National Library of Energy BETA

Sample records for wildfire hazard reduction

  1. State of Colorado Wildfire Hazard

    E-Print Network [OSTI]

    State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 and importance of the August 1995 Wildfire Hazard Mitigation Plan and its predecessors as foundation documents on which to build and judge progress in wildfire hazard mitigation. The text version of the 1995 Plan

  2. Modeling Wildfire Hazard with a Geographic Information System

    E-Print Network [OSTI]

    Farley, Scott

    2013-01-01

    2013. Barrows, J.S. Forest Fires in the Northern RockySystem, 1986; Barrows, Forest Fires in the Northern RockyD. Reinhardt. Forest Structure and Fire Hazard in Dry

  3. Hazards assessment for the Waste Experimental Reduction Facility

    SciTech Connect (OSTI)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  4. An evaluation of the effectiveness of lead paint hazard reduction when conducted by homeowners and landlords

    SciTech Connect (OSTI)

    Etre, L.A.; Reynolds, S.J.; Burmeister, L.F.; Whitten, P.S.; Gergely, R.

    1999-08-01

    This research project was conducted in collaboration with the Iowa Department of Public Health to evaluate whether property owners who follow recommended procedures for lead-based paint removal/repair can do the work safely and effectively. This study included 29 homes where a lead-based paint hazard had been identified and lead-based paint was removed or repaired (hazard reduction). Exposure evaluation included pre-project surface dust wipe sampling, air monitoring during lead-based paint removal, post-project surface dust wipe sampling, and pre- and post-project blood samples from adult study participants. The comparison of surface dust wipe samples taken before and after lead paint hazard reduction was used to evaluate the effectiveness of lead paint hazard reduction. The lead loadings on window sill surfaces in the work area were significantly lower after completion of the project, and the lead-based paint removal did not contaminate the adjoining living area. The proportion of homes with surface dust lead loading exceeding Department of Housing and Urban Development (HUD) clearance standard was 73% pre-project and 38% post-project. Personal airborne exposures during lead removal activities reinforce the need to respiratory protection and good hygiene. There was no difference in adult pre-/post-blood levels, indicating that participants die remove lead in a safe manner with respect to their own exposures. The results indicate that hazard reduction can be done effectively when recommended procedures for the removal of lead-based paint are followed.

  5. Identifying the Impact of the Built Environment on Wildfire Property Damage in California 

    E-Print Network [OSTI]

    Makino, Takashi Michael

    2013-05-08

    Wildfires are a natural hazard that present an increasing risk to communities in fire-prone areas. This study examines the impacts of the municipal-level built environment upon fire damages in California, a particularly fire-vulnerable state...

  6. Use of hazard assessments to achieve risk reduction in the USDOE Stockpile Stewardship (SS-21) Program

    SciTech Connect (OSTI)

    Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.W. [Los Alamos National Lab., NM (United States); DeYoung, L.; Hockert, J. [Odgen Environmental and Energy Services, Albuquerque, NM (United States)

    1995-07-01

    This paper summarizes the nuclear explosive hazard assessment activities performed to support US Department of Energy (DOE) Stockpile Stewardship Demonstration Project SS-21, better known as the ``Seamless Safety`` program. Past practice within the DOE Complex has dictated the use of a significant number of post-design/fabrication safety reviews to analyze the safety associated with operations on nuclear explosives and to answer safety questions. These practices have focused on reviewing-in or auditing-in safety vs incorporating safety in the design process. SS-21 was proposed by the DOE as an avenue to develop a program to ``integrate established, recognized, verifiable safety criteria into the process at the design stage rather than continuing the reliance on reviews, evaluations and audits.`` The entire Seamless Safety design and development process is verified by a concurrent hazard assessment (HA). The primary purpose of the SS-21 Demonstration Project HA was to demonstrate the feasibility of performing concurrent HAs as part of an engineering design and development effort and then to evaluate the use of the HA to provide an indication in the risk reduction or gain in safety achieved. To accomplish this objective, HAs were performed on both baseline (i.e., old) and new (i.e. SS-21) B61-0 Center Case Section disassembly processes. These HAs were used to support the identification and documentation of weapon- and process-specific hazards and safety-critical operating steps. Both HAs focused on identifying accidents that had the potential for worker injury, public health effects, facility damage, toxic gas release, and dispersal of radioactive materials. A comparison of the baseline and SS-21 process risks provided a semi-quantitative estimate of the risk reduction gained via the Seamless Safety process.

  7. Maine Department of Environmental Protection Washington State Department of Ecology California Environmental Protection Agency State House Station 17 Hazardous Waste & Toxics Reduction 1001 I Street

    E-Print Network [OSTI]

    Environmental Protection Agency State House Station 17 Hazardous Waste & Toxics Reduction 1001 I Street Augusta and prioritize hazardous chemicals for further action. -MORE- #12;2-2-2-2-2 Environmental leadership often begins

  8. WEATHER HAZARDS Basic Climatology

    E-Print Network [OSTI]

    WEATHER HAZARDS Basic Climatology Colorado Climate Center Funding provided by NOAA Sectoral) Wildfires (Jun 02) Recent Declared Disasters in Colorado No Map from FEMA provided #12;National Weather and Warnings Outlook Indicates that hazardous weather may develop ­ useful to those who need considerable

  9. The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999

    SciTech Connect (OSTI)

    Bechtel Jacobs Company LLC

    2000-03-01

    This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

  10. How are the aftereffects of wildfire managed?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    How are the aftereffects of wildfire managed? Wildfires cause flooding, increasing sediment movement. August 1, 2013 Las Conchas fire fighter in foreground; fire in Los Alamos...

  11. Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program

    SciTech Connect (OSTI)

    NONE

    1994-12-31

    This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths also resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.

  12. BRIEFING PAPER COMMUNITY WILDFIRE PROTECTION PLANS

    E-Print Network [OSTI]

    Reduction. A CWPP must identify and prioritize areas for hazardous fuel reduction treatments on both federal the Secretaries of Agriculture and the Interior to expedite the development and implementation of hazardous fuel areas that qualify for the use of these expedited environmental review authorities. The HFRA also

  13. Living With Wildfire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and-E CChinaC L S C O NLiving With Wildfire

  14. Building wildfire resilience into forest management planning

    E-Print Network [OSTI]

    Building wildfire resilience into forest management planning Practice Guide #12;#12;Practice Guide Building wildfire resilience into forest management planning Forestry Commission: Edinburgh #12;© Crown resilience into forest management planning Forestry Commission Practice Guide Forestry Commission, Edinburgh

  15. Essays in Collaborative Wildfire Planning

    E-Print Network [OSTI]

    Smith, Rachel Carolyn

    2011-01-01

    the development of hazardous areas: The role of land usethe development of hazardous areas. Public AdministrationUSFS’ Burma Segment Hazardous Fuels Treatment Area after the

  16. Retrieval Success from a 1950's UK Fuel Storage Pond: Blazing a Trail for Early Hazard Reduction

    SciTech Connect (OSTI)

    Bruce, S. [British Nuclear Group Sellafield Ltd, Sellafield, Seascale, Cumbria, England, CA20 1PG (United Kingdom)

    2006-07-01

    Work has begun to tackle one of the biggest challenges in the UK nuclear cleanup program: the retrieval of spent nuclear fuel from the First Generation Magnox Fuel Storage Pond at Sellafield. The UK Government regulatory body, Nuclear Installations Inspectorate (NII) considers this pond to be the country's highest priority in terms of Hazard Reduction, a view supported by the facility owner, UK Government's Nuclear Decommissioning Authority (NDA). Remotely operated submersible vehicles (ROV's) were used by British Nuclear Group to assess the condition of stored fuel in First Generation Magnox Storage Ponds (1945-60's build). The ROV survey showed fuel condition was better than expected, and engineers were able to prototype retrieval on a selected skip (container) of fuel. The retrieval and subsequent export to the Fuel Handling Plant (FHP) was executed in November 2005 and was completely successful. The next stage is to reprocess the fuel using the Magnox Reprocessing Plant. If this is successful the prototype retrieval will have demonstrated that: - British Nuclear Group can safely retrieve fuel from its legacy ponds; - British Nuclear Group can safely transport retrieved legacy fuel between facilities; - British Nuclear Group can eliminate the hazard presented by this legacy fuel by use of existing on-site reprocessing facilities. This in turn enables the option to commence larger-scale fuel retrievals from these legacy ponds years ahead of the current plan which assumes new plants to be available to handle all arisings from the legacy ponds in 2015. This hazard reduction could commence as early as 2008. (authors)

  17. Wildfires may contribute more to global warming than previously...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wildfires may contribute more to global warming Wildfires may contribute more to global warming than previously predicted They suggest that fire emissions could contribute a lot...

  18. Wildfire, Ryegrass Seeding, and Watershed Rehabilitation1

    E-Print Network [OSTI]

    Wildfire, Ryegrass Seeding, and Watershed Rehabilitation1 R. D. Taskey, C.L. Curtis, and J. Stone2, emergency rehabilitation practice following wildfire in California. Replicated study plots on unseeded plots. These results suggest that ryegrass seeding for emergency rehabilitation of burned areas

  19. The FIA BioSum model was used to simulate three fire-hazard-reduction policies in an area comprising northern California. southwestern Oregon. and the east slopes of the Cascade Mountains in Oregon. The policy

    E-Print Network [OSTI]

    Fried, Jeremy S.

    The FIA BioSum model was used to simulate three fire-hazard-reduction policies in an area. The policy scenarios. all subject to a stand-scale fire-hazard-reduction effectiveness constraint. included merchantable timber removal (Min Merch). Differences in the area treated under each scenario were considerable

  20. ARIZONA COOPERATIVE Climate Change and Wildfire

    E-Print Network [OSTI]

    Crimmins, Michael A.

    in precipitation acrossArizona and New Mexico associated with the El Nino-Southern Oscillation (ENSO) modulate wildfire events. El Nino events typically bring above-average winter precipitatio

  1. Ornament is dangerous : a wildfire hazard center for Los Angeles

    E-Print Network [OSTI]

    Trimble, Matthew Alexander

    2008-01-01

    There is no such thing as an unadorned building. While the the role and relevance of ornament in architecture has been criticized for centuries, its position has been, for the most part, supported as essential to architecture. ...

  2. Wildfires ignite debate on global warming

    E-Print Network [OSTI]

    Moritz, Max A.

    Wildfires ignite debate on global warming Astemperaturessoar. Is there a link with global warming? We have good reason to think so, and not taking the link seriously could have on climate change and global fire predictions last month, and I have been in my own media storm ever since

  3. Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility

    SciTech Connect (OSTI)

    Banerjee, K.; O`Toole, T.J. [Chester Environmental, Moon Township, PA (United States)

    1995-12-01

    A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

  4. 04/14/2011 ATOC -3500 Ryan Sanford Wildfire Emissions

    E-Print Network [OSTI]

    Toohey, Darin W.

    04/14/2011 ATOC - 3500 Ryan Sanford Wildfire Emissions: 1. Carbon: CO, CO2, black carbon a. Greenhouse gas b. Heating agent c. ~40 million metric tons of carbon emissions from wildfires out of ~6 fires are the only plausible solution to forest fires. Amount released is much less Largest emissions

  5. Rehabilitation and Recovery Following Wildfires: A Synthesis1

    E-Print Network [OSTI]

    Rehabilitation and Recovery Following Wildfires: A Synthesis1 Lee H. MacDonald2 Wildfires are typically termed rehabilitation, whereas actions directed at accelerating the return to pre-fire levels Forest lands in California. The extensive damage triggered rehabilitation and recovery efforts

  6. EA-1329: Final Environmental Assessment

    Broader source: Energy.gov [DOE]

    Wildfire Hazard Reduction and Forest Health Improvement Program at Los Alamos National Laboratory, Los Alamos, Nex Mexico

  7. UC Cooperative Extension works with fire safe councils to reduce wildfires

    E-Print Network [OSTI]

    Nader, Glenn A; De Lasaux, Michael

    2015-01-01

    Smith E. 1999. Living with Fire: A Guide for the Homeowner.tension, Reno, NV. The Yuba fire stopped at the Middlebrookand surface fuels following fire hazard reduction treatment.

  8. An Emerging Triad: Air Pollution, Beetles, and Wildfire

    E-Print Network [OSTI]

    An Emerging Triad: Air Pollution, Beetles, and Wildfire Tree Signals and Beetle Outbreaks Pacific stressed by drought and air pollution may attract bark beetles, which overwhelm the trees' defense of trees across the West. Environmental stresses like prolonged drought and increased air pollution

  9. Towards a Dynamic Data Driven Application System for Wildfire Simulation

    E-Print Network [OSTI]

    Knyazev, Andrew

    -time weather data, images, and sensor streams. The system should change the forecast when new data is received (DDDAS) for short-range forecast of wildfire behavior with models steered by real-time weather data, images, and sensor streams. The forecast should be based on all available data, such as fuel maps

  10. Graphics for Serious Games VFire: Immersive wildfire simulation and visualization

    E-Print Network [OSTI]

    Harris Jr., Frederick C.

    caused by wildfires has led to the development of various models that try to predict the effects the source. These models take into account a variety of factors including wind, weather conditions, fuel with the output of a simulated version. Once the model is validated, it can then be used to predict not only

  11. Soot superaggregates from flaming wildfires and their direct radiative forcing

    E-Print Network [OSTI]

    the ubiquitous presence of soot superaggregates (SAs) in the outflow from a major wildfire in India. SAs, and Da # 300 nm that form via the cluster-dense aggregation mechanism. We present additional observations--such as prescribed and slash burns--as a function of various process parameters such as fuel type, flame temperature

  12. Integrating scientific modeling and supporting dynamic hazard management with a GeoAgent-based representation of human-

    E-Print Network [OSTI]

    Klippel, Alexander

    Institute of Water Resources and Hydropower Research (IWHR) A1 Fuxing Road, Haidian District Beijing, P of this representation with scientific modeling of dynamic hazard development, and (3) application of automated reasoning, such as drought, tsunami, hurricane, flood, wildfire, and earthquake, are likely to become ever more costly

  13. Hazards Survey and Hazards Assessments

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

  14. Coding Hazardous Tree Failures for a Data Management System

    E-Print Network [OSTI]

    Standiford, Richard B.

    Terms: hazard trees; hazard reduction; recreation areas; urban forestry; safety standards; dataCoding Hazardous Tree Failures for a Data Management System Lee A. Paine PACIFIC SOUTHWEST hazardous tree failures for a data management system. Gen. Tech. Rep. PSW-29, 108 p., illus. Pacific

  15. Hazard evaluation

    SciTech Connect (OSTI)

    Vervalin, C.H.

    1986-12-01

    Recent major disasters in the hydrocarbon processing industry (HPI) have inspired renewed interest in the fine-tuning of hazard evaluation methods. In addition to traditional risk-study methods, the computer promises eventual expert systems to vastly improve the speed of assembling and using loss-prevention information. But currently, the computerization of hazard evaluation finds the HPI taking a back seat to aerospace/nuclear industries. The complexity of creating computer databases and expert systems has not-however-kept some HPI companies from plunging in. Arabian American Oil Co. (Aramco) has used computer-generated information in working with probabilistic risk analysis. Westinghouse has used its risk-analysis experience in the nuclear field to build a computer-based program for HPI clients. An Exxon plant has a huge data bank as the basis for its Hazard Loss Information System.

  16. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals, accidentally spilled, or released. In addition to laboratory chemicals, hazardous materials may include common not involve highly toxic or noxious hazardous materials, a fire, or an injury requiring medical attention

  17. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up, or there is a small spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  18. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up spill where personnel trained in Hazardous Material clean up or an appropriate spill kit

  19. Reproductive Hazards in the Lab Reproductive Hazards

    E-Print Network [OSTI]

    de Lijser, Peter

    Reproductive Hazards in the Lab Reproductive Hazards The term reproductive hazard refers to agents healthy children. Reproductive hazards may have harmful effects on libido, sexual behavior, or sperm the effects of reproductive hazards may be reversible for the parent, the effects on the fetus or offspring

  20. HAZARDOUS MATERIALS INCIDENTS What are hazardous materials?

    E-Print Network [OSTI]

    Fernandez, Eduardo

    HAZARDOUS MATERIALS INCIDENTS What are hazardous materials? Hazardous materials are chemicals I do if there is a small spill in the area and personnel trained in Hazardous Material clean up personnel trained in Hazardous Material clean up or an appropriate spill kit is not available? Call 561

  1. Proceedings of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires

    E-Print Network [OSTI]

    Evaluation of the Impact of Wildfires1 Francisco Rodríguez y Silva1 , Juan Ramón Molina Martínez2 , Miguel and Wildfires, November 5-11, 2012, Mexico City, Mexico. 2 Laboratorio de Defensa contra Incendios Forestales, natural resources, GIS, environmental services valuation Introduction Forest fires are one of the biggest

  2. Pyrogenic carbon emission from a large wildfire in Oregon, United States

    E-Print Network [OSTI]

    Turner, Monica G.

    : area burned, fuel density (biomass per unit area), combustion factor (fraction of biomass consumedPyrogenic carbon emission from a large wildfire in Oregon, United States John Campbell,1 Dan Donato carbon emissions from the Biscuit Fire, an exceptionally large wildfire, which in 2002 burned over 200

  3. Seedbed variation from the interior through the edge of a large wildfire in Alberta

    E-Print Network [OSTI]

    Macdonald, Ellen

    Seedbed variation from the interior through the edge of a large wildfire in Alberta David F. Greene of a very large (>100 000 ha) 2001 wildfire in the mixedwood boreal region of Alberta, we examined forêt mixte boréale de l'Alberta. De façon à minimiser les effets de station et de composition

  4. The effects of wildfire atmospheric emissions on regional air quality using current and future

    E-Print Network [OSTI]

    Collins, Gary S.

    . These species either directly affect the air Figure 4. Percentages and the amounts of pollutants emittedThe effects of wildfire atmospheric emissions on regional air quality using current and future of wildfire emissions on air quality is modeled using the WRF-SMOKE-CMAQ modeling framework: Meteorological

  5. DEVS-FIRE: Towards an Integrated Simulation Environment for Surface Wildfire Spread and

    E-Print Network [OSTI]

    Ntaimo, Lewis

    to maintain a manageable fuel load- ing for forests susceptible to destructive wildfires. How- ever, wildfires Lewis Ntaimo Department of Industrial and Systems Engineering Texas A&M University, College Station TX to the complexity of fire behavior. In this paper, the authors present an integrated simulation environment

  6. Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.

    SciTech Connect (OSTI)

    Quarles, Stephen, L.; Sindelar, Melissa

    2011-12-13

    The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

  7. Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires

    E-Print Network [OSTI]

    2007-01-01

    Contract'' for utilization in small power plants (o3 MW), and a wood-heating pellet manufacturing facility. The outlet for the wood fuel pellets is the growing market for house and business heating, and co

  8. HAZARDOUS WASTE [Written Program

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    HAZARDOUS WASTE MANUAL [Written Program] Cornell University [10/7/13 #12;Hazardous Waste Program................................................... 8 3.0 MINIMIZING HAZARDOUS WASTE GENERATION.........................................................10 4.0 HAZARDOUS WASTE GENERATOR REQUIREMENTS.....................................................10

  9. What is Hazardous Hazardous waste is

    E-Print Network [OSTI]

    de Lijser, Peter

    What is Hazardous Waste? Hazardous waste is any product charac- terized or labeled as toxic may be harmful to human health and/ or the environment. Hazardous Waste Disposal EH&S x7233 E.calrecycle.ca.gov www.earth911.com Campus Hazardous Waste Roundup Roundups conducted the last week of: January April

  10. Hazardous Location

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Hazardous Gases090041

  11. Cell-specific oxidative stress and cytotoxicity after wildfire coarse particulate matter instillation into mouse lung

    SciTech Connect (OSTI)

    Williams, Keisha M.; Franzi, Lisa M.; Last, Jerold A.

    2013-01-01

    Our previous work has shown that coarse particulate matter (PM{sub 10-2.5}) from wildfire smoke is more toxic to lung macrophages on an equal dose (by mass) basis than coarse PM isolated from normal ambient air, as evidenced by decreased numbers of macrophages in lung lavage fluid 6 and 24 hours after PM instillation into mouse lungs in vivo and by cytotoxicity to a macrophage cell line observed directly in vitro. We hypothesized that pulmonary macrophages from mice instilled with wildfire coarse PM would undergo more cytotoxicity than macrophages from controls, and that there would be an increase in oxidative stress in their lungs. Cytotoxicity was quantified as decreased viable macrophages and increased percentages of dead macrophages in the bronchoalveolar lavage fluid (BALF) of mice instilled with wildfire coarse PM. At 1 hour after PM instillation, we observed both decreased numbers of viable macrophages and increased dead macrophage percentages as compared to controls. An increase in free isoprostanes, an indicator of oxidative stress, from control values of 28.1 ± 3.2 pg/mL to 83.9 ± 12.2 pg/mL was observed a half-hour after PM instillation. By 1 hour after PM instillation, isoprostane values had returned to 30.4 ± 7.6 pg/mL, not significantly different from control concentrations. Lung sections from mice instilled with wildfire coarse PM showed rapid Clara cell responses, with decreased intracellular staining for the Clara cell secretory protein CCSP 1 hour after wildfire PM instillation. In conclusion, very rapid cytotoxicity occurs in pulmonary macrophages and oxidative stress responses are seen 0.5–1 hour after wildfire coarse PM instillation. These results define early cellular and biochemical events occurring in vivo and support the hypothesis that oxidative stress-mediated macrophage toxicity plays a key role in the initial response of the mouse lung to wildfire PM exposure. -- Highlights: ? We studied very early events (0.5–1 hour) after giving wildfire PM{sub 10-2.5} to mice. ? Wildfire PM{sub 10-2.5} rapidly kills lung macrophages in mice. ? Wildfire PM{sub 10-2.5} rapidly elicits oxidative stress in mice. ? Wildfire PM{sub 10-2.5} rapidly elicits Clara cell CCSP secretion in mice. ? Wildfire PM{sub 10-2.5} rapidly elicits TNF-? secretion into BALF in mice.

