National Library of Energy BETA

Sample records for williston basin black

  1. Little Knife field - US Williston basin

    SciTech Connect (OSTI)

    Wittstrom, M.D.; Lindsay, R.F. )

    1991-03-01

    Little Knife field is a combination structural and stratigraphic trap located near the structural center of the Williston basin, North Dakota. The field is approximately 12 mi (19.3 km) long and 2.5 to 5.5 mi (4 to 8.9 km) wide. Little Knife was discovered by Gulf Oil in 1976 as part of a regional exploration play involving a transition from impermeable to porous carbonate rocks. In 1987, ultimate recovery from the Mission Canyon (Mississippian) reservoir was estimated to be 97.5 MMBO. This included 57.5 MMBO primary, 27 MMBO secondary, and 13 MMBO tertiary (CO{sub 2}) oil. At present the field is still under primary recovery, since utilization efforts have not been successful. Approximately one-third of Little Knife's 130 ft (39.6 m) oil column is trapped by structural closure beneath a regional anhydrite seal in a north-south-trending anticline. The remaining two-thirds of the oil column is trapped where the reservoir beds change facies from porous dolostones and dolomitic limestones to nonporous limestones. Structural entrapment accounts for approximately 50% (127 MMBO) of the OOIP, but covers only 30% of the producing area. Production is from the upper portions of the Mission Canyon Formation, a regressive, shoaling-upward carbonate-anhydrite sequence deposited in a slowly shrinking epeiric sea. The Mission Canyon in the Little Knife area is divided into six zones that record predominantly cyclic, subtidal deposition. These are overlain by prograding lagoonal, tidal flat, and sabkha beds. The source of Mission Canyon oil is thought to be the Bakken Formation, an organic-rich shale at the base of the Mississippian.

  2. Sulfur isotope ratios in petroleum research and exploration: Williston basin

    SciTech Connect (OSTI)

    Thode, H.G.

    1981-09-01

    The three major types of crude oil in the Williston basin - the type I oils of the Winnipeg-Red River system, the type II oils of the Bakken-Madison system, and the type III oils of the Tyler-Pennsylvanian system - can be distinguished by their sulfur isotope compositions. They have characteristic delta/sup 34/S values of 5.8 +- 1.2 parts per thousand (ppt), 2.8 +- 0.8 ppt, and -4.0 +- 0.7 ppt respectively. Highly mature oils have less typical values. Type II oils which have migrated over a distance of some 150 km beyond the region of generation have maintained their characteristic delta/sup 34/S values even though sulfur may have been lost. This indicates little or no interaction with reservoir sulfates under normal circumstances. On the periphery of the basin, type II oils altered by water washing and biodegradation have altered delta/sup 34/S values which increase from +2.9 to +9.4 ppt with the increasing degree of crude oil degradation. The Bakken shales, source of the type II oils, have delta/sup 34/S distribution patterns in the reduced sulfur typical of marine sediments. The delta/sup 34/S values for the type II oils match most closely the delta/sup 34/S value of organic sulfur in the black bituminous shales of the lower Bakken.

  3. Horizontal drilling the Bakken Formation, Williston basin: A new approach

    SciTech Connect (OSTI)

    Lefever, J.A. )

    1990-05-01

    Horizontal drilling is an attractive new approach to exploration and development of the Mississippian/Devonian Bakken Formation in the southwestern part of North Dakota. This drilling technique increases the probability of success, the profit potential, the effective drainage area maximizing recoverable reserves, and the productivity by encountering more natural occurring fractures. The target formation, the Mississippian/Devonian Bakken, consists of three members in an overlapping relationship, a lower organic-rich black shale, a middle siltstone/limestone, and an upper organic-rich black shale. It attains a maximum thickness of 145 ft and thins to a feather edge along its depositional limit. Considered to be a major source rock for the Williston basin, the Bakken is usually overpressured where productive. Overpressuring is attributed to intense hydrocarbon generation. Reservoir properties are poor with core fluid porosities being generally 5% or less and permeabilities ranging from 0.1 to 0.2 md. The presence of natural fractures in the shale are necessary for production. Two types of fractures are associated with Bakken reservoirs: large vertical fractures (of tectonic origin) and microfractures (probably related to hydrocarbon generation). An economic comparison between horizontal and vertical wells show that well completion costs are approximately two times higher (average costs; $1,500,000 for a horizontal to $850,000 for a vertical) with average payout for horizontal wells projected to occur in half the time (1.5 yr instead of 3.4 yr). Projected production and reserves are considered to be 2 to 4 times greater from a horizontal well.

  4. Williston basin oil exploration: Past, present, and future

    SciTech Connect (OSTI)

    Jennings, A.H.

    1991-06-01

    Past: In 1951, modern oil exploration came to the Williston basin with the discovery of Paleozoic oil on the large Nesson anticline. This was quickly followed by similar discoveries on Cedar Creek and Poplar anticlines. To the north, the Canadians, lacking large structures, concentrated on Paleozoic stratigraphic traps and were highly successful. US explorationists quickly followed, finding similar traps on the basin's northeastern flank and center. The 1960s saw multiple Devonian salt dissolution structures produce on the western flank. To the northwest, shallow Mississippian and deeper Ordovician pays were found on small structural closures. These later were combined with pays in the Devonian and Silurian to give multiple pay potential. In the basin center large buried structures, visible only to seismic, were located. The 1970s revealed an Ordovician subcrop trap on the southeast flank. Centrally, a Jurassic astrobleme with Mississippian oil caused a flurry of leasing and deep drilling. The 1982 collapse of oil prices essentially halted exploration. 1987 saw a revival when horizontal drilling for the Mississippian Bakken fractured shale promised viable economics. Present: Today, emphasis is on Bakken horizontal drilling in the deeper portion of the basin. Next in importance is shallow drilling such as on the northeastern flank. Future: An estimated on billion barrels of new oil awaits discovery in the Williston basin. Additional exploration in already established production trends will find some of this oil. Most of this oil, however, will almost certainly be found by following up the numerous geological leads hinted at by past drilling.

  5. Thermal history of Bakken shale in Williston basin

    SciTech Connect (OSTI)

    Gosnold, W.D. Jr.; Lefever, R.D.; Crashell, J.J. )

    1989-12-01

    Stratigraphic and thermal conductivity data were combined to analyze the thermostratigraphy of the Williston basin. The present thermostratigraphy is characterized by geothermal gradients of the order of 60 mK/m in the Cenozoic and Mesozoic units, and 30 mK/m in the Paleozoic units. The differences in geothermal gradients are due to differences in thermal conductivities between the shale-dominated Mesozoic and Cenozoic units and the carbonate-dominated Paleozoic units. Subsidence and compaction rates were calculated for the basin and were used to determine models for time vs. depth and time vs. thermal conductivity relationships for the basin. The time/depth and time/conductivity relationships include factors accounting for thermal conductivity changes due to compaction, cementation, and temperature. The thermal history of the Bakken shale, a primary oil source rock in the Williston basin, was determined using four different models, and values for Lopatin's time-temperature index (TTI) were calculated for each model. The first model uses a geothermal gradient calculated from bottom-hole temperature data, the second uses present-day thermostratigraphy, the third uses the thermostratigraphic relationship determined in this analysis, and the fourth modifies the third by including assumed variations in continental heat flow. The thermal histories and the calculated TTI values differ markedly among the models with TTI values differing by a factor of about two between some models.

  6. Thermal modeling of Bakken Formation of Williston basin

    SciTech Connect (OSTI)

    Anderson, D.

    1986-08-01

    Organic geochemical analyses provide a quantitative basis on which conceptual models of thermal maturation may be built. Contour maps of maturation indices of the Mississippian-Devonian Bakken Formation of the Williston basin show anomalous patterns that are not dependent on burial depth. One such area is on the western side of the Nesson anticline. One-dimensional modeling incorporating a uniform, constant heat flow, lithology-dependent thermal conductivities, and decompaction factors indicates that these areas are less mature than surrounding regions. This is due primarily to decreasing burial depth and thinning of low-thermal-conductivity Tertiary and Cretaceous shales. Additional heat transfer to these regions may be due in part to heat transfer by fluid movement through aquifers or vertical fractures. The influence of these fluid systems is simulated through the use of a two-dimensional finite difference program. Basic assumptions are made concerning heat flow, thermal properties, and ground-water flow rates through time. Modeling of the time-temperature history is simplified by restricting the study to the time of greatest maturation, the post-Jurassic.

  7. Improved recovery demonstration for Williston Basin carbonates. Final report

    SciTech Connect (OSTI)

    Sippel, M.A.

    1998-07-01

    The purpose of this project was to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, and methods for improved completion efficiency. The investigations and demonstrations were focussed on Red River and Ratcliffe reservoirs in the Williston Basin within portions of Montana, North Dakota and South Dakota. Both of these formations have been successfully explored with conventional 2-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) seismic was investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterizations were integrated with geological and engineering studies. The project tested lateral completion techniques, including high-pressure jetting lance technology and short-radius lateral drilling to enhance completion efficiency. Lateral completions should improve economics for both primary and secondary oil where low permeability is a problem and higher-density drilling of vertical infill wells is limited by drilling cost. New vertical wells were drilled to test bypassed oil in ares that were identified by 3D seismic. These new wells are expected to recover as much or greater oil than was produced by nearby old wells. The project tested water injection through vertical and horizontal wells in reservoirs where application of waterflooding has been limited. A horizontal well was drilled for testing water injection. Injection rates were tested at three times that of a vertical well. This demonstration well shows that water injection with horizontal completions can improve injection rates for economic waterflooding. This report is divided into two sections, part 1 covers the Red River and part 2 covers the Ratcliffe. Each part summarizes integrated reservoir characterizations and outlines methods for targeting by-passed oil reserves in the respective formation and locality.

  8. Improved recovery demonstration for Williston Basin carbonates. Quarterly report, October 1, 1994--December 31, 1994

    SciTech Connect (OSTI)

    1995-04-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in certain shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Results of seismic surveys are presented.

  9. Macrofossils of Bakken Formation (Devonian and Mississippian), Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Thrasher, L.; Holland, F.D. Jr.

    1983-08-01

    Results of this study of the macrofossils of the Bakken Formation in North Dakota have reinforced the suggestion, based on previous paleontological work in Saskatchewan, that the Bakken is of both Devonian and Mississippian age, rather than being entirely of Lower Mississippian age as originally considered. Increased drilling and coring activity in the North Dakota part of the Williston Basin has provided the opportunity for acquiring a larger fauna that was previously available. Based on lithologic character, the Bakken has been divided into three informal members. These consist of a calcareous siltstone unit between two lithologically similar units of carbonaceous shale. These black shales contain similar faunas distinct from that of the middle member. The black shales contain inarticulate brachiopods, conchostracans, and rare cephalopods and fish remains as well as more abundant conodonts, ostracods, and palynomorphs. The middle siltstone unit contains a more abundant and diverse fauna consisting of inarticulate and articulate brachiopods together with corals, gastropods, cephalopods, ostracods, echinoderm remains, and trace fossils. This is the first report of cephalopods, conchostracans, ostracods, corals, trace fossils, and some of the brachiopods in the Bakken, although all, except the gastropods, have been reported from stratigraphic equivalents (Exshaw Formation of south-central Montana, the Leatham Formation of northeastern Utah, and the middle member of the Pilot Shale in western Utah and eastern Nevada).

  10. A two-dimensional regional basin model of Williston basin hydrocarbon systems

    SciTech Connect (OSTI)

    Burrus, J.; Wolf, S.; Doligez, B.

    1996-02-01

    Institut Francais du Petrole`s two-dimensional model, TEMISPACK, is used to discuss the functioning of petroleum systems in the Williston basin along a 330-km-long section, focusing on four regional source intervals: Ordovician Yeoman formation, Lower Devonian Winnipegosis Formation, Upper Devonian-Lower Mississippian Bakken Formation, and Mississippian Lodgepole formation. Thermal history calibration against present temperature and source rock maturity profiles suggests that the Williston basin can be divided into a region of constant heat flow of about 55 mW/m{sup 2} away from the Nesson anticline, and a region of higher heat flow and enhanced thermal maturity in the vicinity of the Nesson anticline. Original kinetic parameters used in the calibration were derived for each of the four source rocks from Rock-Eval yield curves. Bakken overpressures are entirely due to oil generation, not compaction disequilibrium. Very low Bakken vertical permeabilities range from 0.01 to 0.001 and are matched against observed overpressures, whereas Bakken porosities based on the model and confirmed by measurements are inferred to be also unusually low, around 3%.

  11. Organic carbon in Bakken Formation, United States portion of Williston Basin

    SciTech Connect (OSTI)

    Schmoker, J.W.; Hester, T.C.

    1983-12-01

    The upper and lower members of the Mississippian and Devonian Bakken Formation in the United States portion of the Williston basin are black shales that are extremely rich in organic matter and are the source of much of the oil found in the basin. Organic-carbon values are calculated from formationdensity logs using the equation: TOC = (154.497//rho/) -57.261, where TOC is organic-carbon content (wt. %) and /rho/ is formation density (g/cm/sup 3/). Test calculations comparing this equation to laboratory organic-carbon analyses from 39 wells in North Dakota show an average absolute difference of 1.1% in organic-carbon content. Organic-carbon content, calculated at 159 locations in North Dakota and 107 in Montana, averages 12.1% for the upper member of the Bakken Formation and 11.5% for the lower member. There is a regional depletion of organic carbon, paralleling present-day isotherms, that reflects the conversion of organic matter to oil and subsequent expulsion of the oil from the formation. The mass of organic carbon in the Bakken Formation is approximately evenly divided between the upper and lower members, and it totals about 126 X 10/sup 12/ kg in the study area, of which 102 X 10/sup 12/ kg are in the thermally mature region. The assumption that 167 mg HC/g TOC have migrated out of the mature Bakken shales leads to a tentative estimate that hydrocarbons equivalent to 132 billion bbl of 43/sup 0/ (API gravity) oil have been expelled from the United States portion of the upper and lower members of the Bakken Formation.

  12. Evaluation of injection well risk management potential in the Williston Basin

    SciTech Connect (OSTI)

    1989-09-01

    The UIC regulations promulgated by the EPA under the Safe Drinking Water Act (SDWA) provide the EPA, or an EPA approved state agency, with authority to regulate subsurface injection of fluids to protect USDWs. Oil and gas producing industry interests are concerned primarily with Class 2 wells whose uses as defined by UIC regulations are: disposal of fluids brought to the surface and liquids generated in connection with oil and gas production (SWD); injection of fluids for enhanced oil recovery (EOR); and storage of liquid hydrocarbons. The Williston Basin was chosen for the pilot study of the feasibility of using the risk approach in managing Class 2 injection operations for the following reasons: it is one of the nine geologic basins which was classified as having a significant potential for external casing corrosion, which permitted an evaluation of the effectiveness of the injection well corrosion control measures used by industry; there are 731 active, 22 shut in and 203 temporarily abandoned SWD and water injection wells in the basin; and the basin covers three states. The broad objective of the Williston Basin study is to define requirements and to investigate the feasibility of incorporating risk management into administration of the UIC program. The study does not address the reporting aspects of UIC regulatory and compliance activities but the data base does contain essentially all the information required to develop the reports needed to monitor those activities. 16 refs., 10 figs., 11 tabs.

  13. Conodonts of Bakken Formation (Devonian and Mississippian), Williston basin, North Dakota

    SciTech Connect (OSTI)

    Hayes, M.D.; Holland, F.D. Jr.

    1983-08-01

    The Bakken Formation is a thin (maximum 145 ft, 45 m), clastic unit in the subsurface of Williston basin in the United States and Canada. The Bakken is similar in lithologic character and stratigraphic position to other black shale units deposited on the North American craton during the Late Devonian and Early Mississippian. The Bakken was initially considered entirely Mississippian in age. Paleontologic study of regional physical equivalents and analysis of the macrofauna in Saskatchewan has suggested that the Bakken is actually both Devonian and Mississippian. Conodonts were obtained from cores of the Bakken in an effort to determine the age of the formation in North Dakota and to assess the oil generation potential. Nearly 700 conodonts have been recovered, but are unevenly distributed within the Bakken Formation. A majority was obtained from thin (approximately 0.5 cm), fossil-rich beds within the upper shale. Conodonts from the top of the upper shale reveal a Mississippian (Kinderhookian) age and are here assigned to the Lower Siphonodella crenulata Zone. Only rare, fragmentary conodonts have been found in the middle member. Conodont evidence from the middle of the lower shale suggests a late Devonian (Famennian) age (Upper Polygnathus styriacus Zone) for this member. Conodont color has been established as a geothermometer in carbonate rocks. Color alteration indices of conodonts from the Bakken range from 1.5 to approximately 2.5 and indicate a pattern of increasing temperature with depth. These results suggest possible hydrocarbon generation from shallower depths than has been reported previously for the Bakken. The lack of agreement in interpreted hydrocarbon generation depths may be due to, among other things, the clastic nature of the Bakken Formation.

  14. Developing an oil generation model for resource assessment of Bakken formation, Williston Basin

    SciTech Connect (OSTI)

    Charpentier, R.R.; Krystinik, K.B.

    1984-04-01

    A model was developed for oil generation in the Devonian and Mississippian Bakken Formation, which has been proposed as the main hydrocarbon source rock within the Williston basin. The data consisted of formation temperatures and of density, neutron-porosity, resistivity, and gamma-ray logs from more than 250 wells in North Dakota and Montana. The upper and the lower shale members of the Bakken Formation were studied. Regression analysis, analysis of residuals, and cluster, discriminant, and factor analyses were used in an attempt to separate depositional effects--especially variations in organic content-from maturity. Regression and analysis of residuals indicate differences both areally and between the upper and lower members. In the upper member, and less strongly in the lower member, the center of the basin differs from the basin margins in that it has extreme residuals--either high or low. Clustering and residual analyses show roughly the same areal patterns. Inverse relationships, similar to those suggested by other workers, were found between formation temperature and organic content and between density logs and organic content. Also found, though, was that the addition of other factors, such as neutron porosity, helps to indicate organic content. Preliminary results show that it may be possible to model oil generation by using statistical techniques on well-log data. In particular, the model has the potential to refine estimates of the amount of hydrocarbons generated by the Bakken Formation in the Williston basin.

  15. Coos Bay Field Gulf Coast Coal Region Williston Basin Illinois

    Gasoline and Diesel Fuel Update (EIA)

    C e n t r a l A p p a l a c h i a n B a s i n Michigan Basin Greater Green River Basin ... Coalbed Methane Fields, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  16. Fracture-enhanced porosity and permeability trends in Bakken Formation, Williston basin, western North Dakota

    SciTech Connect (OSTI)

    Freisatz, W.B.

    1988-07-01

    Fractures play a critical role in oil production from the Bakken Formation (Devonian and Mississippian) in the North Dakota portion of the Williston basin. The Bakken Formation in the study area is known for its low matrix porosity and permeability, high organic content, thermal maturity, and relative lateral homogeneity. Core analysis has shown the effective porosity and permeability development within the Bakken Formation to be related primarily to fracturing. In theory, lineaments mapped on the surface reflect the geometry of basement blocks and the zones of fracturing propagated upward from them. Fracturing in the Williston basin is thought to have occurred along reactivated basement-block boundaries in response to varying tectonic stresses and crustal flexure throughout the Phanerozoic. Landsat-derived lineament maps were examined for the area between 47/degrees/ and 48/degrees/ north lat. and 103/degrees/ and 104/degrees/ west long. (northern Billings and Golden Valley Counties, and western McKenzie County, North Dakota) in an attempt to identify large-scale fracture trends. In the absence of major tectonic deformation in the craton, a subtle pattern of fracturing has propagated upward through the sedimentary cover and emerged as linear topographic features visible on these large-scale, remote-sensed images.

  17. Stratigraphy and diagenesis of the Mississippian Lodgepole Limestone, Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Grover, P.W. )

    1996-01-01

    Stratigraphic correlation of the Lodgepole Limestone (Bottineau Interval) indicates a sequence of three clinoform-shaped wedges that filled in the early Williston Basin. To date four productive 100m thick mounds have been discovered in the Lodgepole Limestone at Dickinson Field. The mounds seem to have nucleated at the toe of slope of the first highstand system tract and were subsequently buried by the second highstand systems tract. By isopaching each of the systems tracts one can predict were other mounds might have nucleated. Burial depth of the Bakken Shale-Lodgepole Limestone contact grade from 0.6 km at the edge of the Williston Basin to 3.4 km in the center. With increased depth the basal Lodgepole Limestone shows three phases of dolomitization, which are: small clear early dolomite; later iron rich fracture filling saddle dolomite and a later iron rich dolomite that seems to follow stylolites. Pre-oil migration mineralization of the overlying limestone include minor amounts of: anhydrite, pyrite, iron poor sphalerite, late iron rich sphalerite, chalcopyrite and celestite.

