Sample records for wind california fleet

  1. Vehicle Technologies Office Merit Review 2014: California Fleets...

    Broader source: Energy.gov (indexed) [DOE]

    Fleets and Workplace Alternative Fuels Project Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle...

  2. Arnold Schwarzenegger California Wind Energy

    E-Print Network [OSTI]

    Albany, New York Contract No. 500-03-006 Prepared For: Public Interest Energy Research (PIER) ProgramArnold Schwarzenegger Governor California Wind Energy Resource Modeling and Measurement Prepared For: California Energy Commission Public Interest Energy Research Program Prepared By: AWS Truewind

  3. FLEET SERVICES -FACILTIES MANAGEMENT -UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY VEHICLE USE AUTHORIZATION FORM

    E-Print Network [OSTI]

    Russell, Lynn

    FLEET SERVICES - FACILTIES MANAGEMENT - UNIVERSITY OF CALIFORNIA, SAN DIEGO UNIVERSITY VEHICLE USE/destination________________________________________________________ ____________________________________________________________________________ Undersigned fully understands and acknowledges that the vehicle released pursuant to this authorization shall driver states that he/she has a valid driver's license for the vehicle being operated. Damage related

  4. Local and synoptic mechanisms causing Southern California’s Santa Ana winds

    E-Print Network [OSTI]

    Hughes, Mimi; Hall, Alex

    2010-01-01T23:59:59.000Z

    California’s Santa Ana winds Oceans (Fig. 2). The timem s -1 ) Fig. 4 a Average winds for the Santa Ana cluster,2006). Arrows show total wind, color contours show wind

  5. San Gorgonio Pass wind energy project, California

    SciTech Connect (OSTI)

    Not Available

    1982-06-01T23:59:59.000Z

    Construction and operation of large-scale wind-turbine fields on approximately 12,780 acres of public land in the San Gorgonio Pass of Palm Springs, California are proposed. The wind farm systems would be operated by Windfarms Limited, U.S. Windpower, Southern California Edison Company, PanAero Corporation, the city of Riverside, and San Gorgonio Farms, Inc. Implementation of the preferred scheme would allow development of wind turbines on public lands except in those areas that have been identified as having resources that are extremely sensitive to development. Positive and negative impacts of the project are discussed.

  6. Nancy Rader, Executive Director California Wind Energy Association

    E-Print Network [OSTI]

    Nancy Rader, Executive Director California Wind Energy Association Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities California Wind Energy Association Public Webinar Wind Energy Development 2008 CEC Research "Roadmap" on Impact Assessment Methods 2008 CEC PIER RFP 2009

  7. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    3.4.2 Wind roses . . . . . . . .Figure 5.5: Downscaled wind speed changes and componentin?uences on California’s wind energy resource. Part 1:

  8. California Wind Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin ChartsQuality ActCalifornia Wind Systems

  9. Wind to Hydrogen in California: Case Study

    SciTech Connect (OSTI)

    Antonia, O.; Saur, G.

    2012-08-01T23:59:59.000Z

    This analysis presents a case study in California for a large scale, standalone wind electrolysis site. This is a techno-economic analysis of the 40,000 kg/day renewable production of hydrogen and subsequent delivery by truck to a fueling station in the Los Angeles area. This quantity of hydrogen represents about 1% vehicle market penetration for a city such as Los Angeles (assuming 0.62 kg/day/vehicle and 0.69 vehicles/person) [8]. A wind site near the Mojave Desert was selected for proximity to the LA area where hydrogen refueling stations are already built.

  10. Wind resource assessment: San Nicolas Island, California

    SciTech Connect (OSTI)

    McKenna, E. [National Renewable Energy Lab., Golden, CO (United States); Olsen, T.L. [Timothy L. Olsen Consulting, (United States)

    1996-01-01T23:59:59.000Z

    San Nicolas Island (SNI) is the site of the Navy Range Instrumentation Test Site which relies on an isolated diesel-powered grid for its energy needs. The island is located in the Pacific Ocean 85 miles southwest of Los Angeles, California and 65 miles south of the Naval Air Weapons Station (NAWS), Point Mugu, California. SNI is situated on the continental shelf at latitude N33{degree}14` and longitude W119{degree}27`. It is approximately 9 miles long and 3.6 miles wide and encompasses an area of 13,370 acres of land owned by the Navy in fee title. Winds on San Nicolas are prevailingly northwest and are strong most of the year. The average wind speed is 7.2 m/s (14 knots) and seasonal variation is small. The windiest months, March through July, have wind speeds averaging 8.2 m/s (16 knots). The least windy months, August through February, have wind speeds averaging 6.2 m/s (12 knots).

  11. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    approach to locating wind farms in the UK," Renewablepower production at existing wind farms. Each of these is anpower from potential wind farm locations in California and

  12. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K

    2010-01-01T23:59:59.000Z

    three California wind farms: San Gorgonio Pass and Tehachapibuoy Ontario San Gorgonio Pass Wind Farm Palm Springs Blytherecords from the San Gorgonio Pass wind farm are not avail-

  13. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    California o?shore wind energy potential. Renewable Energy,2008: Ex- ploring wind energy potential o? the Californiafor estimates of wind power potential. Journal of Applied

  14. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    near three California wind farms are then explored: Sancirculations that drive wind farms, and to consider the e?at three major California wind farms. This is clearly a much

  15. San Diego County- Wind Regulations (California)

    Broader source: Energy.gov [DOE]

    The County of San Diego has established zoning guidelines for wind turbine systems of varying sizes in the unincorporated areas of San Diego County. Wind turbine systems can be classified as small,...

  16. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    towers or operational wind farms are needed to resolveapproach to locating wind farms in the UK. ” Renewablepower from potential wind farm locations in California and

  17. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    7 2.2.3 Wind Farm Production1. Rated Capacity of Wind Farms for which Monthly Productionpower from potential wind farm locations in California and

  18. Exploring wind energy potential off the California coast Qingfang Jiang,1

    E-Print Network [OSTI]

    Jacobson, Mark

    ., California offshore wind energy potential, submitted to Wind Energy, 2008]. Com- pared with wind farms over land, offshore wind farms have a number of advantages. Offshore wind turbines pose less threat potential over land around the world, offshore wind energy resources are largely unexplored, in part because

  19. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    value of re- newable electricity; and customer surveys ofCalifornia or Northwestern electricity demand. This may bebetween wind speed and electricity demand," Solar Energy,

  20. California/Wind Resources/Full Version | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8th congressional district:California/Wind

  1. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Cost Analysis, Phase 1. CWEC-2003-06. Davis, California: California Windanalysis of the effect of wind timing and variability on the system integration costs

  2. Risk Quantification Associated with Wind Energy Intermittency in California

    E-Print Network [OSTI]

    George, Sam O; Nguyen, Scott V

    2010-01-01T23:59:59.000Z

    As compared to load demand, frequent wind energy intermittencies produce large short-term (sub 1-hr to 3-hr) deficits (and surpluses) in the energy supply. These intermittent deficits pose systemic and structural risks that will likely lead to energy deficits that have significant reliability implications for energy system operators and consumers. This work provides a toolset to help policy makers quantify these first-order risks. The thinking methodology / framework shows that increasing wind energy penetration significantly increases the risk of loss in California. In addition, the work presents holistic risk tables as a general innovation to help decision makers quickly grasp the full impact of risk.

  3. California/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8th congressional district:

  4. Wind Generation in the Future Competitive California Power Market

    SciTech Connect (OSTI)

    Sezgen, O.; Marnay, C.; Bretz, S.

    1998-03-01T23:59:59.000Z

    The goal of this work is to develop improved methods for assessing the viability of wind generation in competitive electricity markets. The viability of a limited number of possible wind sites is assessed using a geographic information system (GIS) to determine the cost of development, and Elfin, an electric utility production costing and capacity expansion model, to estimate the possible revenues and profits of wind farms at the sites. This approach improves on a simple profitability calculation by using a site-specific development cost calculation and by taking the effect of time varying market prices on revenues into account. The first component of the work is to develop data characterizing wind resources suitable for use in production costing and capacity expansion models, such as Elfin, that are capable of simulating competitive electricity markets. An improved representation of California wind resources is built, using information collected by the California Energy Commission (CE C) in previous site evaluations, and by using a GIS approach to estimating development costs at 36 specific sites. These sites, which have been identified as favorable for wind development, are placed on Digital Elevation Maps (DEMs) and development costs are calculated based on distances to roads and transmission lines. GIS is also used to develop the potential capacity at each site by making use of the physical characteristics of the terrain, such as ridge lengths. In the second part of the effort, using a previously developed algorithm for simulating competitive entry to the California electricity market, the Elfin model is used to gauge the viability of wind farms at the 36 sites. The results of this exercise are forecasts of profitable development levels at each site and the effects of these developments on the electricity system as a whole. Under best guess assumptions, including prohibition of new nuclear and coal capacity, moderate increase in gas prices and some decline in renewable capital costs, about 7.35 GW of the 10 GW potential capacity at the 36 specific sites is profitably developed and 62 TWh of electricity produced per annum by the year 2030. Most of the development happens during the earlier years of the forecast. Sensitivity of these results to future gas price scenarios is also presented. This study also demonstrates that an analysis based on a simple levelized profitability calculation approach does not sufficiently capture the implications of time varying prices in a competitive market.

  5. California offshore wind energy potential Michael J. Dvorak a,*, Cristina L. Archer b

    E-Print Network [OSTI]

    California (CA). The siting of an offshore wind farm is limited by water depth, with shallow water being generally preferable economically. Acceptable depths for offshore wind farms are divided into three based wind farms which peak at night, the offshore winds near Cape Mendocino are consistently fast

  6. CleanFleet. Final report: Volume 8, fleet economics

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The costs that face a fleet operator in implementing alternative motor fuels into fleet operations are examined. Five alternatives studied in the CleanFleet project are considered for choice of fuel: compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The cost assessment is built upon a list of thirteen cost factors grouped into the three categories: infrastructure costs, vehicle owning costs, and operating costs. Applicable taxes are included. A commonly used spreadsheet was adapted as a cost assessment tool. This tool was used in a case study to estimate potential costs to a typical fleet operator in package delivery service in the 1996 time frame. In addition, because electric cargo vans are unlikely to be available for the 1996 model year from original equipment manufacturers, the case study was extended to the 1998 time frame for the electric vans. Results of the case study are presented in cents per mile of vehicle travel for the fleet. Several options available to the fleet for implementing the fuels are examined.

  7. Model Wind over the Central and Southern California Coastal Ocean HSIAO-MING HSU

    E-Print Network [OSTI]

    Model Wind over the Central and Southern California Coastal Ocean HSIAO-MING HSU National Center of high-resolution wind in coastal ocean modeling. This paper tests the Coupled Ocean­Atmosphere Mesoscale Prediction System (COAMPS) at the 9-, 27-, and 81-km grid resolutions in simulating wind off the central

  8. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01T23:59:59.000Z

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  9. CleanFleet. Volume 2, Project Design and Implementation

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The CleanFleet alternative fuels demonstration project evaluated five alternative motorfuels in commercial fleet service over a two-year period. The five fuels were compressed natural gas, propane gas, California Phase 2 reformulated gasoline (RFG), M-85 (85 percent methanol and 15 percent RFG), and electric vans. Eight-four vans were operated on the alternative fuels and 27 vans were operated on gasoline as baseline controls. Throughout the demonstration information was collected on fleet operations, vehicle emissions, and fleet economics. In this volume of the CleanFleet findings, the design and implementation of the project are summarized.

  10. Analyzing the Effects of Temporal Wind Patterns on the Value ofWind-Generated Electricity at Different Sites in California and theNorthwest

    SciTech Connect (OSTI)

    Fripp, Matthias; Wiser, Ryan

    2006-05-31T23:59:59.000Z

    Wind power production varies on a diurnal and seasonal basis. In this report, we use wind speed data modeled by TrueWind Solutions, LLC (now AWS Truewind) to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwest. (Data from this dataset are referred to as ''TrueWind data'' throughout this report.) The intra-annual wind speed variations reported in the TrueWind datasets have not previously been used in published work, however, so we also compare them to a collection of anemometer wind speed measurements and to a limited set of actual wind farm production data. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in the Northwest and California with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. Based on our research, we reach three key conclusions. (1) Temporal patterns have a moderate impact on the wholesale market value of wind power and a larger impact on the capacity factor during peak hours. The best-timed wind power sites have a wholesale market value that is up to 4 percent higher than the average market price, while the worst-timed sites have a market value that is up to 11 percent below the average market price. The best-timed wind sites could produce as much as 30-40 percent more power during peak hours than they do on average during the year, while the worst timed sites may produce 30-60 percent less power during peak hours. (2) Northwestern markets appear to be well served by Northwestern wind and poorly served by California wind; results are less clear for California markets. Both the modeled TrueWind data and the anemometer data indicate that many Northwestern wind sites are reasonably well-matched to the Northwest's historically winter-peaking wholesale electricity prices and loads, while most California sites are poorly matched to these prices and loads. However, the TrueWind data indicate that most California and Northwestern wind sites are poorly matched to California's summer-afternoon-peaking prices and loads, while the anemometer data suggest that many of these same sites are well matched to California's wholesale prices and loads. (3) TrueWind and anemometer data agree about wind speeds in most times and places, but disagree about California's summer afternoon wind speeds: The TrueWind data indicate that wind speeds at sites in California's coastal mountains and some Northwestern locations dip deeply during summer days and stay low through much of the afternoon. In contrast, the anemometer data indicate that winds at these sites begin to rise during the afternoon and are relatively strong when power is needed most. At other times and locations, the two datasets show good agreement. This disagreement may be due in part to time-varying wind shear between the anemometer heights (20-25m) and the TrueWind reference height (50m or 70m), but may also be due to modeling errors or data collection inconsistencies.

  11. UNIVERSITY OF CALIFORNIA, Surface Wind Speed Distributions: Implications for Climate and Wind Power

    E-Print Network [OSTI]

    Zender, Charles

    and Wind Power DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR . . . . . . . . . . . . . . . . . 19 1.3 Global Ocean Wind Power and Surface Layer Stability . . . . . . . . 23 1.3.1 Global Winds . . . . . . 27 1.4 Usable Offshore Wind Power . . . . . . . . . . . . . . . . . . . . . . . 31 1.4.1 Wind Turbine

  12. Improved Electrical Load Match In California By Combining Solar Thermal Power Plants with Wind Farms

    SciTech Connect (OSTI)

    Vick, B. D.; Clark, R. N.; Mehos, M.

    2008-01-01T23:59:59.000Z

    California with its hydro, geothermal, wind, and solar energy is the second largest producer of renewable electricity in the United States (Washington state is the largest producer of renewable energy electricity due to high level of hydro power). Replacing fossil fuel electrical generation with renewable energy electrical generation will decrease the release of carbon dioxide into the atmosphere which will slow down the rapid increase in global warming (a goal of the California state government). However, in order for a much larger percentage of the total electrical generation in California to be from renewable energies like wind and solar, a better match between renewable energy generation and utility electrical load is required. Using wind farm production data and predicted production from a solar thermal power plant (with and without six hours of storage), a comparison was made between the renewable energy generation and the current utility load in California. On a monthly basis, wind farm generated electricity at the three major wind farm areas in California (Altamont Pass, east of San Francisco Bay area; Tehachapi Pass in the high desert between Tehachapi and Mojave; and San Gorgonio Pass in the low desert near Palm Springs) matches the utility load well during the highest electrical load months (May through September). Prediction of solar thermal power plant output also indicates a good match with utility load during these same high load months. Unfortunately, the hourly wind farm output during the day is not a very good match to the utility electrical load (i.e. in spring and summer the lowest wind speed generally occurs during mid-day when utility load is highest). If parabolic trough solar thermal power plants are installed in the Mojave Desert (similar to the 354 MW of plants that have been operating in Mojave Desert since 1990) then the solar electrical generation will help balance out the wind farm generation since highest solar generated electricity will be during mid-day. Adding six hours of solar thermal storage improved the utility load match significantly in the evening and reliability was also improved. Storage improves reliability because electrical production can remain at a high level even when there are lulls in the wind or clouds decrease the solar energy striking the parabolic trough mirrors. The solar energy from Mojave Desert and wind energy in the major wind farm areas are not a good match to utility load during the winter in California, but if the number of wind farms were increased east of San Diego, then the utility renewable energy match would be improved (this is because the wind energy is highest during the winter in this area). Currently in California, wind electrical generation only contributes 1.8% of total electricity and solar electrical generation only contributes 0.2%. Combining wind farms and solar thermal power plants with storage would allow a large percentage of the electrical load in California to be met by wind and solar energy due to a better match with utility load than by either renewable resource separately.

  13. Coastal Jet Adjustment near Point Conception, California, with Opposing Wind in the Bight

    E-Print Network [OSTI]

    Rahn, David A.; Parish, Thomas R.; Leon, David

    2014-03-01T23:59:59.000Z

    Typical spring and summer conditions offshore of California consist of strong northerly low-level wind contained within the cool, well-mixed marine boundary layer (MBL) that is separated from the warm and dry free troposphere by a sharp temperature...

  14. Fleet Management | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Fleet management includes commercial and agency owned motor vehicles such as cars, vans, trucks, and buses. Fleet (vehicle) management at the headquarters level includes a range of...

  15. Fleet Management | Department of Energy

    Energy Savers [EERE]

    DOE Fleet Management Contact your Fleet manager for access to these systems Federal Automotive Statistical Tool (FAST): Supports EPAct of 1992 requirements , the Energy...

  16. CleanFleet. Final report: Volume 1, summary

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The South Coast Alternative Fuels Demonstration, called CleanFleet, was conducted in the Los Angeles area from April 1992 through September 1994. The demonstration consisted of 111 package delivery vans operating on five alternative fuels and the control fuel, unleaded gasoline. The alternative fuels were propane gas, compressed natural gas, California Phase 2 reformulated gasoline (RFG), methanol with 15 percent RFG (called M-85), and electricity. This volume of the eight volume CleanFleet final report is a summary of the project design and results of the analysis of data collected during the demonstration on vehicle maintenance and durability, fuel economy, employee attitudes, safety and occupational hygiene, emissions, and fleet economics.

  17. Executive Fleet Vehicles Report

    Broader source: Energy.gov [DOE]

    On May 24, 2011, the President issued a Presidential Memorandum on Federal Fleet Performance.  In accordance with Section 1 (b) of the Presidential Memorandum and pursuant to Federal Management...

  18. Resources for Fleet Managers

    Broader source: Energy.gov [DOE]

    Fleet managers will benefit from the lower fuel costs, more reliable fuel prices, and lower emissions that come from using alternative fuels and advanced technologies made possible through the work...

  19. Fleet DNA (Presentation)

    SciTech Connect (OSTI)

    Walkokwicz, K.; Duran, A.

    2014-06-01T23:59:59.000Z

    The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return on technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.

  20. Southern California Sunbelt Wind Farm I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource HistoryCommunitySunbelt Wind Farm I

  1. Southern California Sunbelt Wind Farm II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to:Ezfeedflag JumpID-f < RAPID‎SolarCity Corp Jumpsource HistoryCommunitySunbelt Wind Farm

  2. EIS-0446: Department of Energy Loan Guarantee to AES for the Proposed Daggett Ridge Wind Farm, San Bernardino County, California

    Broader source: Energy.gov [DOE]

    This EIS, prepared by the Department of the Interior (Bureau of Land Management [BLM], Barstow Field Office) evaluates the environmental impacts of a proposed 82.5-megawatt (MW) Daggett Ridge Wind Farm project on land managed by the BLM located 11 miles southwest of Barstow, California, and five miles southwest of Daggett, California. DOE, a cooperating agency, is considering the impacts of its proposal to issue a Federal loan guarantee to AES Wind Generation, Inc., to support the construction of the proposed wind project. This EIS has been cancelled.

  3. Effects of Temporal Wind Patterns on the Value of Wind-GeneratedElectricity at Different Sites in California and the Northwest

    SciTech Connect (OSTI)

    Fripp, Matthias; Wiser, Ryan

    2006-08-04T23:59:59.000Z

    Wind power production varies on a diurnal and seasonal basis. In this paper, we use wind speed data from three different sources to assess the effects of wind timing on the value of electric power from potential wind farm locations in California and the Northwestern United States. By ''value'', we refer to either the contribution of wind power to meeting the electric system's peak loads, or the financial value of wind power in electricity markets. Sites for wind power projects are often screened or compared based on the annual average power production that would be expected from wind turbines at each site (Baban and Parry 2001; Brower et al. 2004; Jangamshetti and Rau 2001; Nielsen et al. 2002; Roy 2002; Schwartz 1999). However, at many locations, variations in wind speeds during the day and year are correlated with variations in the electric power system's load and wholesale market prices (Burton et al. 2001; Carlin 1983; Kennedy and Rogers 2003; Man Bae and Devine 1978; Sezgen et al. 1998); this correlation may raise or lower the value of wind power generated at each location. A number of previous reports address this issue somewhat indirectly by studying the contribution of individual wind power sites to the reliability or economic operation of the electric grid, using hourly wind speed data (Fleten et al.; Kahn 1991; Kirby et al. 2003; Milligan 2002; van Wijk et al. 1992). However, we have not identified any previous study that examines the effect of variations in wind timing across a broad geographical area on wholesale market value or capacity contribution of those different wind power sites. We have done so, to determine whether it is important to consider wind-timing when planning wind power development, and to try to identify locations where timing would have a more positive or negative effect. The research reported in this paper seeks to answer three specific questions: (1) How large of an effect can the temporal variation of wind power have on the value of wind in different wind resource areas? (2) Which locations are affected most positively or negatively by the seasonal and diurnal timing of wind speeds? (3) How compatible are wind resources in California and the Northwest (Washington, Oregon, Idaho, Montana and Wyoming) with wholesale power prices and loads in either region? The latter question is motivated by the fact that wind power projects in the Northwest could sell their output into California (and vice versa), and that California has an aggressive renewable energy policy that may ultimately yield such imports. We also assess whether modeled wind data from TrueWind Solutions, LLC, can help answer such questions, by comparing results found using the TrueWind data to those found using anemometers or wind farm power production data. This paper summarizes results that are presented in more detail in a recent report from Lawrence Berkeley National Laboratory (Fripp and Wiser 2006). The full report is available at http://eetd.lbl.gov/EA/EMP/re-pubs.html.

  4. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Solicitation Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project...

  5. Controlled Hydrogen Fleet and Infrastructure Demonstration and...

    Office of Environmental Management (EM)

    Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project 2009 DOE...

  6. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-03-01T23:59:59.000Z

    Describes Clean Cities' National Clean Fleets Partnership, an initiative that helps large private fleets reduce petroleum use.

  7. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    approach to locating wind farms in the UK," RenewableV. G. Rau, "Optimum siting of wind turbine generators," IEEEoptimal planning for wind energy conver- sion systems over

  8. Wind and tidal response of a semi-enclosed bay, Bahía Concepción, Baja California

    E-Print Network [OSTI]

    Ponte, Aurélien L. S.

    2009-01-01T23:59:59.000Z

    Observed response to diurnal winds . . . . . 4.1Thermal wind balance . . . . . . . . . . . . . . . . . . . .level response to wind . . . . . . . . . . . . 4.3 Current

  9. Overview of Two Hydrogen Energy Storage Studies: Wind Hydrogen in California and Blending in Natural Gas Pipelines (Presentation)

    SciTech Connect (OSTI)

    Melaina, M. W.

    2013-05-01T23:59:59.000Z

    This presentation provides an overview of two NREL energy storage studies: Wind Hydrogen in California: Case Study and Blending Hydrogen Into Natural Gas Pipeline Networks: A Review of Key Issues. The presentation summarizes key issues, major model input assumptions, and results.

