National Library of Energy BETA

Sample records for wilmington delaware zip

  1. New Castle County, Delaware: Energy Resources | Open Energy Informatio...

    Open Energy Info (EERE)

    Delaware Newark, Delaware Newport, Delaware North Star, Delaware Odessa, Delaware Pike Creek, Delaware Smyrna, Delaware Townsend, Delaware Wilmington Manor, Delaware...

  2. Solar energy system demonstration project at Wilmington Swim School, New Castle, Delaware. Final report

    SciTech Connect (OSTI)

    None

    1980-07-01

    This document is the Final Report of the Solar Energy System located at the Wilmington, Swim School, New Castle, Delaware. This active solar system is composed of 2,700 square feet of Revere liquid flat plate collectors piped to a 2,800 gallon concrete storage tank located below ground near the building. A micro-computer based control system selects the optimal applications of the stored energy among space, domestic water and pool alternatives. The controlled logic is planned for serving the heat loads in the following order: space heat-new addition, domestic water-entire facility, and pool heating-entire facility. A modified trombe wall passive operation the active system will bypass the areas being served passively. The system was designed for a 40 percent heating and a 30 percent hot water solar contribution.

  3. Delaware - Compare - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  4. Delaware - Rankings - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  5. Delaware - Search - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Delaware

  6. Butamax Advanced Biofuels LLC | Open Energy Information

    Open Energy Info (EERE)

    Butamax Advanced Biofuels LLC Jump to: navigation, search Name: Butamax Advanced Biofuels LLC Place: Wilmington, Delaware Zip: 19880-0268 Sector: Biofuels Product: Delaware-based...

  7. Category:Wilmington, DE | Open Energy Information

    Open Energy Info (EERE)

    this category, out of 16 total. SVFullServiceRestaurant Wilmington DE Delmarva Power & Light Co.png SVFullServiceRestauran... 65 KB SVQuickServiceRestaurant Wilmington DE Delmarva...

  8. Sussex County, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Delaware Long Neck, Delaware Milford, Delaware Millsboro, Delaware Millville, Delaware Milton, Delaware Ocean View, Delaware Rehoboth Beach, Delaware Seaford, Delaware Selbyville,...

  9. Kent County, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Delaware Kenton, Delaware Leipsic, Delaware Little Creek, Delaware Magnolia, Delaware Milford, Delaware Rising Sun-Lebanon, Delaware Riverview, Delaware Rodney Village, Delaware...

  10. Wilmington Manor, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6867795, -75.5843694 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  11. DuPont Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Biofuels Jump to: navigation, search Name: DuPont Biofuels Place: Wilmington, Delaware Zip: 19898 Product: Biofuel technology development subsidiary of DuPont. Co-developing...

  12. RNK Capital LLC | Open Energy Information

    Open Energy Info (EERE)

    Wilmington, Delaware Zip: 19808 Sector: Renewable Energy Product: RNK intends to invest money in the purchase of CERs to be delivered during the 2008-2012 commitment period...

  13. Mid Atlantic Renewable Partners | Open Energy Information

    Open Energy Info (EERE)

    2036 Foulk Rd Place: Wilmington, Delaware Zip: 19810 Region: Northeast - NY NJ CT PA Area Product: Project Finance Number of Employees: 1-10 Year Founded: 2009 Website:...

  14. Delmarva Power Light Company Delmarva Power | Open Energy Information

    Open Energy Info (EERE)

    Delmarva Power Light Company Delmarva Power Jump to: navigation, search Name: Delmarva Power & Light Company (Delmarva Power) Place: Wilmington, Delaware Zip: 19886 Product:...

  15. Wilmington crude oil and addendum

    SciTech Connect (OSTI)

    Not Available

    1983-03-29

    Ten (10) ampoules of the Wilmington crude oil material have been analyzed by gas chromatography/mass spectrometry (GC/MS). The measurements were made directly on samples of the diluted oil by GC/MS with selected ion monitoring (SIM). The mass spectrometer was operated in the chemical ionization mode using methane as the reagent gas, and the method of internal standards was used for the quantitative measurements. The analytes determined in the Wilmington crude oil are shown in Table 1. For most of the analytes, the quasi-molecular ion (M+H)/sup +/ was the species on which the SIM measurements were made. For measurements on the second set of ampoules, m/z 252 (M)/sup +/ was monitored for the benzo(a)pyrene, benzo(e)pyrene, and perylene. The ion(s) monitored for each of the analytes is also shown in Table 1. 4 tabs.

  16. Stochastic imaging of the Wilmington clastic sequence

    SciTech Connect (OSTI)

    Gomez-Hernandez, J.J. )

    1993-03-01

    Waterflood computer simulations over shaly 3D layers with shale volume proportions exceeding 50%, as in some parts of the Wilmington field, have shown that both vertical and horizontal continuity of shales affect recovery efficiency critically. Correct modeling of the geometric architecture of the sand/shale geometry within shaly layers of the Wilmington field is critical to predict performance recovery accurately. Stochastic images of that clastic sequence are obtained with sequential indicator simulation with non-Cartesian coordinates to ensure stratigraphic conformity.

  17. Delaware Municipal Electric Corporation- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Green Energy Fund was created in 1999 as the part of the deregulation of Delaware's electric utilities. Under the 2005 Delaware renewable portfolio standard (RPS) legislation,...

  18. Delaware County, Pennsylvania: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    Capital Partners Energy Generation Facilities in Delaware County, Pennsylvania American Ref-Fuel of Delaware Valley Biomass Facility Places in Delaware County, Pennsylvania Aldan,...

  19. Dupont Fuel Cells | Open Energy Information

    Open Energy Info (EERE)

    Dupont Fuel Cells Jump to: navigation, search Name: Dupont Fuel Cells Place: Wilmington, Delaware Zip: DE 19880-0 Product: A subsidiary of Dupont which specializes in fuel cell...

  20. University of Delaware Wind | Open Energy Information

    Open Energy Info (EERE)

    search Name University of Delaware Wind Facility University of Delaware Wind Sector Wind energy Facility Type Community Wind Facility Status In Service Owner University of...

  1. Delaware/Incentives | Open Energy Information

    Open Energy Info (EERE)

    No DEMEC Member Utilities - Green Energy Program Incentives (8 utilities) (Delaware) Utility Rebate Program Yes Delaware Electric Cooperative - Green Energy Program Incentives...

  2. University of Delaware | CCEI Partners

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Its Partner Institutions The Catalysis Center for Energy Innovation (CCEI) is a partnership between the University of Delaware, 8 academic institutions and 1 national ...

  3. University of Delaware | Contact CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Address Catalysis Center for Energy Innovation University of Delaware 221 Academy Street Newark, DE 19716 Phone Number (302) 831-1628 Email efrc-info@udel.edu Visitors A ...

  4. Newark, Delaware June 1, 2016

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Newark, Delaware June 1, 2016 The University of Delaware has found talent in the retired engineering experts now working independently as consultants for industry across the US. UD's Catalysis Center for Energy Innovation (CCEI) has partnered with industry throughout its history, looking for commercial connections and industrial innovation to pair with their own groundbreaking research in catalysis and sustainable chemical processes. CCEI is pleased to announce the addition of Dr. Ron Ozer,

  5. American Ref-Fuel of Delaware Valley Biomass Facility | Open...

    Open Energy Info (EERE)

    Ref-Fuel of Delaware Valley Biomass Facility Jump to: navigation, search Name American Ref-Fuel of Delaware Valley Biomass Facility Facility American Ref-Fuel of Delaware Valley...

  6. Delaware County, Ohio: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    in Delaware County, Ohio US Recovery Act Smart Grid Projects in Delaware County, Ohio City of Westerville, OH Smart Grid Project Columbus Southern Power Company (doing business...

  7. University of Delaware Institute of Energy Conversion | Open...

    Open Energy Info (EERE)

    Institute of Energy Conversion Jump to: navigation, search Name: University of Delaware Institute of Energy Conversion Place: Delaware Product: String representation "University...

  8. Hess Retail Natural Gas and Elec. Acctg. (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Hess Retail Natural Gas and Elec. Acctg. (Delaware) Jump to: navigation, search Name: Hess Retail Natural Gas and Elec. Acctg. Place: Delaware References: EIA Form EIA-861 Final...

  9. Department of Energy Official in Newark, Delaware, to Highlight...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Official in Newark, Delaware, to Highlight 168 Million for Solar Energy Projects Department of Energy Official in Newark, Delaware, to Highlight 168 Million for Solar Energy ...

  10. Clean Cities: State of Delaware Clean Cities coalition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program, which aims to increase alternative fueled vehicle deployment through rebates, helping to promote en route charging in Delaware through the Charging-Up Delaware...

  11. Delaware Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the Middle School Coach page. Delaware Region Middle School Regional Delaware New Jersey Regional Middle...

  12. Delaware Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    state, county, city, or district. For more information, please visit the High School Coach page. Delaware Region High School Regional Delaware New Jersey Regional High School...

  13. University of Delaware | Open Energy Information

    Open Energy Info (EERE)

    Newark, Delaware Sector: Solar Product: University with a research department leading a solar cell development consortium. Coordinates: 44.690435, -71.951685 Show Map Loading...

  14. Delaware Electric Cooperative- Green Energy Program Incentives

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Delaware Electric Cooperative (DEC) provides incentives for solar photovoltaic (PV), solar thermal, wind, fuel cells, and geothermal installed by DEC member-owners. Eligibility is limited to ...

  15. ,"Delaware Natural Gas LNG Storage Additions (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Additions (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  16. ,"Delaware Natural Gas LNG Storage Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","9302015" ,"Next Release...

  17. Delaware/Wind Resources | Open Energy Information

    Open Energy Info (EERE)

    Guidebook >> Delaware Wind Resources WindTurbine-icon.png Small Wind Guidebook * Introduction * First, How Can I Make My Home More Energy Efficient? * Is Wind Energy Practical...

  18. GEXA Corp. (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Name: GEXA Corp. Place: Delaware Phone Number: 866.961.9399 Website: www.gexaenergy.com Twitter: @gexavoice Facebook: https:www.facebook.comGexaEnergy Outage Hotline:...

  19. DELAWARE RECOVERY ACT SNAPSHOT | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery Act investments in Delaware are ...

  20. Recovery Act State Memos Delaware

    Broader source: Energy.gov (indexed) [DOE]

    Delaware For questions about DOE's Recovery Act activities, please contact the DOE Recovery Act Clearinghouse: 1-888-DOE-RCVY (888-363-7289), Monday through Friday, 9 a.m. to 7 p.m. Eastern Time https://recoveryclearinghouse.energy.gov/contactUs.htm. All numbers and projects listed as of June 1, 2010 TABLE OF CONTENTS RECOVERY ACT SNAPSHOT................................................................................... 1 FUNDING ALLOCATION

  1. University of Delaware Energy Institute

    SciTech Connect (OSTI)

    Klein, Michael T

    2012-09-30

    The main goal of this project funded through this DOE grant is to help in the establishment of the University of Delaware Energy Institute (UDEI) which is designed to be a long-term, on-going project. The broad mission of UDEI is to develop collaborative programs encouraging research activities in the new and emerging energy technologies and to partner with industry and government in meeting the challenges posed by the nationâ??s pressing energy needs.

  2. Delaware Renewable Electric Power Industry Net Summer Capacity...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",2 ...

  3. Delaware Renewable Electric Power Industry Net Generation, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Geothermal","-","-","-","-","-" "Hydro Conventional","-","-","-","-","-" "Solar","-","-","-","-","-" "Wind","-","-","-","-",3 ...

  4. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  5. Alternative Fuels Data Center: Delaware Reduces Truck Idling With

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electrified Parking Areas Delaware Reduces Truck Idling With Electrified Parking Areas to someone by E-mail Share Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Facebook Tweet about Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Twitter Bookmark Alternative Fuels Data Center: Delaware Reduces Truck Idling With Electrified Parking Areas on Google Bookmark Alternative Fuels Data Center: Delaware

  6. Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Buses to Its Fleet Delaware Transit Corporation Adds Propane Buses to Its Fleet to someone by E-mail Share Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Facebook Tweet about Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Twitter Bookmark Alternative Fuels Data Center: Delaware Transit Corporation Adds Propane Buses to Its Fleet on Google Bookmark Alternative Fuels Data Center: Delaware Transit

  7. Increasing Waterflood Reserves in the Wilmington Oil Field Through Reservoir Characterization and Reservoir Management

    SciTech Connect (OSTI)

    Chris Phillips; Dan Moos; Don Clarke; John Nguyen; Kwasi Tagbor; Roy Koerner; Scott Walker

    1997-04-10

    This project is intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project.

  8. Taking a Tour of Wilmington's Energy-Efficient Spaces | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy a Tour of Wilmington's Energy-Efficient Spaces Taking a Tour of Wilmington's Energy-Efficient Spaces February 28, 2012 - 11:30am Addthis Roya Stanley (left) on a tour of the Snipes Academy of Arts and Design with the building's architect -- Thomas Hughes. Through interactive real-time energy data tools, Snipes students incorporate energy use data in their classroom projects and studies. | Photo Courtesy of the Cape Fear Green Building Alliance. Roya Stanley (left) on a tour of the

  9. Glasgow, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Glasgow is a census-designated place in New Castle County, Delaware. It falls under...