  12. HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard Communication

    E-Print Network [OSTI]

    Zhang, Yuanlin

    HAZARD COMMUNICATION PROGRAM The______________________________ Department has developed a Hazard about chemical hazards and other hazardous substances via our comprehensive Hazard Communication Program. The Hazard Communication Program will include: WORKPLACE CHEMICAL LIST MATERIAL SAFETY DATA SHEETS CONTAINER

  13. Natural Hazards Journal of the International

    E-Print Network [OSTI]

    only and shall not be self- archived in electronic repositories. If you wish to self-archive your work of many of those working toward natural hazards reduction, especially in developing countries and risk-reduction efforts. This awareness may result in (1) selecting simple designs that use local

  14. Land Use and Wildfire: A Review of Local Interactions and Teleconnections

    E-Print Network [OSTI]

    Kelly, Maggi

    2015-01-01

    fire risk [34–36], more comprehensive analysis of suchanalysis in wildland-urban interfaces according to wildfire risk:homes in high-risk areas? A hedonic analysis of the short

  15. Forest Fires: Answers to 12 Common Questions 1. Is wildfire bad for forests?

    E-Print Network [OSTI]

    North, Malcolm

    Forest Fires: Answers to 12 Common Questions 1. Is wildfire bad for forests? No. Some forests need burning on the forest floor 2. What are the types of forest fires? Broadly there are two types: low

  16. Transporting Hazardous Materials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Transporting Hazardous Materials The procedures given below apply to all materials that are considered to be hazardous by the U.S. Department of Transportation (DOT). Consult your...

  17. HAZARDOUS MATERIALS EMERGENCY RESPONSE

    E-Print Network [OSTI]

    ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

  18. Track 3: Exposure Hazards

    Broader source: Energy.gov [DOE]

    ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

  19. Proceedings Hazards and Disasters

    E-Print Network [OSTI]

    Wang, Hai

    Proceedings Hazards and Disasters Researchers Meeting of the Boulder, Colorado July 11­12, 2007 #12;Hazards and Disasters Researchers Meeting Beginning in 1997, hazards and disaster researchers gathered in the field of hazards and disasters. As a new feature of this year's meeting, short papers based

  20. Hazardous Waste Management Training

    E-Print Network [OSTI]

    Dai, Pengcheng

    Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

  1. Wildfire and development : why stronger links to land-use planning are needed to save lives, protect property, and minimize economic risk

    E-Print Network [OSTI]

    Mowery, Molly Anne

    2008-01-01

    Exploding growth along the Colorado Front Range has expanded the wildland-urban interface-the area where homes and vegetation mix. This area, known as the WUI, is at high risk of wildfires. Wildfire risk is based on both ...

  2. Towards predictive simulation of wildfire spread at regional scale using ensemble-based data assimilation to correct the fire front

    E-Print Network [OSTI]

    - tation properties and wind conditions based on Rothermel's model; a series of observations of the fire;1. INTRODUCTION Computer-based wildfire spread modeling has emerged during the past two decades as a powerful toolTowards predictive simulation of wildfire spread at regional scale using ensemble-based data

  3. Land Use and Wildfire: A Review of Local Interactions and Teleconnections

    E-Print Network [OSTI]

    Kelly, Maggi

    2015-01-01

    governmental decisions for hazardous areas. Ann. Am. Acad.management if SRA areas become more hazardous. The local

  4. Hazardous Waste Management (Delaware)

    Broader source: Energy.gov [DOE]

    The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

  5. Hazard analysis results report

    SciTech Connect (OSTI)

    Niemi, B.J., Westinghouse Hanford

    1996-09-30

    This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

  6. HAZARDOUS WASTE MANAGEMENT REFERENCE

    E-Print Network [OSTI]

    Winfree, Erik

    HAZARDOUS WASTE MANAGEMENT REFERENCE GUIDE Prepared by Environment, Health and Safety Office@caltech.edu http://safety.caltech.edu #12;Hazardous Waste Management Reference Guide Page 2 of 36 TABLE OF CONTENTS Satellite Accumulation Area 9 Waste Accumulation Facility 10 HAZARDOUS WASTE CONTAINER MANAGEMENT Labeling

  7. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

    E-Print Network [OSTI]

    Schaefer, Marcus

    HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY

  8. Climate change and wildfire in California A. L. Westerling & B. P. Bryant

    E-Print Network [OSTI]

    Westerling, Anthony L.

    to lower precipitation and higher temperatures led to reduced fire risks in some locations where fuel also modeled using the 2000 U.S. Census to describe the location and density of residential structures documentary wildfire histories (Westerling et al., in preparation). Westerling et al. (2006) attribute

  9. Proceedings of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires

    E-Print Network [OSTI]

    does not only have an impact on environmental factors but also has a significant impact on economy vegetation cover. Water is a scare resource with significant impacts on some countries in Africa, and Policy: Climate Change and Wildfires, November 5-11, 2012, Mexico City, Mexico. 2 Forestry Student

  10. Proceedings of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires

    E-Print Network [OSTI]

    Standiford, Richard B.

    Change and Wildfires 127 Economic Information on the Historical Behavior of Forest Fires in the Forest at determining economic indicators from the determination of the profile of forest fires in the study area during valuation, economic return, forest fires. Introduction Despite the adoption of protection practices, each

  11. How risk management can prevent future wildfire disasters in the wildland-urban interface

    E-Print Network [OSTI]

    How risk management can prevent future wildfire disasters in the wildland-urban interface David E, ecosystems, and lives is not. We propose the principles of risk analysis to provide land management agencies: turn to the principles of decision science and risk management. Similar to other forms of risk

  12. Using Control Theory to Model the Long-term Economic Effects of Wildfire1

    E-Print Network [OSTI]

    Using Control Theory to Model the Long-term Economic Effects of Wildfire1 Hayley Hesseln,2 Douglas of control theory. It explores the long-term relationships among the factors of production and the choice@CNR.Colostate.edu. USDA Forest Service Gen. Tech. Rep. PSW-GTR-173. 1999. 107 #12;Session III Using Control Theory

  13. Inclusion of biomass burning in WRF-Chem: Impact of wildfires on weather forecasts

    SciTech Connect (OSTI)

    Grell, G. A.; Freitas, Saulo; Stuefer, Martin; Fast, Jerome D.

    2011-06-06

    A plume rise algorithm for wildfires was included in WRF-Chem, and applied to look at the impact of intense wildfires during the 2004 Alaska wildfire season on weather forecasts using model resolutions of 10km and 2km. Biomass burning emissions were estimated using a biomass burning emissions model. In addition, a 1-D, time-dependent cloud model was used online in WRF-Chem to estimate injection heights as well as the final emission rates. It was shown that with the inclusion of the intense wildfires of the 2004 fire season in the model simulations, the interaction of the aerosols with the atmospheric radiation led to significant modifications of vertical profiles of temperature and moisture in cloud-free areas. On the other hand, when clouds were present, the high concentrations of fine aerosol (PM2.5) and the resulting large numbers of Cloud Condensation Nuclei (CCN) had a strong impact on clouds and microphysics, with decreased precipitation coverage and precipitation amounts during the first 12 hours of the integration, but significantly stronger storms during the afternoon hours.

  14. WORKPLACE HAZARD ASSESSMENT Location: Task

    E-Print Network [OSTI]

    Rubloff, Gary W.

    WORKPLACE HAZARD ASSESSMENT Location: Task: Performed by: Date: This form may be used as an aid in performing hazard assessment. Review listed hazard classifications, identify all hazards, possible hazards and their sources. Hazard classification listing is not intended to be complete but is provided as a guide

  15. Coupled Weather and Wildfire Behavior Modeling at Los Alamos: An Overview

    SciTech Connect (OSTI)

    Bossert, James E.; Harlow, Francis H.; Linn, Rodman R.; Reisner, Jon M.; White, Andrew B.; Winterkamp, Judith L.

    1997-12-31

    Over the past two years, researchers at Los Alamos National Laboratory (LANL) have been engaged in coupled weather/wildfire modeling as part of a broader initiative to predict the unfolding of crisis events. Wildfire prediction was chosen for the following reasons: (1) few physics-based wild-fire prediction models presently exist; (2) LANL has expertise in the fields required to develop such a capability; and (3) the development of this predictive capability would be enhanced by LANL`s strength in high performance computing. Wildfire behavior models have historically been used to predict fire spread and heat release for a prescribed set of fuel, slope, and wind conditions (Andrews 1986). In the vicinity of a fire, however, atmospheric conditions are constantly changing due to non-local weather influences and the intense heat of the fire itself. This non- linear process underscores the need for physics-based models that treat the atmosphere-fire feedback. Actual wildfire prediction with full-physics models is both time-critical and computationally demanding, since it must include regional- to local-scale weather forecasting together with the capability to accurately simulate both intense gradients across a fireline, and atmosphere/fire/fuel interactions. Los Alamos has recently (January 1997) acquired a number of SGI/Cray Origin 2000 machines, each presently having 32 to 64 processors. These high performance computing systems are part of the Department of Energy`s Accelerated Strategic Computing Initiative (ASCI). While offering impressive performance now, upgrades to the system promise to deliver over 1 Teraflop (10(12) floating point operations per second) at peak performance before the turn of the century.

  16. Hazard Analysis Database Report

    SciTech Connect (OSTI)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  17. Radiation Hazards Program (Minnesota)

    Broader source: Energy.gov [DOE]

    These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

  18. Hazard communication program

    SciTech Connect (OSTI)

    Porter, E.A.

    1994-10-04

    Implements Internal Publication No. WHC-IP-0914. Section 1.1, providing management and employee guidance for working with hazardous chemicals and physical agents.

  19. Chapter 1 -Hazard Communication Hazard Communication and Training Act

    E-Print Network [OSTI]

    and Training Act require employers to inform workers about hazardous chemicals in their work areas13 Chapter 1 - Hazard Communication Hazard Communication and Training Act The Hazard Communication and Safety (EH&S) to administer a program to comply with this law. Hazardous Chemicals Index EH&S maintains

  20. Hazardous and radioactive substances in

    E-Print Network [OSTI]

    Hazardous and radioactive substances in danisH Marine Waters Ingela Dahllöf & Jesper H. Andersen University #12;#12;Hazardous and radioactive substances in danisH Marine Waters #12;#12;Hazardous Hazardous and radioactive substances in danisH Marine Waters status and teMporal trends #12;Hazardous

  1. Hazard Communication at Purdue University

    E-Print Network [OSTI]

    Holland, Jeffrey

    Hazard Communication at Purdue University Radiological and Environmental Management Written APPENDICES A OSHA Health Hazard Definitions B OSHA Method Of Hazard Determination C Expanded List Completed Work Area Forms HCP-4, HCP-5, HCP-8 I Health Hazard Warning Information 1. Health Hazard Rating 2

  2. Landowner perception, awareness, and adoption of wildfire programs in the Southern United States 

    E-Print Network [OSTI]

    Jarrett, Adam R.

    2009-05-15

    input on fire policy (USDA and USDI 2000). The ??Collaborative Approach for Reducing Wildfire Risks to Communities and the Environment: Ten-Year Comprehensive Strategy?? was developed to implement the goals of the NFP in 2001 and subsequent... with criticism and encouragement along the way. I would like to recognize the United States Forest Service and various state agencies as well. Finally, I would like to express gratitude to my family and my fianc? for the support and encouragement they have...

  3. A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications

    SciTech Connect (OSTI)

    S.W. Koch; R.G.Balice

    2004-11-01

    To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignition points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.

  4. Hazardous Waste Management (New Mexico)

    Broader source: Energy.gov [DOE]

    The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

  5. Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP)

    E-Print Network [OSTI]

    Slatton, Clint

    Hazard Communication Site Specific Information Sheet Hazard Communication Program (HCP) Site Specific Information The responsible party for a unit/area should complete this section to make the Hazard Communication Program site specific. The responsible party will ensure that the Hazard Communication Program

  6. Automated Job Hazards Analysis

    Broader source: Energy.gov [DOE]

    AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

  7. K Basin Hazard Analysis

    SciTech Connect (OSTI)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  8. HAZARD ANALYSIS SOFTWARE

    SciTech Connect (OSTI)

    Sommer, S; Tinh Tran, T

    2008-04-08

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process.

  9. MARSHALL UNIVERSITY HAZARDOUS WASTE DISPOSAL

    E-Print Network [OSTI]

    Sanyal, Suman

    /16/2005 1 #12;Marshall University Hazardous Waste Program POLICY STATEMENT- Hazardous Materials Management of the Hazardous Waste Management Program is to ensure that proper handling and legal disposal of hazardous wastes Management Program will apply to the following: 1. Any liquid, semi-solid, solid or gaseous substance defined

  10. Hazardous Working Policy November 2012

    E-Print Network [OSTI]

    Doran, Simon J.

    for: The management of University workers performing hazardous tasks or working in hazardous areas;2 Hazardous Areas: are areas where a University worker may be exposed to risks that are considered greater1 Hazardous Working Policy November 2012 Introduction The University of Surrey acknowledges

  11. Zurich`s hazard analysis process: A systematic team approach

    SciTech Connect (OSTI)

    Frei, H.

    1997-06-01

    The Zurich method of hazard analysis (ZHA) is a process designed to facilitate the systematic identification, assessment and reduction or elimination of hazard and risk in almost any product, system or process. It has been particularly successful as a front-end screening tool in the petrochemical, chemical, and pharmaceutical industries. The complexity and the regulation of these industries and the requirement for management of change have created a demand for highly efficient, yet thorough, hazard analysis techniques capable of capturing and managing the total risk perspective while clearly illuminating the risk priorities. Only when these priorities have been segregated and economically addressed as an organization fully leveraged the power of any hazard analysis tool. This paper will outline the Zurich Hazard Analysis process and will highlight the elements and strategies central to its success as an efficient, yet thorough methodology.

  12. Proceedings of the Second Conference on the Human Dimensions of Wildland Fire GTR-NRS-P-84 44 WILDFIRE IN THE UNITED KINGDOM: STATUS AND KEY ISSUES

    E-Print Network [OSTI]

    .K. wildfire management. Wildfires challenge the resources of U.K. Fire and Rescue Services (FRSs), especially in the north and west of the United Kingdom is blanket bog on deep peat. This moorland is the U.K.'s most because firefighters have trouble reaching them and because peat fires are especially dangerous

  13. Chemical process hazards analysis

    SciTech Connect (OSTI)

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  14. Identification of Aircraft Hazards

    SciTech Connect (OSTI)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  15. Geographic Information System (GIS) Emergency Support for the May 2000 Cerro Grande Wildfire, Los Alamos, New Mexico, USA

    SciTech Connect (OSTI)

    C.R.Mynard; G.N.Keating; P.M.Rich; D.R. Bleakly

    2003-05-01

    In May 2000 the Cerro Grande wildfire swept through Los Alamos, New Mexico, burning approximately 17,400 ha (43,000 acres) and causing evacuation of Los Alamos National Laboratory (LANL) and the communities of Los Alamos and White Rock. An integral part of emergency response during the fire was the use of geographic information system (GIS) technology, which continues to be used in support of post-fire restoration and environmental monitoring. During the fire Laboratory GIS staff and volunteers from other organizations worked to produce maps and provide support for emergency managers, including at an emergency GIS facility in Santa Fe. Subsequent to the fire, Laboratory GIS teams supported the multiagency Burned Area Emergency Rehabilitation (BAER) team to provide GIS data and maps for planning mitigation efforts. The GIS teams continue to help researchers, operations personnel, and managers deal with the tremendous changes caused by the fire. Much of the work is under the auspices of the Cerro Grande Rehabilitation Project (CGRP) to promote recovery from fire damage, improve information exchange, enhance emergency management, and conduct mitigation activities. GIS efforts during the fire provided important lessons about institutional matters, working relationships, and emergency preparedness. These lessons include the importance of (1) an integrated framework for assessing natural and human hazards in a landscape context; (2) a strong GIS capability for emergency response; (3) coordinated emergency plans for GIS operations; (4) a method for employees to report their whereabouts and receive authoritative information during an evacuation; (5) GIS data that are complete, backed-up, and available during an emergency; (6) adaptation of GIS to the circumstances of the emergency; (7) better coordination in the GIS community; (8) better integration of GIS into LANL operations; and (9) a central data warehouse for data and metadata. These lessons are important for planning future directions of GIS at LANL. Growing maturity of GIS is expected to lead to standardization and a better-integrated, more-coordinated approach to data sharing and emergency management at LANL, and within DOE, in accord with the federal government's increasing focus on electronic communication for its organizational and public interactions.

  16. Hazardous fluid leak detector

    DOE Patents [OSTI]

    Gray, Harold E. (Las Vegas, NV); McLaurin, Felder M. (Las Vegas, NV); Ortiz, Monico (Las Vegas, NV); Huth, William A. (Las Vegas, NV)

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  17. QUANTIFYING PHOTOVOLTAIC FIRE DANGER REDUCTION WITH ARC-FAULT CIRCUIT INTERRUPTERS

    E-Print Network [OSTI]

    QUANTIFYING PHOTOVOLTAIC FIRE DANGER REDUCTION WITH ARC-FAULT CIRCUIT INTERRUPTERS Kenneth M, shock hazards, and cause system downtime in photovoltaic (PV) systems. The 2011 National Electrical Code

  18. Hazardous Waste Management (Indiana)

    Broader source: Energy.gov [DOE]

    The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

  19. Demand Reduction

    Office of Energy Efficiency and Renewable Energy (EERE)

    Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

  20. Missouri Hazardous Waste Management Law (Missouri)

    Broader source: Energy.gov [DOE]

    The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

  1. Hazardous waste sites and housing appreciation rates

    E-Print Network [OSTI]

    McCluskey, Jill; Rausser, Gordon C.

    2000-01-01

    WORKING PAPER NO. 906 HAZARDOUS WASTE SITES AND HOUSINGEconomics January 2000 Hazardous Waste Sites and Housingand RF. Anderson, Hazardous waste sites: the credibility

  2. Geological Hazards Labs Spring 2010

    E-Print Network [OSTI]

    Chen, Po

    Geological Hazards Labs Spring 2010 TA: En-Jui Lee (http://www.gg.uwyo.edu/ggstudent/elee8/site - An Indispensible Tool in Hazard Planning 3 26/1; 27/1 Lab 2: Geologic Maps - Mapping the Hazards 4 2/2; 3/2 Lab 3: Population - People at Risk 5 9/2; 10/2 Lab 4: Plate Tectonics - Locating Geologic Hazards 6 16/2; 17/2 Lab 5

  3. USDA Forest Service Gen. Tech. Rep. PSW-GTR-181. 2002. 49 Effects of Wildfire on In-Channel Woody

    E-Print Network [OSTI]

    into smaller pieces to expedite flushing through the system and to avoid debris jam formation. Biotic values and microorganisms are lost or reduced, however, when debris is removed or cut up. Information on debris dynamics, and carbon loading after a 1994 wildfire in the eastern Sierra Nevada were quantified by before and after

  4. Written Hazard Communication (HAZCOM) Program

    E-Print Network [OSTI]

    Jia, Songtao

    chemicals The potential hazards of chemicals in the work area How to protect yourself from these potential for their respective work areas MSDS's shall be maintained by each department for all hazardous chemicals&S office has developed several employee training modules for specific work areas and hazardous materials

  5. Laboratory Waste Disposal HAZARDOUS GLASS

    E-Print Network [OSTI]

    Sheridan, Jennifer

    Laboratory Waste Disposal HAZARDOUS GLASS Items that could cut or puncture skin or trash- can without any treatment. Hazardous Glass and Plastic: Items that can puncture, cut or scratch if disposed a significant hazard. Bags of misc. plasticware that has been autoclaved to remove bio contamination. Syringe

  6. Hazard Sampling Dialog General Layout

    E-Print Network [OSTI]

    Zhang, Tao

    1 Hazard Sampling Dialog General Layout The dialog's purpose is to display information about the hazardous material being sampled by the UGV so either the system or the UV specialist can identify the risk level of the hazard. The dialog is associated with the hazmat reading icons (Table 1). Components

  7. Appendix C: Hazardous Property Assessment

    E-Print Network [OSTI]

    Siddharthan, Advaith

    Appendix C: Hazardous Property Assessment The aim of this appendix is to: · give advice on the hazards properties H1 to H14 identified in Annex III of the HWD; · provide assessment methods and threshold concentrations for the hazards; and · advise on which test methods should be considered

  8. Flooding of Industrial Facilities -Vulnerability Reduction in Practice

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    any improvement. As human activities historically developed in river areas and floodplains, industrial-use planning in flood-prone areas and vulnerability reduction in flood-prone facilities. This paper focuses of hazardous material, soil or water pollutions by hazardous substances for the environment, fires, explosions

  9. PUREX facility hazards assessment

    SciTech Connect (OSTI)

    Sutton, L.N.