  10. et al. 2003). Seasonal drought and extreme wind events make the WUI especially susceptible to fire. In late October, 2003, Southern California experienced the worst

    E-Print Network [OSTI]

    Moritz, Max A.

    #12;et al. 2003). Seasonal drought and extreme wind events make the WUI especially susceptible. Multiple large wildfires driven by Santa Ana winds consumed more than 300,000 ha. These fires were moisture and high wind speeds that cause large wildfires in Southern California may not be predictable

  11. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    Modeling Utility-Scale Wind Power Plants Part 2: Capac- ityas the capacity factor of the wind power plant during the 10Wind Plant Integration: Costs, Status, and Issues," IEEE Power &

  12. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    of electric power from potential wind farm locations inergy 1.5 MW wind turbine to calculate the potential powerpotential difference in wholesale market value between better- correlated and poorly correlated wind

  13. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    and S. Bretz, "Wind Generation in the Future Competitiveenergy sources, wind power generation I. I NTRODUCTION Windwind alone. Index Terms—energy resources, power generation

  14. Cell fleet planning : an industry case study

    E-Print Network [OSTI]

    Silva, Armando C.

    1984-01-01T23:59:59.000Z

    The objective of this thesis is to demonstrate the practical use of the Cell Fleet Planning Model in planning the fleet for the U.S. airline industry. The Cell Model is a cell theory, linear programming approach to fleet ...

  15. What is the GREET Fleet Footprint Calculator

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    fuels and advanced vehicles (AFVs). The Greenhouse gases, Regulated Emis- sions, and Energy use in Transportation (GREET) Fleet Foot- print Calculator can help fleets decide on...

  16. Contrasting controls on wildland fires in Southern California during periods with and without Santa Ana winds

    E-Print Network [OSTI]

    Jin, Yufang; Randerson, James T; Faivre, Nicolas; Capps, Scott; Hall, Alex; Goulden, Michael L

    2014-01-01T23:59:59.000Z

    conditions, when strong offshore winds and low humidity leadat locations with high offshore wind speeds [Moritz et al. ,res, driven by sustained offshore extreme winds beginning 20

  17. UCDavis University of California A California Energy

    E-Print Network [OSTI]

    California at Davis, University of

    PEV drivers charge at home #12;Charging behavior ­ self reportedLarger sample ­About 50% sayUCDavis University of California A California Energy Commission Public Interest Energy Research · Fleet Operation · Energy Savings Battery studies · Benchmark Testing · 2nd use · End of life Spatial

  18. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

  19. Cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-01-01T23:59:59.000Z

    The Nuclear Waste Policy Act of 1982 assigned to the Department of Energy's (DOE) Office of Civilian Waste Management the responsibility for disposing of high-level waste and spent fuel. A significant part of that responsibility involves transporting nuclear waste materials within the federal waste management system; that is, from the waste generator to the repository. The lead responsibility for transportation operations has been assigned to Oak Ridge Operations, with Oak Ridge National Laboratory (ORNL) providing technical support through the Transportation Operations Support Task Group. One of the ORNL support activities involves assessing what facilities, equipment and services are required to assure that an acceptable, cost-effective and safe transportation operations system can be designed, operated and maintained. This study reviews, surveys and assesses the experience of Nuclear Assurance Corporation (NAC) in operating a fleet of spent-fuel shipping casks to aid in developing the spent-fuel transportation system.

  20. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    E-Print Network [OSTI]

    Wiser, Ryan H

    2008-01-01T23:59:59.000Z

    Wind Farm Production: We used hourly power production data from the Altamont, Tehachapi and San GorgonioSan Gorgonio resource areas, we also show the effects calculated using the total output from all wind farms

  1. HEV Fleet Testing - 2010 Ford Fusion VIN:4699 - Fleet Testing...

    Broader source: Energy.gov (indexed) [DOE]

    699 Fleet Testing Results To Date Operating Statistics Distance Driven: 73,490 Average Trip Distance: 10.8 mi Stop Time with Engine Idling: 13% Trip Type CityHighway: 86%...

  2. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-06-10T23:59:59.000Z

    This presentation summarizes controlled hydrogen fleet & infrastructure analysis undertaken for the DOE Fuel Cell Technologies Program.

  3. California Fleets and Workplace Alternative Fuels Project

    Broader source: Energy.gov (indexed) [DOE]

    information. 2014 DOE Vehicle Technologies Office Review Presentation Damian Breen Deputy Air Pollution Control Officer Bay Area Air Quality Management District Project ID: TI035...

  4. Fleet DNA Project (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-10-01T23:59:59.000Z

    The Fleet DNA Project - designed by the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) in partnership with Oak Ridge National Laboratory - aims to accelerate the evolution of advanced vehicle development and support the strategic deployment of market-ready technologies that reduce costs, fuel consumption, and emissions. At the heart of the Fleet DNA Project is a clearinghouse of medium- and heavy-duty commercial fleet transportation data for optimizing the design of advanced vehicle technologies or for selecting a given technology to invest in. An easy-to-access online database will help vehicle manufacturers and fleets understand the broad operational range for many of today's commercial vehicle vocations.

  5. Revisiting the 'Buy versus Build' Decision for Publicly Owned Utilities in California Considering Wind and Geothermal Resources

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-12-11T23:59:59.000Z

    The last two decades have seen a dramatic increase in the market share of independent, nonutility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Very little of this debate, however, has focused specifically on publicly owned electric utilities, and with few exceptions, renewable sources of supply have received similarly scant attention. Contrary to historical treatment, however, the buy versus build debate is quite relevant to publicly owned utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This article looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind and geothermal power--in California. To examine the economic aspects of this decision, we used a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity. We focus on wind and geothermal because both resources are abundant and, in some cases, potentially economic in California. Our analysis is not intended to provide precise estimates of the levelized cost of electricity from wind projects and geothermal plants; nor is our intent to compare the levelized costs of wind and geothermal power to one another. Instead, our intent is simply to compare the costs of buying wind or geothermal power to the costs of building and operating wind or geothermal capacity under various scenarios. Of course, the ultimate decision to buy or build cannot and should not rest solely on a comparison of the levelized cost of electricity. Thus, in addition to quantitative analysis, we also include a qualitative discussion of several important features of the ''buy versus build'' decision not reflected in the economic analysis.

  6. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Wind

  7. Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration

    E-Print Network [OSTI]

    Vehicle Fleet Policy Responsible Administrative Unit: Finance & Administration Policy Contact, and established campus vehicle fleet service under Facilities Management operations. The purpose of the fleet vehicles. This policy is applicable to the entire Mines fleet, which includes department vehicles. 2

  8. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Energy Facilities. ” American Wind Energy Association (AWEA)Analyzing the Effects of Temporal Wind Patterns onthe Value of Wind-Generated Electricity References TrueWind

  9. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    land area in California. Wind farms only directly displacewill be required: about 1 wind farm, 1 central solar plant,

  10. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01T23:59:59.000Z

    Clean Cities' National Clean Fleets Partnership establishes strategic alliances with large fleets to help them explore and adopt alternative fuels and fuel economy measures to cut petroleum use. The initiative leverages the strength of nearly 100 Clean Cities coalitions, nearly 18,000 stakeholders, and more than 20 years of experience. It provides fleets with top-level support, technical assistance, robust tools and resources, and public acknowledgement to help meet and celebrate fleets' petroleum-use reductions.

  11. CleanFleet. Final report: Volume 5, employee attitude assessment

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    The experiences of couriers, operations managers, vehicle handlers (refuelers), and mechanics who drove and/or worked with alternative fuel vehicles, and the attitudes and perceptions of people with these experiences, are examined. Five alternative fuels studied in the CleanFleet project are considers& compressed natural gas, propane gas, California Phase 2 reformulated gasoline, M-85, and electricity. The three major areas of interest include comparative analysis of issues such as health, safety and vehicle performance, business issues encompassing several facets of station operations, and personal commentary and opinions about the CleanFleet project and the alterative fuels. Results of the employee attitude assessment are presented as both statistical and qualitative analysis.

  12. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    Conservation Cooperative, consisting of factory trawlers, a group of seven catcher vessels with history cooperative and the inshore sector formed a total of seven. Quotas are distributed to coops by the NMFS as per-1997 as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore cooperatives formed in December

  13. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    trawlers, a group of seven catcher vessels with history of delivering offshore to factory trawlers of seven. Quotas are distributed to coops by the NMFS as per a formula based on the catch percentages by vessels in the qualifying years as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore

  14. FINAL REPORT UNALASKA FLEET COOPERATIVE

    E-Print Network [OSTI]

    formed the Pollock Conservation Cooperative, consisting of factory trawlers, a group of seven catcher Sector formed one cooperative and the inshore sector formed a total of seven. Quotas are distributed qualifying years, 1995-1997 as set in the AFA. The Unalaska Fleet Cooperative is one of seven inshore

  15. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    land area in California. Wind farms only directly displacewill be required: about 1 wind farm, 1 central solar plant,

  16. National Clean Fleets Partnership (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-01-01T23:59:59.000Z

    Provides an overview of Clean Cities National Clean Fleets Partnership (NCFP). The NCFP is open to large private-sector companies that have fleet operations in multiple states. Companies that join the partnership receive customized assistance to reduce petroleum use through increased efficiency and use of alternative fuels. This initiative provides fleets with specialized resources, expertise, and support to successfully incorporate alternative fuels and fuel-saving measures into their operations. The National Clean Fleets Partnership builds on the established success of DOE's Clean Cities program, which reduces petroleum consumption at the community level through a nationwide network of coalitions that work with local stakeholders. Developed with input from fleet managers, industry representatives, and Clean Cities coordinators, the National Clean Fleets Partnership goes one step further by working with large private-sector fleets.

  17. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01T23:59:59.000Z

    of observed summertime mesoscale pressure gradient and ??observed wind speeds and mesoscale SLP di?erences at pointsand modi?cation of mesoscale circulations. Monthly Weather

  18. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    from operating wind farms in the Altamont, San Gorgonio anddata from wind farms in Altamont, Tehachapi and San Gorgoniofrom wind farms in the Altamont, Tehachapi and San Gorgonio

  19. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    1992). “Capacity credit of wind power in the Netherlands. ”modeling as a tool for wind resource assessment andBurton, T. , et al. (2001). Wind Energy Handbook, John

  20. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Schwartz. 1993. Wind Energy Potential in the United States .for estimates of wind power potential. ” Journal of Appliedof electric power from potential wind farm locations in

  1. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    of electric power from potential wind farm locations infactor across different potential wind sites are about sevenreflects the potential effects of temporal wind patterns on

  2. A cask fleet operations study

    SciTech Connect (OSTI)

    Not Available

    1988-03-01T23:59:59.000Z

    This document describes the cask fleet currently available to transport spent nuclear fuels. The report describes the proposed operational procedures for these casks and the vehicles intended to transport them. Included are techniques for loading the cask, lifting it onto the transport vehicle, preparing the invoices, and unloading the cask at the destination. The document concludes with a discussion on the maintenance and repair of the casks. (tem) 29 figs.

  3. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Modeling Utility-Scale Wind Power Plants Part 2: Capacitycapacity factor of the wind power plant during the top 10

  4. Federal Fleet Program Overview (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Fact sheet overview of FEMP services and assistance available to Federal fleet managers to implement alternative fuel and advanced vehicle strategies in compliance with Federal goals and requirements.

  5. Controlled Hydrogen Fleet and Infrastructure Analysis (Presentation)

    SciTech Connect (OSTI)

    Wipke, K.

    2007-05-17T23:59:59.000Z

    This presentation by Keith Wipke at the 2007 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

  6. CleanFleet. Final report: Volume 7, vehicle emissions

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    Measurements of exhaust and evaporative emissions from Clean Fleet vans running on M-85, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), propane gas, and a control gasoline (RF-A) are presented. Three vans from each combination of vehicle manufacturer and fuel were tested at the California Air Resources Board (ARB) as they accumulated mileage in the demonstration. Data are presented on regulated emissions, ozone precursors, air toxics, and greenhouse gases. The emissions tests provide information on in-use emissions. That is, the vans were taken directly from daily commercial service and tested at the ARB. The differences in alternative fuel technology provide the basis for a range of technology options. The emissions data reflect these differences, with classes of vehicle/fuels producing either more or less emissions for various compounds relative to the control gasoline.

  7. WEST: A northern California study of the role of wind-driven transport in the productivity of coastal plankton communities

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    variability. Alongshore Wind m/s Temperature o C SalinityA. , Largier, J. , 2003. Wind strength and biological2006. Effects of variable winds on biological productivity

  8. Clean Cities Helps Fleets Go Green (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-08-01T23:59:59.000Z

    Green fleet programs, like those in Ohio and Illinois, certify vehicle fleets based on environmental and fuel-use requirements. The programs encourage the use of alternative fuels and provide a way to recognize fleets for participating.

  9. Revisiting the 'Buy versus Build' decision for publicly owned utilities in California considering wind and geothermal resources

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2001-10-01T23:59:59.000Z

    The last two decades have seen a dramatic increase in the market share of independent, non-utility generators (NUGs) relative to traditional, utility-owned generation assets. Accordingly, the ''buy versus build'' decision facing utilities--i.e., whether a utility should sign a power purchase agreement (PPA) with a NUG, or develop and own the generation capacity itself--has gained prominence in the industry. Specific debates have revolved around the relative advantages of, the types of risk created by, and the regulatory incentives favoring each approach. Very little of this discussion has focused specifically on publicly owned electric utilities, however, perhaps due to the belief that public power's tax-free financing status leaves little space in which NUGs can compete. With few exceptions (Wiser and Kahn 1996), renewable sources of supply have received similarly scant attention in the buy versus build debate. In this report, we revive the ''buy versus build'' debate and apply it to the two sectors of the industry traditionally underrepresented in the discussion: publicly owned utilities and renewable energy. Contrary to historical treatment, this debate is quite relevant to public utilities and renewables because publicly owned utilities are able to take advantage of some renewable energy incentives only in a ''buy'' situation, while others accrue only in a ''build'' situation. In particular, possible economic advantages of public utility ownership include: (1) the tax-free status of publicly owned utilities and the availability of low-cost debt, and (2) the renewable energy production incentive (REPI) available only to publicly owned utilities. Possible economic advantages to entering into a PPA with a NUG include: (1) the availability of federal tax credits and accelerated depreciation schedules for certain forms of NUG-owned renewable energy, and (2) the California state production incentives available to NUGs but not utilities. This report looks at a publicly owned utility's decision to buy or build new renewable energy capacity--specifically wind or geothermal power--in California. To examine the economic aspects of this decision, we modified and updated a 20-year financial cash-flow model to assess the levelized cost of electricity under four supply options: (1) public utility ownership of new geothermal capacity, (2) public utility ownership of new wind capacity, (3) a PPA for new geothermal capacity, and (4) a PPA for new wind capacity.

  10. GREET Fleet | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFifeGEXA Corp. (New Jersey) JumpGREET Fleet Jump to:

  11. Merit Review: EPAct State and Alternative Fuel Provider Fleets...

    Energy Savers [EERE]

    State and Alternative Fuel Provider Fleets Merit Review: EPAct State and Alternative Fuel Provider Fleets Presentation from the U.S. DOE Office of Vehicle Technologies "Mega" Merit...

  12. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Broader source: Energy.gov (indexed) [DOE]

    Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation 2011 DOE...

  13. Business Case for CNG in Municipal Fleets (Presentation)

    SciTech Connect (OSTI)

    Johnson, C.

    2010-07-27T23:59:59.000Z

    Presentation about compressed natural gas in municipal fleets, assessing investment profitability, the VICE model, base-case scenarios, and pressing questions for fleet owners.

  14. Analyzing the Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    the Value of Wind-Generated Electricity References TrueWindValuing the Time-Varying Electricity Production of Solarthe Value of Wind-Generated Electricity References Gipe, P.

  15. Hoover Police Fleet Reaches Alternative Fuel Milestone

    Broader source: Energy.gov [DOE]

    When Tony Petelos became the mayor of Hoover in 2004, the police fleet was run down. Within the next year, Petelos, with support from the community, called for a big change: switch out the old police fleet with new, flexible-fueled vehicles.

  16. Vehicle Technologies and Bus Fleet Replacement Optimization

    E-Print Network [OSTI]

    Bertini, Robert L.

    1 Vehicle Technologies and Bus Fleet Replacement Optimization: problem properties and sensitivity: R41 #12;2 Abstract This research presents a bus fleet replacement optimization model to analyze hybrid and conventional diesel vehicles, are studied. Key variables affecting optimal bus type

  17. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    et al. (1998). Wind Generation in the Future Competitivegeneration system, as well as computational resources that would make it prohibitive for estimating the capacity value of wind

  18. EECBG Success Story: How Chula Vista, California is Turning Cooking...

    Broader source: Energy.gov (indexed) [DOE]

    Department. The city of Chula Vista, California has installed a new 10,000 gallon biodiesel fuel tank to facilitate the conversion of over 125 heavy-duty fleet vehicles to...

  19. Stochastic ship fleet routing with inventory limits 

    E-Print Network [OSTI]

    Yu, Yu

    2010-01-01T23:59:59.000Z

    This thesis describes a stochastic ship routing problem with inventory management. The problem involves finding a set of least costs routes for a fleet of ships transporting a single commodity when the demand for ...

  20. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity at Different Sites in California and the Northwest

    E-Print Network [OSTI]

    Fripp, Matthias; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Wind Farm Production: We used historical hourly power production data from the Altamont, Tehachapi and San GorgonioSan Gorgonio resource areas, we also show the effects calculated using the total output from all wind farms

  1. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    to natural gas. 2008 Wind Technologies Market Report 1% windforward gas market. 2008 Wind Technologies Market Report 4.Market Report Wind Penetration (Capacity Basis) Arizona Public Service Avista Utilities California RPS Idaho Power Xcel-PSCo-2008 at 2006 Gas

  2. California's Energy Future - The View to 2050

    E-Print Network [OSTI]

    2011-01-01T23:59:59.000Z

    with grid power. Wind energy in areas of good wind resourceintensity of that energy. Thus, the area of the box is thearea of the red box represents 2050 target emissions. California’s Energy

  3. EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG

    E-Print Network [OSTI]

    Kockelman, Kara M.

    EVOLUTION OF THE HOUSEHOLD VEHICLE FLEET: ANTICIPATING FLEET COMPOSITION, PHEV ADOPTION AND GHG evolution, vehicle ownership, plug-in hybrid electric vehicles (PHEVs), climate change policy, stated preference, opinion survey, microsimulation ABSTRACT In todays world of volatile fuel prices and climate

  4. Fleet Biodiesel | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive JumpFirst WindWater Wind Farm Jump

  5. STATE OF CALIFORNIA WPRS INSTRUCTIONS

    E-Print Network [OSTI]

    STATE OF CALIFORNIA WPRS INSTRUCTIONS ued 12/13) CALIFORNIA ENERGY COMMISSION(Iss Wind Performance performance information and wind power purchasing information provided to the Energy Commission has been analyses including the commission's biennial Integrated Energy Policy Report. Authority: California Code

  6. Contributing Data to the Fleet DNA Project (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-09-01T23:59:59.000Z

    The Fleet DNA clearinghouse of commercial fleet transportation data helps vehicle manufacturers and developers optimize vehicle designs and helps fleet managers choose advanced technologies for their fleets. This online tool - available at www.nrel.gov/fleetdna - provides data summaries and visualizations similar to real-world 'genetics' for medium- and heavy-duty commercial fleet vehicles operating within a variety of vocations. To contribute your fleet data, please contact Adam Duran of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) at adam.duran@nrel.gov or 303-275-4586.

  7. CleanFleet. Final report: Volume 3, vehicle maintenance and durability

    SciTech Connect (OSTI)

    NONE

    1995-12-01T23:59:59.000Z

    CleanFleet is a demonstration of panel vans operating on five alternative motorfuels in commercial package delivery operations in the South Coast Air Basin of California. The five alternative fuels are propane gas, compressed natural gas (CNG), California Phase 2 reformulated gasoline (RFG), methanol (M-85 with 15 percent RFG), and electricity. Data were gathered on in-use emissions, operations, and fleet economics. This volume of the final report summarizes the maintenance required on these vans from the time they were introduced into the demonstration (April through early November 1992) until the end of the demonstration in September 1994. The vans were used successfully in FedEx operations; but, to varying degrees, the alternative fuel vehicles required more maintenance than the unleaded gasoline control vehicles. The maintenance required was generally associated with the development state of the fuel-related systems. During the demonstration, no non-preventive maintenance was required on the highly developed fuel-related systems in any of the unleaded gasoline production vehicles used either as controls or as RFG test vehicles. The maintenance problems encountered with the less developed systems used in this demonstration may persist in the short term with vehicles featuring the same or similar systems. This means that fleet operators planning near-term acquisitions of vehicles incorporating such systems should consider the potential for similar problems when (1) selecting vendors and warranty provisions and (2) planning maintenance programs.

  8. California’s Energy Future: The View to 2050 - Summary Report

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    with grid power. Wind energy in areas of good wind resourceintensity of that energy. Thus, the area of the box is thearea of the red box represents 2050 target emissions. California’s Energy

  9. Frequently Asked Questions: About Federal Fleet Management (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-10-01T23:59:59.000Z

    Answers to frequently asked questions about Federal fleet management, Federal requirements, reporting, advanced vehicles, and alternative fuels.

  10. Chronological History of Federal Fleet Actions and Mandates (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2011-04-01T23:59:59.000Z

    This chronological history of Federal fleet actions and mandates provides a year-by-year timeline of the acts, amendments, executive orders, and other regulations that affect Federal fleets. The fleet actions and mandates included in the timeline span from 1988 to 2009.

  11. Fleet DNA Project Data Summary Report (Presentation)

    SciTech Connect (OSTI)

    Walkowicz, K.; Duran, A.; Burton, E.

    2014-04-01T23:59:59.000Z

    This presentation includes graphical data summaries that highlight statistical trends for medium- and heavy-duty commercial fleet vehicles operating in a variety of vocations. It offers insight for the development of vehicle technologies that reduce costs, fuel consumption, and emission.

  12. Waste Management's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Laboratory (US); Clark, N. [West Virginia University (US)

    2001-01-25T23:59:59.000Z

    Waste Management, Inc., began operating a fleet of heavy-duty LNG refuse trucks at its Washington, Pennsylvania, facility. The objective of the project was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel for heavy-duty trucking applications.

  13. Active Power Control from Wind Power (Presentation)

    SciTech Connect (OSTI)

    Ela, E.; Brooks, D.

    2011-04-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  14. assessment kotzebue wind: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  15. arctic wind technology: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  16. areal wind resource: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  17. aruba wind resource: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Utilization Websites Summary: Renewable Energy Center California Off-shore Wind Technology Assessment 12;California Renewable EnergyRESEARCH RESULTS FORUM FOR RENEWABLE...

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    estimates for installed capacity. Other methodological2008, yielding a cumulative installed capacity of small windTexas in cumulative installed capacity are Iowa, California,

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Windanalysis of the AWEA project database. Cost, Performance and Pricing Trends Wind

  20. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Cost Analysis: Multi-Year Analysis Results and Recommendations. Consultant report prepared by the California Windanalysis of the AWEA project database. Price, Cost, and Performance Trends Wind

  1. NREL: Transportation Research - Fleet Test and Evaluation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReportTransmissionResearch Cutaway image ofFleet

  2. Utilities in California and Washington Receive Honors for Innovative...

    Office of Environmental Management (EM)

    more than 710 megawatts of installed wind capacity. By carefully structuring the power purchase agreements across five wind projects, Southern California secured energy...