  10. Liberty Power Corp. (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Corp. Place: Delaware Phone Number: 1-866-769-3799 Website: www.libertypowercorp.com Twitter: https:twitter.comlibertypower Facebook: http:www.facebook.comLibertyPowerCorp...

  11. Delaware Electric Cooperative- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    Under the 2005 Delaware Renewable Portfolio Standard (RPS) legislation, electric cooperatives were allowed to opt out of the RPS schedule if they met certain other requirements. One such requirem...

  12. PEPCO Energy Services (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Place: Delaware Phone Number: 1-877-737-2662 Website: www.pepco.com Twitter: https:twitter.comPepcoConnect Facebook: https:www.facebook.comPepcoConnect Outage Hotline:...

  13. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  14. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  15. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  16. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    1999-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  17. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2000-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  18. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  19. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. It was hoped that the successful application of these technologies would result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs.

  20. Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies, Class III

    SciTech Connect (OSTI)

    City of Long Beach; Tidelands Oil Production Company; University of Southern California; David K. Davies and Associates

    2002-09-30

    The objective of this project was to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies would result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs.

  1. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    586-8800",,,"1292016 12:15:29 AM" "Back to Contents","Data 1: Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)" "Sourcekey","N3035DE3" "Date","Delaware...

  2. Electric Cars Coming to Former Delaware GM Plant | Department...

    Energy Savers [EERE]

    Electric Cars Coming to Former Delaware GM Plant Electric Cars Coming to Former Delaware GM Plant January 26, 2010 - 9:04am Addthis Joshua DeLung If a company's cars are luxurious ...

  3. Noble Americas Energy Solutions LLC (Delaware) | Open Energy...

    Open Energy Info (EERE)

    Delaware) Jump to: navigation, search Name: Noble Americas Energy Solutions LLC Place: Delaware Phone Number: 1 877273-6772 or 1 888896-8629 Website: www.noblesolutions.com...

  4. Alternative Fuels Data Center: Delaware Transportation Data for Alternative

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Fuels and Vehicles Delaware Transportation Data for Alternative Fuels and Vehicles to someone by E-mail Share Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Facebook Tweet about Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Twitter Bookmark Alternative Fuels Data Center: Delaware Transportation Data for Alternative Fuels and Vehicles on Google Bookmark Alternative Fuels Data Center:

  5. Low E Brings High Savings in Newark, Delaware

    Broader source: Energy.gov [DOE]

    Newark, Delaware used an Energy Efficiency and Conservation Block Grant to install energy efficient windows and lights.

  6. Galt Power Inc | Open Energy Information

    Open Energy Info (EERE)

    Wilmington, Delaware Product: Wilmington-based energy management company focused on demand response. Coordinates: 42.866922, -72.868494 Show Map Loading map......

  7. Testing the Delaware sand filter's effectiveness for treating stormwater runoff

    SciTech Connect (OSTI)

    Leszczynska, D.; Dzurik, A.

    1998-07-01

    The use of the Delaware Sand Filter for treatment of ultra-urban stormwater is investigated for Florida applications. An experimental Delaware filter is designed in conjunction with a typical sand filter as part of a street improvement project in Tallahassee, Florida. The design allows for testing of different filter media in an attempt to determine the suitability of the Delaware Sand Filter in hot climates with numerous heavy rainfall episodes.

  8. Increasing Waterflooding Reservoirs in the Wilmington Oil Field through Improved Reservoir Characterization and Reservoir Management, Class III

    SciTech Connect (OSTI)

    Koerner, Roy; Clarke, Don; Walker, Scott; Phillips, Chris; Nguyen, John; Moos, Dan; Tagbor, Kwasi

    2001-08-07

    This project was intended to increase recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs, transferring technology so that it can be applied in other sections of the Wilmington field and by operators in other slope and basin reservoirs is a primary component of the project.

  9. ,"Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand...

    U.S. Energy Information Administration (EIA) Indexed Site

    Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)",1,"Annual",2012 ,"Release...

  10. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " ... "Renewables",7,7,7,7,10 "Pumped Storage","-","-","-","-","-" ...

  11. North Star, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Star, Delaware: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7612226, -75.7191006 Show Map Loading map... "minzoom":false,"mappingservice...

  12. Delaware Recovery Act State Memo | Department of Energy

    Office of Environmental Management (EM)

    Delaware Recovery Act State Memo The American Recovery & Reinvestment Act (ARRA) is making a meaningful down payment on the nation's energy and environmental future. The Recovery ...

  13. Delaware State University | OSTI, US Dept of Energy Office of...

    Office of Scientific and Technical Information (OSTI)

    DOE Applauds Delaware State University Science and Technical Programs bbc-logo-new.gif ... Angela Lundbert will help analyze Curiosity's Mars data DSU Breaks Ground for New Optics ...

  14. EECBG Success Story: Delaware Community Saves with Solar | Department...

    Broader source: Energy.gov (indexed) [DOE]

    Delaware, is soaking up the sun -- saving taxpayer dollars on town utility bills. Learn more. Addthis Related Articles With a grant from the Energy Department's Energy ...

  15. Think Tank: Delaware Department of Natural Resources

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Spring 2009 Number 58 UST Regulations Revision Update Jill Hall The Tank Management Branch (TMB) conducted 3 public workshops in October 2008 to roll out changes to the Delaware Regulations Governing Underground Storage Tanks (UST Regulations). The UST Regulations were completely re- vamped last year and became effective January 11, 2008. Changes were made last year for 2 reasons: (1) the UST Reg- ulations were woefully out of date with regards to technological changes, and (2) the Federal

  16. Delaware State Historic Preservation Programmatic Agreement | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Delaware State Historic Preservation Programmatic Agreement Delaware State Historic Preservation Programmatic Agreement Fully executed programmatic agreement between DOE, State Energy Office and State Historic Preservation Office. state_historic_preservation_programmatic_agreement_de.pdf (1.05 MB) More Documents & Publications Florida State Historic Preservation Programmatic Agreement Louisiana State Historic Preservation Programmatic Agreement Massachusetts State Historic

  17. Delaware-Val Verde gas drilling busy

    SciTech Connect (OSTI)

    Petzet, G.A.

    1992-01-13

    Deep and not so deep exploration is under way in the southeastern Delaware and northwestern Val Verde basins in West Texas. Northern Terrell County is seeing a good agenda of Permian Wolfcamp development drilling in spite of testy gas prices. This paper reports that none of the drilling appears to be targeted to Ouachita facies along the Marathon portion of the Ouachita Overthrust, although oil production from several of those fields has been respectable. And a number of exploratory tests to 20,000 ft and deeper are under way or on tap in eastern Pecos County and Terrell County.

  18. Electric Utility Company Assigned to a Zip Code? | OpenEI Community

    Open Energy Info (EERE)

    Electric Utility Company Assigned to a Zip Code? Home I have found an error in the utility company assigned to a zip code. I am not sure if the "assigned" utility company covers...

  19. Link to the Utilities by Zip Code File | OpenEI Community

    Open Energy Info (EERE)

    Link to the Utilities by Zip Code File Home > Groups > Utility Rate I am trying to access the link to the utility by zip code csv file from the following side bar on the utility...

  20. INCREASING WATERFLOOD RESERVES IN THE WILMINGTON OIL FIELD THROUGH IMPROVED RESERVOIR CHARACTERIZATION AND RESERVOIR MANAGEMENT

    SciTech Connect (OSTI)

    Scott Walker; Chris Phillips; Roy Koerner; Don Clarke; Dan Moos; Kwasi Tagbor

    2002-02-28

    This project increased recoverable waterflood reserves in slope and basin reservoirs through improved reservoir characterization and reservoir management. The particular application of this project is in portions of Fault Blocks IV and V of the Wilmington Oil Field, in Long Beach, California, but the approach is widely applicable in slope and basin reservoirs. Transferring technology so that it can be applied in other sections of the Wilmington Field and by operators in other slope and basin reservoirs is a primary component of the project. This project used advanced reservoir characterization tools, including the pulsed acoustic cased-hole logging tool, geologic three-dimensional (3-D) modeling software, and commercially available reservoir management software to identify sands with remaining high oil saturation following waterflood. Production from the identified high oil saturated sands was stimulated by recompleting existing production and injection wells in these sands using conventional means as well as a short radius redrill candidate. Although these reservoirs have been waterflooded over 40 years, researchers have found areas of remaining oil saturation. Areas such as the top sand in the Upper Terminal Zone Fault Block V, the western fault slivers of Upper Terminal Zone Fault Block V, the bottom sands of the Tar Zone Fault Block V, and the eastern edge of Fault Block IV in both the Upper Terminal and Lower Terminal Zones all show significant remaining oil saturation. Each area of interest was uncovered emphasizing a different type of reservoir characterization technique or practice. This was not the original strategy but was necessitated by the different levels of progress in each of the project activities.

  1. Chemtex | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Chemtex Place: Wilmington, North Carolina Zip: 28403 Sector: Biofuels Product: Wilmington-based engineering company for petrochemical, polymers, biofuels...

  2. City of Milford, Delaware (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    of Milford Place: Delaware Phone Number: 302-422-1110 Website: www.cityofmilford.com23Elect Facebook: https:www.facebook.compagesCity-of-Milford-DE-River-Town-Art-Town-Ho...

  3. Delaware Total Electric Power Industry Net Generation, by Energy...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",7182,8486,7350,4710,5489 " Coal",4969,5622,5267,2848,2568 " Petroleum",132,241,219,258,56 " Natural ...

  4. Consolidated Edison Sol Inc (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Consolidated Edison Sol Inc Place: Delaware Phone Number: 1-888-320-8991 or 1-888-320-8991 or 1-800-316-8011 or 1-888-210-8899 Website: www.conedsolutions.comHome.as Twitter:...

  5. ,"Delaware Natural Gas Price Sold to Electric Power Consumers...

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"1292016 12:16:46 AM" "Back to Contents","Data 1: Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"...

  6. Washington Gas Energy Services (Delaware) | Open Energy Information

    Open Energy Info (EERE)

    Washington Gas Energy Services Place: Delaware Phone Number: 1-844-427-5945 Website: www.wges.com Outage Hotline: 1-844-427-5945 References: EIA Form EIA-861 Final Data File for...

  7. Delaware Company Breathes New Life into Old Post Office Building...

    Office of Environmental Management (EM)

    Company Breathes New Life into Old Post Office Building Delaware Company Breathes New Life into Old Post Office Building November 26, 2013 - 12:51pm Addthis Thanks to the Energy ...

  8. Delaware Total Electric Power Industry Net Summer Capacity, by...

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware" "Energy Source",2006,2007,2008,2009,2010 "Fossil",3367,3350,3344,3355,3379 " Coal",1083,1083,1083,1074,1054 " Petroleum",695,698,557,557,563 " Natural ...

  9. Pike Creek, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Hide Map This article is a stub. You can help OpenEI by expanding it. Pike Creek is a census-designated place in New Castle County, Delaware. It falls under...

  10. Delaware County Elec Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    Delaware County Elec Coop Inc Place: New York Phone Number: (607) 746-9283 or Toll Free at (866) 436-1223 Website: www.dce.coop Facebook: https:www.facebook.compages...

  11. Catalysis Center for Energy Innovation: University of Delaware

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MAT'LS TRANSFER FORM In The Spotlight Tweets by @CCEIUD Fueling the Quest for Green Energy August 24, 2016 -- Watch an introduction to the University of Delaware's Catalysis ...

  12. Delaware County, New York: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    is a county in New York. Its FIPS County Code is 025. It is classified as ASHRAE 169-2006 Climate Zone Number 6 Climate Zone Subtype A. Places in Delaware County, New York...

  13. Delaware Number of Natural Gas Consumers

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  14. Delaware - Seds - U.S. Energy Information Administration (EIA)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware - Seds - U.S. Energy Information Administration (EIA) The page does not exist for . To view this page, please select a state: United States Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma

  15. University of Delaware Energy Institute Inauguration | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Delaware Energy Institute Inauguration University of Delaware Energy Institute Inauguration September 19, 2008 - 3:43pm Addthis Remarks as Prepared for Secretary Bodman Thank you very much, Dr. Harker. I applaud your contributions to the field of higher education - as well as your commitment to a more secure energy future. Throughout history, our universities have played a key role in finding solutions to our most pressing and complex challenges. The federal government - certainly the Energy

  16. Delaware Community Saves with Solar | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Community Saves with Solar Delaware Community Saves with Solar November 28, 2012 - 4:41pm Addthis With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View, Delaware, installed a carport-mounted solar array that is saving taxpayers money on town utility bills. | Photo courtesy of the Town of Ocean View. With a grant from the Energy Department's Energy Efficiency and Conservation Block Grant Program, the community of Ocean View,

  17. Department of Energy Official in Newark, Delaware, to Highlight $168

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Million for Solar Energy Projects | Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects Department of Energy Official in Newark, Delaware, to Highlight $168 Million for Solar Energy Projects March 16, 2007 - 12:00pm Addthis Funding will help further President Bush's Solar America Initiative NEWARK, DE - U.S. Department of Energy (DOE) Assistant Secretary for Energy Efficiency and Renewable Energy Andy Karsner today highlighted DOE's

  18. Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Delaware Natural Gas Underground Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 980 1,255 878 1970's 602 1,463 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Withdrawals of Natural Gas from Underground Storage - All Operators Delaware

  19. Delaware Power Systems Corp DPS | Open Energy Information

    Open Energy Info (EERE)

    Zip: V7A 4Z1 Product: DPS has developed and is commercializing an off-the-shelf, modular, lithium battery system intended to be applicable to any type of electric vehicle...

