequence per pole per phase is chosen to equalize the variations in flux density of the pump sodium as it passes into the pump at the pump inlet with little or no flux and acquires magnetic flux in passage through the pump to the pump outlet.

  1. SAT-WIND project Final report

    E-Print Network [OSTI]

    -2840 ISBN 87-550-3570-1 The SAT-WIND project `Winds from satellites for offshore and coastal wind energy) technologies for wind energy tools for wind resources and wind-indexing. The study area was the Danish Seas microwave polarimetric 223.3.1 History 3.3.2 Measurement principle 22 223.3.3 WindSat (passive microwave

  2. MAPping Foehn Winds in the Austrian Alps

    E-Print Network [OSTI]

    Gohm, Alexander

    and the flow above mountain-top level 3. Study the vertical and cross-gap distribution of wind speed-valley horizontal wind speed ("measured") vertical wind speed (calculated) total wind speed & streamlines -20 -10 0 October 1999 ­ TEACO2 calculated 2D winds down-valley horizontal wind speed ("measured") vertical wind

  3. The Wind Integration National Dataset (WIND) toolkit (Presentation)

    SciTech Connect (OSTI)

    Caroline Draxl: NREL

    2014-01-01T23:59:59.000Z

    Regional wind integration studies require detailed wind power output data at many locations to perform simulations of how the power system will operate under high penetration scenarios. The wind datasets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as being time synchronized with available load profiles.As described in this presentation, the WIND Toolkit fulfills these requirements by providing a state-of-the-art national (US) wind resource, power production and forecast dataset.

  4. Wind Powering America Podcasts, Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Wind Powering America and the National Association of Farm Broadcasters produce a series of radio interviews featuring experts discussing wind energy topics. The interviews are aimed at a rural stakeholder audience and are available as podcasts. On the Wind Powering America website, you can access past interviews on topics such as: Keys to Local Wind Energy Development Success, What to Know about Installing a Wind Energy System on Your Farm, and Wind Energy Development Can Revitalize Rural America. This postcard is a marketing piece that stakeholders can provide to interested parties; it will guide them to this online resource for podcast episodes.

  5. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    and Scope Wind energy is growing and turbines are regularlyfor Design of Wind Turbines. Wind Energy Department of Risloads on wind turbines. European Wind Energy Conference

  6. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01T23:59:59.000Z

    the average wind velocity and power spectrum exponent (?-of natural wind more accurately, power spectral analysisdata of natural wind versus the power spectral analysis

  7. Helping Policymakers Evaluate Distributed Wind Options | Department...

    Energy Savers [EERE]

    and consumers evaluate the effectiveness of policies that promote distributed wind-wind turbines installed at homes, farms, and busi-nesses. Distributed wind allows Americans to...

  8. Strong wind forcing of the ocean

    E-Print Network [OSTI]

    Zedler, Sarah E.

    2007-01-01T23:59:59.000Z

    of mesoscale and steady wind driven 1. Introduction 2. Modelparameterization at high wind speeds 1. Introduction 2. DataSupplementary Formulae 1. Wind Stress 2. Rankine Vortex A .

  9. Wind Turbine Acoustic Noise A white paper

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    Wind Turbine Acoustic Noise A white paper Prepared by the Renewable Energy Research Laboratory...................................................................... 8 Sound from Wind Turbines .............................................................................................. 10 Sources of Wind Turbine Sound

  10. WIND DATA REPORT January -December, 2003

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - December, 2003 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  11. WIND DATA REPORT January -March, 2004

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Vinalhaven January - March, 2004 Prepared for Fox Islands Electric Cooperative...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  12. ANNUAL WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ANNUAL WIND DATA REPORT Thompson Island March 1, 2002 ­ February 28, 2003 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  13. WIND DATA REPORT Deer Island Parking Lot

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Parking Lot May 1, 2003 ­ July 15, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  14. WIND DATA REPORT Deer Island Outfall

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Deer Island Outfall August 18, 2003 ­ December 4, 2003 Prepared for Massachusetts...................................................................................................................... 7 Wind Speed Time Series............................................................................................................. 7 Wind Speed Distributions

  15. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Figure 12. Effect of Wind Integration and Resource Adequacy62 Table E-2. Estimates of Wind IntegrationAugust. Utility Wind Integration Group (UWIG), 2006.

  16. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | NationalJohn F. Geisz,AerialStaff Here you willWind Energy

  17. Wind JOC Conference - Wind Control Changes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1 Wind

  18. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth'sOklahoma/GeothermalOrangePeru:Job CorpPowerVerde IncStar (07) Wind FarmND

  19. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the Contributions andData andFleet Test andField VerificationPossibleResearchSmall Wind

  20. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for4-16 FOR IMMEDIATEPreviewing theMembers | Home |Wind

  1. High Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home5b9fcbce19 No revision hasInformation Earth's Heat Jump to:Photon Place:NetHealthHigganum, Connecticut:Wind Farm Jump to:

  2. Offshore Wind Farms the Impact on Wind Farm Planning and Cost of Generation

    E-Print Network [OSTI]

    Jacob Ladeburg; Sanja Lutzeyer

    rates of planning and construction of new wind farms. Offshore wind farms typically offer the benefits

  3. Advancements in Wind Integration Study Data Modeling: The Wind Integration National Dataset (WIND) Toolkit; Preprint

    SciTech Connect (OSTI)

    Draxl, C.; Hodge, B. M.; Orwig, K.; Jones, W.; Searight, K.; Getman, D.; Harrold, S.; McCaa, J.; Cline, J.; Clark, C.

    2013-10-01T23:59:59.000Z

    Regional wind integration studies in the United States require detailed wind power output data at many locations to perform simulations of how the power system will operate under high-penetration scenarios. The wind data sets that serve as inputs into the study must realistically reflect the ramping characteristics, spatial and temporal correlations, and capacity factors of the simulated wind plants, as well as be time synchronized with available load profiles. The Wind Integration National Dataset (WIND) Toolkit described in this paper fulfills these requirements. A wind resource dataset, wind power production time series, and simulated forecasts from a numerical weather prediction model run on a nationwide 2-km grid at 5-min resolution will be made publicly available for more than 110,000 onshore and offshore wind power production sites.

  4. Chaninik Wind Group Wind Heat Smart Grids Final Report

    SciTech Connect (OSTI)

    Meiners, Dennis [Technical Contact

    2013-06-29T23:59:59.000Z

    Final report summarizes technology used, system design and outcomes for US DoE Tribal Energy Program award to deploy Wind Heat Smart Grids in the Chaninik Wind Group communities in southwest Alaska.

  5. Wind for Schools: A Wind Powering America Project

    SciTech Connect (OSTI)

    Not Available

    2007-12-01T23:59:59.000Z

    This brochure serves as an introduction to Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, and the basic configurations of the project.

  6. NREL: Wind Research - Collegiate Wind Competition Set to Blow...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    23, 2014 The United States is among the world's largest and fastest growing wind energy markets. In fact, wind energy is now the number one source of new U.S. electricity...

  7. Wind Energy Status and Future Wind Engineering Challenges: Preprint

    SciTech Connect (OSTI)

    Thresher, R.; Schreck, S.; Robinson, M.; Veers, P.

    2008-08-01T23:59:59.000Z

    This paper describes the current status of wind energy technology, the potential for future wind energy development and the science and engineering challenges that must be overcome for the technology to meet its potential.

  8. DOE Offers Conditional Commitment to Cape Wind Offshore Wind...

    Office of Environmental Management (EM)

    Secretary Ernest Moniz. The proposed Cape Wind project would use 3.6-MW offshore wind turbines that would provide a majority of the electricity needed for Cape Cod, Nantucket,...

  9. Responses of floating wind turbines to wind and wave excitation

    E-Print Network [OSTI]

    Lee, Kwang Hyun

    2005-01-01T23:59:59.000Z

    The use of wind power has recently emerged as a promising alternative to conventional electricity generation. However, space requirements and public pressure to place unsightly wind turbines out of visual range make it ...

  10. Development of Regional Wind Resource and Wind Plant Output Datasets...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    50-47676 March 2010 Development of Regional Wind Resource and Wind Plant Output Datasets Final Subcontract Report 15 October 2007 - 15 March 2009 3TIER Seattle, Washington National...

  11. Wind Powering America Webinar Series (Postcard), Wind Powering America (WPA)

    SciTech Connect (OSTI)

    Not Available

    2012-02-01T23:59:59.000Z

    Wind Powering America offers a free monthly webinar series that provides expert information on today?s key wind energy topics. This postcard is an outreach tool that provides a brief description of the webinars as well as the URL.

  12. Wind for Schools: A Wind Powering America Project (Brochure)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2009-08-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  13. Wind for Schools: A Wind Powering America Project (Alaska) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-02-01T23:59:59.000Z

    This brochure provides an overview of Wind Powering America's Wind for Schools Project, including a description of the project, the participants, funding sources, the basic configurations, and how interested parties can become involved.

  14. Wind Technology Advancements and Impacts on Western Wind Resources (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-09-01T23:59:59.000Z

    Robi Robichaud made this presentation at the Bureau of Land Management West-wide Wind Opportunities and Constraints Mapping (WWOCM) Project public meeting in Denver, Colorado in September 2014. This presentation outlines recent wind technology advancements, evolving turbine technologies, and industry challenges. The presentation includes maps of mean wind speeds at 50-m, 80-m, and 100-m hub heights on BLM lands. Robichaud also presented on the difference in mean wind speeds from 80m to 100m in Wyoming.

  15. Optimum propeller wind turbines

    SciTech Connect (OSTI)

    Sanderson, R.J.; Archer, R.D.

    1983-11-01T23:59:59.000Z

    The Prandtl-Betz-Theodorsen theory of heavily loaded airscrews has been adapted to the design of propeller windmills which are to be optimized for maximum power coefficient. It is shown that the simpler, light-loading, constant-area wake assumption can generate significantly different ''optimum'' performance and geometry, and that it is therefore not appropriate to the design of propeller wind turbines when operating in their normal range of high-tip-speed-to-wind-speed ratio. Design curves for optimum power coefficient are presented and an example of the design of a typical two-blade optimum rotor is given.

  16. Wind Success Stories

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department ofEnergy Wind Power06 Wind Success

  17. TMCC WIND RESOURCE ASSESSMENT

    SciTech Connect (OSTI)

    Turtle Mountain Community College

    2003-12-30T23:59:59.000Z

    North Dakota has an outstanding resource--providing more available wind for development than any other state. According to U.S. Department of Energy (DOE) studies, North Dakota alone has enough energy from good wind areas, those of wind power Class 4 and higher, to supply 36% of the 1990 electricity consumption of the entire lower 48 states. At present, no more than a handful of wind turbines in the 60- to 100-kilowatt (kW) range are operating in the state. The first two utility-scale turbines were installed in North Dakota as part of a green pricing program, one in early 2002 and the second in July 2002. Both turbines are 900-kW wind turbines. Two more wind turbines are scheduled for installation by another utility later in 2002. Several reasons are evident for the lack of wind development. One primary reason is that North Dakota has more lignite coal than any other state. A number of relatively new minemouth power plants are operating in the state, resulting in an abundance of low-cost electricity. In 1998, North Dakota generated approximately 8.2 million megawatt-hours (MWh) of electricity, largely from coal-fired plants. Sales to North Dakota consumers totaled only 4.5 million MWh. In addition, the average retail cost of electricity in North Dakota was 5.7 cents per kWh in 1998. As a result of this surplus and the relatively low retail cost of service, North Dakota is a net exporter of electricity, selling approximately 50% to 60% of the electricity produced in North Dakota to markets outside the state. Keeping in mind that new electrical generation will be considered an export commodity to be sold outside the state, the transmission grid that serves to export electricity from North Dakota is at or close to its ability to serve new capacity. The markets for these resources are outside the state, and transmission access to the markets is a necessary condition for any large project. At the present time, technical assessments of the transmission network indicate that the ability to add and carry wind capacity outside of the state is limited. Identifying markets, securing long-term contracts, and obtaining a transmission path to export the power are all major steps that must be taken to develop new projects in North Dakota.

  18. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

  19. Wind Power Software

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

  20. Offshore Wind Potential Tables

    Wind Powering America (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:SeadovCooperative JumpWilliamsonWoodsonCounty iscomfortNews Wind CollegiateOffshore wind

  1. Quantifying Offshore Wind Resources from Satellite Wind Maps

    E-Print Network [OSTI]

    Pryor, Sara C.

    Quantifying Offshore Wind Resources from Satellite Wind Maps: Study Area the North Sea C. B National Laboratory, Roskilde, Denmark Offshore wind resources are quantified from satellite synthetic site at Horns Rev is given based on satellite SAR observa- tions.The comparison of offshore satellite

  2. Computationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary

    E-Print Network [OSTI]

    windings occurs at the level of individual turns, the method could be applied, but its advantages are lessComputationally Efficient Winding Loss Calculation with Multiple Windings, Arbitrary Waveforms and Two- or Three-Dimensional Field Geometry C. R. Sullivan From IEEE Transactions on Power Electronics

  3. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01T23:59:59.000Z

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  4. Saturation wind power potential and its implications for wind energy

    E-Print Network [OSTI]

    Board August 14, 2012 (received for review May 31, 2012) Wind turbines convert kinetic to electrical. As the number of wind turbines increases over large geographic regions, power extraction first increases the number of wind turbines over a large geographic region, indepen- dent of societal, environmental

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind power capacity stood at roughly 4,000 MW, with the vast majority located in Europe.in Europe. Just 470 MW of new offshore wind power capacity

  6. The Solar Wind Energy Flux

    E-Print Network [OSTI]

    Chat, G Le; Meyer-Vernet, N

    2012-01-01T23:59:59.000Z

    The solar-wind energy flux measured near the ecliptic is known to be independent of the solar-wind speed. Using plasma data from Helios, Ulysses, and Wind covering a large range of latitudes and time, we show that the solar-wind energy flux is independent of the solar-wind speed and latitude within 10%, and that this quantity varies weakly over the solar cycle. In other words the energy flux appears as a global solar constant. We also show that the very high speed solar-wind (VSW > 700 km/s) has the same mean energy flux as the slower wind (VSW < 700 km/s), but with a different histogram. We use this result to deduce a relation between the solar-wind speed and density, which formalizes the anti-correlation between these quantities.