    1994-09-23

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

  10. Wildfire Risk Mapping over the State of Mississippi: Land Surface Modeling Approach

    SciTech Connect (OSTI)

    Cooke, William H. [Mississippi State University (MSU); Mostovoy, Georgy [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Jolly, W. Matt [USDA Forest Service

    2012-01-01

    Three fire risk indexes based on soil moisture estimates were applied to simulate wildfire probability over the southern part of Mississippi using the logistic regression approach. The fire indexes were retrieved from: (1) accumulated difference between daily precipitation and potential evapotranspiration (P-E); (2) top 10 cm soil moisture content simulated by the Mosaic land surface model; and (3) the Keetch-Byram drought index (KBDI). The P-E, KBDI, and soil moisture based indexes were estimated from gridded atmospheric and Mosaic-simulated soil moisture data available from the North American Land Data Assimilation System (NLDAS-2). Normalized deviations of these indexes from the 31-year mean (1980-2010) were fitted into the logistic regression model describing probability of wildfires occurrence as a function of the fire index. It was assumed that such normalization provides more robust and adequate description of temporal dynamics of soil moisture anomalies than the original (not normalized) set of indexes. The logistic model parameters were evaluated for 0.25 x0.25 latitude/longitude cells and for probability representing at least one fire event occurred during 5 consecutive days. A 23-year (1986-2008) forest fires record was used. Two periods were selected and examined (January mid June and mid September December). The application of the logistic model provides an overall good agreement between empirical/observed and model-fitted fire probabilities over the study area during both seasons. The fire risk indexes based on the top 10 cm soil moisture and KBDI have the largest impact on the wildfire odds (increasing it by almost 2 times in response to each unit change of the corresponding fire risk index during January mid June period and by nearly 1.5 times during mid September-December) observed over 0.25 x0.25 cells located along the state of Mississippi Coast line. This result suggests a rather strong control of fire risk indexes on fire occurrence probability over this region.

  11. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Transportation Pipeline and Hazardous Materials Safety Administration Activities Department of Transportation Pipeline and Hazardous Materials Safety Administration Activities...

  12. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Enhancing Railroad Hazardous Materials Transportation Safety Presented by Kevin R. Blackwell, Radioactive Materials Program Manager. Enhancing Railroad Hazardous Materials...

  13. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO NOT - Dispose of Hazardous Waste inappropriately or prior to determining its hazards. Hazardous Waste must never

  14. Reduction of fire hazards on large mining equipment

    SciTech Connect (OSTI)

    Maria I. De Rosa

    2008-09-15

    Although standards and regulations are in place to prevent large mining equipment fires, recent analyses of mine accident data show that mining equipment fires still occur with alarming frequency and grave consequences, particularly at all surface mines and in underground metal/nonmetal mines. Recently technological advances in fire protection, combined with the statistical data on equipment fires, led NIOSH to reinvestigate this and to improve operator safety. NIOSH demonstrated that newly developed technologies, such as dual cab fire inerting systems and engine compartment fire barriers, can greatly enhance operator safety and lessen the damage of property during large mobile equipment fires. 10 refs., 5 figs.

  15. Developing a Fire Danger Rating System for the UK: FireBeaters Phase I final report. Report to the Scottish Wildfire Forum. 

    E-Print Network [OSTI]

    Legg, Colin J; Davies, Gwilym Matthew; Kitchen, Karl; Marno, Penny

    2007-01-01

    Introduction and objectives The objective of this research is to develop a predictive tool for the management of wildfire in the UK and for facilitating good practice by those who work with fire in semi-natural vegetation. ...

  16. Hazards assessment for the Hazardous Waste Storage Facility

    SciTech Connect (OSTI)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency.

  17. Management of hazardous medical waste in Croatia

    SciTech Connect (OSTI)

    Marinkovic, Natalija Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar; Pavic, Tomo

    2008-07-01

    This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

  18. Decision analysis for INEL hazardous waste storage

    SciTech Connect (OSTI)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  19. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    SciTech Connect (OSTI)

    Salzman, Sonja L.; English, Charles J.

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  20. Hazard Lewis Farms Collection Binghamton University Libraries

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    Hazard Lewis Farms Collection Binghamton University Libraries Special Collections Hazard Lewis and University Archives #12;Hazard Lewis Farms Collection Biographical Note The Hazard Lewis Farm was situated Hazard Lewis, one of the early pioneer settlers of Broome County. Colonel Lewis at one time with Christor

  1. HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY

    E-Print Network [OSTI]

    Calgary, University of

    HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 HAZARD ALERT ­ Reaction Manual. http://www.ucalgary.ca/safety/files/safety/LaboratoryFumeHoodUserStandard.pdf #12;HAZARD ALERT ENVIRONMENT HEALTH AND SAFETY EH&S Hazard Alert - 2010.06.18 In the recent incident the sash was closed while

  2. REPORT NO. 8 radiation hazards

    E-Print Network [OSTI]

    REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

  3. HEALTH AND HAZARD ASSESSMENT QUESTIONNAIRE

    E-Print Network [OSTI]

    Fleming, Andrew J.

    1 HEALTH AND HAZARD ASSESSMENT QUESTIONNAIRE The information on this form will be kept strictly the property of the University Health Service of the University of Newcastle. The University of Newcastle is committed to achieving a safe and healthy workplace for its staff. Based on the completed Health and Hazard

  4. Hazardous Waste Management Standards and Regulations (Kansas)

    Broader source: Energy.gov [DOE]

    This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

  5. Columbia University Hazardous Waste Room Inspection Report

    E-Print Network [OSTI]

    Jia, Songtao

    Storage Area Hazardous Waste Room Inspection Report Location: Bldg. Room: Date: Inspected ByColumbia University Hazardous Waste Room Inspection Report Flammable Storage Area Lack Pack always closed while holding hazardous wastes? Comment: 12. Are containers labeled? Date

  6. Advanced Membrane Systems: Recovering Wasteful and Hazardous...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

  7. Department of Transportation Pipeline and Hazardous Materials...

    Office of Environmental Management (EM)

    Conroy U S Department of Transportation - 1 - U.S. Department of Transportation Pipeline and Hazardous Materials Safety Administration Office of Hazardous Materials Safety...

  8. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Glare Hazard Analysis Tool Home Stationary Power Energy Conversion Efficiency Solar Energy Photovoltaics Solar Market Transformation Solar Glare Hazard Analysis Tool Solar...

  9. Integrating Total Quality Management (TQM) and hazardous waste management

    SciTech Connect (OSTI)

    Kirk, N.

    1993-11-01

    The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

  10. Health Hazards in Indoor Air

    E-Print Network [OSTI]

    Logue, Jennifer M.

    2012-01-01

    Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

  11. Transportation of Hazardous Evidentiary Material.

    SciTech Connect (OSTI)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being shipped, and will otherwise maintain it as nearly as possible in its original condition.The recommendations provided are short-term solutions to the problems of shipping evidence, and have considered only currently commercially available containers. These containers may not be appropriate for all cases. Design, testing, and certification of new transportation containers would be necessary to provide a container appropriate for all cases.Table 1 provides a summary of the recommendations for each class of hazardous material.Table 1: Summary of RecommendationsContainerCost1-quart paint can with ArmlockTM seal ringLabelMaster(r)%242.90 eachHazard Class 3, 4, 5, 8, or 9 Small ContainersTC Hazardous Material Transport ContainerCurrently in Use4 DraftDraftDraftTable 1: Summary of Recommendations (continued)ContainerCost55-gallon open or closed-head steel drumsAll-Pak, Inc.%2458.28 - %2473.62 eachHazard Class 3, 4, 5, 8, or 9 Large Containers95-gallon poly overpack LabelMaster(r)%24194.50 each1-liter glass container with plastic coatingLabelMaster(r)%243.35 - %243.70 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Small ContainersTC Hazardous Material Transport ContainerCurrently in Use20 to 55-gallon PIH overpacksLabelMaster(r)%24142.50 - %24170.50 eachHazard Class 6 Division 6.1 Poisonous by Inhalation (PIH) Large Containers65 to 95-gallon poly overpacksLabelMaster(r)%24163.30 - %24194.50 each1-liter transparent containerCurrently in UseHazard Class 6 Division 6.2 Infectious Material Small ContainersInfectious Substance ShipperSource Packaging of NE, Inc.%24336.00 eachNone Commercially AvailableN/AHazard Class 6 Division 6.2 Infectious Material Large ContainersNone Commercially Available N/A5

  12. Toxic hazards of underground excavation

    SciTech Connect (OSTI)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  13. LOG HAZARD REGRESSION Huiying Sun

    E-Print Network [OSTI]

    Heckman, Nancy E.

    LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 .................................................................... .................................................................... .................................................................... .................................................................... THE UNIVERSITY OF BRITISH COLUMBIA September, 1999 c flHuiying Sun, 1999 #12; Abstract We propose using

  14. Preliminary hazards analysis -- vitrification process

    SciTech Connect (OSTI)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  15. Hazardous Materials Alert Departmental Contact(s)

    E-Print Network [OSTI]

    Hickman, Mark

    Hazardous Materials Alert Departmental Contact(s): Name ___________________________________________________________________________________ Hazardous Materials Alert If the release of a hazardous chemical or gas is affecting people in your area yourself at risk. 2. isOlATE the hazardous material by clearing the area, close the doors. If safe to do so

  16. LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Portman, Douglas

    1 LEARNERS GUIDE FOR RESPONSIBLE HAZARDOUS CHEMICAL WASTE MANAGEMENT UNIVERSITY OF ROCHESTER the effects of improper hazardous waste management and disposal. Each person who works with hazardous is managed by the Hazardous Waste Management Unit (HWMU) of Facilities and Services. To contact HWMU dial x

  17. Hazard % free free espresso Over Run

    E-Print Network [OSTI]

    Dill, David L.

    Total Products Hazard­ Hazard­ % free free espresso­ Over­ Run­ name in/out Method exact head time 5 0 1 dme­fast­opt 5/3 8 8 0 1 Table 2. Comparison of Hazard­Free Logic Minimization with espresso­level hazard­free minimization prob­ lem for several reasons: the general problem has not pre­ viously been

  18. CONTROL OF HAZARDOUS ENERGY 12.A GENERAL

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Jun 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When working on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program (HECP) is required see 12.B. Hazardous energy is any energy, including but not limited to mechanical (e

  19. GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE

    E-Print Network [OSTI]

    Tennessee, University of

    GUIDELINES FOR HANDLING HAZARDOUS CHEMICAL WASTE The proper management of hazardous waste and regulatory compliance are achieved: 1. Make sure that no hazardous materials are placed into regular solid in the departmental chemical hygiene plan (CHP) before you begin to use hazardous substances. 3. Make sure you know

  20. CRAD, Hazardous Waste Management- December 4, 2007

    Broader source: Energy.gov [DOE]

    Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

  1. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    SciTech Connect (OSTI)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  2. Integrability Singular reduction

    E-Print Network [OSTI]

    Patrick, George

    Motivation Integrability Singular reduction Integration of Singular quotients Summary References Singular reduction of Poisson manifolds and integrability Rui L. Fernandes1 Joint work with J.P. Ortega Fernandes Singular reduction and integrability #12;Motivation Integrability Singular reduction Integration

  3. Household Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion of household products

    E-Print Network [OSTI]

    de Lijser, Peter

    over a larger area and releases them into the air. Pouring hazardous liquids on the ground can poisonHousehold Hazardous Waste Household hazardous waste is the discarded, unused, or leftover portion should be considered hazardous. You cannot treat hazardous wastes like other kinds of garbage

  4. Increasing Resiliency to Natural Hazards: A Strategic Plan for the Multi-Hazards

    E-Print Network [OSTI]

    Fleskes, Joe

    Increasing Resiliency to Natural Hazards: A Strategic Plan for the Multi-Hazards Demonstration Survey #12;#12;Increasing Resiliency to Natural Hazards--A Strategic Plan for the Multi-Hazards on the USGS--the Federal source for science about the Earth, its natural and living resources, natural hazards

  5. Activity Hazard Assessment 6.0 Page 1 of 6 Activity Hazard

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Activity Hazard Assessment 6.0 Page 1 of 6 Activity Hazard Assessment Tool This form must Hazard Assessment specific to activities in their laboratories. The Activity Hazard Assessment identifies hazards to employees and specifies personal protective equipment (PPE) to protect employees during work

  6. Laboratory Hazard Assessment Tool UC Laboratory Hazard Assessment v11 UC Regents Page 1 of 28

    E-Print Network [OSTI]

    Aluwihare, Lihini

    Laboratory Hazard Assessment Tool UC Laboratory Hazard Assessment v11 © UC Regents Page 1 of 28 This Laboratory Hazard Assessment Tool (LHAT) facilitates identification of hazards and identifies the Personal or personnel. The LHAT will provide a summary report of hazards present in the laboratory and the PPE

  7. Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 1111

    E-Print Network [OSTI]

    Rose, William I.

    Volcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, GuatemalaVolcano Hazards at Fuego and Acatenango, Guatemala 11111 Open-File Report 01­431Open-File Report 01

  8. Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires

    SciTech Connect (OSTI)

    Davies, G. M.; Bakker, J. D.; Dettweiler-Robinson, E.; Dunwiddie, Peter W.; Hall, S. A.; Downs, Janelle L.; Evans, J.

    2012-07-01

    Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems including changes in state. Sagebrush-steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering these systems. Despite these issues, the majority of studies of fire effects in Artemisia tridentata wyomingensis-dominated systems have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-central Washington (U.S.A.), was one of the largest areas of continuous shrub-steppe habitat in the state until large wildfires burnt the majority of it in 2000 and 2007. We analysed data from permanent vegetation transects established in 1996 and resampled in 2002 and 2009. Our objective was to describe how the fires, and subsequent post-fire restoration efforts, affected communities successional pathways. Plant communities differed in response to repeated fire and restoration; these differences could largely be ascribed to the functional traits of the dominant species. Low elevation communities, previously dominated by obligate seeders, moved farthest from their initial composition and were dominated by weedy, early successional species in 2009. Higher elevation sites with resprouting shrubs, native bunchgrasses and few invasive species were generally more resilient to the effects of repeated disturbances. Shrub cover has been almost entirely removed from ALE, though there is evidence of recovery where communities were dominated by re-sprouters. Cheatgrass (Bromus tectorum) dominance was reduced by herbicide application in areas where it was previously abundant but increased significantly in untreated areas. Several re-sprouting species, notably Phlox longifolia and Poa secunda, expanded remarkably following competitive release from shrub canopies and/or abundant cheatgrass. Our results suggest that community dynamics can be understood through a state-and-transition model with two axes (shrub/grass and native/invasive abundance), though such models also need to account for differences in plant functional traits and disturbance regimes. We use our results to develop an illustrative model that will be expanded with further research.

  9. Fire-adapted landscapes in the West can benefit from wildfires, but can also experience significant damage and destruction to buildings, communication and energy systems,

    E-Print Network [OSTI]

    significant damage and destruction to buildings, communication and energy systems, watersheds, and other of uncharacteristic wildfire [fire that does not occur within the time, space, and severity patterns of the historical and Budget, General Accounting Office, Office of Inspector General, Congress, and general public to maximize

  10. Title III hazardous air pollutants

    SciTech Connect (OSTI)

    Todd, R.

    1995-12-31

    The author presents an overview of the key provisions of Title III of the Clean Air Act Amendments of 1990. The key provisions include the following: 112(b) -- 189 Hazardous Air Pollutants (HAP); 112(a) -- Major Source: 10 TPY/25 TPY; 112(d) -- Application of MACT; 112(g) -- Modifications; 112(I) -- State Program; 112(j) -- The Hammer; and 112(r) -- Accidental Release Provisions.

  11. A Green Laser Pointer Hazard

    E-Print Network [OSTI]

    Jemellie Galang; Allesandro Restelli; Edward W. Hagley; Charles W. Clark

    2010-08-09

    An inexpensive green laser pointer was found to emit 20 mW of infrared radiation during normal use. This is potentially a serious hazard that would not be noticed by most users of such pointers. We find that this infrared emission derives from the design of the pointer, and describe a simple method of testing for infrared emissions using common household items.

  12. Abatement of Air Pollution: Hazardous Air Pollutants (Connecticut...

    Broader source: Energy.gov (indexed) [DOE]

    allowable stack concentrations and hazard limiting values for the emission of hazardous air pollutants. The regulations also discuss sampling procedures for hazardous air...

  13. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications The...

  14. Weather and the Transport of Hazardous Materials | Department...

    Office of Environmental Management (EM)

    Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials Weather and the Transport of Hazardous Materials More Documents & Publications...

  15. Chlorine Gas: An Evolving Hazardous Material Threat and Unconventional Weapon

    E-Print Network [OSTI]

    Jones, Robert; Wills, Brandon; Kang, Christopher

    2010-01-01

    Chlorine Gas: An Evolving Hazardous Material Threat andChlorine gas represents a hazardous material threat fromrepresents a persistent hazardous material (HAZMAT) threat.

  16. Massachusetts Hazardous Waste Management Act (Massachusetts)

    Broader source: Energy.gov [DOE]

    This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

  17. Owning Hazard, A Tragedy Barbara Young Welke*

    E-Print Network [OSTI]

    Barrett, Jeffrey A.

    693 Owning Hazard, A Tragedy Barbara Young Welke* In Memory of Frances Young Welke (March 21, 1992 in the ownership of hazard from the individuals who suffered injury, to the enterprises involved in manufacturing

  18. Characterizations of the Proportional (Reversed) Hazard Class

    E-Print Network [OSTI]

    Kundu, Debasis

    Characterizations of the Proportional (Reversed) Hazard Class Debasis Kundu Department Abstract In this paper we provide two simple characterizations of the proportional (reversed) hazard class, generalized exponential, Rayleigh, Burr type X, exponentiated Weibull belong to the proportional (reversed

  19. Suggested Approaches for Probabilistic Flooding Hazard Assessment

    Office of Energy Efficiency and Renewable Energy (EERE)

    Suggested Approaches for Probabilistic Flooding Hazard Assessment Ahmed “Jemie” Dababneh, Ph.D., P.E. and Jeffrey Oskamp, E.I.T. Presentation for U.S. Department of Energy Natural Phenomena Hazards Meeting October 22, 2014

  20. University of Florida Hazard Communication Program

    E-Print Network [OSTI]

    Slatton, Clint

    in the following areas with regard to the inventoried hazardous chemicals to which I am exposed: a. The chemical involving them in my work area. c. The proper and safe handling of the hazardous chemicals. d. The location chemicals. f. The physical and health hazards of the chemicals in my work area. g. Methods to protect myself

  1. CONTROL OF HAZARDOUS ENERGY Table Of Contents

    E-Print Network [OSTI]

    US Army Corps of Engineers

    EM 385-1-1 XX Sep 13 i Section 12 CONTROL OF HAZARDOUS ENERGY Table Of Contents Section: Page 12.A General.................. .............................................. ... .12-1 12.B Hazardous Energy.......................................................12-6 #12;EM 385-1-1 XX Sep 13 12-1 SECTION 12 CONTROL OF HAZARDOUS ENERGY 12.A GENERAL 12.A.01 When

  2. Hazard & Disaster Management College of Science

    E-Print Network [OSTI]

    Hickman, Mark

    Hazard & Disaster Management College of Science 09 For further information about the University Postgraduate Programmes #12;PostgraduateProgrammes in Hazard & Disaster Management Postgraduate Diploma - BSc by risk management. These programmes aim to develop skills of hazard and disaster management through

  3. Hazard Communication Program 1.0 REFERENCE

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Communication Program 1.0 REFERENCE California Code of Regulations, Title 8, Sections 337 the properties and potential safety and health hazards of the materials which they use or to which they are exposed. Employees who use or may be exposed to potentially hazardous substances or harmful physical

  4. Hazardous Waste Management Overview The Five L's

    E-Print Network [OSTI]

    Jia, Songtao

    Hazardous Waste Management Overview The Five L's CoLLect CoLLect all hazardous chemical waste and submit a chemical waste pick-up request form for proper disposal. Periodically evaluate your chemical are unsure if your chemical waste is a Hazardous Waste, consult EH&S at hazmat@columbia.edu. DO

  5. Multivariate Distributions with Proportional Reversed Hazard Marginals

    E-Print Network [OSTI]

    Kundu, Debasis

    Multivariate Distributions with Proportional Reversed Hazard Marginals Debasis Kundu1 & Manuel Franco2 & Juana-Maria Vivo3 Abstract Several univariate proportional reversed hazard models have been a class of bivariate models with proportional reversed hazard marginals. It is observed that the proposed

  6. SEISMIC HAZARD AND VULNERABILITY ASSESSMENT IN TURRIALBA, COSTA RICA Seismic hazard and vulnerability

    E-Print Network [OSTI]

    SEISMIC HAZARD AND VULNERABILITY ASSESSMENT IN TURRIALBA, COSTA RICA I Seismic hazard and vulnerability assessment in Turrialba, Costa Rica Rafael German Urban Lamadrid March 2002 #12;SEISMIC HAZARD AND VULNERABILITY ASSESSMENT IN TURRIALBA, COSTA RICA II Seismic hazard and vulnerability assessment in Turrialba

  7. This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures

    E-Print Network [OSTI]

    Mease, Kenneth D.

    This document details how to manage hazardous waste with multiple hazards. Waste Management Procedures · Always manage hazardous waste as the highest ranked waste in the hazardous waste hierarchy Waste Solids Place in solid radioactive waste box. Radioactive Waste Liquids Place in liquid radioactive

  8. Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste

    E-Print Network [OSTI]

    Wilcock, William

    storage cabinet. Avoid accumulating a lot of waste ­ keep areas clear. EPO ­ Hazardous Waste Checklist 07Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

  9. Risoe International Energy conference, May 2003 New Energy, new hazard ?New Energy, new hazard ?

    E-Print Network [OSTI]

    Risoe International Energy conference, May 2003 New Energy, new hazard ?New Energy, new hazard technologies expectations 3. Does hydrogen introduce any new hazard ? 4. Are fuel cell safe ? 5. Is there any organisation, ! Area of interest : - industrial hazard (fire and explosion), - chronic pollution (air, soil

  10. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K. (Idaho Falls, ID); Grey, Alan E. (Idaho Falls, ID)

    1994-01-01

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  11. Detection device for hazardous materials

    DOE Patents [OSTI]

    Partin, Judy K.; Grey, Alan E.