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-06-27

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California through the testing and application of advanced reservoir characterization and thermal production technologies. The successful application of these technologies will result in expanding their implementation throughout the Wilmington Field and, through technology transfer, to other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs.

  1. Increasing Heavy Oil Reserves in the Wilmington Oil Field through Advanced Reservoir Characterization and Thermal Production Technologies

    SciTech Connect (OSTI)

    City of Long Beach; David K.Davies and Associates; Tidelands Oil Production Company; University of Southern California

    1999-06-25

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California. This is realized through the testing and application of advanced reservoir characterization and thermal production technologies. It is hoped that the successful application of these technologies will result in their implementation throughout the Wilmington Field and through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block (FB) II-A has been relatively insufficient because of several producability problems which are common in SBC reservoir; inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves.

  2. Oil and Gas Company Oil and Gas Company Address Place Zip Website

    Open Energy Info (EERE)

    Oil and Gas Company Address Place Zip Website Abu Dhabi National Oil Company Abu Dhabi National Oil Company Abu http www adnoc ae default aspx Al Furat Petroleum Company Al Furat...

  3. Do we get actual vendor name while we searched with zip code...

    Open Energy Info (EERE)

    let me know? Submitted by SUTHARI on 29 September, 2014 - 08:02 1 answer Points: 0 Hi SUTHARI, we had a bug in the U.S. Utility Rate Database affecting zip codes with leading...

  4. Zip is not in file but shows on EUR | OpenEI Community

    Open Energy Info (EERE)

    Zip is not in file but shows on EUR Home > Groups > Utility Rate Hello, I was looking up electricity providers for the zipcode 90050. While it shows a result using the tool at...

  5. Looking for a way to find utilites per zip code (a list?) | OpenEI...

    Open Energy Info (EERE)

    you head of time. Submitted by Caniemeyer on 1 July, 2013 - 13:55 1 answer Points: 0 Hello- Yes, there is indeed a dataset that lists utilities by zip-code. It can be found on...

  6. NREL to Partner with University of Delaware on Offshore Wind Research -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News Releases | NREL to Partner with University of Delaware on Offshore Wind Research June 15, 2010 The U.S. Department of Energy's (DOE) National Renewable Energy Laboratory (NREL) and the University of Delaware (UD) today announced they will work to facilitate the potential establishment of a test site for commercial wind turbines off the Delaware coast. Under a Cooperative Research and Development Agreement (CRADA) worth $500,000 over the next five years, UD will work with federal and

  7. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-07

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through September 2000, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on improving core analysis techniques, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post steamflood projects. Work was discontinued on the stochastic geologic model and developing a 3-D stochastic thermal reservoir simulation model of the Tar II-A Zone so the project team could use the 3-D deterministic reservoir simulation model to provide alternatives for the Tar II-A post steamflood operations and shale compaction studies. The project team spent the fourth quarter 2000 performing well work and reservoir surveillance on the Tar II-A post-steamflood project and the Tar V horizontal well steamflood pilot. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical limitations that are being evaluated.

  8. CX-001153: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    Roll-to-Roll Solution-Processable Small-Molecule Organic Light-Emitting Diodes (Wilmington) Date: 03/11/2010Location(s): Wilmington, DelawareOffice(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory

  9. Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Net Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Net Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 -3 -3 -29 39 7 -71 -60 4 -38 1990's 6 7 -5 3 23 -1 11 -8 8 31 2000's 83 10 -43 -28 -10 7 -1 -6 17 3 2010's -2 -31 51 -68 29 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  10. Delaware Natural Gas LNG Storage Additions (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Additions (Million Cubic Feet) Delaware Natural Gas LNG Storage Additions (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 113 99 118 94 149 133 0 6 93 39 1990's 88 79 61 99 225 103 237 112 77 83 2000's 182 88 127 219 230 138 68 215 122 121 2010's 73 64 117 63 157 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016

  11. Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Withdrawals (Million Cubic Feet) Delaware Natural Gas LNG Storage Withdrawals (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 102 121 123 110 126 71 66 89 76 1990's 81 72 66 95 202 103 226 121 70 52 2000's 99 78 170 191 220 145 68 220 104 118 2010's 76 96 66 131 128 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  12. Delaware Natural Gas Number of Industrial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Industrial Consumers (Number of Elements) Delaware Natural Gas Number of Industrial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 241 233 235 1990's 240 243 248 249 252 253 250 265 257 264 2000's 297 316 182 184 186 179 170 185 165 112 2010's 114 129 134 138 141 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 08/31/2016 Next Release Date:

  13. Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 13 15 45 2000's 62 23 49 34 39 40 18 16 18 22 2010's 140 464 1,045 970 1,040 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Pipeline & Distribution Use

  14. Delaware Natural Gas Underground Storage Injections All Operators (Million

    U.S. Energy Information Administration (EIA) Indexed Site

    Cubic Feet) Underground Storage Injections All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Injections All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 1,274 1,500 179 1970's 391 189 255 2,012 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Injections

  15. Delaware Natural Gas Underground Storage Net Withdrawals All Operators

    U.S. Energy Information Administration (EIA) Indexed Site

    (Million Cubic Feet) Net Withdrawals All Operators (Million Cubic Feet) Delaware Natural Gas Underground Storage Net Withdrawals All Operators (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's -294 -245 699 1970's 211 -189 -255 -549 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Net

  16. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 1990's 0 0 0 0 1 1 1 21 27 33 2000's 37 46 46 56 63 9 6 5 4 1 2010's 1 1 1 1 1 1 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Delivered to

  17. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2004-03-05

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  18. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Unknown

    2001-08-08

    The objective of this project is to increase the recoverable heavy oil reserves within sections of the Wilmington Oil Field, near Long Beach, California, through the testing and application of advanced reservoir characterization and thermal production technologies. The hope is that successful application of these technologies will result in their implementation throughout the Wilmington Field and, through technology transfer, will be extended to increase the recoverable oil reserves in other slope and basin clastic (SBC) reservoirs. The existing steamflood in the Tar zone of Fault Block II-A (Tar II-A) has been relatively inefficient because of several producibility problems which are common in SBC reservoirs: inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil and non-uniform distribution of the remaining oil. This has resulted in poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. A suite of advanced reservoir characterization and thermal production technologies are being applied during the project to improve oil recovery and reduce operating costs, including: (1) Development of three-dimensional (3-D) deterministic and stochastic reservoir simulation models--thermal or otherwise--to aid in reservoir management of the steamflood and post-steamflood phases and subsequent development work. (2) Development of computerized 3-D visualizations of the geologic and reservoir simulation models to aid reservoir surveillance and operations. (3) Perform detailed studies of the geochemical interactions between the steam and the formation rock and fluids. (4) Testing and proposed application of a

  19. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-05-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Second Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A steamflood reservoirs have been operated over fifteen months at relatively stable pressures, due in large part to the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase in January 1999. Starting in the Fourth Quarter 2000, the project team has ramped up activity to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for the field. The current steamflood operations in the Tar V pilot are economical, but recent performance is below projections because of wellbore mechanical

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-09-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  1. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2001-11-01

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through June 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Third Quarter 2001 performing well work and reservoir surveillance on the Tar II-A post-steamflood project. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 to September 2001 to increase production and injection. This work will continue through 2001 as described in the Operational Management section. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil Production Company's development strategy for

  2. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-01-31

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through September 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. The project team spent the Fourth Quarter 2001 performing routine well work and reservoir surveillance on the Tar II-A post-steamflood and Tar V pilot steamflood projects. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. The project team ramped up well work activity from October 2000 through November 2001 to increase production and injection. In December, water injection well FW-88 was plug and abandoned and replaced by new well FW-295 into the ''D'' sands to accommodate the Port of Long Beach at their expense. Well workovers are planned for 2002 as described in the Operational Management section. Expanding thermal recovery operations

  3. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2003-06-04

    The overall objective of this project is to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involves improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective is to transfer technology which can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The thermal recovery operations in the Tar II-A and Tar V have been relatively inefficient because of several producibility problems which are common in SBC reservoirs. Inadequate characterization of the heterogeneous turbidite sands, high permeability thief zones, low gravity oil, and nonuniform distribution of remaining oil have all contributed to poor sweep efficiency, high steam-oil ratios, and early steam breakthrough. Operational problems related to steam breakthrough, high reservoir pressure, and unconsolidated formation sands have caused premature well and downhole equipment failures. In aggregate, these reservoir and operational constraints have resulted in increased operating costs and decreased recoverable reserves. The advanced technologies to be applied include: (1) Develop three-dimensional (3-D) deterministic and stochastic geologic models. (2) Develop 3-D deterministic and stochastic thermal reservoir simulation models to aid in reservoir management and subsequent development work. (3) Develop computerized 3-D visualizations of the geologic and reservoir simulation models to aid in analysis. (4) Perform detailed study on the geochemical interactions between the steam and the formation rock and fluids. (5) Pilot steam injection and production via four new horizontal wells (2 producers and 2 injectors). (6) Hot water alternating steam (WAS) drive pilot in the

  4. Characterization of Pliocene and Miocene Formations in the Wilmington Graben, Offshore Los Angeles, for Large-Scale Geologic Storage of CO₂

    SciTech Connect (OSTI)

    Bruno, Michael

    2014-12-08

    Geomechanics Technologies has completed a detailed characterization study of the Wilmington Graben offshore Southern California area for large-scale CO₂ storage. This effort has included: an evaluation of existing wells in both State and Federal waters, field acquisition of about 175 km (109 mi) of new seismic data, new well drilling, development of integrated 3D geologic, geomechanics, and fluid flow models for the area. The geologic analysis indicates that more than 796 MMt of storage capacity is available within the Pliocene and Miocene formations in the Graben for midrange geologic estimates (P50). Geomechanical analyses indicate that injection can be conducted without significant risk for surface deformation, induced stresses or fault activation. Numerical analysis of fluid migration indicates that injection into the Pliocene Formation at depths of 1525 m (5000 ft) would lead to undesirable vertical migration of the CO₂ plume. Recent well drilling however, indicates that deeper sand is present at depths exceeding 2135 m (7000 ft), which could be viable for large volume storage. For vertical containment, injection would need to be limited to about 250,000 metric tons per year per well, would need to be placed at depths greater than 7000ft, and would need to be placed in new wells located at least 1 mile from any existing offset wells. As a practical matter, this would likely limit storage operations in the Wilmington Graben to about 1 million tons per year or less. A quantitative risk analysis for the Wilmington Graben indicate that such large scale CO₂ storage in the area would represent higher risk than other similar size projects in the US and overseas.

  5. Cost-Effectiveness of ASHRAE Standard 90.1-2010 for the State of Delaware

    SciTech Connect (OSTI)

    Hart, Philip R.; Rosenberg, Michael I.; Xie, YuLong; Zhang, Jian; Richman, Eric E.; Elliott, Douglas B.; Loper, Susan A.; Myer, Michael

    2013-11-01

    Moving to the ANSI/ASHRAE/IES Standard 90.1-2010 version from the Base Code (90.1-2007) is cost-effective for all building types and climate zones in the State of Delaware.