  18. Stratigraphy and diagenesis of the Mississippian Lodgepole Limestone, Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Grover, P.W.

    1996-12-31

    Stratigraphic correlation of the Lodgepole Limestone (Bottineau Interval) indicates a sequence of three clinoform-shaped wedges that filled in the early Williston Basin. To date four productive 100m thick mounds have been discovered in the Lodgepole Limestone at Dickinson Field. The mounds seem to have nucleated at the toe of slope of the first highstand system tract and were subsequently buried by the second highstand systems tract. By isopaching each of the systems tracts one can predict were other mounds might have nucleated. Burial depth of the Bakken Shale-Lodgepole Limestone contact grade from 0.6 km at the edge of the Williston Basin to 3.4 km in the center. With increased depth the basal Lodgepole Limestone shows three phases of dolomitization, which are: small clear early dolomite; later iron rich fracture filling saddle dolomite and a later iron rich dolomite that seems to follow stylolites. Pre-oil migration mineralization of the overlying limestone include minor amounts of: anhydrite, pyrite, iron poor sphalerite, late iron rich sphalerite, chalcopyrite and celestite.

  19. Improved recovery demonstration for Williston basin carbonates. Annual report, June 10, 1994--June 9, 1995

    SciTech Connect (OSTI)

    Sippel, M.; Zinke, S.; Magruder, G.; Eby, D.

    1995-09-01

    The purpose of this project is to demonstrate targeted infill and extension drilling opportunities, better determinations of oil-in-place, methods for improved completion efficiency and the suitability of waterflooding in Red River and Ratcliffe shallow-shelf carbonate reservoirs in the Williston Basin, Montana, North Dakota and South Dakota. Improved reservoir characterization utilizing three-dimensional and multi-component seismic are being investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Improved completion efficiency is being tested with extended-reach jetting lance and other ultra-short-radius lateral technologies. Improved completion efficiency, additional wells at closer spacing and better estimates of oil in place will result in additional oil recovery by primary and enhanced recovery processes.

  20. Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD

    U.S. Energy Information Administration (EIA) Indexed Site

    tight oil plays: production and proved reserves, 2013-14 million barrels 2013 2013 Basin Play State(s) Production Reserves Williston Bakken ND, MT, SD 270 4,844 387 5,972 1,128 Western Gulf Eagle Ford TX 351 4,177 497 5,172 995 Permian Bone Spring, Wolfcamp NM, TX 21 335 53 722 387 Denver-Julesberg Niobrara CO, KS, NE, WY 2 17 42 512 495 Appalachian Marcellus* PA, WV 7 89 13 232 143 Fort Worth Barnett TX 9 58 9 47 -11 Sub-total 660 9,520 1,001 12,657 3,137 Other tight oil 41 523 56 708 185 U.S.

  1. Recognition of hydrocarbon expulsion using well logs: Bakken Formation, Williston Basin

    SciTech Connect (OSTI)

    Cunningham, R.; Zelt, F.B.; Morgan, S.R.; Passey, Q.R. ); Snavely, P.D. III; Webster, R.L. )

    1990-05-01

    The Upper Mississippian-Lower Devonian Bakken Formation forms a source/carrier/reservoir system in the Williston basin. Hydrocarbon expulsion within the Bakken has been identified by overlaying sonic and resistivity logs. Typically, these curves track in organically lean, water-saturated mudrocks because both respond mainly to porosity; however, in thermally mature organic-rich rocks and hydrocarbon reservoirs or carrier beds, the curves separate due to the anomalously high resistivity associated with replacement of pore water by hydrocarbons. Sonic/resistivity-log overlays for wells throughout the Montana and North Dakota parts of the Williston basin reveal significant increases and maximum in-curve separation within the middle siltstone member of the Bakken at subsurface temperatures of about 170 and 200{degree}F, respectively. Sequence-stratigraphic characteristics of the Bakken define the framework within which the expulsion process operates. The organic-rich upper and lower shale members represent the transgressive and early highstand systems tracts of two adjacent depositional sequences. A sequence boundary within the intervening middle siltstone member separates nearshore siltstone and sandstone of the late highstand systems tract in the lower sequence from cross-bedded subtidal to intertidal sandstones of the lowstand systems tract in the upper sequence. Reservoir properties vary across this sequence boundary. The authors attribute the log separation in the siltstone member to hydrocarbons expelled from the adjacent shales. Abrupt shifts in several geochemical properties of the shale members, indicative of hydrocarbon generation occur over the same subsurface temperature range as the rapid increase in log separation in the middle siltstone, thus indicating the contemporaneity of generation and expulsion.

  2. A chemical kinetic model of hydrocarbon generation from the Bakken Formation, Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Sweeney, J.J.; Braun, R.L.; Burnham, A.K. ); Gosnold, W.D. )

    1992-10-01

    This report describes a model of hydrocarbon generation and expulsion in the North Dakota portion of the Williston Basin. The modeling incorporates kinetic methods to simulate chemical reactions and 1-dimensional conductive heat flow models to simulate thermal histories of the Mississippian-Devonian Bakken Formation source rock. We developed thermal histories of the source rock for 53 wells in the basin using stratigraphic and heat flow data obtained by the University of North Dakota. Chemical kinetics for hydrocarbon generation, determined from Pyromat pyrolysis, were, then used with the diennal histories to calculate the present day value of the Rock-Eval T[sub max] for each well. The calculated Rock-Eval T[sub max] values agreed with measured values within amounts attributable to uncertainties in the chemical kinetics and the heat flow. These optimized thermal histories were then used with a more detailed chemical kinetic model of hydrocarbon generation and expulsion, modified from a model developed for the Cretaceous La Luna shale, to simulate pore pressure development and detailed aspects of the hydrocarbon chemistry. When compared to values estimated from sonic logs, the pore pressure calculation underestimates the role of hydrocarbon generation and overestimates the role of compaction disequilibrium, but it matches well the general areal extent of pore pressures of 0.7 times lithostatic and higher. The simulated chemistry agrees very well with measured values of HI, PI, H/C atomic ratio of the kerogen, and Rock-Eval S1. The model is not as successful in simulating the amount of extracted bitumen and its saturate content, suggesting that detailed hydrous pyrolysis experiments will probably be needed to further refine the chemical model.

  3. A chemical kinetic model of hydrocarbon generation from the Bakken Formation, Williston Basin, North Dakota

    SciTech Connect (OSTI)

    Sweeney, J.J.; Braun, R.L.; Burnham, A.K.; Gosnold, W.D.

    1992-10-01

    This report describes a model of hydrocarbon generation and expulsion in the North Dakota portion of the Williston Basin. The modeling incorporates kinetic methods to simulate chemical reactions and 1-dimensional conductive heat flow models to simulate thermal histories of the Mississippian-Devonian Bakken Formation source rock. We developed thermal histories of the source rock for 53 wells in the basin using stratigraphic and heat flow data obtained by the University of North Dakota. Chemical kinetics for hydrocarbon generation, determined from Pyromat pyrolysis, were, then used with the diennal histories to calculate the present day value of the Rock-Eval T{sub max} for each well. The calculated Rock-Eval T{sub max} values agreed with measured values within amounts attributable to uncertainties in the chemical kinetics and the heat flow. These optimized thermal histories were then used with a more detailed chemical kinetic model of hydrocarbon generation and expulsion, modified from a model developed for the Cretaceous La Luna shale, to simulate pore pressure development and detailed aspects of the hydrocarbon chemistry. When compared to values estimated from sonic logs, the pore pressure calculation underestimates the role of hydrocarbon generation and overestimates the role of compaction disequilibrium, but it matches well the general areal extent of pore pressures of 0.7 times lithostatic and higher. The simulated chemistry agrees very well with measured values of HI, PI, H/C atomic ratio of the kerogen, and Rock-Eval S1. The model is not as successful in simulating the amount of extracted bitumen and its saturate content, suggesting that detailed hydrous pyrolysis experiments will probably be needed to further refine the chemical model.

  4. Comparison of explosive and vibroseis source energy penetration during COCORP deep seismic reflection profiling in the Williston basin

    SciTech Connect (OSTI)

    Steer, D.N.; Brown, L.D.; Knapp, J.H.; Baird, D.J. [Cornell Univ., Ithaca, NY (United States)] [Cornell Univ., Ithaca, NY (United States)

    1996-01-01

    Comparison of high-fold (50) vibroseis recordings with coincident low-fold (6) explosive source data from deep reflection surveys in the Williston Basin indicates that while vibroseis generated energy decays to ambient noise levels at 7--9 s two-way traveltime (twtt) (20--30 km depth), energy from explosive sources remains above ambient levels to 35--60 s twtt (105--180 km depth). Moreover, single, moderately sized (30 kg) and well-placed charges proved to be as effective as larger (90 kg) sources at penetrating to mantle traveltimes in this area. However, the explosive source energy proved highly variable, with source-to-ground coupling being a major limiting factor in shot efficacy. Stacked results from the vibroseis sources provide superior imagery of shallow and moderate crustal levels by virtue of greater redundancy and shot-to-shot uniformity; shot statics, low fold, and ray-path distortion across the relatively large (24--30 km aperture) spreads used during the explosive recording have proven to be especially problematic in producing conventional seismic sections. In spite of these complications, the explosive source recording served its primary purpose in confirming Moho truncation and the presence of a dipping reflection fabric in the upper mantle along the western flank of the Trans-Hudson orogen buried beneath the Williston Basin.

  5. A comparison of the rates of hydrocarbon generation from Lodgepole, False Bakken, and Bakken formation petroleum source rocks, Williston Basin, USA

    SciTech Connect (OSTI)

    Jarvie, D.M.; Elsinger, R.J.; Inden, R.F.; Palacas, J.G.

    1996-06-01

    Recent successes in the Lodgepole Waulsortian Mound play have resulted in the reevaluation of the Williston Basin petroleum systems. It has been postulated that hydrocarbons were generated from organic-rich Bakken Formation source rocks in the Williston Basin. However, Canadian geoscientists have indicated that the Lodgepole Formation is responsible for oil entrapped in Lodgepole Formation and other Madison traps in portions of the Canadian Williston Basin. Furthermore, geoscientists in the U.S. have recently shown oils from mid-Madison conventional reservoirs in the U.S. Williston Basin were not derived from Bakken Formation source rocks. Kinetic data showing the rate of hydrocarbon formation from petroleum source rocks were measured on source rocks from the Lodgepole, False Bakken, and Bakken Formations. These results show a wide range of values in the rate of hydrocarbon generation. Oil prone facies within the Lodgepole Formation tend to generate hydrocarbons earlier than the oil prone facies in the Bakken Formation and mixed oil/gas prone and gas prone facies in the Lodgepole Formation. A comparison of these source rocks using a geological model of hydrocarbon generation reveals differences in the timing of generation and the required level of maturity to generate significant amounts of hydrocarbons.

  6. Developing an oil generation model for resource assessment of the Bakken Formation, US portion of the Williston Basin

    SciTech Connect (OSTI)

    Krystinik, K.B.; Charpentier, R.R.

    1984-01-01

    A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using well-log data. Principal components analysis, cluster analysis, and discriminant analysis were used on bulk density, neutron porosity, and resistivity logs, and formation temperatures. These analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. The pattern of present-day total organic carbon (TOC) is high in the central part of the basin near northeastern Montana and along the east edge of the basin. Low values of TOC occur in the area of the Nesson anticline and along the southwest edge of the basin. Using the regression of density on temperature and the analysis of residuals from this regression, it is possible to separate maturity effects from those of original deposition. These analyses reveal that original concentrations of organic matter were low near the shoreline and increased offshore to a high in northeast Montana. The pre-maturation and present-day TOC distributions derived using statistical analyses and well-log data can easily be explained by the depositional pattern and thermal history that would be expected in this basin, and by geochemical analyses. 9 refs., 13 figs., 3 tabs.

  7. Statistical model for source rock maturity and organic richness using well-log data, Bakken Formation, Williston basin, United States

    SciTech Connect (OSTI)

    Krystinik, K.B.; Charpentier, R.R.

    1987-01-01

    A study of the Bakken Formation, the proposed source rock for much of the hydrocarbons generated in the Williston basin, was done using bulk density, neutron porosity, and resistivity logs, and formation temperatures. Principal components, cluster, and discriminant analyses indicate that the present-day distribution of organic matter controls much of the variability in the log values. Present-day total organic carbon values are high in the central part of the basin near northeastern Montana and along the east edge of the basin, and low in the area of the Nesson anticline and along the southwest edge of the basin. Using a regression of density on temperature and the analysis of residuals from this regression, hydrocarbon maturity effects were partially separated from depositional effects. These analyses suggest that original concentrations of organic matter were low near the limits of the Bakken and increased to a high in northeastern Montana. The pre-maturation distribution of total organic carbon and the present-day total organic carbon distribution, as determined by statistical analyses of well-log data, agree with the results of geochemical analyses. The distributions can be explained by a relatively simple depositional pattern and thermal history for the Bakken. 6 figures, 3 tables.

  8. File:EIA-Williston-NE-Gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    pdf) Description Williston Basin, Northeast Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  9. File:EIA-Williston-S-Gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    pdf) Description Williston Basin, South Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  10. File:EIA-Williston-NW-Gas.pdf | Open Energy Information

    Open Energy Info (EERE)

    pdf) Description Williston Basin, Northwest Part By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  11. San Juan Montana Thrust Belt WY Thrust Belt Black Warrior

    U.S. Energy Information Administration (EIA) Indexed Site

    San Juan Montana Thrust Belt WY Thrust Belt Black Warrior Paradox - San Juan NW (2) Uinta- Piceance Paradox - San Juan SE (2) Florida Peninsula Appalachian- NY (1) Appalachian OH-PA (2) Appalachian Eastern PA (3) Appalachian Southern OH (4) Appalachian Eastern WV (5) Appalachian WV-VA (6) Appalachian TN-KY (7) Piceance Greater Green River Eastern OR-WA Ventura Williston Williston NE (2) Williston NW (1) Williston South (3) Eastern Great Basin Ventura West, Central, East Eastern OR-WA Eastern

  12. Reservoir characterization of the Ordovician Red River Formation in southwest Williston Basin Bowman County, ND and Harding County, SD

    SciTech Connect (OSTI)

    Sippel, M.A.; Luff, K.D.; Hendricks, M.L.; Eby, D.E.

    1998-07-01

    This topical report is a compilation of characterizations by different disciplines of the Red River Formation in the southwest portion of the Williston Basin and the oil reservoirs which it contains in an area which straddles the state line between North Dakota and South Dakota. Goals of the report are to increase understanding of the reservoir rocks, oil-in-place, heterogeneity, and methods for improved recovery. The report is divided by discipline into five major sections: (1) geology, (2) petrography-petrophysical, (3) engineering, (4) case studies and (5) geophysical. Interwoven in these sections are results from demonstration wells which were drilled or selected for special testing to evaluate important concepts for field development and enhanced recovery. The Red River study area has been successfully explored with two-dimensional (2D) seismic. Improved reservoir characterization utilizing 3-dimensional (3D) and has been investigated for identification of structural and stratigraphic reservoir compartments. These seismic characterization tools are integrated with geological and engineering studies. Targeted drilling from predictions using 3D seismic for porosity development were successful in developing significant reserves at close distances to old wells. Short-lateral and horizontal drilling technologies were tested for improved completion efficiency. Lateral completions should improve economics for both primary and secondary recovery where low permeability is a problem and higher density drilling is limited by drilling cost. Low water injectivity and widely spaced wells have restricted the application of waterflooding in the past. Water injection tests were performed in both a vertical and a horizontal well. Data from these tests were used to predict long-term injection and oil recovery.

  13. Natural CO2 accumulations in the western Williston Basin: A mineralogical analog for CO2 injection at the Weyburn site

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Ryerson, F. J.; Lake, John; Whittaker, Steven; Johnson, James W.

    2013-01-17

    The Devonian carbonates of the Duperow Formation on the western flank of the Williston Basin in southwest Saskatchewan contain natural accumulations of CO2, and may have done so for as long as 50 million years. These carbonate sediments are characterized by a succession of carbonate cycles capped by anhydrite-rich evaporites that are thought to act as seals to fluid migration. The Weyburn CO2 injection site lies 400 km to the east in a series of Mississippian carbonates that were deposited in a similar depositional environment. That long-term isolation of natural CO2 can be accomplished within carbonate strata has motivated themore » investigation of the Duperow rocks as a potential natural analog for storage of anthropogenic CO2 in carbonate lithologies. For the Duperow strata to represent a legitimate analog for Midale injection and storage, the similarity in lithofacies, whole rock compositions, mineral compositions and porosity with the Midale Beds must be established. Here we compare lithofacies, whole rock compositions, mineralogy and mineral compositions from both locales. The major mineral phases at both locales are calcite, dolomite and anhydrite. In addition, accessory pyrite, fluorite, quartz and celestine (strontium sulfate) are also observed. Dawsonite, a potential CO2-trapping mineral, is not observed within the CO2-bearing horizons of the Duperow Formation, however. The distribution of porosity in the Midale Vuggy units is similar to that of the Duperow Formation, but the Marly units of the Midale have significantly higher porosity. The Duperow Formation is topped by the Dinesmore evaporite that is rich in anhydrite, and often contains authigenic K-feldspar. The chemistry of dolomite and calcite from the two localities also overlaps. Silicate minerals are in low abundance (<3%) within the analyzed Duperow samples, with quartz and K-feldspar the only silicates observed petrographically or in X-ray diffraction patterns. The Midale Beds contain

  14. A resource evaluation of the Bakken Formation (Upper Devonian and Lower Mississippian) continuous oil accumulation, Williston Basin, North Dakota and Montana

    SciTech Connect (OSTI)

    Schmoker, J.W.

    1996-01-01

    The Upper Devonian and Lower Mississippian Bakken Formation in the United States portion of the Williston Basin is both the source and the reservoir for a continuous oil accumulation -- in effect a single very large field -- underlying approximately 17,800 mi{sup 2} (46,100 km{sup 2}) of North Dakota and Montana. Within this area, the Bakken Formation continuous oil accumulation is not significantly influenced by the water column and cannot be analyzed in terms of conventional, discrete fields. Rather, the continuous accumulation can be envisioned as a collection of oil-charged cells, virtually all of which are capable of producing some oil, but which vary significantly in their production characteristics. Better well-performance statistics are linked regionally to higher levels of thermal maturity and to lower levels of reservoir heterogeneity. Although portions of the Bakken Formation continuous oil accumulation have reached a mature stage of development, the accumulation as a whole is far from depleted.

  15. Bakken and other Devonian-Mississippian petroleum source rocks, northern Rocky Mtns.-Williston basin: Depositional and burial history and maturity estimations

    SciTech Connect (OSTI)

    Peterson, J.A.

    1996-06-01

    The three-member Devonian-Mississippian Bakken-Exshaw organic-rich shaly facies is widely distributed in the northern U.S. and southern Canadian Cordillera. Equivalent facies are also present as far south as Utah and Nevada. Paleogeographically, these rocks thin markedly or pinchout to the west approximately along the Devonian-Mississippian carbonate reef-mound belt of the Cordilleran shelf margin. Although these rocks reach maximum organic richness approximately at the Devonian-Carboniferous transition, similar but somewhat less organic-rich Bakken-like beds are also present in underlying Upper Devonian and overlying Lower Carboniferous carbonate depositional cycles. At least ten cycles are identified in the underlying Duperow and Jefferson Formations, characterized by basal organic-rich Bakken-like shale or shaly carbonate that grades upward into carbonate mound or reefal beds, overlain by evaporite or solution breccia. Cycles in the overlying Lodgepole and Mission Canyon Formations, as many as 10-12 in number, are similar except that the carbonates are composed of algal-oolith, crinoid, or mixed skeletal beds, and end-cycle evaporitic units are less prevalent in the lower cycles. These dark shaly beds are the most important source of hydrocarbon reserves in Montana and the Williston basin. Maximum net thickness of the Devonian-Mississippian organic-rich facies is in the Williston basin. However, variable thicknesses of these potential source rocks is present in parts of Montana as far west as the thrust belt. Burial history studies suggest that in some areas these rocks are probably thermally immature. However, in much of the area original burial depths are sufficient for them to reach the thermally mature stage, and therefore are of importance to further exploration efforts in the Devonian-Mississippian Madison-Duperow-Jefferson Formations.

  16. Williston, Vermont: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    congressional district. 1 2 Registered Energy Companies in Williston, Vermont Phillips BioFuel Supply Co References US Census Bureau Incorporated place and minor civil...

