National Library of Energy BETA

Sample records for wind application center

  1. MONTANA STATE UNIVERSITY WIND APPLICATION CENTER

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    , be it aerodynamics studies of automobiles or supersonic applications in aerospace. In the design of the KidWind of these was to accurately mimic the wind speed conditions an actual wind turbine in the field would experience. A second as minimum and maximum flow parameters because they mimic actual flow conditions in which wind turbines

  2. MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation

    E-Print Network [OSTI]

    Dyer, Bill

    MSU-Wind Applications Center: Wind Resource Worksheet Theoretical Power Calculation Equations: A= swept area = air density v= velocity R= universal gas constant Steps: 1. Measure wind speed from fan. = ___________/(________*________)= _________kg/m3 5. Theoretical Power a. Low Setting Theoretical Wind Power i. Power= ½*______*______*______*.59

  3. South Dakota Wind Application Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeter BatterySolarfin Jump to:SolkarSector ProgrammesREEEPBend,Wind

  4. Wind energy applications guide

    SciTech Connect (OSTI)

    anon.

    2001-01-01

    The brochure is an introduction to various wind power applications for locations with underdeveloped transmission systems, from remote water pumping to village electrification. It includes an introductory section on wind energy, including wind power basics and system components and then provides examples of applications, including water pumping, stand-alone systems for home and business, systems for community centers, schools, and health clinics, and examples in the industrial area. There is also a page of contacts, plus two specific example applications for a wind-diesel system for a remote station in Antarctica and one on wind-diesel village electrification in Russia.

  5. Applied wind energy research at the National Wind Technology Center

    SciTech Connect (OSTI)

    Robinson, M C; Tu, P

    1996-06-01

    Applied research activities at the National Wind Technology Center are divided into several technical disciplines. Not surprisingly, these engineering and science disciplines highlight the technology similarities between aircraft and wind turbine design requirements. More often than not, wind turbines are assumed to be a subset of the much larger and more comprehensive list of well understood aerospace engineering accomplishments and it is difficult for the general public to understand the poor performance history of wind turbines in sustained operation. Often overlooked are the severe environmental conditions and operational demands placed on turbine designs which define unique requirements beyond typical aerospace applications. It is the role of the National Wind Technology Center to investigate and quantify the underlying physical phenomena which make the wind turbine design problem unique and to provide the technology advancements necessary to overcome current operational limitations. This paper provides a brief overview of research areas involved with the design of wind turbines.

  6. Wind Energy at NREL's National Wind Technology Center

    ScienceCinema (OSTI)

    None

    2013-05-29

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  7. Wind Energy at NREL's National Wind Technology Center

    SciTech Connect (OSTI)

    None

    2010-01-01

    It is a pure, plentiful natural resource. Right now wind is in high demand and it holds the potential to transform the way we power our homes and businesses. NREL is at the forefront of wind energy research and development. NREL's National Wind Technology Center (NWTC) is a world-class facility dedicated to accelerating and deploying wind technology.

  8. Establishment of Small Wind Regional Test Centers

    SciTech Connect (OSTI)

    Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

    2011-01-01

    The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options, but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. During the past few years, DOE, the National Renewable Energy Laboratory (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard, AWEA Standard 9.1 - 2009, in December 2009. The Small Wind Certification Council (SWCC) and Intertek, North American SWT certification bodies, began accepting applications for certification to the AWEA standard in 2010. To reduce certification testing costs, DOE and NREL are providing financial and technical assistance for an initial round of tests at four SWT test sites, which were selected through a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A and M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontracts with DOE and NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification. Turbine installation is ongoing. Testing began in early 2011 and is scheduled to conclude in mid-late 2012.

  9. National Wind Technology Center (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-12-01

    This overview fact sheet is one in a series of information fact sheets for the National Wind Technology Center (NWTC). Wind energy is one of the fastest growing electricity generation sources in the world. NREL's National Wind Technology Center (NWTC), the nation's premier wind energy technology research facility, fosters innovative wind energy technologies in land-based and offshore wind through its research and testing facilities and extends these capabilities to marine hydrokinetic water power. Research and testing conducted at the NWTC offers specialized facilities and personnel and provides technical support critical to the development of advanced wind energy systems. From the base of a system's tower to the tips of its blades, NREL researchers work side-by-side with wind industry partners to increase system reliability and reduce wind energy costs. The NWTC's centrally located research and test facilities at the foot of the Colorado Rockies experience diverse and robust wind patterns ideal for testing. The NWTC tests wind turbine components, complete wind energy systems and prototypes from 400 watts to multiple megawatts in power rating.

  10. The National Wind Technology Center

    SciTech Connect (OSTI)

    Thresher, R.W.; Hock, S.M.; Loose, R.R.; Cadogon, J.B.

    1994-07-01

    Wind energy research began at the Rocky Flats test site in 1976 when Rockwell International subcontracted with the Energy Research and Development Administration (ERDA). The Rocky Flats Plant was competitively selected from a number of ERDA facilities primarily because it experienced high instantaneous winds and provided a large, clear land area. By 1977, several small wind turbines were in place. During the facility`s peak of operation, in 1979-1980, researchers were testing as many as 23 small wind turbines of various configurations, including commercially available machines and prototype turbines developed under subcontract to Rocky Flats. Facilities also included 8-kW, 40-kW, and 225-kW dynamometers; a variable-speed test bed; a wind/hybrid test facility; a controlled velocity test facility (in Pueblo, Colorado); a modal test facility, and a multimegawatt switchgear facility. The main laboratory building was dedicated in July 1981 and was operated by the Rocky Flats Plant until 1984, when the Solar Energy Research Institute (SERI) and Rocky Flats wind energy programs were merged and transferred to SERI. SERI and now the National Renewable Energy Laboratory (NREL) continued to conduct wind turbine system component tests after 1987, when most program personnel were moved to the Denver WEst Office Park in Golden and site ownership was transferred back to Rocky Flats. The Combined Experiment test bed was installed and began operation in 1988, and the NREL structural test facility began operation in 1990. In 1993, the site`s operation was officially transferred to the DOE Golden Field Office that oversees NREL. This move was in anticipation of NREL`s renovation and reoccupation of the facility in 1994.

  11. National Wind Technology Center | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience (SC)ResourceScience »

  12. Wind/Hybrid Electricity Applications

    SciTech Connect (OSTI)

    McDaniel, Lori

    2001-03-31

    Wind energy is widely recognized as the most efficient and cost effective form of new renewable energy available in the Midwest. New utility-scale wind farms (arrays of large turbines in high wind areas producing sufficient energy to serve thousands of homes) rival the cost of building new conventional forms of combustion energy plants, gas, diesel and coal power plants. Wind energy is not subject to the inflationary cost of fossil fuels. Wind energy can also be very attractive to residential and commercial electric customers in high wind areas who would like to be more self-sufficient for their energy needs. And wind energy is friendly to the environment at a time when there is increasing concern about pollution and climate change. However, wind energy is an intermittent source of power. Most wind turbines start producing small amounts of electricity at about 8-10 mph (4 meters per second) of wind speed. The turbine does not reach its rated output until the wind reaches about 26-28 mph (12 m/s). So what do you do for power when the output of the wind turbine is not sufficient to meet the demand for energy? This paper will discuss wind hybrid technology options that mix wind with other power sources and storage devices to help solve this problem. This will be done on a variety of scales on the impact of wind energy on the utility system as a whole, and on the commercial and small-scale residential applications. The average cost and cost-benefit of each application along with references to manufacturers will be given. Emerging technologies that promise to shape the future of renewable energy will be explored as well.

  13. Vantage Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation Jump to:ValleyWind FarmHong

  14. Weatherford Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWe Energy Wind Farm Jump to:Weatherford

  15. Mountaineer Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston, Nevada:WindIV JumpI

  16. Oliver Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformation 6thOhmsettOklahoma: EnergyII Wind

  17. NREL: Wind Research - Regional Test Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNew WindDesign

  18. Blade Testing at NREL's National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Hughes, S.

    2010-07-20

    Presentation of Blade Testing at NREL's National Wind Technology Center for the 2010 Sandia National Laboratories Blade Testing Workshop.

  19. Establishment of Small Wind Turbine Regional Test Centers (Presentation)

    SciTech Connect (OSTI)

    Sinclair, K.

    2011-09-16

    This presentation offers an overview of the Regional Test Centers project for Small Wind Turbine testing and certification.

  20. The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy

    E-Print Network [OSTI]

    The Answer Is Blowing in the Wind: Analysis of Powering Internet Data Centers with Wind Energy Yan. As a result, many IDC operators have started using renewable energy, e.g., wind power, to power their data of real-world wind power traces from 69 wind farms. The idea is to leverage the front-end load dispatching

  1. Establishment of Small Wind Regional Test Centers: Preprint

    SciTech Connect (OSTI)

    Jimenez, T.; Forsyth, T.; Huskey, A.; Mendoza, I.; Sinclair, K.; Smith, J.

    2011-03-01

    The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to a small number of U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. Within the past few years, the DOE, National Renewable Energy Lab (NREL), and some states have worked with the North American SWT industry to create a SWT certification infrastructure. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. The American Wind Energy Association (AWEA) released the AWEA Small Wind Turbine Performance and Safety Standard (AWEA Standard 9.1 - 2009) in December 2009. The Small Wind Certification Council (SWCC), a North American certification body, began accepting applications for certification to the AWEA standard in February 2010. To reduce certification testing costs, DOE/NREL is providing financial and technical assistance for an initial round of tests at four SWT test sites which were selected via a competitive solicitation. The four organizations selected are Windward Engineering (Utah), The Alternative Energy Institute at West Texas A&M (Texas), a consortium consisting of Kansas State University and Colby Community College (Kansas), and Intertek (New York). Each organization will test two small wind turbines as part of their respective subcontract with DOE/NREL. The testing results will be made publically available. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification.

  2. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at wind energy sites are becoming paramount. Regime-switching space-time (RST) models merge meteorological forecast regimes at the wind energy site and fits a conditional predictive model for each regime

  3. Clean Energy Application Center

    SciTech Connect (OSTI)

    Freihaut, Jim

    2013-09-30

    The Mid Atlantic Clean Energy Application Center (MACEAC), managed by The Penn State College of Engineering, serves the six states in the Mid-Atlantic region (Pennsylvania, New Jersey, Delaware, Maryland, Virginia and West Virginia) plus the District of Columbia. The goals of the Mid-Atlantic CEAC are to promote the adoption of Combined Heat and Power (CHP), Waste Heat Recovery (WHR) and District Energy Systems (DES) in the Mid Atlantic area through education and technical support to more than 1,200 regional industry and government representatives in the region. The successful promotion of these technologies by the MACEAC was accomplished through the following efforts; (1)The MACEAC developed a series of technology transfer networks with State energy and environmental offices, Association of Energy Engineers local chapters, local community development organizations, utilities and, Penn State Department of Architectural Engineering alumni and their firms to effectively educate local practitioners about the energy utilization, environmental and economic advantages of CHP, WHR and DES; (2) Completed assessments of the regional technical and market potential for CHP, WHR and DE technologies application in the context of state specific energy prices, state energy and efficiency portfolio development. The studies were completed for Pennsylvania, New Jersey and Maryland and included a set of incentive adoption probability models used as a to guide during implementation discussions with State energy policy makers; (3) Using the technical and market assessments and adoption incentive models, the Mid Atlantic CEAC developed regional strategic action plans for the promotion of CHP Application technology for Pennsylvania, New Jersey and Maryland; (4) The CHP market assessment and incentive adoption model information was discussed, on a continuing basis, with relevant state agencies, policy makers and Public Utility Commission organizations resulting in CHP favorable incentive programs in New Jersey, Pennsylvania, Maryland and Delaware; (5) Developed and maintained a MACEAC website to provide technical information and regional CHP, WHR and DE case studies and site profiles for use by interested stakeholders in information transfer and policy discussions; (6) Provided Technical Assistance through feasibility studies and on site evaluations. The MACEAC completed 28 technical evaluations and 9 Level 1 CHP analyses ; and (7) the MACEAC provided Technical Education to the region through a series of 29 workshops and webinars, 37 technical presentations, 14 seminars and participation in 13 CHP conferences.

  4. Cow Branch Wind Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation EU-UNDP Climate ChangeTexas: Energyof LosCow

  5. NREL: Wind Research - National Wind Technology Center Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12WorkingSolarTechnologiesSilverGrid

  6. White Oak Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw,What Is a Small Community WindWhere is DBWindWhiteWind

  7. Huayi Wind Blade Research Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTLTechnology SrlWind DevelopmentShantou WindHuayi

  8. National Wind Technology Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,National Marine Fisheries Service JumpTechnology Center Jump

  9. Lee-Dekalb Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:Laredo

  10. Wyoming Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to:Wylie, Texas: Energy Resources Jump

  11. Minco Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysvilleMicrogravity-HybridCredits LLCLandfillI &

  12. Alta Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.EnergyWoodenDateSA JumpSolar PV Jump to:AltE Jump

  13. NREL National Wind Technology Center Site Map

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on771/6/14 Contact:News Releases | NREL NRELRow 3 Site 3.4 Site

  14. WINDExchange: Wind Energy Regional Resource Centers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|UpcomingVisit UsNews This pageMarket

  15. National Wind Technology Center Controllable Grid Interface

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolar Photovoltaic SolarLab Programs National Undergraduate

  16. NREL: National Wind Technology Center Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of1855 m,

  17. National Wind Technology Center - Local Information | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience (SC)ResourceScience » NSSCenter -

  18. MIDC: National Wind Technology Center (M2)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousandReport) | SciTech ConnectFuture3,LastMICKEY Small

  19. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  20. National Wind Technology Center Dynamic 5-Megawatt Dynamometer

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    The National Wind Technology Center (NWTC) offers wind industry engineers a unique opportunity to conduct a wide range of tests. Its custom-designed dynamometers can test wind turbine systems from 1 kilowatt (kW) to 5 megawatts (MW). The NWTC's new dynamometer facility simulates operating field conditions to assess the reliability and performance of wind turbine prototypes and commercial machines, thereby reducing deployment time, failures, and maintenance or replacement costs. Funded by the U.S. Department of Energy with American Recovery and Reinvestment Act (ARRA) funds, the 5-MW dynamometer will provide the ability to test wind turbine drivetrains and connect those drivetrains directly to the electricity grid or through a controllable grid interface (CGI). The CGI tests the low-voltage ride-through capability of a drivetrain as well as its response to faults and other abnormal grid conditions.

  1. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    ScienceCinema (OSTI)

    Felker, Fort

    2014-06-10

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  2. National Wind Tecnology Center Provides Dual Axis Resonant Blade Testing

    SciTech Connect (OSTI)

    Felker, Fort

    2013-11-13

    NREL's Structural Testing Laboratory at the National Wind Technology Center (NWTC) provides experimental laboratories, computer facilities for analytical work, space for assembling components and turbines for atmospheric testing as well as office space for industry researchers. Fort Felker, center director at the NWTC, discusses NREL's state-of-the-art structural testing capabilities and shows a flapwise and edgewise blade test in progress.

  3. Turbine Inflow Characterization at the National Wind Technology Center: Preprint

    SciTech Connect (OSTI)

    Clifton, A.; Schreck, S.; Scott, G.; Kelley, N.; Lundquist, J.

    2012-01-01

    Utility-scale wind turbines operate in dynamic flows that can vary significantly over timescales from less than a second to several years. To better understand the inflow to utility-scale turbines, two inflow towers were installed and commissioned at the National Renewable Energy Laboratory's (NREL) National Wind Technology Center near Boulder, Colorado, in 2011. These towers are 135 m tall and instrumented with a combination of sonic anemometers, cup anemometers, wind vanes, and temperature measurements to characterize the inflow wind speed and direction, turbulence, stability and thermal stratification to two utility-scale turbines. Herein, we present variations in mean and turbulent wind parameters with height, atmospheric stability, and as a function of wind direction that could be important for turbine operation as well as persistence of turbine wakes. Wind speed, turbulence intensity, and dissipation are all factors that affect turbine performance. Our results shown that these all vary with height across the rotor disk, demonstrating the importance of measuring atmospheric conditions that influence wind turbine performance at multiple heights in the rotor disk, rather than relying on extrapolation from lower levels.

  4. Stanton Energy Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,Energy Center Wind Farm Jump

  5. Great Lakes Science Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogleProgramsScience Center Wind

  6. Wind Technology Testing Center Acquires New Blade Fatigue Test System |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy Costs by IncreasingWholeWindAward |2Department of

  7. Horse Hollow Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine Jump to:II Wind Farm JumpHorseII

  8. Loess Hills Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWindsCompressedListguided waves fromLocustLoess Hills

  9. Mower County Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston, Nevada:WindIV JumpIMower

  10. NREL: Renewable Resource Data Center - Wind Resource Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial ToolkitSMARTS - Simple Model of theWind Resource

  11. Model Validation at the 204-MW New Mexico Wind Energy Center

    SciTech Connect (OSTI)

    Muljadi, E.; Butterfield, C. P.; Ellis, A.; Mechenbier, J.; Hochheimer, J.; Young, R.; Miller, N.; Delmerico, R.; Zavadil, R.; Smith, J. C.

    2006-06-01

    Poster for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing model validation at the 204-MW New Mexico Wind Energy Center.

  12. National Wind Technology Center sitewide, Golden, CO: Environmental assessment

    SciTech Connect (OSTI)

    1996-11-01

    The National Renewable Energy Laboratory (NREL), the nation`s primary solar and renewable energy research laboratory, proposes to expand its wind technology research and development program activities at its National Wind Technology Center (NWTC) near Golden, Colorado. NWTC is an existing wind energy research facility operated by NREL for the US Department of Energy (DOE). Proposed activities include the construction and reuse of buildings and facilities, installation of up to 20 wind turbine test sites, improvements in infrastructure, and subsequent research activities, technology testing, and site operations. In addition to wind turbine test activities, NWTC may be used to support other NREL program activities and small-scale demonstration projects. This document assesses potential consequences to resources within the physical, biological, and human environment, including potential impacts to: air quality, geology and soils, water resources, biological resources, cultural and historic resources, socioeconomic resources, land use, visual resources, noise environment, hazardous materials and waste management, and health and safety conditions. Comment letters were received from several agencies in response to the scoping and predecisional draft reviews. The comments have been incorporated as appropriate into the document with full text of the letters contained in the Appendices. Additionally, information from the Rocky Flats Environmental Technology Site on going sitewide assessment of potential environmental impacts has been reviewed and discussed by representatives of both parties and incorporated into the document as appropriate.

  13. Four Corners Wind Resource Center Webinar: Building Utility-Scale Wind: Permitting and Regulation Lessons for County Decision-Makers

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Four Corners Wind Resource Center will host this webinar exploring lessons learned in the permitting of utility-scale wind projects and the development of ordinances and regulations for...

  14. The Operational Use of QuikSCAT Ocean Surface Vector Winds at the National Hurricane Center

    E-Print Network [OSTI]

    Hennon, Christopher C.

    wind retrievals from the NASA Quick Scatterometer (QuikSCAT) in operational forecast and analysis (TC) analysis and forecasting for center location/identification, intensity (maximum sustained wind wind areas, and improved forecasts of high-wind events. The development of a climatology of gap wind

  15. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching

    E-Print Network [OSTI]

    Genton, Marc G.

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

  16. Midwest Clean Energy Application Center

    SciTech Connect (OSTI)

    Cuttica, John; Haefke, Cliff

    2013-12-31

    The Midwest Clean Energy Application Center (CEAC) was one of eight regional centers that promoted and assisted in transforming the market for combined heat and power (CHP), waste heat to power (WHP), and district energy (DE) technologies and concepts throughout the United States between October 1, 2009 and December 31, 2013. The key services the CEACs provided included: ? Market Opportunity Analyses – Supporting analyses of CHP market opportunities in diverse markets including industrial, federal, institutional, and commercial sectors. ? Education and Outreach – Providing information on the energy and non-energy benefits and applications of CHP to state and local policy makers, regulators, energy end-users, trade associations and others. Information was shared on the Midwest CEAC website: www.midwestcleanergy.org. ? Technical Assistance – Providing technical assistance to end-users and stakeholders to help them consider CHP, waste heat to power, and/or district energy with CHP in their facility and to help them through the project development process from initial CHP screening to installation. The Midwest CEAC provided services to the Midwest Region that included the states of Illinois, Indiana, Iowa, Kansas, Michigan, Minnesota, Missouri, Nebraska, North Dakota, Ohio, South Dakota, and Wisconsin.

  17. Experiences with the Application of the Non-Hydrostatic Mesoscale Model GESIMA for assessing Wind Potential in

    E-Print Network [OSTI]

    Heinemann, Detlev

    .physik.uni-oldenburg.de/ehf *GKSS Research Center Geesthacht, Max-Planck-Straße 1, D-21494 Geesthacht, Germany To asses wind are lim- ited. Especially the accuracy of predictions with these models for wind energy applications Introduction After an enormous growth of wind energy use in Ger- manys coastal regions the inland becomes more

  18. NREL's Wind R&D Success Stories, National Wind Technology Center (NWTC) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-01-01

    Wind energy research, development, and deployment have reduced the cost of large and small wind turbine technologies, increased wind energy system reliability and operability, lowered risk by validating performance and design, increased the understanding of the true impacts of wind energy on the U.S. electrical infrastructure, and expanded wind energy markets. A synopsis of research conducted on utility-scale wind turbines, small wind turbines, software, components, market development and grid integration are detailed.

  19. Tropical Cyclone Wind Retrievals from the Advanced Microwave Sounding Unit: Application to Surface Wind Analysis

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    Tropical Cyclone Wind Retrievals from the Advanced Microwave Sounding Unit: Application to Surface Wind Analysis KOTARO BESSHO Japan Meteorological Agency/Meteorological Research Institute, Tsukuba City winds at 850 hPa from tropical cyclones retrieved using the nonlinear balance equation, where the mass

  20. IDEA Clean Energy Application Center

    SciTech Connect (OSTI)

    Thornton, Robert

    2013-09-30

    The DOE Clean Energy Application Centers were launched with a goal of focusing on important aspects of our nation’s energy supply including Efficiency, Reliability and Resiliency. Clean Energy solutions based on Combined Heat & Power (CHP), District Energy and Waste Heat Recovery are at the core of ensuring a reliable and efficient energy infrastructure for campuses, communities, and industry and public enterprises across the country. IDEA members which include colleges and universities, hospitals, airports, downtown utilities as well as manufacturers, suppliers and service providers have long-standing expertise in the planning, design, construction and operations of Clean Energy systems. They represent an established base of successful projects and systems at scale and serve important and critical energy loads. They also offer experience, lessons learned and best practices which are of immense value to the sustained growth of the Clean Energy sector. IDEA has been able to leverage the funds from the project award to raise the visibility, improve the understanding and increase deployment CHP, District Energy and Waste Heat Recovery solutions across the regions of our nation, in collaboration with the regional CEAC’s. On August 30, 2012, President Obama signed an Executive Order to accelerate investments in industrial energy efficiency (EE), including CHP and set a national goal of 40 GW of new CHP installation over the next decade IDEA is pleased to have been able to support this Executive Order in a variety of ways including raising awareness of the goal through educational workshops and Conferences and recognizing the installation of large scale CHP and district energy systems A supporting key area of collaboration has involved IDEA providing technical assistance on District Energy/CHP project screenings and feasibility to the CEAC’s for multi building, multi-use projects. The award was instrumental in the development of a first-order screening/feasibility tool for these types of community energy projects. The Excel based tool incorporates hourly climate based building loads data to arrive at the composite energy demand for the district and compares the Net Present Value (NPV) of the costs of CHP/DE alternatives. This tool has been used to provide assistance to several projects in the Northeast, Mid-Atlantic, Intermountain and Pacific Regions. The tool was disseminated to the CEACs and supplemented by a Training Webinar and a How to Guide IDEA produced a US Community Energy Development Guide to support mayors, planners, community leaders, real estate developers and economic development officials who are interested in planning more sustainable urban energy infrastructure, creating community energy master plans and implementing CHP/ District Energy systems in cities, communities and towns. IDEA has collected industry data and provided a comprehensive data set containing information on District Energy installations in the US. District energy systems are present in 49 states and the District of Columbia. Of the 597 systems 55% were DE alone while the remainder was some combination of CHP, district heating, and district cooling. District energy systems that do not currently involve electric generation are strong near-term candidates for the adoption of CHP due to the magnitude of their aggregated thermal load. This data has helped inform specific and targeted initiatives including technical assistance provided by the CEAC’s for EPA’s Boiler MACT Compliance by large District Heating System boilers. These outcomes have been greatly enabled by the close coordination and collaboration with DOE CEAC leadership and with the eight regional US DOE Clean Energy Application Centers and the award’s incremental funding has allowed IDEA to leverage our resources to be an effective champion for Clean Energy.

  1. Synchrophasor Applications for Wind Power Generation

    SciTech Connect (OSTI)

    Muljadi, E.; Zhang, Y. C.; Allen, A.; Singh, M.; Gevorgian, V.; Wan, Y. H.

    2014-02-01

    The U.S. power industry is undertaking several initiatives that will improve the operations of the electric power grid. One of those is the implementation of wide-area measurements using phasor measurement units to dynamically monitor the operations and status of the network and provide advanced situational awareness and stability assessment. The overviews of synchrophasors and stability analyses in this report are intended to present the potential future applications of synchrophasors for power system operations under high penetrations of wind and other renewable energy sources.

  2. 2013 -2014 SALT Center SCHOLARSHIP AWARD APPLICATION

    E-Print Network [OSTI]

    Watkins, Joseph C.