  6. Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Natural Gas Vehicle Fuel Consumption (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2010 0 0 0 0 0 0 0 0 0 0 0 0 2011 0 0 0 0 0 0 0 0 0 0 0 0 2012 0 0 0 0 0 0 0 0 0 0 0 0 2013 0 0 0 0 0 0 0 0 0 0 0 0 2014 0 0 0 0 0 0 0 0 0 0 0 0 2015 0 0 0 0 0 0 0 0 0 0 0 0 2016 0 0 0 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring

  7. Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Input Supplemental Fuels (Million Cubic Feet) Delaware Natural Gas Input Supplemental Fuels (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 0 1980's 55 135 56 20 13 12 9 0 2 18 1990's 4,410 4,262 3,665 3,597 3,032 1 1 2 0 0 2000's 6 0 0 7 17 0 W 5 2 2 2010's 1 0 6 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date:

  8. Delaware Natural Gas Number of Commercial Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Commercial Consumers (Number of Elements) Delaware Natural Gas Number of Commercial Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 6 6,180 6,566 7,074 1990's 7,485 7,895 8,173 8,409 8,721 9,133 9,518 9,807 10,081 10,441 2000's 9,639 11,075 11,463 11,682 11,921 12,070 12,345 12,576 12,703 12,839 2010's 12,861 12,931 12,997 13,163 13,352 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid

  9. Delaware Natural Gas Number of Residential Consumers (Number of Elements)

    U.S. Energy Information Administration (EIA) Indexed Site

    Residential Consumers (Number of Elements) Delaware Natural Gas Number of Residential Consumers (Number of Elements) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 81 82,829 84,328 86,428 1990's 88,894 91,467 94,027 96,914 100,431 103,531 106,548 109,400 112,507 115,961 2000's 117,845 122,829 126,418 129,870 133,197 137,115 141,276 145,010 147,541 149,006 2010's 150,458 152,005 153,307 155,627 158,502 - = No Data Reported; -- = Not Applicable; NA = Not

  10. Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per

    U.S. Energy Information Administration (EIA) Indexed Site

    Thousand Cubic Feet) Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Pipeline and Distribution Use Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1970's 2.00 1.33 1980's 3.67 3.68 3.91 3.80 4.00 3.75 2.71 2.95 3.10 1990's 3.10 2.88 3.01 3.19 3.02 3.02 3.51 2.98 2.40 2.22 2000's 4.29 3.58 NA -- -- -- - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual

  11. Delaware Natural Gas Total Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Total Consumption (Million Cubic Feet) Delaware Natural Gas Total Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 46,511 40,809 56,013 2000's 48,387 50,113 52,216 46,177 48,057 46,904 43,190 48,155 48,162 50,148 2010's 54,825 79,715 101,676 95,978 100,776 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  12. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-02-18

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through March 1999, project work has been completed related to data preparation, basic reservoir engineering, developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model, and a rock-log model, well drilling and completions, and surface facilities. Work is continuing on the stochastic geologic model, developing a 3-D stochastic thermal reservoir simulation model of the Fault Block IIA Tar (Tar II-A) Zone, and operational work and research studies to prevent thermal-related formation compaction. Thermal-related formation compaction is a concern of the project team due to observed surface subsidence in the local area above the steamflood project. Last quarter on January 12, the steamflood project lost its inexpensive steam source from the Harbor Cogeneration Plant as a result of the recent deregulation of electrical power rates in California. An operational plan was developed and implemented to mitigate the effects of the two situations. Seven water injection wells were placed in service in November and December 1998 on the flanks of the Phase 1 steamflood area to pressure up the reservoir to fill up the existing steam chest. Intensive reservoir engineering and geomechanics studies are continuing to determine the best ways to shut down the steamflood operations in Fault Block II while minimizing any future surface subsidence. The new 3-D deterministic thermal reservoir simulator model is being used to provide sensitivity cases to optimize production, steam injection, future flank cold water injection and reservoir temperature and pressure. According to the model, reservoir fill up of the steam chest at the current injection rate of 28,000 BPD and gross

  13. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-04-30

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., Calif. Through December 2001, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V steamflood pilot and Tar II-A post-steamflood projects. During the First Quarter 2002, the project team developed an accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project and began implementing the associated well work in March. The Tar V pilot steamflood project will be converted to post-steamflood cold water injection in April 2002. The Tar II-A post-steamflood operation started in February 1999 and steam chest fillup occurred in September-October 1999. The targeted reservoir pressures in the ''T'' and ''D'' sands are maintained at 90 {+-} 5% hydrostatic levels by controlling water injection and gross fluid production and through the bimonthly pressure monitoring program enacted at the start of the post-steamflood phase. Most of the 2001 well work resulted in maintaining oil and gross fluid production and water injection rates. Reservoir pressures in the ''T'' and ''D'' sands are at 88% and 91% hydrostatic levels, respectively. Well work during the first quarter and plans for 2002 are

  14. Delaware Natural Gas % of Total Residential Deliveries (Percent)

    Gasoline and Diesel Fuel Update (EIA)

    Foot) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 2013 1,050 1,049 1,046 1,048 1,041 1,049 1,058 1,054 1,065 1,064 1,067 1,057 2014 1,052 1,048 1,048 1,051 1,045 1,049 1,063 1,065 1,062 1,063 1,063 1,064 2015 1,061 1,061 1,062 1,051 1,055 1,055 1,044 1,044 1,043 1,051 1,051 1,049 2016 1,055 1,050 1,043 1,044 1,042 1,042

    % of Total Residential Deliveries (Percent) Delaware Natural Gas % of Total Residential Deliveries (Percent) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5

  15. Deep-water density current deposits of Delaware Mountain Group (Permian), Delaware basin, Texas and New Mexico

    SciTech Connect (OSTI)

    Harms, J.C.; Williamson, C.R.

    1988-03-01

    The Guadalupian Delaware Mountain Group is a 1000-1600-m (3281-5250-ft) thick section of siltstone and sandstone deposited in a deep-water density-stratified basin surrounded by carbonate banks or reefs and broad shallow evaporite-clastic shelves. The most prevalent style of basinal deposition was suspension settling of silt. Laminated siltstone beds are laterally extensive and cover basin-floor topographic irregularities and flat-floored channels as much as 30 m (99 ft) deep and 1 km or more wide. Channels can be observed in outcrop at the basin margin and can be inferred from closely spaced wells in the basin. The channels are straight to slightly sinuous, trend at high angles to the basin margin, and extend at least 70 km (43 mi) into the basin. Sandstone beds, confined to channels, form numerous stratigraphic traps. Hydrocarbon sealing beds are provided by laminated organic siltstone, which laterally can form the erosional margin where channels are cut into siltstone beds. Thick beds of very fine-grained sandstones fill the channels. These sandstones contain abundant large and small-scale traction-current-produced stratification. These sandy channel deposits generally lack texturally graded sedimentation units and show no regular vertical sequence of stratification types or bed thickness. Exploration predictions based on submarine fan models formed by turbidity currents would anticipate very different proximal-distal changes in sandstone geometry and facies. 16 figures.

  16. Delaware State University | OSTI, US Dept of Energy Office of Scientific

    Office of Scientific and Technical Information (OSTI)

    and Technical Information Delaware State University Spotlights Home DOE Applauds Delaware State University Science and Technical Programs bbc-logo-new.gif chudsu.png DSU Leads the Way in Better Buildings DSU is one of the first university partners in the US to join the Department of Energy's Better Buildings inititative to reduce its carbon footprint by 25% by 2015. Secretary of Energy Chu participated in the DSU kick-off program to commemorate the school's efforts in July 2012. Read more

  17. EA-1782: University of Delaware Lewes Campus Onsite Wind Energy Project

    Broader source: Energy.gov [DOE]

    The University of Delaware has constructed a wind turbine adjacent to its College of Earth, Ocean, and Environment campus in Lewes, Delaware. DOE proposed to provide the University a $1.43 million grant for this Wind Energy Project from funding provided in the Omnibus Appropriations Act of 2009 (Public Law 111-8) and an additional $1 million provided in the Energy and Water Development Appropriations Act of Fiscal Year 2010. This EA analyzed the potential environmental impacts of the University of Delaware’s Wind Energy Project at its Lewes campus and, for purposes of comparison, an alternative that assumes the wind turbine had not been constructed.

  18. Forward stratigraphic modeling of the Permian of the Delaware Basin

    SciTech Connect (OSTI)

    Qiucheng, Ye; Kerans, C.; Bowman, S. )

    1996-01-01

    Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world's most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

  19. Forward stratigraphic modeling of the Permian of the Delaware Basin

    SciTech Connect (OSTI)

    Qiucheng, Ye; Kerans, C.; Bowman, S.

    1996-12-31

    Permian platform-to-basin strata of the Delaware Basin In west Texas and New Mexico represent one of the world`s most complete, best studied, and most hydrocarbon productive records of this geologic period in the world. This superb marriage of a refined stratigraphic framework and active exploration provided impetus to develop a forward stratigraphic model of this section to better predict the distribution of reservoir and seal relationships. The approximately 30 m.y. interval modeled is composed of 2 km of platform strata and 3 km of basinal strata divided into 8 composite sequences (average 3 m.y. duration) and 45 high-frequency sequences (400 ky m.y. duration). A 130 km dip section through the basin margin Guadalupe/Deleware Mountain outcrop is inversely modeled to derive local tectonic subsidence and a sea level curve for the Permian. In this process, the highest and lowest shoreline positions of each sequence are interpreted based on facies description which are assumed to approximate the highest and lowest relative sea level. A eustatic sea level curve is calculated by restoring these shoreline positions and removing local tectonic subsidence using a polynomial fit to the derived relative sea level curve. The quantitatively constrained curve for the Permian contains 2nd, 3rd, and 4th order 180m. This quantitatively constrained accommodation history (calculated eustatic curve and subsidence history) are input into the PHIL forward modeling program. Model variables of sediment supply are depositional system are adjusted to match known outcrop relations. The resulting model is potentially capable of predicting stratigraphy elsewhere in the basin using only subsidence history data from the inverse model.

  20. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2002-11-08

    The project involves using advanced reservoir characterization and thermal production technologies to improve thermal recovery techniques and lower operating and capital costs in a slope and basin clastic (SBC) reservoir in the Wilmington field, Los Angeles Co., CA. Through June 2002, project work has been completed on the following activities: data preparation; basic reservoir engineering; developing a deterministic three dimensional (3-D) geologic model, a 3-D deterministic reservoir simulation model and a rock-log model; well drilling and completions; and surface facilities on the Fault Block II-A Tar Zone (Tar II-A). Work is continuing on research to understand the geochemistry and process regarding the sand consolidation well completion technique, final reservoir tracer work, operational work and research studies to prevent thermal-related formation compaction in the Tar II-A steamflood area, and operational work on the Tar V post-steamflood pilot and Tar II-A post-steamflood projects. During the Third Quarter 2002, the project team essentially completed implementing the accelerated oil recovery and reservoir cooling plan for the Tar II-A post-steamflood project developed in March 2002 and is proceeding with additional related work. The project team has completed developing laboratory research procedures to analyze the sand consolidation well completion technique and will initiate work in the fourth quarter. The Tar V pilot steamflood project terminated hot water injection and converted to post-steamflood cold water injection on April 19, 2002. Proposals have been approved to repair two sand consolidated horizontal wells that sanded up, Tar II-A well UP-955 and Tar V well J-205, with gravel-packed inner liner jobs to be performed next quarter. Other well work to be performed next quarter is to convert well L-337 to a Tar V water injector and to recomplete vertical well A-194 as a Tar V interior steamflood pattern producer. Plans have been approved to drill and

  1. Feasibility Study of Economics and Performance of Solar Photovoltaics at the Standard Chlorine of Delaware Superfund Site in Delaware City, Delaware. A Study Prepared in Partnership with the Environmental Protection Agency for the RE-Powering America's Land Initiative: Siting Renewable Energy on Potentially Contaminated Land and Mine Sites

    SciTech Connect (OSTI)

    Salasovich, J.; Geiger, J.; Mosey, G.; Healey, V.

    2013-06-01

    The U.S. Environmental Protection Agency (EPA), in accordance with the RE-Powering America's Land initiative, selected the Standard Chlorine of Delaware site in Delaware City, Delaware, for a feasibility study of renewable energy production. The National Renewable Energy Laboratory (NREL) provided technical assistance for this project. The purpose of this report is to assess the site for a possible photovoltaic (PV) system installation and estimate the cost, performance, and site impacts of different PV options. In addition, the report recommends financing options that could assist in the implementation of a PV system at the site.

  2. Lilliputian Systems Inc | Open Energy Information

    Open Energy Info (EERE)

    Road Place: Wilmington, Massachusetts Zip: 01887 Region: Greater Boston Area Sector: Hydrogen Product: Portable fuel cell generators Website: www.lilliputiansystemsinc.com...

  3. GE Hitachi Nuclear Energy | Open Energy Information

    Open Energy Info (EERE)

    GE Hitachi Nuclear Energy Jump to: navigation, search Name: GE Hitachi Nuclear Energy Place: Wilmington, North Carolina Zip: 28402 Sector: Efficiency, Services Product: GE Hitachi...