  17. EA-1896: Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, North Dakota

    Broader source: Energy.gov [DOE]

    DOE’s Western Area Power Administration is preparing this EA to evaluate the environmental impacts of interconnecting the proposed Stateline I transmission line, in Williston, North Dakota, to Western’s transmission system.

  18. File:Black.Warrior.Basin usgs.map.pdf | Open Energy Information

    Open Energy Info (EERE)

    usgs.map.pdf Jump to: navigation, search File File history File usage Undiscovered Oil and Gas Resources of the Black Warrior Basin Province of Alabama and Mississippi Size...

  19. Reservoir heterogeneity in Carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-04-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  20. Reservoir heterogeneity in carboniferous sandstone of the Black Warrior basin. Final report

    SciTech Connect (OSTI)

    Kugler, R.L.; Pashin, J.C.; Carroll, R.E.; Irvin, G.D.; Moore, H.E.

    1994-06-01

    Although oil production in the Black Warrior basin of Alabama is declining, additional oil may be produced through improved recovery strategies, such as waterflooding, chemical injection, strategic well placement, and infill drilling. High-quality characterization of reservoirs in the Black Warrior basin is necessary to utilize advanced technology to recover additional oil and to avoid premature abandonment of fields. This report documents controls on the distribution and producibility of oil from heterogeneous Carboniferous reservoirs in the Black Warrior basin of Alabama. The first part of the report summarizes the structural and depositional evolution of the Black Warrior basin and establishes the geochemical characteristics of hydrocarbon source rocks and oil in the basin. This second part characterizes facies heterogeneity and petrologic and petrophysical properties of Carter and Millerella sandstone reservoirs. This is followed by a summary of oil production in the Black Warrior basin and an evaluation of seven improved-recovery projects in Alabama. In the final part, controls on the producibility of oil from sandstone reservoirs are discussed in terms of a scale-dependent heterogeneity classification.

  1. Coal stratigraphy of deeper part of Black Warrior basin in Alabama

    SciTech Connect (OSTI)

    Thomas, W.A.; Womack, S.H.

    1983-09-01

    The Warrior coal field of Alabama is stratigraphically in the upper part of the Lower Pennsylvanian Pottsville Formation and structurally in the eastern part of the Black Warrior foreland basin. The productive coal beds extend southwestward from the mining area downdip into the deeper part of the Black Warrior structural basin. Because the deep part of the basin is beyond the limits of conventional coal exploration, study of the stratigraphy of coal beds must rely on data from petroleum wells. Relative abundance of coal can be stated in terms of numbers of beds, but because of the limitations of the available data, thicknesses of coals presently are not accurately determined. The lower sandstone-rich coal-poor part of the Pottsville has been interpreted as barrier sediments in the mining area. To the southwest in the deeper Black Warrior basin, coal beds are more numerous within the sandstone-dominated sequence. The coal-productive upper Pottsville is informally divided into coal groups each of which includes several coal beds. The Black Creek, Mary Lee, and Utley coal groups are associated with northeast-trending delta-distributary sandstones. The areas of most numerous coals also trend northeastward and are laterally adjacent to relatively thick distributary sandstones, suggesting coal accumulation in backswamp environments. The most numerous coals in the Pratt coal group are in an area that trends northwestward parallel with and southwest of a northwest-trending linear sandstone, suggesting coal accumulation in a back-barrier environment. Equivalents of the Cobb, Gwin, and Brookwood coal groups contain little coal in the deep part of the Black Warrior basin.

  2. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins` heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas` liquid fuels needs.

  3. Feasibility study of heavy oil recovery in the Appalachian, Black Warrior, Illinois, and Michigan basins

    SciTech Connect (OSTI)

    Olsen, D.K.; Rawn-Schatzinger, V.; Ramzel, E.B.

    1992-07-01

    This report is one of a series of publications assessing the feasibility of increasing domestic heavy oil production. Each report covers select areas of the United States. The Appalachian, Black Warrior, Illinois, and Michigan basins cover most of the depositional basins in the Midwest and Eastern United States. These basins produce sweet, paraffinic light oil and are considered minor heavy oil (10{degrees} to 20{degrees} API gravity or 100 to 100,000 cP viscosity) producers. Heavy oil occurs in both carbonate and sandstone reservoirs of Paleozoic Age along the perimeters of the basins in the same sediments where light oil occurs. The oil is heavy because escape of light ends, water washing of the oil, and biodegradation of the oil have occurred over million of years. The Appalachian, Black Warrior, Illinois, and Michigan basins' heavy oil fields have produced some 450,000 bbl of heavy oil of an estimated 14,000,000 bbl originally in place. The basins have been long-term, major light-oil-producing areas and are served by an extensive pipeline network connected to refineries designed to process light sweet and with few exceptions limited volumes of sour or heavy crude oils. Since the light oil is principally paraffinic, it commands a higher price than the asphaltic heavy crude oils of California. The heavy oil that is refined in the Midwest and Eastern US is imported and refined at select refineries. Imports of crude of all grades accounts for 37 to >95% of the oil refined in these areas. Because of the nature of the resource, the Appalachian, Black Warrior, Illinois and Michigan basins are not expected to become major heavy oil producing areas. The crude oil collection system will continue to degrade as light oil production declines. The demand for crude oil will increase pipeline and tanker transport of imported crude to select large refineries to meet the areas' liquid fuels needs.

  4. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Katharine Lee Avary; John M. Bocan; Michael Hohn; John B. Hickman; Paul D. Lake; James A. Drahovzal; Christopher D. Laughrey; Jaime Kostelnik; Taury Smith; Ron Riley; Mark Baranoski

    2005-04-01

    The Trenton-Black River Appalachian Basin Research Consortium has made significant progress toward their goal of producing a geologic play book for the Trenton-Black River gas play. The final product will include a resource assessment model of Trenton-Black River reservoirs; possible fairways within which to concentrate further studies and seismic programs; and a model for the origin of Trenton-Black River hydrothermal dolomite reservoirs. All seismic data available to the consortium have been examined. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 15 stratigraphic units determined from well logs to seismic profiles in New York, Pennsylvania, Ohio, West Virginia and Kentucky. In addition, three surfaces for the area have been depth converted, gridded and mapped. A 16-layer velocity model has been developed to help constrain time-to-depth conversions. Considerable progress was made in fault trend delineation and seismic-stratigraphic correlation within the project area. Isopach maps and a network of gamma-ray cross sections supplemented with core descriptions allowed researchers to more clearly define the architecture of the basin during Middle and Late Ordovician time, the control of basin architecture on carbonate and shale deposition and eventually, the location of reservoirs in Trenton Limestone and Black River Group carbonates. The basin architecture itself may be structurally controlled, and this fault-related structural control along platform margins influenced the formation of hydrothermal dolomite reservoirs in original limestone facies deposited in high energy environments. This resulted in productive trends along the northwest margin of the Trenton platform in Ohio. The continuation of this platform margin into New York should provide further areas with good exploration potential. The focus of the petrographic study shifted from cataloging a broad spectrum of carbonate rocks that occur in the

  5. Applications of Geophysical and Geological Techniques to Identify Areas for Detailed Exploration in Black Mesa Basin, Arizona

    SciTech Connect (OSTI)

    George, S.; Reeves, T.K.; Sharma, Bijon; Szpakiewicz, M.

    1999-04-29

    A recent report submitted to the U.S. Department of Energy (DOE) (NIPER/BDM-0226) discussed in considerable detail, the geology, structure, tectonics, and history of oil production activities in the Black Mesa basin in Arizona. As part of the final phase of wrapping up research in the Black Mesa basin, the results of a few additional geophysical studies conducted on structure, stratigraphy, petrophysical analysis, and oil and gas occurrences in the basin are presented here. A second objective of this study is to determine the effectiveness of relatively inexpensive, noninvasive techniques like gravity or magnetic in obtaining information on structure and tectonics in sufficient detail for hydrocarbon exploration, particularly by using the higher resolution satellite data now becoming available to the industry.

  6. Water Management Strategies for Improved Coalbed Methane Production in the Black Warrior Basin

    SciTech Connect (OSTI)

    Pashin, Jack; McIntyre-Redden, Marcella; Mann, Steven; Merkel, David

    2013-10-31

    The modern coalbed methane industry was born in the Black Warrior Basin of Alabama and has to date produced more than 2.6 trillion cubic feet of gas and 1.6 billion barrels of water. The coalbed gas industry in this area is dependent on instream disposal of co-produced water, which ranges from nearly potable sodium-bicarbonate water to hypersaline sodium-chloride water. This study employed diverse analytical methods to characterize water chemistry in light of the regional geologic framework and to evaluate the full range of water management options for the Black Warrior coalbed methane industry. Results reveal strong interrelationships among regional geology, water chemistry, and gas chemistry. Coalbed methane is produced from multiple coal seams in Pennsylvanian-age strata of the Pottsville Coal Interval, in which water chemistry is influenced by a structurally controlled meteoric recharge area along the southeastern margin of the basin. The most important constituents of concern in the produced water include chlorides, ammonia compounds, and organic substances. Regional mapping and statistical analysis indicate that the concentrations of most ionic compounds, metallic substances, and nonmetallic substances correlate with total dissolved solids and chlorides. Gas is effectively produced at pipeline quality, and the only significant impurity is N{sub 2}. Geochemical analysis indicates that the gas is of mixed thermogenic-biogenic origin. Stable isotopic analysis of produced gas and calcite vein fills indicates that widespread late-stage microbial methanogenesis occurred primarily along a CO{sub 2} reduction metabolic pathway. Organic compounds in the produced water appear to have helped sustain microbial communities. Ammonia and ammonium levels increase with total dissolved solids content and appear to have played a role in late-stage microbial methanogenesis and the generation of N{sub 2}. Gas production tends to decline exponentially, whereas water production

  7. CREATING A GEOLOGIC PLAY BOOK FOR TRENTON-BLACK RIVER APPALACHIAN BASIN EXPLORATION

    SciTech Connect (OSTI)

    Douglas G. Patchen; Chris Laughrey; Jaime Kostelnik; James Drahovzal; John B. Hickman; Paul D. Lake; John Bocan; Larry Wickstrom; Taury Smith; Katharine Lee Avary

    2004-10-01

    The ''Trenton-Black River Appalachian Basin Exploration Consortium'' has reached the mid-point in a two-year research effort to produce a play book for Trenton-Black River exploration. The final membership of the Consortium includes 17 exploration and production companies and 6 research team members, including four state geological surveys, the New York State Museum Institute and West Virginia University. Seven integrated research tasks and one administrative and technology transfer task are being conducted basin-wide by research teams organized from this large pool of experienced professionals. All seismic data available to the consortium have been examined at least once. Synthetic seismograms constructed for specific wells have enabled researchers to correlate the tops of 10 stratigraphic units determined from well logs to seismic profiles in New York and Pennsylvania. In addition, three surfaces in that area have been depth converted, gridded and mapped. In the Kentucky-Ohio-West Virginia portion of the study area, a velocity model has been developed to help constrain time-to-depth conversions. Fifteen formation tops have been identified on seismic in that area. Preliminary conclusions based on the available seismic data do not support the extension of the Rome Trough into New York state. Members of the stratigraphy task team measured, described and photographed numerous cores from throughout the basin, and tied these data back to their network of geophysical log cross sections. Geophysical logs were scanned in raster files for use in detailed well examination and construction of cross sections. Logs on these cross sections that are only in raster format are being converted to vector format for final cross section displays. The petrology team measured and sampled one classic outcrop in Pennsylvania and ten cores in four states. More than 600 thin sections were prepared from samples in those four states. A seven-step procedure is being used to analyze all thin

  8. Geohydrological feasibility study of the Black Warrior Basin for the potential applicability of Jack W. McIntyre`s patented process

    SciTech Connect (OSTI)

    Reed, P.D.

    1994-03-01

    Geraghty & Miller, Inc. of Midland, Texas conducted geological and hydrological feasibility studies of the potential applicability of Jack W. Mclntyre`s patented process for the recovery of natural gas from coalbed/sand formations in the Black Warrior Basin of Mississippi and Alabama through literature surveys. Methane gas from coalbeds in the Black Warrior Basin is confined to the coal fields of northern Alabama. Produced water from degasification of coalbeds is currently disposed by surface discharge. Treatment prior to discharge consists of short-term storage and in-stream dilution. Mr. Mclntyre`s process appears to be applicable to the Black Warrior Basin and could provide an environmentally sound alternative for produced water production.

  9. Secondary oil recovery from selected Carter sandstone oilfields, Black Warrior basin, Alabama. [Annual] yearly report, December 1, 1992--November 30, 1993

    SciTech Connect (OSTI)

    Anderson, J.C.

    1994-03-01

    In this Class I PON, Anderman/Smith Operating Company is targeting three Carter sandstone oilfields (Black Warrior basin) for secondary recovery. Waterfloods are underway in two of the areas -- Central Bluff and North Fairview units. For the third area, South Bluff, negotiations are underway to unitize the field. Once South Bluff is unitized, waterflooding will commence.

  10. Formation resistivity as an indicator of oil generation in black shales

    SciTech Connect (OSTI)

    Hester, T.C.; Schmoker, J.W.

    1987-08-01

    Black, organic-rich shales of Late Devonian-Early Mississippi age are present in many basins of the North American craton and, where mature, have significant economic importance as hydrocarbon source rocks. Examples drawn from the upper and lower shale members of the Bakken Formation, Williston basin, North Dakota, and the Woodford Shale, Anadarko basin, Oklahoma, demonstrate the utility of formation resistivity as a direct in-situ indicator of oil generation in black shales. With the onset of oil generation, nonconductive hydrocarbons begin to replace conductive pore water, and the resistivity of a given black-shale interval increases from low levels associated with thermal immaturity to values approaching infinity. Crossplots of a thermal-maturity index (R/sub 0/ or TTI) versus formation resistivity define two populations representing immature shales and shales that have generated oil. A resistivity of 35 ohm-m marks the boundary between immature and mature source rocks for each of the three shales studied. Thermal maturity-resistivity crossplots make possible a straightforward determination of thermal maturity at the onset of oil generation, and are sufficiently precise to detect subtle differences in source-rock properties. For example, the threshold of oil generation in the upper Bakken shale occurs at R/sub 0/ = 0.43-0.45% (TTI = 10-12). The threshold increases to R/sub 0/ = 0.48-0.51% (TTI = 20-26) in the lower Bakken shale, and to R/sub 0/ = 0.56-0.57% (TTI = 33-48) in the most resistive Woodford interval.

  11. Investigations on the Structure Tectonics, Geophysics, Geochemistry, and Hydrocarbon Potential of the Black Mesa Basin, Northeastern Arizona

    SciTech Connect (OSTI)

    Barker, Colin; Carroll, Herbert; Erickson, Richard; George, Steve; Guo, Genliang; Reeves,T.K.; Sharma, Bijon; Szpakiewicz, Michael; Volk, Len

    1999-04-27

    The U.S. Department of Energy (DOE) has instituted a basin-analysis study program to encourage drilling in underexplored and unexplored areas and increase discovery rates for hydrocarbons by independent oil companies within the continental United States. The work is being performed at the DOE's National Institute for Petroleum and Energy Research (NIPER) in Bartlesville, Oklahoma, by the Exploration and Drilling Group within BDM-Oklahoma (BDM), the manager of the facility for DOE. Several low-activity areas in the Mid-Continent, west, and southwest were considered for the initial study area (Reeves and Carroll 1994a). The Black Mesa region in northwestern Arizona is shown on the U.S. Geological Survey 1995 oil and gas map of the United States as an undrilled area, adapted from Takahashi and Gautier 1995. This basin was selected by DOE s the site for the initial NIPER-BDM survey to develop prospects within the Lower-48 states (Reeves and Carroll 1994b).

  12. Regional geologic characteristics relevant to horizontal drilling, Woodford Shale, Anadarko basin, Oklahoma

    SciTech Connect (OSTI)

    Hester, T.C.; Schmoker, J.W. )

    1991-06-01

    Horizontal drilling in the Late Devonian-Early Mississippian Bakken Formation of the Williston basin has spurred new interest in other black shales as primary hydrocarbon reservoirs. The Late Devonian-Early Mississippian Woodford Shale, which is similar in some respects to the Bakken Formation, is a major source of oil and gas in the Anadarko basin of Oklahoma and could prove to be a significant reservoir rock as well. The three regional geologic characteristics of the Woodford discussed here are of likely importance to horizontal drilling programs, although direct relations to drilling strategy cannot be developed until empirical data from horizontal tests become available. First, the Woodford Shale is composed of three distinct depositional units (the upper, middle, and lower informal members) with different physical and geochemical properties. Second, a paleotopographic high that was rising before and during Woodford deposition divided the Woodford Shale into northeast and southwest depocenters. Third, Woodford depositional patterns are overprinted by thermal-maturity trends shaped primarily by differential burial of the Woodford during Pennsylvanian and Permian time. The Woodford Shale northeast of the forebulge is generally immature to marginally mature, whereas its thermal maturity southwest of the forebulge ranges from mature to postmature with respect to oil generation. A formation resistivity of about 35 ohm-m approximates the updip limit of oil-saturated Woodford Shale from which free oil might be produced from fracture systems.

  13. Williston Basin. Gulf's CO/sub 2/ mini-test at Little Knife being evaluated

    SciTech Connect (OSTI)

    Hess, T.

    1981-10-01

    The Gulf Oil Exploration and Production Co. nonproducing CO/sub 2/ mini-test at Little Knife field is complete and under evaluation. Although Gulf and the Department of Energy, cosponsors of the $5.62-million project in Billings County, North Dakota, say it is premature to draw conclusions, it appears field test results mirror those achieved in laboratory tests. CO/sub 2/ and tracers have shown up in the observation wells. The objective was to show that CO/sub 2/ miscible displacement is potentially a commercial method of recovering crude oil from high-saturation carbonate reservoirs that have not been extensively waterflooded. The mini-test site, 3-144N-98W in Little Knife field, was appropriate because it was representative of the field.

  14. Site Characterization for CO{sub 2} Storage from Coal-fired Power Facilities in the Black Warrior Basin of Alabama

    SciTech Connect (OSTI)

    Clark, Peter; Pashin, Jack; Carlson, Eric; Goodliffe, Andrew; McIntyre-Redden, Marcella; Mann, Steven; Thompson, Mason

    2012-08-31

    Coal-fired power plants produce large quantities of carbon dioxide. In order to mitigate the greenhouse gas emissions from these power plants, it is necessary to separate and store the carbon dioxide. Saline formations provide a potential sink for carbon dioxide and delineating the capacity of the various known saline formations is a key part of building a storage inventory. As part of this effort, a project was undertaken to access the storage capacity of saline reservoirs in the Black Warrior Basin of Alabama. This basin has been a productive oil and gas reservoir that is well characterized to the west of the two major coal-fired power plants that are north of Birmingham. The saline zones were thought to extend as far east as the Sequatchie Anticline which is just east of the power plants. There is no oil or gas production in the area surrounding the power plants so little is known about the formations in that area. A geologic characterization well was drilled on the Gorgas Power Plant site, which is the farthest west of two power plants in the area. The well was planned to be drilled to approximately 8,000 feet, but drilling was halted at approximately 5,000 feet when a prolific freshwater zone was penetrated. During drilling, a complete set of cores through all of the potential injection zones and the seals above these zones were acquired. A complete set of openhole logs were run along with a vertical seismic profile (VSP). Before drilling started two approximately perpendicular seismic lines were run and later correlated with the VSP. While the zones that were expected were found at approximately the predicted depths, the zones that are typically saline through the reservoir were found to be saturated with a light crude oil. Unfortunately, both the porosity and permeability of these zones were small enough that no meaningful hydrocarbon production would be expected even with carbon dioxide flooding. iv While this part of the basin was found to be unsuitable

  15. Modeling overpressures in sedimentary basins: Consequences for permeability and rheology of shales, and petroleum expulsion efficiency

    SciTech Connect (OSTI)

    Burrus, J.; Schneider, F.; Wolf, S. )

    1994-07-01

    The prediction of overpressures using Institut Francais du Petrole's 2-D numerical model TEMISPACK is applied to several provinces of the world. In the Paris basin, France, normally pressured Liassic shales are shown to have permeabilities around a microdarcy, independently confirmed by laboratory measurements. In contrast, in the Norway section of the North Sea, Williston Basin, Canada, Gulf Coast, and in the Mahakam delta, observed overpressures of 10-50 MPa are consistently modeled with shale permeabilities around 1-10 nanodarcys. This theoretical value fits well with the lowest permeability measured in compacted shales. For these basins, compaction disequilibrium was found to explain most (>85%) of the overpressures. The only exception was the Williston basin in which overpressures observed in the organic-rich Bakken shales are entirely due to hydrocarbon generation. In Mahakam delta, the rheology of shales is nonlinear, i.e., the strength of shales increases rapidly with death. Consequently, shale compaction cannot be described by the linear behavior often assumed in hydrology. In the absence of fault barriers, numerical simulations and geological evidence suggest that overpressured source rocks have low or very low expulsion efficiency, irrespective of their organic content. However, shales with a permeability on the order of a microdarcy do not hinder petroleum migration.