    2013 - 2014 SALT Center SCHOLARSHIP AWARD APPLICATION Deadline: March 1, 2013 Scholarship Awards of the candidate. (Factors considered: FAFSA, GPA, SALT Center usage) Scholarship Awards are based upon available funds. Scholarship Awards apply to SALT Center program fees only. Scholarship Application materials

  3. Northeast Clean Energy Application Center

    SciTech Connect (OSTI)

    Bourgeois, Tom

    2013-09-30

    From October 1, 2009 through September 30, 2013 (“contract period”), the Northeast Clean Energy Application Center (“NE-CEAC”) worked in New York and New England (Connecticut, Rhode Island, Vermont, Massachusetts, New Hampshire, and Maine) to create a more robust market for the deployment of clean energy technologies (CETs) including combined heat and power (CHP), district energy systems (DES), and waste heat recovery (WHR) systems through the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers. CHP, DES, and WHR can help reduce greenhouse gas emissions, reduce electrical and thermal energy costs, and provide more reliable energy for users throughout the United States. The NE-CEAC’s efforts in the provision of technical assistance, education and outreach, and strategic market analysis and support for decision-makers helped advance the market for CETs in the Northeast thereby helping the region move towards the following outcomes: • Reduction of greenhouse gas emissions and criteria pollutants • Improvements in energy efficiency resulting in lower costs of doing business • Productivity gains in industry and efficiency gains in buildings • Lower regional energy costs • Strengthened energy security • Enhanced consumer choice • Reduced price risks for end-users • Economic development effects keeping more jobs and more income in our regional economy Over the contract period, NE-CEAC provided technical assistance to approximately 56 different potential end-users that were interested in CHP and other CETs for their facility or facilities. Of these 56 potential end-users, five new CHP projects totaling over 60 MW of install capacity became operational during the contract period. The NE-CEAC helped host numerous target market workshops, trainings, and webinars; and NE-CEAC staff delivered presentations at many other workshops and conferences. In total, over 60 different workshops, conferences, webinars, and presentation were hosted or delivered during the contract period. The NE-CEAC also produced publically available educational materials such as CHP project profiles. Finally, the NE-CEAC worked closely with the relevant state agencies involved with CHP development. In New York, the NE-CEAC played an important role in securing and maintaining funding for CHP incentive programs administered by the New York State Energy Research Development Authority. NE-CEAC was also involved in the NYC Mayor's Office DG Collaborative. The NECEAC was also named a strategic resource for the Connecticut Department of Energy and Environmental Protection’s innovative Microgrid Pilot Program.

  4. National Wind Technology Center to Debut New Dynamometer (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2013-05-01

    New test facility will be used to accelerate the development and deployment of next-generation offshore and land-based wind energy technologies.

  5. Wind Technology Testing Center Acquires New Blade Fatigue Test...

    Broader source: Energy.gov (indexed) [DOE]

    multimegawatt wind turbine blade flap fatigue test. Addthis Related Articles DOE's New Large Blade Test Facility in Massachusetts Completes First Commercial Blade Tests...

  6. USAGE OF RADARS FOR WIND ENERGY APPICATIONS Determine the benefit of using radar observations for wind energy applications by

    E-Print Network [OSTI]

    USAGE OF RADARS FOR WIND ENERGY APPICATIONS TASK: Determine the benefit of using radar observations for wind energy applications by analyzing i) the resolution effects and ii) sensitivity effects of weather radar systems. MOTIVATION: Wind energy applications strongly focus high-resolution wind observations

  7. Theoretical Developments and Practical Aspects of Dynamic Systems in Wind Energy Applications 

    E-Print Network [OSTI]

    Owens, Brian C

    2013-11-07

    for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a viable option. Vertical-axis wind turbines (VAWTs) are potentially ideal candidates for large offshore wind energy applications, and may...

  8. 2012 Market Report on Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.

    2013-08-01

    An annual report on U.S. wind power in distributed applications – expanded to include small, mid-size, and utility-scale installations – including key statistics, economic data, installation, capacity, and generation statistics, and more.

  9. Testing Active Power Control from Wind Power at the National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-05-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  10. Application - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Spins Do The TwistContract2Application 2015

  11. Application Schedule - Combustion Energy Frontier Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Spins Do TheApplication Porting

  12. Callahan Divide Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButte County, California:InformationInformation

  13. Acoustic Deterrent Workshop National Wind Technology Center, Louisville, CO

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram:Y-12 Beta-3AUDIT REPORT:Federal Employee FatalityEnergy

  14. Automatic fine-tuning and wind simulation at the Offshore Technology Research Center (OTRC) 

    E-Print Network [OSTI]

    Miller, Mark Alan

    1994-01-01

    A method for developing an automatic fine-tuning controller for matching a specification in the frequency domain is developed for the wind simulation equipment at the Offshore Technology Research Center (OTRC). A test signal synthesis method...

  15. Spotsylvania Career and Tech Center Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage Edit withSpion Kop Jump to:SpiritJump

  16. Wilton Wind Energy Center I (2005) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, search Name: Wilson and Dalton Place:5)

  17. Wilton Wind Energy Center I (2006) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, search Name: Wilson and Dalton Place:5)6)

  18. Wilton Wind Energy Center II I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, search Name: Wilson and Dalton Place:5)6)I

  19. Wilton Wind Energy Center II II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, search Name: Wilson and Dalton

  20. Woods Hole Research Center Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation,Wood County Electric Coop, IncCoopHole

  1. Hayes Center Public Schools Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energy ResourcesHasselbachLight CompanysourceJump

  2. Minco II Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysvilleMicrogravity-HybridCredits LLCLandfillI & IIMinco II

  3. Elk City Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop, Inc Jump to:ElectraLinkofProfilingLabsElk City

  4. Buffalo Mountain Wind Energy Center I | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformation ForestBroadStarBrophyBryteBuenos3I Jump

  5. Buffalo Mountain Wind Energy Center II | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:PontiacInformation ForestBroadStarBrophyBryteBuenos3I JumpII

  6. New Mexico Wind Energy Center | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation,NationalJersey/Incentives < New

  7. Northern Colorado Wind Energy Center (GE) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd| OpenInformationConsortium NAVC JumpGE) Jump to:

  8. Northern Colorado Wind Energy Center (Siemens) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd| OpenInformationConsortium NAVC JumpGE) Jump

  9. Oklahoma Wind Energy Center - A | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformation 6thOhmsett Tow TankOkanoganA Jump to:

  10. Oklahoma Wind Energy Center - B | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:InformationInformation 6thOhmsett Tow TankOkanoganA Jump to:B

  11. regional clean energy application centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (DOE's) Regional Clean Energy Application Centers (CEACs), formerly called the Combined Heat and Power (CHP) Regional Application Centers (RACs), promote and assist in transforming...

  12. NREL: Learning - National Wind Technology Center Video (Text Version)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatial Toolkit The Geospatial ToolkitElectricity

  13. Pantex to Become Wind Energy Research Center | National Nuclear Security

    National Nuclear Security Administration (NNSA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal GasAdministration Medal01 Sandia4)9 Federal Register / Vol. 76, No.Administration to

  14. New Wind Technology Resource Center Launched | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment ofOffice|in the subsurface is better6,DepartmentOak Ridge Nationallaunch

  15. Community Wind Handbook/Submit Permit Applications | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar EnergyLawler,Coal TechnologiesClioCommunity Wind Handbook/Find

  16. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota

    Broader source: Energy.gov [DOE]

    Western Area Power Administration is evaluating the potential environmental impacts of interconnecting NextEra Energy Resources proposed Wilton IV Wind Energy Center Project, near Bismarck, North Dakota, to Western’s existing Wilton/Baldwin substation and allowing NextEra’s existing wind projects in this area to operate above 50 annual MW. Western is preparing a Supplemental Draft EIS to address substantial changes to the proposal, including 30 turbine locations and 5 alternate turbine locations in Crofte Township.

  17. State Fair Wind Energy Education Center Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPage EditStamford,Energy

  18. Gulf Coast Clean Energy Application Center

    SciTech Connect (OSTI)

    Dillingham, Gavin

    2013-09-30

    The Gulf Coast Clean Energy Application Center was initiated to significantly improve market and regulatory conditions for the implementation of combined heat and power technologies. The GC CEAC was responsible for the development of CHP in Texas, Louisiana and Oklahoma. Through this program we employed a variety of outreach and education techniques, developed and deployed assessment tools and conducted market assessments. These efforts resulted in the growth of the combined heat and power market in the Gulf Coast region with a realization of more efficient energy generation, reduced emissions and a more resilient infrastructure. Specific t research, we did not formally investigate any techniques with any formal research design or methodology.

  19. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    1996-09-24

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  20. NREL National Wind Technology Center (NWTC): M2 Tower; Boulder, Colorado (Data)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Jager, D.; Andreas, A.

    The National Wind Technology Center (NWTC), located at the foot of the Rocky Mountains near Boulder, Colorado, is a world-class research facility managed by NREL for the U.S. Department of Energy. NWTC researchers work with members of the wind energy industry to advance wind power technologies that lower the cost of wind energy through research and development of state-of-the-art wind turbine designs. NREL's Measurement and Instrument Data Center provides data from NWTC's M2 tower which are derived from instruments mounted on or near an 82 meter (270 foot) meteorological tower located at the western edge of the NWTC site and about 11 km (7 miles) west of Broomfield, and approximately 8 km (5 miles) south of Boulder, Colorado. The data represent the mean value of readings taken every two seconds and averaged over one minute. The wind speed and direction are measured at six heights on the tower and air temperature is measured at three heights. The dew point temperature, relative humidity, barometric pressure, totalized liquid precipitation, and global solar radiation are also available.

  1. Wind for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2010-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses, by installing small wind turbines at community "host" schools, by implementing teacher training with interactive curricula at each host school. This poster provides an overview of the first two years of the Wind for Schools project, primarily supporting activities in Colorado, Kansas, Nebraska, South Dakota, Montana, and Idaho.

  2. Wind Technology Testing Center Earns A2LA Accreditation for Blade Testing |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy Costs by IncreasingWholeWindAward |2Department

  3. Peetz Table Wind Energy Center (3Q07) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:ParamountEnergy GroupPeetz Table Wind

  4. Northwest Region Clean Energy Application Center

    SciTech Connect (OSTI)

    Sjoding, David

    2013-09-30

    The main objective of the Northwest Clean Energy Application Center (NW CEAC) is to promote and support implementation of clean energy technologies. These technologies include combined heat and power (CHP), district energy, waste heat recovery with a primary focus on waste heat to power, and other related clean energy systems such as stationary fuel cell CHP systems. The northwest states include AK, ID, MT, OR, and WA. The key aim/outcome of the Center is to promote and support implementation of clean energy projects. Implemented projects result in a number of benefits including increased energy efficiency, renewable energy development (when using opportunity fuels), reduced carbon emissions, improved facility economics helping to preserve jobs, and reduced criteria pollutants calculated on an output-based emissions basis. Specific objectives performed by the NW CEAC fall within the following five broad promotion and support categories: 1) Center management and planning including database support; 2) Education and Outreach including plan development, website, target market workshops, and education/outreach materials development 3) Identification and provision of screening assessments & feasibility studies as funded by the facility or occasionally further support of Potential High Impact Projects; 4) Project implementation assistance/trouble shooting; and 5) Development of a supportive clean energy policy and initiative/financing framework.

  5. EIS-0462: Crowned Ridge Wind Energy Center Project, Grant and Codington Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS analyzes DOE's decision to approve a grid interconnection request by NextEra Energy Resources for its proposed 150-megawatt (MW) Crowned Ridge Wind Energy Center Project with the Western Area Power Administration's existing Watertown Substation in Codington County, South Dakota.

  6. EIS-0461: Hyde County Wind Energy Center Project, Hyde and Buffalo Counties, South Dakota

    Broader source: Energy.gov [DOE]

    This EIS will evaluate the environmental impacts of interconnecting the proposed 150 megawatt Hyde County Wind Energy Center Project, in Hyde County, South Dakota, with DOE’s Western Area Power Administration’s existing Fort Thompson Substation in Buffalo County, South Dakota.

  7. Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under an

    E-Print Network [OSTI]

    Alonso, Juan J.

    Multi-Fidelity Uncertainty Quantification: Application to a Vertical Axis Wind Turbine Under, USA Designing better vertical axis wind turbines (VAWTs) requires considering the uncertain wind cost. Low-fidelity tools are used extensively in the modeling of vertical axis wind turbines (VAWTs)3

  8. Migration of Applications and Information to Data Center Services

    E-Print Network [OSTI]

    Shahriar, Selim

    Migration of Applications and Information to Data Center Services Information Technology Office administers two data centers that serve the University's application hosting and information protection needs. With the exception of a very few technical systems, all applications within the data centers are owned by schools

  9. Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Optimisation of a Small Non Controlled Wind Energy Conversion System for Stand-Alone Applications. This article proposes a method to optimize the design of a small fixed-voltage wind energy conversion system are shown and discussed. Key words Wind energy conversion system, stand-alone application, nonlinear

  10. Expanding Small Wind Turbine Certification Testing - Establishment of Regional Test Centers (Poster)

    SciTech Connect (OSTI)

    Jimenez, A.; Bowen, A.; Forsyth, T.; Huskey, A.; Sinclair, K.; van Dam, J.; Smith, J.

    2010-05-01

    Presented at the WINDPOWER 2010 Conference & Exhibition, 23-26 May 2010, Dallas, Texas. The rapid growth of the small wind turbine (SWT) market is attracting numerous entrants. Small wind turbine purchasers now have many options but often lack information (such as third-party certification) to select a quality turbine. Most SWTs do not have third-party certification due to the expense and difficulty of the certification process. Until recently, the only SWT certification bodies were in Europe. In North America, testing has been limited to U.S. Department of Energy (DOE) subsidized tests conducted at the National Wind Technology Center (NWTC) under the ongoing Independent Testing Project. The goal is to increase the number of certified turbines and gain greater consumer confidence in SWT technology. To reduce certification testing costs, DOE/NREL is assisting in establishing a network of Regional Test Centers (RTCs) to conduct SWT third-party certification testing. To jump-start these RTCs, DOE/NREL is providing financial and technical assistance for an initial round of tests. The goal is to establish a lower-cost U.S. small wind testing capability that will lead to increased SWT certification. This poster describes the project, describes how it fits within broader SWT certification activities, and provides current status.

  11. Energy & Environmental Technology Applications Center | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to:of theClimateElgin,Wind UKEnergiefeld BayernEnergisa

  12. CONGRESSIONAL BRIEFING Offshore Wind

    E-Print Network [OSTI]

    Firestone, Jeremy

    CONGRESSIONAL BRIEFING Offshore Wind Lessons Learned from Europe: Reducing Costs and Creating Jobs Thursday, June 12, 2014 Capitol Visitors Center, Room SVC 215 Enough offshore wind capacity to power six the past decade. What has Europe learned that is applicable to a U.S. effort to deploy offshore wind off

  13. Probing the Density in the Galactic Center Region: Wind-Blown Bubbles and High-Energy Proton Constraints

    E-Print Network [OSTI]

    Christopher L. Fryer; Siming Liu; Gabriel Rockefeller; Aimee Hungerford; Guillaume Belanger

    2006-09-18

    Recent observations of the Galactic center in high-energy gamma-rays (above 0.1TeV) have opened up new ways to study this region, from understanding the emission source of these high-energy photons to constraining the environment in which they are formed. We present a revised theoretical density model of the inner 5pc surrounding Sgr A* based on the fact that the underlying structure of this region is dominated by the winds from the Wolf-Rayet stars orbiting Sgr A*. An ideal probe and application of this density structure is this high energy gamma-ray emission. We assume a proton-scattering model for the production of these gamma-rays and then determine first whether such a model is consistent with the observations and second whether we can use these observations to further constrain the density distribution in the Galactic center.

  14. Certificate Program Application | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &BradburyMay 1,CenterJohnCeremony The Enrico Fermiemploying

  15. Socioeconomic Data and Applications Center (SEDAC) User Services

    E-Print Network [OSTI]

    Columbia University

    Socioeconomic Data and Applications Center (SEDAC) User Services PO Box 1000, 61 Rt 9W, Palisades Aeronautics and Space Administration www.nasa.gov DATA & APPLICATIONS World Data Center for Human Interactions in the Environment (WDC) Overview CIESIN, the World Data Center for Human Interactions in the Environment (WDC

  16. A Context Information Center for M-commerce Applications

    E-Print Network [OSTI]

    Po, Lai-Man

    relevant information to the right users at the right time. We proposed to build such an applicationA Context Information Center for M-commerce Applications MPhil Student: Tenson T. S. Chau. Research Design: We propose to combine three centers in a M-commerce application. They are user information

  17. Scientific Exchange Application | Photosynthetic Antenna Research Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust, High-ThroughputUpcoming ReleaseSecurityPediatricNOAA MAYScientificScientificScientific

  18. wind energy

    National Nuclear Security Administration (NNSA)

    5%2A en Pantex to Become Wind Energy Research Center http:nnsa.energy.govfieldofficesnponpopressreleasespantex-become-wind-energy-research-center

  19. Wind for Schools: Fostering the Human Talent Supply Chain for a 20% Wind Energy Future (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2011-03-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community "host" schools. 3) Implementing teacher training with interactive curricula at each host school.

  20. Double Side Control of Wound Rotor Induction Machine for Wind Energy Application Employing Half Controlled

    E-Print Network [OSTI]

    Lipo, Thomas

    of the machine. By doing so, the winding design (copper volume) and losses in the machine as well as in the power-of-the-art technology for wind power employs a doubly-fed machine with only rotor side control where the stator2005-27 Double Side Control of Wound Rotor Induction Machine for Wind Energy Application Employing

  1. On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications

    E-Print Network [OSTI]

    Manuel, Lance

    On the Study of Uncertainty in Inflow Turbulence Model Parameters in Wind Turbine Applications Korn, Austin, TX 78712 In stochastic simulation of inflow turbulence random fields for wind turbine applica variables forms the basis of this study. A commercial-sized 1.5MW concept wind turbine is considered

  2. Stability Design for the Crane Columns of the Wind Technology Testing Center E. M. Hines1

    E-Print Network [OSTI]

    Hines, Eric

    generation of wind turbine blades for off-shore wind farm development. Whereas the largest blades for land- based wind farms in the United States are currently on the order of 50 m long, and generate 2-3 MW of power per turbine, offshore wind turbines are expected to reach power outputs as high as 10 MW

  3. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    SciTech Connect (OSTI)

    Baring-Gould, I.; Dabo, M.

    2009-02-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  4. Technology, Performance, and Market Report of Wind-Diesel Applications for Remote and Island Communities: Preprint

    SciTech Connect (OSTI)

    Baring-Gould, I.; Dabo, M.

    2009-05-01

    This paper describes the current status of wind-diesel technology and its applications, the current research activities, and the remaining system technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems will be discussed, as well as how recent development to explore distributed energy generation solutions for wind generation can benefit from the performance experience of operating systems. The paper also includes a detailed discussion of the performance of wind-diesel applications in Alaska, where 10 wind-diesel stations are operating and additional systems are currently being implemented. Additionally, because this application represents an international opportunity, a community of interest committed to sharing technical and operating developments is being formed. The authors hope to encourage this expansion while allowing communities and nations to investigate the wind-diesel option for reducing their dependence on diesel-driven energy sources.

  5. Wind for Schools: Developing Educational Programs to Train a New Workforce and the Next Generation of Wind Energy Experts (Poster)

    SciTech Connect (OSTI)

    Flowers, L.; Baring-Gould, I.

    2010-04-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America's Wind for Schools project addresses these issues by: Developing Wind Application Centers (WACs) at universities; installing small wind turbines at community "host" schools; and implementing teacher training with interactive curricula at each host school.

  6. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    Peinke, Joachim

    2014-01-01

    to generate in this way wind speed fluctuations with similar statistics as observed in nature. Forces wereWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary wind inflow conditions M. R. Luhur, J. Peinke, J. Schneemann and M. Wächter ForWind-Center for Wind

  7. The Impact of Mobile Multimedia Applications on Data Center Consolidation

    E-Print Network [OSTI]

    The Impact of Mobile Multimedia Applications on Data Center Consolidation Kiryong Ha, Padmanabhan the computational power and battery life of a mobile device. We first present quantitative evidence cloud-enabled mobile applications that embody voice-, image-, motion- and location- based interactivity

  8. A Feasibility Study for Wind/Hybrid Power System Applications for New England Islands

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    A Feasibility Study for Wind/Hybrid Power System Applications for New England Islands Gabriel systems that presently provide electricity and heating to the islands also vary. Of particular note wind/hybrid systems. A feasibility study, carried out at the Renewable Energy Research Laboratory (RERL

  9. Status of Wind-Diesel Applications in Arctic Climates: Preprint

    SciTech Connect (OSTI)

    Baring-Gould, I.; Corbus, D.

    2007-12-01

    The rising cost of diesel fuel and the environmental regulation for its transportation, use, and storage, combined with the clear impacts of increased arctic temperatures, is driving remote communities to examine alternative methods of providing power. Over the past few years, wind energy has been increasingly used to reduce diesel fuel consumption, providing economic, environmental, and security benefits to the energy supply of communities from Alaska to Antarctica. This summary paper describes the current state of wind-diesel systems, reviews the operation of wind-diesel plants in cold climates, discusses current research activities pertaining to these systems, and addresses their technical and commercial challenges. System architectures, dispatch strategies, and operating experience from a variety of wind-diesel systems in Alaska will be reviewed. Specific focus will also be given to the control of power systems with large amounts of wind generation and the complexities of replacing diesel engine waste heat with excess wind energy, a key factor in assessing power plants for retrofit. A brief overview of steps for assessing the viability of retrofitting diesel power systems with wind technologies will also be provided. Because of the large number of isolated diesel minigrids, the market for adding wind to these systems is substantial, specifically in arctic climates and on islands that rely on diesel-only power generation.

  10. Boron-based Additives in Oil and Grease for Wind Turbine Applications 

    E-Print Network [OSTI]

    Kim, Jun-Hyeok

    2013-06-25

    This research investigates the tribological performance of crystalline and amorphous powders of boron as additives in lubricants: grease and mineral oil for potential applications of wind turbine. This research is focused on the wear resistance...

  11. EA-1750: Smart Grid, Center for Commercialization of Electric Technology, Technology Solutions for Wind Integration in ERCOT, Houston, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the potential environmental impacts of providing a financial assistance grant under the American Recovery and Reinvestment Act of 2009 to the Center for Commercialization of Electric Technology to facilitate the development and demonstration of a multi-faceted, synergistic approach to managing fluctuations in wind power within the Electric Reliability Council of Texas transmission grid.

  12. Math Learning Center Undergraduate Tutor Application LOCAL/ Bozeman address: Phone

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    Math Learning Center Undergraduate Tutor Application Name: ID# LOCAL/ Bozeman address: Phone: City Rosenstein in the Math Department. (Email: sabrina.rosenstein@montana.edu) Name of reference Please list all the college math courses you have taken and the grade received. In the space below, discuss your reasons

  13. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  14. Hydrodynamic and radiative transfer modeling of X-ray emission from colliding WR winds: WR 140 & the Galactic center

    E-Print Network [OSTI]

    Russell, Christopher M P; Cuadra, Jorge; Owocki, Stanley P; Wang, Q Daniel; Hamaguchi, Kenji; Sugawara, Yasuharu; Pollock, Andrew M T; Kallman, Timothy R

    2015-01-01

    Colliding Wolf-Rayet (WR) winds produce thermal X-ray emission widely observed by X-ray telescopes. In wide WR+O binaries, such as WR 140, the X-ray flux is tied to the orbital phase, and is a direct probe of the winds' properties. In the Galactic center, $\\sim$30 WRs orbit the super massive black hole (SMBH) within $\\sim$10", leading to a smorgasbord of wind-wind collisions. To model the X-ray emission of WR 140 and the Galactic center, we perform 3D hydrodynamic simulations to trace the complex gaseous flows, and then carry out 3D radiative transfer calculations to compute the variable X-ray spectra. The model WR 140 RXTE light curve matches the data well for all phases except the X-ray minimum associated with periastron, while the model spectra agree with the RXTE hardness ratio and the shape of the Suzaku observations throughout the orbit. The Galactic center model of the Chandra flux and spectral shape match well in the region r$<$3", but the model flux falls off too rapidly beyond this radius.

  15. Active Power Control Testing at the U.S. National Wind Technology Center (NWTC) (Presentation)

    SciTech Connect (OSTI)

    Ela, E.

    2011-01-01

    In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

  16. Worldwide wind/diesel hybrid power system study: Potential applications and technical issues

    SciTech Connect (OSTI)

    King, W.R.; Johnson, B.L. III (Science Applications International Corp., McLean, VA (USA))

    1991-04-01

    The world market potential for wind/diesel hybrid technology is a function of the need for electric power, the availability of sufficient wind resource to support wind/diesel power, and the existence of buyers with the financial means to invest in the technology. This study includes data related to each of these three factors. This study does not address market penetration, which would require analysis of application specific wind/diesel economics. Buyer purchase criteria, which are vital to assessing market penetration, are discussed only generally. Countries were screened for a country-specific market analysis based on indicators of need and wind resource. Both developed countries and less developed countries'' (LDCs) were screened for wind/diesel market potential. Based on the results of the screening, ten countries showing high market potential were selected for more extensive market analyses. These analyses provide country-specific market data to guide wind/diesel technology developers in making design decisions that will lead to a competitive product. Section 4 presents the country-specific data developed for these analyses, including more extensive wind resource characterization, application-specific market opportunities, business conditions, and energy market characterizations. An attempt was made to identify the potential buyers with ability to pay for wind/diesel technology required to meet the application-specific market opportunities identified for each country. Additionally, the country-specific data are extended to corollary opportunities in countries not covered by the study. Section 2 gives recommendations for wind/diesel research based on the findings of the study. 86 refs.