  4. INCREASING HEAVY OIL RESERVES IN THE WILMINGTON OIL FIELD THROUGH ADVANCED RESERVOIR CHARACTERIZATION AND THERMAL PRODUCTION TECHNOLOGIES

    SciTech Connect (OSTI)

    Scott Hara

    2000-12-06

    to accurately project reservoir steam chest fill-up by October 1999. A geomechanics study and a separate reservoir simulation study have been performed to determine the possible indicators of formation compaction, the temperatures at which specific indicators are affected and the projected temperature profiles in the over and underburden shales over a ten year period following steam injection. It was believed that once steam chest fill-up occurred, the reservoir would act more like a waterflood and production and cold water injection could be operated at lower Injection to production ratios (I/P) and net injection rates. In mid-September 1999, net water injection was reduced substantially in the ''D'' sands following steam chest fill-up. This caused reservoir pressures to plummet about 100 psi within six weeks. Starting in late-October 1999, net ''D'' sand injection was increased and reservoir pressures have slowly increased back to steam chest fill-up pressures as of the end of March 2000. When the ''T'' sands reached fill-up, net ''T'' sand injection was lowered only slightly and reservoir pressures stabilized. A more detailed discussion of the operational changes is in the Reservoir Management section of this report. A reservoir pressure monitoring program was developed as part of the poststeamflood reservoir management plan. This bi-monthly sonic fluid level program measures the static fluid levels in all idle wells an average of once a month. The fluid levels have been calibrated for liquid and gas density gradients by comparing a number of them with Amerada bomb pressures taken within a few days. This data allows engineering to respond quickly to rises or declines in reservoir pressure by either increasing injection or production or idling production. Expanding thermal recovery operations to other sections of the Wilmington Oil Field, including the Tar V horizontal well pilot steamflood project, is a critical part of the City of Long Beach and Tidelands Oil

  5. Class III Mid-Term Project, "Increasing Heavy Oil Reserves in the Wilmington Oil Field Through Advanced Reservoir Characterization and Thermal Production Technologies"

    SciTech Connect (OSTI)

    Scott Hara

    2007-03-31

    The overall objective of this project was to increase heavy oil reserves in slope and basin clastic (SBC) reservoirs through the application of advanced reservoir characterization and thermal production technologies. The project involved improving thermal recovery techniques in the Tar Zone of Fault Blocks II-A and V (Tar II-A and Tar V) of the Wilmington Field in Los Angeles County, near Long Beach, California. A primary objective has been to transfer technology that can be applied in other heavy oil formations of the Wilmington Field and other SBC reservoirs, including those under waterflood. The first budget period addressed several producibility problems in the Tar II-A and Tar V thermal recovery operations that are common in SBC reservoirs. A few of the advanced technologies developed include a three-dimensional (3-D) deterministic geologic model, a 3-D deterministic thermal reservoir simulation model to aid in reservoir management and subsequent post-steamflood development work, and a detailed study on the geochemical interactions between the steam and the formation rocks and fluids. State of the art operational work included drilling and performing a pilot steam injection and production project via four new horizontal wells (2 producers and 2 injectors), implementing a hot water alternating steam (WAS) drive pilot in the existing steamflood area to improve thermal efficiency, installing a 2400-foot insulated, subsurface harbor channel crossing to supply steam to an island location, testing a novel alkaline steam completion technique to control well sanding problems, and starting on an advanced reservoir management system through computer-aided access to production and geologic data to integrate reservoir characterization, engineering, monitoring, and evaluation. The second budget period phase (BP2) continued to implement state-of-the-art operational work to optimize thermal recovery processes, improve well drilling and completion practices, and evaluate the

  6. Permian Bone Spring formation: Sandstone play in the Delaware basin. Part I - slope

    SciTech Connect (OSTI)

    Montgomery, S.L.

    1997-08-01

    New exploration in the Permian (Leonardian) Bone Spring formation has indicated regional potential in several sandstone sections across portions of the northern Delaware basin. Significant production has been established in the first, second, and third Bone Spring sandstones, as well as in a new reservoir interval, the Avalon sandstone, above the first Bone Spring sandstone. These sandstones were deposited as submarine-fan systems within the northern Delaware basin during periods of lowered sea level. The Bone Spring as a whole consists of alternating carbonate and siliciclastic intervals representing the downdip equivalents to thick Abo-Yeso/Wichita-Clear Fork carbonate buildups along the Leonardian shelf margin. Hydrocarbon exploration in the Bone Spring has traditionally focused on debris-flow carbonate deposits restricted to the paleoslope. Submarine-fan systems, in contrast, extend a considerable distance basinward of these deposits and have been recently proven productive as much as 40-48 km south of the carbonate trend.

  7. Chemistry of hydrotreating heavy crudes: II. Detailed analysis of polar compounds in Wilmington 650-1000 degree F distillate and hydrotreated products

    SciTech Connect (OSTI)

    Sturm, G.P. Jr.; Green, J.B.; Tang, S.Y.; Reynolds, J.W.; Yu, S.K.T. )

    1987-04-01

    Notwithstanding the current oversupply of crude oil, the future importance of heavy crude as a primary energy resource is widely recognized. In addition, with the market for resid declining, refiners are facing an increasing challenge to convert more of the bottom of the barrel to transportation fuels. The problems that have been predicted for refinery products made from heavier feedstocks are now beginning to surface. State-of-the-art upgrading procedures have proven to be inadequate for removal of many of the chemical compound types that cause problems in the processing sequence or adversely affect the quality of the end products. These problems include instability or incompatibility of process streams or products, corrosiveness and catalyst poisoning. Before new approaches can be intelligently developed to remove the problem components, it is necessary to know what compound types are causing the observed problems. This study is focused on determination of polar compounds in the feedstock and products from hydrotreating a distillate of a representative heavy crude, Wilmington. The ultimate objective is to acquire an understanding of the compound types and reaction mechanisms contributing to instability, incompatibility, corrosiveness, catalyst poisoning and other problems exhibited by some crude oil feedstocks, intermediate process streams and final products resulting from the processing of lower quality fossil fuel feedstocks.

  8. Delaware Energy and Cost Savings for New Single- and Multifamily Homes: 2012 IECC as Compared to the 2009 IECC

    SciTech Connect (OSTI)

    Lucas, Robert G.; Taylor, Zachary T.; Mendon, Vrushali V.; Goel, Supriya

    2012-04-01

    The 2012 International Energy Conservation Code (IECC) yields positive benefits for Delaware homeowners. Moving to the 2012 IECC from the 2009 IECC is cost effective over a 30-year life cycle. On average, Delaware homeowners will save $10,409 with the 2012 IECC. After accounting for upfront costs and additional costs financed in the mortgage, homeowners should see net positive cash flows (i.e., cumulative savings exceeding cumulative cash outlays) in 1 year for the 2012 IECC. Average annual energy savings are $616 for the 2012 IECC.

  9. ,"Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Industrial Price (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  10. ,"Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    LNG Storage Net Withdrawals (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas LNG Storage Net Withdrawals (MMcf)",1,"Annual",2014 ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  11. ,"Delaware Natural Gas Vehicle Fuel Consumption (MMcf)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Consumption (MMcf)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Vehicle Fuel Consumption (MMcf)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release Date:","9/30/2016" ,"Excel File

  12. Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Lease and Plant Fuel Consumption (Million Cubic Feet) Delaware Natural Gas Lease and Plant Fuel Consumption (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1960's 0 0 0 1970's 0 0 0 0 0 0 0 0 0 1 1980's 0 0 0 0 0 0 0 0 1990's 0 0 0 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date: 9/30/2016 Referring Pages: Natural Gas Lease and

  13. Advanced reservoir characterization for improved oil recovery in a New Mexico Delaware basin project

    SciTech Connect (OSTI)

    Martin, F.D.; Kendall, R.P.; Whitney, E.M.

    1997-08-01

    The Nash Draw Brushy Canyon Pool in Eddy County, New Mexico is a field demonstration site in the Department of Energy Class III program. The basic problem at the Nash Draw Pool is the low recovery typically observed in similar Delaware fields. By comparing a control area using standard infill drilling techniques to a pilot area developed using advanced reservoir characterization methods, the goal of the project is to demonstrate that advanced technology can significantly improve oil recovery. During the first year of the project, four new producing wells were drilled, serving as data acquisition wells. Vertical seismic profiles and a 3-D seismic survey were acquired to assist in interwell correlations and facies prediction. Limited surface access at the Nash Draw Pool, caused by proximity of underground potash mining and surface playa lakes, limits development with conventional drilling. Combinations of vertical and horizontal wells combined with selective completions are being evaluated to optimize production performance. Based on the production response of similar Delaware fields, pressure maintenance is a likely requirement at the Nash Draw Pool. A detailed reservoir model of pilot area was developed, and enhanced recovery options, including waterflooding, lean gas, and carbon dioxide injection, are being evaluated.

  14. Application of Advanced Reservoir Characterization, Simulation, and Production Optimization Strategies to Maximize Recovery in Slope and Basin Clastic Reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.

    2001-11-04

    The objective of this Class III project was demonstrate that reservoir characterization and enhanced oil recovery (EOR) by CO2 flood can increase production from slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico. Phase 1 of the project, reservoir characterization, focused on Geraldine Ford and East Ford fields, which are Delaware Mountain Group fields that produce from the upper Bell Canyon Formation (Ramsey sandstone). The demonstration phase of the project was a CO2 flood conducted in East Ford field, which is operated by Orla Petco, Inc., as the East Ford unit.

  15. Metals in tissues of migrant semipalmated sandpipers (Calidris pusilla) from Delaware Bay, New Jersey

    SciTech Connect (OSTI)

    Burger, Joanna; Gochfeld, Michael; Niles, Lawrence; Dey, Amanda; Jeitner, Christian; Pittfield, Taryn; Tsipoura, Nellie

    2014-08-15

    There is an abundance of field data on levels of metals for feathers in a variety of birds, but relatively few data for tissues, especially for migrant species from one location. In this paper we examine the levels of arsenic, cadmium, chromium, lead, manganese, mercury and selenium in muscle, liver, brain, fat and breast feathers from migrant semipalmated sandpipers (Calidris pusilla) collected from Delaware Bay, New Jersey. Our primary objectives were to (1) examine variation as a function of tissue, (2) determine the relationship of metal levels among tissues, and (3) determine the selenium:mercury molar ratio in different tissues since selenium is thought to protect against mercury toxicity. We were also interested in whether the large physiological changes that occur while shorebirds are on Delaware Bay (e.g. large weight gains in 2–3 weeks) affected metal levels, especially in the brain. There were significant differences among tissues for all metals. The brain had the lowest levels of arsenic and cadmium, and was tied for the lowest levels of all other metals except lead and selenium. Correlations among metals in tissues were varied, with mercury levels being positively correlated for muscle and brain, and for liver and breast feathers. Weights vary among individuals at the Delaware Bay stopover, as they arrive light, and gain weight prior to migration north. Bird weight and levels of arsenic, cadmium, and selenium in the brain were negatively correlated, while they were positively correlated for lead. There was no positive correlation for mercury in the brain as a function of body weight. The selenium:mercury molar ratio varied significantly among tissues, with brain (ratio of 141) and fat having the highest ratios, and liver and breast feathers having the lowest. In all cases, the ratio was above 21, suggesting the potential for amelioration of mercury toxicity. - Highlights: • Metal levels were examined for migrant semipalmated sandpipers. • There

  16. Energy Secretary Chu to Tour DuPont Clean Energy Innovation Facilities

    Broader source: Energy.gov [DOE]

    WASHINGTON – Tomorrow, Wednesday, May 23, 2012, U.S. Energy Secretary Steven Chu will visit DuPont in Wilmington, Delaware, where he will tour the company’s clean energy research and development...

  17. RPT_PERIOD","R_S_NAME","LINE_NUM","PROD_CODE","PROD_NAME","PORT...

    U.S. Energy Information Administration (EIA) Indexed Site

    PETRO",2,510,"RESIDUAL FUEL, > 1.00% SULFUR",1103,"WILMINGTON, DE","DELAWARE",1,830,"SPAIN",91,3.23,0,,,,, 34365,"DELPHI PETRO",4,510,"RESIDUAL FUEL, > 1.00%...

  18. CX-008218: Categorical Exclusion Determination

    Broader source: Energy.gov [DOE]

    A System Design Study for Wilmington Canyon Offshore Wind Farm CX(s) Applied: A9 Date: 04/02/2012 Location(s): Delaware Offices(s): Golden Field Office

  19. Delaware Natural Gas Delivered to Commercial Consumers for the Account of

    Gasoline and Diesel Fuel Update (EIA)

    Others (Million Cubic Feet) Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Delaware Natural Gas Delivered to Commercial Consumers for the Account of Others (Million Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1980's 0 0 0 1990's 0 0 0 0 0 0 0 0 0 75 2000's 103 97 1,285 1,450 1,561 1,399 1,833 2,178 2,611 5,438 2010's 6,117 4,879 5,647 6,146 6,389 - = No Data Reported; -- = Not Applicable; NA = Not Available; W =

  20. Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet)

    U.S. Energy Information Administration (EIA) Indexed Site

    Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Delaware Natural Gas Vehicle Fuel Price (Dollars per Thousand Cubic Feet) Decade Year-0 Year-1 Year-2 Year-3 Year-4 Year-5 Year-6 Year-7 Year-8 Year-9 1990's 3.00 3.03 2.85 2.60 2.91 2000's 3.21 4.12 5.48 12.66 14.88 19.32 22.42 21.90 26.48 14.12 2010's 24.55 28.76 30.97 - = No Data Reported; -- = Not Applicable; NA = Not Available; W = Withheld to avoid disclosure of individual company data. Release Date: 8/31/2016 Next Release Date:

  1. HUD consumer market profile for the states of Florida, Delaware and Maryland

    SciTech Connect (OSTI)

    Jack, M.C.; Denny, W.M.