  3. LNG fleet increases in size and capabilities

    SciTech Connect (OSTI)

    Linser, H.J. Jr.; Drudy, M.J.; Endrizzi, F.; Urbanelli, A.A. [Mobil Shipping and Transportation, Fairfax, VA (United States)

    1997-06-02T23:59:59.000Z

    The LNG fleet as of early 1997 consisted of 99 vessels with total cargo capacity of 10.7 million cu m, equivalent to approximately 4.5 million tons. One of the newest additions to the fleet, the 137,000-cu m tanker Al Zubarah, is five times the size of the original commercial vessel Methane Princess. Al Zubarah`s first loading of more than 60,000 tons occurred in December 1996 for deliver to Japanese buyers from the newly commissioned Qatargas LNG plant at Ras Laffan. That size cargo contains enough clean-burning energy to heat 60,000 homes in Japan for 1 month. Measuring nearly 1,000 ft long, the tanker is among the largest in the industry fleet and joined 70 other vessels of more than 100,000 cu m. Most LNG tankers built since 1975 have been larger-capacity vessels. The paper discusses LNG shipping requirements, containment systems, vessel design, propulsion, construction, operations and maintenance, and the future for larger vessels.

  4. CALIFORNIA ENERGY FOURTH EDITION

    E-Print Network [OSTI]

    standard, biomass, solar thermal electric, wind, existing renewable #12;Table of Contents I - IntroductionCALIFORNIA ENERGY COMMISSION EXISTING RENEWABLE FACILITIES PROGRAM FOURTH EDITION GUIDEBOOK MARCH RENEWABLE ENERGY OFFICE Valerie Hall Deputy Director EFFICIENCY, RENEWABLES & DEMAND ANALYSIS DIVISION #12

  5. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  6. Size and transportation capabilities of the existing US cask fleet

    SciTech Connect (OSTI)

    Danese, F.L. (Science Applications International Corp., Oak Ridge, TN (USA)); Johnson, P.E.; Joy, D.S. (Oak Ridge National Lab., TN (USA))

    1990-01-01T23:59:59.000Z

    This study investigates the current spent nuclear fuel cask fleet capability in the United States. In addition, it assesses the degree to which the current fleet would be available, as a contingency, until proposed Office of Civilian Radioactive Waste Management casks become operational. A limited fleet of ten spent fuel transportation casks is found to be readily available for use in Federal waste management efforts over the next decade.

  7. A nautical archaeological study of Kublai Khan's fleets 

    E-Print Network [OSTI]

    Inoue, Takahiko

    1991-01-01T23:59:59.000Z

    , and Korea, as well as secondary sources, have been consulted. Chinese ships were the most advanced seagoing vessels in the world at the end of 13th century. However, little is known about Kublai Khan's fleets. Although many general works on the history... of Kublai's invasions of Japan are available in the literature, there are no detailed studies of Kublai's fleets that combine data from both historical and artistic representations. Discovery and excavation of one or more ships from Kublai Khan's fleets...

  8. RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ann Arbor, Michigan: Solar in Action (Brochure), Solar America Cities, Energy Efficiency & Renewable Energy (EERE) RECOVERY ACT -- CLEAN ENERGY COALITION MICHIGAN GREEN FLEETS...

  9. Fleet DNA Project - Data Dictionary for Public Download Files

    SciTech Connect (OSTI)

    Duran, A.; Burton, E.; Kelly, K.; Walkowicz, K.

    2014-09-01T23:59:59.000Z

    Reference document for the Fleet DNA results data shared on the NREL public website. The document includes variable definitions and descriptions to assist users in understanding data.

  10. Strategies for Decreasing Petroleum Consumption in the Federal Fleet (Presentation)

    SciTech Connect (OSTI)

    Putsche, V.

    2006-06-01T23:59:59.000Z

    Presentation offers strategies federal agency fleets can use to reduce petroleum consumption and build or gain access to alternative fuel infrastructure.

  11. Controlled Hydrogen Fleet and Infrastructure Analysis (2008 Presentation)

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.

    2008-06-10T23:59:59.000Z

    This presentation by Keith Wipke at the 2008 DOE Hydrogen Program Annual Merit Review Meeting provides information about NREL's Controlled Hydrogen Fleet and Infrastructure Analysis Project.

  12. Merit Review: EPAct State and Alternative Fuel Provider Fleets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications 2012 Merit Review: EPAct State and Alternative Fuel Provider Fleets Vehicle Technologies Office Merit Review 2014: EPAct State and...

  13. Clean Cities Launches Improved Tool to Help Fleets Evaluate CNG...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Model helps fleet managers evaluate the financial soundness of investments in compressed natural gas (CNG) vehicles andor fueling infrastructure. The new version is applicable to...

  14. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    arravt068vssmiyasato2011o .pdf More Documents & Publications SCAQMD:Plug-In Hybrid Electric Medium-Duty Commercial Fleet Demonstration and Evaluation Plug-In Hybrid...

  15. Lubricants - Pathway to Improving Fuel Efficiency of Legacy Fleet...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Efficiency of Legacy Fleet Vehicles Reviews recent studies on potential for low-viscosity lubricants and low-friction surfaces and additives to reduce fuel consumption, and...

  16. Building a Business Case for Compressed Natural Gas in Fleet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Renewable Energy Laboratory developed the Vehicle Infrastructure and Cash-Flow Evaluation (VICE) model to help businesses and fleets evaluate the financial soundness of CNG...

  17. State and Alternative Fuel Provider Fleet Compliance Methods (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2009-12-01T23:59:59.000Z

    Fact sheet describes the difference between Standard and Alternative Compliance requirements for state and alternative fuel provider fleets covered under the Energy Policy Acts of 1992 and 2005.

  18. State and Alternative Fuel Provider Fleet Compliance Methods (Revised) (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    This fact sheet describes the difference between Standard and Alternative Compliance requirements for state and alternative fuel provider fleets covered by the Energy Policy Act.

  19. Large Fleets Lead in Petroleum Reduction (Fact Sheet)

    SciTech Connect (OSTI)

    Proc, H.

    2011-03-01T23:59:59.000Z

    Fact sheet describes Clean Cities' National Petroleum Reduction Partnership, an initiative through which large private fleets can receive support from Clean Cities to reduce petroleum consumption.

  20. Fact Sheet: Tehachapi Wind Energy Storage Project (October 2012...

    Broader source: Energy.gov (indexed) [DOE]

    Wind Resource Area because it is one of the largest wind resource areas in the world. Electricity Delivery & Energy Reliability Energy Storage Program Southern California...

  1. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's (DOE) involvement. Included are specifications for the fuel cell bus and information about its operation. BurbankBus, the city's mass transit entity, received a grant from the California Air Resources Board to fund its zero-emission bus demonstration and is collaborating with DOE's Fuel Cell Technologies Program to evaluate the bus performance. DOE's National Renewable Energy Laboratory will collect and analyze performance and operations data for at least one year. Researchers will use the data to better understand the technology and determine future development work. In addition, demonstration information will help fleets make informed purchase decisions.

  2. Northerly surface wind events over the eastern North Pacific Ocean : spatial distribution, seasonality, atmospheric circulation, and forcing

    E-Print Network [OSTI]

    Taylor, Stephen V.

    2006-01-01T23:59:59.000Z

    D. (2005), California Wind Resources, CEC publication # CEC-level inversions with surface wind and temperature at PointD. W. Stuart (1986), Mesoscale wind variability near Point

  3. Strategies to Mitigate Declines in the Economic Value of Wind and Solar at High Penetration in California

    Broader source: Energy.gov [DOE]

    This resource evaluates several options to reduce and eliminate the decline in the value of wind and solar PV technology, as a previous study had quantified the decline as penetration levels increased. Researchers found that largest increase in the value of PV at high penetration levels comes from assuming that low-cost bulk power storage is an investment option. Other attractive options, particularly at more modest penetration levels, include real-time pricing and technology diversity.

  4. Plug-In Electric Vehicle Handbook for Fleet Managers (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    Plug-in electric vehicles (PEVs) are entering the automobile market and are viable alternatives to conventional vehicles. This guide for fleet managers describes the basics of PEV technology, PEV benefits for fleets, how to select the right PEV, charging a PEV, and PEV maintenance.

  5. Plug-In Electric Vehicle Handbook for Fleet Managers

    E-Print Network [OSTI]

    Plug-In Electric Vehicle Handbook for Fleet Managers #12;Plug-In Electric Vehicle Handbook Infrastructure Successfully deploying plug-in electric vehicles (PEVs) and charging infrastructure requires at www.cleancities.energy.gov. #12;Plug-In Electric Vehicle Handbook for Fleets 3 You've heard the buzz

  6. The origin of the lost fleet of the mongol empire

    E-Print Network [OSTI]

    Sasaki, Randall James

    2009-05-15T23:59:59.000Z

    In 1281 C.E., under the rule of Kublai Khan, the Mongols sent a fleet of more than 4000 vessels to subjugate the island nation of Japan. A powerful typhoon, called kamikaze, dashed the invading fleet into pieces on the shores of Japan and thus saved...

  7. Biofuels, Climate Policy, and the European Vehicle Fleet

    E-Print Network [OSTI]

    Biofuels, Climate Policy, and the European Vehicle Fleet Xavier Gitiaux, Sebastian Rausch, Sergey on the Science and Policy of Global Change. Abstract We examine the effect of biofuels mandates and climate incorporates current generation biofuels, accounts for stock turnover of the vehicle fleets, disaggregates

  8. CALIFORNIA RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    RECOVERY ACT SNAPSHOT California has substantial natural resources, including oil, gas, solar, wind, geothermal, and hydroelectric power .The American Recovery & Reinvestment...

  9. FUPWG Meeting Agenda - Ontario, California | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    102 KB) 1:30 pm Cost of Fuel to Generate Electricity Herb Emmrich, Southern California Gas Company (PDF 471 KB) 2:00 pm Wind Panel Wind Market Updates and Wind Technology Robi...

  10. Clean Cities Offers Fleets New Tool to Evaluate Benefits of Alternative Fuel Vehicles

    Broader source: Energy.gov [DOE]

    The AFLEET Tool allows fleets to calculate payback periods and emissions benefits of alternative fuel vehicles.

  11. An experimental and numerical study of wind turbine seismic behavior

    E-Print Network [OSTI]

    Prowell, I.

    2011-01-01T23:59:59.000Z

    Figure 1.1: White Water Wind Farm located near Palm Springs,testing at their active wind farm near Mojave, California.It is imperative that wind farms remain in operation

  12. Wind Integration Forum June 6, 2011 Action Items Update December, 2011

    E-Print Network [OSTI]

    Wind Integration Forum June 6, 2011 Action Items Update December, 2011 The action items from the June 6 Wind Integration Steering Committee are repeated below, followed by brief summaries of progress concern over possible impacts on grid stability from the growing wind fleet. BPA will report back

  13. American Institute of Aeronautics and Astronautics A Framework for the Reliability Analysis of Wind Turbines

    E-Print Network [OSTI]

    Manuel, Lance

    of Wind Turbines against Windstorms and Non-Standard Inflow Definitions Lance Manuel1 Dept. of Civil and entire fleets of turbines can be manufactured to a common set of criteria. Each wind power development typical wind turbine systems are yet to be characterized in ways that drive aeroelastic loads and design

  14. Electrifying the BC Vehicle Fleet Opportunities and Challenges for

    E-Print Network [OSTI]

    Pedersen, Tom

    Electrifying the BC Vehicle Fleet Opportunities and Challenges for Plug-in Hybrid, Extended Range & Pure Electric Vehicles Liam Kelly, Trevor Williams, Brett Kerrigan and Curran Crawford Institute ................................................................................. 13 3.1 BC Hydro and Vehicle

  15. Fleet Testing Advanced Vehicle Testing Activities - 2010 Honda...

    Broader source: Energy.gov (indexed) [DOE]

    Vehicle Testing Activity Maintenance Sheet for 2010 Honda Insight LX VIN JHMZE2H59AS011748 HEV Fleet Testing Date Mileage Description Cost 842009 5,752 Changed oil and filter...

  16. HEV Fleet Testing - 2010 Ford Fusion vin#4757

    Broader source: Energy.gov (indexed) [DOE]

    757 Fleet Testing Results To Date Operating Statistics Distance Driven: 145,595 Average Trip Distance: 11.3 mi Stop Time with Engine Idling: 11% Trip Type CityHighway:...

  17. New National Clean Fleets Partners Build New Roads to Sustainability...

    Broader source: Energy.gov (indexed) [DOE]

    of E85 (a blend of up to 85% ethanol with gasoline) in the country. It is also a major propane wholesaler, providing propane to stations and fleets. With about 1,400 retail fueling...

  18. activity federal fleet: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to dictate the time at which they are replaced. This additional information 110 2003 REPORT TO THE FLEET OCTOBER 2003 PAGE 37 Annual Report: IFQ Fee (Cost Recovery) Program...

  19. Merit Review: EPAct State and Alternative Fuel Provider Fleets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    D.C. ti13ohara.pdf More Documents & Publications Merit Review: EPAct State and Alternative Fuel Provider Fleets 2012 Merit Review: EPAct State and Alternative Fuel Provider...

  20. Business Case for Compressed Natural Gas in Municipal Fleets

    SciTech Connect (OSTI)

    Johnson, C.

    2010-06-01T23:59:59.000Z

    This report describes how NREL used the CNG Vehicle and Infrastructure Cash-Flow Evaluation (VICE) model to establish guidance for fleets making decisions about using compressed natural gas.

  1. Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Washington D.C. vssarravt068miyasato2010p.pdf More Documents & Publications Plug-In Hybrid Electric Medium Duty Commercial Fleet Demonstration and Evaluation SCAQMD:Plug-In...

  2. Vehicle Technologies Office Merit Review 2013: Fleet DNA

    Broader source: Energy.gov [DOE]

    Presentation given by the National Renewable Energy Laboratory (NREL) at the 2013 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting about a tool for analyzing fleet characteristics.

  3. Alternative Fuels Data Center: Los Angeles Public Works Fleet...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    mixer Ozinga Adds 14 Natural Gas Concrete Mixers to Its Fleet Sept. 28, 2013 Photo of an ice resurfacer Electric Ice Resurfacers Improve Air Quality in Minnesota Sept. 14, 2013...

  4. Biofuels, Climate Policy and the European Vehicle Fleet

    E-Print Network [OSTI]

    Rausch, Sebastian

    We examine the effect of biofuels mandates and climate policy on the European vehicle fleet, considering the prospects for diesel and gasoline vehicles. We use the MIT Emissions Prediction and Policy Analysis (EPPA) model, ...

  5. Dynamic incentive scheme for rental vehicle fleet management

    E-Print Network [OSTI]

    Zhou, SiZhi

    2012-01-01T23:59:59.000Z

    Mobility on Demand is a new transportation paradigm aimed to provide sustainable transportation in urban settings with a fleet of electric vehicles. Usage scenarios prpopsed by Mobility on Demand systems must allow one-way ...

  6. Your Role as a Jefferson Lab Fleet Vehicle Driver | Jefferson...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Your Role as a Jefferson Lab Fleet Vehicle Driver Responsibility Number One - Safe Driving As a vehicle operator, it is up to you to drive safely and sensibly to avoid crashes. The...

  7. Fleet Compliance Results for MY 2011/FY 2012 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2013-02-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2011/fiscal year 2012.

  8. Network design and fleet allocation model for vessel operation

    E-Print Network [OSTI]

    Li, Xiaojing, S.M. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    Containership operators in the U.S. are confronted with a number of problems in the way they make critical fleet allocation decisions to meet the increase of shippers' demands. Instead of the empirical approach, this ...

  9. Vehicle Technologies Office Merit Review 2014: Fleet DNA

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about fleet DNA.

  10. A guide to surveys of motor vehicle fleets

    SciTech Connect (OSTI)

    NONE

    1996-11-01T23:59:59.000Z

    In response to directives in Section 407 of the Energy Policy Act of 1992 (EPACT), the Energy Information Administration (EIA) developed a data collection program designed to provide information useful to persons interested in the alternative fuels market. The target audience includes those seeking to manufacture, convert, sell, own, or operate alternative-fuel vehicles (AFVs) or alternative fueling facilities. Among the various projects EIA conducted as part of this data collection program were two fleet surveys conducted in Department of Energy-designated Clean Cities. The Clean Cities program is a locally-based government/industry partnership coordinated by the Department of Energy to expand the use of alternative transportation fuels. These surveys were designed to collect a broad range of information regarding the fleets and fleet vehicles in operation in the Atlanta, Georgia and Denver, Colorado areas. One of the objectives of these surveys was to attempt to identify and describe the market for AFVs. Due to inherent limitations associated with AFVs and limited alternative-fuel infrastructure, it`s believed that the first practical applications for AFVs will be within private and government fleets. Another objective in conducting the Clean Cities Fleet surveys was to develop a useful methodology for accessing and surveying private and municipal fleets that would aid other interested parties in conducting similar surveys. This report is intended to provide a description of how EIA gathered information on private and municipal fleets, but the basic survey design could be used to design surveys of other difficult-to-access populations. There are 3 basic steps to any survey: define the target population, constructing the survey frame, and implementing the survey. The procedures outlined in this report are, for the most part, the procedures used for the fleet survey conducted in Denver. The major changes between the two surveys are described in Appendix A.

  11. Solar powered hydrogen generating facility and hydrogen powered vehicle fleet. Final technical report, August 11, 1994--January 6, 1997

    SciTech Connect (OSTI)

    Provenzano, J.J.

    1997-04-01T23:59:59.000Z

    This final report describes activities carried out in support of a demonstration of a hydrogen powered vehicle fleet and construction of a solar powered hydrogen generation system. The hydrogen generation system was permitted for construction, constructed, and permitted for operation. It is not connected to the utility grid, either for electrolytic generation of hydrogen or for compression of the gas. Operation results from ideal and cloudy days are presented. The report also describes the achievement of licensing permits for their hydrogen powered trucks in California, safety assessments of the trucks, performance data, and information on emissions measurements which demonstrate performance better than the Ultra-Low Emission Vehicle levels.

  12. National Federal Fleet Loaner Program, Interim Status Report

    SciTech Connect (OSTI)

    Francfort, James Edward

    2000-10-01T23:59:59.000Z

    The goal of the U.S. Department of Energy's (DOE) Loaner Program is to increase the awareness, deployment, and use of electric vehicles (EVs) in Federal fleets. The Loaner Program accomplishes this by providing free EVs to Federal fleets on a loaner basis, generally for 1 or 2 months. The Program partners DOE with six electric utilities, with DOE providing financial support and some leads on Federal fleets interested in obtaining EVs. The utilities obtain the vehicles, identify candidate loaner fleets, loan the vehicles, provide temporary charging infrastructure, provide overall support to participating Federal fleets, and support fleets with their leasing decisions. While the utilities have not had the success initially envisioned by themselves, DOE, the Edison Electric Institute, and the Electric Vehicle Association of the Americas, the utilities can not be faulted for their efforts, as they are not the entity that makes the ultimate lease or no-lease decision. Some external groups have suggested to DOE that they direct other federal agencies to change their processes to make loaning vehicles easier; this is simply not within the power of DOE. By law, a certain percentage of all new vehicle acquisitions are supposed to be alternative fuel vehicles (AFV); however, with no enforcement, the federal agencies are not compelled to lease AFVs such as electric vehicles.

  13. California Energy Commission STAFF REPORT

    E-Print Network [OSTI]

    . KEY WORDS: Renewable, state buildings, state properties, photovoltaic, wind, biomass, geothermalCalifornia Energy Commission STAFF REPORT DEVELOPING RENEWABLE GENERATION ON STATE PROPERTY Installing Renewable Energy on State Buildings and Other State- Owned Property APRIL 2011 CEC-150

  14. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    and wind power plants) could allow California and otherIn California, there are nearly a thousand power plants thatCalifornia Energy Commission Media Office. “Power Plant Fact

  15. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    and wind power plants) could allow California and otherIn California, there are nearly a thousand power plants thatCalifornia Energy Commission Media Office. “Power Plant Fact

  16. U.S. Navy - San Clemente Island, California | Department of Energy

    Energy Savers [EERE]

    San Clemente Island, California U.S. Navy - San Clemente Island, California Photo of Wind Turbine on San Clemente Island, California San Clemente Island is one of the Channel...

  17. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    6: Wind Power Markets Summary Slides California: 20% by 2017 State renewable energy incentives Illinois: 15% by 2012 New York: 25% by 2013 Renewable portfolio standards (RPS) * 25...

  18. CALIFORNIA GUIDELINES FOR REDUCING IMPACTS TO BIRDS AND BATS FROM

    E-Print Network [OSTI]

    Treaty Act, rotorswept area, wind energy, wind siting guidelines, wind turbines. #12; #12; i Guidelines for Reducing Impacts to Birds and Bats from Wind Energy Development. Commission Final Report or repowering of wind energy projects in California. They include recommendations on preliminary screening

  19. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    2008, yielding a cumulative installed capacity of small windTexas in cumulative installed capacity are Iowa, California,Owner Type Cumulative Installed Capacity (GW) IOU: 1,057 MW

  20. BurbankBus' clean fuel fleet now includes a zero-emission hydrogen-fueled bus. BurbankBus, which provides transit

    E-Print Network [OSTI]

    Bus fixed-route fleet consists of 17 compressed natural gas (CNG) buses. This fleet has been running on 100

  1. Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell Technologies Program (FCTP) (Fact Sheet) Fuel Cell Bus Takes a Starring Role in the BurbankBus Fleet, Fuel Cell...

  2. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean...

  3. Clean Cities Coordinators and Stakeholders Awarded at the Green Fleet Conference and Expo

    Broader source: Energy.gov [DOE]

    At the 2013 Green Fleet Conference and Expo, a number of Clean Cities coordinators and stakeholders received awards for their dedication to increasing the environmental sustainability of vehicle fleets.

  4. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 ...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 This report is the sixth in an annual series of reports that...

  5. Jefferson Lab Vehicle Fleet Do's and Don'ts | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Vehicle Fleet Do's and Don'ts In addition to safe driving, Jefferson Lab Fleet vehicle drivers are responsible for the proper use, maintenance and protection of their...

  6. EPAct Requirements and Clean Cities Resources for Fleets (Fact Sheet) (Revised)

    SciTech Connect (OSTI)

    Not Available

    2011-08-01T23:59:59.000Z

    This fact sheet explains resources provided by the Clean Cities program to help fleet managers meet EPAct requirements.

  7. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2008

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2008-10-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2008.

  8. Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet Fuel

    E-Print Network [OSTI]

    Demirel, Melik C.

    PENNSTATE Department of Biological Engineering Fall 2012 Solar Innovations Inc. Biodiesel Fleet work. The goal was to research and implement biodiesel into their fleet by finding the best biodiesel for the implementation of biodiesel into their fleet. This will include: · Prospective suppliers of biodiesel fuel

  9. Raley's LNG Truck Fleet: Final Results

    SciTech Connect (OSTI)

    Chandler, K. (Battelle); Norton, P. (NREL); Clark, N. (West Virginia University)

    2000-05-03T23:59:59.000Z

    Raley's, a large retail grocery company based in Northern California, began operating heavy-duty trucks powered by liquefied natural gas (LNG) in 1997, in cooperation with the Sacramento Metropolitan Air Quality Management District (SMAQMD). The US Department of Energy (DOE) Office of Heavy Vehicle Technologies (OHVT) sponsored a research project to collect and analyze data on the performance and operation costs of eight of Raley's LNG trucks in the field. Their performance was compared with that of three diesel trucks operating in comparable commercial service. The objective of the DOE research project, which was managed by the National Renewable Energy Laboratory (NREL), was to provide transportation professionals with quantitative, unbiased information on the cost, maintenance, operational, and emissions characteristics of LNG as one alternative to conventional diesel fuel for heavy-duty trucking applications.