  17. Pair Winds in Schwarzschild Spacetime with Application to Strange Stars

    E-Print Network [OSTI]

    A. G. Aksenov; M. Milgrom; V. V. Usov

    2007-01-09

    We present the results of numerical simulations of stationary, spherically outflowing, electron-positron pair winds, with total luminosities in the range 10^{34}--10^{42} ergs/s. In the concrete example described here, the wind injection source is a hot, bare, strange star, predicted to be a powerful source of pairs created by the Coulomb barrier at the quark surface. We find that photons dominate in the emerging emission, and the emerging photon spectrum is rather hard and differs substantially from the thermal spectrum expected from a neutron star with the same luminosity. This might help distinguish the putative bare strange stars from neutron stars.

  18. Raw Data from National Wind Technology Center M2 Tower (2001...

    Open Energy Info (EERE)

    such as global PSP (Wm2) and meteorological data, such as temperature, pressure, and wind speed and direction (at 2m, 5m, 10m, 20m, 50m, and 80m). Included here is a portion...

  19. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    SciTech Connect (OSTI)

    Orrell, Alice C.; Flowers, L. T.; Gagne, M. N.; Pro, B. H.; Rhoads-Weaver, H. E.; Jenkins, J. O.; Sahl, K. M.; Baranowski, R. E.

    2013-08-06

    At the end of 2012, U.S. wind turbines in distributed applications reached a 10-year cumulative installed capacity of more than 812 MW from more than 69,000 units across all 50 states. In 2012 alone, nearly 3,800 wind turbines totaling 175 MW of distributed wind capacity were documented in 40 states and in the U.S. Virgin Islands, with 138 MW using utility-scale turbines (i.e., greater than 1 MW in size), 19 MW using mid-size turbines (i.e., 101 kW to 1 MW in size), and 18.4 MW using small turbines (i.e., up to 100 kW in size). Distributed wind is defined in terms of technology application based on a wind project’s location relative to end-use and power-distribution infrastructure, rather than on technology size or project size. Distributed wind systems are either connected on the customer side of the meter (to meet the onsite load) or directly to distribution or micro grids (to support grid operations or offset large loads nearby). Estimated capacity-weighted average costs for 2012 U.S. distributed wind installations was $2,540/kW for utility-scale wind turbines, $2,810/kW for mid-sized wind turbines, and $6,960/kW for newly manufactured (domestic and imported) small wind turbines. An emerging trend observed in 2012 was an increased use of refurbished turbines. The estimated capacity-weighted average cost of refurbished small wind turbines installed in 2012 was $4,080/kW. As a result of multiple projects using utility-scale turbines, Iowa deployed the most new overall distributed wind capacity, 37 MW, in 2012. Nevada deployed the most small wind capacity in 2012, with nearly 8 MW of small wind turbines installed in distributed applications. In the case of mid-size turbines, Ohio led all states in 2012 with 4.9 MW installed in distributed applications. State and federal policies and incentives continued to play a substantial role in the development of distributed wind projects. In 2012, U.S. Treasury Section 1603 payments and grants and loans from the U.S. Department of Agriculture’s Rural Energy for America Program were the main sources of federal funding for distributed wind projects. State and local funding varied across the country, from rebates to loans, tax credits, and other incentives. Reducing utility bills and hedging against potentially rising electricity rates remain drivers of distributed wind installations. In 2012, other drivers included taking advantage of the expiring U.S. Treasury Section 1603 program and a prosperous year for farmers. While 2012 saw a large addition of distributed wind capacity, considerable barriers and challenges remain, such as a weak domestic economy, inconsistent state incentives, and very competitive solar photovoltaic and natural gas prices. The industry remains committed to improving the distributed wind marketplace by advancing the third-party certification process and introducing alternative financing models, such as third-party power purchase agreements and lease-to-own agreements more typical in the solar photovoltaic market. Continued growth is expected in 2013.

  20. Prospects for large scale applications of wind energy

    E-Print Network [OSTI]

    generating wind turbine (1885) Historical development #12;20th century: first electricity generation USA development #12;After 1500: development of the horizontal axis mills La Cour, Askov (DK): First electricity: electricity generation DK: Gedser (1975) NL: De Traanroeier (1956) D: Hütter (1959) Historical development #12

  1. Wind Technologies & Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robichaud, R.

    2014-07-01

    This presentation covers opportunities for wind technology; wind energy market trends; an overview of the National Wind Technology Center near Boulder, Colorado; wind energy price and cost trends; wind turbine technology improvements; and wind resource characterization improvements.

  2. The Application of Suction Caisson Foundations to Offshore Wind Turbines Extracts from a proposal to the DTI

    E-Print Network [OSTI]

    Byrne, Byron

    The market for offshore wind farms in the UK is expected to be substantial. The initial sites proposed offshore wind farm development may require the installation of up to fifty similar or identical units for application on offshore wind farms for the following reasons: · Suction caissons are simple steel fabrications

  3. Wind for Schools: A National Data and Curricula Development Activity for Schools (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, I.

    2011-05-01

    As the United States dramatically expands wind energy deployment, the industry is challenged with developing a skilled workforce and addressing public resistance. Wind Powering America?s Wind for Schools project addresses these issues by: 1) Developing Wind Application Centers (WACs) at universities; WAC students assist in implementing school wind turbines and participate in wind courses. 2) Installing small wind turbines at community 'host' schools. 3) Implementing teacher training with interactive curricula at each host school.

  4. Wind Energy Applications for Municipal Water Services: Opportunities, Situation Analyses, and Case Studies; Preprint

    SciTech Connect (OSTI)

    Flowers, L.; Miner-Nordstrom, L.

    2006-01-01

    As communities grow, greater demands are placed on water supplies, wastewater services, and the electricity needed to power the growing water services infrastructure. Water is also a critical resource for thermoelectric power plants. Future population growth in the United States is therefore expected to heighten competition for water resources. Many parts of the United States with increasing water stresses also have significant wind energy resources. Wind power is the fastest-growing electric generation source in the United States and is decreasing in cost to be competitive with thermoelectric generation. Wind energy can offer communities in water-stressed areas the option of economically meeting increasing energy needs without increasing demands on valuable water resources. Wind energy can also provide targeted energy production to serve critical local water-system needs. The research presented in this report describes a systematic assessment of the potential for wind power to support water utility operation, with the objective to identify promising technical applications and water utility case study opportunities. The first section describes the current situation that municipal providers face with respect to energy and water. The second section describes the progress that wind technologies have made in recent years to become a cost-effective electricity source. The third section describes the analysis employed to assess potential for wind power in support of water service providers, as well as two case studies. The report concludes with results and recommendations.

  5. Application of the AC Commutator Machine in Wind Energy Conversion Systems 

    E-Print Network [OSTI]

    El-Jamous, Sami Georges

    1981-01-01

    APPLICATION OF THE AC OOMM3TATOR MACHINE IN WIND ENERGY CONVKGION SYSTB3S A Thesis By SAMI GF33RGES EL-Jhl'3OUS Submitted to the Graduate College of Twas AW University in partial fulfillment of the requirement for the degree of MASTER... Application of the AC Comnutator Nachine in Wind Energy Conversion Systems. (Nay 1981) Semi Georges El-Jasnus, B. A. Nathenatics, Texas ASN University; Chairman of Advisory Comnittee: Dr. A. K. Ayoub The thesis investigates the tectudcal feasibility...

  6. Session: Development and application of guidelines for siting, constructing, operating and monitoring wind turbines

    SciTech Connect (OSTI)

    Manville, Albert; Hueckel, Greg

    2004-09-01

    This session at the Wind Energy and Birds/Bats workshop consisted of two presentations followed by a discussion/question and answer period. The two papers were: 'Development and Application of USFWS Guidance for Site Evaluation, Siting, Construction, Operation and Monitoring of Wind Turbines' by Albert Manville and 'Wind Power in Washington State' by Greg Hueckel. The session provided a comparison of wind project guidelines developed by the U.S. Fish and Wildlife Service (USFWS) in May 2003 and the Washington State Department of Fish and Wildlife in August 2003. Questions addressed included: is there a need or desire for uniform national or state criteria; can other states learn from Washington State's example, or from the USFWS voluntary guidelines; should there be uniform requirements/guidelines/check-lists for the siting, operation, monitoring, and mitigation to prevent or minimize avian, bat, and other wildlife impacts.

  7. Center for Wind Energy Research 2d-Laser Cantilever Anemometer

    E-Print Network [OSTI]

    Peinke, Joachim

    of anemometer is presented. The so-called 2d-Laser Cantilever Anemometer (2d-LCA) has been developed from atomic force microscopy. The main motivation for the development of the 2d-LCA was a lack the recorded positions for each velocity and angle of attack. 2d-LCA Turning table Wind tunnel Outlet 2d-LCA

  8. Final Report. Center for Scalable Application Development Software

    SciTech Connect (OSTI)

    Mellor-Crummey, John

    2014-10-26

    The Center for Scalable Application Development Software (CScADS) was established as a part- nership between Rice University, Argonne National Laboratory, University of California Berkeley, University of Tennessee – Knoxville, and University of Wisconsin – Madison. CScADS pursued an integrated set of activities with the aim of increasing the productivity of DOE computational scientists by catalyzing the development of systems software, libraries, compilers, and tools for leadership computing platforms. Principal Center activities were workshops to engage the research community in the challenges of leadership computing, research and development of open-source software, and work with computational scientists to help them develop codes for leadership computing platforms. This final report summarizes CScADS activities at Rice University in these areas.

  9. H. J. Sutherland and John F. Mandell, "Application of the U.S. High Cycle Fatigue Data Base to Wind Turbine Blade Lifetime Predictions," Energy Week 1996, Book VIII: Wind

    E-Print Network [OSTI]

    to Wind Turbine Blade Lifetime Predictions," Energy Week 1996, Book VIII: Wind Energy, ASME, January PREDICTIONS Herbert J. Sutherland Wind Energy Technology Sandia National Laboratories Albuquerque, NM 87185-February, 1996, pp. 85-92. APPLICATION OF THE U.S. HIGH CYCLE FATIGUE DATA BASE TO WIND TURBINE BLADE LIFETIME

  10. EIS-0469: Wilton IV Wind Energy Center; Burleigh County, North Dakota |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum Based|DepartmentStatement |to Conduct Scoping Meetings | Department

  11. Center for Applications of Single-Walled Carbon Nanotubes

    SciTech Connect (OSTI)

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  12. 60Dr. Gregory A. Dorais, NASA Ames Research Center Dr. David Kortenkamp, NASA Johnson Space Center NASA HCA Applications OutlineNASA HCA Applications Outline

    E-Print Network [OSTI]

    Kortenkamp, David

    60Dr. Gregory A. Dorais, NASA Ames Research Center Dr. David Kortenkamp, NASA Johnson Space Center NASA HCA Applications OutlineNASA HCA Applications Outline l 3T Control Architecture ­ architecture Satellite Assistant (under development) #12;61Dr. Gregory A. Dorais, NASA Ames Research Center Dr. David

  13. Radio Detections of Stellar Winds from the Pistol Star and Other Stars in the Galactic Center Quintuplet Cluster

    E-Print Network [OSTI]

    Lang, C C; Goss, W M; Morris, M; Lang, Cornelia C.; Figer, Don F.

    1999-01-01

    VLA images of the Sickle and Pistol H II regions near the Galactic center at 3.6 and 6 cm reveal six point sources in the region where the dense Quintuplet stellar cluster is located. The spectral indices of five of these sources between 6 cm and 3.6 cm have values of alpha = +0.5 to +0.8, consistent with the interpretation that the radio sources correspond to ionized stellar winds of the massive stars in this cluster. The radio source associated with the Pistol Star shows alpha = -0.4 +/- 0.2, consistent with a flat or slightly non-thermal spectrum.

  14. Radio Detections of Stellar Winds from the Pistol Star and Other Stars in the Galactic Center Quintuplet Cluster

    E-Print Network [OSTI]

    Cornelia C. Lang; Don F. Figer; W. M. Goss; Mark Morris

    1999-07-13

    VLA images of the Sickle and Pistol H II regions near the Galactic center at 3.6 and 6 cm reveal six point sources in the region where the dense Quintuplet stellar cluster is located. The spectral indices of five of these sources between 6 cm and 3.6 cm have values of alpha = +0.5 to +0.8, consistent with the interpretation that the radio sources correspond to ionized stellar winds of the massive stars in this cluster. The radio source associated with the Pistol Star shows alpha = -0.4 +/- 0.2, consistent with a flat or slightly non-thermal spectrum.

  15. Peetz Table Wind Energy Center (4Q07) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly Smart GridNorth Carolina:ParamountEnergy GroupPeetz Table

  16. Final Site-Wide Environmental Assessment of National Renewable Energy Laboratory's National Wind Technology Center

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:FinancingPetroleum12, 2015Executive Order14,Energy 9,UNIVERSITY OF TEXAS AT|| DepartmentPageMay

  17. Monitoring bat and bird fatalities at the Casselman Wind Energy Center in

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on DeliciousMathematicsEnergyInterested Parties - WAPAEnergy6-09.docAERMOD-PRIME, UnitsMonisha ShahPennsylvania |

  18. Notice of Public Scoping - Site-Wide Environmental Assessment of NREL's National Wind Technology Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shinesSolarNew scholarshipThreeFebruaryMuseumEffect ofImplementation

  19. NWTC Controllable Grid Interface (Fact Sheet), National Wind Technology Center (NWTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of09 AugustPlasma PhysicsAdvice:(mobile) storage

  20. NWTC Controllable Grid Interface (Fact Sheet), National Wind Technology Center (NWTC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of09 AugustPlasma PhysicsAdvice:(mobile)

  1. A New Small Wind Center for James Madison University | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s iof1 of 8(May 1983) |Univ. of Utah Ravi

  2. Final Site-Wide Environmental Assessment Department of Energy's National Wind Technology Center at NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journal Article) |Final Report Document Number(Technical Final Site-Wide

  3. NREL Fills Leadership Role at Wind Technology Center - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12 NationalNO FEAR Act Noticefuel cellNRELNREL

  4. Ocean explOrers applicatiOn summer 2015 Seymour Center at Long marine Lab

    E-Print Network [OSTI]

    California at Santa Cruz, University of

    Ocean explOrers applicatiOn · summer 2015 Seymour Center at Long marine Lab MEMBERSHIP: Are you applications to: Seymour Center at Long Marine Lab, Attn: Ocean Explorers, 100 Shaffer Road, Santa Cruz, CA

  5. U.S. DOE Southeast Clean Energy Application Center

    SciTech Connect (OSTI)

    Panzarella, Isaac; Mago, Pedro; Kalland, Stephen

    2013-12-31

    Between 2010 and 2013, the U.S. Department of Energy (DOE) funded the Southeast Clean Energy Application Center (SE-CEAC), co-located at the North Carolina Solar Center at NC State University (NCSU) and at Mississippi State University. The SE-CEAC was one of eight regional CEACs established to promote and assist in transforming the market for combined heat and power (CHP), district energy (DE) and waste heat to power (WHP) throughout the U.S. CHP locates power generation at the point of demand and makes productive use of the residual thermal energy for process and space heating in factories and businesses, thus lowering the cost of meeting electricity and heat requirements and increasing energy efficiency. The overall goal of the SE-CEAC was to support end-user implementation and overall market transformation for CHP and related clean energy technologies. Five objectives were targeted to achieve the goal: 1. Market Analysis and Information Dissemination 2. Outreach and Education for Potential CHP End-users 3. Policy Support for State and Regional Stakeholders 4. Technical Assistance to Support CHP Deployment 5. Collaboration with DOE and other CEACs Throughout the project, the CEACs provided key services of education and outreach, technical assistance and market analysis in support of project objectives. These services were very effective at achieving key objectives of assisting prospective CHP end-users and informing policy makers, utilities and others about the benefits of CHP. There is a marked increase in the awareness of CHP technologies and applications as an energy resource among end-users, policymakers, utility regulators, electric utilities and natural gas utilities in the Southeast region as a result. At the end of 2013, a number of best-practice policies for CHP were applied or under consideration in various Southeast states. The SE-CEAC met its targets for providing technical assistance with over 50 analyses delivered for 412 MW of potential end-users CHP applications. Of these 50 MW of projects were under consideration at the end of 2013 based on SE-CEAC technical assistance findings.

  6. A concurrent precursor inflow method for Large Eddy Simulations and applications to finite length wind farms

    E-Print Network [OSTI]

    Stevens, Richard J A M; Meneveau, Charles

    2014-01-01

    In order to enable simulations of developing wind turbine array boundary layers with highly realistic inflow conditions a concurrent precursor method for Large Eddy Simulations is proposed. In this method we consider two domains simultaneously, i.e. in one domain a turbulent Atmospheric Boundary Layer (ABL) without wind turbines is simulated in order to generate the turbulent inflow conditions for a second domain in which the wind turbines are placed. The benefit of this approach is that a) it avoids the need for large databases in which the turbulent inflow conditions are stored and the correspondingly slow I/O operations and b) we are sure that the simulations are not negatively affected by statically swept fixed inflow fields or synthetic fields lacking the proper ABL coherent structures. Sample applications are presented, in which, in agreement with field data a strong decrease of the power output of downstream wind-turbines with respect to the first row of wind-turbines is observed for perfectly aligned ...

  7. Accretion Disk Evolution with Wind Infall II. Results of 3D Hydrodynamical Simulations with an Illustrative Application to

    E-Print Network [OSTI]

    Falcke, Heino

    of the wind's kinetic energy at the disk's surface. In applying our results to the Galactic Center black holeAccretion Disk Evolution with Wind Infall II. Results of 3D Hydrodynamical Simulations, Auf dem H¨ugel 69, D­53121, Bonn, Germany. (hfalcke@mpifr­bonn.mpg.de) Steward Observatory, University

  8. UMASS MINI-CODES FOR WIND ENERGY ENGINEERING APPLICATIONS J. F. Manwell, A. L. Rogers, J. G. McGowan, U. Abdulwaid

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    UMASS MINI-CODES FOR WIND ENERGY ENGINEERING APPLICATIONS J. F. Manwell, A. L. Rogers, J. G. Mc that these codes will be used for educational purposes, or for general use by the wind energy engineering community. ~TRODUCTIO~ BACKGROUND Computer codes are a valuable tool for practicing wind energy engineers. Wind

  9. Applications of Systems Engineering to the Research, Design, and Development of Wind Energy Systems

    SciTech Connect (OSTI)

    Dykes, K.; Meadows, R.; Felker, F.; Graf, P.; Hand, M.; Lunacek, M.; Michalakes, J.; Moriarty, P.; Musial, W.; Veers, P.

    2011-12-01

    This paper surveys the landscape of systems engineering methods and current wind modeling capabilities to assess the potential for development of a systems engineering to wind energy research, design, and development. Wind energy has evolved from a small industry in a few countries to a large international industry involving major organizations in the manufacturing, development, and utility sectors. Along with this growth, significant technology innovation has led to larger turbines with lower associated costs of energy and ever more complex designs for all major subsystems - from the rotor, hub, and tower to the drivetrain, electronics, and controls. However, as large-scale deployment of the technology continues and its contribution to electricity generation becomes more prominent, so have the expectations of the technology in terms of performance and cost. For the industry to become a sustainable source of electricity, innovation in wind energy technology must continue to improve performance and lower the cost of energy while supporting seamless integration of wind generation into the electric grid without significant negative impacts on local communities and environments. At the same time, issues associated with wind energy research, design, and development are noticeably increasing in complexity. The industry would benefit from an integrated approach that simultaneously addresses turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated in order to meet this diverse set of goals while recognizing trade-offs that exist between them. While potential exists today to integrate across different domains within the wind energy system design process, organizational barriers such as different institutional objectives and the importance of proprietary information have previously limited a system level approach to wind energy research, design, and development. To address these challenges, NREL has embarked on an initiative to evaluate how methods of systems engineering can be applied to the research, design and development of wind energy systems. Systems engineering is a field within engineering with a long history of research and application to complex technical systems in domains such as aerospace, automotive, and naval architecture. As such, the field holds potential for addressing critical issues that face the wind industry today. This paper represents a first step for understanding this potential through a review of systems engineering methods as applied to related technical systems. It illustrates how this might inform a Wind Energy Systems Engineering (WESE) approach to the research, design, and development needs for the future of the industry. Section 1 provides a brief overview of systems engineering and wind as a complex system. Section 2 describes these system engineering methods in detail. Section 3 provides an overview of different types of design tools for wind energy with emphasis on NREL tools. Finally, Section 4 provides an overview of the role and importance of software architecture and computing to the use of systems engineering methods and the future development of any WESE programs. Section 5 provides a roadmap of potential research integrating systems engineering research methodologies and wind energy design tools for a WESE framework.

  10. U.S. DOE Intermountain Clean Energy Application Center

    SciTech Connect (OSTI)

    Case, Patti

    2013-09-30

    The Intermountain Clean Energy Application Center helped promote, assist, and transform the market for combined heat and power (CHP), including waste heat to power and district energy with CHP, in the intermountain states of Arizona, Colorado, New Mexico, Utah, and Wyoming. We accomplished these objectives through a combination of the following methods, which proved in concert to be a technically and economically effective strategy: o Identifying and facilitating high-impact CHP projects o Helping industrial, commercial, institutional, federal, and other large energy users in evaluating the economic and technical viability of potential CHP systems o Disseminating essential information about CHP including benefits, technologies, applications, project development, project financing, electric and gas utility incentives, and state policies o Coordinating and collaborating on CHP advancement with regional stakeholders including electric utilities, gas utilities, state energy offices, municipal development and planning personnel, trade associations, industry groups, non-profits, energy users, and others Outcomes of the project included increased understanding of and deployment of efficient and well-designed CHP systems in the states of Arizona, Colorado, New Mexico, Utah, and Wyoming. Increased CHP deployment helps the United States to enhance energy efficiency, strengthen the competitiveness of American industries, promote economic growth, foster a robust and resilient energy infrastructure, reduce emissions of air pollutants and greenhouse gases, and increase the use of market-ready advanced technologies. Specific outcomes included direct assistance to energy-intensive industrial facilities and other businesses, workshops and CHP tours, communication materials, and state policy education, all contributing to implementation of CHP systems in the intermountain region.

  11. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K.

    2010-01-01

    3.4.2 Wind roses . . . . . . . .Figure 5.5: Downscaled wind speed changes and componentin?uences on California’s wind energy resource. Part 1:

  12. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K

    2010-01-01

    maps showing locations of wind power conversion facilities,of US winds and wind power at 80 m derived fromEvaluation of global wind power. Journal of Geo- physical

  13. The new Wind Technology Test Center is the only facility in the nation capable of testing wind turbine blades up to

    E-Print Network [OSTI]

    turbine blades up to 90 meters in length. A critical factor to wind turbine design and development is the ability to test new designs, components, and materials. In addition, wind turbine blade manufacturers are required to test their blades as part of the turbine certification process. The National Renewable Energy

  14. Ris-PhD-27(EN) Wind Energy Applications of Synthetic

    E-Print Network [OSTI]

    winds in offshore wind resource assessment. Firstly, wind wakes behind two large offshore wind farms farming 3 2.1 Horns Rev and Nysted offshore wind farms 4 3 Synthetic aperture radar 6 3.1 Imaging geometry in offshore wind energy planning as a supplement to on site measurements, which are costly and sparse

  15. Center for Fuel Cell Research and Applications | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmentalBowerbank,CammackFLIR Jump to:RAPIDCavallo Energy JumpCeiling FanMoriches, NewFuel

  16. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and its Application to the Wind Farms in the Texas ERCOT Region 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Subbarao, K.; Culp, C.; Yazdani, B.

    2007-01-01

    , 07/2010 46 Ector, 300 MW, Notrees Windpower, 2008 47 Kenedy, 400 MW, Penascal Wind, 2008 48 150 MW, Galveston Offshore Wind, 2010 Wind Projects Retired: ERCOT Region ? 7MW 49 Jeff Davis, 7MW, Ft. Davis Wind Farm, 1996 Source: http... Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles Culp, Bahman Yazdani Energy...

  17. Technology Applications Center | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking With U.S. CoalMexico IndependentMatter andPages default Sign In

  18. regional clean energy application centers | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLosThe 26thI D- 6 0 4 2 r m m m m port mrberrettImproving theA

  19. Flow visualization using momentum and energy transport tubes and applications to turbulent flow in wind farms

    E-Print Network [OSTI]

    Meyers, Johan

    2012-01-01

    As a generalization of the mass-flux based classical stream-tube, the concept of momentum and energy transport tubes is discussed as a flow visualization tool. These transport tubes have the property, respectively, that no fluxes of momentum or energy exist over their respective tube mantles. As an example application using data from large-eddy simulation, such tubes are visualized for the mean-flow structure of turbulent flow in large wind farms, in fully developed wind-turbine-array boundary layers. The three-dimensional organization of energy transport tubes changes considerably when turbine spacings are varied, enabling the visualization of the path taken by the kinetic energy flux that is ultimately available at any given turbine within the array.