  7. AWEA Wind Project Siting Seminar

    Broader source: Energy.gov [DOE]

    The AWEA Wind Project Siting Seminar takes an in-depth look at the latest siting challenges and identify opportunities to reduce risks associated with the siting and operation of wind farms to...

  8. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    ET2/TL-08-1474. May 19, 2010 Wind Technologies Market ReportIndustry Annual Market Report: Year Ending 2010. Washington,Quarter 2011 Market Report. Washington, D.C. : American Wind

  9. 20% Wind Energy by 2030

    SciTech Connect (OSTI)

    Not Available

    2008-07-01T23:59:59.000Z

    This analysis explores one clearly defined scenario for providing 20% of our nations electricity demand with wind energy by 2030 and contrasts it to a scenario of no new wind power capacity.

  10. Solar and Wind Permitting Laws

    Broader source: Energy.gov [DOE]

    New Jersey has enacted three separate laws addressing local permitting practices for solar and wind energy facilities. The first deals with solar and wind facilities located in industrial-zoned...

  11. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01T23:59:59.000Z

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  12. Wind Energy Sales Tax Exemption

    Broader source: Energy.gov [DOE]

    Wind-energy conversion systems used as electric-power sources are exempt from Minnesota's sales tax. Materials used to manufacture, install, construct, repair or replace wind-energy systems also...

  13. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    generating sets. Wind turbine blades, hubs, generators,wind turbine components that include towers (trade category is towers and lattice masts), generators (AC generators from 750 to 10,000 kVA), blades

  14. Wind Measurement Equipment: Registration (Nebraska)

    Broader source: Energy.gov [DOE]

    All wind measurement equipment associated with the development or study of wind-powered electric generation, whether owned or leased, shall be registered with the Department of Aeronautics if the...

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    a Changing Environment. WINDPOWER 2011. Poster Presentation.sources and others, e.g. , Windpower Monthly, the GlobalTurboWinds (1.6 MW), Nordic Windpower (2 MW), Emergya Wind

  16. Commercial Scale Wind Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregons Commercial Scale Wind offering provides resources and cash incentives to help communities, businesses land owners, and government entities install wind turbine systems up...

  17. Cost of Offshore Wind Energy Charlene Nalubega

    E-Print Network [OSTI]

    Mountziaris, T. J.

    Cost of Offshore Wind Energy and Industrial Engineering The focus of my research is to estimate the cost of floating offshore wind turbines water as well as on land based wind farms. The specific offshore wind energy case under consideration

  18. The Inside of a Wind Turbine

    Broader source: Energy.gov [DOE]

    Wind turbines harness the power of the wind and use it to generate electricity. Simply stated, a wind turbine works the opposite of a fan. Instead of using electricity to make wind, like a fan,...

  19. Wind Technologies and Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robi Robichaud

    2014-03-01T23:59:59.000Z

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  20. Variables Affecting Economic Development of Wind Energy

    SciTech Connect (OSTI)

    Lantz, E.; Tegen, S.

    2008-07-01T23:59:59.000Z

    NREL's JEDI Wind model performed an analysis of wind-power-related economic development drivers. Economic development benefits for wind and coal were estimated using NREL's JEDI Wind and JEDI Coal models.

  1. Vertical axis wind turbine acoustics

    E-Print Network [OSTI]

    Pearson, Charlie

    2014-04-08T23:59:59.000Z

    Vertical Axis Wind Turbine Acoustics Charlie Pearson Corpus Christi College Cambridge University Engineering Department A thesis submitted for the degree of Doctor of Philosophy September 2013 Declaration Described in this dissertation is work... quickly to changing wind conditions, small- scale vertical axis wind turbines (VAWTs) have been proposed as an efficient solution for deployment in built up areas, where the wind is more gusty in nature. If VAWTs are erected in built up areas...

  2. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind energy in some quarters, planning, siting, and permitting can be challenging, as demonstrated in the long history

  3. Coastal Ohio Wind Project

    SciTech Connect (OSTI)

    Gorsevski, Peter; Afjeh, Abdollah; Jamali, Mohsin; Bingman, Verner

    2014-04-04T23:59:59.000Z

    The Coastal Ohio Wind Project intends to address problems that impede deployment of wind turbines in the coastal and offshore regions of Northern Ohio. The project evaluates different wind turbine designs and the potential impact of offshore turbines on migratory and resident birds by developing multidisciplinary research, which involves wildlife biology, electrical and mechanical engineering, and geospatial science. Firstly, the project conducts cost and performance studies of two- and three-blade wind turbines using a turbine design suited for the Great Lakes. The numerical studies comprised an analysis and evaluation of the annual energy production of two- and three-blade wind turbines to determine the levelized cost of energy. This task also involved wind tunnel studies of model wind turbines to quantify the wake flow field of upwind and downwind wind turbine-tower arrangements. The experimental work included a study of a scaled model of an offshore wind turbine platform in a water tunnel. The levelized cost of energy work consisted of the development and application of a cost model to predict the cost of energy produced by a wind turbine system placed offshore. The analysis found that a floating two-blade wind turbine presents the most cost effective alternative for the Great Lakes. The load effects studies showed that the two-blade wind turbine model experiences less torque under all IEC Standard design load cases considered. Other load effects did not show this trend and depending on the design load cases, the two-bladed wind turbine showed higher or lower load effects. The experimental studies of the wake were conducted using smoke flow visualization and hot wire anemometry. Flow visualization studies showed that in the downwind turbine configuration the wake flow was insensitive to the presence of the blade and was very similar to that of the tower alone. On the other hand, in the upwind turbine configuration, increasing the rotor blade angle of attack reduced the wake size and enhanced the vortices in the flow downstream of the turbine-tower compared with the tower alone case. Mean and rms velocity distributions from hot wire anemometer data confirmed that in a downwind configuration, the wake of the tower dominates the flow, thus the flow fields of a tower alone and tower-turbine combinations are nearly the same. For the upwind configuration, the mean velocity shows a narrowing of the wake compared with the tower alone case. The downwind configuration wake persisted longer than that of an upwind configuration; however, it was not possible to quantify this difference because of the size limitation of the wind tunnel downstream of the test section. The water tunnel studies demonstrated that the scale model studies could be used to adequately produce accurate motions to model the motions of a wind turbine platform subject to large waves. It was found that the important factors that affect the platform is whether the platform is submerged or surface piercing. In the former, the loads on the platform will be relatively reduced whereas in the latter case, the structure pierces the wave free surface and gains stiffness and stability. The other important element that affects the movement of the platform is depth of the sea in which the wind turbine will be installed. Furthermore, the wildlife biology component evaluated migratory patterns by different monitoring systems consisting of marine radar, thermal IR camera and acoustic recorders. The types of radar used in the project are weather surveillance radar and marine radar. The weather surveillance radar (1988 Doppler), also known as Next Generation Radar (NEXRAD), provides a network of weather stations in the US. Data generated from this network were used to understand general migratory patterns, migratory stopover habitats, and other patterns caused by the effects of weather conditions. At a local scale our marine radar was used to complement the datasets from NEXRAD and to collect additional monitoring parameters such as passage rates, flight paths, flight directi

  4. Matter & Energy Wind Energy

    E-Print Network [OSTI]

    Shepelyansky, Dima

    See Also: Matter & Energy Wind Energy Energy Technology Physics Nuclear Energy Petroleum 27, 2012) -- Energy flowing from large-scale to small-scale places may be prevented from flowing, indicating that there are energy flows from large to small scale in confined space. Indeed, under a specific

  5. Low-Maintenance Wind Power System

    E-Print Network [OSTI]

    Rasson, Joseph E

    2010-01-01T23:59:59.000Z

    Improved Vertical Axis Wind Turbine and Aerodynamic ControlDarrieus Vertical Axis Wind Turbines and Aerodynamic Control

  6. PRINCETON UNIVERSITY Wind Farm Valuation

    E-Print Network [OSTI]

    Powell, Warren B.

    PRINCETON UNIVERSITY Wind Farm Valuation Kimlee Wong 13th April 2009 Professor Warren B. Powell was generous and encouraged me to participate in the group to perform research pertaining to wind farm, and has helped me think of hedging strategies for wind farm operations. I have learnt a lot from my

  7. Wind Energy Information Guide 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The guide provides a list of contact information and Web site addresses for resources that provide a range of general and technical information about wind energy, including general information, wind and renewable energy, university programs and research institutes, international wind energy associations and others.

  8. Model Predictive Control Wind Turbines

    E-Print Network [OSTI]

    Model Predictive Control of Wind Turbines Martin Klauco Kongens Lyngby 2012 IMM-MSc-2012-65 #12;Summary Wind turbines are the biggest part of the green energy industry. Increasing interest control strategies. Control strategy has a significant impact on the wind turbine operation on many levels

  9. Bird orientation: compensation for wind

    E-Print Network [OSTI]

    Thorup, Kasper

    Bird orientation: compensation for wind drift in migrating raptors is age dependent Kasper Thorup1 14.04.03 Despite the potentially strong effect of wind on bird orientation, our understanding of how wind drift affects migrating birds is still very limited. Using data from satellite-based radio

  10. CCPExecutiveSummary Storing Wind

    E-Print Network [OSTI]

    Feigon, Brooke

    CCPExecutiveSummary July 2011 Storing Wind for a Rainy Day W: www.uea.ac.uk/ccp T: +44 (0)1603 593715 A: UEA, Norwich, NR4 7TJ Storing Wind for a Rainy Day: What kind of electricity does Denmark export? BACKGROUND The last decade has seen a remarkable increase in the number of wind installations

  11. Wind Turbine Blockset General Overview

    E-Print Network [OSTI]

    Wind Turbine Blockset in Saber General Overview and Description of the Models Florin Iov, Adrian Turbine Blockset in Saber Abstract. This report presents a new developed Saber Toolbox for wind turbine, optimize and design wind turbines". The report provides a quick overview of the Saber and then explains

  12. SPRING 2014 wind energy's impact

    E-Print Network [OSTI]

    Tullos, Desiree

    SPRING 2014 wind energy's impact on birds, bats......... 2-3 school news........... 4-5 alumni news measurable benefits reaped by the use of wind energy. But, it is a fact: all energy sources, alternative Interactions with Offshore Wind Energy Facilities," involves the design, deployment and testing

  13. Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1

    E-Print Network [OSTI]

    Voltage grid support of DFIG wind turbines during grid faults Anca D. Hansen1 , Gabriele Michalke2) wind turbines address primarily the design of DFIG wind turbine control with special focus on power strategy for DFIG wind turbines, which enhances the fault ride-through capability of DFIG wind turbines

  14. NREL Innovations Help Drive Wind Industry Transformation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-08-01T23:59:59.000Z

    For nearly 30 years, NREL has helped the wind turbine industry through design and research innovations. The comprehensive capabilities of the National Wind Technology Center (NWTC), ranging from specialized computer simulation tools to unique test facilities, has been used to design, develop, and deploy several generations of advanced wind energy technology.

  15. The Future of Offshore Wind Energy

    E-Print Network [OSTI]

    Firestone, Jeremy

    1 The Future of Offshore Wind Energy #12;2 #12;3 Offshore Wind Works · Offshore wind parks: 28 in 10 countries · Operational since 1991 · Current installed capacity: 1,250 MW · Offshore wind parks in the waters around Europe #12;4 US Offshore Wind Projects Proposed Atlantic Ocean Gulf of Mexico Cape Wind

  16. Steve Kropper WindPole Ventures, LLC

    E-Print Network [OSTI]

    On Wind Is More Valuable Than Wind Power "The Bloomberg of Wind" #12;PROBLEM 300 MW wind needs backup. No construction. No tech risk. Big economic advantage $15k vs $65k. Invenergy, #5 in wind asset. 6 states prepaidSteve Kropper WindPole Ventures, LLC Lexington, MA 617-306-9312 kropper@windpole.com Information

  17. Energy 101: Wind Turbines - 2014 Update

    ScienceCinema (OSTI)

    None

    2014-06-05T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  18. Energy 101: Wind Turbines - 2014 Update

    SciTech Connect (OSTI)

    None

    2014-05-06T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of wind. The video highlights the basic principles at work in wind turbines, and illustrates how the various components work to capture and convert wind energy to electricity. This updated version also includes information on the Energy Department's efforts to advance offshore wind power. Offshore wind energy footage courtesy of Vestas.

  19. Version:April 2014 Wind Energy EFA

    E-Print Network [OSTI]

    Kusiak, Andrew

    Version:April 2014 Wind Energy EFA Wind energy has become a major source of clean energy. Wind backgrounds and knowledge of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements

  20. Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its

    E-Print Network [OSTI]

    Stanford University

    ABSTRACT Structural responses and power output of a wind turbine are strongly affected by the wind field acting on the wind turbine. Knowledge about the wind field and its variations is essential not only for designing, but also for cost-efficiently managing wind turbines. Wind field monitoring

  1. Wind shear climatology for large wind turbine generators

    SciTech Connect (OSTI)

    Elliott, D.L.; Wendell, L.L.; Heflick, S.K.