    1994-04-05

    A detection device that is activated by the interaction of a hazardous chcal with a coating interactive with said chemical on an optical fiber thereby reducing the amount of light passing through the fiber to a light detector. A combination of optical filters separates the light into a signal beam and a reference beam which after detection, appropriate amplification, and comparison with preset internal signals, activates an alarm means if a predetermined level of contaminant is observed.

  12. Meeting Department of Defense non-hazardous solid waste goals

    SciTech Connect (OSTI)

    Eakes, W.S.; Comstock, J.

    1999-07-01

    This paper will discuss the previous and present Department of Defense (DOD) non-hazardous solid waste goals and how Navy and Marine Corps installation collect solid waste data and measure the goals. The installation and central data collection systems used, data collection problems and solutions, data quality, and the yearly measure. The paper will also discuss the original solid waste reduction and diversion goal and how the Navy and Marine Corps performed. The new DOD landfill and incineration diversion goal will be discussed and some techniques the Navy will use to meet the new goals.

  13. Hazard Avoidance in Wireless Sensor and Actor Networks

    E-Print Network [OSTI]

    Sivakumar, Raghupathy

    Hazard Avoidance in Wireless Sensor and Actor Networks Ramanuja Vedantham Zhenyun Zhuang Prof [Akyildiz'04] Network Low bandwidth (Hazards Hazards undesirable changes in the environment Reason for hazards Different latencies For different sensors and actors

  14. The Globally Harmonized System for Hazard Communication (GHS)

    E-Print Network [OSTI]

    Capogna, Luca

    The Globally Harmonized System for Hazard Communication (GHS) University of Arkansas Facilities groups. · GHS is based on major existing systems around the world, including OSHA's Hazard Communication to hazard communication, providing agreed upon criteria for classification of chemical hazards

  15. Waste Toolkit A-Z Electrical (non-hazardous)

    E-Print Network [OSTI]

    Melham, Tom

    Waste Toolkit A-Z Electrical (non-hazardous) What are non-hazardous electrical items? Non-hazardous of non-haz WEEE? Departments must make their own arrangements (and pay for) for the collection of non-hazardous not be used for the disposal of non-hazardous waste. What is considered hazardous? If your waste is classified

  16. Hazard Labeling Elements 1. Product identifier: how the hazardous chemical is identified. This can be (but is not

    E-Print Network [OSTI]

    Chapman, Michael S.

    Hazard Labeling Elements 1. Product identifier: how the hazardous chemical is identified. This can of severity of hazard and alert the reader to a potential hazard on the label. There are only two signal words, "Danger" and "Warning." Within a specific hazard class, "Danger" is used for the more severe hazards

  17. NGNP SITE 2 HAZARDS ASSESSMENT

    SciTech Connect (OSTI)

    Wayne Moe

    2011-10-01

    The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

  18. Hazardous and Radioactive Mixed Waste

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1982-12-31

    To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

  19. WIPP Hazardous Waste Facility Permit - 2008 Update

    SciTech Connect (OSTI)

    Kehrman, R.F.; Most, W.A.

    2008-07-01

    Important new changes to the Hazardous Waste Facility Permit (HWFP) were implemented during 2007. The challenge was to implement these changes without impacting shipping schedules. Many of the changes required advanced preparation and coordination in order to transition to the new waste analysis paradigm, both at the generator sites and at the WIPP without interrupting the flow of waste to the disposal facility. Not only did aspects of waste characterization change, but also a new Permittees' confirmation program was created. Implementing the latter change required that new equipment and facilities be obtained, personnel hired, trained and qualified, and operating procedures written and approved without interruption to the contact-handled (CH) transuranic (TRU) waste shipping schedule. This was all accomplished successfully with no delayed or cancelled shipments. Looking forward to 2008 and beyond, proposed changes that will deal with waste in the DOE TRU waste complex is larger than the TRUPACT-IIs can handle. Size reduction of the waste would lead to unnecessary exposure risk and ultimately create more waste. The WIPP is working to have the Nuclear Regulatory Commission (NRC) certify the TRUPACT-III. The TRUPACT-III will be able to accommodate larger sized TRU mixed waste. Along with this new NRC-certified shipping cask, a new disposal container, the Standard Large Box, must be proposed in a permit modification. Containers for disposal of TRU mixed waste at the WIPP must meet the DOT 7A standards and be filtered. Additionally, as the TRUPACT-III/Standard Large Box loads and unloads from the end of the shipping cask, the proposed modification will add horizontal waste handling techniques to WIPP's vertical CH TRU waste handling operations. Another major focus will be the Hazardous Waste Facility Permit reapplication. The WIPP received its HWFP in October of 1999 for a term of ten years. The regulations and the HWFP require that a new permit application be submitted 180-days before the expiration date of the HWFP. At that time, the WIPP will request only one significant change, the permitting of Panel 8 to receive TRU mixed waste. (author)

  20. Enhancing Railroad Hazardous Materials Transportation Safety...

    Office of Environmental Management (EM)

    Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin Blackwell for the NTSF annual meeting held from May 14-16,...

  1. CHEMICAL HYGIENE PLAN HAZARD COMMUNICATION PLAN

    E-Print Network [OSTI]

    Kim, Duck O.

    Biological Safety Officer Ergonomic Specialist 2723 Radiation Safety 2250 Facilities Management Office 2125. ANNUAL REVIEW AND EVALUATION OF EFFECTIVENESS OF THE CHEMICAL HYGIENE PLAN 9. HAZARD COMMUNICATION PLAN

  2. Hazardous Waste Management System-General (Ohio)

    Broader source: Energy.gov [DOE]

    This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

  3. Identification of Hazards, 3/9/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

  4. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bearzi Hazardous Waste Bureau Department of Energy Carlsbad Field Office P. O . Box 3090 Carlsbad. New Mexico 88221 May 26, 2009 New Mexico Environment Department 2905 E. Rodeo...

  5. Hazardous Material Packaging for Transport - Administrative Procedures

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1986-09-30

    To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

  6. Vermont Conditionally Exempt Generator Handbook: A Hazardous...

    Open Energy Info (EERE)

    Conditionally Exempt Generator Handbook: A Hazardous Waste Management Guide for Smaller Vermont Business Jump to: navigation, search OpenEI Reference LibraryAdd to library...

  7. Hazards Control, 3/9/35

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's programs and policy for establishing controls to mitigate hazards affecting the public, worker, and...

  8. Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 Identification of Hazardous Chemical Waste

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 9 1 · Identification of Hazardous Chemical Waste OBJECTIVES Do you know how to do the following? If you do, skip ahead to Minimization of Hazardous Waste section. If you do not, continue on in this section. · Determine whether

  9. Journal of Hazardous Materials 132 (2006) 98110 Assessment of environmental radon hazard using human

    E-Print Network [OSTI]

    Yu, Peter K.N.

    2006-01-01

    Journal of Hazardous Materials 132 (2006) 98­110 Assessment of environmental radon hazard using Abstract Radon is a natural radioactive gas derived from geological materials. It has been estimated to assess the health hazard from environmental radon is reviewed. A short history of dosimetric models

  10. Fire and explosion hazards of oil shale

    SciTech Connect (OSTI)

    Not Available

    1989-01-01

    The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

  11. Avoiding Mold Hazards In Your Flooded Home

    E-Print Network [OSTI]

    Avoiding Mold Hazards In Your Flooded Home A flood-damaged home requires special attention to avoid or correct a mold population explosion. Mold is likely to multiply on materials that stay wet for more than two or three days. The longer mold is allowed to grow, the greater the hazard and the harder

  12. Energy and solid/hazardous waste

    SciTech Connect (OSTI)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  13. Nat. Hazards Earth Syst. Sci., 8, 577586, 2008 www.nat-hazards-earth-syst-sci.net/8/577/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 8, 577­586, 2008 www.nat-hazards-earth-syst-sci.net/8 Hazards and Earth System Sciences Integrated approach for coastal hazards and risks in Sri Lanka M. Garcin the importance of knowledge and the taking into account of coastal hazards. Sri Lanka was one of the countries

  14. LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete the section

    E-Print Network [OSTI]

    Firestone, Jeremy

    LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete of Environmental Health and Safety. HAZARDS: Biological Hazard ­ Biosafety levels 2 or 3 organisms present Laser Radiation Hazards ­Any work involving class 3b or 4 lasers Flammable Gas ­ Compressed gas cylinders

  15. Nat. Hazards Earth Syst. Sci., 6, 553561, 2006 www.nat-hazards-earth-syst-sci.net/6/553/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 553­561, 2006 www.nat-hazards-earth-syst-sci.net/6/553/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Introduction Risk consists of hazard and vulnerability. We can define "hazard" like "a threatening event

  16. Nat. Hazards Earth Syst. Sci., 6, 637651, 2006 www.nat-hazards-earth-syst-sci.net/6/637/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 637­651, 2006 www.nat-hazards-earth-syst-sci.net/6/637/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Hazards and Landscape (BFW), Department of Natural Hazards and Alpine Timberline, Innsbruck, Austria 3

  17. Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the

    E-Print Network [OSTI]

    de Lijser, Peter

    Hazard Priority and Remediation Hazards are prioritized according to the severity of the resulting injury, potential damage, and the probability of occurrence. Imminent and serious procedures or hazards Description Correction Date 1 EMERGENCY HAZARD Emergency Hazards threaten life safety or health, property

  18. Final Report Survey of Hazardous Trees on Marine Corps Depot

    E-Print Network [OSTI]

    Bolding, M. Chad

    1 Final Report Survey of Hazardous Trees on Marine Corps Depot Parris Island, South ............................................................................................................................... 10 Hazard Rating and Attributes ................................................................................................................... 26 #12;3 Abstract Surveying for hazardous trees is the first step

  19. A Hazardous Inquiry: The Rashomon Effect at Love Canal

    E-Print Network [OSTI]

    Fortunato, Mary Beth

    2000-01-01

    Review: A Hazardous Inquiry: The Rashomon Effect at LoveUSA Mazur, Allan. A Hazardous Inquiry: The Rashomon EffectISBN 0674748336. A Hazardous Inquiry: The Rashomon Effect at

  20. Audit of Selected Hazardous Waste Remedial Actions Program Costs...

    Office of Environmental Management (EM)

    of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous Waste Remedial Actions Program Costs, ER-B-97-04 Audit of Selected Hazardous...

  1. Hazardous constituent source term. Revision 2

    SciTech Connect (OSTI)

    Not Available

    1994-11-17

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport.

  2. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, Robert C. W. (Martinez, GA)

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  3. Apparatus for transporting hazardous materials

    DOE Patents [OSTI]

    Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

    1992-01-01

    An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

  4. Apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  5. CRAD, Packaging and Transfer of Hazardous Materials and Materials...

    Office of Environmental Management (EM)

    Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

  6. Approaches for Developing Uniform Hazard Spectra at Critical...

    Office of Environmental Management (EM)

    Hazard Spectra at Critical Facilities Preliminary Assessment of the Impact of 2014 Seismic Study on WTP Design Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...

  7. Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE Order Module--self-study program: HAZARDOUS WASTE OPERATIONS AND EMERGENCY RESPONSE This module will discuss...

  8. DOE Standard 1020 - Natural Phenomena Hazard analysis and Design...

    Energy Savers [EERE]

    Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE...

  9. Operating Experience Level 3, OSHA's Revised Hazard Communication...

    Broader source: Energy.gov (indexed) [DOE]

    June 5, 2012 OE-3 2012-04: OSHA's Revised Hazard Communication Standard This Operating Experience Level 3 provides informaiton on the OSHA Revised Hazard Communication Standard. On...

  10. The Waste Isolation Pilot Plant Hazardous Waste Facility Permit...

    Office of Environmental Management (EM)

    The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan The Waste Isolation Pilot Plant Hazardous Waste Facility Permit, Waste Analysis Plan This...

  11. Review of Natural Phenomena Hazards (NPH) Requirements Currently...

    Office of Environmental Management (EM)

    Review of Natural Phenomena Hazards (NPH) Requirements Currently Applied to the Thomas Jefferson National Accelerator Facility (TJNAF) Review of Natural Phenomena Hazards (NPH)...

  12. Globalization and Hazardous Waste Management: From Brown to Green?

    E-Print Network [OSTI]

    O'Neill, Kate

    2002-01-01

    perspectives on hazardous waste management. London: Academicproblems of hazardous waste management at a global level. ”future in toxic waste management: lessons from Europe. New

  13. A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...

    Open Energy Info (EERE)

    hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

  14. Assessment of Health Hazards of Repeated Inhalation of Diesel...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

  15. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

    1999-01-01

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

  16. Hazards Control Department annual technology review, 1987

    SciTech Connect (OSTI)

    Griffith, R.V.; Anderson, K.J.

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  17. Mobile machine hazardous working zone warning system

    DOE Patents [OSTI]

    Schiffbauer, W.H.; Ganoe, C.W.

    1999-08-17

    A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

  18. Hazardous waste operational plan for site 300

    SciTech Connect (OSTI)

    Roberts, R.S.

    1982-02-12

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

  19. Using fine-scale fuel measurements to assess wildland fuels, potential fire behavior and hazard mitigation treatments in the southeastern USA.

    SciTech Connect (OSTI)

    Ottmar, Roger, D.; Blake, John, I.; Crolly, William, T.

    2012-01-01

    The inherent spatial and temporal heterogeneity of fuelbeds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for building fuelbeds and mapping fire behavior potential, evaluating fuel treatment options for effectiveness, and providing a comparative analysis of landscape modeled fire behavior using three different data sources including the Fuel Characteristic Classification System, LANDFIRE, and the Southern Wildfire Risk Assessment. The research demonstrates that fine scale fuel measurements associated with fuel inventories repeated over time can be used to assess broad scale wildland fire potential and hazard mitigation treatment effectiveness in the southeastern USA and similar fire prone regions. Additional investigations will be needed to modify and improve these processes and capture the true potential of these fine scale data sets for fire and fuel management planning.

  20. Mr. John E. Kieling, Chief Hazardous ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    John E. Kieling, Chief Hazardous Was te Bureau Depa rtment of Energy Carlsbad Field Office P. O. Box 3090 Carlsbad , New Mexico 88221 NOV 0 5 2013 New Mexico Environment...

  1. Hazardous Materials Packaging and Transportation Safety

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    2015-04-20

    The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

  2. Process safety management for highly hazardous chemicals

    SciTech Connect (OSTI)

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  3. Canister storage building hazard analysis report

    SciTech Connect (OSTI)

    Krahn, D.E.; Garvin, L.J.

    1997-07-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  4. A Non-Aqueous Reduction Process for Purifying 153Gd Produced in Natural Europium Targets

    SciTech Connect (OSTI)

    Johnsen, Amanda M.; Soderquist, Chuck Z.; McNamara, Bruce K.; Fisher, Darrell R.

    2013-08-01

    Gadolinium-153 is a low-energy gamma-emitter used in nuclear medicine imaging quality assurance. Produced in nuclear reactors using natural Eu2O3 targets, 153Gd is radiochemically separated from europium isotopes by europium reduction. However, conventional aqueous europium reduction produces hydrogen gas, a flammability hazard in radiological hot cells. We altered the traditional reduction method, using methanol as the process solvent to nearly eliminate hydrogen gas production. This new, non-aqueous reduction process demonstrates greater than 98% europium removal and gadolinium yields of 90%.

  5. Rules and Regulations for Hazardous Waste Management (Rhode Island)

    Broader source: Energy.gov [DOE]

    These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

  6. NIH POLICY MANUAL 3015 -Admittance of Minors to Hazardous Areas

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3015 - Admittance of Minors to Hazardous Areas Issuing Office: OD/OM/ORS/DOHS 301 on admittance of minors to hazardous work areas that may contain inherently or potentially hazardous chemicals. Definitions: 1. Hazardous Area ­ Any area that poses an actual or potential risk of illness or injury

  7. The University of Texas at Dallas Texas Hazardous Communication Act

    E-Print Network [OSTI]

    O'Toole, Alice J.

    The University of Texas at Dallas Texas Hazardous Communication Act Handbook #12;TEXAS HAZARDOUS IV. Texas Hazard Communication Act Exemptions V. Implementation A. Employee Rights Under the Act Explanation IX. Written Hazard Communication Program A. Manufacturers' Labels and Other Forms of Warning B

  8. Hazardous Material Code Identification NFPA 704, 1996 Edition

    E-Print Network [OSTI]

    Slatton, Clint

    Hazardous Material Code Identification NFPA 704, 1996 Edition Identification of Health Hazard Color offer no hazard. 00 Materials that will not burn. 00 Materials that in themselves are normally stable DAMAGE TO LIVING TISSUE. MATERIALS POSSESSING RADIOACTIVITY HAZARDS. The identification systems

  9. NIH POLICY MANUAL 3034 -Working with Hazardous Materials

    E-Print Network [OSTI]

    Bandettini, Peter A.

    NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496 and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program page. A. Purpose: This chapter establishes the NIH policy for working with hazardous chemicals

  10. General Safety Guidelines for Bio-Hazardous Waste Disposal

    E-Print Network [OSTI]

    Holland, Jeffrey

    General Safety Guidelines for Bio-Hazardous Waste Disposal · Determine if you have a Bio-Hazardous, cell cultures, Petri dishes, and etc. NOT fitting the category 1 description. · ALL BIO-HAZARDOUS WASTE OF CATEGORY 1 NEEDS TO BE TREATED BY AUTOCLAVE OR WITH HIV/HBV KILLING AGENT BEFORE PICK-UP · Bio-hazardous

  11. Hazard Communication -Regulatory Compliance 1/17/2013 a

    E-Print Network [OSTI]

    Lawrence, Rick L.

    Hazard Communication - Regulatory Compliance 1/17/2013 a OSHA has updated their Hazard Communication Standard (29 CFR 1910.1200) and requires that all employees that work with Hazardous Chemicals this standard applies are required to receive an updated training as new chemical hazards are introduced

  12. University of Twente hazardous wast regulations 1 Introduction

    E-Print Network [OSTI]

    Twente, Universiteit

    1 University of Twente hazardous wast regulations 1 Introduction Effective from June 2011 the collection of hazardous waste has been outsourced to van Gansewinkel. The hazardous waste is collected that the hazardous waste is to be offered directly to the collector by the parties offering waste at a designated

  13. Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    Disposing of Hazardous Waste EPA Compliance Fact Sheet: Revision 1 Vanderbilt Environmental Health and Safety Telephone: 322-2057 Fax: 343-4957 After hours pager: 835-4965 www.safety.vanderbilt.edu HAZARDOUS WASTE COLLECTION PROGRAM VEHS has implemented a Hazardous Waste Collection Program to collect hazardous

  14. Hazardous Waste Management Compliance Guidelines INTRODUCTION AND SCOPE

    E-Print Network [OSTI]

    Reisslein, Martin

    Hazardous Waste Management Compliance Guidelines INTRODUCTION AND SCOPE Arizona State University Management, generate a variety of hazardous chemical wastes. ASU is classified as a hazardous waste generator) and has been assigned an EPA identification number (AZD042017723). As a hazardous waste generator facility

  15. DOE Natural Phenomena Hazards (NPH) Workshop- Opening Remarks & Agenda

    Broader source: Energy.gov [DOE]

    DOE Natural Phenomena Hazards (NPH) Workshop - Opening Remarks & Agenda October 25-26, 2011 Germantown, MD

  16. CARBON DIOXIDE EMISSION REDUCTION

    E-Print Network [OSTI]

    Delaware, University of

    ........................................................................................ 21 2.3.5 Pulp and paper industry Technologies and Measures in Pulp and Paper IndustryCARBON DIOXIDE EMISSION REDUCTION TECHNOLOGIES AND MEASURES IN US INDUSTRIAL SECTOR FINAL REPORT

  17. Paperwork Reduction Act

    Broader source: Energy.gov [DOE]

    The Paperwork Reduction Act requires that all federal websites request permission from the Office of Management and Budget (OMB) before collecting information from 10 or more members of the public....

  18. Nat. Hazards Earth Syst. Sci., 7, 607614, 2007 www.nat-hazards-earth-syst-sci.net/7/607/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 607­614, 2007 www.nat-hazards-earth-syst-sci.net/7/607/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences A probabilistic approach for earthquake hazard assessment of the Province of Eskis¸ehir, Turkey A

  19. Nat. Hazards Earth Syst. Sci., 13, 11431158, 2013 www.nat-hazards-earth-syst-sci.net/13/1143/2013/

    E-Print Network [OSTI]

    Wu, Yih-Min

    Nat. Hazards Earth Syst. Sci., 13, 1143­1158, 2013 www.nat-hazards-earth-syst-sci.net/13 Hazards and Earth System Sciences OpenAccess G Atmospheric Chemistry and Physics OpenAccess Atmospheric OpenAcces Time-dependent probabilistic seismic hazard assessment and its application to Hualien City

  20. Nat. Hazards Earth Syst. Sci., 6, 471483, 2006 www.nat-hazards-earth-syst-sci.net/6/471/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 471­483, 2006 www.nat-hazards-earth-syst-sci.net/6/471/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Integrating public risk perception into formal natural hazard risk assessment Th. Plattner1, T

  1. Nat. Hazards Earth Syst. Sci., 8, 539558, 2008 www.nat-hazards-earth-syst-sci.net/8/539/2008/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 8, 539­558, 2008 www.nat-hazards-earth-syst-sci.net/8 Hazards and Earth System Sciences Spatial variability and potential impacts of climate change on flood and debris flow hazard zone mapping and implications for risk management H. Staffler1, R. Pollinger2, A

  2. Natural Hazards and Effects on Local Populations: Applications of NSF MARGINS research to hazards mitigation in Central America

    E-Print Network [OSTI]

    Marshall, Jeffrey S.