  20. BLM - Solar and Wind Energy Applications - Pre-Application and Screening |

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAandAmminex AAustria GeothermalInformation BKN

  1. CENTER

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits &Bradbury Science Museum6 Shares1-0005-000CD .... -- enScience and

  2. Systems Engineering Applications to Wind Energy Research, Design, and Development (Poster)

    SciTech Connect (OSTI)

    Dykes, K.; Damiani, R.; Felker, F.; Graf, P.; Hand, M.; Meadows, R.; Musial, W.; Moriarty, P.; Ning, A.; Scott, G.; Sirnivas, S.; Veers, P.

    2012-06-01

    Over the last few decades, wind energy has evolved into a large international industry involving major players in the manufacturing, construction, and utility sectors. Coinciding with the industry's growth, significant innovation in the technology has resulted in larger turbines with lower associated costs of energy and more complex designs in all subsystems. However, as the deployment of the technology grows, and its role within the electricity sector becomes more prominent, so has the expectations of the technology in terms of performance, reliability, and cost. The industry currently partitions its efforts into separate paths for turbine design, plant design and development, grid interaction and operation, and mitigation of adverse community and environmental impacts. These activities must be integrated to meet a diverse set of goals while recognizing trade-offs between them. To address these challenges, the National Renewable Energy Laboratory (NREL) has embarked on the Wind Energy Systems Engineering (WESE) initiative to use methods of systems engineering in the research, design, and development of wind energy systems. Systems engineering is a field that has a long history of application to complex technical systems. The work completed to date represents a first step in understanding this potential. It reviews systems engineering methods as applied to related technical systems and illustrates how these methods can be combined in a WESE framework to meet the research, design, and development needs for the future of the industry.

  3. Application of an Energy Management System to a Distribution Center 

    E-Print Network [OSTI]

    Warnick, T.

    1984-01-01

    such a System in its Dallas Distribution Center. In one year the electric bills were reduced by a total of $17,668.91. Electric consumption (KWH) was reduced by thirty-one percent, electrical demand (KW) was reduced by thirty-six percent while plant...

  4. Mega Data Center for Elastic Internet Applications Hangwei Qian Michael Rabinovich

    E-Print Network [OSTI]

    Rabinovich, Michael "Misha"

    1 Mega Data Center for Elastic Internet Applications Hangwei Qian Michael Rabinovich VMWare Case data center. Our architecture includes a scalable load-balancing fabric and provides effective knobs Modern cloud providers are building data centers with hundreds of thousands of servers, knowns as mega

  5. BAYESIAN UPDATING OF PROBABILISTIC TIME-DEPENDENT FATIGUE MODEL: APPLICATION TO JACKET FOUNDATIONS OF WIND TURBINES

    E-Print Network [OSTI]

    Boyer, Edmond

    OF WIND TURBINES Benjamin Rocher1,2 , Franck Schoefs1 , Marc François1 , Arnaud Salou2 1 LUNAM Université.rocher@univ-nantes.fr ABSTRACT Due to both wave and wind fluctuation, the metal foundations of offshore wind turbines are highly algorithm. KEYWORDS: Fatigue, Damage, Reliability, Bayesian updating. INTRODUCTION In offshore wind turbines

  6. Application of a wireless sensor node to health monitoring of operational wind turbine blades

    SciTech Connect (OSTI)

    Taylor, Stuart G; Farinholt, Kevin M; Park, Gyuhae; Farrar, Charles R; Todd, Michael D

    2009-01-01

    Structural health monitoring (SHM) is a developing field of research with a variety of applications including civil structures, industrial equipment, and energy infrastructure. An SHM system requires an integrated process of sensing, data interrogation and statistical assessment. The first and most important stage of any SHM system is the sensing system, which is traditionally composed of transducers and data acquisition hardware. However, such hardware is often heavy, bulky, and difficult to install in situ. Furthermore, physical access to the structure being monitored may be limited or restricted, as is the case for rotating wind turbine blades or unmanned aerial vehicles, requiring wireless transmission of sensor readings. This study applies a previously developed compact wireless sensor node to structural health monitoring of rotating small-scale wind turbine blades. The compact sensor node collects low-frequency structural vibration measurements to estimate natural frequencies and operational deflection shapes. The sensor node also has the capability to perform high-frequency impedance measurements to detect changes in local material properties or other physical characteristics. Operational measurements were collected using the wireless sensing system for both healthy and damaged blade conditions. Damage sensitive features were extracted from the collected data, and those features were used to classify the structural condition as healthy or damaged.

  7. Sowing the Seeds for a Bountiful Harvest: Shaping the Rules and Creating the Tools for Wisconsin's Next Generation of Wind Farms

    SciTech Connect (OSTI)

    Vickerman, Michael Jay

    2012-03-29

    Project objectives are twofold: (1) to engage wind industry stakeholders to participate in formulating uniform permitting standards applicable to commercial wind energy installations; and (2) to create and maintain an online Wisconsin Wind Information Center to enable policymakers and the public to increaser their knowledge of and support for wind generation in Wisconsin.

  8. Correlations in thermal comfort and natural wind

    E-Print Network [OSTI]

    Kang, Ki-Nam; Song, Doosam; Schiavon, Stefano

    2013-01-01

    Chaotic ?uctuation in natural wind and its application toof natural and mechanical wind in built environment usingcharacteristics of natural wind. Refrigeration 71 (821),

  9. Using Visualization to Support Network and Application Management in a Data Center

    E-Print Network [OSTI]

    Ras, Zbigniew W.

    -learning based management systems. We present a case study that highlights the requirements on visualization systems designed for the management of networks and applications inside large data centers. We explain that this service uses, and highlight the challenges facing a visualization system for managing data center services

  10. APPROPRIATE REALISATION OF GAIN-SCHEDULED CONTROLLERS WITH APPLICATION TO WIND TURBINE REGULATION

    E-Print Network [OSTI]

    Duffy, Ken

    1 1QE, U.K. Abstract Power regulation of horizontal-axis grid-connected up-wind constant-speed pitch of wind turbine technology. The standard commercial design of turbine is a horizontal-axis grid that the next generation of wind turbines which are presently being developed will include large-scale designs

  11. Innovative Applications of O.R. Scheduling electric power production at a wind farm

    E-Print Network [OSTI]

    Kusiak, Andrew

    computations Wind farm Particle swarm optimization Small world network a b s t r a c t We present a model for scheduling power generation at a wind farm, and introduce a particle swarm optimization algorithm) and therefore could be incorporated into an optimization model to assist opera- tors in scheduling wind turbines

  12. A MODULAR SHM-SCHEME FOR ENGINEERING STRUCTURES UNDER CHANGING CONDITIONS: APPLICATION TO AN OFFSHORE WIND

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    TO AN OFFSHORE WIND TURBINE Moritz W. H¨ackell1, Raimund Rolfes1 1 Institute of Structural Analysis, Leibniz in common. A shift from fossil to renewable energy source is the logical con- sequence. (Offshore) wind : Offshore Wind Turbine, Machine Learning, Condition Parameter, Control Charts, Affinity Propagation

  13. 2008 Wind Energy Projects, Wind Powering America (Poster)

    SciTech Connect (OSTI)

    Not Available

    2009-01-01

    The Wind Powering America program produces a poster at the end of every calendar year that depicts new U.S. wind energy projects. The 2008 poster includes the following projects: Stetson Wind Farm in Maine; Dutch Hill Wind Farm in New York; Grand Ridge Wind Energy Center in Illinois; Hooper Bay, Alaska; Forestburg, South Dakota; Elbow Creek Wind Project in Texas; Glacier Wind Farm in Montana; Wray, Colorado; Smoky Hills Wind Farm in Kansas; Forbes Park Wind Project in Massachusetts; Spanish Fork, Utah; Goodland Wind Farm in Indiana; and the Tatanka Wind Energy Project on the border of North Dakota and South Dakota.

  14. University of Massachusetts, Technical Report TR31-07 1 Modellus: Automated Modeling of Complex Data Center Applications

    E-Print Network [OSTI]

    Vin, Harrick M.

    Data Center Applications Peter Desnoyers, Timothy Wood, Prashant Shenoy, Department of Computer Science (TRDDC) Abstract The rising complexity of distributed server applications in enterprise data centers has Modellus, a novel system for automated modeling of complex data center applications using statistical

  15. Environmental Assessment and Finding of No Significant Impact: Wind Energy Center Edgeley/Kulm Project, North Dakota

    SciTech Connect (OSTI)

    N /A

    2003-04-15

    The proposed Edgeley/Kulm Project is a 21-megawatt (MW) wind generation project proposed by Florida Power and Light (FPL) Energy North Dakota Wind LLC (Dakota Wind) and Basin Electric Power Cooperative (Basin). The proposed windfarm would be located in La Moure County, south central North Dakota, near the rural farming communities of Kulm and Edgeley. The proposed windfarm is scheduled to be operational by the end of 2003. Dakota Wind and other project proponents are seeking to develop the proposed Edgeley/Kulm Project to provide utilities and, ultimately, electric energy consumers with electricity from a renewable energy source at the lowest possible cost. A new 115-kilovolt (kV) transmission line would be built to transmit power generated by the proposed windfarm to an existing US Department of Energy Western Area Power Administration (Western) substation located near Edgeley. The proposed interconnection would require modifying Western's Edgeley Substation. Modifying the Edgeley Substation is a Federal proposed action that requires Western to review the substation modification and the proposed windfarm project for compliance with Section 102(2) of the National Environmental Policy Act (NEPA) of 1969, 42 U.S.C. 4332, and Department of Energy NEPA Implementing Procedures (10 CFR Part 1021). Western is the lead Federal agency for preparation of this Environmental Assessment (EA). The US Fish and Wildlife Service (USFWS) is a cooperating agency with Western in preparing the EA. This document follows regulation issued by the Council on Environmental Quality (CEQ) for implementing procedural provisions of NEPA (40 CFR 1500-1508), and is intended to disclose potential impacts on the quality of the human environment resulting from the proposed project. If potential impacts are determined to be significant, preparation of an Environmental Impact Statement would be required. If impacts are determined to be insignificant, Western would complete a Finding of No Significant Impact (FONSI). Environmental protection measures that would be included in the design of the proposed project are included.

  16. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Bioenergy Power Systems Wind Power Wind Power Main Page Outreach Programs Image Gallery FAQs Links Software Hydro Power INL Home Wind Power Introduction The Wind Power...

  17. Technology, Performance, and Market of Wind-Diesel Applications for Remote and Island Communities (Poster)

    SciTech Connect (OSTI)

    Baring-Gould, E. I.; Dabo, M.

    2009-05-01

    The market for wind-diesel power systems in Alaska and other areas has proven that the integration of wind turbines with conventional isolated generation is a commercial reality. During the past few years, the use of wind energy to reduce diesel fuel consumption has increased, providing economic, environmental, social, and security benefits to communities' energy supply. This poster provides an overview of markets, project examples, technology advances, and industry challenges.

  18. Overcoming Technical and Market Barriers for Distributed Wind Applications: Reaching the Mainstream; Preprint

    SciTech Connect (OSTI)

    Rhoads-Weaver, H.; Forsyth, T.

    2006-07-01

    This paper describes how the distributed wind industry must overcome hurdles including system costs and interconnection and installation restrictions to reach its mainstream market potential.

  19. Wind energy: Program overview, FY 1992

    SciTech Connect (OSTI)

    Not Available

    1993-06-01

    The DOE Wind Energy Program assists utilities and industry in developing advanced wind turbine technology to be economically competitive as an energy source in the marketplace and in developing new markets and applications for wind systems. This program overview describes the commercial development of wind power, wind turbine development, utility programs, industry programs, wind resources, applied research in wind energy, and the program structure.

  20. Wind Technologies and Evolving Opportunities (Presentation)

    SciTech Connect (OSTI)

    Robi Robichaud

    2014-03-01

    This presentation provides an overview of wind energy research being conducted at the National Wind Technology Center, market and technology trends in wind energy, and opportunities for wind technology.

  1. On the Steady Nature of Line-Driven Disk Winds: Application to Cataclysmic Variables

    E-Print Network [OSTI]

    Nicolas A. Pereyra; David A. Turnshek; D. John Hillier

    2005-06-01

    We apply the semi-analytical analysis of the steady nature of line-driven winds presented in two earlier papers to disk winds driven by the flux distribution of a standard Shakura & Sunyaev (1973) disk for typical cataclysmic variable (CV) parameters. We find that the wind critical point tends to be closer to the disk surface towards the inner disk regions. Our main conclusion, however, is that a line-driven wind, arising from a steady disk flux distribution of a standard Shakura-Sunyaev disk capable of locally supplying the corresponding mass flow, is steady. These results confirm the findings of an earlier paper that studied "simple" flux distributions that are more readily analyzable than those presented here. These results are consistent with the steady velocity nature of outflows observationally inferred for both CVs and quasi-stellar objects (QSOs). We find good agreement with the 2.5D CV disk wind models of Pereyra and collaborators. These results suggest that the likely scenario to account for the wind outflows commonly observed in CVs is the line-driven accretion disk wind scenario, as suggested early-on by Cordova & Mason (1982). For QSOs, these results show that the line-driven accretion disk wind continues to be a promising scenario to account for the outflows detected in broad absorption line (BAL) QSOs, as suggested early-on by Turnshek (1984), and analyzed in detail by Murray et al. (1995).

  2. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Concentrated Windings

    SciTech Connect (OSTI)

    Lawler, J.S.

    2005-12-21

    It is well known that the ability of the permanent magnet synchronous machine (PMSM) to operate over a wide constant power speed range (CPSR) is dependent upon the machine inductance [1,2,3,4,5]. Early approaches for extending CPSR operation included adding supplementary inductance in series with the motor [1] and the use of anti-parallel thyristor pairs in series with the motor-phase windings [5]. The increased inductance method is compatible with a voltage-source inverter (VSI) controlled by pulse-width modulation (PWM) which is called the conventional phase advance (CPA) method. The thyristor method has been called the dual mode inverter control (DMIC). Neither of these techniques has met with wide acceptance since they both add cost to the drive system and have not been shown to have an attractive cost/benefit ratio. Recently a method has been developed to use fractional-slot concentrated windings to significantly increase the machine inductance [6]. This latest approach has the potential to make the PMSM compatible with CPA without supplemental external inductance. If the performance of such drive is acceptable, then the method may make the PMSM an attractive option for traction applications requiring a wide CPSR. A 30 pole, 6 kW, 6000 maximum revolutions per minute (rpm) prototype of the fractional-slot PMSM design has been developed [7]. This machine has significantly more inductance than is typical of regular PMSMs. The prototype is to be delivered in late 2005 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study the steady-state performance of high-inductance PMSM machines with a view towards control issues. The detailed steady-state model developed includes all motor and inverter-loss mechanisms and will be useful in assessing the performance of the dynamic controller to be developed in future work. This report documents the results of this preliminary investigation.

  3. NREL: MIDC/National Wind Technology Center M2 Tower (39.91 N, 105.235 W,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of1855 m, GMT-7) National

  4. National Wind Technology Center to Debut New Dynamometer (Fact Sheet), Highlights in Research & Development, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications TheScience (SC)ResourceScience » NSSCenter

  5. Matrix Convex Functions With Applications to Weighted Centers for Semidefinite Programming

    E-Print Network [OSTI]

    Zhang, Shuzhong

    Matrix Convex Functions With Applications to Weighted Centers for Semidefinite Programming Jan for general smooth matrix-valued functions and for the class of matrix convex (or concave) functions first introduced by L¨owner and Kraus in 1930s. Then we use these calculus rules and the matrix convex function

  6. Multibody Dynamics Using Conservation of Momentum with Application to Compliant Offshore Floating Wind Turbines 

    E-Print Network [OSTI]

    Wang, Lei

    2012-10-19

    Environmental, aesthetic and political pressures continue to push for siting off-shore wind turbines beyond sight of land, where waters tend to be deeper, and use of floating structures is likely to be considered. Savings could potentially...

  7. Applications of Small Wind Turbines Emphasizing the Economic Viability of Integration into a Home Energy System

    E-Print Network [OSTI]

    Moore, Cody K.

    2014-12-31

    requirement, it analyzes how well suited the wind turbine is for supplying the needed electricity as compared to a conventional gasoline generator and to the potential use of solar photovoltaics. The specific advantages and disadvantages of each of these three...

  8. File:Wind-turbine-economics-teacher.pdf | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View New Pages RecentTempCampApplicationWorksheetWind-turbine-economics-teacher.pdf Jump to:

  9. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0Photos andSeminarsDesign » DesignMay »helpWind

  10. Wind Power

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorking WithTelecentricNCubicthe FOIA?ResourceMeasurement Buoy AdvancesWind

  11. Wind energy information guide

    SciTech Connect (OSTI)

    1996-04-01

    This book is divided into nine chapters. Chapters 1--8 provide background and annotated references on wind energy research, development, and commercialization. Chapter 9 lists additional sources of printed information and relevant organizations. Four indices provide alphabetical access to authors, organizations, computer models and design tools, and subjects. A list of abbreviations and acronyms is also included. Chapter topics include: introduction; economics of using wind energy; wind energy resources; wind turbine design, development, and testing; applications; environmental issues of wind power; institutional issues; and wind energy systems development.

  12. Wind power application for low flow irrigation from the Edwards-Trinity aquifer of West Texas 

    E-Print Network [OSTI]

    Molla, Saiful Islam

    1997-01-01

    Attempts were made to reduce the cost of energy for irrigation in West Texas. To do this two wind turbines of 10 kW size were installed in Garden City and Stiles, Texas to pump water. The turbines were installed on 30 m towers. The pumping water...

  13. Design and Application of Cables and Overhead Lines in Wind Power Plants

    SciTech Connect (OSTI)

    Behnke, M. R. [IEEE PES Wind Plant Collector System Design Working Group; Bellei, T.A. [IEEE PES Wind Plant Collector System Design Working Group; Bloethe, W.G. [IEEE PES Wind Plant Collector System Design Working Group; Bradt, M. [IEEE PES Wind Plant Collector System Design Working Group; Brooks, C. [IEEE PES Wind Plant Collector System Design Working Group; Camm, E H [IEEE PES Wind Plant Collector System Design Working Group; Dilling, W. [IEEE PES Wind Plant Collector System Design Working Group; Goltz, B. [IEEE PES Wind Plant Collector System Design Working Group; Hermanson, J. [IEEE PES Wind Plant Collector System Design Working Group; Li, J. [IEEE PES Wind Plant Collector System Design Working Group; Loy, P. [IEEE PES Wind Plant Collector System Design Working Group; McLean, K. [IEEE PES Wind Plant Collector System Design Working Group; Niemira, J. [IEEE PES Wind Plant Collector System Design Working Group; Nuckles, K. [IEEE PES Wind Plant Collector System Design Working Group; Patino, J. [IEEE PES Wind Plant Collector System Design Working Group; Reza, M [IEEE PES Wind Plant Collector System Design Working Group; Richardson, B. [IEEE PES Wind Plant Collector System Design Working Group; Samaan, N. [IEEE PES Wind Plant Collector System Design Working Group; Schoene, Jens [IEEE PES Wind Plant Collector System Design Working Group; Smith, Travis M [ORNL; Snyder, Isabelle B [ORNL; Starke, Michael R [ORNL; Tesch, M. [IEEE PES Wind Plant Collector System Design Working Group; Walling, R. [IEEE PES Wind Plant Collector System Design Working Group; Zahalka, G. [IEEE PES Wind Plant Collector System Design Working Group

    2010-01-01

    This paper presents a summary of the most impor- tant considerations for wind power plant collection system un- derground and overhead cable designs. Various considerations, including conductor selection, soil thermal properties, installa- tion methods, splicing, concentric grounding, and NESC/NEC requirements are discussed.

  14. DOE Center of Excellence in Medical Laser Applications. Final report, December 1, 1994--November 30, 1997

    SciTech Connect (OSTI)

    Jacques, S.L.

    1998-01-01

    An engineering network of collaborating medical laser laboratories are developing laser and optical technologies for medical diagnosis and therapy and are translating the engineering into medical centers in Portland OR, Houston TX, and Galveston TX. The Center includes the University of Texas M.D. Anderson Cancer Center, the University of Texas-Austin, Texas A and M University, Rice University, the University Texas Medical Branch-Galveston, Oregon Medical Laser Center (Providence St. Vincent Medical Center, Oregon Health Sciences University, and Oregon Graduate Institute, Portland, OR), and the University of Oregon. Diagnostics include reflectance, fluorescence, Raman IR, laser photoacoustics, optical coherence tomography, and several new video techniques for spectroscopy and imaging. Therapies include photocoagulation therapy, laser welding, pulsed laser ablation, and light-activated chemotherapy of cancer (photodynamic therapy, or PDT). Medical applications reaching the clinic include optical monitoring of hyperbilirubinemia in newborns, fluorescence detection of cervical dysplasia, laser thrombolysis of blood clots in heart attack and brain stroke, photothermal coagulant of benign prostate hyperplasia, and PDT for both veterinary and human cancer. New technologies include laser optoacoustic imaging of breast tumors and hemorrhage in head trauma and brain stroke, quality control monitoring of dosimetry during PDT for esophageal and lung cancer, polarization video reflectometry of skin cancer, laser welding of artificial tissue replacements, and feedback control of laser welding.

  15. IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans-Peter Waldl(1)(2), Rebecca Barthelmie(3), Algert Gil Guerrero(1)(4), Detlev Heinemann(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans of atmospheric stability. Model results have been compared with measurements from the Danish offshore wind farm offshore wind farms, modelling of wake losses is an important part of the production estimation

  16. IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans-Peter Waldl(1)(2), Rebecca Barthelmie(3), Algert Gil Guerrero(1)(4), Detlev Heinemann(1)

    E-Print Network [OSTI]

    Heinemann, Detlev

    IMPROVEMENT OF THE WIND FARM MODEL FLAP FOR OFFSHORE APPLICATIONS Bernhard Lange(1), Hans of atmospheric stability. Model results have been compared with measurements from the Danish offshore wind farm of large offshore wind farms, modelling of wake losses is an important part of the production estimation

  17. Wind Atlas Analysis and Application Program (WAsP) | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomes Jump

  18. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergy Webinar: Demonstration of NREL'sWind Wind Wind The United States

  19. Analysis: Economic Impacts of Wind Applications in Rural Communities; June 18, 2004 -- January 31, 2005

    SciTech Connect (OSTI)

    Pedden, M.

    2006-01-01

    The purpose of this report is to compile completed studies on the economic impact of wind farms in rural communities and then to compare these studies. By summarizing the studies in an Excel spreadsheet, the raw data from a study is easily compared with the data from other studies. In this way, graphs can be made and conclusions drawn. Additionally, the creation of a database in which economic impact studies are summarized allows a greater understanding of the type of information gathered in an economic impact study, the type of information that is most helpful in using these studies to promote wind energy development in rural communities, and the limitations on collecting data for these studies.

  20. Wind Tunnel Building - 3 

    E-Print Network [OSTI]

    Unknown

    2005-06-30

    1 Energy Systems Laboratory 1 A METHODOLOGY FOR CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION Zi Liu, Jeff Haberl, Juan-Carlos Baltazar, Kris Subbarao, Charles... on Sweetwater I Wind Farm Capacity Factor Analysis Application to All Wind Farms Uncertainty Analysis Emissions Reduction Summary Energy Systems Laboratory 3 SUMMARYEMISSIONS REDUCTION UNCERTAINTY ANALYSIS APPLICATIONMETHODOLOGYINTRODUCTION Background...

  1. Structure of pair winds from compact objects with application to emission from hot bare strange stars

    E-Print Network [OSTI]

    A. G. Aksenov; M. Milgrom; V. V. Usov

    2004-03-15

    We consider a stationary, spherically outflowing wind consisting of electron-positron pairs and photons. We do not assume thermal equilibrium, and include the two-body processes that occur in such a wind: Moller and Bhaba scattering of pairs, Compton scattering, two-photon pair annihilation, and two-photon pair production, together with their radiative three-body variants: bremsstrahlung, double Compton scattering, and three-photon pair annihilation, with their inverse processes. In the concrete example described here, the wind injection source is a hot, bare, strange star. Such stars are thought to be powerful sources of pairs created by the Coulomb barrier at the quark surface. We present a new, finite-difference scheme for solving the relativistic kinetic Boltzmann equations for pairs and photons. Using this method we study the kinetics of the wind particles and the emerging emission for total luminosities of L=10^{34}-10^{42} ergs/s. We find the rates of particle number and energy outflows, outflow velocities, number densities, energy spectra, and other parameters for both photons and pairs as functions of the distance. We find that for L>2x10^{35} ergs/s, photons dominate the emerging emission. As L increases from ~ 10^{34} to 10^{42} ergs/s, the mean energy of emergent photons decreases from ~400-500 keV to 40 keV, as the spectrum changes in shape from that of a wide annihilation line to nearly a blackbody spectrum with a high energy (> 100 keV) tail. These results are pertinent to the deduction of the outside appearance of hot bare strange stars, which might help discern them from neutron stars.