  10. CONFIDENTIAL Wits University RFI -Fleet Management 1 November 2012

    E-Print Network [OSTI]

    Wagner, Stephan

    played a major role in founding industries in South Africa, including sectors such as mining, financial a comprehensive fleet management service. This essentially includes vehicle purchasing, maintenance and licensing. In order to understand what types of services are available in the marketplace, the University is releasing

  11. Major Corporate Fleets Align to Reduce Oil Consumption

    Broader source: Energy.gov [DOE]

    President Obama launches the National Clean Fleets Partnership, an initiative that helps large companies reduce with fuel usage by incorporating electric vehicles, alternative fuels and conservation techniques into their operations. Charter partners include AT&T, FedEx, Pepsi-Co, UPS and Verizon.

  12. Progress and Challenges for PEM Transit Fleet Applications

    E-Print Network [OSTI]

    Voltage(V) Time (Hrs) Golden Gate Transit Cycle Avg_CellVoltage CP_KWDC Failed field diagnostic for fuel air. #12;· Brief company history in area of fuel cell buses · Current fuel cell bus deployments commercialization of fuel cell buses · Fuel cell bus R&D needs · Future plans Agenda 2 #12;UTC Fleet history · 14

  13. Cartesian k-means Mohammad Norouzi David J. Fleet

    E-Print Network [OSTI]

    Jepson, Allan D.

    Cartesian k-means Mohammad Norouzi David J. Fleet Department of Computer Science University the k-means clustering algorithm is the storage and run- time cost associated with the large numbers of centers. We formulate two such models, Orthogonal k-means and Cartesian k-means. They are closely related

  14. Hybrid Electric Vehicle Fleet and Baseline Performance Testing

    SciTech Connect (OSTI)

    J. Francfort; D. Karner

    2006-04-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity (AVTA) conducts baseline performance and fleet testing of hybrid electric vehicles (HEV). To date, the AVTA has completed baseline performance testing on seven HEV models and accumulated 1.4 million fleet testing miles on 26 HEVs. The HEV models tested or in testing include: Toyota Gen I and Gen II Prius, and Highlander; Honda Insight, Civic and Accord; Chevrolet Silverado; Ford Escape; and Lexus RX 400h. The baseline performance testing includes dynamometer and closed track testing to document the HEV’s fuel economy (SAE J1634) and performance in a controlled environment. During fleet testing, two of each HEV model are driven to 160,000 miles per vehicle within 36 months, during which maintenance and repair events, and fuel use is recorded and used to compile life-cycle costs. At the conclusion of the 160,000 miles of fleet testing, the SAE J1634 tests are rerun and each HEV battery pack is tested. These AVTA testing activities are conducted by the Idaho National Laboratory, Electric Transportation Applications, and Exponent Failure Analysis Associates. This paper discusses the testing methods and results.

  15. FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE

    E-Print Network [OSTI]

    DRAFT FINAL CONTENT SUBJECT TO CHANGE CONTROLLED HYDROGEN FLEET AND INFRASTRUCTURE DEMONSTRATION that complements FreedomCAR to develop both a low-cost hydrogen infrastructure and advanced hydrogen fuel cell a strategy to develop a hydrogen economy that emphasizes co-developing hydrogen infrastructure in parallel

  16. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01T23:59:59.000Z

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  17. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect (OSTI)

    Miaou, S.P.; Hu, P.S. (Oak Ridge National Lab., TN (United States)); Young, J.R. (Tennessee Univ., Knoxville, TN (United States))

    1992-05-01T23:59:59.000Z

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated (2) Where are they located and (3) What are their usual fueling practices Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  18. Fleet vehicles in the Unites States: composition, operating characteristics, and fueling practices

    SciTech Connect (OSTI)

    Miaou, S.P.; Hu, P.S. [Oak Ridge National Lab., TN (United States); Young, J.R. [Tennessee Univ., Knoxville, TN (United States)

    1992-05-01T23:59:59.000Z

    As fleets become a larger proportion of the new vehicle population on the road, they have more influence on the characteristics of the total US motor vehicle population. One of the characteristics which fleets are expected to have the most influence on is the overall vehicle fuel economy. In addition, because of the relatively large market share and the high turnover rate of fleet vehicles, fleets have been considered as a useful initial market for alternative fuel vehicles. In order to analyze fleet market potential and likely market penetration of alternative fuel vehicles and to infrastructure requirements for successful operations of these vehicles in the future, information on fleet sizes and composition, fleet vehicle operating characteristics (such as daily/annual miles of travel), fuel efficiency, and refueling practices, is essential. The purpose of this report is to gather and summarize information from the latest data sources available pertaining to fleet vehicles in the US This report presents fleet vehicle data on composition, operating characteristics, and fueling practices. The questions these data are intended to address include: (1) How are fleet vehicles operated? (2) Where are they located? and (3) What are their usual fueling practices? Since a limited number of alternative fuel fleet vehicles are already in use, data on these vehicles are also included in this report. 17 refs.

  19. CALIFORNIA COMMISSION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION 2008 BEST PERMITTING PRACTICES GUIDELINES FOR LIQUID Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Eugenia Laychak Project Manager of the California Energy Commission prepared this report. It does not necessarily represent the views of the Energy

  20. 11march2007 Blowing in the wind

    E-Print Network [OSTI]

    Genton, Marc G.

    in Scotland, the largest in the USA is planned for southern California, and the biggest offshore wind farm in development) can take advantage of stronger ocean breezes. Just over 15 offshore wind farms are currently a planned 1000 MW at a capital cost of £2 bil- lion. Most offshore wind farms are located in water less than

  1. CALIFORNIA ENERGY COMMISSION California Energy Commission

    E-Print Network [OSTI]

    , CALIFORNIA CENTER FOR SUSTAINABLE ENERGY, CALIFORNIA ENVIRONMENTAL JUSTICE ALLIANCE, CALIFORNIA SOLAR ENERGY for Sustainable Energy, California Environmental Justice Alliance, California Solar Energy Industries Association OF AMERICAN LUNG ASSOCIATION IN CALIFORNIA, ASIAN PACIFIC ENVIRONMENTAL NETWORK, BRIGHTLINE DEFENSE PROJECT

  2. California's Housing Problem

    E-Print Network [OSTI]

    Kroll, Cynthia; Singa, Krute

    2008-01-01T23:59:59.000Z

    only improve California’s housing opportunities but produce2004: California’s Affordable Housing Crisis. 2004. http://Raising the Roof: California Housing Development Projections

  3. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook (Book)

    SciTech Connect (OSTI)

    Daley, R.; Ahdieh, N.; Bentley, J.

    2014-01-01T23:59:59.000Z

    A comprehensive Federal Fleet Management Handbook that builds upon the "Guidance for Federal Agencies on E.O. 13514 Section 12-Federal Fleet Management" and provides information to help fleet managers select optimal greenhouse gas and petroleum reduction strategies for each location, meeting or exceeding related fleet requirements, acquiring vehicles to support these strategies while minimizing fleet size and vehicle miles traveled, and refining strategies based on agency performance.

  4. California Energy Commission LEAD COMMISSIONER REPORT

    E-Print Network [OSTI]

    the country. KEY WORDS: Renewable, state buildings, state properties, photovoltaic, wind, biomass California Energy Commission LEAD COMMISSIONER REPORT DEVELOPING RENEWABLE GENERATION ON STATE PROPERTY Installing Renewable Energy on State Buildings and Other State Owned Property NOVEMBER 2011 CEC

  5. To learn more about AT&T Fleet Management Solutions, visit www.att.com/fleet-management or have us contact you.

    E-Print Network [OSTI]

    Fisher, Kathleen

    understand how a location-based application can help companies with remote workers, remote assets or fleets that manage a remote workforce or fleet of vehicles face today. To meet those challenges, successful companies.Largeenterprise or small business, manufacturer or plumbing and heating contractor, finding ways to beat the competition

  6. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    SciTech Connect (OSTI)

    Stottler, Gary

    2012-02-08T23:59:59.000Z

    General Motors, LLC and energy partner Shell Hydrogen, LLC, deployed a system of hydrogen fuel cell electric vehicles integrated with a hydrogen fueling station infrastructure to operate under real world conditions as part of the U.S. Department of Energy's Controlled Hydrogen Fleet and Infrastructure Validation and Demonstration Project. This technical report documents the performance and describes the learnings from progressive generations of vehicle fuel cell system technology and multiple approaches to hydrogen generation and delivery for vehicle fueling.

  7. Perspectives on AFVs: 1996 Federal Fleet Manager Survey

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for RenewableSpeedingBiomassPPPO WebsitePalmsthePersonnel Management Federal Fleet

  8. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01T23:59:59.000Z

    International Energy Agency (IEA). (2008). Energy Technologyand U.S. fleet average (IEA 2008b) Because fuel is a majorwinglets and longer wingspans) (IEA 2008, Schäfer 2009) and

  9. STATE OF CALIFORNIA THE RESOURCES AGENCY ARNOLD SCHWARZENEGGER, Governor April 11, 2006

    E-Print Network [OSTI]

    to once-through cooling on the coastal power plant fleet. The questions are organized into three general power plants, and work by the Energy Commission on once- through cooling; 2. Current and anticipated operations of the coastal power plants and their contributions to California's electricity supplies; and 3

  10. California Dungeness Crab Fishery Gets Good Start Fishery Developments Around the World

    E-Print Network [OSTI]

    complex to service Soviet fishing vessels based in the Canary Islands. Sovhispan already manages extensive port facilities for the fleet in Las Palmas, Canary Islands. Fransov, the first joint Soviet- French north to the Aleutian Islands. It is considered rare south of Point Conception in California. Dungeness

  11. First interim report of the Federal Fleet Conversion Task Force

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    The Federal Fleet Conversion Task Force was created by Executive Order 12844, signed by President Clinton on April 21, 1993. In the Order, the President directed that purchases of alternative fueled vehicles by the Federal Government be substantially increased beyond the levels required by current law. The President charged the Task Force with developing recommendations for carrying out the Executive Order, with special emphasis on setting a course that will lead to the widespread use of alternative fueled vehicles by Federal, State, and local government fleets, by private fleets and, ultimately, by individuals. The chief recommendation of the Task Force is the establishment of a Presidential Clean Cities Initiative. To support creation of the Presidential Initiative, the Task Force identified 38 cities and regions, prioritized into three tiers, for concentrating the Initiative`s efforts in Fiscal Years 1994 through 1996. This concentration of effort is key to the effectiveness of the Initiative. The 38 cities and regions would receive priority funding for Federal vehicle purchases and for infrastructure development. In addition, the Task Force has made specific recommendations for overcoming numerous regulatory, economic, and technical barriers that have slowed the introduction of alternative fueled vehicles into general use.

  12. Electricity Demand of PHEVs Operated by Private Households and Commercial Fleets: Effects of Driving and Charging Behavior

    SciTech Connect (OSTI)

    John Smart; Matthew Shirk; Ken Kurani; Casey Quinn; Jamie Davies

    2010-11-01T23:59:59.000Z

    Automotive and energy researchers have made considerable efforts to predict the impact of plug-in hybrid vehicle (PHEV) charging on the electrical grid. This work has been done primarily through computer modeling and simulation. The US Department of Energy’s (DOE) Advanced Vehicle Testing Activity (AVTA), in partnership with the University of California at Davis’s Institute for Transportation Stuides, have been collecting data from a diverse fleet of PHEVs. The AVTA is conducted by the Idaho National Laboratory for DOE’s Vehicle Technologies Program. This work provides the opportunity to quantify the petroleum displacement potential of early PHEV models, and also observe, rather than simulate, the charging behavior of vehicle users. This paper presents actual charging behavior and the resulting electricity demand from these PHEVs operating in undirected, real-world conditions. Charging patterns are examined for both commercial-use and personal-use vehicles. Underlying reasons for charging behavior in both groups are also presented.

  13. The microplankton off southern California

    E-Print Network [OSTI]

    Whitley, Glenn Ross

    1970-01-01T23:59:59.000Z

    to the northwest, between Hawaii and Alaska. Variations in the location of the systen determine the gradient winds that enter the coastal area. In sum- mer, the pressures increase and subsequently so do the prevailing winds. In winter, the high pressure area... 500 m off Pelican Point, 2. 5 km southeast of the entrance to Newport Harbor in Orange County, California. These water samples were studied in order to relate the biological composition of the diatom, dinoflagellate, and tintinnid assemblages...

  14. Federal Fleet Files, FEMP, Vol. 2, No. 11 - October 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-10-01T23:59:59.000Z

    October 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  15. Federal Fleet Files, FEMP, Vol. 1, No. 4 - September 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    September 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  16. Federal Fleet Files, FEMP, Vol. 2, No. 12 - November 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-11-01T23:59:59.000Z

    November 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  17. Federal Fleet Files, FEMP, Vol. 2, No. 8 - June 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    June 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  18. Federal Fleet Files, FEMP, Vol. 2, No. 7 - May 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-05-01T23:59:59.000Z

    May 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  19. Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Cell Buses in U.S. Transit Fleets: Current Status 2012 Leslie Eudy National Renewable Energy Laboratory Kevin Chandler Battelle Christina Gikakis Federal Transit...

  20. Federal Fleet Files, FEMP, Vol. 2, No. 4 - January 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01T23:59:59.000Z

    January 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  1. Federal Fleet Files, FEMP, Vol. 1, No. 3 - July 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-07-01T23:59:59.000Z

    July 2009 issue of the monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  2. U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition...

    Broader source: Energy.gov (indexed) [DOE]

    U.S. Department of Energy Fleet Alternative Fuel Vehicle Acquisition Report for Fiscal Year 2008. doefleetreport2008.pdf More Documents & Publications Audit Report: IG-0896 The...

  3. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Questions and Answers

    Broader source: Energy.gov [DOE]

    Questions and answers from the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003, in Southfield, Michigan.

  4. Vehicle Technologies Office Merit Review 2015: Fleet DNA Phase 1 Refinement & Phase 2 Implementation

    Broader source: Energy.gov [DOE]

    Presentation given by National Renewable Energy Laboratory at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Fleet...

  5. Federal Fleet Files, FEMP, Vol. 1, No. 1 - May 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-05-01T23:59:59.000Z

    Monthly newsletter for the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  6. Federal Fleet Files, FEMP, Vol. 2, No. 2 - November 2009 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01T23:59:59.000Z

    November 2009 issue of monthly news from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  7. Federal Fleet Files, FEMP, Vol. 2, No. 10 - September 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01T23:59:59.000Z

    September 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  8. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project Pre-Solicitation Meeting: Supporting Information

    Broader source: Energy.gov [DOE]

    Supporting information and objectives for the pre-solicitation meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project held March 19, 2003 in Southfield, Michigan.

  9. Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics

    E-Print Network [OSTI]

    Heiser, Gernot

    Intelligent Fleet Logistics IFL is developing technologies to helping freight, logistics in logistics and supply chain management. · We are seeking customers and financial partners to scale a stand

  10. Federal Fleet Files, FEMP, Vol. 2, No. 13 - December 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    December 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to federal agencies.

  11. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleets: Frequently Asked Questions (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-03-01T23:59:59.000Z

    This brochure provides answers to frequently asked questions about the EPAct Alternative Fuel Transportation Program's State and Alternative Fuel Provider Fleets.

  12. AVTA: 2013 Ford C-Max Energi Fleet PHEV Testing Results

    Broader source: Energy.gov [DOE]

    VTO's National Laboratories have tested and collected both dynamometer and fleet data for the Ford CMAX Energi (a plug-in hybrid electric vehicle).

  13. Federal Fleet Files, FEMP, Vol. 2, No. 9 - July 2010 (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-07-01T23:59:59.000Z

    July 2010 update from the FEMP Federal Fleet Program that outlines vehicle, alternative fuel, infrastructure, and management strategy updates to Federal agencies.

  14. Data Management Plan for The Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    The Data Management Plan describes how DOE will handle data submitted by recipients as deliverables under the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project.

  15. Fleet Compliance Results for MY 2010/FY 2011, EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2010/fiscal year 2011. The U.S. Department of Energy (DOE) regulates covered state and alternative fuel provider (SFP) fleets under the Energy Policy Act of 1992 (EPAct), as amended. For model year (MY) 2010, the compliance rate for the 2911 covered SFP fleets was 100%. Fleets used either Standard Compliance or Alternative Compliance. The 279 fleets that used Standard Compliance exceeded their aggregate MY 2010 acquisition requirements by 61%. The 12 covered fleets that complied using Alternative Compliance exceeded their aggregate MY 2010 petroleum-use-reduction requirements by 89%. Overall, DOE saw modest decreases from MY 2009 in biodiesel fuel use credits earned and in the number of light-duty vehicles (LDVs) acquired. Compared to years before MY 2009, these rates were far lower. Because covered fleets acquired fewer new vehicles overall in MY 2010, the requirement for alternative fuel vehicles (AFVs), which is proportional to new acquisitions, also dropped.

  16. Operating and maintenance experience with a 6-kW wind energy conversion system at Naval Station, Treasure Island, California. Technical note Sep 79-Jun 81

    SciTech Connect (OSTI)

    Pal, D.

    1982-07-01T23:59:59.000Z

    The experience gained and lessons learned from the 6-kW grid-integrated Wind Energy Conversion System (WECS) demonstration at Naval Station, Treasure Island, San Francisco Bay are detailed. The objective of this demonstration was to develop operating experience and maintenance information on the 6-kW WECS using a combination of permanent magnet alternator with a line commutated synchronous inverter. The on-site measurements conducted during the demonstation indicate that the WECS site has annual average windspeeds of about 8 to 10 mph. The test results to data indicate a satisfactory performance of the WECS except for two failures involving arcing at the electrical terminals located on the yaw shaft. Due to wind characteristics encountered at the site, the performance data collected to date are at windspeeds of 20 mph or lower. For evaluating the WECS performance at all windspeeds, location at a windier site with annual average windspeeds of 14 mph or higher is recommended.

  17. Fleet DNA Project Data Summary Report for Bucket Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet

  18. Fleet DNA Project Data Summary Report for City Transit Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet25 18 17

  19. Fleet DNA Project Data Summary Report for Class 8 Tractors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet25 18 1726

  20. Fleet DNA Project Data Summary Report for Delivery Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet25 18

  1. Fleet DNA Project Data Summary Report for Delivery Vans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet25

  2. Fleet DNA Project Data Summary Report for Refuse Trucks

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562 16 30

  3. Fleet DNA Project Data Summary Report for School Buses

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562 16

  4. Sustainable Federal Fleets Catalog of Services | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreakingMayDepartment ofEnergy State andBuildingsSustainable Federal Fleets

  5. Alternative Fuels Data Center: CNG Fleets Aid in Superstorm Recovery

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProducts (VAP)MassachusettsExperimentalInfrastructureFuels in Its FleetCNG

  6. Alternative Fuels Data Center: Maine Fleets Make Progress with Propane

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduce Operating CostsElectricMaine Fleets

  7. Alternative Fuels Data Center: Seattle Rideshare Fleet Adds EVs, Enjoys

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet Runs on Natural GasSuccess

  8. Alternative Fuels Data Center: Veolia Transportation Converts Taxi Fleet to

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet RunsTexas

  9. Fleet DNA Project Data Summary Report for Service Vans

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562 1635

  10. Fleet DNA Project Â… Data Dictionary for Public Download Files

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562

  11. Fleet Tools (Brochure), NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville Power AdministrationField8,Dist.New MexicoFinancingProof ofofDownloadsNewFlat-PlateFleet2562and

  12. CALIFORNIA COMMISSION

    E-Print Network [OSTI]

    CHAPTER 2: LAND USE AND ENERGY: TRENDS AND DRIVERS ...........................17 Vehicle Miles Traveled................................................................................................................... 20 Residential Energy Consumption CALIFORNIA ENERGY COMMISSION THE ROLE OF LAND USE IN MEETING CALIFORNIA'S ENERGY

  13. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report, Fleet Compliance Results for MY 2009/FY 2010 (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-12-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2009/fiscal year 2010.

  14. Nuclear power fleets and uranium resources recovered from phosphates

    SciTech Connect (OSTI)

    Gabriel, S.; Baschwitz, A.; Mathonniere, G. [CEA, DEN/DANS/I-tese, F-91191 Gif-sur-Yvette (France)

    2013-07-01T23:59:59.000Z

    Current light water reactors (LWR) burn fissile uranium, whereas some future reactors, as Sodium fast reactors (SFR) will be capable of recycling their own plutonium and already-extracted depleted uranium. This makes them a feasible solution for the sustainable development of nuclear energy. Nonetheless, a sufficient quantity of plutonium is needed to start up an SFR, with the plutonium already being produced in light water reactors. The availability of natural uranium therefore has a direct impact on the capacity of the reactors (both LWR and SFR) that we can build. It is therefore important to have an accurate estimate of the available uranium resources in order to plan for the world's future nuclear reactor fleet. This paper discusses the correspondence between the resources (uranium and plutonium) and the nuclear power demand. Sodium fast reactors will be built in line with the availability of plutonium, including fast breeders when necessary. Different assumptions on the global uranium resources are taken into consideration. The largely quoted estimate of 22 Mt of uranium recovered for phosphate rocks can be seriously downscaled. Based on our current knowledge of phosphate resources, 4 Mt of recoverable uranium already seems to be an upper bound value. The impact of the downscaled estimate on the deployment of a nuclear fleet is assessed accordingly. (authors)

  15. A Low-Carbon Fuel Standard for California Part 1: Technical Analysis

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    nuclear, and wind power plants) could allow California andwind whose generation is determined by natural patterns rather than a power plant

  16. A Low-Carbon Fuel Standard for California, Part 1: Technical Analysis

    E-Print Network [OSTI]

    Farrell, Alexander; Sperling, Daniel

    2007-01-01T23:59:59.000Z

    nuclear, and wind power plants) could allow California andwind whose generation is determined by natural patterns rather than a power plant

  17. OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Offshore and Arctic Engineering OMAE2014 June 8-13, 2014, San Francisco, California, USA OMAE2014-24175 Hydrodynamic Module Coupling in the Offshore Wind Energy Simulation...

  18. Modes of energy transfer from the solar wind to the inner magnetosphere D. Vassiliadisa)

    E-Print Network [OSTI]

    Vassiliadis, Dimitrios

    Modes of energy transfer from the solar wind to the inner magnetosphere D. Vassiliadisa. A. Mewaldt California Institute of Technology, Pasadena, California Received 19 June 2002; accepted 7 November 2002 Energy transport from the interplanetary plasma to Earth's inner magnetosphere

  19. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2009; Composite Data Products, Final Version March 19, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-03-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2009.

  20. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Fall 2009; Composite Data Products, Final Version September 11, 2009

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2009-09-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through September 2009.

  1. Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project: Spring 2010; Composite Data Products, Final Version March 29, 2010

    SciTech Connect (OSTI)

    Wipke, K.; Sprik, S.; Kurtz, J.; Ramsden, T.

    2010-05-01T23:59:59.000Z

    Graphs of composite data products produced by DOE's Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation project through March 2010.

  2. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01T23:59:59.000Z

    loads from the wind inflow through rotor aerodynamics, drive train and power electronics is stillWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  3. CALIFORNIA ENERGY CALIFORNIA'S STATE ENERGY

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA'S STATE ENERGY EFFICIENT APPLIANCE REBATE PROGRAM INITIAL November 2009 CEC-400-2009-026-CMD Arnold Schwarzenegger, Governor #12;#12;CALIFORNIA ENERGY COMMISSION Program Manager Paula David Supervisor Appliance and Process Energy Office Valerie T. Hall Deputy Director

  4. Wind turbulence characterization for wind energy development

    SciTech Connect (OSTI)

    Wendell, L.L.; Gower, G.L.; Morris, V.R.; Tomich, S.D.