    Natural Hazards and Effects on Local Populations: Applications of NSF MARGINS research to hazards (Co-chair: NSF MARGINS Central American Geologic Hazards Working Group, 2001) In: Silver, E. and Dixon Zone and Subduction Factory Initiatives, 15 p., 2001. Natural Hazards & Effects on Local Populations

  3. Nat. Hazards Earth Syst. Sci., 7, 283288, 2007 www.nat-hazards-earth-syst-sci.net/7/283/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 283­288, 2007 www.nat-hazards-earth-syst-sci.net/7/283/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Physical vulnerability modelling in natural hazard risk assessment J. Douglas BRGM ­ ARN/RIS, 3

  4. Nat. Hazards Earth Syst. Sci., 13, 19291943, 2013 www.nat-hazards-earth-syst-sci.net/13/1929/2013/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 13, 1929­1943, 2013 www.nat-hazards-earth-syst-sci.net/13/1929/2013/ doi:10.5194/nhess-13-1929-2013 © Author(s) 2013. CC Attribution 3.0 License. cess Natural Hazards and Earth System Sciences OpenAccess A method for multi-hazard mapping in poorly known volcanic areas

  5. Nat. Hazards Earth Syst. Sci., 7, 495506, 2007 www.nat-hazards-earth-syst-sci.net/7/495/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 495­506, 2007 www.nat-hazards-earth-syst-sci.net/7/495/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System as a function of the hazard, the elements at risk and the vul- nerability. From a natural sciences perspective

  6. Nat. Hazards Earth Syst. Sci., 6, 293302, 2006 www.nat-hazards-earth-syst-sci.net/6/293/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 293­302, 2006 www.nat-hazards-earth-syst-sci.net/6/293/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences A conceptual approach to the use of Cost Benefit and Multi Criteria Analysis in natural hazard

  7. Nat. Hazards Earth Syst. Sci., 6, 779802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 779­802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System actions or events. Within the project "CEDIM ­ Risk Map Germany ­ Man-made Hazards" it is intended

  8. Nat. Hazards Earth Syst. Sci., 6, 185193, 2006 www.nat-hazards-earth-syst-sci.net/6/185/2006/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 6, 185­193, 2006 www.nat-hazards-earth-syst-sci.net/6/185/2006/ © Author(s) 2006. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Geomorphological mapping and geophysical profiling for the evaluation of natural hazards

  9. Nat. Hazards Earth Syst. Sci., 7, 185193, 2007 www.nat-hazards-earth-syst-sci.net/7/185/2007/

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Nat. Hazards Earth Syst. Sci., 7, 185­193, 2007 www.nat-hazards-earth-syst-sci.net/7/185/2007/ © Author(s) 2007. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences Validation of landslide hazard assessment by means of GPS monitoring technique ­ a case study

  10. UC Irvine Construction Related Hazardous Waste Some construction related wastes are hazardous and require special handling. Examples of such wastes

    E-Print Network [OSTI]

    Mease, Kenneth D.

    UC Irvine Construction Related Hazardous Waste Scope Some construction related wastes are hazardous the hazardous waste manifest. Process 1. When a construction project will generate hazardous wastes, the project and require special handling. Examples of such wastes include: · Asbestos Containing Materials · Mercury

  11. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, Stephen R. (Darien, IL); Anderson, Kenneth B. (Lisle, IL); Song, Kang (Woodridge, IL); Yuchs, Steven E. (Naperville, IL); Marshall, Christopher L. (Naperville, IL)

    1998-01-01

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

  12. HAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC OTHER HAZARDOUS DRUGS IN CLINICAL ENVIRONMENTS

    E-Print Network [OSTI]

    Kim, Duck O.

    HAZARDOUS DRUG SAFETY AND HEALTH PLAN FOR HANDLING ANTINEOPLASTIC AND OTHER HAZARDOUS DRUGS IN CLINICAL ENVIRONMENTS (5/3/2013) Introduction Drugs have a successful history of use in treating diseases and are responsible for many medical advances over the past century. However, virtually every drug has side effects

  13. Natural Phenomena Hazards Modeling Project: Seismic Hazard Models for Department of Energy Sites

    SciTech Connect (OSTI)

    Coats, D.W.; Murray, R.C.

    1984-11-01

    Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the US. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. This report summarizes the final seismic hazard models and response spectra recommended for each site and the methodology used to develop these models. 15 references, 2 figures, 1 table.

  14. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    SciTech Connect (OSTI)

    KRIPPS, L.J.

    2006-07-31

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

  15. Property-close source separation of hazardous waste and waste electrical and electronic equipment - A Swedish case study

    SciTech Connect (OSTI)

    Bernstad, Anna; Cour Jansen, Jes la; Aspegren, Henrik

    2011-03-15

    Through an agreement with EEE producers, Swedish municipalities are responsible for collection of hazardous waste and waste electrical and electronic equipment (WEEE). In most Swedish municipalities, collection of these waste fractions is concentrated to waste recycling centres where households can source-separate and deposit hazardous waste and WEEE free of charge. However, the centres are often located on the outskirts of city centres and cars are needed in order to use the facilities in most cases. A full-scale experiment was performed in a residential area in southern Sweden to evaluate effects of a system for property-close source separation of hazardous waste and WEEE. After the system was introduced, results show a clear reduction in the amount of hazardous waste and WEEE disposed of incorrectly amongst residual waste or dry recyclables. The systems resulted in a source separation ratio of 70 wt% for hazardous waste and 76 wt% in the case of WEEE. Results show that households in the study area were willing to increase source separation of hazardous waste and WEEE when accessibility was improved and that this and similar collection systems can play an important role in building up increasingly sustainable solid waste management systems.

  16. Waste Stream Disposal Pharmacy Quick Sheet (6/16/14) Also pharmacy employees must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous Additional Waste

    E-Print Network [OSTI]

    Oliver, Douglas L.

    Additional Waste Disposal Location Green Bins for Non-hazardous waste Black Bins must complete SABA "Medication Waste Stream Disposal" Non-hazardous Hazardous for Hazardous Waste Yellow Trace Chemo Disposal Bin Red Sharps Bins Red

  17. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  18. Hanford Site radioactive hazardous materials packaging directory

    SciTech Connect (OSTI)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  19. Remote vacuum compaction of compressible hazardous waste

    DOE Patents [OSTI]

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  20. Robots, systems, and methods for hazard evaluation and visualization

    DOE Patents [OSTI]

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  1. Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility boilers

    E-Print Network [OSTI]

    Li, Ying

    Modification of boiler operating conditions for mercury emissions reductions in coal-fired utility's studies have determined that mercury emissions from coal-fired power plants pose significant hazards to public health and must be reduced. Coal-fired power plants represent a significant fraction

  2. Technological options for management of hazardous wastes from US Department of Energy facilities

    SciTech Connect (OSTI)

    Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

    1982-08-01

    This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

  3. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    SciTech Connect (OSTI)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  4. REDUCTIONS WITHOUT REGRET: SUMMARY

    SciTech Connect (OSTI)

    Swegle, J.; Tincher, D.

    2013-09-16

    This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

  5. Hazard Communication Standard Pictogram As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical

    E-Print Network [OSTI]

    Hazard Communication Standard Pictogram As of June 1, 2015, the Hazard Communication Standard (HCS) will require pictograms on labels to alert users of the chemical hazards to which they may be exposed. Each hazard(s). The pictogram on the label is determined by the chemical hazard classification. HCS Pictograms

  6. PPE Certification of Hazard Assessment Dept: Area: Job Classification/Task

    E-Print Network [OSTI]

    Slatton, Clint

    PPE 7 Appendix A PPE Certification of Hazard Assessment Dept: Area: Job Classification/Task: HAZARDS (Circle Hazards) Describe Specific Hazards Identify Type of PPE Required for the Hazards Eye Hazard Impact Penetration Dust Chemical Radiation Heat Bioaerosols Projectiles Head Hazard Burn Electric

  7. Water Use Reduction | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Water Use Reduction Water Use Reduction Water Use Reduction The Federal Energy Management Program (FEMP) provides agencies with guidance and...

  8. Preliminary Hazards Analysis Plasma Hearth Process

    SciTech Connect (OSTI)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

  9. Hazardous and Radioactive Mixed Waste Program

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1989-02-22

    To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

  10. PUBLICATIONS OF THE VOLCANO HAZARDS PROGRAM

    E-Print Network [OSTI]

    : Geophysical Research Letters, v. 25, p. 3397-3400. Bacon, C. R., Bruggman, P. E., Christiansen, R. L., Clynne-423. Bacon, C. R., Gunn, S. H., Lanphere, M. A., and Wooden, J. L., 1994, Multiple isotopic components-1556. Bacon, C. R., Mastin, L. G., Scott, K. M., and Nathenson, Manuel, 1997, Volcano and earthquake hazards

  11. Freeze Concentration Applied to Hazardous Waste Management 

    E-Print Network [OSTI]

    Ruemekorf, R.

    2000-01-01

    Ages. Potable water from seawater was recorded in the 17th century. Today this technology is emerging as a new unit operation for the recovery ofwater from RCRA hazardous waste streams. Typical streams are high in water content and contain soluble...

  12. Appendix B: Wastes and Potential Hazards for

    E-Print Network [OSTI]

    Siddharthan, Advaith

    of minerals including gypsum, salt, potash, asbestos, graphite, fluorite, calcite, clay, sand and gravel or their compounds and should be considered under the following hazards: H5 to H7, H10, H11, or H14. 01 05 drilling muds and other drilling wastes 01 05 05* oil-containing drilling muds and wastes M Oil-containing muds

  13. Picturing wavepacket reduction

    E-Print Network [OSTI]

    Arthur Jabs

    2015-03-18

    A coherent picture of the wavepacket-reduction process is proposed which is formulated in the framework of a deterministic and realist interpretation where the concepts of knowledge or information and of point particles do not appear. It is shown how the picture accounts for the experiments on interaction-free and delayed-choice measurements and those on interference with partial absorption.

  14. Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility

    SciTech Connect (OSTI)

    Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

    1995-12-31

    In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

  15. Las Conchas Wildfire

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverseIMPACTThousand CubicResourcelogo and mastheadLakeLanguageLas Conchas

  16. Four: Evaluating Reforms in the Implementation of Hazardous Waste Policies in California

    E-Print Network [OSTI]

    Cutter, W. Bowman; DeShazo, J.R.

    2006-01-01

    in four areas: storage tanks, hazardous waste generatingprograms in hazardous waste and other areas. This resultof hazardous waste laws, requiring that every area be under

  17. Four: Evaluating Reforms in the Implementation of Hazardous Waste Policies in California

    E-Print Network [OSTI]

    Cutter, W. Bowman; DeShazo, J.R.

    2006-01-01

    THE IMPLEMENTATION OF HAZARDOUS WASTE POLICIES IN CALIFORNIAfrom the release of hazardous waste and toxic substances.The mishandling of hazardous waste by industry has created

  18. Hazardous Waste Contamination: Implications for Commercial/Industrial Land Transactions in Silicon Valley

    E-Print Network [OSTI]

    Scholz, Diane

    1989-01-01

    Magazine (October). Hazardous Waste Contamination, ScholzPatton. 1 988. State Hazardous Waste and Property TransferForbes. 1 985. "Hazardous Waste Problems: Implications for

  19. Hazardous-Substance Generator, Transporter and Disposer Liability under the Federal and California Superfunds

    E-Print Network [OSTI]

    Vernon, James; Dennis, Patrick W.

    1981-01-01

    Carpenter-Presley-Tanner Hazardous Substance Account Act ofincluding spills and hazardous- waste disposal sites thatlabel for the disposal of hazardous wastes. Id. at 607. The

  20. Anywhere But Here: An Introduction to State Control of Hazardous Waste Facility Location

    E-Print Network [OSTI]

    Tarlock, Dan A.

    1981-01-01

    State Control Of Hazardous- Waste Facility Location A. Danautonomy over the location of hazardous-waste managementa hazardous-waste facility-siting process is the location of

  1. Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations

    DOE Patents [OSTI]

    Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

    1998-04-28

    A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

  2. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Mercury used in many laboratory areas on campus. All laboratory areas and former laboratory areas should. Cleanup by a hazardous materials contractor is required before demolition or construction can begin

  3. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100 Award New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100...

  4. Hazardous devices teams showcase skills at Robot Rodeo June 24...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Hazardous devices teams showcase skills at Robot Rodeo June 24-27 Bomb squads compete in timed scenarios at Los...

  5. Hazardous waste management in the Texas construction industry 

    E-Print Network [OSTI]

    Sprinkle, Donald Lee

    1991-01-01

    This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

  6. ORISE Resources: Hospital All-Hazards Self-Assessment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    partners with CDC to develop Hospital All-Hazards Self-Assessment to identify gaps in planning efforts The Hospital All-Hazards Self-Assessment, or HAH, is designed to help...

  7. A Probabilistic Seismic Hazard Analysis Update Review for Two...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A Probabilistic Seismic Hazard Analysis Update Review for Two DOE Sites and NGA-East Project Overview and Status A Probabilistic Seismic Hazard Analysis Update Review for Two DOE...

  8. Reducing Physical Hazards: Encouraging Inherently Safer Production (Chapter 17)

    E-Print Network [OSTI]

    Ashford, Nicholas A.

    Physical hazards differ from hazards related to the toxicity of chemicals and materials in a number of ways. Their origin is the sudden and accidental release of chemicals and/ or energy - that is, chemical accidents, ...

  9. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.

    SciTech Connect (OSTI)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

  10. Permit Fees for Hazardous Waste Material Management (Connecticut)

    Broader source: Energy.gov [DOE]

    These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

  11. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    SciTech Connect (OSTI)

    T. J. Rodovsky

    2010-10-25

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

  12. A Probabilistic Approach to Site-Specific, Hazard-Consistent...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Flooding Hazard Assessment State of Practice Approaches in Geomorphology, Geochronology and Probabilistic Analyses for Addressing Fault Capability at Nuclear Facilities...

  13. Variate Generation for the Accelerated Life and Proportional Hazards Models

    E-Print Network [OSTI]

    Leemis, Larry

    Variate Generation for the Accelerated Life and Proportional Hazards Models Lawrence M. Leemis by a factor (z), variates are generated by t = H-1 0 (- log(u)) (z) . In the proportional hazards model The accelerated life and proportional hazards lifetime models are used to account for the effects of covariates

  14. A Probabilistic Seismic Hazard Analysis of Northeast India

    E-Print Network [OSTI]

    Gupta, Vinay Kumar

    .1193/1.2163914 INTRODUCTION Seismic hazard analysis plays an important role in the earthquake-resistant design of structuresA Probabilistic Seismic Hazard Analysis of Northeast India Sandip Das,a... Ishwer D. Gupta,b... and Vinay K. Guptaa... Seismic hazard maps have been prepared for Northeast India based on the uniform

  15. Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)

    E-Print Network [OSTI]

    Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated to be chemically hazardous and shall be kept in a Satellite Accumulation Area (SAA). The safety coordinator will keep a list of all SAA's in the division and must be notified before an accumulation area

  16. TAMU HAZARD COMMUNICATION PROGRAM Revised: 9/1/12

    E-Print Network [OSTI]

    Meagher, Mary

    TAMU HAZARD COMMUNICATION PROGRAM Revised: 9/1/12 WORK AREA SPECIFIC TRAINING Department of Chemistry Attendance Record I hereby acknowledge receipt of the Texas A&M University (TAMU) Hazard. information on hazardous chemicals known to be present in the employee's work area and to which the employee

  17. Chemical and Hazardous Materials Department of Environmental Health and Safety

    E-Print Network [OSTI]

    O'Toole, Alice J.

    Chemical and Hazardous Materials Safety Department of Environmental Health and Safety 800 West information useful in the recognition, evaluation, and control of workplace hazards and environmental factors safety, fire safety, and hazardous waste disposal. Many chemicals have properties that make them

  18. The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Law 273.4 The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims (Fall 2006) Units: 3 CCN (2 of Hazardous Waste Disposal and Remediation (2d ed. 2005) Syllabus Class 1 ­ August 22 Claims Based on Common: 1. Miller & Johnston The Law of Hazardous Waste Disposal and Remediation 2. Ch. III, Intro to RCRA

  19. Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS

    E-Print Network [OSTI]

    Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS as required under the CONTROL OF SUBSTANCES HAZARDOUS TO HEALTH REGULATIONS (COSHH) and the DANGEROUS SUBSTANCES AND EXPLOSIVE ATMOSPHERES Involving the Use of Hazardous Chemicals. COSHH requires health risks to be assessed and controlled

  20. Hazardous Materials Shipping Policy for Laboratories Policy Statement

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Page 1 Hazardous Materials Shipping Policy for Laboratories Policy Statement In order to ensure compliance with all regulations governing transportation of hazardous materials, all University faculty, staff, and students who work in laboratories and intend to ship hazardous materials from the University

  1. Hazardous Waste Collection in Safety Cans HOW DOES THIS WORK?

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Hazardous Waste Collection in Safety Cans HOW DOES THIS WORK? o Labs that generate large volumes of solvent hazardous waste can contact EHS @ 255-8200 for approval of the use of safety cans. Once EHS approves the use we will provide the can. o A hang pocket will be placed on the can that states "Hazardous

  2. Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals

    E-Print Network [OSTI]

    Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals The following outline provides) or other sources of information. In cases where substances with significant or unusual potential hazards of experience and the degree of potential hazard associated with the proposed experiment, it may be necessary

  3. The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims

    E-Print Network [OSTI]

    Kammen, Daniel M.

    Law 273.4 The Law of Hazardous Waste: CERCLA, RCRA, & Common Law Claims (Fall 2008) Units: 3 CCN (2, The Law of Hazardous Waste Disposal and Remediation (2d ed. 2005) Syllabus Class 1 ­ August 19 Claims on Federal Law: 1. Miller & Johnston The Law of Hazardous Waste Disposal and Remediation 2. Ch. III, Intro

  4. HAZARDOUS MATERIAL SAFETY Effective Date: January 1, 1992

    E-Print Network [OSTI]

    Cui, Yan

    HAZARDOUS MATERIAL SAFETY PROCEDURES Effective Date: January 1, 1992 Revised Date: March 1993 UT Memphis shall implement a program that protects its employees from hazardous chemical in accordance with Section 1910.1200 of the Occupational Safety and Health Act (OSHA), entitled ³Hazard Communication

  5. Lab 4: Plate Tectonics Locating Geologic Hazards Introduction

    E-Print Network [OSTI]

    Chen, Po

    1 Lab 4: Plate Tectonics ­ Locating Geologic Hazards Introduction The likelihood of major geologic hazards associated with the lithosphere, such as earthquakes and volcanoes, is not uniform around provides a ready explanation for the distribution of these types of geologic hazards. It is useful

  6. Diesel particles -a health hazard 1 Diesel particles

    E-Print Network [OSTI]

    Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

  7. Training Package on National Scale Multi Hazard Risk Assessment

    E-Print Network [OSTI]

    1 Training Package on National Scale Multi Hazard Risk Assessment Theory Book National Scale Multi Hazard Risk Assessment By Cees van Westen, Michiel Damen and Wim Feringa University Twente, Faculty-EAST National Scale Multi-Hazard Risk Assessment Date: 2013-11-18 2 Note about the PPRD EAST project This manual

  8. Proportional Hazards Regression with Unknown Link Function By WEI WANG

    E-Print Network [OSTI]

    Wang, Jane-Ling

    Proportional Hazards Regression with Unknown Link Function By WEI WANG Harvard Medical School@amss.ac.cn The University of Hong Kong, Hong Kong qhwang@hku.hk Summary Proportional hazards regression model assumes of the covariates. Traditional ap- proaches, such as the Cox proportional hazards model, focus on estimating

  9. Progress Update: Creating Mobile Emission Reduction Credits

    Broader source: Energy.gov [DOE]

    2004 Diesel Engine Emissions Reduction (DEER) Conference Presentation: Emission Reduction Specialists

  10. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Goodnow, W.H.; Payne, J.R.

    1982-09-14

    The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

  11. Split driveshaft pump for hazardous fluids

    DOE Patents [OSTI]

    Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

    1995-01-01

    A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

  12. Rapid deployable global sensing hazard alert system

    DOE Patents [OSTI]

    Cordaro, Joseph V; Tibrea, Steven L; Shull, Davis J; Coleman, Jerry T; Shuler, James M

    2015-04-28

    A rapid deployable global sensing hazard alert system and associated methods of operation are provided. An exemplary system includes a central command, a wireless backhaul network, and a remote monitoring unit. The remote monitoring unit can include a positioning system configured to determine a position of the remote monitoring unit based on one or more signals received from one or more satellites located in Low Earth Orbit. The wireless backhaul network can provide bidirectional communication capability independent of cellular telecommunication networks and the Internet. An exemplary method includes instructing at least one of a plurality of remote monitoring units to provide an alert based at least in part on a location of a hazard and a plurality of positions respectively associated with the plurality of remote monitoring units.