  2. Wind turbine blade fatigue tests: lessons learned and application to SHM system development

    SciTech Connect (OSTI)

    Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M. [Los Alamos National Laboratory; Jeong, Hyomi [Chonbuk National University, Korea; Jang, JaeKyung [Chonbuk National University, Korea; Park, Gyu Hae [Los Alamos National Laboratory; Todd, Michael D. [Los Alamos National Laboratory; Farrar, Charles R. [Los Alamos National Laboratory; Ammerman, Curtt N. [Los Alamos National Laboratory

    2012-06-28

    This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

  3. Application of piezoelectric active-sensors for SHM of wind turbine blades

    SciTech Connect (OSTI)

    Park, Gyuhae [Los Alamos National Laboratory; Taylor, Stuart G. [Los Alamos National Laboratory; Farinholt, Kevin M [Los Alamos National Laboratory; Farrar, Charles R [Los Alamos National Laboratory

    2010-10-04

    The goal of this study is to characterize the dynamic response of a CX-100 wind blade and the design parameters of SHM techniques as they apply to wind turbine blades, and to investigate the performance of high-frequency active-sensing SHM techniques, including lamb wave and frequency response functions, as a way to monitor the health of a wind turbine blade. The results of the dynamic characterization will be used to validate a numerical model and understand the effect of structural damage on the performance of the blades. The focus of SHM study is to assess and compare the performance of each method in identifying incipient damage, with a special consideration given to field deployability. For experiments, a 9-m CX-100 blade was used. Overall, the methods yielded sufficient damage detection to warrant further investigation into field deployment. This paper also summarizes the SHM results of a full-scale fatigue test of 9-m CX-100 blade using piezoelectric active-sensors.

  4. Solar wind plasma correlations between IMP 8, INTERBALL-1 and WIND

    E-Print Network [OSTI]

    Richardson, John

    an important task. Clearly even if the impact on Earth's magnetosphere of a change in solar wind plasma1 21 Solar wind plasma correlations between IMP 8, INTERBALL-1 and WIND K. I. Paularena Center Short title: SOLAR WIND CORRELATIONS: IMP 8, INTERBALL, AND WIND #12;2 Abstract. Solar wind plasma ux

  5. Large-Scale Uncertainty and Error Analysis for Time-dependent Fluid/Structure Interactions in Wind Turbine Applications

    SciTech Connect (OSTI)

    Alonso, Juan J. [Stanford University; Iaccarino, Gianluca [Stanford University

    2013-08-25

    The following is the final report covering the entire period of this aforementioned grant, June 1, 2011 - May 31, 2013 for the portion of the effort corresponding to Stanford University (SU). SU has partnered with Sandia National Laboratories (PI: Mike S. Eldred) and Purdue University (PI: Dongbin Xiu) to complete this research project and this final report includes those contributions made by the members of the team at Stanford. Dr. Eldred is continuing his contributions to this project under a no-cost extension and his contributions to the overall effort will be detailed at a later time (once his effort has concluded) on a separate project submitted by Sandia National Laboratories. At Stanford, the team is made up of Profs. Alonso, Iaccarino, and Duraisamy, post-doctoral researcher Vinod Lakshminarayan, and graduate student Santiago Padron. At Sandia National Laboratories, the team includes Michael Eldred, Matt Barone, John Jakeman, and Stefan Domino, and at Purdue University, we have Prof. Dongbin Xiu as our main collaborator. The overall objective of this project was to develop a novel, comprehensive methodology for uncertainty quantification by combining stochastic expansions (nonintrusive polynomial chaos and stochastic collocation), the adjoint approach, and fusion with experimental data to account for aleatory and epistemic uncertainties from random variable, random field, and model form sources. The expected outcomes of this activity were detailed in the proposal and are repeated here to set the stage for the results that we have generated during the time period of execution of this project: 1. The rigorous determination of an error budget comprising numerical errors in physical space and statistical errors in stochastic space and its use for optimal allocation of resources; 2. A considerable increase in efficiency when performing uncertainty quantification with a large number of uncertain variables in complex non-linear multi-physics problems; 3. A solution to the long-time integration problem of spectral chaos approaches; 4. A rigorous methodology to account for aleatory and epistemic uncertainties, to emphasize the most important variables via dimension reduction and dimension-adaptive refinement, and to support fusion with experimental data using Bayesian inference; 5. The application of novel methodologies to time-dependent reliability studies in wind turbine applications including a number of efforts relating to the uncertainty quantification in vertical-axis wind turbine applications. In this report, we summarize all accomplishments in the project (during the time period specified) focusing on advances in UQ algorithms and deployment efforts to the wind turbine application area. Detailed publications in each of these areas have also been completed and are available from the respective conference proceedings and journals as detailed in a later section.

  6. Diablo Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper|Winds Wind Farm Jump

  7. U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC)

    SciTech Connect (OSTI)

    Lipman, Tim; Kammen, Dan; McDonell, Vince; Samuelsen, Scott; Beyene, Asfaw; Ganji, Ahmad

    2013-09-30

    The U.S. Department of Energy Pacific Region Clean Energy Application Center (PCEAC) was formed in 2009 by the U.S. Department of Energy (DOE) and the California Energy Commission to provide education, outreach, and technical support to promote clean energy -- combined heat and power (CHP), district energy, and waste energy recovery (WHP) -- development in the Pacific Region. The region includes California, Nevada, Hawaii, and the Pacific territories. The PCEAC was operated as one of nine regional clean energy application centers, originally established in 2003/2004 as Regional Application Centers for combined heat and power (CHP). Under the Energy Independence and Security Act of 2007, these centers received an expanded charter to also promote district energy and waste energy recovery, where economically and environmentally advantageous. The centers are working in a coordinated fashion to provide objective information on clean energy system technical and economic performance, direct technical assistance for clean energy projects and additional outreach activities to end users, policy, utility, and industry stakeholders. A key goal of the CEACs is to assist the U.S. in achieving the DOE goal to ramp up the implementation of CHP to account for 20% of U.S. generating capacity by 2030, which is estimated at a requirement for an additional 241 GW of installed clean technologies. Additional goals include meeting the Obama Administration goal of 40 GW of new CHP by 2020, key statewide goals such as renewable portfolio standards (RPS) in each state, California’s greenhouse gas emission reduction goals under AB32, and Governor Brown’s “Clean Energy Jobs Plan” goal of 6.5 GW of additional CHP over the next twenty years. The primary partners in the PCEAC are the Department of Civil and Environmental Engineering and the Energy and Resources Group (ERG) at UC Berkeley, the Advanced Power and Energy Program (APEP) at UC Irvine, and the Industrial Assessment Centers (IAC) at San Diego State University and San Francisco State University. The center also worked with a wide range of affiliated groups and industry, government, NGO, and academic stakeholders to conduct a series of CHP education and outreach, project technical support, and related activities for the Pacific region. Key PCEAC tasks have included: - Preparing, organizing and conducting educational seminars on various aspects of CHP - Conducting state baseline assessments for CHP - Working with state energy offices to prepare state CHP action plans - Providing technical support services including CHP/district energy project feasibility screenings - Working with state agencies on CHP policy development - Developing additional CHP educational materials The primary specific services that PCEAC has offered include: - A CHP “information clearinghouse “ website: http://www.pacificcleanenergy.org - Site evaluations and potential projects screenings - Assessment of CHP status, potential, and key issues for each state - Information and training workshops - Policy and regulatory guidance documents and other interactions These services were generally offered at no cost to client groups based on the DOE funding and additional activities supported by the California Energy Commission, except for the in-kind staff resources needed to provide input data and support to PCEAC assessments at host sites. Through these efforts, the PCEAC reached thousands of end-users and directly worked with several dozen organizations and potential CHP “host sites” from 2009-2013. The major activities and outcomes of PCEAC project work are described.

  8. Nesting large-eddy simulations within mesoscale simulations for wind energy applications

    SciTech Connect (OSTI)

    Lundquist, J K; Mirocha, J D; Chow, F K; Kosovic, B; Lundquist, K A

    2008-09-08

    With increasing demand for more accurate atmospheric simulations for wind turbine micrositing, for operational wind power forecasting, and for more reliable turbine design, simulations of atmospheric flow with resolution of tens of meters or higher are required. These time-dependent large-eddy simulations (LES), which resolve individual atmospheric eddies on length scales smaller than turbine blades and account for complex terrain, are possible with a range of commercial and open-source software, including the Weather Research and Forecasting (WRF) model. In addition to 'local' sources of turbulence within an LES domain, changing weather conditions outside the domain can also affect flow, suggesting that a mesoscale model provide boundary conditions to the large-eddy simulations. Nesting a large-eddy simulation within a mesoscale model requires nuanced representations of turbulence. Our group has improved the Weather and Research Forecasting model's (WRF) LES capability by implementing the Nonlinear Backscatter and Anisotropy (NBA) subfilter stress model following Kosovic (1997) and an explicit filtering and reconstruction technique to compute the Resolvable Subfilter-Scale (RSFS) stresses (following Chow et al, 2005). We have also implemented an immersed boundary method (IBM) in WRF to accommodate complex terrain. These new models improve WRF's LES capabilities over complex terrain and in stable atmospheric conditions. We demonstrate approaches to nesting LES within a mesoscale simulation for farms of wind turbines in hilly regions. Results are sensitive to the nesting method, indicating that care must be taken to provide appropriate boundary conditions, and to allow adequate spin-up of turbulence in the LES domain.

  9. Investigation of conductor swinging by wind and its application for design of compact transmission line

    SciTech Connect (OSTI)

    Tsujimoto, K.; Fujii, K.; Kubokawa, H.; Okomura, T.; Simojima, K.; Yoshioka, V.

    1982-11-01

    In Japan it has recently become necessary to shorten the interphase spacing in overhead transmission lines because of land limitations and economical considerations. In this connection, the authors have attempted to analyze, in-depth, the possibilities of shortened interphase spacing via conductor swinging caused by wind effects: one of the important factors in the design of more compact overhead lines. This paper describes not only the investigative results of conductor swinging that were obtained both through computer simulation and in 3 years of full scale field line testing, but also design methodology for compact overhead lines based on these results.

  10. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-InspiredAtmosphericdevicesPPONe β+-DecayUpgradeDepartment of Energy

  11. Application for Presidential Permit OE Docket No. PP-334 Baja Wind

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t yWaste |4 2014Transmission Company:

  12. Application for presidential permit OE Docket No. PP-334 Baja Wind U.S

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t yWasteCommentsTransmission Company:Desierto SA

  13. 2012 Market Report on U.S. Wind Technologies in Distributed Applications

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMER This report was

  14. 2012 Underlying Data for Wind Technologies Market Report for Distributed Applications

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyTher i n c i p a l De p u t y A s s i s tDistributedDISCLAIMERserves

  15. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofAppliance Standards2011-2020 Strategic6/2012Department of

  16. 2012 Market Report on U.S. Wind Technologies in Distributed Applications |

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department ofAppliance Standards2011-2020 Strategic6/2012Department

  17. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    The increased interest in the offshore wind resource in both industry and academic and the extension of the wind field where offshore wind turbine can be deployed has stimulated quite a number of offshore wind turbines concepts. This thesis presents...

  18. Wind Energy Resource Atlas of the Philippines

    SciTech Connect (OSTI)

    Elliott, D.; Schwartz, M.; George, R.; Haymes, S.; Heimiller, D.; Scott, G.; McCarthy, E.

    2001-03-06

    This report contains the results of a wind resource analysis and mapping study for the Philippine archipelago. The study's objective was to identify potential wind resource areas and quantify the value of those resources within those areas. The wind resource maps and other wind resource characteristic information will be used to identify prospective areas for wind-energy applications.

  19. The application of non-destructive techniques to the testing of a wind turbine blade

    SciTech Connect (OSTI)

    Sutherland, H.; Beattie, A.; Hansche, B.; Musial, W.; Allread, J.; Johnson, J.; Summers, M.

    1994-06-01

    NonDestructive Testing (NDT), also called NonDestructive Evaluation (NDE), is commonly used to monitor structures before, during, and after testing. This paper reports on the use of two NDT techniques to monitor the behavior of a typical wind turbine blade during a quasi-static test-to-failure. The two NDT techniques used were acoustic emission and coherent optical. The former monitors the acoustic energy produced by the blade as it is loaded. The latter uses electron shearography to measure the differences in surface displacements between two load states. Typical results are presented to demonstrate the ability of these two techniques to locate and monitor both high damage regions and flaws in the blade structure. Furthermore, this experiment highlights the limitations in the techniques that must be addressed before one or both can be transferred, with a high probability of success, to the inspection and monitoring of turbine blades during the manufacturing process and under normal operating conditions.

  20. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (‘stochastic’) model with the weather forecast model (‘deterministic’) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  1. NREL: Wind Research - Offshore Wind Resource Characterization

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNew WindDesign ToolsWind

  2. NREL: Wind Research - Wind Resource Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications The NREL wind research programWebmaster PleaseWind

  3. 20% Wind Energy by 2030 - Chapter 6: Wind Power Markets Summary...

    Broader source: Energy.gov (indexed) [DOE]

    Summary slides overviewing wind power markets, growth, applications, and market features 20percentsummarychap6.pdf More Documents & Publications 20% Wind Energy by 2030 - Chapter...

  4. GATE Center of Excellence at UAB in Lightweight Materials for Automotive Applications

    SciTech Connect (OSTI)

    2011-07-31

    This report summarizes the accomplishments of the UAB GATE Center of Excellence in Lightweight Materials for Automotive Applications. The first Phase of the UAB DOE GATE center spanned the period 2005-2011. The UAB GATE goals coordinated with the overall goals of DOE's FreedomCAR and Vehicles Technologies initiative and DOE GATE program. The FCVT goals are: (1) Development and validation of advanced materials and manufacturing technologies to significantly reduce automotive vehicle body and chassis weight without compromising other attributes such as safety, performance, recyclability, and cost; (2) To provide a new generation of engineers and scientists with knowledge and skills in advanced automotive technologies. The UAB GATE focused on both the FCVT and GATE goals in the following manner: (1) Train and produce graduates in lightweight automotive materials technologies; (2) Structure the engineering curricula to produce specialists in the automotive area; (3) Leverage automotive related industry in the State of Alabama; (4) Expose minority students to advanced technologies early in their career; (5) Develop innovative virtual classroom capabilities tied to real manufacturing operations; and (6) Integrate synergistic, multi-departmental activities to produce new product and manufacturing technologies for more damage tolerant, cost-effective, and lighter automotive structures.

  5. Synoptic and local influences on boundary layer processes, with an application to California wind power

    E-Print Network [OSTI]

    Mansbach, David K

    2010-01-01

    stations, and other ob- servation and buoy sites used in thePrograms of the National Data Buoy Center. Bulletin of theand Winant, C. , 1995: Buoy observations of the atmosphere

  6. Wind | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind WorldWind forWindWind

  7. 15, 117, 2015 Wind connection to

    E-Print Network [OSTI]

    Environmental Research Laboratory, Ann Arbor, MI, USA 2 NOAA National Data Buoy Center, Stennis Space Center, MS wind field, since the place of5 encounter was in the vicinity of a NOAA NDBC buoy where wind and wave

  8. CHP REGIONAL APPLICATION CENTERS: A PRELIMINARY INVENTORY OF ACTIVITIES AND SELECTED RESULTS

    SciTech Connect (OSTI)

    Schweitzer, Martin

    2009-10-01

    Eight Regional CHP Application Centers (RACs) are funded by the U.S. Department of Energy (DOE) to facilitate the development and deployment of Combined Heat and Power (CHP) technologies in all 50 states. The RACs build end-user awareness by providing CHP-related information to targeted markets through education and outreach; they work with the states and regulators to encourage the creation and adoption of favorable public policies; and they provide CHP users and prospective users with technical assistance and support on specific projects. The RACs were started by DOE as a pilot program in 2001 to support the National CHP Roadmap developed by industry to accelerate deployment of energy efficient CHP technologies (U.S. Combined Heat and Power Association 2001). The intent was to foster a regional presence to build market awareness, address policy issues, and facilitate project development. Oak Ridge National Laboratory (ORNL) has supported DOE with the RAC program since its inception. In 2007, ORNL led a cooperative effort involving DOE and some CHP industry stakeholders to establish quantitative metrics for measuring the RACs accomplishments. This effort incorporated the use of logic models to define and describe key RAC activities, outputs, and outcomes. Based on this detailed examination of RAC operations, potential metrics were identified associated with the various key sectors addressed by the RACs: policy makers; regulatory agencies; investor owned utilities; municipal and cooperative utilities; financiers; developers; and end users. The final product was reviewed by a panel of representatives from DOE, ORNL, RACs, and the private sector. The metrics developed through this effort focus on major RAC activities as well as on CHP installations and related outcomes. All eight RACs were contacted in August 2008 and asked to provide data for every year of Center operations for those metrics on which they kept records. In addition, data on CHP installations and related outcomes were obtained from an existing DOE-supported data base. The information provided on the individual RACs was summed to yield totals for all the Centers combined for each relevant item.

  9. Wind Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind Program R&DResearch and6 Wind

  10. Vertical axis wind turbines

    DOE Patents [OSTI]

    Krivcov, Vladimir (Miass, RU); Krivospitski, Vladimir (Miass, RU); Maksimov, Vasili (Miass, RU); Halstead, Richard (Rohnert Park, CA); Grahov, Jurij (Miass, RU)

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  11. Collegiate Wind Competition Wind Tunnel Specifications | Department...

    Energy Savers [EERE]

    Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Collegiate Wind Competition Wind Tunnel Specifications Teams competing in the U.S. Department of...

  12. Advanced Wind Turbine Controls Reduce Loads (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-03-01

    NREL's National Wind Technology Center provides the world's only dedicated turbine controls testing platforms.

  13. Small Wind Independent Testing (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-09-01

    This fact sheet describes the Small Wind Independent Testing at the NWTC and the Regional Test Centers project.

  14. Wind Climate Analyses for National Weather Service Stations in the Southeast

    SciTech Connect (OSTI)

    Weber, A.H.

    2003-02-10

    Wind speed and direction data have been collected by National Weather Service (NWS) Stations in the U.S. for a number of years and presented in various forms to help depict the climate for different regions. The Savannah River Technology Center (SRTC) is particularly interested in the Southeast since mesoscale models using NWS wind observations are run on a daily basis for emergency response and other operational purposes at the Savannah River Site (SRS). Historically, wind roses have been a convenient method to depict the predominant wind speeds and directions at measurement sites. Some typical applications of wind rose data are for climate and risk assessment; air pollution exposure and dose calculations; siting industrial plants, wind turbine generators, businesses, and homes; city planning; and air stagnation and high ozone concentration studies. The purpose of this paper is to demonstrate the overall relationships of wind patterns for NWS stations in the Southeast. Since organized collection of wind data records in the NWS developed rapidly in conjunction with the expansion of commercial aviation after World War II there are now about 50 years of wind speed and direction data available for a large number of NWS stations in this area. In this study we used wind roses for relatively short time scales to show the progression of winds diurnally and monthly to span a typical year. The date used here consist of wind records from 13 National Weather Service Stations in the Southeastern U.S. for approximately 50-year periods.

  15. WIND ENERGY Wind Energ. (2014)

    E-Print Network [OSTI]

    2014-01-01

    , wind power has been expanding globally in recent years and it has become a dominant renewable energy the turbulent atmosphere and the wind turbine wake in order to optimize the design of the wind turbine as wellWIND ENERGY Wind Energ. (2014) Published online in Wiley Online Library (wileyonlinelibrary

  16. Wind Program: Publications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind Program R&D

  17. Energy and Environmental Technology Applications Center E2TAC | Open Energy

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville, NewLtd EILEnergy DatadataCentreCoTrust

  18. The Energy and Environmental Technology Applications Center (E2TAC) | Open

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop Inc JumpHeterInformation Policy and DevelopmentInformationEnergy

  19. Wind Program News

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefield Municipal Gas &SCE-Sessions |discussed how saving energy could betoldwind/wind-program-news en Wind

  20. WINDExchange: Wind Energy Ordinances

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservationBio-Inspired SolarAbout /Two0 -UsingHeatInformationDevelopment Resources andWindWind

  1. First Wind (Formerly UPC Wind) (Oregon) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump to:WindP.pdfFireFirst WindFirst Wind

  2. Diamond Willow Wind (07) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper|Winds Wind7) Wind

  3. Diamond Willow Wind (08) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)ask queries TypeDeveloper|Winds Wind7) Wind8)

  4. The Chemistry and Applications of Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment TopMetathesisSediments and Related J. Bennett The

  5. The Chemistry and Applications of Metal-Organic Frameworks | Center for Gas

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopment TopMetathesisSediments and Related J. Bennett

  6. Vindicator Lidar Assessment for Wind Turbine Feed-Forward Control Applications: Cooperative Research and Development Final Report, CRADA Number CRD-09-352

    SciTech Connect (OSTI)

    Wright, A.

    2014-01-01

    Collaborative development and testing of feed-forward and other advanced wind turbine controls using a laser wind sensor.

  7. Offshore Wind Project Surges Ahead in South Carolina

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Center for Marine and Wetland Studies studies wind speed data from buoys, which have been measuring wind speed and direction for the past year.

  8. Key Activities in Wind Energy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    laboratories to develop aerodynamic, structural and electrical test centers for wind farms, wind turbines, rotor blades, and drivetrains Enable industry to meet performance...

  9. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomesWindWindWind Works

  10. High Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea, CaliforniaHess RetailResolution ImagingWinds

  11. Prairie Winds Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, BluePoulsen Hybrid, LLCBiofuelsEthanol LLC Jump8)Wind

  12. NREL: Wind Research - Wind Career Map Shows Wind Industry Career

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of MarineOpportunities, Paths Wind Career

  13. Reliability measures of second order semi-Markov chain in state and duration with application to wind energy production

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2012-01-01

    In this paper we consider the problem of wind energy production using a second order semi-Markov chain in state and duration as a model of wind speed. We present the mathematical model, we describe the data and technical characteristics of a commercial wind turbine (Aircon HAWT-10kW). We show how to compute some of the main dependability measures such as reliability, availability and maintainability functions. We compare the results of the model with real energy production obtained from data available in the Lastem station (Italy) and sampled every 10 minutes. The computation of the dependability measures is a crucial point in the planning and development of a wind farm.

  14. CALCULATING EMISSIONS REDUCTIONS FROM RENEWABLE ENERGY PROGRAMS AND ITS APPLICATION TO THE WIND FARMS IN THE TEXAS ERCOT REGION 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Baltazar, J. C.; Culp, C.; Yazdani, B.; Chandrasekaran, V.

    2008-01-01

    In August 2008 the Texas State Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC...

  15. Ris-R-1479(EN) Satellite information for wind energy

    E-Print Network [OSTI]

    Risø-R-1479(EN) Satellite information for wind energy applications Morten Nielsen, Poul Astrup Title: Satellite information for wind energy applications Department: Wind Energy Department Risø-R-1479.): An introduction to satellite information relevant for wind energy applications is given. It includes digital

  16. Electrochemical modulation of fluorescence of nitrogen vacancy centers in nanodiamonds for voltage sensing applications

    E-Print Network [OSTI]

    Sakakibara, Reyu

    2015-01-01

    The nitrogen vacancy (NV) color center in diamond has been used to sense environmental variables such as temperature and electric and magnetic fields. Most sensing protocols depend on the optically detectable magnetic ...

  17. Human-centered approaches to system level design with applications to desalination

    E-Print Network [OSTI]

    Yu, Bo Yang,, Ph. D. Massachusetts Institute of Technology

    2015-01-01

    The goal of this thesis is to better understand the design practice employed by the desalination industry from a systems-level viewpoint and offer recommendations to improve the process of design. A human-centered design ...

  18. THE UNIVERSITY OF TENNESSEE HEALTH SCIENCE CENTER (UTHSC) 2014 NURSING PRE-MATRICULATION PROGRAM APPLICATION

    E-Print Network [OSTI]

    Cui, Yan

    1 THE UNIVERSITY OF TENNESSEE HEALTH SCIENCE CENTER (UTHSC) 2014 NURSING PRE-MATRICULATION PROGRAM: _________________________________________________________________________________ CITIZENSHIP: Are you a U.S. Citizen, non-citizen national, or foreign national who possesses a visa permitting

  19. CgWind: A high-order accurate simulation tool for wind turbines and wind farms

    SciTech Connect (OSTI)

    Chand, K K; Henshaw, W D; Lundquist, K A; Singer, M A

    2010-02-22

    CgWind is a high-fidelity large eddy simulation (LES) tool designed to meet the modeling needs of wind turbine and wind park engineers. This tool combines several advanced computational technologies in order to model accurately the complex and dynamic nature of wind energy applications. The composite grid approach provides high-quality structured grids for the efficient implementation of high-order accurate discretizations of the incompressible Navier-Stokes equations. Composite grids also provide a natural mechanism for modeling bodies in relative motion and complex geometry. Advanced algorithms such as matrix-free multigrid, compact discretizations and approximate factorization will allow CgWind to perform highly resolved calculations efficiently on a wide class of computing resources. Also in development are nonlinear LES subgrid-scale models required to simulate the many interacting scales present in large wind turbine applications. This paper outlines our approach, the current status of CgWind and future development plans.

  20. Wind Turbine Generator System Acoustic Noise Test Report for the Gaia Wind 11-kW Wind Turbine

    SciTech Connect (OSTI)

    Huskey, A.

    2011-11-01

    This report details the acoustic noise test conducted on the Gaia-Wind 11-kW wind turbine at the National Wind Technology Center. The test turbine is a two- bladed, downwind wind turbine with a rated power of 11 kW. The test turbine was tested in accordance with the International Electrotechnical Commission standard, IEC 61400-11 Ed 2.1 2006-11 Wind Turbine Generator Systems -- Part 11 Acoustic Noise Measurement Techniques.