  16. File:EIA-BlackWarrior-GAS.pdf | Open Energy Information

    Open Energy Info (EERE)

    applicationpdf) Description Black Warrior Basin By 2001 Gas Reserve Class Sources Energy Information Administration Authors Samuel H. Limerick; Lucy Luo; Gary Long; David F....

  17. Subsurface cross section of lower Paleozoic rocks, Powder River basin, Wyoming and Montana

    SciTech Connect (OSTI)

    Macke, D.L.

    1988-07-01

    The Powder River basin is one of the most actively explored Rocky Mountain basins for hydrocarbons, yet the lower Paleozoic (Cambrian through Mississippian) rocks of this interval remain little studied. As a part of a program studying the evolution of sedimentary basins, approximately 3200 km of cross section, based on more than 50 combined geophysical and lithologic logs, have been constructed covering an area of about 200,000 km/sup 2/. The present-day basin is a Cenozoic structural feature located between the stable interior of the North American craton and the Cordilleran orogenic belt. At various times during the early Paleozoic, the basin area was not distinguishable from either the stable craton, the Williston basin, the Central Montana trough, or the Cordilleran miogeocline. Both deposition and preservation in the basin have been greatly influenced by the relative uplift of the Transcontinental arch. Shows of oil and dead oil in well cuttings confirm that hydrocarbons have migrated through at least parts of the basin's lower Paleozoic carbonate section. These rocks may have been conduits for long-distance migration of hydrocarbons as early as Late Cretaceous, based on (1) the probable timing of thermal maturation of hydrocarbon-source rocks within the basin area and to the west, (2) the timing of Laramide structural events, (3) the discontinuous nature of the reservoirs in the overlying, highly productive Pennsylvanian-Permian Minnelusa Formation, and (4) the under-pressuring observed in some Minnelusa oil fields. Vertical migration into the overlying reservoirs could have been through deep fractures within the basin, represented by major lineament systems. Moreover, the lower Paleozoic rocks themselves may also be hydrocarbon reservoirs.

  18. Parana basin

    SciTech Connect (OSTI)

    Zalan, P.V.; Wolff, S.; Conceicao, J.C.J.; Vieira, I.S.; Astolfi, M.A.; Appi, V.T.; Zanotto, O.; Neto, E.V.S.; Cerqueira, J.R.

    1987-05-01

    The Parana basin is a large intracratonic basin in South America, developed entirely on continental crust and filled with sedimentary and volcanic rocks ranging in age from Silurian to Cretaceous. It occupies the southern portion of Brazil (1,100,000 km/sup 2/ or 425,000 mi/sup 2/) and the eastern half of Paraguay (100,000 km/sup 2/ or 39,000 mi/sup 2/); its extension into Argentina and Uruguay is known as the Chaco-Parana basin. Five major depositional sequences (Silurian, Devonian, Permo-Carboniferous, Triassic, Juro-Cretaceous) constitute the stratigraphic framework of the basin. The first four are predominantly siliciclastic in nature, and the fifth contains the most voluminous basaltic lava flows of the planet. Maximum thicknesses are in the order of 6000 m (19,646 ft). The sequences are separated by basin wide unconformities related in the Paleozoic to Andean orogenic events and in the Mesozoic to the continental breakup and sea floor spreading between South America and Africa. The structural framework of the Parana basin consists of a remarkable pattern of criss-crossing linear features (faults, fault zones, arches) clustered into three major groups (N45/sup 0/-65/sup 0/W, N50/sup 0/-70/sup 0/E, E-W). The northwest- and northeast-trending faults are long-lived tectonic elements inherited from the Precambrian basement whose recurrent activity throughout the Phanerozoic strongly influenced sedimentation, facies distribution, and development of structures in the basin. Thermomechanical analyses indicate three main phases of subsidence (Silurian-Devonian, late Carboniferous-Permian, Late Jurassic-Early Cretaceous) and low geothermal gradients until the beginning of the Late Jurassic Permian oil-prone source rocks attained maturation due to extra heat originated from Juro-Cretaceous igneous intrusions. The third phase of subsidence also coincided with strong tectonic reactivation and creation of a third structural trend (east-west).

  19. MASK basin

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MASK basin - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear Energy

  20. EIS-0433-S1: Draft Supplemental Environmental Impact Statement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    would transport crude oil from the Western Canadian Sedimentary Basin and the Williston Basin to existing pipeline facilities near Steele City, Nebraska, for onward transport to ...

  1. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    4. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 26.24 - W...

  2. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3. Estimated rail transportation rates for coal, basin to state, EIA data Basin Destination State 2008 2009 2010 2008-2010 2009-2010 Northern Appalachian Basin Delaware 28.49 - W...

  3. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    43 0.0294 W - W W - - - Northern Appalachian Basin Florida 0.0161 W W W W 0.0216 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian Basin...

  4. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    0.0323 0.0284 W - W W - - - Northern Appalachian Basin Florida 0.0146 W W W W 0.0223 W W W W W Northern Appalachian Basin Illinois W W - - - - - - - - - Northern Appalachian...

  5. Black Pine Engineering

    Broader source: Energy.gov [DOE]

    Black Pine Engineering is commercializing a disruptive technology in the turbomachinery industry. Using a patented woven composite construction, Black Pine Engineering can make turbomachines (turbines, compressors) that are cheaper and lighter than competing technologies. Using this technology, Black Pine Engineering will sell turbo-compressors which solve the problem of wasted steam in geothermal power plants.

  6. Sulfide-Driven Arsenic Mobilization from Arsenopyrite and Black Shale Pyrite

    SciTech Connect (OSTI)

    Zhu, W.; Young, L; Yee, N; Serfes, M; Rhine, E; Reinfelder, J

    2008-01-01

    We examined the hypothesis that sulfide drives arsenic mobilization from pyritic black shale by a sulfide-arsenide exchange and oxidation reaction in which sulfide replaces arsenic in arsenopyrite forming pyrite, and arsenide (As-1) is concurrently oxidized to soluble arsenite (As+3). This hypothesis was tested in a series of sulfide-arsenide exchange experiments with arsenopyrite (FeAsS), homogenized black shale from the Newark Basin (Lockatong formation), and pyrite isolated from Newark Basin black shale incubated under oxic (21% O2), hypoxic (2% O2, 98% N2), and anoxic (5% H2, 95% N2) conditions. The oxidation state of arsenic in Newark Basin black shale pyrite was determined using X-ray absorption-near edge structure spectroscopy (XANES). Incubation results show that sulfide (1 mM initial concentration) increases arsenic mobilization to the dissolved phase from all three solids under oxic and hypoxic, but not anoxic conditions. Indeed under oxic and hypoxic conditions, the presence of sulfide resulted in the mobilization in 48 h of 13-16 times more arsenic from arsenopyrite and 6-11 times more arsenic from isolated black shale pyrite than in sulfide-free controls. XANES results show that arsenic in Newark Basin black shale pyrite has the same oxidation state as that in FeAsS (-1) and thus extend the sulfide-arsenide exchange mechanism of arsenic mobilization to sedimentary rock, black shale pyrite. Biologically active incubations of whole black shale and its resident microorganisms under sulfate reducing conditions resulted in sevenfold higher mobilization of soluble arsenic than sterile controls. Taken together, our results indicate that sulfide-driven arsenic mobilization would be most important under conditions of redox disequilibrium, such as when sulfate-reducing bacteria release sulfide into oxic groundwater, and that microbial sulfide production is expected to enhance arsenic mobilization in sedimentary rock aquifers with major pyrite-bearing, black

  7. BLACK HISTORY MONTH

    Broader source: Energy.gov [DOE]

    Black History Month is an annual celebration of achievements by black Americans and a time for recognizing the central role of African Americans in U.S. history. The event grew out of “Negro History Week,” created by historian Carter G. Woodson and other prominent African Americans. Other countries around the world, including Canada and the United Kingdom, also devote a month to celebrating black history.

  8. Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin

    Gasoline and Diesel Fuel Update (EIA)

    Texas-Louisiana- Mississippi Salt Basin Greater Green River Basin W. Gulf Coast Basin ... Major Tight Gas Plays, Lower 48 States 0 200 400 100 300 Miles Source: Energy ...

  9. Basin Destination State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    10.68 12.03 13.69 14.71 16.11 19.72 20.69 9.1 4.9 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 6.74 8.16 W 8.10 W W...

  10. Basin Destination State

    Gasoline and Diesel Fuel Update (EIA)

    11.34 12.43 13.69 14.25 15.17 18.16 18.85 6.5 3.8 Northern Appalachian Basin Massachusetts W W - - - - - - - - - Northern Appalachian Basin Michigan 7.43 8.85 W 8.37 W W...

  11. Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Basin Jump to: navigation, search Retrieved from "http:en.openei.orgwindex.php?titleWaveBasin&oldid596392" Feedback Contact needs updating Image needs updating Reference...

  12. K Basin safety analysis

    SciTech Connect (OSTI)

    Porten, D.R.; Crowe, R.D.

    1994-12-16

    The purpose of this accident safety analysis is to document in detail, analyses whose results were reported in summary form in the K Basins Safety Analysis Report WHC-SD-SNF-SAR-001. The safety analysis addressed the potential for release of radioactive and non-radioactive hazardous material located in the K Basins and their supporting facilities. The safety analysis covers the hazards associated with normal K Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. After a review of the Criticality Safety Evaluation of the K Basin activities, the following postulated events were evaluated: Crane failure and casks dropped into loadout pit; Design basis earthquake; Hypothetical loss of basin water accident analysis; Combustion of uranium fuel following dryout; Crane failure and cask dropped onto floor of transfer area; Spent ion exchange shipment for burial; Hydrogen deflagration in ion exchange modules and filters; Release of Chlorine; Power availability and reliability; and Ashfall.

  13. ULTRAMASSIVE BLACK HOLE COALESCENCE

    SciTech Connect (OSTI)

    Khan, Fazeel Mahmood; Holley-Bockelmann, Kelly; Berczik, Peter E-mail: k.holley@vanderbilt.edu

    2015-01-10

    Although supermassive black holes (SMBHs) correlate well with their host galaxies, there is an emerging view that outliers exist. Henize 2-10, NGC4889, and NGC1277 are examples of SMBHs at least an order of magnitude more massive than their host galaxy suggests. The dynamical effects of such ultramassive central black holes is unclear. Here, we perform direct N-body simulations of mergers of galactic nuclei where one black hole is ultramassive to study the evolution of the remnant and the black hole dynamics in this extreme regime. We find that the merger remnant is axisymmetric near the center, while near the large SMBH influence radius, the galaxy is triaxial. The SMBH separation shrinks rapidly due to dynamical friction, and quickly forms a binary black hole; if we scale our model to the most massive estimate for the NGC1277 black hole, for example, the timescale for the SMBH separation to shrink from nearly a kiloparsec to less than a parsec is roughly 10Myr. By the time the SMBHs form a hard binary, gravitational wave emission dominates, and the black holes coalesce in a mere few Myr. Curiously, these extremely massive binaries appear to nearly bypass the three-body scattering evolutionary phase. Our study suggests that in this extreme case, SMBH coalescence is governed by dynamical friction followed nearly directly by gravitational wave emission, resulting in a rapid and efficient SMBH coalescence timescale. We discuss the implications for gravitational wave event rates and hypervelocity star production.

  14. New interpretations of Pennsylvanian and Permian stratigraphy, San Juan basin and southeast Paradox basin

    SciTech Connect (OSTI)

    Huffman, A.C. Jr.; Condon, S.M. )

    1989-09-01

    The Honaker Trail, Paradox, and Pinkerton Trail Formations of the Hermosa Group are recognized throughout most of the San Juan basin. The Paradox Formation is extended southeastward beyond the limits of its evaporite facies into the basin, where it consists of thick shelf-carbonate rocks and thin black shale, sandstone, and siltstone interbeds. Where the Hermosa Group thins onto the marginal uplifts, the Paradox loses the thick carbonate rocks and becomes indistinguishable from the rest of the Hermosa. The Hermosa is correlated in the subsurface with the Madera and Sandia Formations to the southeast. The transitional Rico Formation, between the marine Hermosa Group and the continental Cutler Formation, is identified throughout the subsurface of the San Juan basin and is correlated with similar deposits out-cropping along the northern and eastern margins. The Cutler Formation includes the Organ Rock, Cedar Mesa, and Halgaito members throughout most of the basin. In the vicinity of the Hogback monocline, the Cedar Mesa Sandstone Member undergoes a gradational eastward facies change from cyclic evaporite and sandstone to thick-bedded sandstone. The subsurface Cedar Mesa is correlated in part with similar rocks in the outcropping Abo and Supai Formations.

  15. Reserves in western basins

    SciTech Connect (OSTI)

    Caldwell, R.H.; Cotton, B.W.

    1995-04-01

    The objective of this project is to investigate the reserves potential of tight gas reservoirs in three Rocky Mountain basins: the Greater Green River (GGRB), Uinta and Piceance basins. The basins contain vast gas resources that have been estimated in the thousands of Tcf hosted in low permeability clastic reservoirs. This study documents the productive characteristics of these tight reservoirs, requantifies gas in place resources, and characterizes the reserves potential of each basin. The purpose of this work is to promote understanding of the resource and to encourage its exploitation by private industry. At this point in time, the GGRB work has been completed and a final report published. Work is well underway in the Uinta and Piceance basins which are being handled concurrently, with reports on these basins being scheduled for the middle of this year. Since the GGRB portion of the project has been completed, this presentation win focus upon that basin. A key conclusion of this study was the subdivision of the resource, based upon economic and technological considerations, into groupings that have distinct properties with regard to potential for future producibility, economics and risk profile.

  16. ARM - Black Forest News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Forest News ARM Mobile Facility Completes Field Campaign in Germany January 15, 2008 Microwave Radiometers Put to the Test in Germany September 15, 2007 Zeppelin NT Flies for ...

  17. the Central Basin Platform,

    Office of Scientific and Technical Information (OSTI)

    ... As a result. it is believed that most of the structures formed within the context of an ... order to facilitate flexure modeling of the CBP and adjacent Delaware and Midland basins. ...

  18. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  19. K Basins Hazard Analysis

    SciTech Connect (OSTI)

    WEBB, R.H.

    1999-12-29

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  20. Permian basin gas production

    SciTech Connect (OSTI)

    Haeberle, F.R.

    1995-06-01

    Of the 242 major gas fields in the Permian basin, 67 are on the Central Basin Platform, 59 are in the Delaware basin, 44 are in the Midland basin, 28 are in the Val Verde basin, 24 are on the Eastern Shelf, 12 are in the Horshoe Atoll and eight are on the Northwest Shelf. Eleven fields have produced over one trillion cubic feet of gas, 61 have produced between 100 billion and one trillion cubic feet of gas and 170 have produced less than 100 billion cubic feet. Highlights of the study show 11% of the gas comes from reservoirs with temperatures over 300 degrees F. and 11% comes from depths between 19,000 and 20,000 feet. Twenty percent of the gas comes from reservoirs with pressures between 1000 and 2000 psi, 22% comes from reservoirs with 20-24% water saturation and 24% comes from reservoirs between 125 and 150 feet thick. Fifty-three reservoirs in the Ellenburger formation have produced 30% of the gas, 33% comes from 88 reservoirs in the Delaware basin and 33% comes from reservoirs with porosities of less than five percent. Forty percent is solution gas and 46% comes from combination traps. Over 50% of the production comes from reservoirs with five millidarcys or less permeability, and 60% of the gas comes from reservoirs in which dolomite is the dominant lithology. Over 50% of the gas production comes from fields discovered before 1957 although 50% of the producing fields were not discovered until 1958.

  1. Haynes Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    Wave Basin Jump to: navigation, search Basic Specifications Facility Name Haynes Wave Basin Overseeing Organization Texas A&M (Haynes) Hydrodynamic Testing Facility Type Wave Basin...

  2. Aspects of hairy black holes

    SciTech Connect (OSTI)

    Anabalón, Andrés; Astefanesei, Dumitru

    2015-03-26

    We review the existence of exact hairy black holes in asymptotically flat, anti-de Sitter and de Sitter space-times. We briefly discuss the issue of stability and the charging of the black holes with a Maxwell field.

  3. Lumens Placard (Black) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    File lumensplacard-black.eps More Documents & Publications Lumens Placard (Black) Lumens Placard (Green) Lumens Placard (Green)

  4. Identifying Oil Exploration Leads using Intergrated Remote Sensing and Seismic Data Analysis, Lake Sakakawea, Fort Berthold Indian Reservation, Willistion Basin

    SciTech Connect (OSTI)

    Scott R. Reeves; Randal L. Billingsley

    2004-02-26

    The Fort Berthold Indian Reservation, inhabited by the Arikara, Mandan and Hidatsa Tribes (now united to form the Three Affiliated Tribes) covers a total area of 1530 mi{sup 2} (980,000 acres). The Reservation is located approximately 15 miles east of the depocenter of the Williston basin, and to the southeast of a major structural feature and petroleum producing province, the Nesson anticline. Several published studies document the widespread existence of mature source rocks, favorable reservoir/caprock combinations, and production throughout the Reservation and surrounding areas indicating high potential for undiscovered oil and gas resources. This technical assessment was performed to better define the oil exploration opportunity, and stimulate exploration and development activities for the benefit of the Tribes. The need for this assessment is underscored by the fact that, despite its considerable potential, there is currently no meaningful production on the Reservation, and only 2% of it is currently leased. Of particular interest (and the focus of this study) is the area under the Lake Sakakawea (formed as result of the Garrison Dam). This 'reservoir taking' area, which has never been drilled, encompasses an area of 150,000 acres, and represents the largest contiguous acreage block under control of the Tribes. Furthermore, these lands are Tribal (non-allotted), hence leasing requirements are relatively simple. The opportunity for exploration success insofar as identifying potential leads under the lake is high. According to the Bureau of Land Management, there have been 591 tests for oil and gas on or immediately adjacent to the Reservation, resulting in a total of 392 producing wells and 179 plugged and abandoned wells, for a success ratio of 69%. Based on statistical probability alone, the opportunity for success is high.

  5. Black hole magnetospheres

    SciTech Connect (OSTI)

    Nathanail, Antonios; Contopoulos, Ioannis

    2014-06-20

    We investigate the structure of the steady-state force-free magnetosphere around a Kerr black hole in various astrophysical settings. The solution Ψ(r, θ) depends on the distributions of the magnetic field line angular velocity ω(Ψ) and the poloidal electric current I(Ψ). These are obtained self-consistently as eigenfunctions that allow the solution to smoothly cross the two singular surfaces of the problem, the inner light surface inside the ergosphere, and the outer light surface, which is the generalization of the pulsar light cylinder. Magnetic field configurations that cross both singular surfaces (e.g., monopole, paraboloidal) are uniquely determined. Configurations that cross only one light surface (e.g., the artificial case of a rotating black hole embedded in a vertical magnetic field) are degenerate. We show that, similar to pulsars, black hole magnetospheres naturally develop an electric current sheet that potentially plays a very important role in the dissipation of black hole rotational energy and in the emission of high-energy radiation.

  6. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, Arthur L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediatley above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone.

  7. Gasification of black liquor

    DOE Patents [OSTI]

    Kohl, A.L.

    1987-07-28

    A concentrated aqueous black liquor containing carbonaceous material and alkali metal sulfur compounds is treated in a gasifier vessel containing a relatively shallow molten salt pool at its bottom to form a combustible gas and a sulfide-rich melt. The gasifier vessel, which is preferably pressurized, has a black liquor drying zone at its upper part, a black liquor solids gasification zone located below the drying zone, and a molten salt sulfur reduction zone which comprises the molten salt pool. A first portion of an oxygen-containing gas is introduced into the gas space in the gasification zone immediately above the molten salt pool. The remainder of the oxygen-containing gas is introduced into the molten salt pool in an amount sufficient to cause gasification of carbonaceous material entering the pool from the gasification zone but not sufficient to create oxidizing conditions in the pool. The total amount of the oxygen-containing gas introduced both above the pool and into the pool constitutes between 25 and 55% of the amount required for complete combustion of the black liquor feed. A combustible gas is withdrawn from an upper portion of the drying zone, and a melt in which the sulfur content is predominantly in the form of alkali metal sulfide is withdrawn from the molten salt sulfur reduction zone. 2 figs.