    1991-09-01T23:59:59.000Z

    As part of its support of the US Department of Energy's (DOE's) Federal Wind Energy Program, the Pacific Northwest Laboratory (PNL) has initiated an effort to work jointly with the wind energy community to characterize wind turbulence in a variety of complex terrains at existing or potential sites of wind turbine installation. Five turbulence characterization systems were assembled and installed at four sites in the Tehachapi Pass in California, and one in the Green Mountains near Manchester, Vermont. Data processing and analyses techniques were developed to allow observational analyses of the turbulent structure; this analysis complements the more traditional statistical and spectral analyses. Preliminary results of the observational analyses, in the rotating framework or a wind turbine blade, show that the turbulence at a site can have two major components: (1) engulfing eddies larger than the rotor, and (2) fluctuating shear due to eddies smaller than the rotor disk. Comparison of the time series depicting these quantities at two sites showed that the turbulence intensity (the commonly used descriptor of turbulence) did not adequately characterize the turbulence at these sites. 9 refs., 10 figs.,

  5. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher

    2011-01-01T23:59:59.000Z

    Deputy Project Director, Energy and Environmental Security,Security Principal Directorate, Lawrence Livermore National Lab California’s Energy

  6. Vehicle Technologies Office Merit Review 2014: California Fleets and Workplace Alternative Fuels Project

    Broader source: Energy.gov [DOE]

    Presentation given by Bay Area Air Quality Management District at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about...

  7. Harvesting the wind

    SciTech Connect (OSTI)

    Kahn, R.D.

    1984-11-01T23:59:59.000Z

    This paper describes the wind farms in the Altamont Pass, the Tehachapi Mountains, and the San Gorgonio pass, all in California. The threat by Congress to eliminate federal tax credits could put the fledgling industry in the doldrums. The author shows how the selection of the right wind site can make the difference between a profitable venture and an expensive kinetic sculpture. To improve reliability wind-farm developers have turned to more durable Danish turbines from Zond, Windmatic, and Bonus. Recent research under DOE sponsorship has studied large-scale MOD-2 machines built by Boeing, several of which are now operating at a PGandL site north of San Francisco. The result of recent new standards may require the filing of quarterly reports on machine capacity, performance, and the amounts of electricity produced from the installation.

  8. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report January 2008 #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 This page intentionally left blank. #12;California Solar Initiative, CPUC Staff Progress Report, January 2008 Table of Contents

  9. High Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, search OpenEIHesperia, California: Energy Resources JumpSheldon Energy Wind

  10. Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical-axis wind

    E-Print Network [OSTI]

    Dabiri, John O.

    Potential order-of-magnitude enhancement of wind farm power density via counter-rotating vertical an alternative approach to wind farming that has the potential to concurrently reduce the cost, size-axis wind turbine arrays John O. Dabiria) Graduate Aeronautical Laboratories and Bioengineering, California

  11. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, June 2010, Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

  12. Executive Order 13514: Federal Leadership in Environmental, Energy, and Economic Performance; Comprehensive Federal Fleet Management Handbook, July 2011, Federal Energy Management Program (FEMP)

    SciTech Connect (OSTI)

    Not Available

    2011-07-01T23:59:59.000Z

    Comprehensive Federal fleet management guide offered as a companion to Executive Order 13514 Section 12 guidance.

  13. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1982-08-01T23:59:59.000Z

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in the study was the Los Angeles Department of Water and Power and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  14. Analysis of the effects of integrating wind turbines into a conventional utility: a case study. Revised final report

    SciTech Connect (OSTI)

    Goldenblatt, M.K.; Wegley, H.L.; Miller, A.H.

    1983-03-01T23:59:59.000Z

    The impact on a utility incorporating wind turbine generation due to wind speed sampling frequency, wind turbine performance model, and wind speed forecasting accuracy is examined. The utility analyzed in this study was the Los Angeles Department of Water and Power, and the wind turbine assumed was the MOD-2. The sensitivity of the economic value of wind turbine generation to wind speed sampling frequency and wind turbine modeling technique is examined as well as the impact of wind forecasting accuracy on utility operation and production costs. Wind speed data from San Gorgonio Pass, California during 1979 are used to estimate wind turbine performance using four different simulation methods. (LEW)

  15. Commonwealth Wind Commercial Wind Program

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Commercial Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers site assessment grants of services, feasibility study grants, a...

  16. Interactive dynamic aircraft scheduling and fleet routing with the out-of-kilter algorithm

    E-Print Network [OSTI]

    Van Cotthem, Jan

    1986-01-01T23:59:59.000Z

    A decision support system is introduced that automates dynamic aircraft scheduling and fleet routing. Interactive graphics-based schedule construction and modification tools automate the dynamic scheduling of aircraft of ...

  17. EPAct Alternative Fuel Transportation Program: State and Alternative Fuel Provider Fleet Compliance Annual Report (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01T23:59:59.000Z

    This annual report summarizes the compliance results of state and alternative fuel provider fleets covered by the Energy Policy Act of 1992 (EPAct) for model year 2008/fiscal year 2009.

  18. List of Attendees at the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting

    Broader source: Energy.gov [DOE]

    This list of attendees represents those that attended the Controlled Hydrogen Fleet and Infrastructure Demonstation and Pre-Solicitation Meeting pre-solicitation meeting in Detroit, Michigan, on March 19, 2003.

  19. Pre-solicitation Meeting for the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project

    Broader source: Energy.gov [DOE]

    This presentation was given to attendees of the Controlled Hydrogen Fleet and Infrastructure Demonstration and Validation Project pre-solicitation meeting held in Detroit, Michigan, on March 19, 2003.

  20. The Western Wind and Solar Integration Study Phase 2

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Hodge, B. M.; Hummon, M.; Florita, A.; Heaney, M.

    2013-09-01T23:59:59.000Z

    The electric grid is a highly complex, interconnected machine, and changing one part of the grid can have consequences elsewhere. Adding wind and solar affects the operation of the other power plants and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) evaluated these costs and emissions and simulated grid operations for a year to investigate the detailed impact of wind and solar on the fossil-fueled fleet. This built on Phase 1, one of the largest wind and solar integration studies ever conducted, which examined operational impacts of high wind and solar penetrations in the West.

  1. STATE OF CALIFORNIA NATURAL RESOURCES AGENCY EDMUND G. BROWN JR., Governor October 4, 2011

    E-Print Network [OSTI]

    Core. In accord with Energy Commission regulations, a committee of two commissioners, Commissioners Peterman Energy Solutions 1326 Marsten Road Burlingame, CA 94010 www.bayenergy.com California Solar Systems 1411. Robert Crizer Crizer Wind Energy, Inc. 1191 4th Street Los Osos, California 93402-1201 Re: DyoCore Wind

  2. About California Agriculture

    E-Print Network [OSTI]

    Editors, The

    2012-01-01T23:59:59.000Z

    Form 3579” to California Agriculture at the address above. ©Submissions. California Agriculture manages the peer reviewour Writing CALIFORNIA AGRICULTURE • VOLUME 66 , NUMBER 4

  3. About California Agriculture

    E-Print Network [OSTI]

    Editor, The

    2013-01-01T23:59:59.000Z

    Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 2Carol Lovatt California Agriculture (ISSN 0008-0845, print,

  4. About California Agriculture

    E-Print Network [OSTI]

    Editor, The

    2013-01-01T23:59:59.000Z

    Submissions. California Agriculture manages the peer reviewread our CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 1Carol Lovatt California Agriculture (ISSN 0008-0845, print,

  5. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01T23:59:59.000Z

    in the near wake. In conclusion, WiTTS performs satisfactorily in the rotor region of wind turbine wakes under neutral stability. Copyright © 2014 John Wiley & Sons, Ltd. KEYWORDS wind turbine wake; wake model; self in wind farms along several rows and columns. Because wind turbines generate wakes that propagate downwind

  6. Gras Dowr joins world`s FPSO fleet

    SciTech Connect (OSTI)

    NONE

    1997-05-05T23:59:59.000Z

    The Gras Dowr, a floating production, storage, and offloading vessel (FPSD) for Amerada Hess Ltd.`s North Sea Durward and Dauntless fields, is one of the latest additions to the world`s growing FPSO fleet. The Gras Dowr, anchored in about 90 m of water, lies between the Durward (U.K. Block 21/16) and Dauntless (U.K. Block 21/11) fields, about 3.5 km from the subsea wellhead locations. The Gras Dowr`s main functions, according to Bluewater Offshore Production Systems Ltd., are to: receive fluids from well risers; process incoming fluids to separate the fluid into crude, water, and gas; store dry crude oil and maintain the required temperature; treat effluent to allow for water discharge to the sea; compress gas for gas lift as a future option; provide chemical injection skid for process chemical injection; use a part of the produced gas for fuel gas, and flare excess gas; inject treated seawater into the injection wells; house power generation for process and offloading operation and utilities; offload to a tandem moored shuttle tanker including receiving liquid fuel from the same tanker; provide accommodations for operating and maintenance crews; allow helicopters landings and takeoffs; allow handling and storage of goods transported by supply vessels; moor a shuttle tanker; and control the subsea wells.

  7. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report January 2009 #12;2 California Solar Initiative CPUC Staff Progress Report - January 2009 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

  8. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report October 2008 #12;2 California Solar Initiative CPUC Staff Progress Report - October 2008 The California Public progress on the California Solar Initiative, the country's largest solar incentive program. In January 2007

  9. EIS-0255: Kenetech/Pacificorp Wind Power Program

    Broader source: Energy.gov [DOE]

    This EIS analyzes BPA's proposed agreement with Sea West Corporation, a wind developer, of San Diego, California, to install additional turbines at the Wyoming Windpower Plant in Carbon County, Wyoming.

  10. Avian interactions with wind energy facilities: A summary

    SciTech Connect (OSTI)

    Colson, E.W. [Colson & Associates, Alamo, CA (United States)

    1995-12-31T23:59:59.000Z

    Currently, wind energy plants have been constructed or plans are being developed for projects in at least 13 states within the United States, also Canada, Sweden, Denmark, Germany, Netherlands, United Kingdom, Spain and Scotland (EPRI 1994, Winkelman 1994). Approximately, 16,000 wind turbines currently operate in California, making this area the largest concentration of wind energy development in the world. Notwithstanding its positive social values, wind energy has been shown to cause avian mortalities. Since the 1970`s many studies have been done to understand the interaction between wind energy development and birds. However our knowledge and understanding of bird interactions with wind energy development is incomplete.

  11. California Geothermal Energy Collaborative

    E-Print Network [OSTI]

    California Geothermal Energy Collaborative Geothermal Education and Outreach Guide of California Davis, and the California Geothermal Energy Collaborative. We specifically would like to thank support of the California Geothermal Energy Collaborative. We also thank Charlene Wardlow of Ormat for her

  12. Wind energy resource atlas. Volume 9. The Southwest Region

    SciTech Connect (OSTI)

    Simon, R.L.; Norman, G.T.; Elliott, D.L.; Barchet, W.R.; George, R.L.

    1980-11-01T23:59:59.000Z

    This atlas of the wind energy resource is composed of introductory and background information, a regional summary of the wind resource, and assessments of the wind resource in Nevada and California. Background on how the wind resource is assessed and on how the results of the assessment should be interpreted is presented. A description of the wind resource on a regional scale is then given. The results of the wind energy assessments for each state are assembled into an overview and summary of the various features of the regional wind energy resource. An introduction and outline to the descriptions of the wind resource given for each state are given. Assessments for individual states are presented as separate chapters. The state wind energy resources are described in greater detail than is the regional wind energy resource, and features of selected stations are discussed.

  13. Mitsubishi iMiEV: An Electric Mini-Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Mitsubishi iMiEV, an electric mini-car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In support of the U.S. Department of Energy's fast-charging research efforts, NREL engineers are conducting charge and discharge performance testing on the vehicle. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  14. California Solar Initiative California Public Utilities Commission

    E-Print Network [OSTI]

    California Solar Initiative California Public Utilities Commission Staff Progress Report July 2008 #12;California Solar Initiative, CPUC Staff Progress Report, July 2008 Cover Photo Credits: Photographer: Andrew McKinney Name of Installer: Marin Solar System owner

  15. Webinar on Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities 10Noon Pacific Wednesday, September 26, 2012

    E-Print Network [OSTI]

    Webinar on Improving Methods for Estimating Fatality of Birds and Bats at Wind Energy Facilities 10 results from a California Wind Energy Association (CalWEA)sponsored, California Energy Commissionfunded associated with wind energy facilities, including an improved equation developed to adjust mortality

  16. Wind Farm

    Office of Energy Efficiency and Renewable Energy (EERE)

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  17. Wind Energy

    Broader source: Energy.gov [DOE]

    Presentation covers wind energy at the Federal Utility Partnership Working Group (FUPWG) meeting, held on November 18-19, 2009.

  18. First Wind (Formerly UPC Wind) (California) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489 NoEuropeStrat.pdfInactive Jump

  19. Alternative Fuels and Advanced Vehicles Data Center - Fleet Experiences |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy Resources Jump to:Almo, Idaho: EnergyAlten Jump to:IncOpen

  20. Adapting ORAP to wind plants : industry value and functional requirements.

    SciTech Connect (OSTI)

    Not Available

    2010-08-01T23:59:59.000Z

    Strategic Power Systems (SPS) was contracted by Sandia National Laboratories to assess the feasibility of adapting their ORAP (Operational Reliability Analysis Program) tool for deployment to the wind industry. ORAP for Wind is proposed for use as the primary data source for the CREW (Continuous Reliability Enhancement for Wind) database which will be maintained by Sandia to enable reliability analysis of US wind fleet operations. The report primarily addresses the functional requirements of the wind-based system. The SPS ORAP reliability monitoring system has been used successfully for over twenty years to collect RAM (Reliability, Availability, Maintainability) and operations data for benchmarking and analysis of gas and steam turbine performance. This report documents the requirements to adapt the ORAP system for the wind industry. It specifies which existing ORAP design features should be retained, as well as key new requirements for wind. The latter includes alignment with existing and emerging wind industry standards (IEEE 762, ISO 3977 and IEC 61400). There is also a comprehensive list of thirty critical-to-quality (CTQ) functional requirements which must be considered and addressed to establish the optimum design for wind.

  1. Fleet Evaluation and Factory Installation of Aerodynamic Heavy Duty Truck Trailers

    SciTech Connect (OSTI)

    Beck, Jason; Salari, Kambiz; Ortega, Jason; Brown, Andrea

    2013-09-30T23:59:59.000Z

    The purpose of DE-EE0001552 was to develop and deploy a combination of trailer aerodynamic devices and low rolling resistance tires that reduce fuel consumption of a class 8 heavy duty tractor-trailer combination vehicle by 15%. There were 3 phases of the project: Phase 1 – Perform SAE Typed 2 track tests with multiple device combinations. Phase 2 – Conduct a fleet evaluation with selected device combination. Phase 3 – Develop the devices required to manufacture the aerodynamic trailer. All 3 phases have been completed. There is an abundance of available trailer devices on the market, and fleets and owner operators have awareness of them and are purchasing them. The products developed in conjunction with this project are at least in their second round of refinement. The fleet test undertaken showed an improvement of 5.5 – 7.8% fuel economy with the devices (This does not include tire contribution).

  2. Pollution prevention opportunity assessment for Sandia National Laboratories/New Mexico's fleet services department.

    SciTech Connect (OSTI)

    Richardson, Anastasia Dawn

    2003-06-01T23:59:59.000Z

    This Pollution Prevention Opportunity Assessment (PPOA) was conducted for the Sandia National Laboratories/New Mexico's (SNL/NM) Fleet Services Department between December 2001 and August 2002. This is the third PPOA conducted at Fleet in the last decade. The primary purpose of this PPOA was to review progress of past initiatives and to provide recommendations for future waste reduction measures of hazardous and solid waste streams and increasing the purchase of environmentally friendly products. This report contains a summary of the information collected and analyses performed with recommended options for implementation. The Sandia National Laboratories/New Mexico Pollution Prevention Group will work with SNL/NM's Fleet Services to implement these options.

  3. Conventional vs Electric Commercial Vehicle Fleets 1 Paper published in the Proceedings of "The Seventh International Conference on City Logistics"

    E-Print Network [OSTI]

    Bertini, Robert L.

    Conventional vs Electric Commercial Vehicle Fleets 1 Paper published in the Proceedings of "The ­ 9th June 2011 CONVENTIONAL VS ELECTRIC COMMERCIAL VEHICLE FLEETS A CASE STUDY OF ECONOMIC AND TECHNOLOGICAL FACTORS AFFECTING THE COMPETITIVENESS OF ELECTRIC COMMERCIAL VEHICLES IN THE USA Wei Feng, Ph

  4. DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2

    E-Print Network [OSTI]

    Kockelman, Kara M.

    DYNAMIC RIDE-SHARING AND OPTIMAL FLEET SIZING FOR A SYSTEM OF1 SHARED AUTONOMOUS VEHICLES2 3 4 and for publication in Transportation21 22 23 ABSTRACT24 25 Shared autonomous (fully-automated) vehicles (SAVs, destinations and departure times in the same vehicle), optimizing fleet sizing, and32 anticipating

  5. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for National Institute of Health

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-11-01T23:59:59.000Z

    This report focuses on the National Institute of Health (NIH) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  6. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA White Sands Test Facility

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report focuses on the NASA White Sands Test Facility (WSTF) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  7. Correlating Dynamometer Testing to In-Use Fleet Results of Plug-In Hybrid Electric Vehicles

    SciTech Connect (OSTI)

    John G. Smart; Sera White; Michael Duoba

    2009-05-01T23:59:59.000Z

    Standard dynamometer test procedures are currently being developed to determine fuel and electrical energy consumption of plug-in hybrid vehicles (PHEV). To define a repeatable test procedure, assumptions were made about how PHEVs will be driven and charged. This study evaluates these assumptions by comparing results of PHEV dynamometer testing following proposed procedures to actual performance of PHEVs operating in the US Department of Energy’s (DOE) North American PHEV Demonstration fleet. Results show PHEVs in the fleet exhibit a wide range of energy consumption, which is not demonstrated in dynamometer testing. Sources of variation in performance are identified and examined.

  8. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for NASA Glenn Research Center

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    The Advanced Vehicle Testing Activity’s study seeks to collect and evaluate data to validate the utilization of advanced plug-in electric vehicle (PEV) transportation. This report focuses on the NASA Glenn Research Center (GRC) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements.

  9. Continuous Reliability Enhancement for Wind (CREW) database : wind plant reliability benchmark.

    SciTech Connect (OSTI)

    Hines, Valerie Ann-Peters; Ogilvie, Alistair B.; Bond, Cody R.

    2013-09-01T23:59:59.000Z

    To benchmark the current U.S. wind turbine fleet reliability performance and identify the major contributors to component-level failures and other downtime events, the Department of Energy funded the development of the Continuous Reliability Enhancement for Wind (CREW) database by Sandia National Laboratories. This report is the third annual Wind Plant Reliability Benchmark, to publically report on CREW findings for the wind industry. The CREW database uses both high resolution Supervisory Control and Data Acquisition (SCADA) data from operating plants and Strategic Power Systems' ORAPWind%C2%AE (Operational Reliability Analysis Program for Wind) data, which consist of downtime and reserve event records and daily summaries of various time categories for each turbine. Together, these data are used as inputs into CREW's reliability modeling. The results presented here include: the primary CREW Benchmark statistics (operational availability, utilization, capacity factor, mean time between events, and mean downtime); time accounting from an availability perspective; time accounting in terms of the combination of wind speed and generation levels; power curve analysis; and top system and component contributors to unavailability.

  10. Sandia National Laboratories: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Grid System Planning for Wind: Wind Generator Modeling On June 11, 2014, in Wind generation continues to dominate the interconnection queues and the need for generic,...

  11. Dual-Fuel Truck Fleet: Start-Up Experience

    SciTech Connect (OSTI)

    NREL

    1998-09-30T23:59:59.000Z

    Although dual-fuel engine technology has been in development and limited use for several years, it has only recently moved toward full-scale operational capability for heavy-duty truck applications. Unlike a bifuel engine, which has two separate fuel systems that are used one at a time, a dual-fuel engine uses two fuel systems simultaneously. One of California's South Coast Air Quality Management District (SCAQMD) current programs is a demonstration of dual-fuel engine technology in heavy-duty trucks. These trucks are being studied as part of the National Renewable Energy Laboratory's (NREL's) Alternative Fuel Truck Program. This report describes the start-up experience from the program.

  12. CALIFORNIA ENERGY COMMISSIONCOMMISSION

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSIONCOMMISSION California Clean Energy Jobs Act: Proposition 39 Draft MEETINGMEETING AGENDA · Summary of California Clean Energy Jobs Act· Summary of California Clean Energy Jobs Act and Questions W U· Wrap Up #12;THE CALIFORNIA CLEAN ENERGY JOBS ACTENERGY JOBS ACT · Combination of two recent

  13. Camp Springs Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC WindCamelot1Q08) WindWind

  14. Manzanita Wind Energy Feasibility Study

    SciTech Connect (OSTI)

    Trisha Frank

    2004-09-30T23:59:59.000Z

    The Manzanita Indian Reservation is located in southeastern San Diego County, California. The Tribe has long recognized that the Reservation has an abundant wind resource that could be commercially utilized to its benefit. Manzanita has explored the wind resource potential on tribal land and developed a business plan by means of this wind energy feasibility project, which enables Manzanita to make informed decisions when considering the benefits and risks of encouraging large-scale wind power development on their lands. Technical consultant to the project has been SeaWest Consulting, LLC, an established wind power consulting company. The technical scope of the project covered the full range of feasibility assessment activities from site selection through completion of a business plan for implementation. The primary objectives of this feasibility study were to: (1) document the quality and suitability of the Manzanita Reservation as a site for installation and long-term operation of a commercially viable utility-scale wind power project; and, (2) develop a comprehensive and financeable business plan.

  15. Alternative fuels for vehicles fleet demonstration program. Final report, volume 2: Appendices

    SciTech Connect (OSTI)

    NONE

    1997-06-01T23:59:59.000Z

    The Alternative Fuels for Vehicles Fleet Demonstration Program (AFV-FDP) was a multiyear effort to collect technical data for use in determining the costs and benefits of alternative-fuel vehicles (AFVs) in typical applications in New York State. This report, Volume 2, includes 13 appendices to Volume 1 that expand upon issues raised therein. Volume 1 provides: (1) Information about the purpose and scope of the AFV-FDP; (2) A summary of AFV-FDP findings organized on the basis of vehicle type and fuel type; (3) A short review of the status of AFV technology development, including examples of companies in the State that are active in developing AFVs and AFV components; and (4) A brief overview of the status of AFV deployment in the State. Volume 3 provides expanded reporting of AFV-FDP technical details, including the complete texts of the brochure Garage Guidelines for Alternative Fuels and the technical report Fleet Experience Survey Report, plus an extensive glossary of AFV terminology. The appendices cover a wide range of issues including: emissions regulations in New York State; production and health effects of ozone; vehicle emissions and control systems; emissions from heavy-duty engines; reformulated gasoline; greenhouse gases; production and characteristics of alternative fuels; the Energy Policy Act of 1992; the Clean Fuel Fleet Program; garage design guidelines for alternative fuels; surveys of fleet managers using alternative fuels; taxes on conventional and alternative fuels; and zero-emission vehicle technology.