  1. NREL Releases RFP for Distributed Wind Turbine Competitiveness Improvement Projects

    Broader source: Energy.gov [DOE]

    In support of DOE's efforts to further develop distributed wind technology, NREL's National Wind Technology Center has released a Request for Proposal for the following Distributed Wind Turbine Competitiveness Improvement Projects on the Federal Business

  2. NREL: Wind Research - Offshore Wind Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNew WindDesign Tools

  3. NREL: Wind Research - Site Wind Resource Characteristics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNewSite Wind Resource

  4. NREL: Wind Research - Small Wind Turbine Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNewSite Wind

  5. NREL: Wind Research - Wind Energy Videos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of MarineOpportunities, Paths Wind

  6. Previous Wind Power Announcements (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass mapSpeedingProgram Guidelines ThisHENPDepartment'sPrestonPreviousMembers | HomeWind

  7. Wyoming Wind Power Project (generation/wind)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power AdministrationRobust,Field-effectWorkingLos Alamos verifies largest single goldWind Power > Generation Hydro

  8. Application of a solar wind model driven by turbulence dissipation to a 2D magnetic field configuration

    SciTech Connect (OSTI)

    Lionello, Roberto; Downs, Cooper; Linker, Jon A.; Miki?, Zoran; Velli, Marco E-mail: cdowns@predsci.com E-mail: mikic@predsci.com

    2014-12-01

    Although it is widely accepted that photospheric motions provide the energy source and that the magnetic field must play a key role in the process, the detailed mechanisms responsible for heating the Sun's corona and accelerating the solar wind are still not fully understood. Cranmer et al. developed a sophisticated, one-dimensional (1D), time-steady model of the solar wind with turbulence dissipation. By varying the coronal magnetic field, they obtain, for a single choice of wave properties, a realistic range of slow and fast wind conditions with a sharp latitudinal transition between the two streams. Using a 1D, time-dependent model of the solar wind of Lionello et al., which incorporates turbulent dissipation of Alfvén waves to provide heating and acceleration of the plasma, we have explored a similar configuration, obtaining qualitatively equivalent results. However, our calculations suggest that the rapid transition between slow and fast wind suggested by this 1D model may be disrupted in multidimensional MHD simulations by the requirement of transverse force balance.

  9. LIDAR Wind Speed Measurements of Evolving Wind Fields

    SciTech Connect (OSTI)

    Simley, E.; Pao, L. Y.

    2012-07-01

    Light Detection and Ranging (LIDAR) systems are able to measure the speed of incoming wind before it interacts with a wind turbine rotor. These preview wind measurements can be used in feedforward control systems designed to reduce turbine loads. However, the degree to which such preview-based control techniques can reduce loads by reacting to turbulence depends on how accurately the incoming wind field can be measured. Past studies have assumed Taylor's frozen turbulence hypothesis, which implies that turbulence remains unchanged as it advects downwind at the mean wind speed. With Taylor's hypothesis applied, the only source of wind speed measurement error is distortion caused by the LIDAR. This study introduces wind evolution, characterized by the longitudinal coherence of the wind, to LIDAR measurement simulations to create a more realistic measurement model. A simple model of wind evolution is applied to a frozen wind field used in previous studies to investigate the effects of varying the intensity of wind evolution. LIDAR measurements are also evaluated with a large eddy simulation of a stable boundary layer provided by the National Center for Atmospheric Research. Simulation results show the combined effects of LIDAR errors and wind evolution for realistic turbine-mounted LIDAR measurement scenarios.

  10. Wind | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures | Department ofWaterWind

  11. UW -Center for Intelligent Materials and Systems Electro-active Polymers and Their Applications

    E-Print Network [OSTI]

    Taya, Minoru

    for EAP Actuators ·Future works Conducting polymer: polyaniline(PANI) fiber, polypyrrole(PPy) film and carbon nanotube actuator #12;UW - Center for Intelligent Materials and Systems Polyvinyl alcohol (PVA film Au sheet Glass substrate Plastic filmGel Au sheets (a) Schematic diagram (b) Top view of coated

  12. Thermodynamic Functions for Body Centered Cubic Lattice- Application on Lattice Green's Function

    E-Print Network [OSTI]

    J. H. Asad

    2011-11-13

    Thermodynamic functions of ionic systems were evaluated analytically using the Green's Function for Body Centered Cubic Lattices. The free energy density, chemical potential, pressure, spinodals, and coulomb ionic potentials are expressed in terms of hyper geometric functions 3F2 and complete elliptic integrals

  13. Wind Farm

    Broader source: Energy.gov [DOE]

    The wind farm in Greensburg, Kansas, was completed in spring 2010, and consists of ten 1.25 megawatt (MW) wind turbines that supply enough electricity to power every house, business, and municipal...

  14. Optimization of Electric Power Systems for Off-Grid Domestic Applications: An Argument for Wind/Photovoltaic Hybrids

    SciTech Connect (OSTI)

    Jennings, W.; Green, J.

    2001-01-01

    The purpose of this research was to determine the optimal configuration of home power systems relevant to different regions in the United States. The hypothesis was that, regardless of region, the optimal system would be a hybrid incorporating wind technology, versus a photovoltaic hybrid system without the use of wind technology. The method used in this research was HOMER, the Hybrid Optimization Model for Electric Renewables. HOMER is a computer program that optimizes electrical configurations under user-defined circumstances. According to HOMER, the optimal system for the four regions studied (Kansas, Massachusetts, Oregon, and Arizona) was a hybrid incorporating wind technology. The cost differences between these regions, however, were dependent upon regional renewable resources. Future studies will be necessary, as it is difficult to estimate meteorological impacts for other regions.

  15. Experimental Analysis of Application Specific Energy Efficiency of Data Centers with Heterogeneous Servers

    E-Print Network [OSTI]

    Shi, Weisong

    of energy they consume yearly. However, there is still a gap of understanding of how exactly the application they house over tens of thousands of servers consuming tens of mega-watts of energy during peak hours adding consumed by the all servers around the world in 2005. As a result, improving energy efficiency within

  16. NWTC Helps Chart the World's Wind Resource Potential

    SciTech Connect (OSTI)

    2015-09-01

    Researchers at the National Renewable Energy Laboratory's (NREL's) National Wind Technology Center (NWTC) provide the wind industry, policymakers, and other stakeholders with applied wind resource data, information, maps, and technical assistance. These tools, which emphasize wind resources at ever-increasing heights, help stakeholders evaluate the wind resource and development potential for a specific area.

  17. Wind Generation Feasibility Study in Bethel, AK

    SciTech Connect (OSTI)

    Tom Humphrey, YKHC; Lance Kincaid, EMCOR Energy & Technologies

    2004-07-31

    This report studies the wind resources in the Yukon-Kuskokwim Health Corporation (YKHC) region, located in southwestern Alaska, and the applicability of wind generation technologies to YKHC facilities.

  18. Automatic contour-based road network design for optimized wind farm micrositing

    E-Print Network [OSTI]

    Gu, H; Wang, J; Lin, Q; Gong, Q

    2015-01-01

    and R. Li, “Study on wind power generation cost in Zhejiang:ing renewable energy. A wind power generation station, alsotheir applications to wind power prediction, and wind energy

  19. A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy

    E-Print Network [OSTI]

    Taylor, Stuart Glynn

    2013-01-01

    of Wind Turbine Blades Using Piezoelectric Active-Sensors,"Sensor Node to Health Monitoring of Operational Wind TurbineSensors Capacitance % Change (nF) 3.4.4. Deployment Example: Wind Turbine

  20. A multi-scale approach to statistical and model-based structural health monitoring with application to embedded sensing for wind energy

    E-Print Network [OSTI]

    Taylor, Stuart Glynn

    2013-01-01

    Test Program," in ASME Wind Energy Symposium , 2004. H. J.Turbine," in 2002 ASME Wind Energy Symposium , 2002, pp.turbine," in 2001 ASME Wind Energy Symposium , 2001, pp.

  1. DESCRIPTION OF ACTIVITIES AND SELECTED RESULTS FOR THE U.S. DEPARTMENT OF ENERGY S CLEAN ENERGY APPLICATION CENTERS: FISCAL YEAR 2010

    SciTech Connect (OSTI)

    Schweitzer, Martin

    2011-11-01

    The U.S. Department of Energy (DOE) sponsors a set of Clean Energy Application Centers that promote the development and deployment of clean energy technologies. There are eight regional centers that provide assistance for specific areas of the country plus a separate center operated by the International District Energy Association that provides technical assistance on district energy issues and applications to the regional centers. The original focus of the centers was on combined heat and power (CHP) alone but, beginning in fiscal year 2010, their scope expanded to include district energy systems and waste heat recovery. At that time, the official name of the centers changed from CHP Regional Application Centers (RACs) to Clean Energy Application Centers, and their number was expanded to include the previously-mentioned center focusing on district energy. Oak Ridge National Laboratory (ORNL) has performed two previous studies of RAC activities. The first one examined what the RACs had done each year from the initiation of the program through fiscal year (FY) 2008 and the second one examined RAC activities for the 2009 fiscal year. The most recent study, described in this report, examines what was accomplished in fiscal year 2010, the first year since the RACs expanded their focus and changed their name to Clean Energy Application Centers.

  2. Winds of Education

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, search Name:Wind turbineNord

  3. Advanced Coal Wind Hybrid: Economic Analysis

    SciTech Connect (OSTI)

    Phadke, Amol; Goldman, Charles; Larson, Doug; Carr, Tom; Rath, Larry; Balash, Peter; Yih-Huei, Wan

    2008-11-28

    Growing concern over climate change is prompting new thinking about the technologies used to generate electricity. In the future, it is possible that new government policies on greenhouse gas emissions may favor electric generation technology options that release zero or low levels of carbon emissions. The Western U.S. has abundant wind and coal resources. In a world with carbon constraints, the future of coal for new electrical generation is likely to depend on the development and successful application of new clean coal technologies with near zero carbon emissions. This scoping study explores the economic and technical feasibility of combining wind farms with advanced coal generation facilities and operating them as a single generation complex in the Western US. The key questions examined are whether an advanced coal-wind hybrid (ACWH) facility provides sufficient advantages through improvements to the utilization of transmission lines and the capability to firm up variable wind generation for delivery to load centers to compete effectively with other supply-side alternatives in terms of project economics and emissions footprint. The study was conducted by an Analysis Team that consists of staff from the Lawrence Berkeley National Laboratory (LBNL), National Energy Technology Laboratory (NETL), National Renewable Energy Laboratory (NREL), and Western Interstate Energy Board (WIEB). We conducted a screening level analysis of the economic competitiveness and technical feasibility of ACWH generation options located in Wyoming that would supply electricity to load centers in California, Arizona or Nevada. Figure ES-1 is a simple stylized representation of the configuration of the ACWH options. The ACWH consists of a 3,000 MW coal gasification combined cycle power plant equipped with carbon capture and sequestration (G+CC+CCS plant), a fuel production or syngas storage facility, and a 1,500 MW wind plant. The ACWH project is connected to load centers by a 3,000 MW transmission line. In the G+CC+CCS plant, coal is gasified into syngas and CO{sub 2} (which is captured). The syngas is burned in the combined cycle plant to produce electricity. The ACWH facility is operated in such a way that the transmission line is always utilized at its full capacity by backing down the combined cycle (CC) power generation units to accommodate wind generation. Operating the ACWH facility in this manner results in a constant power delivery of 3,000 MW to the load centers, in effect firming-up the wind generation at the project site.

  4. Orbit-averaged guiding-center Fokker-Planck operator for numerical applications

    SciTech Connect (OSTI)

    Decker, J.; Peysson, Y.; Duthoit, F.-X. [IRFM, CEA, F-13108 Saint-Paul-lez-Durance (France); Brizard, A. J. [Department of Chemistry and Physics, Saint Michael's College, Colchester, Vermont 05439 (United States)

    2010-11-15

    A guiding-center Fokker-Planck operator is derived in a coordinate system that is well suited for the implementation in a numerical code. This differential operator is transformed such that it can commute with the orbit-averaging operation. Thus, in the low-collisionality approximation, a three-dimensional Fokker-Planck evolution equation for the orbit-averaged distribution function in a space of invariants is obtained. This transformation is applied to a collision operator with nonuniform isotropic field particles. Explicit neoclassical collisional transport diffusion and convection coefficients are derived, and analytical expressions are obtained in the thin orbit approximation. To illustrate this formalism and validate our results, the bootstrap current is analytically calculated in the Lorentz limit.

  5. 2014 WIND POWER PROGRAM PEER REVIEW-DISTRIBUTED WIND

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReportOffice | Department ofDistributed Wind March 24-27, 2014 Wind

  6. First Wind (Formerly UPC Wind) (California) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump to:WindP.pdfFireFirst Wind (Formerly

  7. First Wind (Formerly UPC Wind) (Massachusetts) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump to:WindP.pdfFireFirst Wind

  8. Metro Wind LLC Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area TotalWind LLC Wind Farm Jump to:

  9. Michigan Wind I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area TotalWindMicheln Jump to:MichiganI Wind

  10. Mountain Wind I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston, Nevada:WindIV JumpI Wind

  11. Mountain Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, searchsource HistoryCharleston, Nevada:WindIV JumpI WindII

  12. WP2 IEA Wind Task 26:The Past and Future Cost of Wind Energy

    E-Print Network [OSTI]

    Lantz, Eric

    2014-01-01

    Renewable Energy Laboratory IEA Wind Task 26: The Past And Futureand Future Cost of Wind Energy Leading Authors Eric Lantz: National RenewableFuture Questions Eric Lantz Research Analyst Strategic Energy Analysis Center National Renewable

  13. NREL Small Wind Turbine Test Project: Mariah Power's Windspire Wind Turbine Test Chronology

    SciTech Connect (OSTI)

    Huskey, A.; Forsyth, T.

    2009-06-01

    This report presents a chronology of tests conducted at NREL's National Wind Technology Center on Mariah Power's Windspire 1.2-kW wind turbine and a letter of response from Mariah Power.

  14. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  15. Idaho_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Site Bryans Run Cell Tower Site Wilson Peak Eckert Site Loertscher Boise State's Wind Data Link Wind Power Idaho Wind Data See also: Idaho Energy Resources - Wind, American...

  16. Steel Winds | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSoloPageBefore the SenateHillsWinds II Jump to:Winds

  17. Lake Winds | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to: navigation, search Name Lake Winds

  18. Lime Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds JumpOxiranchem IncLighthouseLignin JumpLihue,Wind

  19. Cape Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy Electricals Ltd BHEL JumpCMNA Power JumpWind EnergyCangnanWind

  20. California Renewable Energy Center Integrated Assessment

    E-Print Network [OSTI]

    California at Davis, University of

    ;California Renewable Energy Center Organization of this session: · Overview of solar, wind, geothermal · End of 2013 ­ Global: 318 GW ­ U.S.: 61 GW ­ California: 5,829 MW · State with 2nd most wind capacity Price of Energy 15 #12;California Renewable Energy Center 16 Distributed Wind · On-site or installed

  1. National Wind Distance Learning Collaborative

    SciTech Connect (OSTI)

    Dr. James B. Beddow

    2013-03-29

    Executive Summary The energy development assumptions identified in the Department of Energy's position paper, 20% Wind Energy by 2030, projected an exploding demand for wind energy-related workforce development. These primary assumptions drove a secondary set of assumptions that early stage wind industry workforce development and training paradigms would need to undergo significant change if the workforce needs were to be met. The current training practice and culture within the wind industry is driven by a relatively small number of experts with deep field experience and knowledge. The current training methodology is dominated by face-to-face, classroom based, instructor present training. Given these assumptions and learning paradigms, the purpose of the National Wind Distance Learning Collaborative was to determine the feasibility of developing online learning strategies and products focused on training wind technicians. The initial project scope centered on (1) identifying resources that would be needed for development of subject matter and course design/delivery strategies for industry-based (non-academic) training, and (2) development of an appropriate Learning Management System (LMS). As the project unfolded, the initial scope was expanded to include development of learning products and the addition of an academic-based training partner. The core partners included two training entities, industry-based Airstreams Renewables and academic-based Lake Area Technical Institute. A third partner, Vision Video Interactive, Inc. provided technology-based learning platforms (hardware and software). The revised scope yielded an expanded set of results beyond the initial expectation. Eight learning modules were developed for the industry-based Electrical Safety course. These modules were subsequently redesigned and repurposed for test application in an academic setting. Software and hardware developments during the project's timeframe enabled redesign providing for student access through the use of tablet devices such as iPads. Early prototype Learning Management Systems (LMS) featuring more student-centric access and interfaces with emerging social media were developed and utilized during the testing applications. The project also produced soft results involving cross learning between and among the partners regarding subject matter expertise, online learning pedagogy, and eLearning technology-based platforms. The partners believe that the most significant, overarching accomplishment of the project was the development and implementation of goals, activities, and outcomes that significantly exceeded those proposed in the initial grant application submitted in 2009. Key specific accomplishments include: (1) development of a set of 8 online learning modules addressing electrical safety as it relates to the work of wind technicians; (3) development of a flexible, open-ended Learning Management System (LMS): (3) creation of a robust body of learning (knowledge, experience, skills, and relationships). Project leaders have concluded that there is substantial resource equity that could be leverage and recommend that it be carried forward to pursue a Next Stage Opportunity relating to development of an online core curriculum for institute and community college energy workforce development programs.

  2. ARM - Word Seek: Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications Traditional Knowledge Kiosks Barrow, Alaska TropicalStorms Outreach HomeWind

  3. Enabling Wind Power Nationwide

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergy A plug-inPPL EnergyPlus,DepartmentFederal RegisterEditableWind Power Nationwide May

  4. Sandia Energy - Wind Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDid youOxygenLaboratory FellowsStationarytdheinrWaterWavelengthWhiteWind

  5. ARM - Lesson Plans: Winds

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Comments?govInstrumentsnoaacrnBarrow, Alaska Outreach Home Room News PublicationsClimatePastTheWinds Outreach Home

  6. Wind | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann JacksonDepartment| Department of EnergyDataWind The United States is home to one of

  7. Offshore Wind Potential Tables

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJesseworkSURVEY UNIVERSEHowScientific andComplexOfficeOffice ofOffshore wind

  8. NREL: Innovation Impact - Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesof EnergyY-12Working withPhoto of theSolar Energy MenuWind

  9. NREL: Wind Research - Publications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications The NREL wind research program develops

  10. NREL: Wind Research - Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications The NREL wind research program

  11. NREL: Wind Research - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room NewsInformationJessework usesofPublications The NREL wind research programWebmaster Please

  12. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    Wind Market Applications. NREL/TP-500- 39871. Golden,and Potential Solutions. NREL/SR-550-44508. Denver,Heimiller, and Billy Roberts (NREL); Kathy Belyeu and Ron

  13. Very short-term wind speed forecasting with Bayesian structural break model , Zhe Song a,*, Andrew Kusiak b

    E-Print Network [OSTI]

    Kusiak, Andrew

    of the wind industry, such as wind turbine predictive control [2,3], wind power grid integration and economic July 2012 Available online Keywords: Time series Forecasting Wind power Wind speed Bayesian structural applications, such as wind turbine predictive control, wind power scheduling. The proposed model is tested

  14. Community-Owned wind power development: The challenge of applying the European model in the United States, and how states are addressing that challenge

    E-Print Network [OSTI]

    Bolinger, Mark

    2004-01-01

    Funds Biomass and Innovative Wind Applications. LBNL.Small Distributed Wind Tariff and PPA, www.xcelenergy.com/Bolinger, M. 2001. Community Wind Power Ownership Schemes in

  15. Analysis of Wind Power Generation of Texas 

    E-Print Network [OSTI]

    Liu, Z.; Haberl, J.; Subbarao, K.; Baltazar, J. C.

    2007-01-01

    ? Not appropriate for predicting hourly power using power curve ? On-site wind: ? Measured power vs. on-site wind following well the power curve prediction ? No curtailment at this site ? Green curves showing a band of 5 MW from the power curve WHY NOT Use... APPLICATION ? Indian Mesa Wind Farm Measured MW Plotted Against Hourly NOAA Wind Speed? ANN significantly improves the prediction of on-site wind speed compared to NOAA. ? Green curves showing a band of 5 MW from the power curve Hourly Wind Power...

  16. Wind Tunnel 

    E-Print Network [OSTI]

    Unknown

    2011-08-17

    Simulation of Cooling Effect of Wind Tower on Passively Ventilated Building John Seryak Kelly Kissock Project Engineer Associate Professor Department of Mechanical and Aerospace Engineering University of Dayton... Dayton, Ohio ABSTRACT Traditional buildings are cooled and ventilated by mechanically induced drafts. Natural ventilation aspires to cool and ventilate a building by natural means, such as cross ventilation or wind towers, without mechanical...

  17. Review of Historical and Modern Utilization of Wind Power Publications Department

    E-Print Network [OSTI]

    Review of Historical and Modern Utilization of Wind Power Publications Department publications Review of Historical and Modern Utilization of Wind Power Per Dannemand Andersen, Ph.D. Content INTRODUCTION THE HISTORY OF WIND POWER q Wind Power in Denmark APPLICATIONS OF WIND POWER WIND POWER

  18. Royal Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onRAPID/Geothermal/Exploration/ColoradoRemsenburg-Speonk, NewMichigan:Roxbury, Vermont: Energy ResourcesWind Jump to:

  19. Wind Waves and Sun | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomesWindWind

  20. NREL: Wind Research - Small Wind Turbine Independent Testing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines lightGeospatialDevelopment of Marine andDrivetrainsNewSite WindSmall Wind

  1. Wind Energy Education and Outreach Project

    SciTech Connect (OSTI)

    David G. Loomis

    2011-04-15

    The purpose of Illinois State Universityâ??s wind project was to further the education and outreach of the university concerning wind energy. This project had three major components: to initiate and coordinate a Wind Working Group for the State of Illinois, to launch a Renewable Energy undergraduate program, and to develop the Center for Renewable Energy that will sustain the Illinois Wind Working Group and the undergraduate program.

  2. Naval Station Newport Wind Resource Assessment. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites, and The Naval Facilities Engineering Service Center

    SciTech Connect (OSTI)

    Robichaud, R.; Fields, J.; Roberts, J. O.

    2012-02-01

    The U.S. Environmental Protection Agency (EPA) launched the RE-Powering America's Land initiative to encourage development of renewable energy (RE) on potentially contaminated land and mine sites. EPA is collaborating with the U.S. Department of Energy's (DOE's) National Renewable Energy Laboratory (NREL) to evaluate RE options at Naval Station (NAVSTA) Newport in Newport, Rhode Island where multiple contaminated areas pose a threat to human health and the environment. Designated a superfund site on the National Priorities List in 1989, the base is committed to working toward reducing the its dependency on fossil fuels, decreasing its carbon footprint, and implementing RE projects where feasible. The Naval Facilities Engineering Service Center (NFESC) partnered with NREL in February 2009 to investigate the potential for wind energy generation at a number of Naval and Marine bases on the East Coast. NAVSTA Newport was one of several bases chosen for a detailed, site-specific wind resource investigation. NAVSTA Newport, in conjunction with NREL and NFESC, has been actively engaged in assessing the wind resource through several ongoing efforts. This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and a survey of potential wind turbine options based upon the site-specific wind resource.

  3. Overview of NASA Lewis Research Center free-piston Stirling engine technology activities applicable to space power systems

    SciTech Connect (OSTI)

    Slaby, J.G.

    1987-01-01

    An overview is presented of the National Aeronautics and Space Administration (NASA) Lewis Research Center free-piston Stirling engine activities directed toward space-power application. One of the major elements of the program is the development of advanced power conversion concepts of which the Stirling cycle is a viable candidate. Under this program the research findings of the 25 kWe opposed-piston Space Power Demonstrator Engine (SPDE) are presented. Included in the SPDE discussion are initial differences between predicted and experimental power outputs and power output influenced by variations in regenerators. Projections are made for future space-power requirements over the next few decades. A cursory comparison is presented showing the mass benefits that a Stirling system has over a Brayton system for the same peak temperature and output power.

  4. Contol of Surface Mounted Permanent Magnet Motors with Special Application to Motors with Fractional-Slot Concentrated Windings

    SciTech Connect (OSTI)

    Patil, N.; Lawler, J.S.; McKeever, J.

    2007-07-31

    A 30-pole, 6-kW prototype of a fractional-slot permanent magnet synchronous motor (PMSM) design has been developed to operate at a maximum speed of 6000 rpm [1,2]. This machine has significantly more inductance than regular PMSMs with distributed windings. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a suitable controller. To prepare for this test/control development effort, ORNL used PMSM models developed over a number of previous studies to preview the control issues that arise when a dynamic controller drives a high inductance PMSM machine during steady state performance evaluations. The detailed steady state model developed includes all motor and inverter loss mechanisms and was useful for assessing the performance of the dynamic controller before it was put into operation. This report documents the results of tests demonstrating the effectiveness of ORNL's simple low-cost control scheme during characterization of the fractional-slot concentrated windings (FSCW) PMSM motor. The control scheme is simple because only the supply voltage magnitude and the phase angle between the back-electromotive force (emf) and the supply voltage is controlled. It is low-cost because it requires no current or phase voltage sensors.