  13. Nat. Hazards Earth Syst. Sci., 12, 31913208, 2012 www.nat-hazards-earth-syst-sci.net/12/3191/2012/

    E-Print Network [OSTI]

    Goldfinger, Chris

    for hazards, stratigraphy and turbidite lithology C. H. Nelson1, J. Guti´errez Pastor1, C. Goldfinger2, and C 2012 Abstract. We summarize the importance of great earth- quakes (Mw 8) for hazards, stratigraphy estimate of minimum recurrence times, which are the most important for seismic hazards risk analysis

  14. University of Texas at Arlington Exhibit 2 Hazardous Communication Program C. EMPLOYEE SITE-SPECIFIC HAZARD COMMUNICATION TRAINING ("WORK AREA

    E-Print Network [OSTI]

    Texas at Arlington, University of

    -SPECIFIC HAZARD COMMUNICATION TRAINING ("WORK AREA SPECIFIC") Information specific to the employee's particular to be in the employee's work area(s): · the location of hazardous chemicals, · safe handling · warning signsUniversity of Texas at Arlington Exhibit 2 Hazardous Communication Program C. EMPLOYEE SITE

  15. HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously with the words "Hazardous Waste."

    E-Print Network [OSTI]

    Slatton, Clint

    HAZARDOUS WASTE SATELLITE ACCUMULATION AREA REQUIREMENTS 1. Mark all waste containers conspicuously. Decontaminate 5. Dispose of cleanup debris as Hazardous Waste Chemical Spill ­ major 1. Evacuate area, isolate with the words "Hazardous Waste." 2. Label all containers accurately, indicating the constituents and approximate

  16. Vitrification of hazardous and radioactive wastes

    SciTech Connect (OSTI)

    Bickford, D.F.; Schumacher, R.

    1995-12-31

    Vitrification offers many attractive waste stabilization options. Versatility of waste compositions, as well as the inherent durability of a glass waste form, have made vitrification the treatment of choice for high-level radioactive wastes. Adapting the technology to other hazardous and radioactive waste streams will provide an environmentally acceptable solution to many of the waste challenges that face the public today. This document reviews various types and technologies involved in vitrification.

  17. Dark matter as a cancer hazard

    E-Print Network [OSTI]

    Chashchina, Olga

    2015-01-01

    We comment on the paper "Dark Matter collisions with the Human Body" by K.~Freese and C.~Savage (Phys.\\ Lett.\\ B {\\bf 717}, 25 (2012) [arXiv:1204.1339]) and describe a dark matter model for which the results of the previous paper do not apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist potentially leading to diseases triggered by multiple mutations, such as cancer.

  18. Dark matter as a cancer hazard

    E-Print Network [OSTI]

    Olga Chashchina; Zurab Silagadze

    2015-09-17

    We comment on the paper "Dark Matter collisions with the Human Body" by K.~Freese and C.~Savage (Phys.\\ Lett.\\ B {\\bf 717}, 25 (2012) [arXiv:1204.1339]) and describe a dark matter model for which the results of the previous paper do not apply. Within this mirror dark matter model, potentially hazardous objects, mirror micrometeorites, can exist potentially leading to diseases triggered by multiple mutations, such as cancer.

  19. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1990-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  20. Staged mold for encapsulating hazardous wastes

    DOE Patents [OSTI]

    Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

    1988-01-01

    A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

  1. Seismic hazard analysis at Rocky Flats Plant

    SciTech Connect (OSTI)

    McGuire, R.K.

    1993-10-01

    A probabilistic seismic hazard analysis is being conducted for the DOE Rocky Flats Plant, Jefferson County, Colorado. This is part of the overall review of the seismic exposure to facilities being conducted by DOE. The study has four major elements. (1) The historical seismicity in Colorado is being reviewed and synthesized to estimate historical rates of earthquake activity in the region of the site. (2) The geologic and tectonic evidence in Colorado and along the Front Range is being reviewed to determine appropriate seismic zones, potentially active faults, and constraints on fault slip rates. (3) Earthquake ground motion equations are being derived based on seismological knowledge of the earth`s crust. Site specific soil amplification factors are also being developed using on-site shear wave velocity measurements. (4) The probability of exceedence of various seismic ground motion levels is being calculated based on the inputs developed on tectonic sources, faults, ground motion, and soil amplification. Deterministic ground motion estimates are also being made. This study is a state-of-the-art analysis of seismic hazard. It incorporates uncertainties in the major aspects governing seismic hazard, and has a documented basis founded on solid data interpretations for the ranges of inputs used. The results will be a valid basis on which to evaluate plant structures, equipment, and components for seismic effects.

  2. Forest Fuels ReductionForest Fuels Reduction Department of

    E-Print Network [OSTI]

    Bolding, M. Chad

    are the soil management and watershed implications from alternative fuels reduction approaches? 3. How do are the productivity and cost rates for alternative choices of equipment for mechanical fuels reduction; what of mechanical fuel reduction alternatives? What are the economic differences related to stand type

  3. Identification of chemical hazards for security risk analysis activities.

    SciTech Connect (OSTI)

    Jaeger, Calvin Dell

    2005-01-01

    The presentation outline of this paper is: (1) How identification of chemical hazards fits into a security risk analysis approach; (2) Techniques for target identification; and (3) Identification of chemical hazards by different organizations. The summary is: (1) There are a number of different methodologies used within the chemical industry which identify chemical hazards: (a) Some develop a manual listing of potential targets based on published lists of hazardous chemicals or chemicals of concern, 'expert opinion' or known hazards. (b) Others develop a prioritized list based on chemicals found at a facility and consequence analysis (offsite release affecting population, theft of material, product tampering). (2) Identification of chemical hazards should include not only intrinsic properties of the chemicals but also potential reactive chemical hazards and potential use for activities off-site.

  4. Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part

    E-Print Network [OSTI]

    Wilcock, William

    Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part of your work assignment. The University's Hazard Communication: * Identity of the hazardous chemical(s), * Appropriate hazard warnings, and * Manufacturer

  5. B Plant complex hazardous, mixed and low level waste certification plan

    SciTech Connect (OSTI)

    Beam, T.G.

    1994-11-01

    This plan describes the administrative steps and handling methodology for certification of hazardous waste, mixed waste, and low level waste generated at B Plant Complex. The plan also provides the applicable elements of waste reduction and pollution prevention, including up front minimization and end product reduction of volume and/or toxicity. The plan is written to satisfy requirements for Hanford Site waste generators to have a waste certification program in place at their facility. This plan, as described, applies only to waste which is generated at, or is the responsibility of, B Plant Complex. The scope of this plan is derived from the requirements found in WHC-EP-0063, Hanford Site Solid Waste Acceptance Criteria.

  6. A blasting additive that renders wastes non hazardous in lead paint abatement projects

    SciTech Connect (OSTI)

    Clark, R.; Rapp, D.J.; McGrew, M.

    1994-12-31

    Maintenance of steel structures often produces abrasive wastes that are considered toxic and hazardous due to the lead content of the old paint system present in spent abrasives. Environmental regulations in the US and Canada effectively preclude on-site treatment and disposal of these wastes, thereby forcing them into costly transport and secure disposal options. The authors have developed an abrasive additive that allows dry or wet blasting to remove old paint systems, but the resultant wastes are considered non-hazardous and are eligible for recycling or non-hazardous waste disposal, both at sharply reduced costs. The agent does not ``mask`` environmental test results, but does produce a stable residue suitable for long term disposal or reuse. Surface conditions after application of abrasives appear to be amenable to virtually all paint systems tested. The process is in use on an estimated 10% of all steel based lead paint abatement projects in the US, and is experiencing considerable growth in market acceptance. The technology may allow disposal cost reductions in excess of 50%.

  7. Encapsulation of hazardous wastes into agglomerates

    SciTech Connect (OSTI)

    Guloy, A.

    1992-01-28

    The objective of this study was to investigate the feasibility of using the cementitious properties and agglomeration characteristics of coal conversion byproducts to encapsulate and immobilize hazardous waste materials. The intention was to establish an economical way of co-utilization and co-disposal of wastes. In addition, it may aid in the eradication of air pollution problems associated with the fine-powdery nature of fly ash. Encapsulation into agglomerates is a novel approach of treating toxic waste. Although encapsulation itself is not a new concept, existing methods employ high-cost resins that render them economically unfeasible. In this investigation, the toxic waste was contained in a concrete-like matrix whereby fly ash and other cementitious waste materials were utilized. The method incorporates the principles of solidification, stabilization and agglomeration. Another aspect of the study is the evaluation of the agglomeration as possible lightweight aggregates. Since fly ash is commercially used as an aggregate, it would be interesting to study the effect of incorporating toxic wastes in the strength development of the granules. In the investigation, the fly ash self-cementation process was applied to electroplating sludges as the toxic waste. The process hoped to provide a basis for delisting of the waste as hazardous and, thereby greatly minimize the cost of its disposal. Owing to the stringent regulatory requirements for hauling and disposal of hazardous waste, the cost of disposal is significant. The current practice for disposal is solidifying the waste with portland cement and dumping the hardened material in the landfill where the cost varies between $700--950/ton. Partially replacing portland cement with fly ash in concrete has proven beneficial, therefore applying the same principles in the treatment of toxic waste looked very promising.

  8. Evaluation of ferrocyanide/nitrate explosive hazard

    SciTech Connect (OSTI)

    Cady, H.H.

    1992-06-01

    Los Alamos National Laboratory agreed to assist Pacific Northwest Laboratory in the Ferrocyanide Safety Evaluation Program by helping to evaluate the explosive hazard of several mixtures of simulated ferrocyanide waste-tank sludge containing sodium nitrite and sodium nitrate. This report is an evaluation of the small-scale safety tests used to assess the safety of these materials from an explosive point of view. These tests show that these materials are not initiated by mechanical insult, and they require an external heat source before any exothermic chemical reaction can be observed.

  9. NRS 459 Hazardous Waste | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QAsource History ViewMayo, Maryland:NPI Ventures Ltd Jump to: navigation, search59 Hazardous Waste Jump to:

  10. Mr. James Bearzi Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMass map shines light on77 PAGEMissionStressMove data fromMoving We'reBearzi Hazardous

  11. Wastes Hazardous or Solid | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on QA:QA J-E-1 SECTION JEnvironmental Jump to:EA EISTJThinWarsaw, Poland: EnergyPage Edit HistoryWastes Hazardous or Solid

  12. Hazardous Material Shipments | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration would likeUniverse (Journalvivo Low-DoseOptions for Accidental Releases of Hazardous

  13. Sandia Energy - Solar Glare Hazard Analysis Tool

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantity ofkandz-cm11 Outreach Home RoomPreservation of Fe(II)GeothermalFuel Magnetization and Laser(TSPEAR &SolarSolar Glare Hazard

  14. Aluminum reduction cell electrode

    DOE Patents [OSTI]

    Payne, J.R.

    1983-09-20

    The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

  15. Dose Reduction Techniques

    SciTech Connect (OSTI)

    WAGGONER, L.O.

    2000-05-16

    As radiation safety specialists, one of the things we are required to do is evaluate tools, equipment, materials and work practices and decide whether the use of these products or work practices will reduce radiation dose or risk to the environment. There is a tendency for many workers that work with radioactive material to accomplish radiological work the same way they have always done it rather than look for new technology or change their work practices. New technology is being developed all the time that can make radiological work easier and result in less radiation dose to the worker or reduce the possibility that contamination will be spread to the environment. As we discuss the various tools and techniques that reduce radiation dose, keep in mind that the radiological controls should be reasonable. We can not always get the dose to zero, so we must try to accomplish the work efficiently and cost-effectively. There are times we may have to accept there is only so much you can do. The goal is to do the smart things that protect the worker but do not hinder him while the task is being accomplished. In addition, we should not demand that large amounts of money be spent for equipment that has marginal value in order to save a few millirem. We have broken the handout into sections that should simplify the presentation. Time, distance, shielding, and source reduction are methods used to reduce dose and are covered in Part I on work execution. We then look at operational considerations, radiological design parameters, and discuss the characteristics of personnel who deal with ALARA. This handout should give you an overview of what it takes to have an effective dose reduction program.

  16. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-12-31

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  17. A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site

    SciTech Connect (OSTI)

    England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

    1991-01-01

    Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

  18. Determining risks for hazardous material operations

    SciTech Connect (OSTI)

    Cournoyer, M. E.; Dare, J. H.

    2002-01-01

    Integrated Safety Management (ISM) is structured to manage and control work at the activity level. Fundamental to ISM is that all work will be performed safely while meeting the applicable institutional-, facility-, and activity-level expectations. High and medium initial risk activities require certain levels of independent peer and/or Environmental, Health & Safety subject matter expert reviews prior to authorization. A key responsibility of line management and chemical workers is to assign initial risk adequately, so that the proper reviews are obtained. Thus, the effectiveness of an ISM system is largely dependent upon the adequacy and accuracy of this initial risk determination. In the following presentation, a Risk Determination Model (RDM) is presented for physical, health and ecological hazards associated with materials. Magnitude of exposure (Le., dose or concentration), frequency, duration, and quantity are the four factors most difficult to capture in a research and development setting. They are factored into the determination, as a function of the quantity of material. Quantity and magnitude of exposure components are simplified by using boundary criteria. This RDM will promote conformity and consistency in the assignment of risk to hazardous material activities. In conclusion, the risk assessors (line manager and chemical worker) should be capable of more accurately assessing the risk of exposure to a specific chemical with regard to the employee, public, and the environment.

  19. Method and apparatus for incinerating hazardous waste

    DOE Patents [OSTI]

    Korenberg, Jacob (York, PA)

    1990-01-01

    An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

  20. Fire hazard analysis for the fuel supply shutdown storage buildings

    SciTech Connect (OSTI)

    REMAIZE, J.A.

    2000-09-27

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

  1. October 2014 Natural Phenomena Hazards (NPH) Meeting - Wednesday...

    Office of Environmental Management (EM)

    Flooding Hazard Assessment Los Alamos National Laboratory Plutonium Facility (PF-4) Seismic Safety Implementation of DOE NPH Requirements at the Thomas Jefferson National...

  2. Environmental resources of selected areas of Hawaii: Geological hazards

    SciTech Connect (OSTI)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  3. EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program

    Broader source: Energy.gov [DOE]

    The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

  4. Program Review, Workplace Inspections, Hazards Analysis And Abatement

    Broader source: Energy.gov [DOE]

    This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

  5. Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis

    Broader source: Energy.gov [DOE]

    Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by B&W Technical Services, Pantex and Pro2Serve October, 2011

  6. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...

    Office of Environmental Management (EM)

    www.mdpi.comjournalremotesensing Article Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing Jungho Im 1, *, John R....

  7. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 87505-6303 Subject: Class 1 Permit Modification Notification to the Waste Isolation Pilot Plant Hazardous Waste...

  8. Dust: A major environmental hazard on the earth's moon

    SciTech Connect (OSTI)

    Heiken, G.; Vaniman, D.; Lehnert, B.

    1990-01-01

    On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

  9. NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 875056303 Phone (50S) 476-6000 Fax...

  10. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Subject: Notification of Planned Physical Alteration to the Permitted Facility, Hazardous Waste Facility Permit, Number: NM4890139088-TSDF Dear Mr. Kieling: The purpose of...

  11. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Field Office (CBFO) and Nuclear Waste Partnership LLC (NWP). Co-Permittees of Hazardous Waste Facility Permit (NM4890139088-TSDF), implemented the Resource Conservation and...

  12. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Broader source: Energy.gov (indexed) [DOE]

    located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at LANL More Documents & Publications Preliminary Notice of...

  13. Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...

    Broader source: Energy.gov (indexed) [DOE]

    the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste operations and emergency response or through the course manager. You may need...

  14. Mr. John E. Kieling, Chief Hazardous Waste Bureau Departmen

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to characterize and certify waste in accordance with the Waste Isolation Pilot Plant Hazardous Waste Facility Permit. The report contains the results of the recertification audit...

  15. Los Alamos National Laboratory Hazardous Waste Facility Permit...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Waste Facility Permit Draft Community Relations Plan CommentSuggestion Form Instructions for completing the form: Please reference the section in the plan that your...

  16. Mr. Steve lappe, Project Leader Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lappe, Project Leader Hazardous Materials Bureau Department of Energy Carlsbad Field Office P o. Box 3090 Carlsbad, New Mexico 88221 FEB I 3110 New Mexico Environment Department...

  17. Title 40 CFR 300 National Oil and Hazardous Substances Pollution...

    Open Energy Info (EERE)

    Title 40 CFR 300 National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal...

  18. Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

  19. Revised Draft Hanford Site Solid (Radioactive and Hazardous)...

    Office of Environmental Management (EM)

    Operations Office TITLE: Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE...

  20. Final Hanford Site Solid (Radioactive and Hazardous) Waste Program...

    Office of Environmental Management (EM)

    Richland Operations Office TITLE: Final Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement, Richland, Benton County, Washington (DOE...

  1. Modeling Exposure to Persistent Chemicals in Hazard and Risk Assessment

    E-Print Network [OSTI]

    Cowan-Ellsberry, Christina E.

    2010-01-01

    Chemicals in Hazard and Risk Assessment Christina E. Cowan-implications for chemical risk assessment. J Environ MonitJM. 2006. Screening level risk assessment model for chemical

  2. ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste...

    Open Energy Info (EERE)

    Apps Datasets Community Login | Sign Up Search Page Edit with form History ORS 466 - Storage, Treatment, and Disposal of Hazardous Waste and Materials Jump to: navigation, search...

  3. Oregon Procedure and Criteria for Hazardous Waste Treatment,...

    Open Energy Info (EERE)

    Oregon Procedure and Criteria for Hazardous Waste Treatment, Storage or Disposal Permits Fact Sheet Jump to: navigation, search OpenEI Reference LibraryAdd to library Permitting...

  4. Natural hazard phenomena and mitigation -- 1995; PVP-Volume 308...

    Office of Scientific and Technical Information (OSTI)

    hazard phenomena and mitigation -- 1995; PVP-Volume 308. DOE facilities programsdesign criteria and methods for: Impact, wave, high frequency, and seismic loads Citation...

  5. A complete electrical hazard classification system and its application

    SciTech Connect (OSTI)

    Gordon, Lloyd B; Cartelli, Laura

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

  6. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    SciTech Connect (OSTI)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift zone of Kilauea.

  7. Method for disposing of hazardous wastes

    DOE Patents [OSTI]

    Burton, Frederick G. (West Richland, WA); Cataldo, Dominic A. (Kennewick, WA); Cline, John F. (Prosser, WA); Skiens, W. Eugene (Richland, WA)

    1995-01-01

    A method and system for long-term control of root growth without killing the plants bearing those roots involves incorporating a 2,6-dinitroaniline in a polymer and disposing the polymer in an area in which root control is desired. This results in controlled release of the substituted aniline herbicide over a period of many years. Herbicides of this class have the property of preventing root elongation without translocating into other parts of the plant. The herbicide may be encapsulated in the polymer or mixed with it. The polymer-herbicide mixture may be formed into pellets, sheets, pipe gaskets, pipes for carrying water, or various other forms. The invention may be applied to other protection of buried hazardous wastes, protection of underground pipes, prevention of root intrusion beneath slabs, the dwarfing of trees or shrubs and other applications. The preferred herbicide is 4-difluoromethyl-N,N-dipropyl- 2,6-dinitro-aniline, commonly known as trifluralin.

  8. Hazardous Gas Production by Alpha Particles

    SciTech Connect (OSTI)

    Jay A. LaVerne, Principal Investigator

    2001-11-26

    This project focused on the production of hazardous gases in the radiolysis of solid organic matrices, such as polymers and resins, that may be associated with transuranic waste material. Self-radiolysis of radioactive waste is a serious environmental problem because it can lead to a change in the composition of the materials in storage containers and possibly jeopardize their integrity. Experimental determination of gaseous yields is of immediate practical importance in the engineering and maintenance of containers for waste materials. Fundamental knowledge on the radiation chemical processes occurring in these systems allows one to predict outcomes in materials or mixtures not specifically examined, which is a great aid in the management of the variety of waste materials currently overseen by Environmental Management.

  9. Potential health hazards of radiation. Fact Sheet

    SciTech Connect (OSTI)

    none,

    2009-05-19

    During World War II and the Cold War, the federal government developed and operated industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Some of these sites processed uranium and vanadium, and upon closure, left behind millions of cubic yards of mill tailings on the sites and throughout the nearby communities. The U.S. Department of Energy (DOE) administers the cleanup of these areas to minimize the risks to the public and environment from exposure to the tailings and the radon gas they produce.

  10. 327 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10

    In March 1998, the 327 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U.S. Department of Energy, Richland Operations Office (DOE-E) for implementation by B and W Hanford Company (BWC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in five areas and provided nine recommendations (11 items) to bring the 327 Building into compliance. A status is provided for each recommendation in this document. BWHC will use this Implementation Plan to bring the 327 Building and its operation into compliance with DOE Order 5480.7A and IUD 5480.7.

  11. Hazards of explosives dusts: Particle size effects

    SciTech Connect (OSTI)

    Cashdollar, K L; Hertzberg, M; Green, G M

    1992-02-01

    At the request of the Department of Energy, the Bureau of Mines has investigated the hazards of military explosives dispersed as dust clouds in a 20-L test chamber. In this report, the effect of particle size for HMX, HNS, RDX, TATB, and TNT explosives dusts is studied in detail. The explosibility data for these dusts are also compared to those for pure fuel dusts. The data show that all of the sizes of the explosives dusts that were studied were capable of sustaining explosions as dust clouds dispersed in air. The finest sizes (<10 [mu]m) of explosives dusts were less reactive than the intermediate sizes (20 to 60 [mu]m); this is opposite to the particle size effect observed previously for the pure fuel dusts. At the largest sizes studied, the explosives dusts become somewhat less reactive as dispersed dust clouds. The six sizes of the HMX dust were also studied as dust clouds dispersed in nitrogen.

  12. Ground freezing for containment of hazardous waste

    SciTech Connect (OSTI)

    Sayles, F.N.; Iskandar, I.K.