    1982-10-01T23:59:59.000Z

    Climatological wind shear analyses relevant to the design and operation of multimegawatt wind turbines are provided. Insight is provided for relating the wind experienced by a rotating blade in a shear flow to the analysis results. A simple analysis of the wind experienced by a rotating blade for three types of wind shear profiles under steady-state conditions is presented in graphical form. Comparisons of the magnitude and frequency of the variations in 1) the wind sensed by a single blade element, 2) the sum, and 3) the difference of the winds sensed by opposite blade elements show strong sensitivity to profile shape. These three items represent forcing functions that can be related to 1) flatwise bending moment, 2) torque on the shaft, and 3) teeter angle. A computer model was constructed to simulate rotational sampling of 10-s sampled winds from a tall tower for three different types of large wind turbines. Time series produced by the model indicated that the forcing functions on a rotating blade vary according to the shear profile encountered during each revolution as opposed to a profile derived from average wind conditions, e.g., hourly average winds. An analysis scheme was developed to establish a climatology of wind shear profiles derived from 10-s sampled winds and hourly average winds measured over a one-year period at several levels on a tall tower. Because of the sensitivity of the forcing function variability to profile shape, the analyses performed and presented are in the form of joint frequency distributions of velocity differences of the the top-to-hub versus the hub-to-bottom portion of disks of rotation for the three turbine configurations.

  2. 2013 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Oteri, F.; Tegen, S.

    2014-08-01T23:59:59.000Z

    This annual report provides a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2013. This 2013 edition updates data presented in previous editions while highlighting key trends and important new developments. The report includes an overview of key installation-related trends; trends in wind power capacity growth; how that growth compares to other countries and generation sources; the amount and percentage of wind energy in individual states; the status of offshore wind power development and the quantity of proposed wind power capacity in various interconnection queues in the United States.

  3. Lower Sioux Wind Feasibility & Development

    SciTech Connect (OSTI)

    Minkel, Darin

    2012-04-01T23:59:59.000Z

    This report describes the process and findings of a Wind Energy Feasibility Study (Study) conducted by the Lower Sioux Indian Community (Community). The Community is evaluating the development of a wind energy project located on tribal land. The project scope was to analyze the critical issues in determining advantages and disadvantages of wind development within the Community. This analysis addresses both of the Community's wind energy development objectives: the single turbine project and the Commerical-scale multiple turbine project. The main tasks of the feasibility study are: land use and contraint analysis; wind resource evaluation; utility interconnection analysis; and project structure and economics.

  4. PROGRESS OF WIND ENERGY TECHNOLOGY

    E-Print Network [OSTI]

    Bar?? zerdem

    This paper provides an overview of the progress of wind energy technology, along with the current status of wind power worldwide. Over the period of 2000-2012 grid-connected installed wind power has increased by a factor of more than 16. Due to the fast growth in wind market, wind turbine technology has developed different design approaches during this period. In addition to this, issues such as power grid integration, environmental impact, and economics are studied and discussed briefly in this paper, as well.

  5. Tribal Wind Assessment by the Eastern Shoshone Tribe of the Wind River Reservation

    SciTech Connect (OSTI)

    Pete, Belvin; Perry, Jeremy W.; Stump, Raphaella Q.

    2009-08-28T23:59:59.000Z

    The Tribes, through its consultant and advisor, Distributed Generation Systems (Disgen) -Native American Program and Resources Division, of Lakewood CO, assessed and qualified, from a resource and economic perspective, a wind energy generation facility on tribal lands. The goal of this feasibility project is to provide wind monitoring and to engage in preproject planning activities designed to provide a preliminary evaluation of the technical, economic, social and environmental feasibility of developing a sustainable, integrated wind energy plan for the Eastern Shoshone and the Northern Arapahoe Tribes, who resides on the Wind River Indian Reservation. The specific deliverables of the feasibility study are: 1) Assessments of the wind resources on the Wind River Indian Reservation 2) Assessments of the potential environmental impacts of renewable development 3) Assessments of the transmission capacity and capability of a renewable energy project 4) Established an economic models for tribal considerations 5) Define economic, cultural and societal impacts on the Tribe

  6. NREL: Wind Research - NREL/DOE Develop Collaboration with Japan...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    challenges in the deployment of offshore wind energy, including an abundance of deep water and the need to design floating turbines capable of withstanding tropical weather...

  7. A Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation

    E-Print Network [OSTI]

    Ding, Yu

    A Stochastic DEVS Wind Turbine Component Model for Wind Farm Simulation Eduardo P´erez, Lewis, wind turbine, DEVS, STDEVS Abstract Wind farms use several wind turbines to generate electricity variations in wind speed and direction, wind turbines experience stochastic loading that of- ten lead

  8. Reduced vibration motor winding arrangement

    DOE Patents [OSTI]

    Slavik, C.J.; Rhudy, R.G.; Bushman, R.E.

    1997-11-11T23:59:59.000Z

    An individual phase winding arrangement having a sixty electrical degree phase belt width for use with a three phase motor armature includes a delta connected phase winding portion and a wye connected phase winding portion. Both the delta and wye connected phase winding portions have a thirty electrical degree phase belt width. The delta and wye connected phase winding portions are each formed from a preselected number of individual coils each formed, in turn, from an unequal number of electrical conductor turns in the approximate ratio of {radical}3. The individual coils of the delta and wye connected phase winding portions may either be connected in series or parallel. This arrangement provides an armature winding for a three phase motor which retains the benefits of the widely known and utilized thirty degree phase belt concept, including improved mmf waveform and fundamental distribution factor, with consequent reduced vibrations and improved efficiency. 4 figs.

  9. An overview: Challenges in wind technology development

    SciTech Connect (OSTI)

    Thresher, R W; Hock, S M

    1991-12-01T23:59:59.000Z

    Developing innovative wind turbine components and advanced turbine configurations is a primary focus for wind technology researchers. In their rush to bring these new components and systems to the marketplace, designers and developers should consider the lessons learned in the wind farms over the past 10 years. Experience has shown that a disciplined design approach is required that realistically accounts for the turbulence-induced loads, unsteady stall loading, and fatigue effects. This paper reviews past experiences and compares current modelling capabilities with experimental measurements in order to identify some of the knowledge gaps that challenge designers of advanced components and systems. 7 refs., 11 figs.

  10. Modeling the Benefits of Storage Technologies to Wind Power

    SciTech Connect (OSTI)

    Sullivan, P.; Short, W.; Blair, N.

    2008-06-01T23:59:59.000Z

    Rapid expansion of wind power in the electricity sector is raising questions about how wind resource variability might affect the capacity value of wind farms at high levels of penetration. Electricity storage, with the capability to shift wind energy from periods of low demand to peak times and to smooth fluctuations in output, may have a role in bolstering the value of wind power at levels of penetration envisioned by a new Department of Energy report ('20% Wind by 2030, Increasing Wind Energy's Contribution to U.S. Electricity Supply'). This paper quantifies the value storage can add to wind. The analysis was done employing the Regional Energy Deployment System (ReEDS) model, formerly known as the Wind Deployment System (WinDS) model. ReEDS was used to estimate the cost and development path associated with 20% penetration of wind in the report. ReEDS differs from the WinDS model primarily in that the model has been modified to include the capability to build and use three storage technologies: pumped-hydroelectric storage (PHS), compressed-air energy storage (CAES), and batteries. To assess the value of these storage technologies, two pairs of scenarios were run: business-as-usual, with and without storage; 20% wind energy by 2030, with and without storage. This paper presents the results from those model runs.

  11. Stellar Winds on the Main-Sequence I: Wind Model

    E-Print Network [OSTI]

    Johnstone, C P; Lftinger, T; Toth, G; Brott, I

    2015-01-01T23:59:59.000Z

    Aims: We develop a method for estimating the properties of stellar winds for low-mass main-sequence stars between masses of 0.4 and 1.1 solar masses at a range of distances from the star. Methods: We use 1D thermal pressure driven hydrodynamic wind models run using the Versatile Advection Code. Using in situ measurements of the solar wind, we produce models for the slow and fast components of the solar wind. We consider two radically different methods for scaling the base temperature of the wind to other stars: in Model A, we assume that wind temperatures are fundamentally linked to coronal temperatures, and in Model B, we assume that the sound speed at the base of the wind is a fixed fraction of the escape velocity. In Paper II of this series, we use observationally constrained rotational evolution models to derive wind mass loss rates. Results: Our model for the solar wind provides an excellent description of the real solar wind far from the solar surface, but is unrealistic within the solar corona. We run ...

  12. Wind turbine spoiler

    DOE Patents [OSTI]

    Sullivan, William N. (Albuquerque, NM)

    1985-01-01T23:59:59.000Z

    An aerodynamic spoiler system for a vertical axis wind turbine includes spoilers on the blades initially stored near the rotor axis to minimize drag. A solenoid latch adjacent the central support tower releases the spoilers and centrifugal force causes the spoilers to move up the turbine blades away from the rotor axis, thereby producing a braking effect and actual slowing of the associated wind turbine, if desired. The spoiler system can also be used as an infinitely variable power control by regulated movement of the spoilers on the blades over the range between the undeployed and fully deployed positions. This is done by the use of a suitable powered reel and cable located at the rotor tower to move the spoilers.

  13. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, J.L.; Somers, D.M.

    1996-10-08T23:59:59.000Z

    Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

  14. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    1996-01-01T23:59:59.000Z

    Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

  15. Wind Program: Publications

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious RankCombustion |Energyon ArmedWaste and Materials Disposition InformationWind Program As a follow up to

  16. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2006-10-10T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  17. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-07-11T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  18. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett Lee; Danforth, William; Bevington, Christopher; Stowell, Jesse; Costin, Daniel

    2006-09-19T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  19. Direct drive wind turbine

    DOE Patents [OSTI]

    Bywaters, Garrett; Danforth, William; Bevington, Christopher; Jesse, Stowell; Costin, Daniel

    2007-02-27T23:59:59.000Z

    A wind turbine is provided that minimizes the size of the drive train and nacelle while maintaining the power electronics and transformer at the top of the tower. The turbine includes a direct drive generator having an integrated disk brake positioned radially inside the stator while minimizing the potential for contamination. The turbine further includes a means for mounting a transformer below the nacelle within the tower.

  20. Balancing of Wind Power - Optimization of power systems which include wind power systems.

    E-Print Network [OSTI]

    lker, Muhammed Akif

    2011-01-01T23:59:59.000Z

    ?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

  1. Trends of Wind and Wind Power Over the Coterminous United States.

    E-Print Network [OSTI]

    Holt, Eric M

    2011-01-01T23:59:59.000Z

    ??The trends of wind and wind power at a typical wind turbine hub height (80 m) are analyzed using the North American Regional Reanalysis (NARR) (more)

  2. Improving the reliability of wind power through spatially distributed wind generation.

    E-Print Network [OSTI]

    Fisher, Samuel Martin

    2012-01-01T23:59:59.000Z

    ??Wind power is a fast-growing, sustainable energy source. However, the problem of wind variability as it relates to wind power reliability is an obstacle to (more)

  3. 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environment...

    Broader source: Energy.gov (indexed) [DOE]

    5: Wind Power Siting and Environmental Effects Summary Slides 20% Wind Energy by 2030 - Chapter 5: Wind Power Siting and Environmental Effects Summary Slides Environment and siting...

  4. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Energy Efficiency and Renewable Energy, Wind and HydropowerSpeed Sites. European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. Energy

  5. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Speed Sites. European Wind Energy Association. Marseille,Innovation and the price of wind energy in the US. EnergyThe Economics of Wind Energy. Renewable and Sustainable

  6. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    or erection of wind turbine towers, relay stations, and/orof Wind Turbine Generator Operation Using Tower Shadowbetween wind turbines and cell phone towers). 152. Guzek,

  7. Wind for Schools (Presentation)

    SciTech Connect (OSTI)

    Kelly, M.

    2007-06-01T23:59:59.000Z

    Schools are key to achieving the goal of producing 20% of the nation's electricity demand. Most significantly, schools are training the scientists, technicians, businesspeople, decisionmakers, and teachers of the future. What students learn and believe about wind energy will impact the United States' ability to create markets and policy, develop and improve technology, finance and implement projects, and create change in all of our public and private institutions. In the nearer term, school districts have large facility costs, electrical loads, and utility costs. They are always in search of ways to reduce costs or obtain revenue to improve educational programs. Schools value teaching about the science and technology of renewable energy. They are important opinion leaders, particularly in rural communities. And their financial structures are quite different from other institutions (funding, incentives, restrictions, etc.). Learning objectives: The presentation will use case studies, project experience, and discussion with the audience to convey the current status of wind energy applications and education in U.S. schools and understanding of the elements that create a successful school wind energy project. The presentation will provide attendees with a background in the current level of knowledge and generate discussion on several themes.

  8. Wind power generating system

    SciTech Connect (OSTI)

    Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

    1985-03-12T23:59:59.000Z

    Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

  9. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect (OSTI)

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22T23:59:59.000Z

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  10. KANSAS WIND POWERING AMERICAN STATE OUTREACH: KANSAS WIND WORKING GROUP

    SciTech Connect (OSTI)

    HAMMARLUND, RAY

    2010-10-27T23:59:59.000Z

    The Kansas Wind Working Group (WWG) is a 33-member group announced by former Governor Kathleen Sebelius on Jan. 7, 2008. Formed through Executive Order 08-01, the WWG will educate stakeholder groups with the current information on wind energy markets, technologies, economics, policies, prospects and issues. Governor Mark Parkinson serves as chair of the Kansas Wind Working Group. The group has been instrumental in focusing on the elements of government and coordinating government and private sector efforts in wind energy development. Those efforts have moved Kansas from 364 MW of wind three years ago to over 1000 MW today. Further, the Wind Working Group was instrumental in fleshing out issues such as a state RES and net metering, fundamental parts of HB 2369 that was passed and is now law in Kansas. This represents the first mandatory RES and net metering in Kansas history.

  11. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31T23:59:59.000Z

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. â?¢ Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. â?¢ Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. â?¢ Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the windâ??s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  12. Wind Powering America's Wind for Schools Project: Summary Report

    SciTech Connect (OSTI)

    Baring-Gould, I.; Newcomb, C.