  5. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  6. Distributed Wind Energy in Idaho

    SciTech Connect (OSTI)

    Gardner, John; Ferguson, James; Ahmed-Zaid, Said; Johnson, Kathryn; Haynes, Todd; Bennett, Keith

    2009-01-31

    Project Objective: This project is a research and development program aimed at furthering distributed wind technology. In particular, this project addresses some of the barriers to distributed wind energy utilization in Idaho. Background: At its core, the technological challenge inherent in Wind Energy is the transformation of a highly variable form of energy to one which is compatible with the commercial power grid or another useful application. A major economic barrier to the success of distributed wind technology is the relatively high capital investment (and related long payback periods) associated with wind turbines. This project will carry out fundamental research and technology development to address both the technological and economic barriers. � Active drive train control holds the potential to improve the overall efficiency of a turbine system by allowing variable speed turbine operation while ensuring a tight control of generator shaft speed, thus greatly simplifying power conditioning. � Recent blade aerodynamic advancements have been focused on large, utility-scale wind turbine generators (WTGs) as opposed to smaller WTGs designed for distributed generation. Because of Reynolds Number considerations, blade designs do not scale well. Blades which are aerodynamically optimized for distributed-scale WTGs can potentially reduce the cost of electricity by increasing shaft-torque in a given wind speed. � Grid-connected electric generators typically operate at a fixed speed. If a generator were able to economically operate at multiple speeds, it could potentially convert more of the wind�s energy to electricity, thus reducing the cost of electricity. This research directly supports the stated goal of the Wind and Hydropower Technologies Program for Distributed Wind Energy Technology: By 2007, reduce the cost of electricity from distributed wind systems to 10 to 15 cents/kWh in Class 3 wind resources, the same level that is currently achievable in Class 5 winds.

  7. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model

    SciTech Connect (OSTI)

    Solovyeva, Alisa [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany); Pavanello, Michele [Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden (Netherlands); Neugebauer, Johannes [Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig (Germany)

    2012-05-21

    Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations. In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.

  8. Wind Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirleyEnergyThe U.S.Lacledeutilities.Energy Thefull swing, andWind ProgramThe DeputyofWind

  9. Application

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Spins Do The TwistContract2Application

  10. Applications

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News Publications TraditionalWithAntiferromagnetic Spins Do TheApplication Portingboat ride on

  11. Wind Energy Leasing Handbook

    E-Print Network [OSTI]

    Balasundaram, Balabhaskar "Baski"

    Wind Energy Leasing Handbook Wind Energy Leasing Handbook E-1033 Oklahoma Cooperative Extension?..................................................................................................................... 31 What do wind developers consider in locating wind energy projects?............................................................................................ 37 How do companies and individuals invest in wind energy projects?....................................................................

  12. New England Wind Energy Education Project (NEWEEP)

    SciTech Connect (OSTI)

    Grace, Robert C.; Craddock, Kathryn A.; von Allmen, Daniel R.

    2012-04-25

    Project objective is to develop and disseminate accurate, objective information on critical wind energy issues impacting market acceptance of hundreds of land-based projects and vast off-shore wind developments proposed in the 6-state New England region, thereby accelerating the pace of wind installation from today's 140 MW towards the region's 20% by 2030 goals of 12,500 MW. Methodology: This objective will be accomplished by accumulating, developing, assembling timely, accurate, objective and detailed information representing the 'state of the knowledge' on critical wind energy issues impacting market acceptance, and widely disseminating such information. The target audience includes state agencies and local governments; utilities and grid operators; wind developers; agricultural and environmental groups and other NGOs; research organizations; host communities and the general public, particularly those in communities with planned or operating wind projects. Information will be disseminated through: (a) a series of topic-specific web conference briefings; (b) a one-day NEWEEP conference, back-to-back with a Utility Wind Interest Group one-day regional conference organized for this project; (c) posting briefing and conference materials on the New England Wind Forum (NEWF) web site and featuring the content on NEWF electronic newsletters distributed to an opt-in list of currently over 5000 individuals; (d) through interaction with and participation in Wind Powering America (WPA) state Wind Working Group meetings and WPA's annual All-States Summit, and (e) through the networks of project collaborators. Sustainable Energy Advantage, LLC (lead) and the National Renewable Energy Laboratory will staff the project, directed by an independent Steering Committee composed of a collaborative regional and national network of organizations. Major Participants - the Steering Committee: In addition to the applicants, the initial collaborators committing to form a Steering Committee consists of the Massachusetts Renewable Energy Trust; Maine Public Utilities Commission; New Hampshire office of Energy & Planning, the Connecticut Clean Energy Fund;, ISO New England; Utility Wind Interest Group; University of Massachusetts Wind Energy Center; Renewable Energy New England (a new partnership between the renewable energy industry and environmental public interest groups), and Lawrence Berkeley National Laboratory (conditionally). The Steering Committee will: (1) identify and prioritize topics of greatest interest or concern where detailed, objective and accurate information will advance the dialogue in the region; (2) identify critical outreach venues, influencers and experts; (3) direct and coordinate project staff; (4) assist project staff in planning briefings and conferences described below; (5) identify topics needing additional research or technical assistance and (6) identify and recruit additional steering committee members. Impacts/Benefits/Outcomes: By cutting through the clutter of competing and conflicting information on critical issues, this project is intended to encourage the market's acceptance of appropriately-sited wind energy generation.

  13. A Habitat-based Wind-Wildlife Collision Model with Application to the Upper Great Plains Region

    SciTech Connect (OSTI)

    Forcey, Greg, M.

    2012-08-28

    Most previous studies on collision impacts at wind facilities have taken place at the site-specific level and have only examined small-scale influences on mortality. In this study, we examine landscape-level influences using a hierarchical spatial model combined with existing datasets and life history knowledge for: Horned Lark, Red-eyed Vireo, Mallard, American Avocet, Golden Eagle, Whooping Crane, red bat, silver-haired bat, and hoary bat. These species were modeled in the central United States within Bird Conservation Regions 11, 17, 18, and 19. For the bird species, we modeled bird abundance from existing datasets as a function of habitat variables known to be preferred by each species to develop a relative abundance prediction for each species. For bats, there are no existing abundance datasets so we identified preferred habitat in the landscape for each species and assumed that greater amounts of preferred habitat would equate to greater abundance of bats. The abundance predictions for bird and bats were modeled with additional exposure factors known to influence collisions such as visibility, wind, temperature, precipitation, topography, and behavior to form a final mapped output of predicted collision risk within the study region. We reviewed published mortality studies from wind farms in our study region and collected data on reported mortality of our focal species to compare to our modeled predictions. We performed a sensitivity analysis evaluating model performance of 6 different scenarios where habitat and exposure factors were weighted differently. We compared the model performance in each scenario by evaluating observed data vs. our model predictions using spearmans rank correlations. Horned Lark collision risk was predicted to be highest in the northwestern and west-central portions of the study region with lower risk predicted elsewhere. Red-eyed Vireo collision risk was predicted to be the highest in the eastern portions of the study region and in the forested areas of the western portion; the lowest risk was predicted in the treeless portions of the northwest portion of the study area. Mallard collision risk was predicted to be highest in the eastern central portion of the prairie potholes and in Iowa which has a high density of pothole wetlands; lower risk was predicted in the more arid portions of the study area. Predicted collision risk for American Avocet was similar to Mallard and was highest in the prairie pothole region and lower elsewhere. Golden Eagle collision risk was predicted to be highest in the mountainous areas of the western portion of the study area and lowest in the eastern portion of the prairie potholes. Whooping Crane predicted collision risk was highest within the migration corridor that the birds follow through in the central portion of the study region; predicted collision risk was much lower elsewhere. Red bat collision risk was highly driven by large tracts of forest and river corridors which made up most of the areas of higher collision risk. Silver-haired bat and hoary bat predicted collision risk were nearly identical and driven largely by forest and river corridors as well as locations with warmer temperatures, and lower average wind speeds. Horned Lark collisions were mostly influenced by abundance and predictions showed a moderate correlation between observed and predicted mortality (r = 0.55). Red bat, silver-haired bat, and hoary bat predictions were much higher and shown a strong correlations with observed mortality with correlations of 0.85, 0.90, and 0.91 respectively. Red bat collisions were influenced primarily by habitat, while hoary bat and silver-haired bat collisions were influenced mainly by exposure variables. Stronger correlations between observed and predicted collision for bats than for Horned Larks can likely be attributed to stronger habitat associations and greater influences of weather on behavior for bats. Although the collision predictions cannot be compared among species, our model outputs provide a convenient and easy landscape-level tool to quick

  14. Comparison of API & IEC Standards for Offshore Wind Turbine Applications in the U.S. Atlantic Ocean: Phase II; March 9, 2009 - September 9, 2009

    SciTech Connect (OSTI)

    Jha, A.; Dolan, D.; Gur, T.; Soyoz, S.; Alpdogan, C.

    2013-01-01

    This report compares two design guidelines for offshore wind turbines: Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platform Structures and the International Electrotechnical Commission 61400-3 Design Requirements for Offshore Wind Turbines.

  15. Wind resource assessment with a mesoscale non-hydrostatic model

    E-Print Network [OSTI]

    Boyer, Edmond

    Wind resource assessment with a mesoscale non- hydrostatic model Vincent Guénard, Center for Energy is developed for assessing the wind resource and its uncertainty. The work focuses on an existing wind farm mast measurements. The wind speed and turbulence fields are discussed. It is shown that the k

  16. Wind velocity measurements using a pulsed LIDAR system: first results

    E-Print Network [OSTI]

    Peinke, Joachim

    , M K¨uhn3 and J Peinke4 1,4 ForWind Center for Wind Energy Research, University of Oldenburg, Germany 2,3 Endowed Chair of Wind Energy, University of Stuttgart, Germany E-mail: 1 matthias relevance for wind energy utilization. Different technologies are in use in this field, among them LIDAR

  17. Wind-Wildlife Impacts Literature Database (WILD)(Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2015-01-01

    The Wind-Wildlife Impacts Literature Database (WILD), developed and maintained by the National Wind Technology Center (NWTC) at the National Renewable Energy Laboratory (NREL), is comprised of over 1,000 citations pertaining to the effects of land-based wind, offshore wind, marine and hydrokinetic, power lines, and communication and television towers on wildlife.

  18. Wind Program Newsletter: Fourth Quarter 2012 | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'S FUTURE.Energy Wind Power Today, 2010, Wind and WaterWindWindWind

  19. Wind Project Siting Tools | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomesWind EnergyWindWind

  20. Wind Works LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomesWindWindWind Works LLC

  1. WindSave Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd JumpPowerWindSave Ltd

  2. Fenton Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmlandExpress JumpWindWindWind Power

  3. Lalamilo Wells Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to: navigation, searchLakota Ridge WindWind

  4. Wind technology roadmap | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind WorldWind forWind

  5. Desert Wind Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGridDeepiSolar and WindQueenWind Power

  6. Ris-R-Report LIDAR Wind Speed Measurements from a

    E-Print Network [OSTI]

    Risø-R-Report LIDAR Wind Speed Measurements from a Rotating Spinner: "SpinnerEx 2009" Nikolas: LIDAR wind speed measurements from a rotating spinner (SpinnerEx 2009) Division: Wind Energy Division application of remote sensing techniques in wind energy, the feasibility of upwind observations via a spinner

  7. Paper Presented at 1999 ASME Wind Energy Symposium, Reno Nevada

    E-Print Network [OSTI]

    Paper Presented at 1999 ASME Wind Energy Symposium, Reno Nevada January 11-14, 1998, AIAA-99 Mexico 87185-0708 ABSTRACT Wind energy researchers at Sandia National Laboratories have developed a small, GPS application, spread-spectrum modem INTRODUCTION Wind-energy researchers at the National Wind

  8. Ris National Laboratory Satellite SAR applied in offshore wind

    E-Print Network [OSTI]

    Risø National Laboratory Satellite SAR applied in offshore wind ressource mapping: possibilities is to quantify the regional offshore wind climate for wind energy application based on satellite SAR ·Study of 85SAR(m/s) Hasager, Dellwik, Nielsen and Furevik, 2004, Validation of ERS-2 SAR offshore wind-speed maps

  9. Title: Ontario Wind Resources Information Ontario Ministry of Natural Resources

    E-Print Network [OSTI]

    Title: Ontario Wind Resources Information Data Creator / Copyright Owner: Ontario Ministry as an input to the Wind Resource Atlas, a web mapping application for helping users determine the feasibility of developing in wind power. This package contains GIS data that is displayed in the Wind Resource Atlas

  10. Control of Surface Mounted Permanent Magnet Motors with Special Application to Fractional-Slot Motors with Concentrated Windings

    SciTech Connect (OSTI)

    McKeever, John W; Patil, Niranjan; Lawler, Jack

    2007-07-01

    A 30 pole, 6 kW, and 6000 maximum revolutions per minute (rpm) prototype of the permanent magnet synchronous motor (PMSM) with fractional-slot concentrated windings (FSCW) has been designed, built, and tested at the University of Wisconsin at Madison (UWM). This machine has significantly more inductance than that of regular PMSMs. The prototype was delivered in April 2006 to the Oak Ridge National Laboratory (ORNL) for testing and development of a controller that will achieve maximum efficiency. In advance of the test/control development effort, ORNL has used the PMSM models developed over a number of previous studies to study how steady state performance of high inductance PMSM machines relates to control issues. This report documents the results of this research. The amount of inductance that enables the motor to achieve infinite constant power speed ratio (CPSR) is given by L{sub {infinity}} = E{sub b}/{Omega}{sub b}I{sub R}, where E{sub b} is the root-mean square (rms) magnitude of the line-to-neutral back-electromotive force (emf) at base speed, {Omega}{sub b} is the base speed in electrical radians per second, and I{sub R} is the rms current rating of the motor windings. The prototype machine that was delivered to ORNL has about 1.5 times as much inductance as a typical PMSM with distributed integral slot windings. The inventors of the FSCW method, who designed the prototype machine, remarked that they were 'too successful' in incorporating inductance into their machine and that steps would be taken to modify the design methodology to reduce the inductance to the optimum value. This study shows a significant advantage of having the higher inductance rather than the optimal value because it enables the motor to develop the required power at lower current thereby reducing motor and inverter losses and improving efficiency. The main problem found with high inductance machines driven by a conventional phase advance (CPA) method is that the motor current at high speed depends solely on machine parameters and is virtually independent of the load level and the direct current (dc) supply voltage. Thus, the motor current is virtually the same at no load as at full load resulting in poor efficiency at less than full load conditions. While an inductance higher than the value cited above is warranted, it still does not ensure that the motor current is proportional to load; consequently, the problem of low efficiency at high speed and partial load is not resolved but is only mitigated. A common definition of 'base speed' is the speed at which the voltage applied to the motor armature is equal to the magnitude of the back-emf. The results in this study indicate that the dc supply voltage should be adequate to drive rated current into the motor winding at the specified base speed. At a minimum this requires sufficient voltage to overcome not only the back-emf but also the voltage drop across the internal impedance of the machine. For a high inductance PMSM, the internal impedance at base speed can be considerable and substantial additional voltage is required to overcome the internal voltage drop. It is further shown that even more voltage than the minimum required for injecting rated current at base speed can be beneficial by allowing the required power to be developed at lower current, which reduces losses in the motor and inverter components. Further, it is shown that the current is minimized at a unique speed; consequently, there may be room for optimization if the drive spends a substantial amount of its operating life at a certain speed (for example 60 mph). In this study, fundamental frequency phasor models are developed for a synchronous PMSM and the control systems that drive them is CPA. The models were compared with detailed simulations to show their validity. The result was used to design a traction drive control system with optimized efficiency to drive the fractional-slot motor with concentrated windings. The goal is to meet or exceed the FreedomCAR inverter cost and performance targets.

  11. 2012 Market Report on U.S. Wind Technologies in Distributed Applicatio...

    Office of Environmental Management (EM)

    2012 Market Report on U.S. Wind Technologies in Distributed Applications 2012distributedwindtechnologiesdata.xls More Documents & Publications 2014 Distributed Wind Market...

  12. Wind Turbine Blade Flow Fields and Prospects for Active Aerodynamic Control: Preprint

    SciTech Connect (OSTI)

    Schreck, S.; Robinson, M.

    2007-08-01

    This paper describes wind turbine flow fields that can cause adverse aerodynamic loading and can impact active aerodynamic control methodologies currently contemplated for wind turbine applications.

  13. 2008 WIND TECHNOLOGIES MARKET REPORT

    SciTech Connect (OSTI)

    Wiser, Ryan H.; Bolinger, Mark; Barbose, G.; Mills, A.; Rosa, A.; Porter, K.; Fink, S.; Tegen, S.; Musial, W.; Oteri, F.; Heimiller, D.; Rberts, B.; Belyeu, K.; Stimmel, R.

    2009-07-15

    The U.S. wind industry experienced a banner year in 2008, again surpassing even optimistic growth projections from years past. At the same time, the last year has been one of upheaval, with the global financial crisis impacting near-term growth prospects for the wind industry, and with federal policy changes enacted to push the industry towards continued aggressive expansion. This rapid pace of development has made it difficult to keep up with trends in the marketplace. Yet, the need for timely, objective information on the industry and its progress has never been greater. This report - the third of an ongoing annual series - attempts to meet this need by providing a detailed overview of developments and trends in the U.S. wind power market, with a particular focus on 2008. As with previous editions, this report begins with an overview of key wind power installation-related trends: trends in wind capacity growth in the U.S., how that growth compares to other countries and generation sources, the amount and percentage of wind in individual states and serving specific utilities, and the quantity of proposed wind capacity in various interconnection queues in the United States. Next, the report covers an array of wind industry trends, including developments in turbine manufacturer market share, manufacturing and supply-chain investments, wind turbine and wind project size, project financing developments, and trends among wind power developers, project owners, and power purchasers. The report then turns to a discussion of wind project price, cost, and performance trends. In so doing, it reviews the price of wind power in the United States, and how those prices compare to the cost of fossil-fueled generation, as represented by wholesale power prices. It also describes trends in installed wind project costs, wind turbine transaction prices, project performance, and operations and maintenance expenses. Next, the report examines other policy and market factors impacting the domestic wind power market, including federal and state policy drivers, transmission issues, and grid integration. Finally, the report concludes with a preview of possible near- to medium-term market developments. This version of the Annual Report updates data presented in the previous editions, while highlighting key trends and important new developments from 2008. New to this edition is an executive summary of the report and an expanded final section on near- to medium-term market development. The report concentrates on larger-scale wind applications, defined here as individual turbines or projects that exceed 50 kW in size. The U.S. wind power sector is multifaceted, however, and also includes smaller, customer-sited wind turbines used to power the needs of residences, farms, and businesses. Data on these applications are not the focus of this report, though a brief discussion on Distributed Wind Power is provided on page 4. Much of the data included in this report were compiled by Berkeley Lab, and come from a variety of sources, including the American Wind Energy Association (AWEA), the Energy Information Administration (EIA), and the Federal Energy Regulatory Commission (FERC). The Appendix provides a summary of the many data sources used in the report. Data on 2008 wind capacity additions in the United States are based on information provided by AWEA; some minor adjustments to those data may be expected. In other cases, the data shown here represent only a sample of actual wind projects installed in the United States; furthermore, the data vary in quality. As such, emphasis should be placed on overall trends, rather than on individual data points. Finally, each section of this document focuses on historical market information, with an emphasis on 2008; with the exception of the final section, the report does not seek to forecast future trends.

  14. Establishing a Comprehensive Wind Energy Program

    SciTech Connect (OSTI)

    Fleeter, Sanford

    2012-09-30

    This project was directed at establishing a comprehensive wind energy program in Indiana, including both educational and research components. A graduate/undergraduate course ME-514 - Fundamentals of Wind Energy has been established and offered and an interactive prediction of VAWT performance developed. Vertical axis wind turbines for education and research have been acquired, instrumented and installed on the roof top of a building on the Calumet campus and at West Lafayette (Kepner Lab). Computational Fluid Dynamics (CFD) calculations have been performed to simulate these urban wind environments. Also, modal dynamic testing of the West Lafayette VAWT has been performed and a novel horizontal axis design initiated. The 50-meter meteorological tower data obtained at the Purdue Beck Agricultural Research Center have been analyzed and the Purdue Reconfigurable Micro Wind Farm established and simulations directed at the investigation of wind farm configurations initiated. The virtual wind turbine and wind turbine farm simulation in the Visualization Lab has been initiated.

  15. Application of the New Decommissioning Regulation to the Nuclear Licensed Facilities (NLF) at Fontenay-aux-Roses's Nuclear Center (CEA)

    SciTech Connect (OSTI)

    Sauret, Josiane; Piketty, Laurence; Jeanjacques, Michel

    2008-01-15

    This abstract describes the application of the new decommissioning regulation on all Nuclear Licensed Facilities (NLF is to say INB in French) at Fontenay-aux-Roses's Center (CEA/FAR). The decommissioning process has been applied in six buildings which are out of the new nuclear perimeter proposed (buildings no 7, no 40, no 94, no 39, no 52/1 and no 32) and three buildings have been reorganized (no 54, no 91 and no 53 instead of no 40 and no 94) in order to increase the space for temporary nuclear waste disposal and to reduce the internal transports of nuclear waste on the site. The advantages are the safety and radioprotection improvements and a lower operating cost. A global safety file was written in 2002 and 2003 and was sent to the French Nuclear Authority on November 2003. The list of documents required is given in the paragraph I of this paper. The main goals were two ministerial decrees (one decree for each NLF) getting the authorization to modify the NLF perimeter and to carry out cleaning and dismantling activities leading to the whole decommissioning of all NLF. Some specific authorizations were necessary to carry out the dismantling program during the decommissioning procedure. They were delivered by the French Nuclear Safety Authority (FNSA) or with limited delegation by the General Executive Director (GED) on the CEA Fontenay-aux-Roses's Center, called internal authorization. Some partial dismantling or decontamination examples are given below: - evaporator for the radioactive liquid waste treatment station (building no 53): FNSA authorization: phase realised in 2002/2003. - disposal tanks for the radioactive liquid waste treatment station (building no 53) FNSA authorization: phase realised in 2004, - incinerator for the radioactive solid waste treatment station (building no 07): FNSA authorization: operation realised in 2004, - research equipments in the building no. 54 and building no. 91: internal authorization ; realised in 2005, - sample-taking to characterize solvent contained in one tank of Petrus installation (NLF 57, building 18) for radiological and chemical analysis needed to prepare the treatment and the evacuation of these wastes : internal authorization ; realised in june 2005. It was possible to plan the whole decommissioning process on the Nuclear Licensed Facilities of Fontenay-aux-Roses's Center (CEA/FAR) taking into account the French new regulation and to plan a coherent and continue program activity for the dismantling process. For the program not to be interrupted during the administrative process (2003-2006), specific authorisations have been delivered by the French Nuclear Safety Authority or by the General Executive Director (GED) on the CEA Fontenay-aux- Roses's Center (internal authorization). The time schedule to complete the entire program is until 2017 for NLF 'Procede' (NLF no 165) and until 2018 for NLF 'Support' (NLF no 166). Since 1999, an annual press meeting has been organised by the Fontenay-aux-Roses's Center Head Executive Manager.

  16. Forecasting wind speed financial return

    E-Print Network [OSTI]

    D'Amico, Guglielmo; Prattico, Flavio

    2013-01-01

    The prediction of wind speed is very important when dealing with the production of energy through wind turbines. In this paper, we show a new nonparametric model, based on semi-Markov chains, to predict wind speed. Particularly we use an indexed semi-Markov model that has been shown to be able to reproduce accurately the statistical behavior of wind speed. The model is used to forecast, one step ahead, wind speed. In order to check the validity of the model we show, as indicator of goodness, the root mean square error and mean absolute error between real data and predicted ones. We also compare our forecasting results with those of a persistence model. At last, we show an application of the model to predict financial indicators like the Internal Rate of Return, Duration and Convexity.

  17. N C M NNebraska Center for Materials and Nanoscience University of NebraskaLincoln

    E-Print Network [OSTI]

    Tsymbal, Evgeny Y.

    materials for energy applications such as electric motors for automobiles and wind turbines. Center, low-energy devices for technologies combining memory and logic functions. It is supported is the manipulation of material at the nanoscale to take advantage of these properties. The exploration

  18. Wind Vision: Impacts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Vision: Impacts Rich Tusing New West Technologies, LLC For EERE's Wind and Water Power Technologies Office July 15, 2015 2 | Wind and Water Power Technologies Office...

  19. Wind Program News

    SciTech Connect (OSTI)

    2012-01-06

    Stay current on the news about the wind side of the Wind and Water Power Program and important wind energy events around the U.S.

  20. Wind Power Link

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Links These other web sites may provide additional information of interest: American Wind Energy Association Idaho Department of Energy Wind Power Information Utah...

  1. Energy 101: Wind Turbines

    ScienceCinema (OSTI)

    None

    2013-05-29

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  2. Energy 101: Wind Turbines

    SciTech Connect (OSTI)

    None

    2011-01-01

    See how wind turbines generate clean electricity from the power of the wind. Highlighted are the various parts and mechanisms of a modern wind turbine.

  3. Vandenberg_Wind_Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Air Force and other branches of the Department of Defense for several years doing wind data collection and assessment, wind power feasibility studies, and wind farm design....

  4. Beatty Wind Monitoring Project

    SciTech Connect (OSTI)

    Hurt, Rick

    2009-06-01

    The UNLV Center for Energy Research (CER) and Valley Electric Association (VEA) worked with Kitty Shubert of the Beatty Economic Redevelopment Corporation (BERC) to install two wind monitoring stations outside the town of Beatty, Nevada. The following is a description of the two sites. The information for a proposed third site is also shown. The sites were selected from previous work by the BERC and Idaho National Laboratory. The equipment was provided by the BERC and installed by researchers from the UNLV CER.