    1981-01-01

    Data obtained on persons who purchased solar water heaters with HUD grants from 1977 to 1979 in the states of Florida, Delaware and Maryland are compiled. A total of more than 2600 consumers are profiled. The following variables are included in the consumer profile: type of present hot water system, site location by county, family composition and type of installation. This study represents the largest marketing profile of solar hot water system purchasers to date. It has significance both to private industry and the government for it details what type of person participated in the HUD grant program. It is found that the largest number of solar installations cluster around large metropolitan areas in neighborhoods that are predominantly white, upper-class, and less than five persons in the household.

  2. Delaware basin/Central basin platform margin: The development of a subthrust deep-gas province in the Permian Basin

    SciTech Connect (OSTI)

    Purves, W.J. ); Ting, S.C. )

    1990-05-01

    A deep-gas-prone province was identified along the Delaware basin/Central Basin platform margin, a margin conventionally interpreted to be bounded by high-angle normal or high-angle reverse structures. Redefinition of the tectonic style between the Delaware basin and the adjacent platform resulted in the identification of this Delaware basin/Central Basin platform subthrust province and a giant prospect within it. Definition of a giant-sized gas prospect in northern Pecos County, Texas, revealed that portions of this margin may be characterized by shingled, low-angle, eastward-dipping, basement involved thrust faults. Interpretations suggest that hidden, subthrust footwall structures may trend discontinuously for greater than 100 mi along this structural margin. Subthrust footwall structures formed as basinal buttress points for the Central Basin platform to climb over the Delaware basin. In this area, structural relief of over 19,000 ft over a 10-mi width is believed due to stacking of low-angle thrust sheets. Seismic resolution of this subthrust margin has been complexed by allochtonous hanging-wall gravity-glide blocks and folds and by velocity changes in overlying syn- and posttectonic sediments associated with basin-to-shelf lithofacies changes. Statistical studies indicate that this deep-gas province has a play potential of greater than 10 tcf of gas, with individual prospect sizes exceeding 1 tcfg. The prospects defined along this trend are deep (approximately 20,000 ft) subthrust structural traps that are indigenously sourced and reservoired by dual-matrix porosity. Vitrinite supported maturation modeling suggests that these subthrust structures formed prior to catagenic conversion of the oldest source rocks to oil and later to gas. Tectonically fractured Ordovician Ellenburger and Devonian sediments are considered the principal reservoirs. Shales overlying reservoir intervals form vertical seals.

  3. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, West Texas (Delaware Basin), Class III

    SciTech Connect (OSTI)

    Dutton, Shirley P.; Flanders, William A.; Zirczy, Helena H.

    2000-05-24

    The objective of this Class 3 project was to demonstrate that detailed reservoir characterization of slope and basin clastic reservoirs in sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost effective way to recover a higher percentage of the original oil in place through strategic placement of infill wells and geologically based field development. Phase 1 of the project, reservoir characterization, was completed this year, and Phase 2 began. The project is focused on East Ford field, a representative Delaware Mountain Group field that produces from the upper Bell Canyon Formation (Ramsey sandstone). The field, discovered in 1960, is operated by Oral Petco, Inc., as the East Ford unit. A CO{sub 2} flood is being conducted in the unit, and this flood is the Phase 2 demonstration for the project.

  4. ,"Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Natural Gas Price Sold to Electric Power Consumers (Dollars per Thousand Cubic Feet)",1,"Monthly","6/2016" ,"Release Date:","8/31/2016" ,"Next Release

  5. Growth rates of upper Permian carbonate platform, Capitan margin of northern Delaware basin

    SciTech Connect (OSTI)

    Harris, P.M.; Grover, G.A.

    1989-03-01

    Subsurface and outcrop studies of the Capitan margin (late Guadalupian, Capitanian) in the northern Delaware basin have revealed that over 80% of the total progradation of the margin, over half the total aggradation of the platform (150 of 290 m), and over two-thirds of the basin fill (190 of 280 m) occurred during an early phase of development equating with Seven Rivers beds on the platform. The amount of progradation varied from 6 km from outcrop data in the Guadalupe Mountains to 19 km along trend to the east from subsurface information. The later phase of Capitan margin development was coincident with Yates and Tansill deposition on the platform and was dominated by aggradation and steepening of the margin. Corresponding to this two-phase model, two third-order cycles of relative sea level occur within the Capitanian on the eustasy curve of Ross and Ross: a Seven Rivers cycle lasting 1.5 m.y. and a Yates-Tansill cycle of 1.0 m.y. Progradation rates for the Capitan range from 2.6 to 8.3 m/1000 years. Similar rates are calculated from high-resolution seismic lines across the Cenozoic margin of northwestern great Bahama Bank. Accumulation rates for the Capitan, uncorrected for compaction, average 125 ..mu..m/year and 335 ..mu..m/year for the early phase shelf and shelf margin, respectively, and 160 ..mu..m/year and 430..mu..m/year for the later phase shelf and shelf margin. These accumulation rates are similar to those of other ancient, prograding platforms.

  6. Geologic evolution of the Late Permian Capitan shelf margin, northern Delaware basin

    SciTech Connect (OSTI)

    Grover, G.A. )

    1991-03-01

    A two-phase model, based on outcrop and subsurface data rimming the northern half of the Delaware basin, characterizes the evolution of the late Guadalupian Capitan shelf margin, a margin that prograded up to 19 km basinward while an interval of over 700 m accumulated. Phase 1, during Seven Rivers shelf (early Capitan) deposition, accounts for 70-80% of the total progradation, over 50% of the total aggradation, and corresponds with shelf facies devoid of siliciclastics, emplacement of abundant carbonate debris on the slope and basin margin, and deposition of 50-70% of the Bell Canyon siliciclastic interval in the basin. The clastics bypassed the growing Capitan margin and were equally important to that of the allochthonous carbonate debris in filling accommodation space to facilitate progradation of the margin. The second phase, during Yates-Tansill (middle-upper Capitan) time, was dominated by aggradation, steepening of the shelf margin, deepening of the basin, and deposition of abundant siliciclastics on the shelf. This model differs from previous reconstructions that show uniform growth of the Capitan reef, and it contradicts the long-standing dogma of reciprocal sedimentation. This two-phase growth model adds insight into deposition of the two principle Guadalupian reservoir facies that account for nearly 50% of the Permian basin in-place oil reserves. Offlapping sheets of inner shelf carbonates (e.g., San Andres Formation, McElroy field) relate to periods of shelf progradation whereas widespread sheets of shelf clastics (e.g., Yates Formation, N. Ward Estes field) reflect periods of shelf aggradation. The model should be useful in evaluating the evolution of other shelves, particularly mixed shelves.

  7. Hydronic Heating Coil Versus Propane Furnace, Rehoboth Beach, Delaware (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2014-01-01

    Insight Homes constructed two houses in Rehoboth Beach, Delaware, with identical floor plans and thermal envelopes but different heating and domestic hot water (DHW) systems. Each house is 1,715-ft2 with a single story, three bedrooms, two bathrooms, and the heating, ventilation, and air conditioning (HVAC) systems and ductwork located in conditioned crawlspaces. The standard house, which the builder offers as its standard production house, uses an air source heat pump (ASHP) with supplemental propane furnace heating. The Building America test house uses the same ASHP unit with supplemental heat provided by the DHW heater (a combined DHW and hydronic heating system, where the hydronic heating element is in the air handler). Both houses were occupied during the test period. Results indicate that efficiency of the two heating systems was not significantly different. Three issues dominate these results; lower system design performance resulting from the indoor refrigerant coil selected for the standard house, an incorrectly functioning defrost cycle in the standard house, and the low resolution of the natural gas monitoring equipment. The thermal comfort of both houses fell outside the ASHRAE Standard 55 heating range but was within the ACCA room-to-room temperature range when compared to the thermostat temperature. The monitored DHW draw schedules were input into EnergyPlus to evaluate the efficiency of the tankless hot water heater model using the two monitored profiles and the Building America House Simulation Protocols. The results indicate that the simulation is not significantly impacted by the draw profiles.

  8. Geology of north-central Delaware basin, Eddy and Lea Counties, New Mexico: its hydrocarbon potential, focusing on 12 townships centered on WIPP site

    SciTech Connect (OSTI)

    Cheeseman, R.J.

    1986-03-01

    The Waste Isolation Pilot Plant (WIPP) site is located within the Carlsbad potash mining area, southeastern New Mexico, about 20 mi east of Carlsbad. Structurally, the WIPP site is located in the north-central part of the Delaware basin, which yields hydrocarbon production from the following: the Ordovician Ellenburger; the Pennsylvanian Morrow (gas), Atoka (oil and gas), and Strawn (reef oil) intervals; the Wolfcamp (gas) and Bone Spring (oil) formations of lowermost Permian; the Permian Yates (800-3500 ft deep), Queen, and Seven Rivers Formations; and the Delaware Mountain Group (4700-5200 ft deep). Structure contour maps demonstrate favorable Bone Spring conditions north of the WIPP site and the centrally located Delaware targets, as well as important Morrow development in the southern part. Five prospects are explored, and two are especially promising. Five anticlinal trends in this 12-township area bear field names as a result of production: Big Eddy, South Salt Lake, Cabin Lake, Los Medanos, and Sand Dunes. The Department of Energy's WIPP project is a planned repository for nuclear waste; despite centering on a deep dry hole, it occurs just northeast of productive Morrow formation. Whereas the successful tests seem concentrated on the structural highs, significant wells produce offtrend; the WIPP site lies in a syncline.

  9. JSX Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Thailand Zip: 10500 Product: Delaware-headquartered company, set up to explore for petroleum in Thailand, also considering PV project development. Coordinates: 13.75333,...

  10. Sentry Power Technology | Open Energy Information

    Open Energy Info (EERE)

    Place: New Castle, Delaware Zip: 19720 Product: The company develop and sell battery-driven back up uninterrupted power supply power supply systems. References: Sentry...

  11. Sentry Power LLC | Open Energy Information

    Open Energy Info (EERE)

    Sentry Power LLC Place: New Castle, Delaware Zip: 19720 Product: Sentry Power sells battery-driven back up uninterrupted power supply systems for commercial and residential...

  12. GreenTech Construction | Open Energy Information

    Open Energy Info (EERE)

    GreenTech Construction Jump to: navigation, search Name: GreenTech Construction Address: 7591 Perry Rd. Place: Delaware, Ohio Zip: 43015 Sector: Buildings, Efficiency Phone Number:...

  13. Cleantech Energy Inc | Open Energy Information

    Open Energy Info (EERE)

    Energy Inc. Place: San Diego, California Zip: 92130-2035 Product: Delaware-based firm that invests in and advises organizations with emerging technologies and projects....

  14. O2Diesel Corporation formerly Dynamic Ventures | Open Energy...

    Open Energy Info (EERE)

    O2Diesel Corporation formerly Dynamic Ventures Jump to: navigation, search Name: O2Diesel Corporation (formerly Dynamic Ventures) Place: Newark, Delaware Zip: 19713 Product:...

  15. Vice President Biden Announces Reopening of Former GM Boxwood Plant |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Reopening of Former GM Boxwood Plant Vice President Biden Announces Reopening of Former GM Boxwood Plant October 27, 2009 - 12:00am Addthis Wilmington, DE - As part of the of the Administration's commitment to jumpstarting the production of fuel efficient vehicles in America, Vice President Joe Biden today announced Fisker Automotive is re-opening a shuttered former GM factory in Wilmington, Delaware, to produce long-range, plug-in, electric hybrid vehicles. The

  16. Analysis of dust samples collected from spent nuclear fuel interim storage containers at Hope Creek, Delaware, and Diablo Canyon, California.

    SciTech Connect (OSTI)

    Bryan, Charles R.; Enos, David George

    2014-07-01

    Potentially corrosive environments may form on the surface of spent nuclear fuel dry storage canisters by deliquescence of deposited dusts. To assess this, samples of dust were collected from in-service dry storage canisters at two near-marine sites, the Hope Creek and Diablo Canyon storage installations, and have been characterized with respect to mineralogy, chemistry, and texture. At both sites, terrestrially-derived silicate minerals, including quartz, feldspars, micas, and clays, comprise the largest fraction of the dust. Also significant at both sites were particles of iron and iron-chromium metal and oxides generated by the manufacturing process. Soluble salt phases were minor component of the Hope Creek dusts, and were compositionally similar to inland salt aerosols, rich in calcium, sulfate, and nitrate. At Diablo Canyon, however, sea-salt aerosols, occurring as aggregates of NaCl and Mg-sulfate, were a major component of the dust samples. The seasalt aerosols commonly occurred as hollow spheres, which may have formed by evaporation of suspended aerosol seawater droplets, possibly while rising through the heated annulus between the canister and the overpack. The differences in salt composition and abundance for the two sites are attributed to differences in proximity to the open ocean and wave action. The Diablo Canyon facility is on the shores of the Pacific Ocean, while the Hope Creek facility is on the shores of the Delaware River, several miles from the open ocean.