    2012-06-01T23:59:59.000Z

    This report provides an overview of the U.S. Department of Energy, Wind Powering America, Wind for Schools project. It outlines teacher-training activities and curriculum development; discusses the affiliate program that allows school districts and states to replicate the program; and contains reports that provide an update on activities and progress in the 11 states in which the Wind for Schools project operates.

  13. Dynamic analysis of a 5 megawatt offshore floating wind turbine

    E-Print Network [OSTI]

    Harriger, Evan Michael

    2011-01-01T23:59:59.000Z

    Why offshore wind energy? Offshore wind turbines have theturbine will also uncover potential problems that exist with offshore wind energy.

  14. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    of wind power, as the integration of wind power, and thecompany, found that the integration of wind power into the

  15. The divergent wind component in data sparse tropical wind fields

    E-Print Network [OSTI]

    Snyder, Bruce Alan

    1985-01-01T23:59:59.000Z

    THE DIVERGENT WIND COMPONENT IN DATA SPARSE TROPICAL WIND FIELDS A Thesis by BRUCE ALAN SNYDER Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December... 1985 Major Subject: Meteorology THE DIVERGENT WIND COMPONENT IN DATA SPARSE TROPICAL WIND FIELDS A Thesis by BRUCE ALAN SNYDER Approved as to style and content by: James P. McGuirk (Co-Chairman) Aylmer IL Thompson (Co-Chairman) W. Homer...

  16. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    hydrokinetic (MHK) energy devices are high-force, low-speed machines, similar to wind turbines that convert the kinetic energy of a moving fluid into electrical energy....

  17. Utility Wind Integration Group Distributed Wind/Solar Interconnection Workshop

    Broader source: Energy.gov [DOE]

    This two-day workshop will answer your questions about interconnecting wind and solar plants and other distributed generation applications to electric distribution systems while providing insight...

  18. NREL: Wind Research - NREL Analyzes Floating Offshore Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    representatives regarding NREL's analysis of Statoil's Hywind II offshore floating wind turbine design. Statoil's Hywind II is a 6-MW turbine on a floating spar-buoy...

  19. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  20. 1. Wind-splash erosion 4. Relationships between rainfall intensity, wind-speed, wind direction and erosion

    E-Print Network [OSTI]

    from the surface but unless it corresponds to a high wind-speed (the potential to transport a single rainfall event. When high wind-speeds and heavy rainfall combine there is an increased potential1. Wind-splash erosion 4. Relationships between rainfall intensity, wind-speed, wind direction

  1. Wind load reduction for heliostats

    SciTech Connect (OSTI)

    Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

    1986-05-01T23:59:59.000Z

    This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

  2. The Political Economy of Wind Power in China

    E-Print Network [OSTI]

    Swanson, Ryan Landon

    2011-01-01T23:59:59.000Z

    by which wind turbine technology converts wind energy intoWind energy developers usually power companies combined with a wind turbine

  3. Sandia National Laboratories: Grid System Planning for Wind:...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind: Wind Generator Modeling A typical wind power plant may contain hundreds of wind turbines that are interconnected through a collector system. Though the impact of...

  4. Next-Generation Wind Technology | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Next-Generation Wind Technology Next-Generation Wind Technology The Wind Program works with industry partners to increase the performance and reliability of next-generation wind...

  5. Wind Vision Testimonials (Text Version) | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Vision Testimonials (Text Version) Wind Vision Testimonials (Text Version) Below is the text version for the Wind Vision Testimonials video. The video opens with the "Wind...

  6. Proceedings from the Wind Manufacturing Workshop: Achieving 20...

    Office of Environmental Management (EM)

    Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind Energy in the U.S. by 2030, May 2009 Proceedings from the Wind Manufacturing Workshop: Achieving 20% Wind...

  7. Reassessing Wind Potential Estimates for India: Economic and Policy Implications

    E-Print Network [OSTI]

    Phadke, Amol

    2012-01-01T23:59:59.000Z

    Wind Project Performance,WindPower 2010, pp. 10-11. ErnestWind Project Performance,WindPower 2010, pp. 10- Table 6:

  8. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    of Seismic and Wind Load Combinations 8.5.2 Extremeextrapolation for wind turbine extreme loads. Wind Energy,extrapolation for wind turbine extreme loads. 46th AIAA

  9. Wind Resource Assessment of Gujarat (India)

    SciTech Connect (OSTI)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01T23:59:59.000Z

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  10. Xi an Nordex Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment...

    Open Energy Info (EERE)

    Wind Turbine Co Ltd aka Xi an Weide Wind Power Equipment Co Ltd Jump to: navigation, search Name: Xi'an Nordex Wind Turbine Co Ltd (aka Xi'an Weide Wind Power Equipment Co Ltd)...

  11. Subhourly wind forecasting techniques for wind turbine operations

    SciTech Connect (OSTI)

    Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

    1984-08-01T23:59:59.000Z

    Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

  12. Breeze Wind Power In China.

    E-Print Network [OSTI]

    wang, zhong tao

    2012-01-01T23:59:59.000Z

    ?? China is an energy production and consumption country, wind power is one of the greatest development potential energy.The authors use literature research methodology, case (more)

  13. Wind Energy Benefits (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01T23:59:59.000Z

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  14. 2011 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2012-08-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2011; its trends, performance, market drivers and future outlook.

  15. 2010 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2011-06-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2010; its trends, performance, market drivers and future outlook.

  16. Wind Development on the Rosebud

    Broader source: Energy.gov [DOE]

    Presentation covers the Wind Development on the Rosebud, given at the Spring 2010 Federal Utility Partnership Working Group (FUPWG) meeting in Rapid City, South Dakota.

  17. Wind and Solar Curtailment: Preprint

    SciTech Connect (OSTI)

    Lew, D.; Bird, L.; Milligan, M.; Speer, B.; Wang, X.; Carlini, E. M.; Estanqueiro, A.; Flynn, D.; Gomez-Lazaro, E.; Menemenlis, N.; Orths, A.; Pineda, I.; Smith, J. C.; Soder, L.; Sorensen, P.; Altiparmakis, A.; Yoh, Y.

    2013-09-01T23:59:59.000Z

    High penetrations of wind and solar generation on power systems are resulting in increasing curtailment. Wind and solar integration studies predict increased curtailment as penetration levels grow. This paper examines experiences with curtailment on bulk power systems internationally. It discusses how much curtailment is occurring, how it is occurring, why it is occurring, and what is being done to reduce curtailment. This summary is produced as part of the International Energy Agency Wind Task 25 on Design and Operation of Power Systems with Large Amounts of Wind Power.

  18. 2012 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Barbose, G.; Darghouth, N.; Hoen, B.; Mills, A.; Weaver, S.; Porter, K.; Buckley, M.; Fink, S.; Oteri, F.; Tegen, S.

    2013-08-01T23:59:59.000Z

    This report describes the status of the U.S. wind energy industry market in 2012; its trends, performance, market drivers and future outlook.

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    at the National Renewable Energy Laboratorys National WindGolden, CO: National Renewable Energy Laboratory. ElectricColorado: National Renewable Energy Laboratory. EnerNex

  20. Compensation Packages Wind Energy Easements

    E-Print Network [OSTI]

    Lease Agreement

    to provide rural landowners with information about the wind industry, which was just beginning to emerge in the Midwest and Great Plains. In particular, we focused on land leases and wind energy easements because such agreements provided the primary means for farmers to participate in wind energy development. Since then, the U.S. wind industry has grown dramatically, with commercial-scale installations in more than 30 states and the expectation of a record year for new installations in 2005. As wind energy development has spread, the knowledge base among landowners and rural communities has grown, and options for local participation have increased substantially. With more options and information sources on wind basics available, we believed this was the right time for Windustry to revisit our work on what continues to be the principal means for landowners to participate in wind development: land leases and wind energy easements. This work addresses the ever more sophisticated questions landowners have raised about hosting wind turbines, and also begins to define good practices for developers as many new companies, large and small, enter the industry. Our primary goals are:

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Wind Technologies Market Report References Acker, T. 2007.Industry Annual Market Report: Year Ending 2009. Washington,AWEA Mid-Year 2010 Market Report. Washington, DC: American

  2. Commercial Wind Energy Property Valuation

    Broader source: Energy.gov [DOE]

    Prior to 2007, wind energy devices generating electricity for commercial sale were assessed differently depending on where they were located. Some counties valued the entire turbine structure ...

  3. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    federal loan programme. Windpower Monthly. Bloomberg NewWind 102. Presentation at AWEAs WINDPOWER 2010 Conference &discussion at AWEAs WINDPOWER 2010 Conference & Exhibition,

  4. Nebraska Wind Conference and Exhibition

    Office of Energy Efficiency and Renewable Energy (EERE)

    The theme of the conference is "Harvesting Nebraska's Potential," which focuses on Nebraska's competitive position for attracting wind development. More information will be available on the 6th...

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15T23:59:59.000Z

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  6. Wind Power Systems 1.0 Overview

    E-Print Network [OSTI]

    Ding, Yu

    Wind Power Systems 1.0 Overview 2.0 Simulation model for wind farm operation 3.0 Research topics #12;Contents 1. Overview of wind power systems 2. Simulation model of wind farm operations 3. Research area of wind power systems 3.0 Overview 3.1 Economic dispatch 3.2 Correlation analysis 3.3 Energy

  7. Rhaglen Ynni Gwynt Wind Energy Programme

    E-Print Network [OSTI]

    Rhaglen Ynni Gwynt Wind Energy Programme Rhaglen Ynni Gwynt Wind Energy Programme Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) The energy to make,000,000 = 162.73 Therefore 4.5kWh/d/p = approximately 163 cups of tea per day per person Wind Energy Programme

  8. Doppler Radar Wind Profiles Iwan Holleman

    E-Print Network [OSTI]

    Stoffelen, Ad

    ). The potential impact of a network of boundary layer wind profilers and sodars for mesoscale wind analysisDoppler Radar Wind Profiles Iwan Holleman Scientific Report, KNMI WR-2003-02, 2003 #12;2 #12 Strategy 18 3 Methods for Wind Profile Retrieval 25 3.1 Radial Velocity from Local Wind Model 25 3

  9. GSA Wind Supply Opportunity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:YearRound-UpHeatMulti-Dimensional Subject: Guidance for natural gas asWind Supply Opportunity 1 2 3

  10. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory | National NuclearoverAcquisitionEnergy SystemsSolar EnergyWind

  11. Wind | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOfCoal_Budget_Fact_Sheet.pdf MoreDaily wholesaleDepartment ofWind The

  12. ARM - Word Seek: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUCProductstwrmrAre the Effects of Global Warming? OutreachStorms OutreachWind

  13. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind

  14. WINDExchange: Learn About Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Share About Wind Power

  15. WINDExchange: Wind Energy Ordinances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and ShareDevelopmentWind

  16. WINDExchange: Wind Potential Capacity

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout Printable Version Bookmark and Wind Potential Capacity

  17. Wind Power FAQ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWind Power

  18. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWind

  19. Power control of a wind farm with active stall wind turbines and AC grid connection

    E-Print Network [OSTI]

    Power control of a wind farm with active stall wind turbines and AC grid connection Anca D. Hansen1 controller for a wind farm made-up exclusively of active stall wind turbines with AC grid connection wind farm control involves both the control on wind turbine level as well as the central control

  20. Wind energy and SAR wind mapping Charlotte Hasager(2) and merete christiansen(1)

    E-Print Network [OSTI]

    offshore wind farms are operating and more are in construction. Thus the study is focussed on an area is ongoing, and the series of wind maps are used for investigation of offshore wind resources. In wind energy the siting of a wind farm is dependent upon reliable information about the wind climate within the area

  1. Standards for Municipal Small Wind Regulations and Small Wind Model Wind Ordinance

    Broader source: Energy.gov [DOE]

    In July 2008, New Hampshire enacted legislation designed to prevent municipalities from adopting ordinances or regulations that place unreasonable limits or hinder the performance of wind energy...

  2. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP)

    Broader source: Energy.gov [DOE]

    This fact sheet outlines the top 10 benefits of wind energy, including cost, water savings, job creation, indigenous resource, and low operating costs.

  3. Pulsar Wind Nebulae Modeling

    E-Print Network [OSTI]

    Bucciantini, N

    2013-01-01T23:59:59.000Z

    Pulsar Wind Nebulae (PWNe) are ideal astrophysical laboratories where high energy relativistic phenomena can be investigated. They are close, well resolved in our observations, and the knowledge derived in their study has a strong impact in many other fields, from AGNs to GRBs. Yet there are still unresolved issues, that prevent us from a full clear understanding of these objects. The lucky combination of high resolution X-ray imaging and numerical codes to handle the outflow and dynamical properties of relativistic MHD, has opened a new avenue of investigation that has lead to interesting progresses in the last years. Despite all of this, we do not understand yet how particles are accelerated, and the functioning of the pulsar wind and pulsar magnetosphere, that power PWNe. I will review what is now commonly known as the MHD paradigm, and in particular I will focus on various approaches that have been and are currently used to model these systems. For each I will highlight its advantages, limitations, and de...

  4. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  5. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    umd-5707.pdf Wind power, 2013. http://www.thewindpower.net/sustainability evaluation of a wind power generation system,sustainability of wind power: An emergy analysis of Chinese

  6. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    advanced coal-wind hybrid combined cycle power plant naturalwhen the wind generation drops, the power plant needs toa CSP plant, a wind plant produces power during all hours of

  7. Parametric design of floating wind turbines

    E-Print Network [OSTI]

    Tracy, Christopher (Christopher Henry)

    2007-01-01T23:59:59.000Z

    As the price of energy increases and wind turbine technology matures, it is evident that cost effective designs for floating wind turbines are needed. The next frontier for wind power is the ocean, yet development in near ...