  16. A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS

    E-Print Network [OSTI]

    Dessouky, Maged

    A MODEL FOR THE FLEET SIZING OF DEMAND RESPONSIVE TRANSPORTATION SERVICES WITH TIME WINDOWS Marco a demand responsive transit service with a predetermined quality for the user in terms of waiting time models; Continuous approximation models; Paratransit services; Demand responsive transit systems. #12;3 1

  17. Alternative Fuels and Advanced Vehicles: Resources for Fleet Managers (Clean Cities) (Presentation)

    SciTech Connect (OSTI)

    Brennan, A.

    2011-04-01T23:59:59.000Z

    A discussion of the tools and resources on the Clean Cities, Alternative Fuels and Advanced Vehicles Data Center, and the FuelEconomy.gov Web sites that can help vehicle fleet managers make informed decisions about implementing strategies to reduce gasoline and diesel fuel use.

  18. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines 

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01T23:59:59.000Z

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  19. Assessment of Inlet Cooling to Enhance Output of a Fleet of Gas Turbines

    E-Print Network [OSTI]

    Wang, T.; Braquet, L.

    2008-01-01T23:59:59.000Z

    An analysis was made to assess the potential enhancement of a fleet of 14 small gas turbines' power output by employing an inlet air cooling scheme at a gas process plant. Various gas turbine (GT) inlet air cooling schemes were reviewed. The inlet...

  20. Contraction Control of a Fleet Circular Formation of AUVs under Limited Communication Range

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    including cooperative control of underwater and unmanned air vehicles (AUVs and UAVs) [3], [4], consensus [1 at http://www.lag.ensieg.inpg.fr/connect/ In the context of the source seeking for underwater vehi- cles be more adequate to produce efficient search motions. Another difficulty in the underwater fleet formation

  1. Guidelines for the Establishment of a Model Neighborhood Electric Vehicle (NEV) Fleet

    SciTech Connect (OSTI)

    Roberta Brayer; Donald Karner; Kevin Morrow; James Francfort

    2006-06-01T23:59:59.000Z

    The U.S. Department of Energy’s Advanced Vehicle Testing Activity tests neighborhood electric vehicles (NEVs) in both track and fleet testing environments. NEVs, which are also known as low speed vehicles, are light-duty vehicles with top speeds of between 20 and 25 mph, and total gross vehicle weights of approximately 2,000 pounds or less. NEVs have been found to be very viable alternatives to internal combustion engine vehicles based on their low operating costs. However, special charging infrastructure is usually necessary for successful NEV fleet deployment. Maintenance requirements are also unique to NEVs, especially if flooded lead acid batteries are used as they have watering requirements that require training, personnel protection equipment, and adherence to maintenance schedules. This report provides guidelines for fleet managers to follow in order to successfully introduce and operate NEVs in fleet environments. This report is based on the NEV testing and operational experience of personnel from the Advanced Vehicle Testing Activity, Electric Transportation Applications, and the Idaho National Laboratory.

  2. Alternative Fuel Transit Buses: DART's (Dallas Area Rapid Transit) LNG Bus Fleet Final Results

    SciTech Connect (OSTI)

    Chandler, K. [Battelle (US); Norton, P. [National Renewable Energy Lab., Golden, CO (US); Clark, N.

    2000-11-07T23:59:59.000Z

    In 1998, Dallas Area Rapid Transit, a public transit agency in Dallas, Texas, began operating a large fleet of heavy-duty buses powered by liquefied natural gas. As part of a $16 million commitment to alternative fuels, DART operates 139 LNG buses serviced by two new LNG fueling stations.

  3. The Design of an FAA Campus Motor Fleet Decision Support System

    E-Print Network [OSTI]

    goals. The Federal Aviation Administration (FAA) has over 4300 registered vehicles in its fleet. As per billion; nearly a quarter of total costs. B. FAA The Federal Aviation Administration (FAA) is a part. II. STAKEHOLDER ANALYSIS A. Federal Aviation Administration (FAA) The FAA is responsible

  4. Airline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches

    E-Print Network [OSTI]

    -based. The preventative alternative involves the transmission of maintenance data to maintenance personnel whenAirline Fleet Maintenance: Trade-off Analysis of Alternate Aircraft Maintenance Approaches Mike Dupuy, Dan Wesely, Cody Jenkins Abstract ­ Airline maintenance is a significant contributor

  5. fishing fleets were allegedly hampering their mackerel-fishing operations. Pa-

    E-Print Network [OSTI]

    Exclusive Economic Zone (EEZ)'. The Presidential mes- sages requested the amendment of Arti- cle 27 of a species exceeds the capacity of the national fishing fleet, the Mexican Gov- ernment will permit foreign Olicia/ de /a Fedemcion . At a joint press conference following the signing of the Presidential message

  6. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01T23:59:59.000Z

    Annual Energy Outlook Air Resources Board Business-As-Usualbusiness as usual ( BAU) and median scenarios (Based upon Caltrans 2008, AEO 2011 but extended to 2050) California’s Energy

  7. California Energy Commission REGULATIONS

    E-Print Network [OSTI]

    California Energy Commission REGULATIONS NONRESIDENTIAL BUILDING ENERGY Disclosure Program California Code of Regulations Title 20. Public Utilities and Energy Division 2. State USE DISCLOSURE PROGRAM California Code of Regulations, Title 20, Division 2

  8. California Energy Commission GUIDELINES

    E-Print Network [OSTI]

    , electricity generation, photovoltaic, PV, PV Calculator, energy efficiency, guidelines, eligibilityCalifornia Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR-300-2012-008-ED5-CMF CALIFORNIA ENERGY COMMISSION Edmund G. Brown Jr., Governor

  9. California Energy Commission GUIDELINES

    E-Print Network [OSTI]

    , photovoltaic, PV, PV Calculator, energy efficiency, guidelines, eligibility criteria, conditionsCalifornia Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR ELECTRIC INCENTIVE PROGRAMS (SENATE BILL 1) Fourth Edition CALIFORNIA ENERGY COMMISSION Edmund G. Brown, Jr., Governor

  10. California Energy Commission GUIDELINES

    E-Print Network [OSTI]

    , electricity generation, photovoltaic, PV, PV Calculator, energy efficiency, guidelines, eligibility criteriaCalifornia Energy Commission GUIDELINES GUIDELINES FOR CALIFORNIA'S SOLAR ELECTRIC INCENTIVE PROGRAMS (SENATE BILL 1) Third Edition JUNE 2010 CEC3002010004CMF #12;CALIFORNIA ENERGY COMMISSION

  11. Arnold Schwarzenegger CALIFORNIA OCEAN WAVE

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor CALIFORNIA OCEAN WAVE ENERGY ASSESSMENT Prepared For: California this report as follows: Previsic, Mirko. 2006. California Ocean Wave Energy Assessment. California Energy Systems Integration · Transportation California Ocean Wave Energy Assessment is the final report

  12. Response of Red-Tailed Hawks and Golden Eagles to Topographical Features, Weather, and Abundance of a Dominant Prey Species at the Altamont Pass Wind Resource Area, California: April 1999-December 2000

    SciTech Connect (OSTI)

    Hoover, S.

    2002-06-01T23:59:59.000Z

    Studies have shown that raptors flying within the Altamont Pass WRA are vulnerable to fatal turbine collisions, possibly because of their specific foraging and flight behavior. Between June 1999 and June 2000, I conducted 346.5 hours of raptor observations within the Atlamont Pass WRA. Behavior was recorded in relation to characteristics of the topography (slope aspect, elevation, and inclination), the weather, and ground squirrel abundance, as determined by active burrow entrances. The most significant finding of this study revealed that red-tailed hawks and golden eagles flew more in strong winds than in weak winds, particularly along hillsides facing into prevailing winds (as opposed to hillsides shielded from the wind). This is likely a result of the birds' use of declivity currents for lift during flights. These results suggest that certain combinations of topography and weather produce wind currents that are sought out by foraging red-tailed hawks and golden eagles within the Altamont Pass WRA. To decrease raptor mortality, mitigation measures can be targeted to specific areas likely to attract foraging raptors because of their capacity to create particularly favorable wind currents.

  13. California's electricity crisis

    E-Print Network [OSTI]

    Joskow, Paul L.

    2001-01-01T23:59:59.000Z

    The collapse of California's electricity restructuring and competition program has attracted attention around the world. Prices in California's competitive wholesale electricity market increased by 500% between the second ...

  14. Demand Response In California

    Broader source: Energy.gov [DOE]

    Presentation covers the demand response in California and is given at the FUPWG 2006 Fall meeting, held on November 1-2, 2006 in San Francisco, California.

  15. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  16. Cambria, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC Wind FarmCambria, California:

  17. 20% Wind Energy 20% Wind Energy

    E-Print Network [OSTI]

    Powell, Warren B.

    (government, industry, utilities, NGOs) Analyzes wind's potential contributions to energy security, economic · Transmission a challenge #12;Wind Power Class Resource Potential Wind Power Density at 50 m W/m 2 Wind Speed20% Wind Energy by 2030 20% Wind Energy by 2030 #12;Presentation and Objectives Overview Background

  18. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  19. Wind turbine composite blade manufacturing : the need for understanding defect origins, prevalence, implications and reliability.

    SciTech Connect (OSTI)

    Cairns, Douglas S. (Montana State University, Bozeman, MT); Riddle, Trey (Montana State University, Bozeman, MT); Nelson, Jared (Montana State University, Bozeman, MT)

    2011-02-01T23:59:59.000Z

    Renewable energy is an important element in the US strategy for mitigating our dependence on non-domestic oil. Wind energy has emerged as a viable and commercially successful renewable energy source. This is the impetus for the 20% wind energy by 2030 initiative in the US. Furthermore, wind energy is important on to enable a global economy. This is the impetus for such rapid, recent growth. Wind turbine blades are a major structural element of a wind turbine blade. Wind turbine blades have near aerospace quality demands at commodity prices; often two orders of magnitude less cost than a comparable aerospace structure. Blade failures are currently as the second most critical concern for wind turbine reliability. Early blade failures typically occur at manufacturing defects. There is a need to understand how to quantify, disposition, and mitigate manufacturing defects to protect the current wind turbine fleet, and for the future. This report is an overview of the needs, approaches, and strategies for addressing the effect of defects in wind turbine blades. The overall goal is to provide the wind turbine industry with a hierarchical procedure for addressing blade manufacturing defects relative to wind turbine reliability.

  20. Winding Trail 

    E-Print Network [OSTI]

    Unknown

    2011-09-05T23:59:59.000Z

    During the past decade, the demand for clean renewable energy continues to rise drastically in Europe, the US, and other countries. Wind energy in the ocean can possibly be one of those future renewable clean energy sources as long...

  1. “The Making of” California’s Energy Crisis

    E-Print Network [OSTI]

    Whittington, Jan

    2002-01-01T23:59:59.000Z

    much individual California power plants increased earningspower plants were popular developments in California, butno new power plants had been constructed in California over

  2. NAWIG News: The Quarterly Newsletter of the Native American Wind Interest Group, Fall 2009

    SciTech Connect (OSTI)

    Not Available

    2009-09-01T23:59:59.000Z

    As part of its Native American outreach, DOE's Wind Powering America program has initiated a NAWIG newsletter to present Native American wind information, including projects, interviews with pioneers, issues, WPA activities, and related events. It is our hope that this newsletter will both inform and elicit comments and input on wind development in Indian Country. This issue profiles the Campo Band Wind Project in California and a feature on the Cheyenne River Sioux Tribe's plans for a 100- to 125-MW project.

  3. NUCLEAR POWER in CALIFORNIA

    E-Print Network [OSTI]

    NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

  4. California's Water Energy Relationship

    E-Print Network [OSTI]

    1 CALIFORNIA ENERGY COMMISSION California's Water ­ Energy Relationship Prepared in Support The California's Water-Energy Relationship report is the product of contributions by many California Energy, Lorraine White and Zhiqin Zhang. Staff would also like to thank the members of the Water-Energy Working

  5. Assessing deployment strategies for ethanol and flex fuel vehicles in the U.S. light-duty vehicle fleet

    E-Print Network [OSTI]

    McAulay, Jeffrey L. (Jeffrey Lewis)

    2009-01-01T23:59:59.000Z

    Within the next 3-7 years the US light duty fleet and fuel supply will encounter what is commonly referred to as the "blend wall". This phenomenon describes the situation when more ethanol production has been mandated than ...

  6. Evaluating the impact of advanced vehicle and fuel technologies in U.S. light duty vehicle fleet

    E-Print Network [OSTI]

    Bandivadekar, Anup P

    2008-01-01T23:59:59.000Z

    The unrelenting increase in oil use by the U.S. light-duty vehicle (LDV) fleet presents an extremely challenging energy and environmental problem. A variety of propulsion technologies and fuels have the promise to reduce ...

  7. Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power Program (WWPP) Wind Energy Benefits, Wind Powering America (WPA) (Fact Sheet), Wind And Water Power...

  8. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Grand Canyon National Park

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort; Ian Nienhueser

    2014-08-01T23:59:59.000Z

    This report focuses on the Grand Canyon National Park (GCNP) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of PEVs into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively PEVs) can fulfill the mission requirements.

  9. Electric Vehicle Preparedness: Task 1, Assessment of Fleet Inventory for Marine Corps Base Camp Lejeune

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2015-01-01T23:59:59.000Z

    Several U.S. Department of Defense-based studies were conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 included a survey of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization will be used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure.

  10. Immigration reform and California agriculture

    E-Print Network [OSTI]

    Martin, Philip

    2013-01-01T23:59:59.000Z

    reform and California agriculture Philip Martin Professor,proposals for California agriculture. Immigration reformCenter. 196 CALIFORNIA AGRICULTURE • VOLUME 67 , NUMBER 4

  11. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    SciTech Connect (OSTI)

    None

    2010-01-01T23:59:59.000Z

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  12. Relationship between Heavy Vehicle Speed Limit and Fleet Fuel Consumption on Minor Roads

    E-Print Network [OSTI]

    Wilson, G.; Morrison, G.; Midgley, W.; Cebon, D.

    2015-03-12T23:59:59.000Z

    e s/M in ) Link Data Calibrated Model 13 3. Fuel Consumption Model Figure 7 outlines the basic structure of the fuel consumption model. Figure 7: General flow diagram of the fuel consumption model. Energy Consumption Model The energy... flow rates tend to be low. As traffic approaches bound flow (at the top of the chart), vehicle interactions increase and faster fleet vehicles begin to platoon behind the slowest vehicles. The extent to which traffic is slowed depends on the speeds...

  13. Assessment of methane-related fuels for automotive fleet vehicles: technical, supply, and economic assessments

    SciTech Connect (OSTI)

    Not Available

    1982-02-01T23:59:59.000Z

    The use of methane-related fuels, derived from a variety of sources, in highway vehicles is assessed. Methane, as used here, includes natural gas (NG) as well as synthetic natural gas (SNG). Methanol is included because it can be produced from NG or the same resources as SNG, and because it is a liquid fuel at normal ambient conditions. Technological, operational, efficiency, petroleum displacement, supply, safety, and economic issues are analyzed. In principle, both NG and methanol allow more efficient engine operation than gasoline. In practice, engines are at present rarely optimized for NG and methanol. On the basis of energy expended from resource extraction to end use, only optimized LNG vehicles are more efficient than their gasoline counterparts. By 1985, up to 16% of total petroleum-based highway vehicle fuel could be displaced by large fleets with central NG fueling depots. Excluding diesel vehicles, which need technology advances to use NG, savings of 8% are projected. Methanol use by large fleets could displace up to 8% of petroleum-based highway vehicle fuel from spark-ignition vehicles and another 9% from diesel vehicles with technology advances. The US NG supply appears adequate to accommodate fleet use. Supply projections, future price differential versus gasoline, and user economics are uncertain. In many cases, attractive paybacks can occur. Compressed NG now costs on average about $0.65 less than gasoline, per energy-equivalent gallon. Methanol supply projections, future prices, and user economics are even more uncertain. Current and projected near-term methanol supplies are far from adequate to support fleet use. Methanol presently costs more than gasoline on an equal-energy basis, but is projected to cost less if produced from coal instead of NG or petroleum.

  14. INL receives GreenGov Presidential Award for fleet fuel efficiency improvements

    ScienceCinema (OSTI)

    None

    2013-05-28T23:59:59.000Z

    Idaho National Laboratory has received a 2010 GreenGov Presidential Award for outstanding achievement in fuel efficiency in its bus and automotive fleets. The award was presented today in Washington, D.C., as part of a three-day symposium on improving sustainability and energy efficiency across the federal government. Lots more content like this is available at INL's facebook page http://www.facebook.com/idahonationallaboratory.

  15. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28T23:59:59.000Z

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  16. Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Lew, D.; Piwko, R.; Jordan, G.; Miller, N.; Clark, K.; Freeman, L.; Milligan, M.

    2011-01-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It was initiated in 2007 to examine the operational impact of up to 35% energy penetration of wind, photovoltaics (PV), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming (see study area map). WestConnect also includes utilities in California, but these were not included because California had already completed a renewable energy integration study for the state. This study was set up to answer questions that utilities, public utilities commissions, developers, and regional planning organizations had about renewable energy use in the west: (1) Does geographic diversity of renewable energy resource help mitigate variability; (2) How do local resources compare to out-of-state resources; (3) Can balancing area cooperation help mitigate variability; (4) What is the role and value of energy storage; (5) Should reserve requirements be modified; (6) What is the benefit of forecasting; and (7) How can hydropower help with integration of renewables? The Western Wind and Solar Integration Study is sponsored by the U.S. Department of Energy (DOE) and run by NREL with WestConnect as a partner organization. The study follows DOE's 20% Wind Energy by 2030 report, which did not find any technical barriers to reaching 20% wind energy in the continental United States by 2030. This study and its partner study, the Eastern Wind Integration and Transmission Study, performed a more in-depth operating impact analysis to see if 20% wind energy was feasible from an operational level. In DOE/NREL's analysis, the 20% wind energy target required 25% wind energy in the western interconnection; therefore, this study considered 20% and 30% wind energy to bracket the DOE analysis. Additionally, since solar is rapidly growing in the west, 5% solar was also considered in this study. The goal of the Western Wind and Solar Integration Study is to understand the costs and operating impacts due to the variability and uncertainty of wind, PV, and CSP on the grid. This is mainly an operations study, (rather than a transmission study), although different scenarios model different transmission build-outs to deliver power. Using a detailed power system production simulation model, the study identifies operational impacts and challenges of wind energy penetration up to 30% of annual electricity consumption.

  17. Brazos Wind Ranch Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,BelcherBlundellBowles,EnergyBrazil: EnergyWind Ranch

  18. Refueling Behavior of Flexible Fuel Vehicle Drivers in the Federal Fleet

    SciTech Connect (OSTI)

    Daley, R.; Nangle, J.; Boeckman, G.; Miller, M.

    2014-05-01T23:59:59.000Z

    Federal fleets are a frequent subject of legislative and executive efforts to lead a national transition to alternative fuels and advanced vehicle technologies. Section 701 of the Energy Policy Act of 2005 requires that all dual-fueled alternative fuel vehicles in the federal fleet be operated on alternative fuel 100% of the time when they have access to it. However, in Fiscal Year (FY) 2012, drivers of federal flex fuel vehicles (FFV) leased through the General Services Administration refueled with E85 24% of the time when it was available--falling well short of the mandate. The U.S. Department of Energy's National Renewable Energy Laboratory completed a 2-year Laboratory Directed Research and Development project to identify the factors that influence the refueling behavior of federal FFV drivers. The project began with two primary hypotheses. First, information scarcity increases the tendency to miss opportunities to purchase E85. Second, even with perfect information, there are limits to how far drivers will go out of their way to purchase E85. This paper discusses the results of the project, which included a June 2012 survey of federal fleet drivers and an empirical analysis of actual refueling behavior from FY 2009 to 2012. This research will aid in the design and implementation of intervention programs aimed at increasing alternative fuel use and reducing petroleum consumption.

  19. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  20. WIND DATA REPORT Mattapoisett

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Mattapoisett Mattapoisett, Massachusetts December 1, 2006 ­ February 28, 2007...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  1. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01T23:59:59.000Z

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  2. California’s Energy Future: Transportation Energy Use in California

    E-Print Network [OSTI]

    Yang, Christopher; Ogden, Joan M; Hwang, Roland; Sperling, Daniel

    2011-01-01T23:59:59.000Z

    in California PEV Technology and Costs The main challengesthis analysis. FCV Technology and Costs A hydrogen fuel cell6. Hydrogen storage technology and cost status compared to

  3. Ashtabula II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformation Arizona'sinCalifornia:II Wind Farm

  4. Barton Chapel Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France:Barstow, California: EnergyBarton Chapel Wind

  5. Baseline Wind Energy Facility | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon, France:Barstow, California:Baseline Wind Energy

  6. Wind power and Wind power and

    E-Print Network [OSTI]

    Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

  7. CALIFORNIA ENERGY CALIFORNIA ENERGY DEMAND 2010-2020

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2010-2020 ADOPTED FORECAST for this report: Kavalec, Chris and Tom Gorin, 2009. California Energy Demand 20102020, Adopted Forecast. California Energy Commission. CEC2002009012CMF #12; i Acknowledgments The demand forecast

  8. Auwahi Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: Energy ResourcesInformationGuideInformationAuwahi Wind Jump

  9. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01T23:59:59.000Z

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  10. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is abig world of tinyWind Industry SoarsWind

  11. Hualapai Wind Project Feasibility Report

    SciTech Connect (OSTI)

    Davidson, Kevin [Hualapai Tribe] [Hualapai Tribe; Randall, Mark [Daystar Consulting] [Daystar Consulting; Isham, Tom [Power Engineers] [Power Engineers; Horna, Marion J [MJH Power Consulting LLC] [MJH Power Consulting LLC; Koronkiewicz, T [SWCA Environmental, Inc.] [SWCA Environmental, Inc.; Simon, Rich [V-Bar, LLC] [V-Bar, LLC; Matthew, Rojas [Squire Sanders Dempsey] [Squire Sanders Dempsey; MacCourt, Doug C. [Ater Wynne, LLP] [Ater Wynne, LLP; Burpo, Rob [First American Financial Advisors, Inc.] [First American Financial Advisors, Inc.

    2012-12-20T23:59:59.000Z

    The Hualapai Department of Planning and Economic Development, with funding assistance from the U.S. Department of Energy, Tribal Energy Program, with the aid of six consultants has completed the four key prerequisites as follows: 1. Identify the site area for development and its suitability for construction. 2. Determine the wind resource potential for the identified site area. 3. Determine the electrical transmission and interconnection feasibility to get the electrical power produced to the marketplace. 4. Complete an initial permitting and environmental assessment to determine the feasibility for getting the project permitted. Those studies indicated a suitable wind resource and favorable conditions for permitting and construction. The permitting and environmental study did not reveal any fatal flaws. A review of the best power sale opportunities indicate southern California has the highest potential for obtaining a PPA that may make the project viable. Based on these results, the recommendation is for the Hualapai Tribal Nation to move forward with attracting a qualified wind developer to work with the Tribe to move the project into the second phase - determining the reality factors for developing a wind project. a qualified developer will bid to a utility or negotiate a PPA to make the project viable for financing.

  12. BEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

    E-Print Network [OSTI]

    wind turbines 1 #12;2 · Providing analysis of data submitted by DyoCore to the Energy Commission turbines · Presence of valid, and widely-accepted, methods for testing and collecting data for small windBEFORE THE ENERGY RESOURCES CONSERVATION AND DEVELOPMENT COMMISSION OF THE STATE OF CALIFORNIA

  13. Toyota Prius Plug-In HEV: A Plug-In Hybrid Electric Car in NREL's Advanced Technology Vehicle Fleet (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-10-01T23:59:59.000Z

    This fact sheet highlights the Toyota Prius plug-in HEV, a plug-in hybrid electric car in the advanced technology vehicle fleet at the National Renewable Energy Laboratory (NREL). In partnership with the University of Colorado, NREL uses the vehicle for grid-integration studies and for testing new hardware and charge-management algorithms. NREL's advanced technology vehicle fleet features promising technologies to increase efficiency and reduce emissions without sacrificing safety or comfort. The fleet serves as a technology showcase, helping visitors learn about innovative vehicles that are available today or are in development. Vehicles in the fleet are representative of current, advanced, prototype, and emerging technologies.