  17. Occurrence and significance of magnesite in Upper Permian (Guadalupian) Tansill and Yates Formations, Delaware Basin, New Mexico

    SciTech Connect (OSTI)

    Garber, R.A.; Harris, P.M.; Borer, J.M. )

    1990-02-01

    Magnesite (MgCO{sub 3}) occurs pervasively in a 270-ft (82-m) cored interval of Upper Permian (Guadalupian) shelf deposits from the northern rim of the Delaware basin portion of the Permian basin, New Mexico. In their core example, magnesite is found in tidal flat/lagoon and pisolite shoal dolomites and siltstones of the Tansill and uppermost Yates formations. The interval is overlain by magnesite-bearing anhydrite and a thick halite section of the (Ochoan) Salado Formation. The basinwide extent of magnesite is unknown. Magnesite may have formed either (1) during Ochoan deposition or thereafter, after burial of the Tansill and Yates formations, from dense brines originating from the overlying Salado evaporites; or less likely, (2) syndepositionally with the Tansill and Yates sediments. Preliminary measurements of stable carbon and oxygen isotopes for magnesite yield normal Permian values for {delta}{sup 13}C averaging + 6.84% (PDB) and slightly evaporitic values for {delta}{sup 18}O averaging + 1.04% (PDB); corrected {sup 87}Sr/{sup 86}Sr isotope composition averages 0.70687. Because a high content of associated uranium in the magnesite-rich part of the core causes large gamma-ray deflections similar to those for shale, and because the density of magnesite is close to that of anhydrite, the presence of magnesite could lead to improper evaluation of lithology and porosity from logs and could ultimately result in failure to recognize potential reservoir zones. 14 figs., 1 tab.

  18. Wilmington, Massachusetts: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Massachusetts: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.5464828, -71.1736669 Show Map Loading map... "minzoom":false,"mappingservice"...

  19. NREL/University of Delaware Offshore Wind R&D Collaboration: Cooperative Research and Development Final Report, CRADA Number CRD-10-393

    SciTech Connect (OSTI)

    Musial, Walt

    2015-11-12

    Specifically, the work under this CRADA includes, but is not limited to, the development of test procedures for an offshore test site in Delaware waters; testing of installed offshore wind turbines; performance monitoring of those turbines; and a program of research and development on offshore wind turbine blades, components, coatings, foundations, installation and construction of bottom-fixed structures, environmental impacts, policies, and more generally on means to enhance the reliability, facilitate permitting, and reduce costs for offshore wind turbines. This work will be conducted both at NREL's National Wind Technology Center and participant facilities, as well as the established offshore wind test sites.

  20. Regional basinal sandstone depositional patterns during the Guadalupian (Late Permian), Delaware basin, west Texas-New Mexico

    SciTech Connect (OSTI)

    Geisen, J.H.; Scholle, P.A. )

    1990-05-01

    Examination of well logs from more than 300 Delaware basin wells penetrating the Bell Canyon and Brushy Canyon formations has allowed definition of regional depositional patterns during the Late Permian (Guadalupian). Characteristic gamma-ray hot-kicks mark thin but widespread calcareous shales or limestones representing starved basin sedimentation during sea level highstands. Correlation of such markers along three strike and ten dip lines permitted isopaching of intervening lowstand clastic wedges. The low-stand wedges typically thin significantly from basin margin to basin center and are marked by a prominent linearity oriented perpendicular to the margin. These lineations probably represent channelized turbidite and grain-flow deposits. Most intervals show dozens of such lineations indicating multiple input points for terrigenous detritus rather than just a few major point sources of debris. The resulting deposits appear to be more apron-like than fan-like and coalesce into broad, sheetlike deposits toward the basin center. Isopach thicks vary in position through time, but terrigenous sediment transport is predominantly from northerly directions throughout the analyzed interval. Thus, the filling of the Midland basin at the close of Cherry Canyon deposition did not result in a major new source of terrigenous debris from the east (Central Basin platform). The well-sorted nature of the basinal sands, their widely distributed input points, apron-like geometry, and other factors argue for migration of eolian dunes to the shelf margin during sea level lowstands. Transport of these well-sorted, unconsolidated sands into the basin was not however, mainly by direct eolian processes as has been proposed recently, but must have involved submarine current mechanisms.

  1. Evaporite replacement within the Permian strata of the Bighorn Basin, Wyoming and the Delaware Basin, west Texas and New Mexico

    SciTech Connect (OSTI)

    Ulmer, D.S.; Scholle, P.A. )

    1992-01-01

    The Park City and Goose Egg Formations of the Big Horn Basin, Wyoming and the Seven Rivers, Yates and Tansill Formations of west Texas and New Mexico contain numerous examples of silicified and calcitized evaporites. Both areas show significant preserved interstitial evaporite, but on outcrop the discrete crystals and nodular evaporites have been extensively replaced. These replacements appear to be a multistage phenomenon. Field and petrographic evidence (matted fabrics in nodules; evaporite inclusions) indicate that silicification involved direct replacement of evaporites and probably occurred during earlier stages of burial. Calcitization, however, appears to be a much later phenomenon and involved precipitation of coarse crystals within evaporite molds. The calcites are typically free of evaporite inclusions. Isotopic analyses of these calcites give a wide range of values from [minus]6.04 to [minus]25.02 [per thousand] [delta][sup 18]O and +6.40 to [minus]25.26 [per thousand] [delta][sup 13]C, reflecting their complex diagenetic histories. In both localities, silicification of evaporites was completed by the end of hydrocarbon migration and emplacement. The extremely broad isotopic range of the calcites indicates that the calcitization occurred during a long period of progressive uplift and increased groundwater circulation associated with mid-Tertiary block faulting. The very light oxygen values within the Bighorn Basin were produced by thermochemical sulfate reduction during deepest burial of the region. Evaporite diagenesis in both the Bighorn and Delaware Basins is an ongoing process that started prior to hydrocarbon migration, continued over millions of years, and has the potential to do significant porosity change.

  2. Tectonic and eustatic controls on the carbonate stratigraphy of the Leonardian-Guadalupin (Permian) section, northwestern Delaware basin, New Mexico and Texas

    SciTech Connect (OSTI)

    Glaser, K.S.; Vail, P.R. ); Jordan, J.E. )

    1990-05-01

    The effects of tectonics and eustasy on carbonate sedimentation have been determined using seismic, well logs, and outcrop data for the middle Permian of the Delaware basin. Sequence and chronostratigraphic analyses indicate the section contains a broad, tectonically controlled aggradational/progradational cycle overprinted by eustatic sea level cycles. Early Leonardian deposition of the Abo Formation and the third Bone Spring sand occurred during a period of rapid subsidence, producing the aggradational geometry observed on seismic and well logs. This followed a time of uplift to the northwest of the study area, which caused enhanced shelf erosion during the late Wolfcampian. The aggradational style of deposition continued through the middle Leonardian. Late Leonardian time is characterized by progradational geometry, due to a slower subsidence rate. This resulted in a 15-km progradation of the Bone Spring shelf margin in the northwestern part of the Delaware basin. A second period of uplift to the northwest followed, leading to the deposition of the sands of the Brushy Canyon Formation (Guadalupian). This aggradational/progradational cycle is followed by a similar cycle which ends after the deposition of the Capitan Formation. Within the carbonate-dominated Leonardian aggradational/progradational cycle, nine sea level cycles are recognized. The lowstand systems tracts within this package are of two types. The lowstands within the aggradational part of the section consist primarily of slope fans, while those associated with progradation contain large lowstand prograding wedges. Steep margins are associated with aggradation, while progradation is characterized by a ramplike geometry. Highstands are widespread on the shelf and prograde into the basin throughout this interval.

  3. Delaware Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    78-2005 Citygate Price 5.67 9.03 7.19 5.67 5.54 NA 1984-2015 Residential Price 15.12 15.38 15.24 13.65 13.21 NA 1967-2015 Percentage of Total Residential Deliveries included in ...

  4. Delaware Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    78-2005 Citygate 5.67 9.03 7.19 5.67 5.54 NA 1984-2015 Residential 15.12 15.38 15.24 13.65 13.21 NA 1967-2015 Commercial 13.26 13.58 13.31 11.78 11.42 10.70 1967-2015 Industrial 10.18 11.69 11.61 11.24 10.95 NA 1997-2015 Vehicle Fuel 24.55 28.76 30.97 1995-2012 Electric Power W W -- -- W -- 1997-2015 Underground Storage (Million Cubic Feet) Injections 1967-1975 Withdrawals 1967-1975 Net Withdrawals 1967-1975 Liquefied Natural Gas Storage (Million Cubic Feet) Additions 73 64 117 63 157 1980-2014

  5. Delaware Natural Gas Prices

    U.S. Energy Information Administration (EIA) Indexed Site

    3.81 3.84 4.70 5.03 6.24 8.53 1989-2016 Residential Price 10.09 9.71 10.24 11.47 13.44 17.54 1989-2016 Percentage of Total Residential Deliveries included in Prices 100.0 100.0 100.0 100.0 100.0 100.0 2002-2016 Commercial Price 8.75 8.58 8.79 9.33 10.03 10.87 1989-2016 Percentage of Total Commercial Deliveries included in Prices 41.6 49.4 47.8 40.8 35.9 31.2 1989-2016 Industrial Price 8.14 7.98 8.29 7.89 8.62 8.93 2001-2016 Percentage of Total Industrial Deliveries included in Prices 0.3 0.5 0.4

  6. ,"Delaware Natural Gas Summary"

    U.S. Energy Information Administration (EIA) Indexed Site

    ... 38336,6759,1509,1180,1960,,2110 38367,6870,2031,1358,2068,,1412 38398,5543,1824,1253,1465,,1001 38426,5427,1705,1198,1558,,965 38457,2696,790,572,1055,,280 ...

  7. Delaware Natural Gas Summary

    U.S. Energy Information Administration (EIA) Indexed Site

    1 3.84 4.70 5.03 6.24 8.53 1989-2016 Residential 10.09 9.71 10.24 11.47 13.44 17.54 1989-2016 Commercial 8.75 8.58 8.79 9.33 10.03 10.87 1989-2016 Industrial 8.14 7.98 8.29 7.89 8.62 8.93 2001-2016 Electric Power -- -- -- -- -- -- 2002-2016 Consumption (Million Cubic Feet) Delivered to Consumers 9,040 8,389 8,707 8,781 7,721 9,045 2001-2016 Residential 2,084 1,879 1,135 823 475 231 1989-2016 Commercial 2,003 1,658 1,113 934 695 535 1989-2016 Industrial 2,821 2,517 2,666 2,464 2,643 2,335

  8. ,"Delaware Natural Gas Prices"

    U.S. Energy Information Administration (EIA) Indexed Site

    Date:","04292016" ,"Excel File Name:","ngprisumdcusdem.xls" ,"Available from Web Page:","http:www.eia.govdnavngngprisumdcusdem.htm" ,"Source:","Energy ...

  9. Application of advanced reservoir characterization, simulation, and production optimization strategies to maximize recovery in slope and basin clastic reservoirs, west Texas (Delaware Basin). Annual progress report, March 31, 1995--March 31, 1996

    SciTech Connect (OSTI)

    Dutton, S.P.; Hovorka, S.D.; Cole, A.G.

    1996-08-01

    The objective of this Class III project is to demonstrate that detailed reservoir characterization of clastic reservoirs in basinal sandstones of the Delaware Mountain Group in the Delaware Basin of West Texas and New Mexico is a cost-effective way to recover more of the original oil in place by strategic infill-well placement and geologically based field development. Reservoirs in the Delaware Mountain Group have low producibility (average recovery <14 percent of the original oil in place) because of a high degree of vertical and lateral heterogeneity caused by depositional processes and post-depositional diagenetic modification. Detailed correlations of the Ramsey sandstone reservoirs in Geraldine Ford field suggest that lateral sandstone continuity is less than interpreted by previous studies. The degree of lateral heterogeneity in the reservoir sandstones suggests that they were deposited by eolian-derived turbidites. According to the eolian-derived turbidite model, sand dunes migrated across the exposed shelf to the shelf break during sea-level lowstands and provided well sorted sand for turbidity currents or grain flows into the deep basin.

  10. Delsea Energy | Open Energy Information

    Open Energy Info (EERE)

    New Jersey Zip: 8753 Sector: Wind energy Product: New Jersey-based firm planning an offshore wind project in Delaware Bay, New Jersey and an onshore wind project in...

  11. GlobalWatt Inc | Open Energy Information

    Open Energy Info (EERE)

    search Name: GlobalWatt Inc Place: Dover, Delaware Zip: 19801 Product: Shell company, once planned to float on AIM to raise money in order to acquire the business of...

  12. Property:Zip | Open Energy Information

    Open Energy Info (EERE)

    + 21-Century Silicon, Inc. + 75081-1881 + 21st century Green Solutions LLC + 48439 + 25 x 25 America s Energy Future + 21093 + 2OC + BA1 7AB + 2degrees + OX2 7HT + 2e Carbon...