  8. Advanced controls for floating wind turbines

    E-Print Network [OSTI]

    Casanovas, Carlos (Casanovas Bermejo)

    2014-01-01T23:59:59.000Z

    Floating Offshore Wind Turbines (FOWT) is a technology that stands to spearhead the rapid growth of the offshore wind energy sector and allow the exploration of vast high quality wind resources over coastal and offshore ...

  9. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    E-Print Network [OSTI]

    Computational Aerodynamics and Aeroacoustics for Wind Turbines #12;#12;Computational Aerodynamics and Aeroacoustics for Wind Turbines Wen Zhong Shen Fluid Mechanics Department of Mechanical Engineering TECHNICAL Shen, Wen Zhong Computational Aerodynamics and Aeroacoustics for Wind Turbines Doctor Thesis Technical

  10. Diffuser Augmented Wind Turbine Analysis Code

    E-Print Network [OSTI]

    Carroll, Jonathan

    2014-05-31T23:59:59.000Z

    , it is necessary to develop innovative wind capturing devices that can produce energy in the locations where large conventional horizontal axis wind turbines (HAWTs) are too impractical to install and operate. A diffuser augmented wind turbine (DAWT) is one...

  11. Wind and time in Homeric epic

    E-Print Network [OSTI]

    Purves, AC

    2010-01-01T23:59:59.000Z

    7383. Scott, W. C. 1966. Wind Imagery in the Oresteia. 3035; West 1961: 13336. Wind and Time in Homeric Epic 56. Stern, L. 2004. Paths That Wind through the Thicket of

  12. Wind Power Overview Windpoweristhefastestgrowingformofrenewableenergy,withpoten-

    E-Print Network [OSTI]

    Wind Power Overview · Windpoweristhefastestgrowingformofrenewableenergy Offshore Wind Power for Florida? · AveragehouseholdelectricitycostsforFloridaare expectedtoincreaseby4.7%($7.50/month)each yearoverthenextdecade2 . · Offshore winds are typically stronger and more

  13. Wind Power Integration: Exploring Impacts and Alternatives

    E-Print Network [OSTI]

    Walter, M.Todd

    Wind Power Integration: Exploring Impacts and Alternatives Assist. Prof. C sustainable sources of energy. The idea of harnessing wind energy has been there have been no less than fifteen in-depth wind integration studies

  14. Probabilistic Wind Resource Assessment and Power Predictions

    E-Print Network [OSTI]

    Firestone, Jeremy

    Probabilistic Wind Resource Assessment and Power Predictions Luca Delle Monache (lucadm Accurate wind resource assessment and power forecasts and reliable quanXficaXon of their uncertainty Mo5va5on Power forecast: o Increase wind energy penetra

  15. Wind Program Newsletter: October 2014 Edition (Newsletter)

    SciTech Connect (OSTI)

    Not Available

    2014-10-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Program Newsletter, supported by the EERE Wind and Water Power Technologies office, highlights the Wind Program's key activities, events, and funding opportunities.

  16. NREL: Transmission Grid Integration - Western Wind Dataset

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the stochastic nature of wind plant output. NREL modeled hysteresis around wind turbine cut-out to further replicate how real wind plants operate. 3TIER has completed a...

  17. Wind Energy Permitting Standards (North Carolina)

    Broader source: Energy.gov [DOE]

    North Carolina has statewide permitting requirements for wind energy facilities. Any wind turbine or collection of wind turbines located within a half mile of each other with a collective rated...

  18. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    of wind turbine assessment based on energy, exergy, LCA andLCA and emergy) in the case of sustainability assessment of windLCA does. In emergy analysis, direct and indirect inputs of wind

  19. WINDExchange Webinar: The DOE Wind Vision

    Broader source: Energy.gov [DOE]

    DOE's WINDExchange initiative will host a webinar presenting the Wind Program's Wind Vision, an effort to update and expand the 2008 DOE 20% Wind Energy by 2030 report. Given the huge changes...

  20. Introducing WISDEM:An Integrated System Modeling for Wind Turbines and Plant (Presentation)

    SciTech Connect (OSTI)

    Dykes, K.; Graf, P.; Scott, G.; Ning, A.; King, R.; Guo, Y.; Parsons, T.; Damiani, R.; Felker, F.; Veers, P.

    2015-01-01T23:59:59.000Z

    The National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better National Wind Technology Center wind energy systems engineering initiative has developed an analysis platform to leverage its research capabilities toward integrating wind energy engineering and cost models across wind plants. This Wind-Plant Integrated System Design & Engineering Model (WISDEM) platform captures the important interactions between various subsystems to achieve a better understanding of how to improve system-level performance and achieve system-level cost reductions. This work illustrates a few case studies with WISDEM that focus on the design and analysis of wind turbines and plants at different system levels.

  1. WIND ENERGY POLICIES IN TURKEY

    E-Print Network [OSTI]

    S?tk? Gner; Irem Firtina; Mehmet Meliko?lu; Ayhan Albostan

    Energy is a strategic parameter, which demonstrates the development of a country. In Turkey, energy and energy politics are mainly based on the supply due to the inadequate fossil fuel resources. In the beginning of the 21 st century, due to the increase in the price of fossil fuels and environmental burdens, many countries showed renewed interest in alternative energy resources. Climate change and environmental problems caused by greenhouse gas emissions showed the importance of renewable energy resources and especially wind energy. The major reason for the interest in wind energy technologies out of many renewable energy resources is the bulk availability of this resource without any cost. In Turkey, the major solution to the dependency on foreign energy resources is: domestic production, development, and operation of renewable energy resources. However, in order to make these investments, suitable conditions and strategies must be generated. In order to accelerate the wind energy investments in Turkey: (i) the problems related to the interconnectivity of the wind power systems to the grid must be solved (ii) the guaranteed purchase price of the wind energy must be updated (iii) and the construction/operation of wind power plants must be subsidised by government initiatives. In this study, the politics related to wind energy is extensively reviewed and the possible suggestions/solutions related to the acceleration of wind energy production and investments in Turkey are given.

  2. DOE Collegiate Wind Competition (Presentation)

    SciTech Connect (OSTI)

    Jones, J.

    2014-02-01T23:59:59.000Z

    This presentation for the January Stakeholder Engagement and Outreach webinar outlines the expanded need for workers in the wind industry and provides an overview of the DOE Wind Competition (to be held in May 2014) and the guiding principles of the competition.

  3. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute`s (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  4. SERI advanced wind turbine blades

    SciTech Connect (OSTI)

    Tangler, J.; Smith, B.; Jager, D.

    1992-02-01T23:59:59.000Z

    The primary goal of the Solar Energy Research Institute's (SERI) advanced wind turbine blades is to convert the kinetic energy in the wind into mechanical energy in an inexpensive and efficient manner. To accomplish this goal, advanced wind turbine blades have been developed by SERI that utilize unique airfoil technology. Performance characteristics of the advanced blades were verified through atmospheric testing on fixed-pitch, stall-regulated horizontal-axis wind turbines (HAWTs). Of the various wind turbine configurations, the stall-regulated HAWT dominates the market because of its simplicity and low cost. Results of the atmospheric tests show that the SERI advanced blades produce 10% to 30% more energy than conventional blades. 6 refs.

  5. Forecasting wind speed financial return

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2013-01-01T23:59:59.000Z

    The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

  6. Flatback airfoil wind tunnel experiment.

    SciTech Connect (OSTI)

    Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

    2008-04-01T23:59:59.000Z

    A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

  7. Wind Speed Prediction Via Time Series Modeling.

    E-Print Network [OSTI]

    Alexander, Daniel

    2009-01-01T23:59:59.000Z

    ??Projected construction of nearby wind farms motivates this study of statistical forecasting of wind speed, for which accurate prediction is critically important to the fluid (more)

  8. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Renewable Energy and Energy Efficiency, DOE. LBNL 275-E Advanced Coal Wind Hybrid:Renewable Energy Laboratory), and Ryan Wiser ( LBNL). i Advanced Coal Wind Hybrid:

  9. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capture Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather...

  10. Energy Department Announces 2016 Collegiate Wind Competition...

    Energy Savers [EERE]

    Energy Department Announces 2016 Collegiate Wind Competition Participants Energy Department Announces 2016 Collegiate Wind Competition Participants February 18, 2015 - 1:30pm...

  11. Addressing Wind Turbine Tribological Challenges with Surface...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Addressing Wind Turbine Tribological Challenges with Surface Engineering Presented by Gary Doll of the University of Akron at the Wind Turbine Tribology Seminar 2014. Addressing...

  12. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    energy in Vietnam: Resource assessment, development statusWind Resource Assessment in Europe Using Emergy Subodhspeed). Keywords: Wind resource assessment; Emergy Analysis;

  13. Commonwealth Wind Community-Scale Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program Community-Scale Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants...

  14. Hull Wind: A Community Gets Green

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hull Wind A Community Gets Green Community Wind Power National Renewable Energy Laboratory September 18, 2012 Andrew Stern Executive Director Action for Clean Energy, Inc. www....

  15. Searchlight Wind Energy Project DEIS Appendix A

    Broader source: Energy.gov (indexed) [DOE]

    Searchlight Wind Energy Project DEIS Appendix A Page | A Appendix A: Public Scoping Report SCOPING SUMMARY REPORT SEARCHLIGHT WIND ENERGY PROJECT ENVIRONMENTAL IMPACT STATEMENT...

  16. Wind Success Stories | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    clean, affordable, and reliable domestic wind power tap into enormous energy-saving potential across the United States. Explore EERE's wind power success stories below. February...

  17. Infauna Monitoring Horns Rev Offshore Wind Farm

    E-Print Network [OSTI]

    #12;Infauna Monitoring Horns Rev Offshore Wind Farm Annual Status Report 2004 Published: 21 April-2004................................................. 48 Wind farm area (Turbine), Reference area (Ref

  18. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    of Figures Figure ES-1. Advanced Coal Wind Hybrid: Basicviii Figure 1. Advanced-Coal Wind Hybrid: Basic29 Figure 9. Sensitivity to Coal

  19. Wind-To-Hydrogen Energy Pilot Project

    SciTech Connect (OSTI)

    Ron Rebenitsch; Randall Bush; Allen Boushee; Brad G. Stevens; Kirk D. Williams; Jeremy Woeste; Ronda Peters; Keith Bennett

    2009-04-24T23:59:59.000Z

    WIND-TO-HYDROGEN ENERGY PILOT PROJECT: BASIN ELECTRIC POWER COOPERATIVE In an effort to address the hurdles of wind-generated electricity (specifically wind's intermittency and transmission capacity limitations) and support development of electrolysis technology, Basin Electric Power Cooperative (BEPC) conducted a research project involving a wind-to-hydrogen system. Through this effort, BEPC, with the support of the Energy & Environmental Research Center at the University of North Dakota, evaluated the feasibility of dynamically scheduling wind energy to power an electrolysis-based hydrogen production system. The goal of this project was to research the application of hydrogen production from wind energy, allowing for continued wind energy development in remote wind-rich areas and mitigating the necessity for electrical transmission expansion. Prior to expending significant funding on equipment and site development, a feasibility study was performed. The primary objective of the feasibility study was to provide BEPC and The U.S. Department of Energy (DOE) with sufficient information to make a determination whether or not to proceed with Phase II of the project, which was equipment procurement, installation, and operation. Four modes of operation were considered in the feasibility report to evaluate technical and economic merits. Mode 1 - scaled wind, Mode 2 - scaled wind with off-peak, Mode 3 - full wind, and Mode 4 - full wind with off-peak In summary, the feasibility report, completed on August 11, 2005, found that the proposed hydrogen production system would produce between 8000 and 20,000 kg of hydrogen annually depending on the mode of operation. This estimate was based on actual wind energy production from one of the North Dakota (ND) wind farms of which BEPC is the electrical off-taker. The cost of the hydrogen produced ranged from $20 to $10 per kg (depending on the mode of operation). The economic sensitivity analysis performed as part of the feasibility study showed that several factors can greatly affect, both positively and negatively, the "per kg" cost of hydrogen. After a September 15, 2005, meeting to evaluate the advisability of funding Phase II of the project DOE concurred with BEPC that Phase I results did warrant a "go" recommendation to proceed with Phase II activities. The hydrogen production system was built by Hydrogenics and consisted of several main components: hydrogen production system, gas control panel, hydrogen storage assembly and hydrogen-fueling dispenser The hydrogen production system utilizes a bipolar alkaline electrolyzer nominally capable of producing 30 Nm3/h (2.7 kg/h). The hydrogen is compressed to 6000 psi and delivered to an on-site three-bank cascading storage assembly with 80 kg of storage capacity. Vehicle fueling is made possible through a Hydrogenics-provided gas control panel and dispenser able to fuel vehicles to 5000 psi. A key component of this project was the development of a dynamic scheduling system to control the wind energy's variable output to the electrolyzer cell stacks. The dynamic scheduling system received an output signal from the wind farm, processed this signal based on the operational mode, and dispatched the appropriate signal to the electrolyzer cell stacks. For the study BEPC chose to utilize output from the Wilton wind farm located in central ND. Site design was performed from May 2006 through August 2006. Site construction activities were from August to November 2006 which involved earthwork, infrastructure installation, and concrete slab construction. From April - October 2007, the system components were installed and connected. Beginning in November 2007, the system was operated in a start-up/shakedown mode. Because of numerous issues, the start-up/shakedown period essentially lasted until the end of January 2008, at which time a site acceptance test was performed. Official system operation began on February 14, 2008, and continued through the end of December 2008. Several issues continued to prevent consistent operation, resulting in operation o

  20. Quantifying the sensitivity of wind farm performance to array layout options using large-eddy simulation

    E-Print Network [OSTI]

    and is coupled with an actuator line model to simulate the effects of the rotating wind turbine blades. A control that is capable of resolving wind turbine blades as rotat- ing actuator lines (not fixed disks) and does not rely by the spacing between wind turbines (along and across the prevailing wind direction) and by their alignment

  1. Wind turbine rotor aileron

    DOE Patents [OSTI]

    Coleman, Clint (Warren, VT); Kurth, William T. (Warren, VT)

    1994-06-14T23:59:59.000Z

    A wind turbine has a rotor with at least one blade which has an aileron which is adjusted by an actuator. A hinge has two portions, one for mounting a stationary hinge arm to the blade, the other for coupling to the aileron actuator. Several types of hinges can be used, along with different actuators. The aileron is designed so that it has a constant chord with a number of identical sub-assemblies. The leading edge of the aileron has at least one curved portion so that the aileron does not vent over a certain range of angles, but vents if the position is outside the range. A cyclic actuator can be mounted to the aileron to adjust the position periodically. Generally, the aileron will be adjusted over a range related to the rotational position of the blade. A method for operating the cyclic assembly is also described.