  14. Fuel Cell Bus Takes a Starring Role in the Burbank Bus Fleet

    Fuel Cell Technologies Publication and Product Library (EERE)

    This fact sheet reports on the City of Burbank, California's fuel cell bus demonstration project and the U.S. Department of Energy's involvement.

  15. CALIFORNIA CARBON SEQUESTRATION THROUGH

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CARBON SEQUESTRATION THROUGH CHANGES IN LAND USE IN WASHINGTON. Carbon Sequestration Through Changes in Land Use in Washington: Costs and Opportunities. California for Terrestrial Carbon Sequestration in Oregon. Report to Winrock International. #12;ii #12;iii Preface

  16. California Energy Commission REGULATIONS

    E-Print Network [OSTI]

    California Energy Commission REGULATIONS FINAL STATEMENT OF REASONS ENFORCEMENT PROCEDURES by Government Code section 11346.9(a) for the California Energy Commission (Energy Commission) regulations 399.30 (l) directs the Energy Commission to adopt regulations specifying procedures

  17. NORTHERN CALIFORNIA METALLURGICAL SECTION

    E-Print Network [OSTI]

    Wu, Junqiao

    . Chin, Department of Materials Science, University of California, Berkeley, California 12:30 "UFO Professor Robert Creegan as our luncheon speaker. His topic will be "UFO's -- Borders of Science." 5

  18. Page 1 of 3 Southern California Clean Energy

    E-Print Network [OSTI]

    Wang, Deli

    and Software Energy Storage Hydropower, Tidal and Wave Power Biomass and Biofuels Vehicles and Fuels About Solar Thermal Energy Wind Energy Electricity Transmission and Distribution Hydrogen and Fuel CellPage 1 of 3 Southern California Clean Energy Technology Acceleration Program Accelerating Clean

  19. Project Sponsors: California Air Resources Board ADVANCED POWER & ENERGY

    E-Print Network [OSTI]

    Mease, Kenneth D.

    Emissions Flow chart of STREET modeling methodology Impacts of Plug-In Hybrid Vehicles and Grid GenerationProject Sponsors: California Air Resources Board Toyota ADVANCED POWER & ENERGY PROGRAM www renewable wind energy penetrations and PHEV penetrations. The outcome of each scenario consists of spatially

  20. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01T23:59:59.000Z

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  1. California Energy Commission

    E-Print Network [OSTI]

    presents its audit report concerning our review of the California Energy Commission's (energy commission Recommendation 40 Response to the Audit California Energy Commission 41 #12;1 SUMMARY RESULTS IN BRIEF C oncernsCalifornia Energy Commission: Although External Factors Have Caused Delays in Its Approval of Sites

  2. Microsoft PowerPoint - 2-A-3-OK-Real-Time Data Infrastructure for Large Scale Wind Fleets.pptx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals fromprocess usedGELustre File Systemi di t ff tRPWGReal

  3. REPORT on the TRUCK BRAKE LINING WORKSHOP and FLEET OPERATORS' SURVEY

    SciTech Connect (OSTI)

    Blau, P.J.

    2003-02-03T23:59:59.000Z

    The report summarizes what transpired during brake linings-related workshop held at the Fall 2003 meeting of the Technology and Maintenance Council (TMC) in Charlotte, NC. The title of the workshop was ''Developing a Useful Friction Material Rating System''. It was organized by a team consisting of Peter Blau (Oak Ridge National Laboratory), Jim Britell (National Highway Traffic Safety Administration), and Jim Lawrence (Motor and Equipment Manufacturers Association). The workshop was held under the auspices of TMC Task Force S6 (Chassis), chaired by Joseph Stianche (Sanderson Farms, Inc.). Six invited speakers during the morning session provided varied perspectives on testing and rating aftermarket automotive and truck brake linings. They were: James R. Clark, Chief Engineer, Foundation Brakes and Wheel Equipment, Dana Corporation, Spicer Heavy Axle and Brake Division; Charles W. Greening, Jr, President, Greening Test Labs; Tim Duncan, General Manager, Link Testing Services;Dennis J. McNichol, President, Dennis NationaLease; Jim Fajerski, Business Manager, OE Sales and Applications Engineering, Federal Mogul Corporation; and Peter J. Blau, Senior Materials Development Engineer, Oak Ridge National Laboratory. The afternoon break-out sessions addressed nine questions concerning such issues as: ''Should the federal government regulate aftermarket lining quality?''; ''How many operators use RP 628, and if so, what's good or bad about it?''; and ''Would there be any value to you of a vocation-specific rating system?'' The opinions of each discussion group, consisting of 7-9 participants, were reported and consolidated in summary findings on each question. Some questions produced a greater degree of agreement than others. In general, the industry seems eager for more information that would allow those who are responsible for maintaining truck brakes to make better, more informed choices on aftermarket linings. A written fleet operator survey was also conducted during the TMC meeting. Twenty-one responses were received, spanning fleet sizes between 12 and 170,000 vehicles. Responses are summarized in a series of tables separated into responses from small (100 or fewer powered vehicles), medium (101-1000 vehicles), and large fleets (>1000 vehicles). The vast majority of fleets do their own brake maintenance, relying primarily on experience and lining manufactures to select aftermarket linings. At least half of the responders are familiar to some extent with TMC Recommended Practice 628 on brake linings, but most do not use this source of test data as the sole criterion to select linings. Significant shortfalls in the applicability of TMC RP 628 to certain types of brake systems were noted.

  4. Reduce truck fuel bills by $353,000+ with private fleet

    SciTech Connect (OSTI)

    Neumerski, M.J. (Rohm and Haas Co., Philadelphia, PA); Powers, T.

    1983-05-01T23:59:59.000Z

    Rohm and Haas Company accomplished well over $353,000 savings in fuel costs due to vehicle engineering and driver training in 1982. It utilized the leaser's nationwide network of company-owned fuel stops resulting in more savings. An emergency response capability has reduced the average downtime per vehicle failure. Rohm and Haas leases 61 tandem axle tractors which are used in four private carriage fleets. Also included are 90 vans and 45 haultrailers that log nearly 10 million road-miles annually.

  5. Fuel Economy of the Light-Duty Vehicle Fleet (released in AEO2005)

    Reports and Publications (EIA)

    2005-01-01T23:59:59.000Z

    The U.S. fleet of light-duty vehicles consists of cars and light trucks, including minivans, sport utility vehicles (SUVs) and trucks with gross vehicle weight less than 8,500 pounds. The fuel economy of light-duty vehicles is regulated by the (Corporate Average Fuel Economy) CAFE standards set by the National Highway Traffic Safety Administration. Currently, the CAFE standard is 27.5 miles per gallon (mpg) for cars and 20.7 mpg for light trucks. The most recent increase in the CAFE standard for cars was in 1990, and the most recent increase in the CAFE standard for light trucks was in 1996.

  6. DOE Railcar Fleet Asset Planning & Lessons Learned | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613PortsmouthBartlesvilleAbout »Department of2 DOEDepartment| DepartmentRailcar Fleet

  7. Alternative Fuels Data Center: New Hampshire Fleet Revs up With Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative Fuels CleanReduceNew Hampshire Fleet Revs up With Natural

  8. Alternative Fuels Data Center: Santa Fe Metro Fleet Runs on Natural Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041cloth DocumentationProductsAlternative FuelsSanta Fe Metro Fleet Runs on Natural Gas to someone

  9. Session: What can we learn from developed wind resource areas

    SciTech Connect (OSTI)

    Thelander, Carl; Erickson, Wally

    2004-09-01T23:59:59.000Z

    This session at the Wind Energy and Birds/Bats workshop was composed of two parts intended to examine what existing science tells us about wind turbine impacts at existing wind project sites. Part one dealt with the Altamont Wind Resource area, one of the older wind projects in the US, with a paper presented by Carl Thelander titled ''Bird Fatalities in the Altamont Pass Wind Resource Area: A Case Study, Part 1''. Questions addressed by the presenter included: how is avian habitat affected at Altamont and do birds avoid turbine sites; are birds being attracted to turbine strings; what factors contribute to direct impacts on birds by wind turbines at Altamont; how do use, behavior, avoidance and other factors affect risk to avian species, and particularly impacts those species listed as threatened, endangered, or of conservation concern, and other state listed species. The second part dealt with direct impacts to birds at new generation wind plants outside of California, examining such is sues as mortality, avoidance, direct habitat impacts from terrestrial wind projects, species and numbers killed per turbine rates/MW generated, impacts to listed threatened and endangered species, to USFWS Birds of Conservation Concern, and to state listed species. This session focused on newer wind project sites with a paper titled ''Bird Fatality and Risk at New Generation Wind Projects'' by Wally Erickson. Each paper was followed by a discussion/question and answer period.

  10. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01T23:59:59.000Z

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  11. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Energy Savers [EERE]

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  12. Community Wind Handbook/Understand Your Wind Resource and Conduct...

    Open Energy Info (EERE)

    Conduct a Preliminary Estimate < Community Wind Handbook Jump to: navigation, search WIND ENERGY STAKEHOLDER ENGAGEMENT & OUTREACHCommunity Wind Handbook WindTurbine-icon.png...

  13. American Wind Energy Association Wind Energy Finance and Investment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    American Wind Energy Association Wind Energy Finance and Investment Seminar American Wind Energy Association Wind Energy Finance and Investment Seminar October 20, 2014 8:00AM EDT...

  14. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,17%). Wind turbine component exports (towers, blades,

  15. Best available practices for lng fueling of fleet vehicles. Topical report, March-November 1995, tasks 85 and 86

    SciTech Connect (OSTI)

    Midgett, D.E.

    1996-02-01T23:59:59.000Z

    The report provides essential information on the design and operation of liquefied natural gas (LNG) fueling stations for fleet vehicles. The report serves to evaluate current practices in LNG fleet vehicle fueling station designs, and provide fleet operators with a tool for use in discussions with permitting agencies, engineering firms, fabricators, and contractors who permit, design, or construct LNG fueling stations. Representative sites (i.e., LNG fueling stations) were evaluated for technical feasibility, customer satisfaction, economics, operating and maintenance history, problems encountered/overcome, and regulatory environment. The compiled information in this report reveals that LNG fueling stations have advanced to the point where LNG is a viable alternative to gasoline and/or diesel fuel.

  16. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  17. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Public Service Wind Integration Cost Impact Study. Preparedinstalled wind power project costs, wind turbine transactionand components and wind turbine costs. Excluded from all

  18. Sandia National Laboratories: wind energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Manufacturing Lab Helps Engineers Improve Wind Power On November 15, 2011, in Energy, News, Partnership, Renewable Energy, Wind Energy Researchers at the Wind Energy...

  19. Module Handbook Specialisation Wind Energy

    E-Print Network [OSTI]

    Habel, Annegret

    ;Specialisation Wind Energy, NTU Athens, 2nd Semester Module 1/Wind Energy: Wind potential, Aerodynamics & Loading of Wind Turbines Module name: Wind potential, Aerodynamics & Loading of Wind Turbines Section Classes Evaluation of Wind Energy Potential Wind turbine Aerodynamics Static and dynamic Loading of Wind turbines

  20. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01T23:59:59.000Z

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  1. Standard Compliance: Guidelines to Help State and Alternative Fuel Provider Fleets Meet Their Energy Policy Act Requirements, 10 CFR Part 490 (Book)

    SciTech Connect (OSTI)

    Not Available

    2014-03-01T23:59:59.000Z

    This guidebook addresses the primary requirements of the Alternative Fuel Transportation Program to help state and alternative fuel provider fleets comply with the Energy Policy Act via the Standard Compliance option. It also addresses the topics that covered fleets ask about most frequently.

  2. Empirical Analysis of the Variability of Wind Generation in India: Implications for Grid Integration

    SciTech Connect (OSTI)

    Phadke, Amol; Abhyankar, NIkit; Rao, Poorvi

    2014-06-17T23:59:59.000Z

    We analyze variability in load and wind generation in India to assess its implications for grid integration of large scale wind projects using actual wind generation and load data from two states in India, Karnataka and Tamil Nadu. We compare the largest variations in load and net load (load ?wind, i.e., load after integrating wind) that the generation fleet has to meet. In Tamil Nadu, where wind capacity is about 53percent of the peak demand, we find that the additional variation added due to wind over the current variation in load is modest; if wind penetration reaches 15percent and 30percent by energy, the additional hourly variation is less than 0.5percent and 4.5percent of the peak demand respectively for 99percent of the time. For wind penetration of 15percent by energy, Tamil Nadu system is found to be capable of meeting the additional ramping requirement for 98.8percent of the time. Potential higher uncertainty in net load compared to load is found to have limited impact on ramping capability requirements of the system if coal plants can me ramped down to 50percent of their capacity. Load and wind aggregation in Tamil Nadu and Karnataka is found to lower the variation by at least 20percent indicating the benefits geographic diversification. These findings suggest modest additional flexible capacity requirements and costs for absorbing variation in wind power and indicate that the potential capacity support (if wind does not generate enough during peak periods) may be the issue that has more bearing on the economics of integrating wind

  3. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Sleeping Bear Dunes National Lakeshore

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-11-01T23:59:59.000Z

    This report focuses on the Sleeping Bear Dunes National Lakeshore (SLBE) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies’ fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles, or PEVs) can fulfill the mission requirements.

  4. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for Department of Veterans Affairs – VA Manhattan Campus

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-10-01T23:59:59.000Z

    This report focuses on the Department of Veterans Affairs, VA Manhattan Campus (VA- Manhattan) fleet to identify the daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support successful introduction of plug-in electric vehicles (PEVs) into the agency’s fleet. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively called PEVs) can fulfill the mission requirements.

  5. California-Wyoming Grid Integration Study: Phase 1 -- Economic Analysis

    SciTech Connect (OSTI)

    Corbus, D.; Hurlbut, D.; Schwabe, P.; Ibanez, E.; Milligan, M.; Brinkman, G.; Paduru, A.; Diakov, V.; Hand, M.

    2014-03-01T23:59:59.000Z

    This study presents a comparative analysis of two different renewable energy options for the California energy market between 2017 and 2020: 12,000 GWh per year from new California in-state renewable energy resources; and 12,000 GWh per year from Wyoming wind delivered to the California marketplace. Either option would add to the California resources already existing or under construction, theoretically providing the last measure of power needed to meet (or to slightly exceed) the state's 33% renewable portfolio standard. Both options have discretely measurable differences in transmission costs, capital costs (due to the enabling of different generation portfolios), capacity values, and production costs. The purpose of this study is to compare and contrast the two different options to provide additional insight for future planning.

  6. Alternative fuel vehicles for the state fleets: Results of the 5-year planning process

    SciTech Connect (OSTI)

    Not Available

    1993-05-01T23:59:59.000Z

    This report documents the first attempt by the Department of Energy (DOE) to work with states to prepare five-year Alternative Fuel Vehicle (AFV) acquisition plans to identify alternative fuels and vehicles that they are planning on or would like to acquire. The DOE Regional Support Offices (RSOs) met with representatives from the states in their regions and assisted in the preparation of the plans. These plans will be used in conjunction with previously gathered Federal five-year plans to encourage Original Equipment Manufacturers (OEMs) to expand the variety of AFVs produced, reduce the incremental cost of AFVs, and to encourage fuel suppliers to expand the alternative fuel infrastructure and alternative fuel availability. By identifying the needs and requirements of state fleets, DOE can begin to describe the specific nature of the future state fleets, and establish a defined market for OEMs and fuel suppliers. DOE initiated the development and collection of the state five-year plans before the signing of the Energy Policy Act, to raise the awareness of states that they will be required by law to acquire AFVs. As a result, several states that had no AFV acquisition plan when queried have developed or are in the process of developing plans. The DOE and its RSOs are still working with the states to develop and refine acquisition plans, and this report should be treated as documentation of work in progress.

  7. Assessment of institutional barriers to the use of natural gas in automotive vehicle fleets

    SciTech Connect (OSTI)

    Jablonski, J.; Lent, L.; Lawrence, M.; White, L.

    1983-08-01T23:59:59.000Z

    Institutional barriers to the use of natural gas as a fuel for motor vehicle fleets were identified and assessed. Recommendations for barrier removal were then developed. The research technique was a combination of literature review and interviews of knowledgeable persons in government and industry, including fleet operators and marketers of natural gas vehicles and systems. Eight types of institutional barriers were identified and assessed. The most important were two safety-related barriers: (1) lack of a national standard for the safety design and certification of natural gas vehicles and refueling stations; and (2) excessively conservative or misapplied state and local regulations, including bridge and tunnel restrictions, restrictions on types of vehicles that may be fueled by natural gas, zoning regulations that prohibit operation of refueling stations, parking restrictions, application of LPG standards to LNG vehicles, and unintentionally unsafe vehicle or refueling station requirements. Other barriers addressed include: (3) need for clarification of EPA's tampering enforcement policy; (4) the US hydrocarbon standard; (5) uncertainty concerning state utility commission jurisdiction; (6) sale-for-resale prohibitions imposed by natural gas utility companies or state utility commissions; (7) uncertainty of the effects of conversions to natural gas on vehicle manufacturers warranties; and (8) need for a natural gas to gasoline-equivalent-units conversion factor for use in calculation of state road use taxes. Insurance on natural gas vehicles, and state emissions and anti-tampering regulations were also investigated as part of the research but were not found to be barriers.

  8. Preliminary investigation Area 12 fleet operations steam cleaning discharge area Nevada Test Site

    SciTech Connect (OSTI)

    NONE

    1996-07-01T23:59:59.000Z

    This report documents the characterization activities and findings of a former steam cleaning discharge area at the Nevada Test Site. The former steam cleaning site is located in Area 12 east of Fleet Operations Building 12-16. The characterization project was completed as a required condition of the ``Temporary Water Pollution Control Permit for the Discharge From Fleet Operations Steam Cleaning Facility`` issued by the Nevada Division of Environmental Protection. The project objective was to collect shallow soil samples in eight locations in the former surface discharge area. Based upon field observations, twelve locations were sampled on September 6, 1995 to better define the area of potential impact. Samples were collected from the surface to a depth of approximately 0.3 meters (one foot) below land surface. Discoloration of the surface soil was observed in the area of the discharge pipe and in localized areas in the natural drainage channel. The discoloration appeared to be consistent with the topographically low areas of the site. Hydrocarbon odors were noted in the areas of discoloration only. Samples collected were analyzed for bulk asbestos, Toxicity Characteristic Leaching Procedure (TCLP) metals, total petroleum hydrocarbons (TPHs), volatile organic compounds (VOCs), semi-volatile organic compounds (Semi-VOCs), and gamma scan.

  9. U.S. Department of Energy FreedomCAR and Vehicle Technologies Program Advanced Vehicle Testing Activity Federal Fleet Use of Electric Vehicles

    SciTech Connect (OSTI)

    Mindy Kirpatrick; J. E. Francfort

    2003-11-01T23:59:59.000Z

    Per Executive Order 13031, “Federal Alternative Fueled Vehicle Leadership,” the U.S. Department of Energy’s (DOE’s) Advanced Vehicle Testing Activity provided $998,300 in incremental funding to support the deployment of 220 electric vehicles in 36 Federal fleets. The 145 electric Ford Ranger pickups and 75 electric Chrysler EPIC (Electric Powered Interurban Commuter) minivans were operated in 14 states and the District of Columbia. The 220 vehicles were driven an estimated average of 700,000 miles annually. The annual estimated use of the 220 electric vehicles contributed to 39,000 fewer gallons of petroleum being used by Federal fleets and the reduction in emissions of 1,450 pounds of smog-forming pollution. Numerous attempts were made to obtain information from all 36 fleets. Information responses were received from 25 fleets (69% response rate), as some Federal fleet personnel that were originally involved with the Incremental Funding Project were transferred, retired, or simply could not be found. In addition, many of the Department of Defense fleets indicated that they were supporting operations in Iraq and unable to provide information for the foreseeable future. It should be noted that the opinions of the 25 fleets is based on operating 179 of the 220 electric vehicles (81% response rate). The data from the 25 fleets is summarized in this report. Twenty-two of the 25 fleets reported numerous problems with the vehicles, including mechanical, traction battery, and charging problems. Some of these problems, however, may have resulted from attempting to operate the vehicles beyond their capabilities. The majority of fleets reported that most of the vehicles were driven by numerous drivers each week, with most vehicles used for numerous trips per day. The vehicles were driven on average from 4 to 50 miles per day on a single charge. However, the majority of the fleets reported needing gasoline vehicles for missions beyond the capabilities of the electric vehicles, usually because of range limitations. Twelve fleets reported experiencing at least one charge depletion while driving, whereas nine fleets reported not having this problem. Twenty-four of the 25 fleets responded that the electric vehicles were easy to use and 22 fleets indicated that the payload was adequate. Thirteen fleets reported charging problems; eleven fleets reported no charging problems. Nine fleets reported the vehicles broke down while driving; 14 fleets reported no onroad breakdowns. Some of the breakdowns while driving, however, appear to include normal flat tires and idiot lights coming on. In spite of operation and charging problems, 59% of the fleets responded that they were satisfied, very satisfied, or extremely satisfied with the performance of the electric vehicles. As of September 2003, 74 of the electric vehicles were still being used and 107 had been returned to the manufacturers because the leases had concluded.

  10. Assessing Desert Tortoise Survival and Reproduction at a Wind Energy

    E-Print Network [OSTI]

    , California ENVIRONMENTAL AREA RESEARCH PIER Environmental Research www.energy.ca.gov/research/ environmental of their habitat are characterized by significant wind and solar energy potential. As a result, the species. Public Interest Energy Research Program, Environmental Area Phone: 9163271368 Email: Joe

  11. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more to global warmingGlobal »Wind

  12. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >Internship Program TheSiteEurekaWeekly UserWhat's New Today aboutWind

  13. California’s Top Two Primary and the Business Agenda

    E-Print Network [OSTI]

    McGhee, Eric

    2015-01-01T23:59:59.000Z

    Quinn, Tony. 2013. The “Top Two” System: Working Like ItAssessing California’s Top-Two Primary and RedistrictingCalifornia’s Top Two Primary and the Business Agenda Eric

  14. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2006-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  15. Wind Power Today

    SciTech Connect (OSTI)

    Not Available

    2007-05-01T23:59:59.000Z

    Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

  16. Sunflower Wind Farm EA

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sunflower Wind Farm EA Sunflower Wind Farm Draft EA (25mb pdf) Note: If you have problems downloading this file, pelase contact Lou Hanebury at (406) 255-2812 Sunflower Wind Farm...

  17. Fleet Services Fleet Services Facility

    E-Print Network [OSTI]

    Beex, A. A. "Louis"

    · 287 rental vehicles: economy, hybrid, standard and large cars, mini and 12 passenger and cargo vans, pickup trucks, buses, and police cars. · 2 buses with drivers: 20 passenger and 44passenger · 10

  18. Wind/Hydro Study

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WindHydro Integration Feasibility Study Announcements (Updated July 8, 2010) The Final WindHydro Integration Feasibility Study Report, dated June 2, 2009, has been submitted to...