  8. the Central Basin Platform,

    Office of Scientific and Technical Information (OSTI)

    ... Bolden, G.P., 1984, Wrench Faulting in Selected Areas of the Permian Basin, &: Moore, G. ... I I I I I 1 I I I I I I 1 I I I I Henry, C.A. and Price, J.G., 1985, Summary of ...

  9. Black Pine Circle Project

    ScienceCinema (OSTI)

    Mytko, Christine

    2014-09-15

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  10. Black Pine Circle Project

    SciTech Connect (OSTI)

    Mytko, Christine

    2014-03-31

    A group of seventh graders from Black Pine Circle school in Berkeley had the opportunity to experience the Advanced Light Source (ALS) as "users" via a collaborative field trip and proposal project. The project culminated with a field trip to the ALS for all seventh graders, which included a visit to the ALS data visualization room, a diffraction demonstration, a beamline tour, and informative sessions about x-rays and tomography presented by ALS scientists.

  11. Comparative results of the combustion of lignin briquettes and black coal

    SciTech Connect (OSTI)

    V.G. Lurii

    2008-12-15

    A new type of biofuel - hydrolytic lignin briquettes - was tested as compared with ordinary SS coal from the Kuznetsk Basin in fuel-bed firing in a Universal-6 boiler. It was found that the (total) efficiency of the boiler with the firing of lignin briquettes was 38% higher than that with the use of black coal. Carbon loss in the combustion of briquettes was 1%, whereas it was 48.2% in the combustion of black coal. The emission of harmful gas pollutants into the environment in the combustion of briquettes was lower than that in the combustion of coal by a factor of 4.5.

  12. Denver Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Denver Basin Map Abstract This webpage contains a map of the Denver Basin. Published Colorado...

  13. BlackGold Biofuels | Open Energy Information

    Open Energy Info (EERE)

    BlackGold Biofuels Jump to: navigation, search Name: BlackGold Biofuels Place: Philadelphia, Pennsylvania Zip: 19107 Product: Philadelphia-based developer of a waste...

  14. Black Forest Partners | Open Energy Information

    Open Energy Info (EERE)

    Black Forest Partners Jump to: navigation, search Name: Black Forest Partners Place: San Francisco, California Zip: 94111 Product: San Francisco-based project developer focused on...

  15. Sediment Basin Flume | Open Energy Information

    Open Energy Info (EERE)

    Sediment Basin Flume Jump to: navigation, search Basic Specifications Facility Name Sediment Basin Flume Overseeing Organization University of Iowa Hydrodynamic Testing Facility...

  16. Great Basin Geothermal Area | Open Energy Information

    Open Energy Info (EERE)

    Great Basin Geothermal Area Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Great Basin Geothermal Area Contents 1 Area Overview 2 History and Infrastructure 3...

  17. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    wild winter steelhead in the Fifteenmile Creek Basin under the Columbia River Basin Fish and Wildlife Program. The project is funded by through the Bonneville Power...

  18. Black optic display

    DOE Patents [OSTI]

    Veligdan, James T.

    1997-01-01

    An optical display includes a plurality of stacked optical waveguides having first and second opposite ends collectively defining an image input face and an image screen, respectively, with the screen being oblique to the input face. Each of the waveguides includes a transparent core bound by a cladding layer having a lower index of refraction for effecting internal reflection of image light transmitted into the input face to project an image on the screen, with each of the cladding layers including a cladding cap integrally joined thereto at the waveguide second ends. Each of the cores is beveled at the waveguide second end so that the cladding cap is viewable through the transparent core. Each of the cladding caps is black for absorbing external ambient light incident upon the screen for improving contrast of the image projected internally on the screen.

  19. Black Warrior, Nevada: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    or Black Warrior Spring coordinates Black Warrior is a property in Washoe County and Churchill County, Nevada that is south and east of Black Warrior Peak. References Nevada...

  20. Stormwater detention basin sediment removal

    SciTech Connect (OSTI)

    Gross, W.E.

    1995-12-31

    In the past, stormwater runoff from landfills has been treated mainly by focusing on reducing the peak storm discharge rates so as not to hydraulically impact downstream subsheds. However, with the advent of stricter water quality regulations based on the Federal Clean Water Act, and the related NPDES and SPDES programs, landfill owners and operators are now legally responsible for the water quality of the runoff once it leaves the landfill site. At the Fresh Kills Landfill in New York City, the world`s largest covering over 2000 acres, landfilling activities have been underway since 1945. With the main objective at all older landfill sites having focused on maximizing the available landfill footprint in order to obtain the most possible airspace volume, consideration was not given for the future siting of stormwater basin structures. Therefore, when SCS Engineers began developing the first comprehensive stormwater management plan for the site, the primary task was to locate potential sites for all the stormwater basins in order to comply with state regulations for peak stormwater runoff control. The basins were mostly constructed where space allowed, and were sized to be as large as possible given siting and subshed area constraints. Seventeen stormwater basins have now been designed and are being constructed to control the peak stormwater runoff for the 25-year, 24-hour storm as required by New York State. As an additional factor of safety, the basins were also designed for controlled discharge of the 100-year, 24 hour storm.

  1. Black hole mimickers: Regular versus singular behavior

    SciTech Connect (OSTI)

    Lemos, Jose P. S.; Zaslavskii, Oleg B.

    2008-07-15

    Black hole mimickers are possible alternatives to black holes; they would look observationally almost like black holes but would have no horizon. The properties in the near-horizon region where gravity is strong can be quite different for both types of objects, but at infinity it could be difficult to discern black holes from their mimickers. To disentangle this possible confusion, we examine the near-horizon properties, and their connection with far away asymptotic properties, of some candidates to black mimickers. We study spherically symmetric uncharged or charged but nonextremal objects, as well as spherically symmetric charged extremal objects. Within the uncharged or charged but nonextremal black hole mimickers, we study nonextremal {epsilon}-wormholes on the threshold of the formation of an event horizon, of which a subclass are called black foils, and gravastars. Within the charged extremal black hole mimickers we study extremal {epsilon}-wormholes on the threshold of the formation of an event horizon, quasi-black holes, and wormholes on the basis of quasi-black holes from Bonnor stars. We elucidate whether or not the objects belonging to these two classes remain regular in the near-horizon limit. The requirement of full regularity, i.e., finite curvature and absence of naked behavior, up to an arbitrary neighborhood of the gravitational radius of the object enables one to rule out potential mimickers in most of the cases. A list ranking the best black hole mimickers up to the worst, both nonextremal and extremal, is as follows: wormholes on the basis of extremal black holes or on the basis of quasi-black holes, quasi-black holes, wormholes on the basis of nonextremal black holes (black foils), and gravastars. Since in observational astrophysics it is difficult to find extremal configurations (the best mimickers in the ranking), whereas nonextremal configurations are really bad mimickers, the task of distinguishing black holes from their mimickers seems to

  2. Charged rotating dilaton black strings

    SciTech Connect (OSTI)

    Dehghani, M.H.; Farhangkhah, N.

    2005-02-15

    In this paper we, first, present a class of charged rotating solutions in four-dimensional Einstein-Maxwell-dilaton gravity with zero and Liouville-type potentials. We find that these solutions can present a black hole/string with two regular horizons, an extreme black hole or a naked singularity provided the parameters of the solutions are chosen suitable. We also compute the conserved and thermodynamic quantities, and show that they satisfy the first law of thermodynamics. Second, we obtain the (n+1)-dimensional rotating solutions in Einstein-dilaton gravity with Liouville-type potential. We find that these solutions can present black branes, naked singularities or spacetimes with cosmological horizon if one chooses the parameters of the solutions correctly. Again, we find that the thermodynamic quantities of these solutions satisfy the first law of thermodynamics.

  3. Quantum Criticality and Black Holes

    ScienceCinema (OSTI)

    Sachdev, Subir [Harvard University, Cambridge, Massachusetts, United States

    2009-09-01

    I will describe the behavior of a variety of condensed matter systems in the vicinity of zero temperature quantum phase transitions. There is a remarkable analogy between the hydrodynamics of such systems and the quantum theory of black holes. I will show how insights from this analogy have shed light on recent experiments on the cuprate high temperature superconductors. Studies of new materials and trapped ultracold atoms are yielding new quantum phases, with novel forms of quantum entanglement. Some materials are of technological importance: e.g. high temperature superconductors. Exact solutions via black hole mapping have yielded first exact results for transport coefficients in interacting many-body systems, and were valuable in determining general structure of hydrodynamics. Theory of VBS order and Nernst effect in cuprates. Tabletop 'laboratories for the entire universe': quantum mechanics of black holes, quark-gluon plasma, neutrons stars, and big-bang physics.

  4. Publications | netl.doe.gov

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... PDF-2.55MB May, 2009: NETL R&D Tackles Technical Challenges of the Williston Basin's Bakken Formation PDF-2.3MB arrowsmdrkorange.gif Program Fact Sheets Natural Gas & Oil ...

  5. Table 2. U.S. tight oil plays: production and proved reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Basin","Play","State(s)","Production","Reserves" "Williston","Bakken","ND, MT, SD",270,4844,387,5972,1128 "Western Gulf","Eagle Ford","TX",351,4177,497,5172,995 "Permian","Bo...

  6. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co...

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP 0 10 20 5 15 Miles Williston Basin Oil and Gas Fields 2004 Liquids Reserve Class No 2004 Liquids ...

  7. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co...

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP 0 10 20 5 15 Miles Williston Basin Oil & Gas Field Boundaries 2004 BOE Reserve Class No 2004 reserves 0.1 - ...

  8. Valley Co. McCone Co. Roosevelt Co. Richland Co. Sheridan Co...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class Montana North Dakota South Dakota Wyoming INDEX MAP 0 10 20 5 15 Miles Williston Basin Oil and Gas Fields 2004 Gas Reserve Class No 2004 Gas Reserves 0.1 - 10 ...

  9. EA-64 Basin Electric Power Cooperative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Basin Electric Power Cooperative EA-64 Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64 Basin Electric Power Cooperative (2.8 MB) More Documents & Publications EA-64-A

  10. Black Engineer of the Year Award

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black Engineer of the Year Award - Sandia Energy Energy Search Icon Sandia Home Locations ... Twitter Google + Vimeo GovDelivery SlideShare Black Engineer of the Year Award Home...

  11. H-Area Seepage Basins

    SciTech Connect (OSTI)

    Stejskal, G.

    1990-12-01

    During the third quarter of 1990 the wells which make up the H-Area Seepage Basins (H-HWMF) monitoring network were sampled. Laboratory analyses were performed to measure levels of hazardous constituents, indicator parameters, tritium, nonvolatile beta, and gross alpha. A Gas Chromatograph Mass Spectrometer (GCMS) scan was performed on all wells sampled to determine any hazardous organic constituents present in the groundwater. The primary contaminants observed at wells monitoring the H-Area Seepage Basins are tritium, nitrate, mercury, gross alpha, nonvolatile beta, trichloroethylene (TCE), tetrachloroethylene, lead, cadmium, arsenic, and total radium.

  12. Hydrogeochemical Indicators for Great Basin Geothemal Resources

    Broader source: Energy.gov [DOE]

    Hydrogeochemical Indicators for Great Basin Geothemal Resources presentation at the April 2013 peer review meeting held in Denver, Colorado.

  13. Albany, OR * Fairbanks, AK * Morgantown, WV * Pittsburgh, PA * Houston, TX

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NETL R&D Tackles Technological Challenges of the Williston Basin's Bakken Formation Recent development of the Bakken Formation in the Williston Basin of western North Dakota and eastern Montana is a good example of persistent analysis of geologic data and adaptation of new completion technologies overcoming the challenges posed by unconventional reservoirs. However, as with most unconventional plays, as Bakken development continues, questions regarding exactly how to refine newly applied

  14. Energy Department Receives Award for First-of-its-Kind Geothermal Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Receives Award for First-of-its-Kind Geothermal Project Energy Department Receives Award for First-of-its-Kind Geothermal Project June 7, 2016 - 10:25am Addthis The geothermal facility in the Williston Basin in North Dakota. | Photo by Kirby Baier of Continental Resources The geothermal facility in the Williston Basin in North Dakota. | Photo by Kirby Baier of Continental Resources Erin Tulley Communications Lead, Geothermal Technologies Office Timothy Patrick Reinhardt

  15. From Pinholes to Black Holes

    SciTech Connect (OSTI)

    Fenimore, Edward E.

    2014-10-06

    Pinhole photography has made major contributions to astrophysics through the use of coded apertures. Coded apertures were instrumental in locating gamma-ray bursts and proving that they originate in faraway galaxies, some from the birth of black holes from the first stars that formed just after the big bang.

  16. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for July, August, and September 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2006-12-08

    This report provides information on groundwater monitoring at the K Basins during July, August, and September 2006. Conditions remain very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming quarters as a consequence of remedial action at KE Basin, i.e., removal of sludge and basin demolition.

  17. Close encounters of three black holes

    SciTech Connect (OSTI)

    Campanelli, Manuela; Lousto, Carlos O.; Zlochower, Yosef

    2008-05-15

    We present the first fully relativistic long-term numerical evolutions of three equal-mass black holes in a system consisting of a third black hole in a close orbit about a black-hole binary. These close-three-black-hole systems have very different merger dynamics from black-hole binaries; displaying complex trajectories, a redistribution of energy that can impart substantial kicks to one of the holes, distinctive waveforms, and suppression of the emitted gravitational radiation. In one configuration the binary is quickly disrupted and the individual holes follow complicated trajectories and merge with the third hole in rapid succession, while in another, the binary completes a half-orbit before the initial merger of one of the members with the third black hole, and the resulting two-black-hole system forms a highly elliptical, well separated binary that shows no significant inspiral for (at least) the first t{approx}1000M of evolution.

  18. GEOLOGIC SCREENING CRITERIA FOR SEQUESTRATION OF CO2 IN COAL: QUANTIFYING POTENTIAL OF THE BLACK WARRIOR COALBED METHANE FAIRWAY, ALABAMA

    SciTech Connect (OSTI)

    Jack C. Pashin; Richard E. Carroll; Richard H. Groshong Jr.; Dorothy E. Raymond; Marcella McIntyre; J. Wayne Payton

    2004-01-01

    Sequestration of CO{sub 2} in coal has potential benefits for reducing greenhouse gas emissions from the highly industrialized Carboniferous coal basins of North America and Europe and for enhancing coalbed methane recovery. Hence, enhanced coalbed methane recovery operations provide a basis for a market-based environmental solution in which the cost of sequestration is offset by the production and sale of natural gas. The Black Warrior foreland basin of west-central Alabama contains the only mature coalbed methane production fairway in eastern North America, and data from this basin provide an excellent basis for quantifying the carbon sequestration potential of coal and for identifying the geologic screening criteria required to select sites for the demonstration and commercialization of carbon sequestration technology. Coalbed methane reservoirs in the upper Pottsville Formation of the Black Warrior basin are extremely heterogeneous, and this heterogeneity must be considered to screen areas for the application of CO{sub 2} sequestration and enhanced coalbed methane recovery technology. Major screening factors include stratigraphy, geologic structure, geothermics, hydrogeology, coal quality, sorption capacity, technology, and infrastructure. Applying the screening model to the Black Warrior basin indicates that geologic structure, water chemistry, and the distribution of coal mines and reserves are the principal determinants of where CO{sub 2} can be sequestered. By comparison, coal thickness, temperature-pressure conditions, and coal quality are the key determinants of sequestration capacity and unswept coalbed methane resources. Results of this investigation indicate that the potential for CO{sub 2} sequestration and enhanced coalbed methane recovery in the Black Warrior basin is substantial and can result in significant reduction of greenhouse gas emissions while increasing natural gas reserves. Coal-fired power plants serving the Black Warrior basin in

  19. Geochemistry and sedimentation of organic matter in the Triassic-Liassic carbonate laminated source rocks of the Ragusa basin (Italy)

    SciTech Connect (OSTI)

    Brosse, E.; Loreau, J.P.; Frixa, A.

    1988-08-01

    The Noto and Streppenosa formations of the Ragusa basin (southeastern Sicily) are considered the main source rocks for oil in this area. They display various styles of sedimentation in a generally carbonate context. The organic matter is basically of marine planktonic origin but with some variations, especially in terms of O/C ratio and kinetic behavior. Three main styles of sedimentation occurred within these formations: (1) laminates in a dominantly carbonate rock with thin recurrent interlayers of black shales; (2) alternating layers of marls and limestones, both containing interlayers of black shales and with occasional laminations in the limestones; and (3) silty shales, more or less rich in carbonates (30-70%). The highest petroleum potentials are neither strictly associated with the algal-sedimentary laminites nor with the basinal silty facies but with the black shales interbedded in the different facies or abruptly overlying limestones. In these black shales, oxygen-poor kerogens are dominant. Limestones of the alternated layers are generally organic lean (TOC < 1%), and oxygen-rich kerogens are dominant. The transition from one type of kerogen to the other occurs in the marly layers of the sequence. A tentative integration of both sedimentological and geochemical results is proposed, at the scale of the core, to interpret the respective influence of the depositional pattern and the diagenetic conditions on the content and nature of the kerogen in the source rocks.

  20. Complexity, action, and black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Brown, Adam R.; Roberts, Daniel A.; Susskind, Leonard; Swingle, Brian; Zhao, Ying

    2016-04-18

    In an earlier paper "Complexity Equals Action" we conjectured that the quantum computational complexity of a holographic state is given by the classical action of a region in the bulk (the `Wheeler-DeWitt' patch). We provide calculations for the results quoted in that paper, explain how it fits into a broader (tensor) network of ideas, and elaborate on the hypothesis that black holes are the fastest computers in nature.

  1. CLEAR LAKE BASIN 2000 PROJECT

    SciTech Connect (OSTI)

    LAKE COUNTY SANITATION DISTRICT

    2003-03-31

    The following is a final report for the Clear Lake Basin 2000 project. All of the major project construction work was complete and this phase generally included final details and testing. Most of the work was electrical. Erosion control activities were underway to prepare for the rainy season. System testing including pump stations, electrical and computer control systems was conducted. Most of the project focus from November onward was completing punch list items.

  2. Organic geochemical evaluations of bituminous rock and coals in Miocene Himmetoglu basin (Bolu, Turkey)

    SciTech Connect (OSTI)

    Sari, A.; Geze, Y.

    2008-07-01

    The studied area is a lake basin located in Bolu basin in Turkey. In the basin, from Upper Cretaceous to Upper Miocene 3,000-m thickness sediments were deposited. Upper Miocene Himmetoglu formation consisted of sandstone, claystone, and marl. To the middle level of the formation are located coal, bituminous limestone, and bituminous shales. In the basin, there are two coal beds whose thicknesses range from 1 to 13 m. The coals are easily breakable and black in color. In the coal beds exists some bituminous limestone and bituminous shales, and their thicknesses are between 5 and 45 cm. The amount of organic matter of the bituminous rocks from the Upper Miocene Himmetoglu formation are between 6.83 and 56.34 wt%, and the amount of organic matter of the bituminous limestone from the formation are between 13.58 and 57.16 wt%. These values indicate that these rocks have very good source potential. According to hydrogen index (HI), S2/S3, HI-T{sub max}, and HI-OI (oxygen index) parameters, kerogen types of the bituminous rocks and coals belonging to Upper Miocene Himmetoglu formation are Type I, Type II, and Type III. In accordance with HI, S2/S3, HI-T{sub max}, and HI-OI parameters, the bituminous rocks and coals from the Upper Miocene Himmetoglu formation are mostly immature.

  3. Tectonic mechanisms for formation of the Central Basin platform and adjacent basinal areas, Permian basin, Texas and New Mexico

    SciTech Connect (OSTI)

    Yang, Kennming; Dorobek, S.L. )

    1992-04-01

    Formation of the Central Basin platform (CBP), with the Delaware basin to its west and the Midland basin to its east, has been attributed to the crustal deformation in the foreland area of the Marathon Orogen during the late Paleozoic. Because of complexities in the areal distribution and magnitudes of uplift along the length of the CBP, its formative mechanisms are still controversial. Previous interpretations about the mechanisms for uplift of the CBP are based on the characteristics of the boundary faults between the CBP and adjacent basinal areas. Here, an integrated tectonic model is proposed for formation of the uplift and adjacent basins based on studies of the structure of sedimentary layers overlying Precambrian basement rocks of the uplift and restoration of the lower Paleozoic strata in the Delaware basin.

  4. Boson shells harboring charged black holes

    SciTech Connect (OSTI)

    Kleihaus, Burkhard; Kunz, Jutta; Laemmerzahl, Claus; List, Meike

    2010-11-15

    We consider boson shells in scalar electrodynamics coupled to Einstein gravity. The interior of the shells can be empty space, or harbor a black hole or a naked singularity. We analyze the properties of these types of solutions and determine their domains of existence. We investigate the energy conditions and present mass formulae for the composite black hole-boson shell systems. We demonstrate that these types of solutions violate black hole uniqueness.