  2. Utilization of Wind Energy at High Altitude

    E-Print Network [OSTI]

    Alexander Bolonkin

    2007-01-10T23:59:59.000Z

    Ground based, wind energy extraction systems have reached their maximum capability. The limitations of current designs are: wind instability, high cost of installations, and small power output of a single unit. The wind energy industry needs of revolutionary ideas to increase the capabilities of wind installations. This article suggests a revolutionary innovation which produces a dramatic increase in power per unit and is independent of prevailing weather and at a lower cost per unit of energy extracted. The main innovation consists of large free-flying air rotors positioned at high altitude for power and air stream stability, and an energy cable transmission system between the air rotor and a ground based electric generator. The air rotor system flies at high altitude up to 14 km. A stability and control is provided and systems enable the changing of altitude. This article includes six examples having a high unit power output (up to 100 MW). The proposed examples provide the following main advantages: 1. Large power production capacity per unit - up to 5,000-10,000 times more than conventional ground-based rotor designs; 2. The rotor operates at high altitude of 1-14 km, where the wind flow is strong and steady; 3. Installation cost per unit energy is low. 4. The installation is environmentally friendly (no propeller noise). -- * Presented in International Energy Conversion Engineering Conference at Providence., RI, Aug. 16-19. 2004. AIAA-2004-5705. USA. Keyword: wind energy, cable energy transmission, utilization of wind energy at high altitude, air rotor, windmills, Bolonkin.

  3. Wind Speed Data Analysis using Wavelet Transform

    E-Print Network [OSTI]

    S. Avdakovic; A. Lukac; A. Nuhanovic; M. Music

    AbstractRenewable energy systems are becoming a topic of great interest and investment in the world. In recent years wind power generation has experienced a very fast development in the whole world. For planning and successful implementations of good wind power plant projects, wind potential measurements are required. In these projects, of great importance is the effective choice of the micro location for wind potential measurements, installation of the measurement station with the appropriate measuring equipment, its maintenance and analysis of the gained data on wind potential characteristics. In this paper, a wavelet transform has been applied to analyze the wind speed data in the context of insight in the characteristics of the wind and the selection of suitable locations that could be the subject of a wind farm construction. This approach shows that it can be a useful tool in investigation of wind potential. KeywordsWind potential, Wind speed data, Wavelet transform.

  4. NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    Wind energy research, development, and deployment have reduced the cost of large and small wind turbine technologies, increased wind energy system reliability and operability, lowered risk by validating performance and design, increased the understanding of the true impacts of wind energy on the U.S. electrical infrastructure, and expanded wind energy markets. A synopsis of research conducted on utility-scale wind turbines, small wind turbines, software, components, market development and grid integration are detailed.

  5. RELIABILITY OF WIND POWER FROM DISPERSED SITES: A PRELIMINARY ASSESSMENT

    E-Print Network [OSTI]

    Kahn, E.

    2011-01-01T23:59:59.000Z

    PG&E 4:00 p.m. Summer Wind Generator Model Wind Array ELCCexpect from an array of wind generators spread over a largean array of dispersed wind generators will be. wind speed

  6. Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected to grow over the next

    E-Print Network [OSTI]

    Kusiak, Andrew

    Wind Energy EFA Wind energy has become a major source of clean energy. Wind energy is expected of wind energy fundamentals are needed to fill these jobs. The Wind Energy EFA prepares students for a career in wind energy, and allows for completing all requirements for the Certificate in Wind Energy

  7. Wind Scanner: A full-scale Laser Facility for Wind and Turbulence Measurements around large Wind Turbines

    E-Print Network [OSTI]

    measurements of the wind fields engulfing today's huge wind turbines. Our aim is to measure in real- time 3D velocity field, ,within the volumes that fully surround the huge wind turbines of today and tomorrow atmospheric flow that surrounds the giant wind turbines. This new knowledge we envision will accelerate

  8. Western Wind Strategy: Addressing Critical Issues for Wind Deployment

    SciTech Connect (OSTI)

    Douglas Larson; Thomas Carr

    2012-03-30T23:59:59.000Z

    The goal of the Western Wind Strategy project was to help remove critical barriers to wind development in the Western Interconnection. The four stated objectives of this project were to: (1) identify the barriers, particularly barriers to the operational integration of renewables and barriers identified by load-serving entities (LSEs) that will be buying wind generation, (2) communicate the barriers to state officials, (3) create a collaborative process to address those barriers with the Western states, utilities and the renewable industry, and (4) provide a role model for other regions. The project has been on the forefront of identifying and informing state policy makers and utility regulators of critical issues related to wind energy and the integration of variable generation. The project has been a critical component in the efforts of states to push forward important reforms and innovations that will enable states to meet their renewable energy goals and lower the cost to consumers of integrating variable generation.

  9. Wind Power Amercia Final Report

    SciTech Connect (OSTI)

    Brian Spangler, Kathi Montgomery and Paul Cartwright

    2012-01-30T23:59:59.000Z

    The objective of this grant was to further the development of Montana?¢????s vast wind resources for small, medium and large scale benefits to Montana and the nation. This was accomplished through collaborative work with wind industry representatives, state and local governments, the agricultural community and interested citizens. Through these efforts DEQ was able to identify development barriers, educate and inform citizens as well as participate in regional and national dialogue that will spur the development of wind resources.

  10. Appendix I3-1 to Wind HUI Initiative 1: AWST-WindNET-Phase 1 Final Report

    SciTech Connect (OSTI)

    John Zack

    2012-07-15T23:59:59.000Z

    This report is an appendix to the Hawaii WindHUI efforts to develop and operationalize short-term wind forecasting and wind ramp event forecasting capabilities. The report summarizes the WindNET Phase 1 efforts on the Big Island of Hawaii and includes descriptions of modeling methodologies, use of field validation data, results and recommendations. The objective of the WindNET project was to investigate the improvement that could be obtained in short-term wind power forecasting for wind generation facilities operating on the island grids operated by Hawaiian Electric Companies through the use of atmospheric sensors deployed at targeted locations. WindNET is envisioned as a multiphase project that will address the short-term wind forecasting issues of all of the wind generation facilities on the all of the Hawaiian Electric Companies' island grid systems. The first phase of the WindNET effort (referred to as WindNET-1) was focused on the wind generation facilities on the Big Island of Hawaii. With complex terrain and marine environment, emphasis was on improving the 0 to 6 hour forecasts of wind power ramps and periods of wind variability, with a particular interest in the intra-hour (0-1 hour) look-ahead period. The WindNET project was built upon a foundation that was constructed with the results from a previously completed observation targeting study for the Big Island that was conducted as part of a project supported by the National Renewable Energy Laboratory (NREL) and interactions with the western utilities. The observational targeting study provided guidance on which variables to measure and at what locations to get the most improvement in forecast performance at a target forecast site. The recommendations of the observation targeting study were based on the application two techniques: (1) an objective method called ensemble sensitivity analysis (ESA) (Ancell and Hakim, 2007; Torn and Hakim, 2008; Zack et al, 2010); and (2) a subjective method based on a diagnostic analysis of large ramp events. The analysis was completed for both the wind farm on the southern tip of the Big Island and on the northern tip of the island. The WindNET project was designed to also deploy sensors to validate the Big Island observational targeting study and enhance operator's understanding of predominate causes of wind variability conditions at the wind facilities. Compromises had to be made with the results from the observation targeting study to accommodate project resource limitations, availability of suitable sites, and other factors. To focus efforts, field sensor deployment activities focused on the wind facility on the southern point of Big Island.

  11. Dynamic Models for Wind Turbines and Wind Power Plants

    SciTech Connect (OSTI)

    Singh, M.; Santoso, S.

    2011-10-01T23:59:59.000Z

    The primary objective of this report was to develop universal manufacturer-independent wind turbine and wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Manufacturer-specific models of wind turbines are favored for use in wind power interconnection studies. While they are detailed and accurate, their usages are limited to the terms of the non-disclosure agreement, thus stifling model sharing. The primary objective of the work proposed is to develop universal manufacturer-independent wind power plant models that can be shared, used, and improved without any restrictions by project developers, manufacturers, and engineers. Each of these models includes representations of general turbine aerodynamics, the mechanical drive-train, and the electrical characteristics of the generator and converter, as well as the control systems typically used. To determine how realistic model performance is, the performance of one of the models (doubly-fed induction generator model) has been validated using real-world wind power plant data. This work also documents selected applications of these models.

  12. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01T23:59:59.000Z

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  13. New England Wind Forum: A Wind Powering America Project, Newsletter #5 -- January 2010, Wind and Hydropower Technologies Program (WHTP)

    SciTech Connect (OSTI)

    Grace, R. C.; Gifford, J.

    2010-01-01T23:59:59.000Z

    Wind Powering America program launched the New England Wind Forum (NEWF) in 2005 to provide a single comprehensive source of up-to-date, Web-based information on a broad array of wind energy issues pertaining to New England. The NEWF newsletter provides New England stakeholders with updates on wind energy development in the region. In addition to regional updates, Issue #5 offers an interview with Angus King, former governor of Maine and co-founder of Independence Wind.

  14. Wind Power in Norway -Innovation strategy -

    E-Print Network [OSTI]

    Müller, Ralf R.

    Wind Power in Norway - Innovation strategy - Liana Müller #12;2 Introduction The existing energy and, at the same time, not to irreversibly damage the life on Earth. The use of waterpower, wind power, the growth of the wind power industry in Norway. In the sequel, a brief history of wind power energy

  15. New Concepts in Wind Power Forecasting Models

    E-Print Network [OSTI]

    Kemner, Ken

    New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind for more accurate short term wind power forecasting models has led to solid and impressive development

  16. Computational methods in wind power meteorology

    E-Print Network [OSTI]

    Computational methods in wind power meteorology Bo Hoffmann Jørgensen, Søren Ott, Niels Nørmark, Jakob Mann and Jake Badger Title: Computational methods in wind power meteorology Department: Wind in connection with the project called Computational meth- ods in wind power meteorology which was supported

  17. Intelligent wind power prediction systems final report

    E-Print Network [OSTI]

    Intelligent wind power prediction systems ­ final report ­ Henrik Aalborg Nielsen (han (FU 4101) Ens. journal number: 79029-0001 Project title: Intelligent wind power prediction systems #12;#12;Intelligent wind power prediction systems 1/36 Contents 1 Introduction 6 2 The Wind Power Prediction Tool 7 3

  18. CONMOW: Condition Monitoring for Offshore Wind Farms

    E-Print Network [OSTI]

    Edwin Wiggelinkhuizen; Theo Verbruggen; Henk Braam; Luc Rademakers; Miguel Catalin Tipluica; Andrew Maclean; Axel Juhl Christensen; Edwin Becker; Pr?ftechnik Cm Gmbh (d; Dirk Scheffler; Nordex Energy Gmbh (d

    practice the European project CONMOW (Condition Monitoring for Offshore Wind Farms) was started in November

  19. Offshore Wind Power Farm Environmental Impact Assessment

    E-Print Network [OSTI]

    Horns Rev Offshore Wind Power Farm Environmental Impact Assessment on Water Quality #12;Prepared with a planned 150 MW offshore wind farm at Horns Rev, an assessment was made of the effects the wind farm would for the preparation of EIA studies for offshore wind farms." Horns Rev is situated off Blåvands Huk, which is Denmark

  20. Small Wind Site Assessor Guidelines Document (Presentation)

    SciTech Connect (OSTI)

    Preus, R.

    2014-12-01T23:59:59.000Z

    Presentation on what the small wind site assessor guidelines document will cover and timeline for completion.

  1. Installing Small Wind Turbines Seminar and Workshop

    E-Print Network [OSTI]

    Seminar and Workshop Installing Small Wind Turbines Seminar and Workshop Location: Murdoch January 2011 Details for Registration and Payment: Mr Daniel Jones, National Small Wind Turbine Test: The National Small Wind Turbine Centre at Murdoch University is holding a Small Wind Turbine short training

  2. Wind Turbines Electrical and Mechanical Engineering

    E-Print Network [OSTI]

    Provancher, William

    Wind Turbines Electrical and Mechanical Engineering Objective · Introduce students to the concept of alternative energy. · Explain the math and scientific principles behind engineering wind turbines. Standards and how it applies to wind energy · About how surface area and shape effects wind turbine efficiency

  3. 11march2007 Blowing in the wind

    E-Print Network [OSTI]

    Genton, Marc G.

    11march2007 Blowing in the wind Part of the answer to rising energy needs and costs may literally be blowing in the wind. Among sustainable sources of electricity, only wind energy has the capacity and technology needed to compete in the open marketplace. The largest onshore wind farm in Europe is being built

  4. Workforce Development and Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Newcomb, C.; Baring-Gould, I.

    2012-06-01T23:59:59.000Z

    As the United States dramatically expands wind energy deployment, the industry is faced with the need to quickly develop a skilled workforce and to address public acceptance. Wind Powering America's Wind for Schools project addresses these challenges. This poster, produced for the American Wind Energy Association's annual WINDPOWER conference, provides an overview of the project, including objectives, methods, and results.