  5. Wide Area Wind Field Monitoring Status & Results

    SciTech Connect (OSTI)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  6. Built Environment Wind Turbine Roadmap

    SciTech Connect (OSTI)

    Smith, J.; Forsyth, T.; Sinclair, K.; Oteri, F.

    2012-11-01

    The market currently encourages BWT deployment before the technology is ready for full-scale commercialization. To address this issue, industry stakeholders convened a Rooftop and Built-Environment Wind Turbine Workshop on August 11 - 12, 2010, at the National Wind Technology Center, located at the U.S. Department of Energy’s National Renewable Energy Laboratory in Boulder, Colorado. This report summarizes the workshop.

  7. Wind Program News | Department of Energy

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of Natural GasAdjustmentsShirley Ann Jackson About1996HowFOAShowingFuelWeatherize » Airare theWildlifeWindContacts andWindWind

  8. Wind turbine

    DOE Patents [OSTI]

    Cheney, Jr., Marvin C. (Glastonbury, CT)

    1982-01-01

    A wind turbine of the type having an airfoil blade (15) mounted on a flexible beam (20) and a pitch governor (55) which selectively, torsionally twists the flexible beam in response to wind turbine speed thereby setting blade pitch, is provided with a limiter (85) which restricts unwanted pitch change at operating speeds due to torsional creep of the flexible beam. The limiter allows twisting of the beam by the governor under excessive wind velocity conditions to orient the blades in stall pitch positions, thereby preventing overspeed operation of the turbine. In the preferred embodiment, the pitch governor comprises a pendulum (65,70) which responds to changing rotor speed by pivotal movement, the limiter comprising a resilient member (90) which engages an end of the pendulum to restrict further movement thereof, and in turn restrict beam creep and unwanted blade pitch misadjustment.

  9. Analysis of Wind Power and Load Data at Multiple Time Scales

    E-Print Network [OSTI]

    Coughlin, Katie

    2011-01-01

    Huei. 2005. Primer on Wind Power for Utility Applications.Wan, Yih-Huei. 2004. Wind Power Plant Behaviors: Analysesof Long-Term Wind Power Data. National Renewable Energy Lab

  10. Wind Program: Wind Vision | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Wind Vision: A New Era for Wind Power in the United States With more than 4.5% of the nation's electricity supplied by wind energy today, the Department of Energy has collaborated...

  11. Northwest Distributed/Community Wind Workgroup Meeting- Seattle

    Broader source: Energy.gov [DOE]

    As part of the DOE's Northwest Wind Resource and Action Center, Northwest SEED will facilitate a workgroup meeting for stakeholders involved in the distributed and community wind sector in the...

  12. Wind | Department of Energy

    Office of Environmental Management (EM)

    Science & Innovation Energy Sources Renewable Energy Wind Wind Wind The United States is home to one of the largest and fastest growing wind markets in the world. To stay...

  13. Low Wind Speed Turbine Project Phase II: The Application of Medium-Voltage Electrical Apparatus to the Class of Variable Speed Multi-Megawatt Low Wind Speed Turbines; 15 June 2004--30 April 2005

    SciTech Connect (OSTI)

    Erdman, W.; Behnke, M.

    2005-11-01

    Kilowatt ratings of modern wind turbines have progressed rapidly from 50 kW to 1,800 kW over the past 25 years, with 3.0- to 7.5-MW turbines expected in the next 5 years. The premise of this study is simple: The rapid growth of wind turbine power ratings and the corresponding growth in turbine electrical generation systems and associated controls are quickly making low-voltage (LV) electrical design approaches cost-ineffective. This report provides design detail and compares the cost of energy (COE) between commercial LV-class wind power machines and emerging medium-voltage (MV)-class multi-megawatt wind technology. The key finding is that a 2.5% reduction in the COE can be achieved by moving from LV to MV systems. This is a conservative estimate, with a 3% to 3.5% reduction believed to be attainable once purchase orders to support a 250-turbine/year production level are placed. This evaluation considers capital costs as well as installation, maintenance, and training requirements for wind turbine maintenance personnel. Subsystems investigated include the generator, pendant cables, variable-speed converter, and padmount transformer with switchgear. Both current-source and voltage-source converter/inverter MV topologies are compared against their low-voltage, voltage-source counterparts at the 3.0-, 5.0-, and 7.5-MW levels.

  14. Operational Impacts of Large Deployments of Offshore Wind (Poster)

    SciTech Connect (OSTI)

    Ibanez, E.; Heaney, M.

    2014-10-01

    The potential operational impact of deploying 54 GW of offshore wind in the United States was examined. The capacity was not evenly distributed; instead, it was concentrated in regions with better wind quality and close to load centers (Table 1). A statistical analysis of offshore wind power time series was used to assess the effect on the power system. The behavior of offshore wind resembled that of onshore wind, despite the former presenting higher capacity factors, more consistent power output across seasons, and higher variability levels. Thus, methods developed to manage onshore wind variability can be extended and applied to offshore wind.

  15. Extended tension leg platform design for offshore wind turbine systems

    E-Print Network [OSTI]

    Parker, Nicholas W. (Nicholas William)

    2007-01-01

    The rise of reliable wind energy application has become a primary alternative to conventional fossil fuel power plants in the United States and around the world. The feasibility of building large scale wind farms has become ...

  16. Wind Integration National Dataset (WIND) Toolkit

    Office of Energy Efficiency and Renewable Energy (EERE)

    For utility companies, grid operators and other stakeholders interested in wind energy integration, collecting large quantities of high quality data on wind energy resources is vitally important....

  17. Matter & Energy Wind Energy

    E-Print Network [OSTI]

    Shepelyansky, Dima

    intuitive experience of a small wind not creating a storm, and that wind needs to reach a certain threshold

  18. Thesis and Dissertation Deadlines Make your appointment with the Application Support Center (ASC) consultants early. Students who do not troubleshoot their documents with ASC before making

    E-Print Network [OSTI]

    Sin, Peter

    Thesis and Dissertation Deadlines Make your appointment with the Application Support Center (ASC for all thesis and dissertation students** July 27 Last day to achieve Final Clearance (all thesis thesis and dissertation students** December 2 Last day to achieve Final Clearance (all thesis

  19. Sinomatech Wind Power Blade aka Sinoma Science Technology Wind Turbine

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co LtdSimran Wind Project PBlade

  20. Venture Wind I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation JumpVaronManagement IncI Wind Farm

  1. Venture Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThin FilmUnitedVairex Corporation JumpVaronManagement IncI Wind

  2. Wethersfield Wind Power Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWeVirginiaElectricWestwindWethersfield Wind

  3. Hull Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam: Energyarea,Magazine JumpEnergy Services (Texas)II Wind Farm

  4. JD Wind 8 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to: navigation,8 Wind Farm Jump to:

  5. JD Wind 9 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View NewGuam:onItron (California) Jump to: navigation,8 Wind Farm Jump

  6. Leon Sneve Wind Project Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History ViewInformationWinds Jump to:LaredoLeelanau County,LempsterLeonSneve

  7. Michigan Wind II Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource HistoryScenariosMarysville MtMedical Area TotalWindMicheln Jump to:MichiganI

  8. Minnesota Wind Share Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to: navigation, search Name Minn-Dakota Wind Farm IIMinnesota Valley

  9. East Winds (formerly Altech III) Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9)askDoubleEERESoda Lake Geothermal ProjectWinds

  10. North Dakota Wind I Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII Jump to:Information 3rd| OpenInformation 9thNorth Central Power CoI Wind

  11. Portsmouth Abbey School Wind Turbine Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsourceII JumpQuarterly SmartDB-2, Blue MountainSchoolPrairiePonder,Abbey School Wind

  12. First Wind (Formerly UPC Wind) (New York) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavy ElectricalsFTL Solar Jump to:FenglilaiRenewables JumpFirst Wind

  13. Neutrino-driven wind and wind termination shock in supernova cores

    E-Print Network [OSTI]

    A. Arcones; L. Scheck; H. -Th. Janka

    2006-12-22

    The neutrino-driven wind from a nascent neutron star at the center of a supernova expands into the earlier ejecta of the explosion. Upon collision with this slower matter the wind material is decelerated in a wind termination shock. By means of hydrodynamic simulations in spherical symmetry we demonstrate that this can lead to a large increase of the wind entropy, density, and temperature, and to a strong deceleration of the wind expansion. The consequences of this phenomenon for the possible r-process nucleosynthesis in the late wind still need to be explored in detail. Two-dimensional models show that the wind-ejecta collision is highly anisotropic and could lead to a directional dependence of the nucleosynthesis even if the neutrino-driven wind itself is spherically symmetric.

  14. BPA Visitor Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home Room News PublicationsAudits & Inspections Audits Generation Hydro Power Wind PowerPower4default

  15. WIPP - Joint Information Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity of NaturalDukeWakefieldSulfateSciTechtail.Theory ofDidDevelopmentat LENA|UpcomingVisit UsNews This pageMarketWindWIPP The

  16. Horn Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History View NewTexas: Energy Resources JumpNew Jersey:Hopkinsville, Kentucky: EnergyWind Jump to:

  17. Distributed Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LISTStar2-0057-EA Jump to: navigation,DepartmentCalculator Jump to:Distributed Wind

  18. Minster Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA) JumpLiteratureMengdong XieheProjectsMinster Wind

  19. RSE Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA)OptionsEquivalent URI JumpbsamenAnatoliaRSE Wind

  20. Solar Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy Equipment Co LtdSimranSkykonAllianceWind

  1. Tecsis Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New Energy EquipmentSvendborgTecsis Wind Jump to:

  2. Vertax Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind PowerUnisonEnergiaVeronagest SA

  3. Rockland Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewable Energy|Gas and ElectricofWind Jump to:

  4. Scituate Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindISave EnergyInformationScituate

  5. Sheffield Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbH Jump to: navigation, search Name:fracturedSheepWind

  6. Wind turbine | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, search Name:Wind turbine Jump to:

  7. Wiota Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EAand Dalton Jump to: navigation, searchDevelopment Jump to:IWiota Wind Jump

  8. Fairhaven Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoal Jump to:SheetWind Jump to:

  9. GL Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware) Jump to:GIS keywordGL Wind

  10. Galactic Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware) JumpGadirGalactic Wind Jump

  11. Garnet Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprintGEXA Corp. (Delaware)GalvestonWind Jump to:

  12. Bravo Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowaWisconsin:Pontiac BiomassInformationSystemsBradfieldBravo Wind Jump to:

  13. Wind 7 | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut: Energy Resources Name: Wind

  14. Wind World | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind World Place: Denmark

  15. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind World Place:

  16. Wind energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoop IncIowa (Utility Company)Idaho)VosslohWestConnecticut:Wind World Place:source

  17. Danielson Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePower VenturesInformation9) WindGrid Project) | OpenCoopDane

  18. Jasper Wind | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA) Jump to: navigation,Wind Jump to: navigation,

  19. Wind Vision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsofProgram: Report1538-1950DepartmentWaveWind Program R&DResearch and6

  20. Specifying the Parameters of Centering Theory: a CorpusBased Evaluation using Text from ApplicationOriented Domains

    E-Print Network [OSTI]

    Poesio, Massimo

    dialogue or written text introduces into the discourse a number of FORWARD­LOOKING CENTERS (CFs). CFs, 1978; Heim, 1982), and can be linked to CFs introduced by previous or suc­ cessive utterances. Forward­looking centers are RANKED, and because of this ranking, some CFs acquire particular prominence. Among them

  1. Specifying the Parameters of Centering Theory: a Corpus-Based Evaluation using Text from Application-Oriented Domains

    E-Print Network [OSTI]

    Poesio, Massimo

    dialogue or written text introduces into the discourse a number of FORWARD-LOOKING CENTERS (CFs). CFs; Heim, 1982), and can be linked to CFs introduced by previous or suc- cessive utterances. Forward-looking centers are RANKED, and because of this ranking, some CFs acquire particular prominence. Among them

  2. Hi-Q Rotor - Low Wind Speed Technology

    SciTech Connect (OSTI)

    Todd E. Mills; Judy Tatum

    2010-01-11

    The project objective was to optimize the performance of the Hi-Q Rotor. Early research funded by the California Energy Commission indicated the design might be advantageous over state-of-the-art turbines for collecting wind energy in low wind conditions. The Hi-Q Rotor is a new kind of rotor targeted for harvesting wind in Class 2, 3, and 4 sites, and has application in areas that are closer to cities, or 'load centers.' An advantage of the Hi-Q Rotor is that the rotor has non-conventional blade tips, producing less turbulence, and is quieter than standard wind turbine blades which is critical to the low-wind populated urban sites. Unlike state-of-the-art propeller type blades, the Hi-Q Rotor has six blades connected by end caps. In this phase of the research funded by DOE's Inventions and Innovation Program, the goal was to improve the current design by building a series of theoretical and numeric models, and composite prototypes to determine a best of class device. Development of the rotor was performed by aeronautical engineering and design firm, DARcorporation. From this investigation, an optimized design was determined and an 8-foot diameter, full-scale rotor was built and mounted using a Bergey LX-1 generator and furling system which were adapted to support the rotor. The Hi-Q Rotor was then tested side-by-side against the state-of-the-art Bergey XL-1 at the Alternative Energy Institute's Wind Test Center at West Texas State University for six weeks, and real time measurements of power generated were collected and compared. Early wind tunnel testing showed that the cut-in-speed of the Hi-Q rotor is much lower than a conventional tested HAWT enabling the Hi-Q Wind Turbine to begin collecting energy before a conventional HAWT has started spinning. Also, torque at low wind speeds for the Hi-Q Wind Turbine is higher than the tested conventional HAWT and enabled the wind turbine to generate power at lower wind speeds. Based on the data collected, the results of our first full-scale prototype wind turbine proved that higher energy can be captured at lower wind speeds with the new Hi-Q Rotor. The Hi-Q Rotor is almost 15% more productive than the Bergey from 6 m/s to 8 m/s, making it ideal in Class 3, 4, and 5 wind sites and has application in the critical and heretofore untapped areas that are closer to cities, 'load centers,' and may even be used directly in urban areas. The additional advantage of the Hi-Q Rotor's non-conventional blade tips, which eliminates most air turbulence, is noise reduction which makes it doubly ideal for populated urban areas. Hi-Q Products recommends one final stage of development to take the Hi-Q Rotor through Technology Readiness Levels 8-9. During this stage of development, the rotor will be redesigned to further increase efficiency, match the rotor to a more suitable generator, and lower the cost of manufacturing by redesigning the structure to allow for production in larger quantities at lower cost. Before taking the rotor to market and commercialization, it is necessary to further optimize the performance by finding a better generator and autofurling system, ones more suitable for lower wind speeds and rpms should be used in all future testing. The potential impact of this fully developed technology will be the expansion and proliferation of energy renewal into the heretofore untapped Class 2, 3, 4, and 5 Wind Sites, or the large underutilized sites where the wind speed is broken by physical features such as mountains, buildings, and trees. Market estimates by 2011, if low wind speed technology can be developed are well above: 13 million homes, 675,000 commercial buildings, 250,000 public facilities. Estimated commercial exploitation of the Hi-Q Rotor show potential increase in U.S. energy gained through the clean, renewable wind energy found in low and very low wind speed sites. This new energy source would greatly impact greenhouse emissions as well as the public sector's growing energy demands.

  3. Sandia Energy - Grid System Planning for Wind: Wind Generator...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Grid System Planning for Wind: Wind Generator Modeling Home Stationary Power Energy Conversion Efficiency Wind Energy Siting and Barrier Mitigation Grid System Planning for Wind:...

  4. 2015 Iowa Wind Power Conference and Iowa Wind Energy Association...

    Office of Environmental Management (EM)

    2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional Energy Job Fair 2015 Iowa Wind Power Conference and Iowa Wind Energy Association Midwest Regional...

  5. Wind tunnel performance data for the Darrieus wind turbine with...

    Office of Scientific and Technical Information (OSTI)

    Wind tunnel performance data for the Darrieus wind turbine with NACA 0012 blades Citation Details In-Document Search Title: Wind tunnel performance data for the Darrieus wind...

  6. A National Offshore Wind Strategy: Creating an Offshore Wind...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in the United States A National Offshore Wind Strategy: Creating an Offshore Wind Energy Industry in...

  7. 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology...

    Office of Environmental Management (EM)

    - Chapter 2: Wind Turbine Technology Summary Slides 20% Wind Energy by 2030 - Chapter 2: Wind Turbine Technology Summary Slides Summary slides for wind turbine technology, its...

  8. 2014 Wind Market Report | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStates andMeasures |1 Strategic2014 Wind

  9. Collegiate Wind Competition Sponsors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels Data Center HomeVehicle ReplacementStatesAInitiativeSponsors Collegiate Wind

  10. 2008 WIND TECHNOLOGIES MARKET REPORT

    E-Print Network [OSTI]

    Bolinger, Mark

    2010-01-01

    AWEA). 2009b. AWEA Small Wind Turbine Global Market Study:will ultimately benefit wind. Small Wind ITC: EESA 2008

  11. Advanced Wind Turbine Drivetrain Concepts. Workshop Report

    SciTech Connect (OSTI)

    none,

    2010-12-01

    This report presents key findings from the Department of Energy’s Advanced Drivetrain Workshop, held on June 29-30, 2010, to assess different advanced drivetrain technologies, their relative potential to improve the state-of-the-art in wind turbine drivetrains, and the scope of research and development needed for their commercialization in wind turbine applications.

  12. Fast Wind Turbine Design via Geometric Programming

    E-Print Network [OSTI]

    Abbeel, Pieter

    Fast Wind Turbine Design via Geometric Programming Warren Hoburg and Pieter Abbeel UC Berkeley turbine aerodynamics have an underlying convex mathematical structure that these new methods can exploit the application of GP to large wind turbine design problems a promising approach. Nomenclature (·)a, (·)t axial

  13. Wind Turbine Blockset in Matlab/Simulink

    E-Print Network [OSTI]

    Wind Turbine Blockset in Matlab/Simulink General Overview and Description of the Models Florin Iov, Anca Daniela Hansen, Poul Sørensen, Frede Blaabjerg Aalborg University March 2004 #12;22 Wind Turbine turbine applications. This toolbox has been developed during the research project "Simulation Platform

  14. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  15. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    Public Service Wind Integration Cost Impact Study. Preparedequipment-related wind turbine costs, the overall importinstalled wind power project costs, wind turbine transaction

  16. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    land- based wind energy technology. 2009 Wind TechnologiesRenewable Energy 2009 WIND TECHNOLOGIES MARKET REPORT AUGUSTfor a variety of energy technologies, including wind energy.

  17. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    land-based wind energy technology. 2011 Wind Technologiesfor a variety of energy technologies, including wind energy.Renewable Energy Laboratory’s National Wind Technology

  18. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    land-based wind energy technology. 2010 Wind Technologiesfor a variety of energy technologies, including wind energy.2010 Wind Technologies Market Report Federal Energy

  19. 2012 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2014-01-01

    land-based wind energy technology. 2012 Wind Technologiesfor a variety of energy technologies, including wind energy.of Energy (DOE) Wind & Water Power Technology Office team

  20. 2009 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2010-01-01

    wind power project costs, wind turbine transaction prices,increases in the cost of wind turbines over the last severaland components and wind turbine costs. Excluded from all

  1. 2010 Wind Technologies Market Report

    E-Print Network [OSTI]

    Wiser, Ryan

    2012-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticJanuary 31, 2011. American Wind Energy Association (AWEA).D.C. : American Wind Energy Association. American Wind

  2. 2011 Wind Technologies Market Report

    E-Print Network [OSTI]

    Bolinger, Mark

    2013-01-01

    A. 2010. Impact of Wind Energy Installations on DomesticUniversity. American Wind Energy Association (AWEA). 2012a.D.C. : American Wind Energy Association. American Wind

  3. Applicability of the {bold k}{center_dot}{bold p} method to the electronic structure of quantum dots

    SciTech Connect (OSTI)

    Fu, H.; Wang, L.; Zunger, A.

    1998-04-01

    The {bold k}{center_dot}{bold p} method has become the {open_quotes}standard model{close_quotes} for describing the electronic structure of nanometer-size quantum dots. In this paper we perform parallel {bold k}{center_dot}{bold p} (6{times}6 and 8{times}8) and direct-diagonalization pseudopotential studies on spherical quantum dots of an ionic material{emdash}CdSe, and a covalent material{emdash}InP. By using an equivalent input in both approaches, i.e., starting from a given atomic pseudopotential and deriving from it the Luttinger parameters in {bold k}{center_dot}{bold p} calculation, we investigate the effect of the different underlying wave-function representations used in {bold k}{center_dot}{bold p} and in the more exact pseudopotential direct diagonalization. We find that (i) the 6{times}6{bold k}{center_dot}{bold p} envelope function has a distinct (odd or even) parity, while atomistic wave function is parity-mixed. The 6{times}6{bold k}{center_dot}{bold p} approach produces an incorrect order of the highest valence states for both InP and CdSe dots: the p-like level is above the s-like level. (ii) It fails to reveal that the second conduction state in small InP dots is folded from the L point in the Brillouin zone. Instead, all states in {bold k}{center_dot}{bold p} are described as {Gamma}-like. (iii) The {bold k}{center_dot}{bold p} overestimates the confinement energies of both valence states and conduction states. A wave-function projection analysis shows that the principal reasons for these {bold k}{center_dot}{bold p} errors in dots are (a) use of restricted basis set, and (b) incorrect {ital bulk} dispersion relation. Error (a) can be reduced only by increasing the number of basis functions. Error (b) can be reduced by altering the {bold k}{center_dot}{bold p} implementation so as to bend upwards the second lowest bulk band, and to couple the conduction band into the s-like dot valence state. Our direct diagonalization approach provides an accurate and practical replacement to the standard model in that it is rather general, and can be performed simply on a standard workstation. {copyright} {ital 1998} {ital The American Physical Society}

  4. A Methodology for Calculating Emissions Reductions from Renewable Energy Programs and Its Application to the Wind Farms in the Texas ERCOT Region 

    E-Print Network [OSTI]

    Culp, C.; Haberl, J. S.; Liu, Z.; Subbarao, K.; Baltazar-Cervantes, J. C.; Yazdani, B.

    2007-01-01

    Recently Texas Legislature required adding 5,880 MW of generating capacity from renewable energy technologies by 2015, and 500 MW from non-wind renewables. This legislation also required the Public Utility Commission (PUC) to establish a target...

  5. Wind Energy Benefits | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPower IncHomes JumpWind EnergyWind

  6. WindLogics Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page| Open Energy Information Serbia-EnhancingEtGeorgia:Illinois: Energy ResourcesTurboPowerPortal Home > WindWindLogics

  7. Evergreen Wind Power LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTIONRobertsdale, AlabamaETEC GmbH JumpEllenville,PowerEvaporative Coolers Jump to:Wind LLCSecuritiesWind

  8. PNE WIND UK | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgency (IRENA)Options JumpOpenEI CommunityLLCUK Wind Jump to:WIND

  9. US Wind Farming Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind Power CoInformationWind Farming

  10. UpWind Solutions | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWind PowerUnison Co LtdUpWind Solutions

  11. Westwind Wind Turbines | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind Turbines Jump to:

  12. Wind Alliance Group | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind Turbinespro energy

  13. Wind Direct Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind Turbinespro energyDirect

  14. Wind Energy Hearthstanes Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind Turbinespro

  15. Wind Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind TurbinesproLtd Jump to:

  16. Wind Farm Capital | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind TurbinesproLtd JumpFarm

  17. Wind Park Solutions Arcadia | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind TurbinesproLtd

  18. Wind Power Associates LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind TurbinesproLtdPower

  19. Wind Prospect Developments Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWind

  20. Wind Prospect Ltd | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd Jump to: navigation,

  1. Wind Revolutions LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd Jump to:

  2. Wind Smart LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd Jump to:Smart LLC

  3. Wind Working Group Toolkit | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd Jump to:Smart

  4. Wind and Power | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd Jump to:SmartPower

  5. Wind for Schools Portal | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd Jump

  6. Wind to Power Systems | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd JumpPower Systems

  7. WindTronics | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindState GridWindLtd

  8. Xinjiang Wind Energy Company | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX E LIST OFAMERICA'SHeavyAgencyTendo New EnergyWindStateWindparkWinkraGuoceLtdTianfengWind

  9. Wind Tunnel Specifications | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE:Financing ToolInternationalReport FY2014 -Energy Costs by IncreasingWholeWindAward |2DepartmentWind

  10. Red Hills Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-b < RAPID‎WindRecycleBank Jump to:Hills Wind Farm

  11. San Jacinto Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindI Jump to: navigation, searchWind

  12. Sawtooth Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS Report UrlNM-bRenewableSMUD WindISave Energy at Home Tool JumpWind

  13. South Holt Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EIS ReportEurope GmbHSolo EnergySouth Carolina/WindChestnutSouthHolt Wind

  14. Wege Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland:EnergyWe Energy Wind FarmWege Wind Farm Jump to:

  15. Fenner Wind Power Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdisto Electric Coop,ErosionNewCoalFarmlandExpress JumpWindWind Power

  16. Flat Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskey flats 100k.pdf Jump to:WindP.pdfFireFirstFlag ExpansionWind

  17. Fox Islands Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: EnergyWindWind Project Jump

  18. Franklin County Wind LLC | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: EnergyWindWind Project

  19. Franklin County Wind Project | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIX ECoopButtePowerEdistoWhiskeyFootprint Ventures JumpIndiana: EnergyWindWind

  20. Grand Ridge Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION J APPENDIXsource History View New Pages RecentPlantMagma EnergyGoogle lendsCouleeII Wind FarmWind