  5. Multi-clad black display panel

    SciTech Connect (OSTI)

    Veligdan, James T.; Biscardi, Cyrus; Brewster, Calvin

    2002-01-01

    A multi-clad black display panel, and a method of making a multi-clad black display panel, are disclosed, wherein a plurality of waveguides, each of which includes a light-transmissive core placed between an opposing pair of transparent cladding layers and a black layer disposed between transparent cladding layers, are stacked together and sawed at an angle to produce a wedge-shaped optical panel having an inlet face and an outlet face.

  6. Black hole birth captured by cosmic voyeurs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Black hole birth captured by cosmic voyeurs Black hole birth captured by cosmic voyeurs The RAPTOR system is a network of small robotic observatories that scan the skies for optical anomalies such as flashes emanating from a star in its death throes as it collapses and becomes a black hole. November 21, 2013 Los Alamos National Laboratory astrophysicist Tom Vestrand poses with a telescope array that is part of the RAPTOR (RAPid Telescopes for Optical Response) system. RAPTOR is an intelligent

  7. Reserves in western basins: Part 1, Greater Green River basin

    SciTech Connect (OSTI)

    Not Available

    1993-10-01

    This study characterizes an extremely large gas resource located in low permeability, overpressured sandstone reservoirs located below 8,000 feet drill depth in the Greater Green River basin, Wyoming. Total in place resource is estimated at 1,968 Tcf. Via application of geologic, engineering and economic criteria, the portion of this resource potentially recoverable as reserves is estimated. Those volumes estimated include probable, possible and potential categories and total 33 Tcf as a mean estimate of recoverable gas for all plays considered in the basin. Five plays (formations) were included in this study and each was separately analyzed in terms of its overpressured, tight gas resource, established productive characteristics and future reserves potential based on a constant $2/Mcf wellhead gas price scenario. A scheme has been developed to break the overall resource estimate down into components that can be considered as differing technical and economic challenges that must be overcome in order to exploit such resources: in other words, to convert those resources to economically recoverable reserves. Total recoverable reserves estimates of 33 Tcf do not include the existing production from overpressured tight reservoirs in the basin. These have estimated ultimate recovery of approximately 1.6 Tcf, or a per well average recovery of 2.3 Bcf. Due to the fact that considerable pay thicknesses can be present, wells can be economic despite limited drainage areas. It is typical for significant bypassed gas to be present at inter-well locations because drainage areas are commonly less than regulatory well spacing requirements.

  8. National Conference of Black Mayors, Inc.

    Broader source: Energy.gov [DOE]

    The cooperative agreement enhances the National Conference of Black Mayors, Inc., members' capacity for energy and environmental planning through computer-based technology, Internet access, and a...

  9. Black Coral Capital | Open Energy Information

    Open Energy Info (EERE)

    Coral Capital Jump to: navigation, search Name: Black Coral Capital Address: 55 Union Street, 3rd Floor Place: Boston, Massachusetts Zip: 02108 Region: Greater Boston Area Product:...

  10. Black Mountain Insulation | Open Energy Information

    Open Energy Info (EERE)

    Mountain Insulation Jump to: navigation, search Name: Black Mountain Insulation Place: United Kingdom Sector: Carbon Product: UK-based manufacturer of sheeps wool insulation which...

  11. Black carbon contribution to global warming

    SciTech Connect (OSTI)

    Chylek, P.; Johnson, B.; Kou, L.; Wong, J.

    1996-12-31

    Before the onset of industrial revolution the only important source of black carbon in the atmosphere was biomass burning. Today, black carbon production is divided between the biomass and fossil fuel burning. Black carbon is a major agent responsible for absorption of solar radiation by atmospheric aerosols. Thus black carbon makes other aerosols less efficient in their role of reflecting solar radiation and cooling the earth-atmosphere system. Black carbon also contributes to the absorption of solar radiation by clouds and snow cover. The authors present the results of black carbon concentrations measurements in the atmosphere, in cloud water, in rain and snow melt water collected during the 1992--1996 time period over the southern Nova Scotia. Their results are put into the global and historical perspective by comparing them with the compilation of past measurements at diverse locations and with their measurements of black carbon concentrations in the Greenland and Antarctic ice cores. Black carbon contribution to the global warming is estimated, and compared to the carbon dioxide warming, using the radiative forcing caused by the black carbon at the top of the atmosphere.

  12. Black Hills Energy (Electric) - Residential Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    Water Heater: 450 Refrigerator: 30unit Freezer: 30unit Dishwasher: 30unit Television: 25unit CFLLED Bulbs: In-store rebates Summary Black Hills Energy (BHE) offers...

  13. Efficient Nanostructured Silicon (Black Silicon) PV Devices ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Traditional AR coatings however, add significant cost to the solar cell manufacturing process. NREL scientists have devised a method and created a nanostructured Si wafer, or black ...

  14. Strengthening Our Partnerships with Historically Black Colleges...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Addthis Strengthening Our Partnerships with Historically Black Colleges and Universities Secretary Chu Secretary Chu Former Secretary of Energy Last February, President Obama ...

  15. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for January, February, and March 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-04-01

    This report describes the results of groundwater monitoring near the K Basins for the period January, February, and March 2007.

  16. Geothermal Resources Of California Sedimentary Basins | Open...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Conference Paper: Geothermal Resources Of California Sedimentary Basins Abstract The 2004 Department of Energy...

  17. Late Paleozoic structural evolution of Permian basin

    SciTech Connect (OSTI)

    Ewing, T.E.

    1984-04-01

    The southern Permian basin is underlain by the NNW-trending Central Basin disturbed belt of Wolfcamp age (Lower Permian), the deep Delaware basin to its west, and the shallower Midland basin to its eat. The disturbed belt is highly segmented with zones of left-lateral offset. Major segments from south to north are: the Puckett-Grey Ranch zone; the Fort Stockton uplift; the Monahans transverse zone; the Andector ridges and the Eunice ridge; the Hobbs transverse zone; and the Tatum ridges, which abut the broad Roosevelt uplift to the north. The disturbed belt may have originated along rift zones of either Precambrian or Cambrian age. The extent of Lower and Middle Pennsylvanian deformation is unclear; much of the Val Verde basin-Ozona arch structure may have formed then. The main Wolfcamp deformation over thrust the West Texas crustal block against the Delaware block, with local denudation of the uplifted edge and eastward-directed backthrusting into the Midland basin. Latter in the Permian, the area was the center of a subcontinental bowl of subsidence - the Permian basin proper. The disturbed belt formed a pedestal for the carbonate accumulations which created the Central Basin platform. The major pre-Permian reservoirs of the Permian basin lie in large structural and unconformity-bounded traps on uplift ridges and domes. Further work on the regional structural style may help to predict fracture trends, to assess the timing of oil migration, and to evaluate intrareservoir variations in the overlying Permian giant oil fields.

  18. Causticizing for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Scott Sinquefeld; James Cantrell; Xiaoyan Zeng; Alan Ball; Jeff Empie

    2009-01-07

    The cost-benefit outlook of black liquor gasification (BLG) could be greatly improved if the smelt causticization step could be achieved in situ during the gasification step. Or, at a minimum, the increase in causticizing load associated with BLG could be mitigated. A number of chemistries have been proven successful during black liquor combustion. In this project, three in situ causticizing processes (titanate, manganate, and borate) were evaluated under conditions suitable for high temperature entrained flow BLG, and low temperature steam reforming of black liquor. The evaluation included both thermodynamic modeling and lab experimentation. Titanate and manganate were tested for complete direct causticizing (to thus eliminate the lime cycle), and borates were evaluated for partial causticizing (to mitigate the load increase associated with BLG). Criteria included high carbonate conversion, corresponding hydroxide recovery upon hydrolysis, non process element (NPE) removal, and economics. Of the six cases (three chemistries at two BLG conditions), only two were found to be industrially viable: titanates for complete causticizing during high temperature BLG, and borates for partial causticizing during high temperature BLG. These two cases were evaluated for integration into a gasification-based recovery island. The Larsen [28] BLG cost-benefit study was used as a reference case for economic forecasting (i.e. a 1500 tpd pulp mill using BLG and upgrading the lime cycle). By comparison, using the titanate direct causticizing process yielded a net present value (NPV) of $25M over the NPV of BLG with conventional lime cycle. Using the existing lime cycle plus borate autocausticizing for extra capacity yielded a NPV of $16M.

  19. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Jun Wei

    2005-03-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  20. Extraordinary vacuum black string solutions

    SciTech Connect (OSTI)

    Kim, Hyeong-Chan; Lee, Jungjai

    2008-01-15

    In addition to the boosted static solution there are two other classes of stationary stringlike solutions of the vacuum Einstein equation in (4+1) dimensions. Each class is characterized by three parameters of mass, tension, and momentum flow along the fifth coordinate. We analyze the metric properties of one of the two classes, which was previously assumed to be naked singular, and show that the solution spectrum contains black string and wormhole in addition to the known naked singularity as the momentum flow to mass ratio increases. Interestingly, there does not exist new zero momentum solution in these cases.

  1. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2001-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. EPA requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard and must consider inadvertent drilling into the repository at some future time.

  2. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for October, November, and December 2006

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-03-22

    This report provides information on groundwater monitoring at the K Basins during October, November, and December 2006. Conditions remained very similar to those reported in the previous quarterly report, with no evidence in monitoring results to suggest groundwater impact from current loss of basin water to the ground. The K Basins monitoring network will be modified in the coming months as a consequence of new wells having been installed near KW Basin as part of a pump-and-treat system for chromium contamination, and new wells installed between the KE Basin and the river to augment long-term monitoring in that area.

  3. Secondary oil recovery from selected Carter sandstone oilfields--Black Warrior Basin, Alabama. Final report

    SciTech Connect (OSTI)

    Anderson, J.C.

    1995-02-01

    Producibility problems, such as low reservoir pressure and reservoir heterogeneity, have severely limited oil production from the Central Bluff and North Fairview fields. Specific objectives for this project were: To successfully apply detailed geologic and engineering studies with conventional waterflood technologies to these fields in an effort to increase the ultimate economic recovery of oil from Carter sandstone fields; To extensively model, test and evaluate these technologies; thereby, developing a sound methodology for their use and optimization; and To team with Advanced Resources International and the US DOE to assimilate and transfer the information and results gathered from this study to other oil companies to encourage the widespread use of these technologies. At Central Bluff, water injection facilities were constructed and water injection into one well began in January 1993. Oil response from the waterflood has been observed at both producing wells. One of the producing wells has experienced early water breakthrough and a concomitant drop in secondary oil rate. A reservoir modeling study was initiated to help develop an appropriate operating strategy for Central Bluff. For the North Fairview unit waterflood, a previously abandoned well was converted for water injection which began in late June 1993. The reservoir is being re-pressurized, and unit water production has remained nil since flood start indicating the possible formation of an oil bank. A reservoir simulation to characterize the Carter sand at North Fairview was undertaken and the modeling results were used to forecast field performance. The project was terminated due to unfavorable economics. The factors contributing to this decision were premature water breakthrough at Central Bluff, delayed flood response at North Fairview and stalled negotiations at the South Bluff site.

  4. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-04-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  5. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Alireza Rezaie

    2004-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  6. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-10-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected/developed that either react with the gasifier environment to form protective surfaces in-situ; and

  7. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang

    2005-07-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  8. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Liang; Jun Wei

    2005-01-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  9. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  10. REFRACTORY FOR BLACK LIQUOR GASIFIERS

    SciTech Connect (OSTI)

    William L. Headrick Jr.; Alireza Rezaie

    2003-12-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  11. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie; Xiaoting Liang; Musa Karakus; Jun Wei

    2005-12-01

    The University of Missouri-Rolla identified materials that permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project was to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study attempted to define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials were selected or developed that reacted with the gasifier environment to form protective surfaces in-situ; and

  12. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Alireza Rezaie

    2003-08-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  13. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    Robert E. Moore; William L. Headrick; Alireza Rezaie

    2003-03-31

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the materials problems encountered during the operation of low-pressure high-temperature (LFHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  14. Big Island Demonstration Project - Black Liquor

    SciTech Connect (OSTI)

    2006-08-01

    Black liquor is a papermaking byproduct that also serves as a fuel for pulp and paper mills. This project involves the design, construction, and operation of a black liquor gasifier that will be integrated into Georgia-Pacific's Big Island facility in Virginia, a mill that has been in operation for more than 100 years.

  15. Barrow Black Carbon Source and Impact Study Final Campaign Report...

    Office of Scientific and Technical Information (OSTI)

    Barrow Black Carbon Source and Impact Study Final Campaign Report Citation Details In-Document Search Title: Barrow Black Carbon Source and Impact Study Final Campaign Report The ...

  16. Cuttings Analysis At Black Warrior Area (DOE GTP) | Open Energy...

    Open Energy Info (EERE)

    Black Warrior Area (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Cuttings Analysis At Black Warrior Area (DOE GTP) Exploration...

  17. Normal Modes of Black Hole Accretion Disks (Technical Report...

    Office of Scientific and Technical Information (OSTI)

    the modes for different values of the mass and angular momentum of the central black hole. ... PARTICLES AND FIELDS; ACCRETION DISKS; ANGULAR MOMENTUM; BLACK HOLES; EIGENFUNCTIONS; ...

  18. Energy and information near black hole horizons (Journal Article...

    Office of Scientific and Technical Information (OSTI)

    Energy and information near black hole horizons Citation Details In-Document Search Title: Energy and information near black hole horizons The central challenge in trying to ...

  19. Novel mechanism for vorticity generation in black-hole accretion...

    Office of Scientific and Technical Information (OSTI)

    Novel mechanism for vorticity generation in black-hole accretion disks Prev Next Title: Novel mechanism for vorticity generation in black-hole accretion disks Authors: ...

  20. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released ...

  1. Northwest Basin and Range Geothermal Region | Open Energy Information

    Open Energy Info (EERE)

    Basin and Range Geothermal Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Northwest Basin and Range Geothermal Region Details Areas (51) Power Plants (10)...

  2. Structure and Groundwater Flow in the Espanola Basin Near Rio...

    Office of Environmental Management (EM)

    Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman Wellfield Structure and Groundwater Flow in the Espanola Basin Near Rio Grande and Buckman...

  3. CRAD, Emergency Management - Office of River Protection K Basin...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Emergency Management - Office of River Protection K Basin Sludge Waste System CRAD, Emergency Management - Office of River Protection K Basin Sludge Waste System May 2004 A section ...

  4. PP-64 Basin Electric Power Cooperative | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Basin Electric Power Cooperative to construct, operate, and maintain transmission facilities at the U.S. - Canada Border. PDF icon PP-64 Basin Electric Power Cooperative More ...

  5. Geographic Information System At Nw Basin & Range Region (Nash...

    Open Energy Info (EERE)

    Nw Basin & Range Region (Nash & Johnson, 2003) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geographic Information System At Nw Basin & Range...

  6. Judith Basin County, Montana: Energy Resources | Open Energy...

    Open Energy Info (EERE)

    6 Climate Zone Subtype B. Places in Judith Basin County, Montana Hobson, Montana Stanford, Montana Retrieved from "http:en.openei.orgwindex.php?titleJudithBasinCounty,...

  7. Climate Change and the Macroeconomy in the Caribbean Basin: Analysis...

    Open Energy Info (EERE)

    in the Caribbean Basin: Analysis and Projections to 2099 Jump to: navigation, search Name Climate Change and the Macroeconomy in the Caribbean Basin: Analysis and Projections to...

  8. L-Shaped Flume Wave Basin | Open Energy Information

    Open Energy Info (EERE)

    L-Shaped Flume Wave Basin Jump to: navigation, search Basic Specifications Facility Name L-Shaped Flume Wave Basin Overseeing Organization United States Army Corp of Engineers...

  9. Refractory for Black Liquor Gasifiers

    SciTech Connect (OSTI)

    William L. Headrick Jr; Musa Karakus; Xiaoting Laing

    2005-10-01

    The University of Missouri-Rolla will identify materials that will permit the safe, reliable and economical operation of combined cycle gasifiers by the pulp and paper industry. The primary emphasis of this project will be to resolve the material problems encountered during the operation of low-pressure high-temperature (LPHT) and low-pressure low-temperature (LPLT) gasifiers while simultaneously understanding the materials barriers to the successful demonstration of high-pressure high-temperature (HPHT) black liquor gasifiers. This study will define the chemical, thermal and physical conditions in current and proposed gasifier designs and then modify existing materials and develop new materials to successfully meet the formidable material challenges. Resolving the material challenges of black liquor gasification combined cycle technology will provide energy, environmental, and economic benefits that include higher thermal efficiencies, up to three times greater electrical output per unit of fuel, and lower emissions. In the near term, adoption of this technology will allow the pulp and paper industry greater capital effectiveness and flexibility, as gasifiers are added to increase mill capacity. In the long term, combined-cycle gasification will lessen the industry's environmental impact while increasing its potential for energy production, allowing the production of all the mill's heat and power needs along with surplus electricity being returned to the grid. An added benefit will be the potential elimination of the possibility of smelt-water explosions, which constitute an important safety concern wherever conventional Tomlinson recovery boilers are operated. Developing cost-effective materials with improved performance in gasifier environments may be the best answer to the material challenges presented by black liquor gasification. Refractory materials may be selected/developed that either react with the gasifier environment to form protective surfaces in

  10. EIS-0478: Record of Decision | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    78: Record of Decision EIS-0478: Record of Decision Antelope Valley Station to Neset Transmission Project, Mercer, Dunn, Billings, Williams, McKenzie, and Mountrail Counties, North Dakota DOE's Western Area Power Administration issued a record of decision to grant Basin Electric Power Cooperative's request to interconnect the Antelope Valley Station to Neset Transmission Project to Western's Williston Substation and Williston to Charlie Creek transmission line. EIS-0478-ROD-2014.pdf (195.66 KB)

  11. Regional geology and petroleum potential of Bakken Formation, southwestern Manitoba

    SciTech Connect (OSTI)

    Martiniuk, C.D.

    1988-07-01

    The Bakken Formation has been documented as an excellent petroleum source rock within the Williston basin and has, in some localities, been established as a producing zone. Recent exploration in the Daly field of southwestern Manitoba has led to the discovery and subsequent development of several oil pools within the middle member of the Bakken. The 21 active wells within these pools have produced 20,773.8 m/sup 3/ (130,667.2 bbl) of oil (40.2/degrees/ API) as of December 31, 1987. Through much of the Williston basin, the Bakken typically consists of three members: a lower, highly radioactive, black shale member; a middle siltstone member; and an upper black shale member (identical to the lower member). In southwestern Manitoba, the lower member is absent in most areas due to nondeposition and overstep of the overlying middle member. In these areas, the middle member unconformably overlies eroded red dolomitic shales of the Devonian Lyleton (Three Forks) Formation. The middle member is a relatively uniform blanket deposit averaging 4 m (13 ft) thick. It consists of interbedded tan to greenish-gray, very fine to medium-grained, well-sorted dolomitic sandstone and siltstone with angular to subrounded grains. Oil accumulation in the middle member is largely the result of stratigraphic trapping and appears, in part, to be localized where a basal sandstone (associated with middle member thickening) is concentrated in minor erosional lows on the Lyleton surface. The black shales of the upper member form a thin (2 m or 6.6 ft average), uniform cap throughout the map area and are overlain by the carbonates of the Mississippian Lodgepole Formation (Souris Valley Beds). Maximum thickness of the Bakken reaches 32 m (105 ft) in the Waskada field area, where the lower shale member is locally present.

  12. Delaware basin/Central basin platform margin: The development of a subthrust deep-gas province in the Permian Basin

    SciTech Connect (OSTI)

    Purves, W.J. ); Ting, S.C. )

    1990-05-01

    A deep-gas-prone province was identified along the Delaware basin/Central Basin platform margin, a margin conventionally interpreted to be bounded by high-angle normal or high-angle reverse structures. Redefinition of the tectonic style between the Delaware basin and the adjacent platform resulted in the identification of this Delaware basin/Central Basin platform subthrust province and a giant prospect within it. Definition of a giant-sized gas prospect in northern Pecos County, Texas, revealed that portions of this margin may be characterized by shingled, low-angle, eastward-dipping, basement involved thrust faults. Interpretations suggest that hidden, subthrust footwall structures may trend discontinuously for greater than 100 mi along this structural margin. Subthrust footwall structures formed as basinal buttress points for the Central Basin platform to climb over the Delaware basin. In this area, structural relief of over 19,000 ft over a 10-mi width is believed due to stacking of low-angle thrust sheets. Seismic resolution of this subthrust margin has been complexed by allochtonous hanging-wall gravity-glide blocks and folds and by velocity changes in overlying syn- and posttectonic sediments associated with basin-to-shelf lithofacies changes. Statistical studies indicate that this deep-gas province has a play potential of greater than 10 tcf of gas, with individual prospect sizes exceeding 1 tcfg. The prospects defined along this trend are deep (approximately 20,000 ft) subthrust structural traps that are indigenously sourced and reservoired by dual-matrix porosity. Vitrinite supported maturation modeling suggests that these subthrust structures formed prior to catagenic conversion of the oldest source rocks to oil and later to gas. Tectonically fractured Ordovician Ellenburger and Devonian sediments are considered the principal reservoirs. Shales overlying reservoir intervals form vertical seals.