  5. A Fatigue Approach to Wind Turbine Control

    E-Print Network [OSTI]

    A Fatigue Approach to Wind Turbine Control Keld Hammerum Kongens Lyngby 2006 #12;Technical to the turbulent nature of wind, the structural components of a wind turbine are exposed to highly varying loads. Therefore, fatigue damage is a major consideration when designing wind turbines. The control scheme applied

  6. Rhaglen Ynni Gwynt Wind Energy Programme

    E-Print Network [OSTI]

    Rhaglen Ynni Gwynt Wind Energy Programme 1 WEP Internet Calculations Explained | 20/02/2013 Calculations supporting indicative figures used for the Wind Energy Programme Wind Energy (page) "The energy.2 Therefore 4.5kWh/d/p = approximately 160 cups of tea per day per person. Wind Energy Programme (page

  7. Paul S. Veers Wind Energy Technology Department

    E-Print Network [OSTI]

    Ginzel, Matthew

    Paul S. Veers Wind Energy Technology Department Sandia National Laboratories Thursday, April 8th 3 Y WIND ENERGY SEMINAR SERIES Wind energy is a growing electricity source around the world, providing. The rapid expansion of wind is largely due to its relative similarity in levelized cost of energy to fossil

  8. Ris National Laboratory Wind Energy Department

    E-Print Network [OSTI]

    and the wind power density 36 (Troen & Petersen, 1989). In screening for potential offshore wind 37farm sitesRisø National Laboratory Postprint Wind Energy Department Year 2006 Paper: www.risoe.dk/rispubl/art/2006_96.pdf Wind resource assessment from C-band SAR Merete Bruun Christiansen a, Wolfgang Koch b

  9. Massachusetts Wind Working Group Meeting

    Broader source: Energy.gov [DOE]

    The meeting will feature a panel presentation and discussion on Shadow-Flicker, as well as updates related to the Community Wind Outreach Initiative. Panel speakers so far include: Elizabeth King...

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the impacts of wind on load-following and unit commitmentto a few minutes; load-following tens of minutes to a fewreserves, to provide load following. Conversely, the higher

  11. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    to a few minutes; load-following tens of minutes to a fewimpacts of wind energy on load-following and unit commitmentCost ($/MWh) Regulation Load Following Unit Commit. trace

  12. 2013 Distributed Wind Market Report

    SciTech Connect (OSTI)

    Orrell, Alice C.; Rhoads-Weaver, H. E.; Flowers, Larry T.; Gagne, Matthew N.; Pro, Boyd H.; Foster, Nikolas AF

    2014-08-20T23:59:59.000Z

    The purpose of this report is to quantify and summarize the 2013 U.S. distributed wind market to help plan and guide future investments and decisions by industry stakeholders, utilities, state and federal agencies, and other interested parties.

  13. 2009 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2010-08-01T23:59:59.000Z

    The U.S. wind power industry experienced yet another record year in 2009, once again surpassing even optimistic growth projections from years past. At the same time, 2009 was a year of upheaval, with the global financial crisis impacting the wind power industry and with federal policy changes enacted to push the industry toward continued aggressive expansion. The year 2010, meanwhile, is anticipated to be one of some retrenchment, with expectations for fewer wind power capacity additions than seen in 2009. The rapid pace of development and change within the industry has made it difficult to keep up with trends in the marketplace, yet the need for timely, objective information on the industry and its progress has never been greater. This report - the fourth in an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the United States wind power market, with a particular focus on 2009.

  14. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    in 2011, followed by Siemens (18%), Suzlon and Mitsubishi (GE, Vestas, and Siemens. On a worldwide basis, ChineseGE Wind and Vestas were Siemens (with an 18% market share),

  15. Sandia Wind Turbine Loads Database

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    The Sandia Wind Turbine Loads Database is divided into six files, each corresponding to approximately 16 years of simulation. The files are text files with data in columnar format. The 424MB zipped file containing six data files can be downloaded by the public. The files simulate 10-minute maximum loads for the NREL 5MW wind turbine. The details of the loads simulations can be found in the paper: Decades of Wind Turbine Loads Simulations, M. Barone, J. Paquette, B. Resor, and L. Manuel, AIAA2012-1288 (3.69MB PDF). Note that the site-average wind speed is 10 m/s (class I-B), not the 8.5 m/s reported in the paper.

  16. Wind anisotropies and GRB progenitors

    E-Print Network [OSTI]

    Georges Meynet; Andre Maeder

    2007-01-17T23:59:59.000Z

    We study the effect of wind anisotropies on the stellar evolution leading to collapsars. Rotating models of a 60 M$_\\odot$ star with $\\Omega/\\Omega_{\\rm crit}=0.75$ on the ZAMS, accounting for shellular rotation and a magnetic field, with and without wind anisotropies, are computed at $Z$=0.002 until the end of the core He-burning phase. Only the models accounting for the effects of the wind anisotropies retain enough angular momentum in their core to produce a Gamma Ray Burst (GRB). The chemical composition is such that a type Ic supernova event occurs. Wind anisotropies appear to be a key physical ingredient in the scenario leading to long GRBs.

  17. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. North America Wind Energy Market Forecast: 20112025.study. Regions with fast energy markets, for example, changea sub-hourly, real-time energy market providing centralized,

  18. Energy from Offshore Wind: Preprint

    SciTech Connect (OSTI)

    Musial, W.; Butterfield, S.; Ram, B.

    2006-02-01T23:59:59.000Z

    This paper provides an overview of the nascent offshore wind energy industry including a status of the commercial offshore industry and the technologies that will be needed for full market development.

  19. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Midwest, Texas, Southwest, and PJM regions: wind in the52 GW), SPP (48 GW), and PJM (43 GW) account for over 70% ofThe queues surveyed include PJM Interconnection, Midwest

  20. Orange County- Wind Permitting Standards

    Broader source: Energy.gov [DOE]

    In December 2010, the County of Orange Board of Supervisors adopted small wind performance and development standards (Ord. No. 10-020) in order to promote distributed generation systems in non...

  1. Solar and Wind Contractor Licensing

    Broader source: Energy.gov [DOE]

    The Connecticut Department of Consumer Protection (DCP) is authorized to issue licenses for solar-thermal work, solar-electric work and wind-electric work. "Solar thermal work" is defined as "the...

  2. Rockingham County- Small Wind Ordinance

    Broader source: Energy.gov [DOE]

    In October 2004, the Rockingham County Board of Supervisors approved a zoning ordinance for small wind energy systems, the first of its kind in Virginia. Students at James Madison University...

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Reference Case Service Report, April 2009). DOE/EIA-0383(Integration StudyFinal Report. Prepared for Xcel Energy andWind Technologies Market Report EnerNex Corp. and Windlogics

  4. Mass Transfer by Stellar Wind

    E-Print Network [OSTI]

    Boffin, Henri M J

    2014-01-01T23:59:59.000Z

    I review the process of mass transfer in a binary system through a stellar wind, with an emphasis on systems containing a red giant. I show how wind accretion in a binary system is different from the usually assumed Bondi-Hoyle approximation, first as far as the flow's structure is concerned, but most importantly, also for the mass accretion and specific angular momentum loss. This has important implications on the evolution of the orbital parameters. I also discuss the impact of wind accretion, on the chemical pollution and change in spin of the accreting star. The last section deals with observations and covers systems that most likely went through wind mass transfer: barium and related stars, symbiotic stars and central stars of planetary nebulae (CSPN). The most recent observations of cool CSPN progenitors of barium stars, as well as of carbon-rich post-common envelope systems, are providing unique constraints on the mass transfer processes.

  5. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

  6. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Texas, May 24, 2010. MISO. 2010. Dispatchable Intermittentand Windlogics Inc. (2006) [MN-MISO]; Puget Sound Energy (ITC kW kWh LADWP LIBOR MISO American Wind Energy Association

  7. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    WindLogics Inc. (2006) [MN-MISO (2006)]; EnerNex et al. (IPP ISO ISO-NE ITC kW kWh MISO MW MWh NERC NREL NYISO OEMIndependent System Operator (MISO), New York ISO (NYISO),

  8. Wind resource assessment and siting

    SciTech Connect (OSTI)

    Bortz, S.A. (IIT Research Inst., Chicago, IL); Fieldhouse, I.; Budenholzer, R.A.

    1980-01-01T23:59:59.000Z

    The objective of this program was to investigate the feasibility of employing wind power as a possible energy source to the New Hampshire power grid. Wind data was obtained from the New Hampshire State Forestry Service, the State Climatologist as well as other miscellaneous sources. Data on power generation and the power grid system was received from the Public Service Company of New Hampshire. Using this information as a data base, siting studies were made which indicated that there was a potential for a wind energy system in New Hampshire. Costs of fossil fuel generated power were compared to estimated wind generated production costs of electric energy fed into the Public Service Company of New Hampshire lines for various potential WECS sites. Based on the data and analysis provided in this study, it appears that WECS can be usefully developed in New Hampshire which would result in significant savings in fuel oil consumption.

  9. Wind Energy Conversion Systems (Minnesota)

    Broader source: Energy.gov [DOE]

    This section distinguishes between large (capacity 5,000 kW or more) and small (capacity of less than 5,000 kW) wind energy conversion systems (WECS), and regulates the siting of large conversion...

  10. Model Wind Energy Facility Ordinance

    Broader source: Energy.gov [DOE]

    Note: This model ordinance was designed to provide guidance to local governments that wish to develop their own siting rules for wind turbines. While it was developed as part of a cooperative...

  11. Solar wind versus magnetosheath turbulence.

    E-Print Network [OSTI]

    Demoulin, Pascal

    order statistics (Number of data points ~ 105) 22 4 !" !" = # # # $ $ b b F ! ! " ! # )()( tbtb bSolar wind versus magnetosheath turbulence. Observations of Alfven vortices. O. Alexandrova A properties of turbulence (hydrodynamics) is independent on the energy injection & dissipation energy

  12. Solar and Wind Contractor Licensing

    Broader source: Energy.gov [DOE]

    All solar and wind energy installations must be performed by a contractor duly licensed by and in good standing with the Louisiana Contractors Licensing Board with a classification of "Solar Energy...

  13. Wind energy systems: program summary

    SciTech Connect (OSTI)

    None

    1980-05-01T23:59:59.000Z

    The Federal Wind Energy Program (FWEP) was initiated to provide focus, direction and funds for the development of wind power. Each year a summary is prepared to provide the American public with an overview of government sponsored activities in the FWEP. This program summary describes each of the Department of Energy's (DOE) current wind energy projects initiated or renewed during FY 1979 (October 1, 1978 through September 30, 1979) and reflects their status as of April 30, 1980. The summary highlights on-going research, development and demonstration efforts and serves as a record of progress towards the program objectives. It also provides: the program's general management structure; review of last year's achievements; forecast of expected future trends; documentation of the projects conducted during FY 1979; and list of key wind energy publications.

  14. Long-Term Wind Power Variability

    SciTech Connect (OSTI)

    Wan, Y. H.

    2012-01-01T23:59:59.000Z

    The National Renewable Energy Laboratory started collecting wind power data from large commercial wind power plants (WPPs) in southwest Minnesota with dedicated dataloggers and communication links in the spring of 2000. Over the years, additional WPPs in other areas were added to and removed from the data collection effort. The longest data stream of actual wind plant output is more than 10 years. The resulting data have been used to analyze wind power fluctuations, frequency distribution of changes, the effects of spatial diversity, and wind power ancillary services. This report uses the multi-year wind power data to examine long-term wind power variability.

  15. UNIVERSITY OF CALIFORNIA, Surface Wind Speed Distributions: Implications for Climate and Wind Power

    E-Print Network [OSTI]

    Zender, Charles

    and Wind Power DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR . . . . . . . . . . . . . . . . . 19 1.3 Global Ocean Wind Power and Surface Layer Stability . . . . . . . . 23 1.3.1 Global Winds . . . . . . 27 1.4 Usable Offshore Wind Power . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.1 Wind Turbine

  16. LiDAR observations of offshore winds at future wind turbine operating heights

    E-Print Network [OSTI]

    LiDAR observations of offshore winds at future wind turbine operating heights Alfredo Peña1 , Sven at the Horns Rev offshore wind farm. The influence of atmospheric stability on the surface layer wind shear: Charnock, LiDAR, Marine boundary layer, Offshore, Surface layer, Wind profile. 1 Introduction There is

  17. MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES

    E-Print Network [OSTI]

    APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES #12;A-1 APPENDIX A MEASURING IMPACTS TO BIRDS CAUSED BY WIND TURBINES 1.0 INTRODUCTION Differential composition of wind turbines at wind energy used is the number of fatalities per wind turbine per year (Anderson et al. 1999). This metric has

  18. Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song

    E-Print Network [OSTI]

    Kusiak, Andrew

    Design of wind farm layout for maximum wind energy capture Andrew Kusiak*, Zhe Song Intelligent Accepted 24 August 2009 Available online 22 September 2009 Keywords: Wind farm Wind turbine Layout design Optimization Evolutionary algorithms Operations research a b s t r a c t Wind is one of the most promising

  19. Wind Atlas for Egypt A national database for wind resource assessment and

    E-Print Network [OSTI]

    Wind Atlas for Egypt A national database for wind resource assessment and wind power planning Niels G. Mortensen Wind Energy Department Risø National Laboratory MENAREC 3, Cairo, Egypt 12 June 2006 #12;Acknowledgements The "Wind Atlas for Egypt" is the result of a comprehensive team effort! · New

  20. The Effect of Wind Speed and Electric Rates On Wind Turbine Economics

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    The Effect of Wind Speed and Electric Rates On Wind Turbine Economics Economics of wind power depends mainly on the wind speeds and the turbine make and model. Definition: Simple Payback The "Simple period of a small wind power project. All the figures are per turbine, so it can be used for a one, two

  1. The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning

    E-Print Network [OSTI]

    The KAMM/WAsP Numerical Wind Atlas A powerful ingredient for wind energy planning J. Badger, N.G. Mortensen, J.C. Hansen Wind Energy Department Risø National Laboratory Great Wall World Renewable Energy Forum Beijing, 23-27 October 2006 #12;Wind Farm Planning National Wind Atlas Environmental Atlases Maps

  2. The wind speed profile at offshore wind farm sites Bernhard Lange(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    The wind speed profile at offshore wind farm sites Bernhard Lange(1) , Søren E. Larsen(2) , Jørgen in Europe will come from offshore sites. The first large offshore wind farms are #12;currently being built feasibility of offshore wind power utilisation depends on the favourable wind conditions offshore compared

  3. RESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine

    E-Print Network [OSTI]

    Hu, Hui

    installed in onshore or/and offshore wind farms in order to meet the 20% electricity generation goal. WindRESEARCH ARTICLE Dynamic wind loads and wake characteristics of a wind turbine model in an atmospheric boundary layer wind Hui Hu · Zifeng Yang · Partha Sarkar Received: 16 August 2011 / Revised: 1

  4. Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms

    E-Print Network [OSTI]

    Pryor, Sara C.