    1998-07-01

    The freezing of ground for the containment of subsurface hazardous waste is a promising method that is environmentally friendly and offers a safe alternative to other methods of waste retention in many cases. The frozen soil method offers two concepts for retaining waste. One concept is to freeze the entire waste area into a solid block of frozen soil thus locking the waste in situ. For small areas where the contaminated soil does not include vessels that would rupture from frost action, this concept may be simpler to install. A second concept, of course, is to create a frozen soil barrier to confine the waste within prescribed unfrozen soil boundaries; initial research in this area was funded by EPA, Cincinnati, OH, and the Army Corps of Engineers. The paper discusses advantages and limitations, a case study from Oak Ridge, TN, and a mesh generation program that simulates the cryogenic technology.

  13. 5, 755794, 2005 Reduction methods

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    ACPD 5, 755­794, 2005 Reduction methods for chemical schemes S. Szopa et al. Title Page Abstract Assessment of the reduction methods used to develop chemical schemes: building of a new chemical scheme for VOC oxidation suited to three-dimensional multiscale HOx-NOx-VOC chemistry simulations S. Szopa 1

  14. Environmental Sustainability Paper Usage / Reduction

    E-Print Network [OSTI]

    ;carbon footprint and develop carbon reduction projects around IT and staff/student behaviour change is supported by the Environmental Sustainability Manager and is seen as a key link to the University's Carbon Management Programme (e.g. to produce a forecast of carbon reductions as required by the Carbon Trust

  15. Standard Operating Procedures Template for Highly Hazardous Chemicals Title of Procedure

    E-Print Network [OSTI]

    1 Standard Operating Procedures Template for Highly Hazardous Chemicals Title of Procedure: Date/Date: Risk Assessment Hazardous Chemicals: (List chemicals used. Include chemical name, common name and abbreviation) Potential Hazard(s): (Describe the potential hazards associated with the chemicals

  16. Guidance manual for hazardous waste incinerator permits. Final report

    SciTech Connect (OSTI)

    Not Available

    1983-07-01

    The manual provides guidance to the permit writer for designating facility - specific operating conditions necessary to comply with the RCRA standards for hazardous waste incinerators. Each section of the incineration regulation is addressed, including: waste analysis, designation of principal organic hazardous constituents and requirements for operation, inspection and monitoring. Guidance is also provided for evaluating incinerator performance data and trial burn procedures.

  17. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Site of specifications for projects in areas with site contamination. Overview Many locations on University of Washington industrial activities such as fuel storage or dispensing or hazardous material spills prior to University

  18. Former Hazardous Waste Management Facility -Perimeter Soils Update

    E-Print Network [OSTI]

    Homes, Christopher C.

    Former Hazardous Waste Management Facility - Perimeter Soils Update Brookhaven National Laboratory Division #12;2 Background Cesium -137 contamination found outside the Former Hazardous Waste Management Facility (FHWMF) fence line in late 2005 American Reinvestment Recovery Act funded clean-up of areas

  19. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Wilcock, William

    UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Fluorescent are hazardous waste, so take care to ensure the tubes remain intact during removal and storage. Fluorescent offsite locations, the EH&S Environmental Programs Office (EPO) will arrange directly with the recycling

  20. PROOF COPY 001403EQS Tsunami Hazards Associated with the

    E-Print Network [OSTI]

    Synolakis, Costas E.

    PROOF COPY 001403EQS PROOF COPY 001403EQS Tsunami Hazards Associated with the Catalina Fault the tsunami hazard associated with the Catalina Fault off- shore of southern California. Realistic faulting scenarios with moment magnitudes ranging between 7.0 and 7.6 are used as initial conditions for tsunami

  1. Hazard Resilient Coastal Communities 2010 Annual Report Due to shrinking budgets, the Hazard Resilient Coastal Communities (HRCC) focus team convened via

    E-Print Network [OSTI]

    Hazard Resilient Coastal Communities 2010 Annual Report Due to shrinking budgets, the Hazard. Hazard Mitigation & Adaptation Planning Sea Grant engages stakeholders and educates them on preparing for natural hazards and planning for adaptation to projected impacts from climate change. By improving

  2. R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being

    E-Print Network [OSTI]

    Wilcock, William

    R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet · All hazardous material must and placarded in accordance with the IMDG Code, CFRs and MARPOL 73/78. · All hazardous material to be brought hazardous material containers, no matter how small or how many, must be labeled with the name and phone

  3. Steps for Chemical "Hazardous Waste" Removal 1. Complete a Green Hazardous Waste tag and attach to waste container. This is required for each individual item to

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Steps for Chemical "Hazardous Waste" Removal 1. Complete a Green Hazardous Waste tag and attach by calling 5-8200 or by e-mailing waste_tech@cornell.edu ) 2. Place all Hazardous Waste containers into a UN. Leave top copy of Hazardous Waste tag in the box with the items to be removed 4. Submit a request

  4. SECTION 12-HAZARD COMMUNICATION PROGRAM (HCP) 29 CFR Section 1920-"Hazardous Communications" states that, "the purpose of this section is to ensure

    E-Print Network [OSTI]

    Selmic, Sandra

    144 SECTION 12- HAZARD COMMUNICATION PROGRAM (HCP) 29 CFR Section 1920- "Hazardous Communications" states that, "the purpose of this section is to ensure that the hazards of all chemicals produced or imported are evaluated, and that information concerning their hazards is transmitted to employers

  5. DRAG REDUCTION WITH SUPERHYDROPHOBIC RIBLETS

    SciTech Connect (OSTI)

    Barbier, Charlotte N [ORNL; D'Urso, Brian R [ORNL; Jenner, Elliot [University of Pittsburgh

    2012-01-01

    Samples combining riblets and superhydrophobic surfaces are fabricated at University of Pittsburgh and their drag reduction properties are studied at the Center for Nanophase Materials Sciences (CNMS) in Oak Ridge National Laboratory with a commercial cone-and-plate rheometer. In parallel to the experiments, numerical simulations are performed in order to estimate the slip length at high rotational speed. For each sample, a drag reduction of at least 5% is observed in both laminar and turbulent regime. At low rotational speed, drag reduction up to 30% is observed with a 1 mm deep grooved sample. As the rotational speed increases, a secondary flow develops causing a slight decrease in drag reductions. However, drag reduction above 15% is still observed for the large grooved samples. In the turbulent regime, the 100 microns grooved sample becomes more efficient than the other samples in drag reduction and manages to sustain a drag reduction above 15%. Using the simulations, the slip length of the 100 micron grooved sample is estimated to be slightly above 100 micron in the turbulent regime.

  6. Integrating Chemical Hazard Assessment into the Design of Inherently Safer Processes 

    E-Print Network [OSTI]

    Lu, Yuan

    2012-02-14

    Reactive hazard associated with chemicals is a major safety issue in process industries. This kind of hazard has caused the occurrence of many accidents, leading to fatalities, injuries, property damage and environment pollution. Reactive hazards...

  7. Hazard screening application guide. Safety Analysis Report Update Program

    SciTech Connect (OSTI)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  8. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    SciTech Connect (OSTI)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka; Ken Yanagisawa [Tokyo Electric Power Company (Japan); Tadashi Annaka [Tokyo Electric Power Services Co., Ltd, 3-3, Higashiueno 3-Chome, Taito-ku, Tokyo 110-0015 (Japan)

    2006-07-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present an example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)

  9. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    Eggen, C.D.

    1998-09-16

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the US Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480.7A. Additionally, one observation was provided. To date, four of the recommendations and the one observation have been completed. Actions identified for seven of the recommendations are currently in progress. Exemption requests will be transmitted to DOE-RL for three of the recommendations. Six of the recommendations are related to future shut down activities of the facility and the corrective actions are not being addressed as part of this plan. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process. Major Life Safety Code concerns have been corrected. The status of the recommendations and actions was confirmed during the July 1998 Fire Protection Assessment. BVMC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480.7A and RLID 5480.7.

  10. ORNL grouting technologies for immobilizing hazardous wastes

    SciTech Connect (OSTI)

    Dole, L.R.; Trauger, D.B.

    1983-01-01

    The Cement and Concrete Applications Group at the Oak Ridge National Laboratory (ORNL) has developed versatile and inexpensive processes to solidify large quantities of hazardous liquids, sludges, and solids. By using standard off the shelf processing equipment, these batch or continuous processes are compatible with a wide range of disposal methods, such as above-ground storage, shallow-land burial, deep geological disposal, sea-bed dumping, and bulk in-situ solidification. Because of their economic advantages, these latter bulk in-situ disposal scenarios have received the most development. ORNL's experience has shown that tailored cement-based formulas can be developed which tolerate wide fluctuations in waste feed compositions and still maintain mixing properties that are compatible with standard equipment. In addition to cements, these grouts contain pozzolans, clays and other additives to control the flow properties, set-times, phase separations and impacts of waste stream fluctuation. The cements, fly ashes and other grout components are readily available in bulk quantities and the solids-blends typically cost less than $0.05 to 0.15 per waste gallon. Depending on the disposal scenario, total disposal costs (material, capital, and operating) can be as low as $0.10 to 0.50 per gallon.

  11. 324 Building fire hazards analysis implementation plan

    SciTech Connect (OSTI)

    BARILO, N.F.

    1999-05-10

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U S. Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480 7A. Additionally, one observation was provided. A status is provided for each recommendation in this document. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process BWHC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480 7A and RLID 5480.7.

  12. Economics of Steam Pressure Reduction 

    E-Print Network [OSTI]

    Sylva, D. M.

    1985-01-01

    Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

  13. Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York)

    Broader source: Energy.gov [DOE]

    These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators,...

  14. NSTP 2002-2 Methodology for Final Hazard Categorization for Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Methodology for Final Hazard Categorization for Nuclear Facilities from Category 3 to Radiological (111302). NSTP 2002-2 Methodology for Final Hazard Categorization for...

  15. Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County, Nevada

    E-Print Network [OSTI]

    Ahmad, Sajjad

    1 Geologic Assessment of Piedmont and Playa Flood Hazards in the Ivanpah Valley Area, Clark County..................................................................................................................................... 4 Piedmont Geomorphology and Related Flood Hazards..................... 6 The Field Area

  16. Order Module--THE CONTROL OF HAZARDOUS ENERGY (LOCKOUT/TAGOUT...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    THE CONTROL OF HAZARDOUS ENERGY (LOCKOUTTAGOUT) FAMILIAR LEVEL Order Module--THE CONTROL OF HAZARDOUS ENERGY (LOCKOUTTAGOUT) FAMILIAR LEVEL The familiar level of this module is...

  17. Putting It Down: Hazardous-Waste Management in the Throwaway Culture

    E-Print Network [OSTI]

    Stockton, Wendy

    1981-01-01

    Friedland, New Hazardous Waste Management Systen Regulationbe the primary solid waste management tool SENATE COMM. ONon RCRA, Hazardous Waste Management Seminar, in Santa

  18. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    SciTech Connect (OSTI)

    Dominick, J

    2008-12-18

    This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

  19. Health and Safety Procedures Manual for hazardous waste sites

    SciTech Connect (OSTI)

    Thate, J.E.

    1992-09-01

    The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

  20. Liquid Effluent Retention Facility (LERF) Final Hazard Category Determination

    SciTech Connect (OSTI)

    HUTH, L.L.

    2001-06-06

    The Liquid Effluent Retention Facility was designed to store 242-A Evaporator process condensate and other liquid waste streams for treatment at the 200 East Area Effluent Treatment Facility. The Liquid Effluent Retention Facility has been previously classified as a Category 3 Nonreactor Nuclear Facility. As defined in Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports (DOE 1992, DOE 1997), Category 3 Nuclear Facilities have the potential for significant localized (radiological) consequences. However, based on current facility design, operations, and radioactive constituent concentrations, the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences and is categorized as a Radiological Facility. This report documents the final hazard categorization process performed in accordance with DOE Order 5480.23, Nuclear Safety Analysis Reports. This report describes the current configuration and operations of the Liquid Effluent Retention Facility. Also included is a preliminary hazard categorization, which is based on current and proposed radioactive and hazardous material inventories, a preliminary hazards and accident analysis, and a final hazard category determination. The results of the hazards and accident analysis, based on the current configuration and operations of the Liquid Effluent Retention Facility and the current and proposed radioactive and hazardous material inventories, demonstrate that the Liquid Effluent Retention Facility does not have the potential for significant localized (radiological) consequences. Based on the final hazard category analysis, the Liquid Effluent Retention Facility is a Radiological Facility. The final hazard category determination is based on a comparative evaluation of the consequence basis for the Category 3 threshold quantities to the calculated consequences for credible releases The basis for the Category 3 threshold quantities is 10 rem-equivalent man at 30 meters (98 feet) (DOE 1992, DOE 1997). The calculated 12 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, are 3.50 rem and 1.32 rem, respectively, which based upon the original hazard categorization criteria (DOE 1992) classified the Liquid Effluent Retention Facility as a Radiological Facility. Comparison of the calculated 24 hour consequences to an individual located at 30 meters (98 feet) for two credible scenarios, spray release and a pool release, 7.00 rem and 2.64 rem respectively, confirmed the Liquid Effluent Retention Facility classification as a Radiological Facility under the current hazard categorization criteria (DOE 1997). Both result in dose consequence values less than the allowable, 10 rem, meeting the requirements for categorizing the Liquid Effluent Retention Facility as a Radiological Facility.

  1. Incompatible Hazardous Materials Each material must be individually evaluated to determine where and how it should be stored. The

    E-Print Network [OSTI]

    de Lijser, Peter

    Incompatible Hazardous Materials Each material must be individually evaluated to determine where compounds) detergents/soaps, oxidizers heat, fire hazard compressed gases (oxygen, acetylene, propane, helium) heat sources fire hazard, explosion hazards corrosion preventative compounds (corrosion

  2. New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...

    Broader source: Energy.gov (indexed) [DOE]

    CSE Plug and Play: Purchase, Install, and Connect Residential Solar Power in Hours New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy Production, Wins R&D 100 Award...

  3. Hazardous Material Identification With StreetLab Mobile | GE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hazardous Material Identification With StreetLab Mobile Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new...

  4. Mr. John Kieling, Acting Chief Hazardous Materials Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory to certify waste in accordance with the Waste Isolation Pilot Plant Hazardous Waste Facility Permit. The audit was conducted on June 7-9, 2011. I certify under...

  5. RCRA Hazardous Waste Part A Permit Application: Instructions...

    Open Energy Info (EERE)

    Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste Part A Permit Application: Instructions and Form (EPA Form 8700-23) Abstract...

  6. Mr. John E. Kieling, Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Recovery Act Contingency Plan on April 11, 2014. This report is required by the Hazardous Waste Facility Permit (NM4890139088-TS DF) Attachment D, Section D-8, Required...

  7. Mr. John E. Kieling, Bureau Chief Hazardous Waste Bureau

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4050 Santa Fe, NM 87502-5469 Subject: Written Notice Regarding Application of EPA Hazardous Waste Number D001 to Some Nitrate Salt Bearing Waste Containers Dear Mr. Kieling and...

  8. Hazardous Waste Facility Permit Public Comments to Community...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delete Section 5.3.7 on RACER. Provide a description of Intellus. Yes 2.0 Yes 5.1 Yes Hazardous Waste Facility Permit Public Comments to Community Relations Plan Annual Summary of...

  9. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...

    Energy Savers [EERE]

    work was performed by LANS workers. These incidents exposed workers to serious shock, thermal burn, and arc-flash hazards After a thorough investigation by DOE, NNSA cited LANS...

  10. Landslide hazard zonation in Namasigue and El Triunfo, Southern Honduras 

    E-Print Network [OSTI]

    Perotto-Baldivieso, Humberto Lauro

    2000-01-01

    , stream proximity and land cover type. A heuristic adaptation approach and a logistic regression approach were developed based on the data from Namasigue watershed. Once landslide hazard maps were developed and tested for accuracy using the Namasigue data...

  11. EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas

    Broader source: Energy.gov [DOE]

    This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

  12. NIST Technical Note 1668 A Green Laser Pointer Hazard

    E-Print Network [OSTI]

    Barnes, Joshua Edward

    to a digital or cell phone camera and an inexpensive web camera. 2. Principles of inexpensive green laser to emit 20 mW of infrared radiation during normal use. This is potentially a serious hazard that would

  13. Characterizing Test Methods and Emissions Reduction Performance...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

  14. Pollution Prevention - Environmental Impact Reduction Checklists...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Pollution Prevention - Environmental Impact Reduction Checklists for NEPA309 Reviewers Pollution Prevention - Environmental Impact Reduction Checklists for NEPA309 Reviewers The...

  15. Plasma-assisted catalytic reduction system

    DOE Patents [OSTI]

    Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

    1998-01-27

    Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

  16. Engineering MulticomponentNanocatalystsfor Oxygen Reduction ...

    Office of Scientific and Technical Information (OSTI)

    Engineering MulticomponentNanocatalystsfor Oxygen Reduction Citation Details In-Document Search Title: Engineering MulticomponentNanocatalystsfor Oxygen Reduction Authors: Guo,...

  17. Steam Pressure Reduction: Opportunities and Issues | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Steam Pressure Reduction: Opportunities and Issues Steam Pressure Reduction: Opportunities and Issues This brief details industrial steam generation systems best practices and...

  18. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    as Reductants Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Development of Optimal Catalyst Designs and Operating Strategies for Lean NOx...

  19. Bifunctional Catalysts for the Selective Catalytic Reduction...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Bifunctional Catalysts for the Selective Catalytic Reduction of NO by Hydrocarbons Selectlive Catalytic Reducution of NOx wilth Diesel-Based Fuels as Reductants...

  20. Method of recovering hazardous waste from phenolic resin filters

    DOE Patents [OSTI]

    Meikrantz, David H. (Idaho Falls, ID); Bourne, Gary L. (Idaho Falls, ID); McFee, John N. (Albuquerque, NM); Burdge, Bradley G. (Idaho Falls, ID); McConnell, Jr., John W. (Idaho Falls, ID)

    1991-01-01

    The invention is a process for the recovery of hazardous wastes such as heavy metals and radioactive elements from phenolic resin filter by a circulating a solution of 8 to 16 molar nitric acid at a temperature of 110 to 190 degrees F. through the filter. The hot solution dissolves the filter material and releases the hazardous material so that it can be recovered or treated for long term storage in an environmentally safe manner.

  1. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    SciTech Connect (OSTI)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  2. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    SciTech Connect (OSTI)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  3. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

    1989-01-01

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

  4. Microbial reduction of iron ore

    DOE Patents [OSTI]

    Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

    1989-11-14

    A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

  5. Uranium isotopes fingerprint biotic reduction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Stylo, Malgorzata; Neubert, Nadja; Wang, Yuheng; Monga, Nikhil; Romaniello, Stephen J.; Weyer, Stefan; Bernier-Latmani, Rizlan

    2015-04-20

    Knowledge of paleo-redox conditions in the Earth’s history provides a window into events that shaped the evolution of life on our planet. The role of microbial activity in paleo-redox processes remains unexplored due to the inability to discriminate biotic from abiotic redox transformations in the rock record. The ability to deconvolute these two processes would provide a means to identify environmental niches in which microbial activity was prevalent at a specific time in paleo-history and to correlate specific biogeochemical events with the corresponding microbial metabolism. Here, we demonstrate that the isotopic signature associated with microbial reduction of hexavalent uranium (U),more »i.e., the accumulation of the heavy isotope in the U(IV) phase, is readily distinguishable from that generated by abiotic uranium reduction in laboratory experiments. Thus, isotope signatures preserved in the geologic record through the reductive precipitation of uranium may provide the sought-after tool to probe for biotic processes. Because uranium is a common element in the Earth’s crust and a wide variety of metabolic groups of microorganisms catalyze the biological reduction of U(VI), this tool is applicable to a multiplicity of geological epochs and terrestrial environments. The findings of this study indicate that biological activity contributed to the formation of many authigenic U deposits, including sandstone U deposits of various ages, as well as modern, Cretaceous, and Archean black shales. In addition, engineered bioremediation activities also exhibit a biotic signature, suggesting that, although multiple pathways may be involved in the reduction, direct enzymatic reduction contributes substantially to the immobilization of uranium.« less

  6. Emissions Reduction Impact of Renewables 

    E-Print Network [OSTI]

    Haberl, J. S.; Yazdani, B.; Culp, C.

    2012-01-01

    Laboratory ? 2012 p. 25 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 Annual eGrid for NOx Emissions West Zone North Zone Houston Zone South Zone Unit: lbs of NOx/MWh Unit: lbs of NOx/MWh Unit: lbs of NOx/MWh Unit: lbs... of NOx/MWh Unit: lbs of NOx/MWh p. 26 Energy Systems Laboratory ? 2012 NOx REDUCTIONS FROM WIND POWER New 2010 OSD eGrid for NOx Emissions Unit: Tons of NOx/OSD p. 27 Energy Systems Laboratory ? 2012 p. 28 Energy Systems Laboratory ? 2012 p...

  7. 2008 world direct reduction statistics

    SciTech Connect (OSTI)

    NONE

    2009-07-01

    This supplement discusses total direct reduced iron (DRI) production for 2007 and 2008 by process. Total 2008 production by MIDREX(reg sign) direct reduction process plants was over 39.8 million tons. The total of all coal-based processes was 17.6 million tons. Statistics for world DRI production are also given by region for 2007 and 2008 and by year (1970-2009). Capacity utilization for 2008 by process is given. World DRI production by region and by process is given for 1998-2008 and world DRI shipments are given from the 1970s to 2008. A list of world direct reduction plants is included.