  19. Wind energy bibliography

    SciTech Connect (OSTI)

    None

    1995-05-01T23:59:59.000Z

    This bibliography is designed to help the reader search for information on wind energy. The bibliography is intended to help several audiences, including engineers and scientists who may be unfamiliar with a particular aspect of wind energy, university researchers who are interested in this field, manufacturers who want to learn more about specific wind topics, and librarians who provide information to their clients. Topics covered range from the history of wind energy use to advanced wind turbine design. References for wind energy economics, the wind energy resource, and environmental and institutional issues related to wind energy are also included.

  20. Wind Turbine Tribology Seminar

    Broader source: Energy.gov [DOE]

    Wind turbine reliability issues are often linked to failures of contacting components, such as bearings, gears, and actuators. Therefore, special consideration to tribological design in wind...

  1. Commonwealth Wind Incentive Program – Micro Wind Initiative

    Broader source: Energy.gov [DOE]

    Through the Commonwealth Wind Incentive Program – Micro Wind Initiative the Massachusetts Clean Energy Center (MassCEC) offers rebates of up to $4/W with a maximum of $130,000 for design and...

  2. Economic and Environmental Optimization of Vehicle Fleets: A Case Study of the Impacts of Policy, Market, Utilization, and

    E-Print Network [OSTI]

    Bertini, Robert L.

    of utilization (mileage per year per vehicle) and gasoline prices on fleet management decisions estimating energy in scenarios with high gasoline prices and/or utilization, (b) current European CO2 cap and trade emissions with high gasoline prices and vehicle utilization. This research indicates that the proposed model can

  3. Impacts of Economic, Technological and Operational Factors on the1 Economic Competitiveness of Electric Commercial Vehicles in Fleet2

    E-Print Network [OSTI]

    Bertini, Robert L.

    of Electric Commercial Vehicles in Fleet2 Replacement Decisions3 4 5 6 7 Wei Feng8 Ph.D. Student9 Department)10 emissions [2].11 12 Electric commercial vehicles (ECVs) are seen by many governments figures * 250 + 5 Tables * 250 = 5681 words)49 #12;Feng and Figliozzi 1 ABSTRACT1 2 Electric commercial

  4. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    States. Specifically, Bluewater Wind and Delmarva PowerLLC Babcock & Brown Acquisition Bluewater Wind Good Energies

  5. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    policy support for other renewable energy sources, wind mayrenewable energy and climate policy initiatives. With wind

  6. Proceedings of the Sixth California Islands Symposium, Ventura, California, December 1 3, 2003

    E-Print Network [OSTI]

    Silver, Whendee

    Proceedings of the Sixth California Islands Symposium, Ventura, California, December 1 ­ 3, 2003 of the Sixth California Islands Symposium, Ventura, California, December 1 ­ 3, 2003. National Park Service

  7. California Energy Commission

    Office of Environmental Management (EM)

    California Energy Commission Quadrennial Water Review Comments - June 19, 2014 Water-Energy Nexus Water and energy systems are inextricably linked -- producing energy uses large...

  8. CaliforniaFIRST

    Broader source: Energy.gov [DOE]

    Eligibility is generally determined by the property records and value, and the property must meet general underwriting criteria established by the California Statewide Communities Development Aut...

  9. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Golden Gate National Recreation Area

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy's Idaho National Laboratory, is the lead laboratory for U.S. Department of Energy Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity's Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the utilization of advanced electric drive vehicle transportation. This report focuses on the Golden Gate National Recreation Area (GGNRA) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of plug-in electric vehicles (PEVs) into the agencies' fleets. Individual observations of these selected vehicles provide the basis for recommendations related to electric vehicle adoption and whether a battery electric vehicle or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. GGNRA identified 182 vehicles in its fleet, which are under the management of the U.S. General Services Administration. Fleet vehicle mission categories are defined in Section 4, and while the GGNRA vehicles conduct many different missions, only two (i.e., support and law enforcement missions) were selected by agency management to be part of this fleet evaluation. The selected vehicles included sedans, trucks, and sport-utility vehicles. This report will show that battery electric vehicles and/or PHEVs are capable of performing the required missions and providing an alternative vehicle for support vehicles and PHEVs provide the same for law enforcement, because each has a sufficient range for individual trips and time is available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle home base, high-use work areas, or intermediately along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in the emission of greenhouse gases and petroleum use, while also reducing fuel costs. The San Francisco Bay Area is a leader in the adoption of PEVs in the United States. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the GGNRA facility would be a benefit for both GGNRA fleets and general public use. Fleet drivers and park visitors operating privately owned PEVs benefit by using the charging infrastructure. ITSNA recommends location analysis of the GGNRA site to identify the optimal placement of the electric vehicle supply equipment station. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and GGNRA for participation in the study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and GGNRA personnel.

  10. Planning Water Use in California

    E-Print Network [OSTI]

    Eisenstein, William; Kondolf, G. Mathias

    2008-01-01T23:59:59.000Z

    the University of Maryland Water Policy Collaborative, 2006.FURTH ER READ ING California Department of Water Resources.California Water Plan Update 2005: A Framework for Action.

  11. Lockeford, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I Geothermal Pwer Plant Jump to:Landowners and WindLightingLinthicum,LittleLivonia,Lockeford, California:

  12. Berkeley, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia: EnergyAvignon,Belcher Homes Jump to:formelyTree WindBergeyJump to:

  13. Camarillo, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC Wind Farm JumpCam

  14. Campbell, California: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LPInformation 8thCalwind II CEC WindCamelot1Q08)Campbell

  15. Wind Resource Assessment in Europe Using Emergy

    E-Print Network [OSTI]

    Paudel, Subodh; Santarelli, Massimo; Martin, Viktoria; Lacarriere, Bruno; Le Corre, Olivier

    2014-01-01T23:59:59.000Z

    mance characteristics of wind generator. The wind speed atcharacteristics of the wind generator. When wind speed is

  16. California's 10th congressional district: Energy Resources | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty EditCalifornia:Power LP Biomass Facilityin ChartsQuality ActCalifornia Wind

  17. CoalFleet RD&D augmentation plan for integrated gasification combined cycle (IGCC) power plants

    SciTech Connect (OSTI)

    NONE

    2007-01-15T23:59:59.000Z

    To help accelerate the development, demonstration, and market introduction of integrated gasification combined cycle (IGCC) and other clean coal technologies, EPRI formed the CoalFleet for Tomorrow initiative, which facilitates collaborative research by more than 50 organizations from around the world representing power generators, equipment suppliers and engineering design and construction firms, the U.S. Department of Energy, and others. This group advised EPRI as it evaluated more than 120 coal-gasification-related research projects worldwide to identify gaps or critical-path activities where additional resources and expertise could hasten the market introduction of IGCC advances. The resulting 'IGCC RD&D Augmentation Plan' describes such opportunities and how they could be addressed, for both IGCC plants to be built in the near term (by 2012-15) and over the longer term (2015-25), when demand for new electric generating capacity is expected to soar. For the near term, EPRI recommends 19 projects that could reduce the levelized cost-of-electricity for IGCC to the level of today's conventional pulverized-coal power plants with supercritical steam conditions and state-of-the-art environmental controls. For the long term, EPRI's recommended projects could reduce the levelized cost of an IGCC plant capturing 90% of the CO{sub 2} produced from the carbon in coal (for safe storage away from the atmosphere) to the level of today's IGCC plants without CO{sub 2} capture. EPRI's CoalFleet for Tomorrow program is also preparing a companion RD&D augmentation plan for advanced-combustion-based (i.e., non-gasification) clean coal technologies (Report 1013221). 7 refs., 30 figs., 29 tabs., 4 apps.

  18. Analysis of Cycling Costs in Western Wind and Solar Integration Study

    SciTech Connect (OSTI)

    Jordan, G.; Venkataraman, S.

    2012-06-01T23:59:59.000Z

    The Western Wind and Solar Integration Study (WWSIS) examined the impact of up to 30% penetration of variable renewable generation on the Western Electricity Coordinating Council system. Although start-up costs and higher operating costs because of part-load operation of thermal generators were included in the analysis, further investigation of additional costs associated with thermal unit cycling was deemed worthwhile. These additional cycling costs can be attributed to increases in capital as well as operations and maintenance costs because of wear and tear associated with increased unit cycling. This analysis examines the additional cycling costs of the thermal fleet by leveraging the results of WWSIS Phase 1 study.

  19. ESTIMATING RISK TO CALIFORNIA ENERGY INFRASTRUCTURE FROM PROJECTED CLIMATE CHANGE

    E-Print Network [OSTI]

    Sathaye, Jayant

    2011-01-01T23:59:59.000Z

    installed at California power plants. Furthermore, recentlyinformation for California’s power plants. Personalinformation for California’s power plants. Personal

  20. Advanced Coal Wind Hybrid: Economic Analysis

    E-Print Network [OSTI]

    Phadke, Amol

    2008-01-01T23:59:59.000Z

    Wind Generation2006. “ Integrating Wind Generation into Utility Systems”.Stand-Alone Wind Generation . 60

  1. Howard County- Wind Ordinance

    Broader source: Energy.gov [DOE]

    This ordinance sets up provisions for allowing small wind energy systems in various zoning districts.

  2. Homelessness in California

    E-Print Network [OSTI]

    Sekhon, Jasjeet S.

    Homelessness in California · · · John M. Quigley Steven Raphael Eugene Smolensky with Erin Mansur-in-Publication Data Quigley, John M. Homelessness in California / John M. Quigley, Steven Raphael, Eugene Smolensky. p. The authors of the present volume--John Quigley, Stephen Raphael, and Eugene Smolensky, all from the Goldman

  3. STATE OF CALIFORNIA -NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    Strategic Plan Governor Brown's Clean Energy Jobs Plan directed the Energy Commission to prepare a planSTATE OF CALIFORNIA - NATURAL RESOURCES AGENCY CALIFORNIA ENERGY COMMISSION 1516 Ninth Street Sacramento, California 95814 Main website: WWN.energy.ca.gov STATE OF CALIFORNIA ENERGY RESOURCES

  4. Wind energy offers considerable promise; the wind itself is free,

    E-Print Network [OSTI]

    Langendoen, Koen

    Wind energy offers considerable promise; the wind itself is free, wind power is clean. One of these sources, wind energy, offers considerable promise; the wind itself is free, wind power is clean, and it is virtually inexhaustible. In recent years, research on wind energy has accelerated

  5. Estimation of Wind Speed in Connection to a Wind Turbine

    E-Print Network [OSTI]

    Estimation of Wind Speed in Connection to a Wind Turbine X. Ma #3; , N. K. Poulsen #3; , H. Bindner y December 20, 1995 Abstract The wind speed varies over the rotor plane of wind turbine making the wind speed on the rotor plane will be estimated by using a wind turbine as a wind measuring device

  6. AVTA Federal Fleet PEV Readiness Data Logging and Characterization Study for the National Park Service: Fort Vancouver National Historic Site

    SciTech Connect (OSTI)

    Stephen Schey; Jim Francfort

    2014-03-01T23:59:59.000Z

    Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s Advanced Vehicle Testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America (ITSNA) to collect data on federal fleet operations as part of the Advanced Vehicle Testing Activity’s Federal Fleet Vehicle Data Logging and Characterization study. The Advanced Vehicle Testing Activity study seeks to collect data to validate the use of advanced electric drive vehicle transportation. This report focuses on the Fort Vancouver National Historic Site (FVNHS) fleet to identify daily operational characteristics of select vehicles and report findings on vehicle and mission characterizations to support the successful introduction of electric vehicles (EVs) into the agencies’ fleet. Individual observations of the selected vehicles provided the basis for recommendations related to EV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively plug-in electric vehicles) could fulfill the mission requirements. FVNHS identified three vehicles in its fleet for consideration. While the FVNHS vehicles conduct many different missions, only two (i.e., support and pool missions) were selected by agency management to be part of this fleet evaluation. The logged vehicles included a pickup truck and a minivan. This report will show that BEVs and PHEVs are capable of performing the required missions and providing an alternative vehicle for both mission categories, because each has sufficient range for individual trips and time available each day for charging to accommodate multiple trips per day. These charging events could occur at the vehicle’s home base, high-use work areas, or in intermediate areas along routes that the vehicles frequently travel. Replacement of vehicles in the current fleet would result in significant reductions in emission of greenhouse gases and petroleum use, while also reducing fuel costs. The Vancouver, Washington area and neighboring Portland, Oregon are leaders in adoption of PEVs in the United States1. PEV charging stations, or more appropriately identified as electric vehicle supply equipment, located on the FVNHS facility would be a benefit for both FVNHS fleets and general public use. Fleet drivers and park visitors operating privately owned plug-in electric vehicles benefit by using the charging infrastructure. ITSNA recommends location analysis of the FVNHS site to identify the optimal station placement for electric vehicle supply equipment. ITSNA recognizes the support of Idaho National Laboratory and ICF International for their efforts to initiate communication with the National Parks Service and FVNHS for participation in this study. ITSNA is pleased to provide this report and is encouraged by the high interest and support from the National Park Service and FVNHS personnel

  7. identity application sectionnine

    E-Print Network [OSTI]

    Derisi, Joseph

    ........................................................................................................81 fleet graphics...........................................................................................................82 fleet graphics application .........................................................................................................85 #12;University of California, San Francisco | Public Affairs | Visual Identity Standards

  8. Wind Power Outlook 2004

    SciTech Connect (OSTI)

    anon.

    2004-01-01T23:59:59.000Z

    The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

  9. Western Wind and Solar Integration Study Phase 2 (Presentation)

    SciTech Connect (OSTI)

    Lew, D.; Brinkman, G.; Ibanez, E.; Kumar, N.; Lefton, S.; Jordan, G.; Venkataraman, S.; King, J.

    2013-06-01T23:59:59.000Z

    This presentation accompanies Phase 2 of the Western Wind and Solar Integration Study, a follow-on to Phase 1, which examined the operational impacts of high penetrations of variable renewable generation on the electric power system in the West and was one of the largest variable generation studies to date. High penetrations of variable generation can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions. Phase 2 calculated these costs and emissions, and simulated grid operations for a year to investigate the detailed impact of variable generation on the fossil-fueled fleet. The presentation highlights the scope of the study and results.

  10. The EPRI/DOE Utility Wind Turbine Performance Verification Program

    SciTech Connect (OSTI)

    Calvert, S.; Goldman, P. [Department of Energy, Washington, DC (United States); DeMeo, E.; McGowin, C. [Electric Power Research Inst., Palo Alto, CA (United States); Smith, B.; Tromly, K. [National Renewable Energy Lab., Golden, CO (United States)

    1997-01-01T23:59:59.000Z

    In 1992, the Electric Power Research Institute (EPRI) and the US Department of Energy (DOE) initiated the Utility Wind Turbine Performance Verification Program (TVP). This paper provides an overview of the TVP, its purpose and goals, and the participating utility projects. Improved technology has significantly reduced the cost of energy from wind turbines since the early 1980s. In 1992, turbines were producing electricity for about $0.07--$0.09/kilowatt-hour (kWh) (at 7 m/s [16 mph sites]), compared with more than $0.30/kWh in 1980. Further technology improvements were expected to lower the cost of energy from wind turbines to $0.05/kWh. More than 17,000 wind turbines, totaling more than 1,500 MW capacity, were installed in the US, primarily in California and Hawaii. The better wind plants had availabilities above 95%, capacity factors exceeding 30%, and operation and maintenance costs of $0.01/kWh. However, despite improving technology, EPRI and DOE recognized that utility use of wind turbines was still largely limited to turbines installed in California and Hawaii during the 1980s. Wind resource assessments showed that other regions of the US, particularly the Midwest, had abundant wind resources. EPRI and DOE sought to provide a bridge from utility-grade turbine development programs under way to commercial purchases of the wind turbines. The TVP was developed to allow utilities to build and operate enough candidate turbines to gain statistically significant operating and maintenance data.

  11. STATE OF CALIFORNIA ENERGY COMMISSION

    E-Print Network [OSTI]

    MEETING STATE OF CALIFORNIA ENERGY COMMISSION In the Matter of ) ) California Clean Energy Jobs by the voters in November of last year, and it's known as the clean energy -- or California Clean Energy Jobs in the areas of energy efficiency and clean energy jobs in California. We want to see schools leveraging

  12. Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators...

    Office of Environmental Management (EM)

    Engages Tomorrow's Wind Energy Innovators Collegiate Wind Competition Engages Tomorrow's Wind Energy Innovators January 6, 2014 - 10:00am Addthis 2014 Collegiate Teams Boise State...

  13. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Energy Savers [EERE]

    : Increasing Wind Energy's Contribution to U.S. Electricity Supply (Executive Summary) 20% Wind Energy by 2030: Increasing Wind Energy's Contribution to U.S. Electricity Supply...

  14. National Wind Technology Center (Fact Sheet), National Wind Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NATIONAL WIND TECHNOLOGY CENTER www.nrel.govwind Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center...

  15. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind...

    Open Energy Info (EERE)

    Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine Blade Co Ltd Jump to: navigation, search Name: Sinomatech Wind Power Blade (aka Sinoma Science & Technology...

  16. 20% Wind Energy by 2030: Increasing Wind Energy's Contribution...

    Office of Environmental Management (EM)

    a new vision for wind energy through 2050. Taking into account all facets of wind energy (land-based, offshore, distributed), the new Wind Vision Report defines the...

  17. Sandia Energy - Sandia Wind Turbine Loads Database

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Wind Turbine Loads Database Home Stationary Power Energy Conversion Efficiency Wind Energy Resources Wind Software Downloads Sandia Wind Turbine Loads Database Sandia Wind...

  18. Southern California Channel Islands Bibliography, through 1992

    E-Print Network [OSTI]

    Channel Islands National Marine Sanctuary

    1992-01-01T23:59:59.000Z

    Southern California Bight/San Onofre/Power Plant/Southern California Bight/San Onofre Power Plant/Power Plant (DCPP), San Luis Obispo County, California.

  19. Building a business case for corporate fleets to adopt vehicle-to-grid technology (V2G) and participate in the regulation service market

    E-Print Network [OSTI]

    De los Ríos Vergara, Andrés

    2011-01-01T23:59:59.000Z

    Electric (EV) and Plug-in Hybrid Electric vehicles (PHEV) continue to gain attention and market share, not only as options for consumers but also for corporate fleets. EVs and PHEVs can contribute to lower operating costs ...

  20. Sandia National Laboratories: Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Energy Staff On March 24, 2011, in Wind Energy On November 10, 2010, in Wind Plant Opt. Rotor Innovation Materials, Reliability & Standards Siting & Barrier Mitigation...

  1. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's2008. Analysis of Wind Generation Impact on ERCOT Ancillary

  3. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    the Impact of Significant Wind Generation Facilities on BulkOperations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power's

  4. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    Operations Impacts of Wind Generation Integration Study.Impacts of Integrating Wind Generation into Idaho Power'sthe Impact of Significant Wind Generation Facilities on Bulk

  5. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle June 1, 2005 ­ August 31, 2005 Prepared for United States Department...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  6. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ February 28, 2005 Prepared for United States.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  7. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle December 1, 2004 ­ December 1, 2005 Prepared for United States ......................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  8. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2003 ­ August 31, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  9. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01T23:59:59.000Z

    Prepared for the Utility Wind Integration Group. Arlington,Consult. 2010. International Wind Energy Development: WorldUBS Global I/O: Global Wind Sector. UBS Investment Research.

  10. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2003 ­ February 29, 2004 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distribution

  11. WIND DATA REPORT Presque Isle

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Presque Isle March 1, 2005 ­ May 31, 2005 Prepared for United States Department.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  12. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2003 ­ May 31, 2003 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  13. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June1, 2004 to August 31, 2004. Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 8 Wind Speed Distributions

  14. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island September 1, 2003 ­ November 30, 2003 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  15. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island March 1, 2004 ­ May 31, 2004 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  16. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    2008. Washington, DC: American Wind Energy Association.American Wind Energy Association ( AWEA).2009b. AWEA Small Wind Turbine Global Market Study: Year

  17. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island June 1, 2004 ­ August 31, 2004 Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distribution

  18. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01T23:59:59.000Z

    Table 8 Figure 30. Wind Integration Costs at Various LevelsOperations and Maintenance Costs Wind project operations andPublic Service Wind Integration Cost Impact Study. Prepared

  19. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    wind turbine components (specifically, generators, bladeschangers. ” Wind turbine components such as blades, towers,Canada (8%). Wind turbine component exports (towers, blades,

  20. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    with the section on offshore wind; Donna Heimiller and Billyof 2012, global cumulative offshore wind capacity stood ats (DOE’s) investments in offshore wind energy research and

  1. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 81 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  2. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    charging wind power projects for balancing services. 88 BPA,in balancing reserves with increased wind power penetrationin balancing reserves with increased wind power penetration

  3. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01T23:59:59.000Z

    Xcel Energy. 2011. Wind Induced Coal Plant Cyclingand the Implications of Wind Curtailment for Public Serviceof Colorado 2 GW and 3 GW Wind Integration Cost Study.

  4. Wind Farms in North America

    E-Print Network [OSTI]

    Hoen, Ben

    2014-01-01T23:59:59.000Z

    Opinion About Large Offshore Wind Power: Underlying Factors.Delaware Opinion on Offshore Wind Power - Interim Report.Newark, DE. 16 pages. Global Wind Energy Council (GWEC) (

  5. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01T23:59:59.000Z

    2011. In March 2011, NRG Bluewater Wind?s Delaware projectPurchaser Delmarva NRG Bluewater Wind (Delaware) Universitythe project, while NRG Bluewater would retain the remaining

  6. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01T23:59:59.000Z

    natural gas prices), pushed wind energy to the top of (andperformance, and price of wind energy, policy uncertainty –cost, performance, and price of wind energy, some of these

  7. WIND DATA REPORT Thompson Island

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Thompson Island December 1, 2004 ­ February 28, 2005 Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distribution

  8. WIND DATA REPORT DARTMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT DARTMOUTH, MA March 26th 2005 to May 31st 2005. Prepared for Massachusetts...................................................................................................................... 9 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  9. WIND DATA REPORT FALMOUTH, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT FALMOUTH, MA June 1st 2004- May 31st 2005 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Distributions......................................................................................................... 11 Monthly Average Wind Speeds

  10. WIND DATA REPORT Kingston, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Kingston, MA March 1, 2006 - May 31, 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions.......

  11. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA September 1st 2005 to November 30th 2005. Prepared for Massachusetts.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  12. WIND DATA REPORT Wellfleet, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Wellfleet, MA December 1st , 2006 ­ February 28th , 2007 Prepared...................................................................................................................... 8 Wind Speed Time Series............................................................................................................. 9 Wind Speed Distributions

  13. WIND DATA REPORT Nantucket, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Nantucket, MA June 1st 2006 to August 31th 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed D

  14. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts March 24th to May 31st , 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions

  15. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA December 2006 ­ February 2007 Prepared for Massachusetts Technology...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  16. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts December 1, 2005 - February 28, 2006 Prepared.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 12 Wind Speed Di

  17. WIND DATA REPORT Truro, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Truro, Massachusetts December, 2006 1st to February 28th , 2007 Prepared...................................................................................................................... 9 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  18. WIND DATA REPORT Brewster, Massachusetts

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Brewster, Massachusetts June 1, 2006 - August 31, 2006 Prepared for Massachusetts.................................................................................................................... 11 Wind Speed Time Series........................................................................................................... 11 Wind Speed Di

  19. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA March 2007 ­ May 2007 Prepared for Massachusetts Technology...................................................................................................................... 8 Wind Speed Time Series........................................................................................................... 10 Wind Speed Distributions

  20. WIND DATA REPORT Chester, MA

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    WIND DATA REPORT Chester, MA September ­ November 2006 Prepared for Massachusetts Technology.................................................................................................................... 10 Wind Speed Time Series........................................................................................................... 11 Wind Speed Distributions