  13. ZipZone Technologies | Open Energy Information

    Open Energy Info (EERE)

    online store.1 Products include solar photovoltaic (PV) panels, wind generators, inverters, batteries and energy related products your grid inter-tie, off-grid, remote, or...

  14. Delaware City, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.5778901, -75.588815 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  15. Ix-,,"

    Office of Legacy Management (LM)

    Ix-,," aI@ Copy ._____ ?z...of..!..G! __._. Copies. . . . . us.uupc EslbmlsiaD I802 E.I. DU PONT'DE NEMOURS & COMPAQ $ lMvouIlD WILMINGTON.DELAWARE .' , l!iew.l~ical-~tcu7 p.:-oi &a geg t, ' . : ohlc8gc 80, Illhcte ,..I ._ Peg If& CoopQs, .:: ( ,, : ,' ' .' : "

  16. Determination of PAH in SRM 1582, Wilmington crude oil

    SciTech Connect (OSTI)

    Not Available

    1982-12-13

    The concentrations of phenanthrene, fluoranthene, pyrene, benz(a)anthracene, benzo(a)pyrene, and perylene have been measured in SRM 1582 using the sequential HPLC procedure that was used in the certification PAH in SRM 1580, ''Organics in Shale Oil''. Quantification was accomplished through use of perdeuterated internal standards which were spiked into the oil sample at concentrations similar to that of the analyte compounds. The instrumentation used in these analyses is listed in Table I. The internal standard used for each analyte is identified in Table II. Perdeuterated analogs of the parent PAH serve as excellent internal standards because they have the same number of aromatic carbons and therefore co-elute on the aminosilane column. The perdeuterated PAH compound is resolved chromatographically from the parent PAH compound on the C/sub 18/ column, with the internal standard eluting just prior to the parent. The perdeuterated and parent compounds have similar fluorescence excitation and emission spectra as shown by the fact that their relative response factors are close to unity. Calibration solutions containing both the internal standard and analyte compounds were prepared for each compound to be determined. The concentration of the analyte compound in these solutions was routinely verified by comparison with SRM 1647. 1 ref., 8 tabs.

  17. Taking a Tour of Wilmington's Energy-Efficient Spaces | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    energy consumption by 45 percent. Snipes Academy of Arts and Design utilizes a water source heat pump system and outside air system for the school's heating and cooling....

  18. Borough of New Wilmington, Pennsylvania (Utility Company) | Open...

    Open Energy Info (EERE)

    Data Utility Id 13489 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes RTO PJM Yes Activity Distribution Yes This article is a stub. You can help OpenEI by...

  19. University of Delaware | CCEI Leadership

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Leadership {Image} {Name} - {Affiliation} {Title} {Location} Phone: {Phone} {Email}

  20. University of Delaware | CCEI News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    News [August 24, 2016] UD Research Magazine Fuling the Quest for Green Energy: You can't put a tree limb or a corncob in your gas tank and expect to get anything but a strange look and a bill from your mechanic. But that kind of fodder could one day be a fuel source as cheap and common as fossil fuels are now, providing renewable, sustainable raw materials for biorefineries that turn such agricultural waste into fuels, electricity and chemicals. view video and read aritcle here [July 29, 2016]

  1. University of Delaware | CCEI Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Staff Jeff Everhart Analytical Chemist Phone: (302) 831-6066 Email: Send email Location:368 ISE Lab Cindy King Administrative Assistant Phone: (302) 831-1628 Email: Send email ...

  2. University of Delaware | CCEI Equipment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI Equipment Click column headings to sort Type Equipment Details Institution Professor Type Equipment Details Institution Lab BACK TO TOP

  3. University of Delaware | About CCEI

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    INTRO VIDEO COMPUTATIONS VIDEO SUGARS VIDEO Catalysis Center for Energy Innovation About CCEI The Catalysis Center for Energy Innovation (CCEI) is a multi-institutional research ...

  4. University of Delaware | CCEI Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... on alternative energy and giving campers the opportunities to perform hands-on activities. ... CCEI staff led several camp sessions that were focused on nanoscience and renewable energy...

  5. University of Delaware | CCEI Events

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CCEI's Upcoming Events Seminar Series - WinterSpring 2017 CCEI is pleased to present the following enriching seminar series. Unless otherwise noted, times are Eastern Standard ...

  6. University of Delaware | CCEI Outreach

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... opportunities from across the web Clean Tech Recruits Specialists in Renewable Energy Jobs Green Careers Guide Resources for finding jobs in the green industry ...

  7. University of Delaware | CCEI Patents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Patents and Patent Applications Production of Para-xylene by Catalytically Reacting 2,5-Dimethylfuran and Ethylene in a Solvent Dauenhauer, P. J.; Williams, C. L.; Vlachos, D. G.; ...

  8. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Avenida De La Playa La Jolla California Efficiency Created high power yellow amber red LED light technology http www quanlight com Southern CA Area QuantaSol Limited...

  9. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    com Texas Area HelioVolt Inc HelioVolt Inc E Riverside Dr Austin Texas Solar Thin film solar panel producer http www heliovolt net Texas Area Horizon Wind Energy Horizon Wind...

  10. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    environmental costs Gaiam Real Goods Gaiam Real Goods W So Boulder Rd Boulder Colorado Solar PV panel efficient lighting distributor http www gaiam com realgoods Rockies Area...

  11. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    CREATIVE ELECTRO POWER CREATIVE ELECTRO POWER kazipara mirpur Dhaka Solar IPS CONTROLLER Solar panel http www smmbd com Southern CA Area Caprock Roofing Caprock Roofing Lewisville...

  12. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Research Center Brookpark Rd Cleveland Ohio Biofuels Carbon Efficiency Renewable Energy Solar Wind energy Research and development http www nasa gov centers glenn home index html...

  13. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    integrates services including the research development production sales of polysilicon solar panel CEEG Shanghai Solar Science Technology CEEG Shanghai Solar Science Technology...

  14. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Point Drive Fort Collins Colorado Solar Solar cell passive solar architectural glass solar grid tie inverter semiconductor flat panel display data storage http www advanced...

  15. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    com Genifuel Genifuel Carrigan Cir Salt Lake City Utah Biofuels Renewable Natural Gas http www genifuel com Rockies Area Gevo Inc Gevo Inc Inverness Drive South Englewood...

  16. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    domestic heating systems combining solar passive wood burning geothermal heat pumps and fossil fuel Elemental Energy Elemental Energy SW nd Ave Portland Oregon United States...

  17. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    Industries GmbH SunCoal Industries GmbH K nigs Wusterhausen Germany Producer of bio coal SunConnex International BV SunConnex International BV Amsterdam Netherlands Solar Dutch...

  18. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    manufacturing and marketing of display products typically OLED Organic Light Emitting Diode Display Vista International Inc Vista International Inc Englewood Colorado...

  19. Name Address Place Zip Sector Product Stock Symbol Year founded...

    Open Energy Info (EERE)

    Energy Inc Suite Inco Innovation Centre Memorial University of Newfoundland PO Box St John s A1C S7 Marine and Hydrokinetic http http www greyislandenergy com Canada Gulfstream...

  20. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    operates a number of power stations including the largest coal fired power station in the world as well as the Koeberg nuclear power station Esmeralda Energy Company Esmeralda...

  1. Property:Incentive/Cont2Zip | Open Energy Information

    Open Energy Info (EERE)

    (Georgia) + 30345-3202 + Alternative Fuel Vehicle and Refueling Station Corporate Tax Credit (Kansas) + 66612 + (previous 25) (next 25) Retrieved from "http:...

  2. Organization Organization Address Place Zip Notes Website Region

    Open Energy Info (EERE)

    Boston Massachusetts http cleantechboston com Greater Boston Area Consortium for Energy Efficiency Consortium for Energy Efficiency North Washington St Boston Massachusetts http...

  3. Property:Incentive/ContZip | Open Energy Information

    Open Energy Info (EERE)

    Company - Commercial Solutions Program (Texas) + 78746 + AEP Texas Central Company - ENERGY STAR New Home Program (Texas) + 78746 + AEP Texas Central Company - SCORE Program...

  4. Property:Incentive/Cont4Zip | Open Energy Information

    Open Energy Info (EERE)

    Arkansas - Commercial and Industrial Energy Efficiency Programs (Arkansas) + 72205 + O OTEC - Agricultural Energy Efficiency Rebate Programs (Oregon) + 97850 + OTEC - Commercial...

  5. Name Name Address Place Zip Category Sector Telephone number...

    Open Energy Info (EERE)

    Hydro Marine and Hydrokinetic http acep uaf edu facilities tanana river hydrokinetic test site aspx Alden Research Laboratory Inc Alden Research Laboratory Inc Shrewsbury Street...

  6. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    EV Drive Train and Services http www aevehicles com Rockies Area American Wind Power Hydrogen LLC American Wind Power Hydrogen LLC New York New York Hydro Hydrogen Vehicles AWP H...

  7. Company Name Company Name Address Place Zip Sector Product Website

    Open Energy Info (EERE)

    ANV Partners ANV Partners Denver Colorado Hydro Hydrogen Services Solar Wind energy AQWON Motors AQWON Motors Speinshart Germany Hydro Hydrogen AQWON Motors has developed the first...

  8. Institution Name Institution Name Address Place Zip Notes Website...

    Open Energy Info (EERE)

    Avenue Cambridge Massachusetts http web mit edu eel Greater Boston Area MIT Energy Science and Engineering Laboratory MIT Energy Science and Engineering Laboratory...

  9. E. 1. DU PONT DE NEMOURS & COMPANY

    Office of Legacy Management (LM)

    E. 1. DU PONT DE NEMOURS & COMPANY ,*Eo~UI~ WILMINGTON 99, DELAWARE IQ?. R. L. Kilburn, Director (2) Technical and Production Division Savannah River Operations Office U. S. Atomic Energy Commission -:; ;:~~~~!,~:c';~,~"s-,fi,:-~~~i:~!~~,,,,~~, ,';;'nf;;G;h=;cr;lina :J "'- I Dear IfI. Kilburn: RESEARCH PROGRAMS IN SUPPORT OF SAVANNAH RIVER In a letter to you dated April 19, 1956, ~~14-56-218, we recommended that the Savannah River Operations Office set aside funds to cover certain

  10. ,"Delaware Natural Gas Consumption by End Use"

    U.S. Energy Information Administration (EIA) Indexed Site

    8817,1663,1627,2865,0,2661 41654,9350,2463,2128,2676,0,2083 41685,8446,2138,1696,2644,0,1968 41713,9361,1858,1502,2871,0,3129 41744,6829,825,740,2340,0,2924 41774,6637,496,615,2477...

  11. Delaware Supplemental Supplies of Natural Gas

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    9) Distribution Category UC-950 Cost and Quality of Fuels for Electric Plants 2009 November 2010 U.S. Energy Information Administration Assistant Administrator for Energy Statistics Office of Electricity, Renewables, and Uranium Statistics U.S. Department of Energy Washington DC 20585 This report is only available online at: http://www.eia.gov/cneaf/electricity/cq/cq_sum.html This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency

  12. Newark, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6837226, -75.7496572 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  13. Middletown, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.449556, -75.7163207 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  14. Hockessin, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7876112, -75.6966001 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  15. Odessa, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.457334, -75.6613184 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  16. Ardentown, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.808446, -75.4829752 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  17. Townsend, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.3951115, -75.6915973 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  18. Greenville, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7790012, -75.5982599 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  19. Arden, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8092794, -75.4865866 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  20. Ardencroft, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8051323, -75.4861752 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  1. Edgemoor, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7501139, -75.4996414 Show Map Loading map... "minzoom":false,"mappingservice":"googlem...

  2. Elsmere, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7392796, -75.5979812 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  3. Brookside, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6670561, -75.7268779 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  4. Bear, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.6292788, -75.6582628 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  5. Claymont, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8006685, -75.4596404 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  6. Clayton, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.2906671, -75.6343727 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type"...

  7. Bellefonte, Delaware: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.7663, -75.498313 Show Map Loading map... "minzoom":false,"mappingservice":"googlemaps3","type":...

  8. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    Conventional","-","-" " Solar","-","-" " Wind",2,0.1 " WoodWood Waste","-","-" " MSW... Conventional","-","-" " Solar","-","-" " Wind",3,"*" " WoodWood Waste","-","-" " MSW ...

  9. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas" "Primary Renewable Energy Generation Source","Municipal Solid ... " Hydro Conventional","-","-" " Solar","-","-" " Wind",2,0.1 " WoodWood ...

  10. Delaware Renewable Electric Power Industry Statistics

    U.S. Energy Information Administration (EIA) Indexed Site

    WasteLandfill Gas Primary Renewable Energy Generation Source Municipal Solid Waste... Total Net Summer Renewable Capacity 10 0.3 Geothermal - - Hydro Conventional - - Solar - - ...