  13. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2003-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  14. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2004-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  15. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2002-09-21

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  16. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services

    1999-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  17. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2000-09-28

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  18. Delaware Basin Monitoring Annual Report

    SciTech Connect (OSTI)

    Washington Regulatory and Environmental Services; Washington TRU Solutions LLC

    2005-09-30

    The Delaware Basin Drilling Surveillance Program (DBDSP) is designed to monitor drilling activities in the vicinity of the Waste Isolation Pilot Plant (WIPP). This program is based on Environmental Protection Agency (EPA) requirements. The EPA environmental standards for the management and disposal of transuranic (TRU) radioactive waste are codified in 40 CFR Part 191 (EPA 1993). Subparts B and C of the standard address the disposal of radioactive waste. The standard requires the Department of Energy (DOE) to demonstrate the expected performance of the disposal system using a probabilistic risk assessment or performance assessment (PA). This PA must show that the expected repository performance will not release radioactive material above limits set by the EPA's standard. This assessment must include the consideration of inadvertent drilling into the repository at some future time.

  19. Early black hole signals at the LHC

    SciTech Connect (OSTI)

    Koch, Ben; Bleicher, Marcus; Stoecker, Horst

    2007-10-26

    The production of mini black holes due to large extra dimensions is a speculative but possible scenario. We survey estimates for di-jet suppression, and multi-mono-jet emission due to black hole production. We further look for a possible sub-scenario which is the formation of a stable or meta-stable black hole remnant (BHR). We show that the beauty of such objects is, that they are relatively easy to observe, even in the early phase of LHC running.

  20. K Basins isolation barriers summary report

    SciTech Connect (OSTI)

    Strickland, G.C., Westinghouse Hanford

    1996-07-31

    The 105-K East and 105-K West fuel storage basins (105-K Basins) were designed and constructed in the early 1950`s for interim storage of irradiated fuel following its discharge from the reactors. The 105-K- East and 105-K West reactor buildings were constructed first, and the associated storage basins were added about a year later. The construction joint between each reactor building structure and the basin structure included a flexible membrane waterstop to prevent leakage. Water in the storage basins provided both radiation shielding and cooling to remove decay heat from stored fuel until its transfer to the Plutonium Uranium Extraction (PUREX) Facility for chemical processing. The 105-K West Reactor was permanently shut down in February 1970; the 105-K East Reactor was permanently shut down in February 1971. Except for a few loose pieces, fuel stored in the basins at that time was shipped to the PUREX Facility for processing. The basins were then left idle but were kept filled with water. The PUREX Facility was shut down and placed on wet standby in 1972 while N Reactor continued to operate. When the N Reactor fuel storage basin began to approach storage capacity, the decision was made to modify the fuel storage basins at 105-K East and 105-K West to provide additional storage capacity. Both basins were subsequently modified (105-K East in 1975 and 105-K West in 1981) to provide for the interim handling and storage of irradiated N Reactor fuel. The PUREX Facility was restarted in November 1983 to provide 1698 additional weapons-grade plutonium for the United States defense mission. The facility was shut down and deactivated in December 1992 when the U.S. Department of Energy (DOE) determined that the plant was no longer needed to support weapons-grade plutonium production. When the PUREX Facility was shut down, approximately 2.1 x 1 06 kg (2,100 metric tons) of irradiated fuel aged 7 to 23 years was left in storage in the 105-K Basins pending a decision on

  1. Department of Energy Research Opportunities for Historically Black Colleges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Universities | Department of Energy Department of Energy Research Opportunities for Historically Black Colleges and Universities Department of Energy Research Opportunities for Historically Black Colleges and Universities Information about the Department's laboratories, funding opportunities, partnerships with Historically Black Colleges and Universities, WDTS Program Mission. Department of Energy Research Opportunities for Historically Black Colleges and Universities (472.61 KB) More

  2. File:EIA-Williston-S-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  3. File:EIA-Williston-NE-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  4. File:EIA-Williston-NW-Liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  5. File:EIA-Williston-NW-BOE.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  6. File:EIA-Williston-NE-Liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  7. File:EIA-Williston-S-Liquids.pdf | Open Energy Information

    Open Energy Info (EERE)

    Samuel H. Limerick; Lucy Luo; Gary Long; David F. Morehouse; Jack Perrin; Robert F. King Related Technologies Oil, Natural Gas Creation Date 2005-09-01 Extent Regional...

  8. EA-64-A Basin Electric Power Cooperative | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    -A Basin Electric Power Cooperative EA-64-A Basin Electric Power Cooperative Order authorizing Basin Electric Power Cooperative to export electric energy to Canada EA-64-A Basin Electric Power Cooperative (1.87 MB) More Documents & Publications EA-64

  9. K Basins Sludge Treatment Process | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Process K Basins Sludge Treatment Process Full Document and Summary Versions are available for download K Basins Sludge Treatment Process (27.17 MB) Summary - K Basins Sludge Treatment Process (185.69 KB) More Documents & Publications Compilation of TRA Summaries K Basins Sludge Treatment Project Phase 1 Technology Readiness Assessment (TRA)/Technology Maturation Plan (TMP) Process Guide

  10. K Basins Groundwater Monitoring Task, K Basins Closure Project: Report for April, May, and June 2007

    SciTech Connect (OSTI)

    Peterson, Robert E.

    2007-08-08

    This report provides information on groundwater monitoring near the K Basins during April, May, and June 2007. Conditions remained similar to those reported in the previous quarters report, with no evidence in monitoring results to suggest groundwater impact from current loss of shielding water from either basin to the ground. During the current quarter, the first results from two new wells installed between KE Basin and the river became available. Groundwater conditions at each new well are reasonably consistent with adjacent wells and expectations, with the exception of anomalously high chromium concentrations at one of the new wells. The K Basins monitoring network will be modified for FY 2008 to take advantage of new wells recently installed near KW Basin as part of a pump-and-treat system for chromium contamination, and also the new wells recently installed between the KE Basin and the river, which augment long-term monitoring capability in that area.

  11. Geologic Analysis of Priority Basins for Exploration and Drilling

    SciTech Connect (OSTI)

    Carroll, H.B.; Reeves, T.K.

    1999-04-27

    There has been a substantial decline in both exploratory drilling and seismic field crew activity in the United States over the last 10 years, due primarily to the declining price of oil. To reverse this trend and to preserve the entrepreneurial independent operator, the U.S. DOE is attempting to encourage hydrocarbon exploration activities in some of the under exploited regions of the United States. This goal is being accomplished by conducting broad regional reviews of potentially prospective areas within the lower 48 states. Data are being collected on selected areas, and studies are being done on a regional scale generally unavailable to the smaller independent. The results of this work will be made available to the public to encourage the undertaking of operations in areas which have been overlooked until this project. Fifteen criteria have been developed for the selection of study areas. Eight regions have been identified where regional geologic analysis will be performed. This report discusses preliminary findings concerning the geology, early tectonic history, structure and potential unconventional source rocks for the Black Mesa basin and South Central states region, the two highest priority study areas.

  12. Spectral line broadening in magnetized black holes

    SciTech Connect (OSTI)

    Frolov, Valeri P.; Shoom, Andrey A.; Tzounis, Christos E-mail: ashoom@ualberta.ca

    2014-07-01

    We consider weakly magnetized non-rotating black holes. In the presence of a regular magnetic field the motion of charged particles in the vicinity of a black hole is modified. As a result, the position of the innermost stable circular orbit (ISCO) becomes closer to the horizon. When the Lorentz force is repulsive (directed from the black hole) the ISCO radius can reach the gravitational radius. In the process of accretion charged particles (ions) of the accreting matter can be accumulated near their ISCO, while neutral particles fall down to the black hole after they reach 6M radius. The sharp spectral line Fe α, emitted by iron ions at such orbits, is broadened when the emission is registered by a distant observer. In this paper we study this broadening effect and discuss how one can extract information concerning the strength of the magnetic field from the observed spectrum.

  13. black out | OpenEI Community

    Open Energy Info (EERE)

    Dc(266) Contributor 31 October, 2014 - 10:58 What do you know about the grid? black out brown out bulk power system electricity grid future grid grid history security Smart Grid...

  14. Black Emerald Group | Open Energy Information

    Open Energy Info (EERE)

    Group Jump to: navigation, search Name: Black Emerald Group Address: 4 Park Place Place: London, United Kingdom Zip: SW1A 1LP Product: Investment banking firm specializing in...

  15. Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge Black Pine Engineering Wins Clean Energy Trust Clean Energy Challenge April 11, 2014 - 11:20am Addthis Black Pine Engineering's pilot compressor in California. The team won the Clean Energy Trust Clean Energy Challenge, securing its spot as a regional finalist in the National Clean Energy Business Plan Competition. | Photo courtesy of Black Pine Engineering Black Pine Engineering's pilot compressor in

  16. Black Silicon Etching - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Photovoltaic Solar Photovoltaic Find More Like This Return to Search Black Silicon Etching Award-winning, efficient, and inexpensive photovoltaic technology National Renewable Energy Laboratory Contact NREL About This Technology Three silicon wafers, showing absorbed light: (left) micron-scale texture, (center) NREL&rsquo;s Black Silicon Etch, and (right) micron-scale texture with an antireflective coating. Three silicon wafers, showing absorbed light: (left) micron-scale texture,

  17. Fifteenmile Basin Habitat Enhancement Project: Annual Report...

    Office of Scientific and Technical Information (OSTI)

    This goal was addressed under the Columbia River Basin Fish and Wildlife Program, Measure 703 (c) (1) - Action Item 4.2. Construction of fish habitat structures was completed on ...

  18. Progress Update: H4 Basin Concrete Pour

    ScienceCinema (OSTI)

    None

    2012-06-14

    The Recovery Act funded project in the H area basin. A concrete ditch built longer than half a mile to prevent contaminated water from expanding and to reduce the footprint on the environment.

  19. Carderock Maneuvering & Seakeeping Basin | Open Energy Information

    Open Energy Info (EERE)

    6.1 Water Type Freshwater Cost(per day) Contact POC Special Physical Features 10.7m deep x 15.2m wide trench along length of tank; the Maneuvering & Seakeeping Basin is spanned...

  20. K-Basins S/RIDS

    SciTech Connect (OSTI)

    Watson, D.J.

    1997-08-01

    The Standards/Requirements Identification Document (S/RID) is a list of the Environmental, Safety, and Health (ES{ampersand}H) and Safeguards and Security (SAS) standards/requirements applicable to the K Basins facility.

  1. 183-H Basin sludge treatability test report

    SciTech Connect (OSTI)

    Biyani, R.K.

    1995-12-31

    This document presents the results from the treatability testing of a 1-kg sample of 183-H Basin sludge. Compressive strength measurements, Toxic Characteristic Leach Procedure, and a modified ANSI 16.1 leach test were conducted

  2. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-11

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  3. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-04-28

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  4. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-02-10

    Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, strategy is to inject CO{sub 2} into organic-rich shales of Devonian age. Devonian black shales underlie approximately two-thirds of Kentucky and are generally thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to the way methane is stored in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane at a ratio of two to one. Black shales may similarly desorb methane in the presence of CO{sub 2}. If black shales similarly desorb methane in the presence of CO{sub 2}, the shales may be an excellent sink for CO{sub 2} with the added benefit of serving to enhance natural gas production. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject this research. To accomplish this investigation, drill cuttings and cores will be selected from the Kentucky Geological Survey Well Sample and Core Library. CO{sub 2} adsorption analyses will be performed in order to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, new drill cuttings and sidewall core samples will be acquired to investigate specific black-shale facies, their uptake of CO{sub 2}, and the resultant displacement of methane. Advanced logging techniques (elemental capture spectroscopy) will be used to investigate possible correlations between adsorption capacity and geophysical log measurements.

  5. Hydrogeochemical Indicators for Great Basin Geothemal Resources

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogeochemical Indicators for Great Basin Geothermal Resources Project Officer: Eric Hass Total Project Funding: $1.2 million April 24, 2013 This presentation does not contain any proprietary confidential, or otherwise restricted information. Principal Investigator Stuart F Simmons Colorado School of Mines 2 | US DOE Geothermal Office eere.energy.gov Relevance/Impact of Research * Determine fundamental controls on fluid-mineral equilibria in six geothermal systems across the Great Basin to

  6. Tectonics, eustasy, and sequence stratigraphy - The Middle Pennsylvanian-Wolfcampian of the Permian basin

    SciTech Connect (OSTI)

    Sarg, J.F. )

    1992-04-01

    The depositional patterns of sedimentary rocks are controlled by the interaction of tectonics, eustasy, and sediment supply. Tectonics and eustasy combine to cause relative changes of sea level that control the accommodation space for sediments. Sediment supply controls how much of the accommodation space is filled. Tectonics has the greatest effect on accommodation. Long-term basin fill histories are interpreted as first-order tectonic events. Second-order tectonic events are initiated by increase in the rate of subsidence that progressively decay and may culminate in a period of uplift or structural growth. Three second-order tectonic events characterize the middle-late Paleozoic history of the Permian basin. These events occur over tens of millions of years and are (1) Givetian-Meramecian, (2) Chesterian-Desmoinesian, and (3) Missourian-Guadalupian. Sediment response to these tectonic events include initial backstepping carbonate platform deposition, followed by deepening and starvation of the basin areas resulting in black shale deposition. Eustasy controls the rate of relative sea level change and is the major controlling factor on the timing of stratigraphic discontinuities. The discontinuities bound sequences and subdivide them into systems tracts. The Middle Pennsylvanian-Wolfcampian of the Permian basin can be subdivided into 19-21 third-order sequences (1-5-m.y. duration) and include six Desmoinesian, four Missourian, five to six Virgilian, and four to five Wolfcampian cycles. The cyclothems of the mid-continent represent higher order depositional sequences that stack in an orderly fashion to comprise the systems tracts of the third-order sequences.

  7. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment...

    Broader source: Energy.gov (indexed) [DOE]

    PROBLEM: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server. PLATFORM: * BlackBerry Enterprise Server Express version...

  8. Rotating black hole thermodynamics with a particle probe

    SciTech Connect (OSTI)

    Gwak, Bogeun; Lee, Bum-Hoon

    2011-10-15

    The thermodynamics of Myers-Perry black holes in general dimensions are studied using a particle probe. When undergoing particle absorption, the changes of the entropy and irreducible mass are shown to be dependent on the particle radial momentum. The black hole thermodynamic behaviors are dependent on dimensionality for specific rotations. For a 4-dimensional Kerr black hole, its black hole properties are maintained for any particle absorption. 5-dimensional black holes can avoid a naked ring singularity by absorbing a particle in specific momenta ranges. Black holes over 6 dimensions become ultraspinning black holes through a specific form of particle absorption. The microscopical changes are interpreted in limited cases of Myers-Perry black holes using Kerr/CFT correspondence. We systematically describe the black hole properties changed by particle absorption in all dimensions.

  9. EA-1896: Draft Environmental Assessment

    Broader source: Energy.gov [DOE]

    Williston to Stateline Transmission Line Project, Mountrail Williams Electric Cooperative, Williston, ND

  10. Tularosa Basin Play Fairway Analysis: Partial Basin and Range Heat and Zones of Critical Stress Maps

    SciTech Connect (OSTI)

    Adam Brandt

    2015-11-15

    Interpolated maps of heat flow, temperature gradient, and quartz geothermometers are included as TIF files. Zones of critical stress map is also included as a TIF file. The zones are given a 5km diameter buffer. The study area is only a part of the Basin and Range, but it does includes the Tularosa Basin.

  11. THE BLACK HOLE FORMATION PROBABILITY

    SciTech Connect (OSTI)

    Clausen, Drew; Piro, Anthony L.; Ott, Christian D.

    2015-02-01

    A longstanding question in stellar evolution is which massive stars produce black holes (BHs) rather than neutron stars (NSs) upon death. It has been common practice to assume that a given zero-age main sequence (ZAMS) mass star (and perhaps a given metallicity) simply produces either an NS or a BH, but this fails to account for a myriad of other variables that may effect this outcome, such as spin, binarity, or even stochastic differences in the stellar structure near core collapse. We argue that instead a probabilistic description of NS versus BH formation may be better suited to account for the current uncertainties in understanding how massive stars die. We present an initial exploration of the probability that a star will make a BH as a function of its ZAMS mass, P {sub BH}(M {sub ZAMS}). Although we find that it is difficult to derive a unique P {sub BH}(M {sub ZAMS}) using current measurements of both the BH mass distribution and the degree of chemical enrichment by massive stars, we demonstrate how P {sub BH}(M {sub ZAMS}) changes with these various observational and theoretical uncertainties. We anticipate that future studies of Galactic BHs and theoretical studies of core collapse will refine P {sub BH}(M {sub ZAMS}) and argue that this framework is an important new step toward better understanding BH formation. A probabilistic description of BH formation will be useful as input for future population synthesis studies that are interested in the formation of X-ray binaries, the nature and event rate of gravitational wave sources, and answering questions about chemical enrichment.

  12. Petroleum geology of principal sedimentary basins in eastern China

    SciTech Connect (OSTI)

    Lee, K.Y.

    1986-05-01

    The principal petroliferous basins in eastern China are the Songliao, Ordos, and Sichuan basins of Mesozoic age, and the North China, Jianghan, Nanxiang, and Subei basins of Cenozoic age. These basins contain mostly continental fluvial and lacustrine detrital sediments. Four different geologic ages are responsible for the oil and gas in this region: (1) Mesozoic in the Songliao, Ordos, and Sichuan basins; (2) Tertiary in the North China, Jianghan, Nanxiang, and Subei basins; (3) Permian-Carboniferous in the southern North China basin and the northwestern Ordos basin; and (4) Sinian in the southern Sichuan basin. The most prolific oil and gas sources are the Mesozoic of the Songliao basin and the Tertiary of the North China basin. Although the major source rocks in these basins are lacustrine mudstone and shale, their tectonic settings and the resultant temperature gradients differ. For example, in the Songliao, North China, and associated basins, trapping conditions commonly are associated with block faulting of an extensional tectonic regime; the extensional tectonics in turn contribute to a high geothermal gradient (40/sup 0/-60/sup 0/C/km), which results in early maturation and migration for relatively shallow deposits. However, the Ordos and Sichuan basins formed under compressional conditions and are cooler. Hence, maturation and migration occurred late, relative to reservoir deposition and burial, the result being a poorer quality reservoir.

  13. Basin-centered gas evaluated in Dnieper-Donets basin, Donbas foldbelt, Ukraine

    SciTech Connect (OSTI)

    Law, B.E.; Ulmishek, G.F.; Clayton, J.L.; Kabyshev, B.P.; Pashova, N.T.; Krivosheya, V.A.

    1998-11-23

    An evaluation of thermal maturity, pore pressures, source rocks, reservoir quality, present-day temperatures, and fluid recovery data indicates the presence of a large basin-centered gas accumulation in the Dnieper-Donets basin (DDB) and Donbas foldbelt (DF) of eastern Ukraine. This unconventional accumulation covers an area of at least 35,000 sq km and extends vertically through as much as 7,000 m of Carboniferous rocks. The gas accumulation is similar, in many respects, to some North American accumulations such as Elmworth in the Alberta basin of western Canada, the Greater Green River basin of southwestern Wyoming, and the Anadarko basin of Oklahoma. Even though rigorous assessments of the recoverable gas have not been conducted in the region, a comparison of the dimensions of the accumulation to similar accumulations in the US indicates gas resources in excess of 100 tcf in place. The paper describes the geology, the reservoirs, source rocks, seals, and recommendations for further study.