    Analytical Modelling of Wind Speed Deficit in Large Offshore Wind Farms Sten Frandsen*, Rebecca areas.As is often the need for offshore wind farms, the model handles a regular array geometry for offshore wind farms, the model handles a priori a regular array geometry with straight rows of wind

  5. Airfoils for wind turbine

    DOE Patents [OSTI]

    Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

    2000-01-01T23:59:59.000Z

    Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

  6. Wind Development on Tribal Lands

    SciTech Connect (OSTI)

    Ken Haukaas; Dale Osborn; Belvin Pete

    2008-01-18T23:59:59.000Z

    Background: The Rosebud Sioux Tribe (RST) is located in south central South Dakota near the Nebraska border. The nearest community of size is Valentine, Nebraska. The RST is a recipient of several Department of Energy grants, written by Distributed Generation Systems, Inc. (Disgen), for the purposes of assessing the feasibility of its wind resource and subsequently to fund the development of the project. Disgen, as the contracting entity to the RST for this project, has completed all the pre-construction activities, with the exception of the power purchase agreement and interconnection agreement, to commence financing and construction of the project. The focus of this financing is to maximize the economic benefits to the RST while achieving commercially reasonable rates of return and fees for the other parties involved. Each of the development activities required and its status is discussed below. Land Resource: The Owl Feather War Bonnet 30 MW Wind Project is located on RST Tribal Trust Land of approximately 680 acres adjacent to the community of St. Francis, South Dakota. The RST Tribal Council has voted on several occasions for the development of this land for wind energy purposes, as has the District of St. Francis. Actual footprint of wind farm will be approx. 50 acres. Wind Resource Assessment: The wind data has been collected from the site since May 1, 2001 and continues to be collected and analyzed. The latest projections indicate a net capacity factor of 42% at a hub height of 80 meters. The data has been collected utilizing an NRG 9300 Data logger System with instrumentation installed at 30, 40 and 65 meters on an existing KINI radio tower. The long-term annual average wind speed at 65-meters above ground level is 18.2 mph (8.1 mps) and 18.7 mph (8.4 mps) at 80-meters agl. The wind resource is excellent and supports project financing.

  7. 2008 Wind Technologies Market Report

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.

    2009-07-01T23:59:59.000Z

    The U.S. wind industry experienced a banner year in 2008, once again surpassing even optimistic growth projections from years past. At the same time, the past year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with significant federal policy changes enacted to push the industry toward continued aggressive expansion. This report examines key trends.

  8. Vibration and Structural Response of Hybrid Wind Turbine Blades

    E-Print Network [OSTI]

    Nanami, Norimichi

    2011-02-22T23:59:59.000Z

    sources. Wind energy is capable of providing 72 TW (TW = 10^12 W) of electric power, which is approximately four and half times the world energy consumption of 15.8 TW as reported in 2006. Since power output extracted from wind turbines is proportional...

  9. Avian issues in wind development

    SciTech Connect (OSTI)

    Beyea, J. [National Audubon Society, New York, NY (United States)

    1995-12-31T23:59:59.000Z

    There is a lot of concern among wind supporters, I know, about Audubon`s position on wind power. There is concern that this is the wrong time to be critical, and the wrong time to be putting any doubts in investors` minds, and the wrong time to provide an excuse for utilities to stop buying windpower. The long-term future of biodiversity, including bird diversity, depends on development of renewable energy, and that will mean some wind development in the right places and with the right types of systems. For both the long-time survival of the wind industry and for protection of bird populations, Audubon cannot be quiet on this issue. To avoid mistakes that can kill the industry in the long run, expenditures for wind/avian research have to be increased way beyond their present scope. We are going to need about $5 million dollars per year, if we are to (1) understand the biology and physics of bird-wind plant interactions, (2) if we are to understand relevant bird flightpaths, and (3) if we are to design a strategy to protect bird populations.

  10. Wind Powering America Initiative (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-01-01T23:59:59.000Z

    The U.S. Department of Energy's Wind Powering America initiative engages in technology market acceptance, barrier reduction, and technology deployment support activities. This fact sheet outlines ways in which the Wind Powering America team works to reduce barriers to appropriate wind energy deployment, primarily by focusing on six program areas: workforce development, communications and outreach, stakeholder analysis and resource assessment, wind technology technical support, wind power for Native Americans, and federal sector support and collaboration.

  11. Western Wind and Solar Integration Study (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Initiated in 2007 to examine the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system, the Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. The goal is to understand the effects of variability and uncertainty of wind, PV, and CSP on the grid. In the Western Wind and Solar Integration Study Phase 1, solar penetration was limited to 5%. Utility-scale PV was not included because of limited capability to model sub-hourly, utility-scale PV output . New techniques allow the Western Wind and Solar Integration Study Phase 2 to include high penetrations of solar - not only CSP and rooftop PV but also utility-scale PV plants.

  12. Wind turbine reliability : a database and analysis approach.

    SciTech Connect (OSTI)

    Linsday, James (ARES Corporation); Briand, Daniel; Hill, Roger Ray; Stinebaugh, Jennifer A.; Benjamin, Allan S. (ARES Corporation)

    2008-02-01T23:59:59.000Z

    The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.

  13. Assessment of research needs for wind turbine rotor materials technology

    SciTech Connect (OSTI)

    Not Available

    1991-01-01T23:59:59.000Z

    Wind-driven power systems is a renewable energy technology that is still in the early stages of development. Wind power plants installed in early 1980s suffered structural failures chiefly because of incomplete understanding of wind forces (turbulent), in some cases because of poor product quality. Failures of rotor blades are now somewhat better understood. This committee has examined the experience base accumulated by wind turbines and the R and D programs sponsored by DOE. It is concluded that a wind energy system such as is described is within the capability of engineering practice; however because of certain gaps in knowledge, and the presence of only one major integrated manufacturer of wind power machines in the USA, a DOE R and D investment is still required.

  14. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    a technical discussion of wind turbine wake ef- fects, seeCoherence in a Wind Turbine Wake, ENVTL. Rr s. LEIi-ERS 1-wind direction turbines are usually spaced even farther apart. See DWIA, Wake

  15. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    24 Wind power in the 1990s was mostly dominated by Europe.Europe is currently considered the world leader in wind powerwind power in the European Union. See Current Role and Future Prospects for Offshore Wind in Europe,

  16. Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm

    E-Print Network [OSTI]

    Horns RevHorns Rev Offshore Wind FarmOffshore Wind Farm #12;Prepared for: ELSAM A/S, Overgade 45 prior to the construction of an offshore wind farm at Horns Rev, situated approximately 15 km off

  17. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Cost of Energy From U.S. Wind Power Projects. PresentationTrust. (2008). Offshore Wind Power: Big Challenge, BigAgency (DEA). (1999). Wind Power in Denmark: Technologies,

  18. NREL: Wind Research - In Largest U.S. Wind Power Markets, Curtailment...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Curtailment Declines even as Wind Power Picks Up May 12, 2014 In the largest U.S. markets for wind power, the amount of curtailment has declined even as wind power has...

  19. Collegiate Wind Competition Turbines go Blade-to-Blade in Wind...

    Office of Environmental Management (EM)

    - 5:11pm Addthis This wind tunnel constructed by NREL engineers will test the small wind turbines designed by 10 university teams competing in DOE's Collegiate Wind Competition....

  20. Wind Power Today: Building a New Energy Future, Wind and Hydropower Technologies Program 2009 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-04-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  1. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    of pollutants by the wind and the various factors at play,2005). 12. Id. GONE WITH THE WIND? increased concerns aboutthe Impacts of Large Wind Turbine Projects to Encourage

  2. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    in each of the wind energy markets around the globe. Alsoin each of the wind energy markets around the globe. Alsoprice of wind energy in wholesale markets. 13 3.1 Historical

  3. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    157 (noting that noise cause by wind turbines can be causedby the visual and noise impacts of the proposed wind turbinenoise caused by interaction of the turbine blades with the wind).

  4. High Wind Penetration Impact on U.S. Wind Manufacturing Capacity and Critical Resources

    SciTech Connect (OSTI)

    Laxson, A.; Hand, M. M.; Blair, N.

    2006-10-01T23:59:59.000Z

    This study used two different models to analyze a number of alternative scenarios of annual wind power capacity expansion to better understand the impacts of high levels of wind generated electricity production on wind energy manufacturing and installation rates.

  5. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    and the abundance of wind potential, the dramatic growth ininter- ests in the wind, the potential problem of overuseMore countries enjoy wind power potential than other energy

  6. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    of almost 1,471 MW of offshore wind farms were in operationSiting the First Offshore Wind Farm in the United States, 31A Summary of Current Offshore Wind Farm Litigation and a

  7. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M. [National Renewable Energy Lab., Golden, CO (United States)] [National Renewable Energy Lab., Golden, CO (United States); Loose, R.R.; Cadogon, J.B.

    1994-07-01T23:59:59.000Z

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  8. Wind shear for large wind turbine generators at selected tall tower sites

    SciTech Connect (OSTI)

    Elliott, D.L.

    1984-04-01T23:59:59.000Z

    The objective of the study described in this report is to examine the nature of wind shear profiles and their variability over the height of large horizontal-axis wind turbines and to provide information on wind shear relevant to the design and opertion of large wind turbines. Wind turbine fatigue life and power quality are related through the forcing functions on the blade to the shapes of the wind shear profiles and their fluctuations over the disk of rotation.

  9. Dynamic response analysis of a 900 kW wind turbine subject to ground excitation

    E-Print Network [OSTI]

    Caudillo, Adrian Felix

    2012-01-01T23:59:59.000Z

    powered by wind energy, wind turbines themselves stillWind Energy and Earthquake Activity Wind Turbines areTurbines. Det Norsk Veritas, Copen- hagen and Wind Energy

  10. Experimental Investigation of Wind-Forced Drop Stability

    E-Print Network [OSTI]

    Schmucker, Jason

    2012-10-19T23:59:59.000Z

    aluminum (RA = 3.26 micrometers) floor of a tiltable wind tunnel and brought to critical conditions, when the drop begins to run downstream. Various combinations of drop size, inclination angle, and flow speed were employed. A measurement technique capable...

  11. Calm or storm? : Wind power actors perceptions of Finnish wind power and its future.

    E-Print Network [OSTI]

    Varho, Vilja

    2007-01-01T23:59:59.000Z

    ??Wind power has grown fast internationally. It can reduce the environmental impact of energy production and increase energy security. Finland has turbine industry but wind (more)

  12. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    Energy Laboratory. Danish Energy Agency (DEA). (1999). Wind2009) and the Danish Energy Agency (DEA) (1999), illustratedata is from the Danish Energy Agency wind turbine

  13. Offshore Wind Turbines Estimated Noise from Offshore Wind Turbine, Monhegan Island, Maine Addendum 2

    SciTech Connect (OSTI)

    Aker, Pamela M.; Jones, Anthony M.; Copping, Andrea E.

    2011-03-01T23:59:59.000Z

    Additional modeling for offshore wind turbines, for proposed floating wind platforms to be deployed by University of Maine/DeepCwind.

  14. Gone with the Wind - The Potential Tragedy of the Common Wind

    E-Print Network [OSTI]

    Lifshitz-Goldberg, Yaei

    2010-01-01T23:59:59.000Z

    to divert birds away from wind turbines). 144. See, e.g. ,although birds do collide with wind turbines at some sites,

  15. Small Wind Guidebook/What are the Basic Parts of a Small Wind...

    Open Energy Info (EERE)

    which is typically converted to grid-compatible AC electricity. Wind Turbine Small wind turbines can be divided into two groups: horizontal axis and vertical axis. The most...

  16. Wind Energy Assessment using a Wind Turbine with Dynamic Yaw Control.

    E-Print Network [OSTI]

    Pervez, Md Nahid

    2013-01-01T23:59:59.000Z

    ??The goal of this project was to analyze the wind energy potential over Lake Michigan. For this purpose, a dynamic model of a utility-scale wind (more)

  17. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    RELATED TO BLADE MATERIALS Wind turbine blades are made of aMaterials and Innovations for Large Blade Structures: Research Opportunities in Wind

  18. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01T23:59:59.000Z

    M. ( 2011). 2010 Wind Technologies Market Report. DOE/GO-Ashwill, T. (2008). Technology Improvement Opportunities forWind Power in Denmark: Technologies, Policies, and Results.

  19. Wind Program Announces $2 Million to Develop and Field Test Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wind Program today announced 2 million in funding to advance technologies that address wind development's potential impacts on wildlife. This funding will help address...

  20. Wind: wind power density maps at 50 m above ground and 1km resolution...

    Open Energy Info (EERE)

    PDF maps of Eastern China wind mapping. (Purpose): To provide information on the wind resource potential in eastern China. Includes maps of full mapping region, and 15...