  14. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-07-28

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. Initial estimates indicate a sequestration capacity of 5.3 billion tons CO{sub 2} in the Lower Huron Member of the Ohio shale in parts of eastern Kentucky and as much as 28 billion tons total in the deeper and thicker portions of the

  15. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2003-10-29

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  16. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-01-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf/ton) of

  17. ANALYSIS OF DEVONIAN BLACK SHALES IN KENTUCKY FOR POTENTIAL CARBON DIOXIDE SEQUESTRATION AND ENHANCED NATURAL GAS PRODUCTION

    SciTech Connect (OSTI)

    Brandon C. Nuttall

    2004-04-01

    CO{sub 2} emissions from the combustion of fossil fuels have been linked to global climate change. Proposed carbon management technologies include geologic sequestration of CO{sub 2}. A possible, but untested, sequestration strategy is to inject CO{sub 2} into organic-rich shales. Devonian black shales underlie approximately two-thirds of Kentucky and are thicker and deeper in the Illinois and Appalachian Basin portions of Kentucky than in central Kentucky. The Devonian black shales serve as both the source and trap for large quantities of natural gas; total gas in place for the shales in Kentucky is estimated to be between 63 and 112 trillion cubic feet. Most of this natural gas is adsorbed on clay and kerogen surfaces, analogous to methane storage in coal beds. In coals, it has been demonstrated that CO{sub 2} is preferentially adsorbed, displacing methane. Black shales may similarly desorb methane in the presence of CO{sub 2}. The concept that black, organic-rich Devonian shales could serve as a significant geologic sink for CO{sub 2} is the subject of current research. To accomplish this investigation, drill cuttings and cores were selected from the Kentucky Geological Survey Well Sample and Core Library. Methane and carbon dioxide adsorption analyses are being performed to determine the gas-storage potential of the shale and to identify shale facies with the most sequestration potential. In addition, sidewall core samples are being acquired to investigate specific black-shale facies, their potential CO{sub 2} uptake, and the resulting displacement of methane. Advanced logging techniques (elemental capture spectroscopy) are being investigated for possible correlations between adsorption capacity and geophysical log measurements. For the Devonian shale, average total organic carbon is 3.71 percent (as received) and mean random vitrinite reflectance is 1.16. Measured adsorption isotherm data range from 37.5 to 2,077.6 standard cubic feet of CO{sub 2} per ton (scf

  18. Rotating black lens solution in five dimensions

    SciTech Connect (OSTI)

    Chen Yu; Teo, Edward

    2008-09-15

    It has recently been shown that a stationary, asymptotically flat vacuum black hole in five space-time dimensions with two commuting axial symmetries must have an event horizon with either a spherical, ring or lens-space topology. In this paper, we study the third possibility, a so-called black lens with L(n,1) horizon topology. Using the inverse scattering method, we construct a black-lens solution with the simplest possible rod structure, and possessing a single asymptotic angular momentum. Its properties are then analyzed; in particular, it is shown that there must either be a conical singularity or a naked curvature singularity present in the space-time.

  19. Electric field effect in ultrathin black phosphorus

    SciTech Connect (OSTI)

    Koenig, Steven P.; Schmidt, Hennrik; Doganov, Rostislav A.; Castro Neto, A. H.; Özyilmaz, Barbaros

    2014-03-10

    Black phosphorus exhibits a layered structure similar to graphene, allowing mechanical exfoliation of ultrathin single crystals. Here, we demonstrate few-layer black phosphorus field effect devices on Si/SiO{sub 2} and measure charge carrier mobility in a four-probe configuration as well as drain current modulation in a two-point configuration. We find room-temperature mobilities of up to 300 cm{sup 2}/Vs and drain current modulation of over 10{sup 3}. At low temperatures, the on-off ratio exceeds 10{sup 5}, and the device exhibits both electron and hole conduction. Using atomic force microscopy, we observe significant surface roughening of thin black phosphorus crystals over the course of 1 h after exfoliation.

  20. Variation of Radiative Properties During Black Carbon Aging. Theoretical and Experimental Intercomparison

    SciTech Connect (OSTI)

    He, Cenlin; Liou, K. N.; Takano, Y.; Zhang, Renyi; Zamora, Misty L.; Yang, Ping; Li, Qinbin; Leung, Lai-Yung R.

    2015-10-28

    A theoretical model is developed to account for black carbon (BC) aging during three major evolution stages, i.e., freshly emitted aggregates, coated particles by soluble materials, and those after further hygroscopic growth. The geometric-optics surface-wave approach is employed to compute BC single-scattering properties at each stage, which are compared with laboratory measurements. Theoretical predictions using input parameters determined from experiments are consistent with measurements in extinction and scattering cross sections for coated BC (within 30 20%) and absorption enhancement from coating (within 15%). The calculated scattering cross sections of fresh BC aggregates are larger than those experimentally measured, because of uncertainties in measurements and calculations. We apply the aging model to compute BC direct radiative forcing (DRF) over the LA Basin using the CalNex 2010 field measurements. Our results demonstrate that accounting for the interactive radiative properties during BC aging is essential in obtaining reliable DRF estimates within a regional context.

  1. Southern Colombia's Putumayo basin deserves renewed attention

    SciTech Connect (OSTI)

    Matthews, A.J. ); Portilla, O. )

    1994-05-23

    The Putumayo basin lies in southern Colombia between the Eastern Cordillera of the Andes and the Guyana-Brazilian shield. It covers about 50,000 sq km between 0--3[degree]N. Lat. and 74--77[degree]W. Long. and extends southward into Ecuador and Peru as the productive Oriente basin. About 3,500 sq km of acreage in the basin is being offered for licensing in the first licensing round by competitive tender. A recent review of the available data from this area by Intera and Ecopetrol suggests that low risk prospects and leads remain to be tested. The paper describes the tectonic setting, stratigraphy, structure, hydrocarbon geology, reservoirs, and trap types.

  2. Independent focuses Philippines exploration on Visayan basin

    SciTech Connect (OSTI)

    Rillera, F.G.

    1995-08-21

    Cophil Exploration Corp., a Filipino public company, spearheaded 1995 Philippine oil and gas exploration activity with the start of its gas delineation drilling operations in Libertad, northern Cebu. Cophil and its Australian partners, Coplex Resources NL and PacRim Energy NL, have set out to complete a seven well onshore drilling program within this block this year. The companies are testing two modest shallow gas plays, Libertad and Dalingding, and a small oil play, Maya, all in northern Cebu about 500 km southeast of Manila. Following a short discussion on the geology and exploration history of the Visayan basin, this article briefly summarizes Cophil`s ongoing Cebu onshore drilling program. Afterwards, discussion focuses on identified exploration opportunities in the basin`s offshore sector.

  3. New tools attack Permian basin stimulation problems

    SciTech Connect (OSTI)

    Ely, J.W.; Schubarth, S.K.; Wolters, B.C.; Kromer, C. )

    1992-06-08

    This paper reports that profitable stimulation treatments in the Permian basin of the southwestern U.S. combine new tools with technology and fluids previously available. This paper reports that a wide selection of fracturing fluids and techniques needs to be considered to solve the varied problems associated with stimulating hydrocarbon reservoirs that are at diverse depths, temperatures, pressures, and lithologies. The Permian basin of West Texas and New Mexico is the most fertile ground in the U.S. for some of the newer stimulation technologies. In this basin, these new tools and techniques have been applied in many older producing areas that previously were treated with more conventional stimulation techniques, including acidizing and conventional fracturing procedures.

  4. Ground-water hydraulics of the deep-basin brine aquifer, Palo Duro Basin, Texas panhandle

    SciTech Connect (OSTI)

    Smith, D.A.

    1985-01-01

    The Deep-Basin Brine aquifer of the Palo Duro Basin (Texas Panhandle) underlies thick Permian bedded evaporites that are being evaluated as a potential high-level nuclear waste isolation repository. Potentiometric surface maps of 5 units of the Deep-Basin Brine aquifer were drawn using drill-stem test (DST) pressure data, which were analyzed by a geostatistical technique (kriging) to smooth the large variation in the data. The potentiometric surface maps indicate that the Deep-Basin Brine aquifer could be conceptually modeled as 5 aquifer units; a Lower Permian (Wolfcamp) aquifer, upper and lower Pennsylvanian aquifers, a pre-Pennsylvanian aquifer, and a Pennsylvanian to Wolfcampian granite-wash aquifer. The hydraulic head maps indicate that ground-water flow in each of the units is west to east with a minor northerly component near the Amarillo Uplift, the northern structural boundary of the basin. The Wolfcamp potentiometric surface indicates the strongest component of northerly flow. Inferred flow direction in Pennsylvanian aquifers is easterly, and in the pre-Pennsylvanian aquifer near its pinch-out in the basin center, flow is inferred to be to the north. In the granite-wash aquifer the inferred flow direction is east across the northern edge of the basin and southeast along the Amarillo Uplift.

  5. Black Friday Savings All Year 'Round | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Black Friday Savings All Year 'Round Black Friday Savings All Year 'Round November 21, 2011 - 3:58pm Addthis Chris Stewart Senior Communicator at DOE's National Renewable Energy ...

  6. Black River Farm Solar Project | Open Energy Information

    Open Energy Info (EERE)

    Solar Project Facility Black River Farm Solar Project Sector Solar Facility Type Fixed Tilt Ground-Mount & Roof-Mount Owner EnXco Developer EnXco Energy Purchaser Black River Farm...

  7. Atlas of major Appalachian basin gas plays

    SciTech Connect (OSTI)

    Aminian, K.; Avary, K.L.; Baranoski, M.T.; Flaherty, K.; Humphreys, M.; Smosna, R.A.

    1995-06-01

    This regional study of gas reservoirs in the Appalachian basin has four main objectives: to organize all of the -as reservoirs in the Appalachian basin into unique plays based on common age, lithology, trap type and other geologic similarities; to write, illustrate and publish an atlas of major gas plays; to prepare and submit a digital data base of geologic, engineering and reservoir parameters for each gas field; and technology transfer to the oil and gas industry during the preparation of the atlas and data base.

  8. ,"Calif--Los Angeles Basin Onshore Natural Gas Liquids Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Calif--Los Angeles Basin Onshore Natural Gas Liquids ... PM" "Back to Contents","Data 1: Calif--Los Angeles Basin Onshore Natural Gas Liquids ...

  9. Colorado Division of Water Resources Denver Basin Webpage | Open...

    Open Energy Info (EERE)

    Denver Basin Webpage Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Colorado Division of Water Resources Denver Basin Webpage Abstract This is the...

  10. Designated Ground Water Basin Map | Open Energy Information

    Open Energy Info (EERE)

    Designated Ground Water Basin Map Jump to: navigation, search OpenEI Reference LibraryAdd to library Web Site: Designated Ground Water Basin Map Abstract This webpage provides...

  11. Hazard categorization of 105-KE basin debris removal project

    SciTech Connect (OSTI)

    Meichle, R.H.

    1996-01-25

    This supporting document provides the hazard categorization for 105-KE Basin Debris Removal Project activities planned in the K east Basin. All activities are categorized as less than Hazard Category 3.

  12. CRAD, Engineering - Office of River Protection K Basin Sludge...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Engineering - Office of River Protection K Basin Sludge Waste System CRAD, Engineering - Office of River Protection K Basin Sludge Waste System May 2004 A section of Appendix C to ...

  13. DOE - Office of Legacy Management -- Shirley Basin AEC Ore Buying...

    Office of Legacy Management (LM)

    Shirley Basin AEC Ore Buying Station - WY 0-05 Site ID (CSD Index Number): WY.0-05 Site Name: Shirley Basin AEC Ore Buying Station Site Summary: The history of domestic uranium ...

  14. Gravitational waves found, black-hole models led the way

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gravitational waves found, black-hole models led the way Gravitational waves found, black-hole models led the way Gravitational waves were predicted by Einstein's theory of general relativity in 1916, and now, almost exactly 100 years later, the faint ripples across space-time have been found. February 11, 2016 A simulation of two merging black holes, creating gravitational waves. Photo courtesy of LIGO. A simulation of two merging black holes, creating gravitational waves. Photo courtesy of

  15. Modified carbon black materials for lithium-ion batteries

    DOE Patents [OSTI]

    Kostecki, Robert; Richardson, Thomas; Boesenberg, Ulrike; Pollak, Elad; Lux, Simon

    2016-06-14

    A lithium (Li) ion battery comprising a cathode, a separator, an organic electrolyte, an anode, and a carbon black conductive additive, wherein the carbon black has been heated treated in a CO.sub.2 gas environment at a temperature range of between 875-925 degrees Celsius for a time range of between 50 to 70 minutes to oxidize the carbon black and reduce an electrochemical reactivity of the carbon black towards the organic electrolyte.

  16. Water telescope's first sky map shows flickering black holes

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Water telescope's first sky map shows flickering black holes Water telescope's first sky map shows flickering black holes The High Altitude Water Cherenkov observatory has released its first map of the sky, including the first measurements of how often black holes flicker on and off. It has also caught pulsars, supernova remnants, and other bizarre cosmic beasts. April 24, 2016 Water telescope's first sky map shows flickering black holes Three new sources of gamma rays spotted by HAWC. Credit:

  17. K West basin isolation barrier leak rate test

    SciTech Connect (OSTI)

    Whitehurst, R.; McCracken, K.; Papenfuss, J.N.

    1994-10-31

    This document establishes the procedure for performing the acceptance test on the two isolation barriers being installed in K West basin. This acceptance test procedure shall be used to: First establish a basin water loss rate prior to installation of the two isolation barriers between the main basin and the discharge chute in K-Basin West. Second, perform an acceptance test to verify an acceptable leakage rate through the barrier seals.

  18. Modeling-Computer Simulations At Northern Basin & Range Region...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Modeling-Computer Simulations At Northern Basin & Range Region (Pritchett, 2004) Exploration Activity...

  19. Geothermal Literature Review At Nw Basin & Range Region (Laney...

    Open Energy Info (EERE)

    navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Geothermal Literature Review At Nw Basin & Range Region (Laney, 2005) Exploration Activity Details...

  20. Semiclassical S-matrix for black holes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bezrukov, Fedor; Levkov, Dmitry; Sibiryakov, Sergey

    2015-12-01

    In this study, we propose a semiclassical method to calculate S-matrix elements for two-stage gravitational transitions involving matter collapse into a black hole and evaporation of the latter. The method consistently incorporates back-reaction of the collapsing and emitted quanta on the metric. We illustrate the method in several toy models describing spherical self-gravitating shells in asymptotically flat and AdS space-times. We find that electrically neutral shells reflect via the above collapse-evaporation process with probability exp(–B), where B is the Bekenstein-Hawking entropy of the intermediate black hole. This is consistent with interpretation of exp(B) as the number of black hole states.more » The same expression for the probability is obtained in the case of charged shells if one takes into account instability of the Cauchy horizon of the intermediate Reissner-Nordström black hole. As a result, our semiclassical method opens a new systematic approach to the gravitational S-matrix in the non-perturbative regime.« less

  1. SLIM DISKS AROUND KERR BLACK HOLES REVISITED

    SciTech Connect (OSTI)

    Sadowski, Aleksander

    2009-08-01

    We investigate stationary slim accretion disks around Kerr black holes. We construct a new numerical method based on the relaxation technique. We systematically cover the whole parameter space relevant to stellar mass X-ray binaries. We also notice some non-monotonic features in the disk structure, overlooked in previous studies.

  2. Bubbling supertubes and foaming black holes

    SciTech Connect (OSTI)

    Bena, Iosif; Warner, Nicholas P.

    2006-09-15

    We construct smooth BPS three-charge geometries that resolve the zero-entropy singularity of the U(1)xU(1) invariant black ring. This singularity is resolved by a geometric transition that results in geometries without any branes sources or singularities but with nontrivial topology. These geometries are both ground states of the black ring, and nontrivial microstates of the D1-D5-P system. We also find the form of the geometries that result from the geometric transition of N zero-entropy black rings, and argue that, in general, such geometries give a very large number of smooth bound-state three-charge solutions, parametrized by 6N functions. The generic microstate solution is specified by a four-dimensional hyper-Kaehler geometry of a certain signature, and contains a 'foam' of nontrivial two-spheres. We conjecture that these geometries will account for a significant part of the entropy of the D1-D5-P black hole, and that Mathur's conjecture might reduce to counting certain hyper-Kaehler manifolds.

  3. BASIN ANALYSIS AND PETROLEUM SYSTEM CHARACTERIZATION AND MODELING, INTERIOR SALT BASINS, CENTRAL AND EASTERN GULF OF MEXICO

    SciTech Connect (OSTI)

    Ernest A. Mancini; Donald A. Goddard

    2005-08-01

    The principal research effort for Year 3 of the project is basin modeling and petroleum system identification, comparative basin evaluation and resource assessment. In the first six (6) months of Year 3, the research focus is on basin modeling and petroleum system identification and the remainder of the year the emphasis is on the comparative basin evaluation and resource assessment. No major problems have been encountered to date, and the project is on schedule.

  4. Tularosa Basin Play Fairway Analysis: Strain Analysis

    SciTech Connect (OSTI)

    Adam Brandt

    2015-11-15

    A DEM of the Tularosa Basin was divided into twelve zones, each of which a ZR ratio was calculated for. This submission has a TIFF image of the zoning designations, along with a table with respective ZR ratio calculations in the metadata.

  5. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ``ventilation rate`` of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  6. Atmospheric dispersion in mountain valleys and basins

    SciTech Connect (OSTI)

    Allwine, K.J.

    1992-01-01

    The primary goal of the research is to further characterize and understand dispersion in valley and basin atmospheres. A secondary, and related goal, is to identify and understand the dominant physical processes governing this dispersion. This has been accomplished through a review of the current literature, and analyses of recently collected data from two field experiments. This work should contribute to an improved understanding of material transport in the atmospheric boundary layer. It was found that dispersion in a freely draining valley (Brush Creek valley, CO) atmosphere is much greater than in an enclosed basin (Roanoke, VA) atmosphere primarily because of the greater wind speeds moving past the release point and the greater turbulence levels. The development of a cold air pool in the Roanoke basin is the dominant process governing nighttime dispersion in the basin, while the nighttime dispersion in the Brush Creek valley is dominated by turbulent diffusion and plume confinement between the valley sidewalls. The interaction between valley flows and above ridgetops flows is investigated. A ventilation rate'' of material transport between the valley and above ridgetop flows is determined. This is important in regional air pollution modeling and global climate modeling. A simple model of dispersion in valleys, applicable through a diurnal cycle, is proposed.

  7. Summary - K Basins Sludge Treatment Process

    Office of Environmental Management (EM)

    Assessment (TRA) is tric-based process a t y Office of E dge Trea nt ging Basin or ansfer, The ding- y the ent. ch of e below: * * Th ass at t De but Th est ass con a r de dev Re ...

  8. Tularosa Basin Play Fairway Analysis: Water Chemistry

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Adam Brandt

    2015-12-15

    This shapefile contains 409 well data points on Tularosa Basin Water Chemistry, each of which have a location (UTM), temperature, quartz and Potassium/Magnesium geothermometer; as well as concentrations of chemicals like Mn, Fe, Ba, Sr, Cs, Rb, As, NH4, HCO3, SO4, F, Cl, B, SiO2, Mg, Ca, K, Na, and Li.

  9. T-534: Vulnerability in the PDF distiller of the BlackBerry Attachment Service for the BlackBerry Enterprise Server

    Broader source: Energy.gov [DOE]

    BlackBerry advisory describes a security issue that the BlackBerry Attachment Service component of the BlackBerry Enterprise Server is susceptible to. The issue relates to a known vulnerability in the PDF distiller component of the BlackBerry Attachment Service that affects how the BlackBerry Attachment Service processes PDF files.

  10. Pennsylvanian-Permian tectonism in the Great Basin: The Dry Mountain trough and related basins

    SciTech Connect (OSTI)

    Snyder, W.S.; Spinosa, C.; Gallegos, D.M. )

    1991-02-01

    Pennsylvanian-Permian tectonism affected the continental margin of western North America from the Yukon to the Mojave Desert. Specific signatures of this tectonism include local angular unconformities, regional disconformities, renewed outpouring of clastic debris from a reactivated Antler and related highlands, and development of deeper water basins with anoxic sediments deposited below wave base. The basins formed include Ishbel trough (Canada), the Wood River basin (Idaho), Cassia basin, Ferguson trough, Dry Mountain trough (all Nevada), and unnamed basins in Death Valley-Mojave Desert region. The Dry Mountain trough (DMT) was initiated during early Wolfcampian and received up to 1,200 m of sediment by the late Leonardian. The lower contact is a regional unconformity with the Ely Limestone, or locally with the Diamond Peak or Vinini formations. Thus, following a period of localized regional uplift that destroyed the Ely basin, portions of the uplifted and exposed shelf subsided creating the Dry Mountain trough. Evidence suggesting a tectonic origin for the DMT includes (1) high subsidence rates (60-140 m/m.y.); (2) renewed influx of coarse clastic debris from the Antler highlands: (3) possible pre-Early Permian folding, thrusting, and tilting within the highlands; and (4) differential subsidence within the Dry Mountain trough, suggesting the existence of independent fault blocks.