  8. The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard;

    E-Print Network [OSTI]

    The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard; light-gray areas have years. · Mauna Loa, in Hawaii, is the world's largest active volcano. · The Cascade Range--home to more

  9. Coastal and Waterfront Smart Growth and Hazard Mitigation Roundtable Report Coastal and Waterfront Smart Growth

    E-Print Network [OSTI]

    1 Coastal and Waterfront Smart Growth and Hazard Mitigation Roundtable Report Coastal and Waterfront Smart Growth and Hazard Mitigation Roundtable Report Achieving Hazard-Resilient Coastal & Waterfront Smart Growth #12;2 Achieving Hazard-Resilient Coastal & Waterfront Smart Growth www

  10. FFaacciilliittiieess MMaannaaggeemmeenntt//EEnnvviirroonnmmeennttaall HHeeaalltthh && SSaaffeettyy Hazardous Work Area/Equipment Repair Form

    E-Print Network [OSTI]

    Mojzsis, Stephen J.

    Hazardous Work Area/Equipment Repair Form Form Instructions: Client is responsible for completing this form to assure that equipment and/or immediate work areas are not contaminated with any hazardous materials, tissue, etc.) Do Safety Hazards exist in the work area? N ___ Y ___ (Electrical, burn, or trip hazards

  11. Storing Hazardous Waste In Your Laboratory EPA Compliance Fact Sheet: Revision 1

    E-Print Network [OSTI]

    Wikswo, John

    Storing Hazardous Waste In Your Laboratory EPA Compliance Fact Sheet: Revision 1 Vanderbilt.safety.vanderbilt.edu HAZARDOUS WASTE CONTAINERS Hazardous waste must be stored in containers (including lids) made of materials that are compatible with the waste. Hazardous waste containers must be in good condition and free of leaks or any

  12. ROYAL HOLLOWAY, UNIVERSITY OF LONDON THE CONTROL OF SUBSTANCES HAZARDOUS TO HEALTH

    E-Print Network [OSTI]

    Sheldon, Nathan D.

    ROYAL HOLLOWAY, UNIVERSITY OF LONDON THE CONTROL OF SUBSTANCES HAZARDOUS TO HEALTH REGULATIONS 2002's arrangements for the management of hazardous substances as defined in the Control of Substances Hazardous who may be affected by the work of the College to substances hazardous to health is either prevented

  13. 24.01.01.M3 Hazardous Waste Management Program Page 1 of 2 UNIVERSITY RULE

    E-Print Network [OSTI]

    24.01.01.M3 Hazardous Waste Management Program Page 1 of 2 UNIVERSITY RULE 24.01.01.M3 Hazardous: January 20, 2015 Rule Statement A hazardous waste management program shall be implemented to comply with all local, state, and federal regulations on the proper management of hazardous waste and provide

  14. Hazardous Chemical Waste Management Reference Guide for Laboratories 11 Empty Container Decision Tree

    E-Print Network [OSTI]

    Ford, James

    Hazardous Chemical Waste Management Reference Guide for Laboratories 11 Empty Container Decision Tree Chemical waste materials must be handled as hazardous unless they are on the Non-Hazardous Waste List. Used hazardous materials containers are an exception, however. They have their own resource

  15. Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety

    E-Print Network [OSTI]

    Shull, Kenneth R.

    Hazard Assessment for Personal Protective Equipment Northwestern University Office for Research Office for Research Safety Page 1 of 1 H:\\Courses\\Laboratory Standard\\Course Materials\\PPE_Hazard_Assess.doc Name: PI and Department: Date: Eye Hazards - Tasks that can cause eye hazards include: Working

  16. Reuse in Hazard Analysis: Identification and Shamus P. Smith and Michael D. Harrison

    E-Print Network [OSTI]

    Harrison, Michael

    , for example, Hazard and Op- erability Studies (HAZOP) [11], Failure Modes and Effect Analysis (FMEA) [6

  17. October 2014 Natural Phenomena Hazards (NPH) Meeting- Wednesday, October 22nd Soil Structure Interaction Presentations

    Broader source: Energy.gov [DOE]

    Presentations for the Soil Structure Interaction session at the October 2014 Natural Phenomena Hazards (NPH) Meeting.

  18. October 2014 Natural Phenomena Hazards (NPH) Meeting- Tuesday, October 21st Session Presentations

    Office of Energy Efficiency and Renewable Energy (EERE)

    Presentations from the October 2014 Natural Phenomena Hazards Meeting - Tuesday, October 21st Session

  19. October 2014 Natural Phenomena Hazards (NPH) Meeting- Wednesday, October 22nd Session Presentations

    Broader source: Energy.gov [DOE]

    Presentations from the October 2014 Natural Phenomena Hazards Meeting - Wednesday, October 22nd Session

  20. Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer

    E-Print Network [OSTI]

    Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer5250E #12;Logue et al, Health Hazards in Indoor air LBNL5250E Health Hazards in Indoor Air J, Singer BC, 2010 Health Hazards in Indoor Air. In Proceedings of the 2010 31st AIVC Conference, Low Energy

  1. Water Use Reduction Case Studies | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Facilities Water Use Reduction Water Use Reduction Case Studies Water Use Reduction Case Studies These case studies offer examples of water use reduction projects implemented...

  2. Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization

    SciTech Connect (OSTI)

    Jantzen, C.M.

    2001-10-05

    Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

  3. Carbon Dioxide Reduction Through Urban Forestry

    E-Print Network [OSTI]

    accounting process; evaluate the cost-effectiveness of urban forestry programs with CO2 reduction measures carbon dioxide (CO2 ) reduction. The calculation of CO2 reduction that can be made with the use climate. With these Guidelines, they can: report current and future CO2 reductions through a standardized

  4. Frequency Analysis of Aircraft hazards for License Application

    SciTech Connect (OSTI)

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  5. All chemotherapy waste must be managed as a hazardous chemical waste. For more information regarding hazardous chemical waste management please visit www.ehs.uci.edu/programs/enviro/.

    E-Print Network [OSTI]

    Mease, Kenneth D.

    All chemotherapy waste must be managed as a hazardous chemical waste. For more information regarding hazardous chemical waste management please visit www Expired stock vials · Solid chemotherapy waste includes but is not limited to trace-contaminated: o

  6. Algorithm FIRE -- Feynman Integral REduction

    E-Print Network [OSTI]

    A. V. Smirnov

    2008-08-02

    The recently developed algorithm FIRE performs the reduction of Feynman integrals to master integrals. It is based on a number of strategies, such as applying the Laporta algorithm, the s-bases algorithm, region-bases and integrating explicitly over loop momenta when possible. Currently it is being used in complicated three-loop calculations.

  7. Background reduction in cryogenic detectors

    SciTech Connect (OSTI)

    Bauer, Daniel A.; /Fermilab

    2005-04-01

    This paper discusses the background reduction and rejection strategy of the Cryogenic Dark Matter Search (CDMS) experiment. Recent measurements of background levels from CDMS II at Soudan are presented, along with estimates for future improvements in sensitivity expected for a proposed SuperCDMS experiment at SNOLAB.

  8. tion Program on SIDS Reduction

    E-Print Network [OSTI]

    Rau, Don C.

    Continu R ing Ed i u s ca k tion Program on SIDS Reduction CURRICULUM FOR NURSES U.S. DEPARTMENT of Pediatrics, First Candle/SIDS Alliance, and the Association of SIDS and Infant Mortality Programs. FIRST and is conducting live training sessions for this program at nursing conferences across the country. The mission

  9. Reduction

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Homesum_a_epg0_fpd_mmcf_m.xls" ,"Available from WebQuantityBonneville Power Administration wouldMassR&D100 Winners * Impactsand engineersAcquisition Office of

  10. Hazardous Waste Management Policy H&S Committee approved Dec 20121 The University produces `hazardous waste' from all areas, not just

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    produces `hazardous waste' from all areas, not just laboratories and workshops, which meansHazardous Waste Management Policy H&S Committee approved Dec 20121 BACKGROUND The University that this policy potentially applies to everyone. Hazardous waste includes infectious biological/clinical waste

  11. Steps for Chemical "Hazardous Waste" Removal 1. Complete a green Hazardous Waste tag. Peel and stick the bottom copy to the waste container. This is required

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Steps for Chemical "Hazardous Waste" Removal 1. Complete a green Hazardous Waste tag. Peel Hazardous Waste containers into a UN rated DOT box with proper styrofoam or cardboard inserts. DOT boxes for your use are located at: -Bard / Kimball / Thurston: B60a Bard Hall -Biotech / Weill / Corson Mudd

  12. Hazardous Waste Management Policy H&S Committee approved Dec 20121 The University produces `hazardous waste' from all areas, not just

    E-Print Network [OSTI]

    Burton, Geoffrey R.

    Hazardous Waste Management Policy H&S Committee approved Dec 20121 BACKGROUND The University to its final destination. Hazardous Waste Management Policy Level 3 - H&S Policy Structure #12;Hazardous Waste Management Policy H&S Committee approved Dec 20122 List of Wastes (England) Regulation 2005 Sets

  13. Federal-facilities Hazardous-Waste Compliance Manual. Final report

    SciTech Connect (OSTI)

    Not Available

    1990-01-09

    In the continuing effort to achieve a higher level of compliance with the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) at Federal facilities, the Federal Facilities Hazardous Waste Compliance Office (FFHWCO) has developed the Federal Facilities Hazardous Waste Compliance Manual. The manual includes an overview of the Federal-facilities hazardous-waste compliance program, relevant statutory authorities, model provisions for Federal facility agreements, enforcement and other applicable guidance, Federal facilities docket and NPL listings, data-management information, selected DOD and DOE program guidance, and organization charts and contacts. This compendium is intended to be used as a reference by Regional RCRA and CERCLA enforcement personnel and Regional Counsels, particularly as an orientation guide for new Federal facilities staff.

  14. Hazardous waste site characterization (on cd-rom). Data file

    SciTech Connect (OSTI)

    1996-07-01

    Site characterization is one facet of hazardous waste site investigations. Environmental scientists and engineers within and outside the regulated community are becoming overwhelmed by the increasing number of guidance manuals, directives, documents and software products relating to the characterization of hazardous waste sites. People in the private sector, academia, and government are looking for convenient, definitive sources for this information. This CD-ROM combines into a single source a collection of useful references. The CD-ROM contains over 3,200 pages of EPA`s RCRA and Superfund Directives and Manuals that may be searched by key words or printed. It also contains a compilation of EPA-developed computer programs and documents to aid environmental professionals in the characterization of hazardous waste sites.

  15. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    SciTech Connect (OSTI)

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters.

  16. Forest Research Wildfires in Wales

    E-Print Network [OSTI]

    ,000 recorded grassfires and nearly 550 forest fires in South Wales; this equates to eight times more per unit

  17. Essays in Collaborative Wildfire Planning

    E-Print Network [OSTI]

    Smith, Rachel Carolyn

    2011-01-01

    Planners 44, 274-285. American Planning Association. (2002).Chicago, IL: American Planning Association. Babbie, E. (Journal of the American Planning Association 63, 329-344.

  18. Essays in Collaborative Wildfire Planning

    E-Print Network [OSTI]

    Smith, Rachel Carolyn

    2011-01-01

    of the Inspector General, Western Region Report No. 08601-Office of Inspector General. Western Region Report No.

  19. EPA Source Reduction Assistance Grant Program

    Broader source: Energy.gov [DOE]

    The U.S. Environmental Protection Agency (EPA) is accepting applications for the Source Reduction Assistance Grant Program to support pollution prevention/source reduction and/or resource conservation projects that reduce or eliminate pollution at the source.

  20. Electricity Generation and Emissions Reduction Decisions

    E-Print Network [OSTI]

    Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis Jennifer Morris* , Mort Webster* and John Reilly* Abstract The electric power sector, which

  1. Active skin for turbulent drag reduction 

    E-Print Network [OSTI]

    Mani, Raghavendran

    2002-01-01

    capitalizes on recent advances in active turbulent drag reduction and active material based actuation to develop an active or "smart" skin for turbulent drag reduction in realistic flight conditions. The skin operation principle is based on computational...

  2. Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals

    E-Print Network [OSTI]

    Guidance Document Quick Guide to Assess Risk for Hazardous Chemicals The following outline provides a summary of the steps that laboratory workers should use to assess the risks of handling toxic chemicals with each chemical involved in the proposed work. Are any of the chemicals carcinogens or suspected

  3. Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill

    E-Print Network [OSTI]

    Zornberg, Jorge G.

    Analysis and Design of Evapotranspirative Cover for Hazardous Waste Landfill Jorge G. Zornberg, M, Inc. OII Superfund landfill in southern California. This cover system constitutes the first ET cover flow analyses performed for closure design at the OII site show that an ET cover is feasible for a wide

  4. Judging Hazard from Native Trees in California Recreational Areas

    E-Print Network [OSTI]

    studying tree diseases and their control. Dr. Wagener retired from the U.S. Forest Service in September a cooling shade. But they can also maim or kill if they or their parts break and fall. Failure is not likely the forests and congregates in persistent numbers at camp- grounds or resort centers. They become hazards

  5. ATM 1053 I B LSP OPERATIONAL HAZARD ANALYSIS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    for ALSEP Flight Array E Lunar Seismic Profiling Experi- ment Sub ystem11 · This document has been revised. The results of this analysis may be utilized as r design tool to; (1) eliminate the hazards through design-II (approximately 15 0 milligram.s) Lunar Seismic Profiling Experiment Naval Ordnance Laboratory White Sands Test

  6. Federal program for regulating highly hazardous materials finally takes off

    SciTech Connect (OSTI)

    Lessard, P.C. [Block Environmental Services Inc., Pleasant Hill, CA (United States)

    1996-11-01

    The Risk Management Program (RMP) rule, Section 112(r) of the Clean Air Act (CAA), was signed on May 24 and finalized on June 20. RMP is one of the most comprehensive, technically based regulatory programs for preventing, detecting and responding to accidental hazardous materials releases to have been issued in recent times. Although facilities have three years to comply, EPA estimates that the rule will affect an estimated 66,000 facilities that store highly hazardous or acutely toxic materials. The 1990 CAA Amendments are designed to prevent accidental releases of highly hazardous chemicals from stationary sources. Two significant regulatory programs that have emerged from the revised CAA are the Process Safety Management (PSM) standard and RMP. PSM is designed to protect employees and regulated by the Occupational Safety and Health Administration. RMP`s purpose is to protect the public and the environment from highly hazardous chemicals. It authorizes EPA to create a list of substances (distinct from the list generated under PSM) known to cause serious adverse effects and to implement a program for accidental chemical release prevention.

  7. What should employers do to protect workers from fire hazards?

    E-Print Network [OSTI]

    Johnson, Eric E.

    . Address evacuation of employees who stay behind to shut down critical plant equipment. Include preferred fire hazards in the workplace and about what to do in a fire emergency. If you want your workers require for emergency fire exits? Every workplace must have enough exits suitably located to enable

  8. ORIGINAL PAPER Gray swans: comparison of natural and financial hazard

    E-Print Network [OSTI]

    Stein, Seth

    tsunamis than planned for. Mitigation planning underestimated the vulnerability of nuclear power plants, due to a belief in nuclear safety. The US economic models did not consider the hazard that would Nuclear Accident Independent Investigation Commission (2012) wrote: the subsequent accident

  9. Observations of Near-Earth Asteroids Impact Hazard to Earth

    E-Print Network [OSTI]

    Throop, Henry

    Observations of Near-Earth Asteroids and the Impact Hazard to Earth Henry Throop! Physics on Earth Potchefstroom Parys Sasolburg 20 km #12;Parys 3 km #12;Vredefort Impact Crater Looking from outer Impactor? · Origin: One of several million Near Earth Asteroids (NEAs) · a = 1.6 AU; e = 0.5; i = 4

  10. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    SciTech Connect (OSTI)

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  11. Studies on Hazard Characterization for Performance-based Structural Design 

    E-Print Network [OSTI]

    Wang, Yue

    2010-07-14

    size parameters, and a measure of storm kinetic energy were used to develop wind-surge and wind-surge-energy models, which can be used to characterize the wind-surge hazard at a level of accuracy suitable for PBE applications. These models provide a...

  12. Highly Hazardous Chemicals and Chemical Spills EPA Compliance Fact Sheet

    E-Print Network [OSTI]

    Wikswo, John

    will be the direct cost charged to VEHS by our disposal contractor. VEHS does not mark up the disposal charges chemicals in your laboratory, leave them alone and notify VEHS immediately to arrange for disposal. Highly spills must be disposed of as hazardous waste. · Clean up spills when they happen or contact VEHS

  13. Defining Hazardous Waste This section contains information on

    E-Print Network [OSTI]

    Mease, Kenneth D.

    , or discarded unused commercial products, such as cleaning fluids (solvents) or pesticides. In regulatory terms-from rules, and contaminated soil generated from a "clean up" can also be hazardous wastes. To view processes, such as solvents that have been used for cleaning or degreasing. Since the processes producing

  14. UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety

    E-Print Network [OSTI]

    Sniadecki, Nathan J.

    to construction debris recycling facilities even if the lead concentrations are below Hazardous Waste levels in construction debris. It is most often found in pipes, copper pipes with lead solder, and interior and exterior, lead-containing materials have the potential to negatively impact the health of construction workers

  15. Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction

    E-Print Network [OSTI]

    McGovern, Amy

    Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1 dis- covery methods for use on mesoscale weather data. Severe weather phenomena such as tornados, thun, current techniques for predicting severe weather are tied to specific characteristics of the radar systems

  16. SALARY REDUCTION AGREEMENT ______ Original Agreement ______ Amended Agreement

    E-Print Network [OSTI]

    Fernandez, Eduardo

    SALARY REDUCTION AGREEMENT ______ Original Agreement ______ Amended Agreement By this agreement that it will not apply to salary subsequently earned by giving at least thirty days written notice of the date(ies), by completing an amended Salary Reduction Agreement. The total of the salary reduction

  17. A Review of Hazardous Chemical Species Associated with CO2 Capture from Coal-Fired Power Plants and Their Potential Fate in CO2 Geologic Storage

    E-Print Network [OSTI]

    Apps, J.A.

    2006-01-01

    A Review of Hazardous Chemical Species Associated with CO 2the inventory of most hazardous trace elements are capturedequilibrium concentrations of hazardous trace elements in

  18. Nat. Hazards Earth Syst. Sci., 13, 16, 2013 www.nat-hazards-earth-syst-sci.net/13/1/2013/

    E-Print Network [OSTI]

    Vogel, Richard M.

    and plant populations and a myr- iad of other important natural hazards relating to earth system state or not society is prepared to accommodate and respond to such trends. We describe how the power or probability widespread that it is difficult to find a location that is not impacted by the interaction among human

  19. Nat. Hazards Earth Syst. Sci., 8, 243266, 2008 www.nat-hazards-earth-syst-sci.net/8/243/2008/

    E-Print Network [OSTI]

    Grilli, Stéphan T.

    ) can cause devastating local tsunamis that strike without warning. There is a comprehensive data set/243/2008/ © Author(s) 2008. This work is licensed under a Creative Commons License. Natural Hazards and Earth System Sciences The Papua New Guinea tsunami of 17 July 1998: anatomy of a catastrophic event D. R. Tappin1, P

  20. Variate Generation for Accelerated Life and Proportional Hazards Models with Time Dependent Covariates

    E-Print Network [OSTI]

    Leemis, Larry

    Variate Generation for Accelerated Life and Proportional Hazards Models with Time Dependent, Monte Carlo simulation, Proportional hazards model, Time dependent covariates, Variate generation. #12 Engineering 202 West Boyd, Room 124 Norman, OK 73019 September, 1989 SUMMARY Variate generation algorithms

  1. Journal of Hazardous Materials 192 (2011) 16161622 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Sparks, Donald L.

    2011-01-01

    Journal of Hazardous Materials 192 (2011) 1616­1622 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Effects of dissolved

  2. Journal of Hazardous Materials 175 (2010) 872882 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2010-01-01

    Journal of Hazardous Materials 175 (2010) 872­882 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Model for a solid­liquid stirred tank

  3. Journal of Hazardous Materials 191 (2011) 190195 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Daugulis, Andrew J.

    2011-01-01

    Journal of Hazardous Materials 191 (2011) 190­195 Contents lists available at ScienceDirect Journal of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Treatment of substituted phenol

  4. Hazard Analysis of Complex Spacecraft Using Systems-Theoretic Process Analysis

    E-Print Network [OSTI]

    Ishimatsu, Takuto

    A new hazard analysis technique, called systems-theoretic process analysis, is capable of identifying potential hazardous design flaws, including software and system design errors and unsafe interactions among multiple ...

  5. New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants New Seismic Model Will Refine Hazard Analysis at U.S. Nuclear Plants January 31, 2012 - 2:09pm Addthis The...

  6. Application of probabilistic consequence analysis to the assessment of potential radiological hazards of fusion reactors

    E-Print Network [OSTI]

    Sawdye, Robert William

    1978-01-01

    A methodology has been developed to provide system reliability criteria based on an assessment of the potential radiological hazards associated with a fusion reactor design and on hazard constraints which prevent fusion ...

  7. Examining Local Jurisdictions' Capacity and Commitment For Hazard Mitigation Policies and Strategies along the Texas Coast 

    E-Print Network [OSTI]

    Husein, Rahmawati

    2012-07-16

    the local capacity and commitment affect the adoption and implementation of land use and development regulations to mitigate any type of hazards in the coastal areas. This study investigates hazard mitigation policies and practices at municipal and county...

  8. Probabilistic Seismic Hazard Analysis for a Dam Site in Calabria (Southern Italy)

    E-Print Network [OSTI]

    Zimmaro, Paolo; Stewart, Jonathan P.

    2015-01-01

    expected accelerations for some dam sites in Southern Italy,Seismic Hazard Analysis for a Dam Site in Calabria (SouthernSeismic Hazard Analysis for a Dam Site in Calabria (Southern

  9. 6/6/2014 1 of 6 OHS 11-033 revision Animal Research Protocols Involving Hazardous Chemicals

    E-Print Network [OSTI]

    Kay, Mark A.

    OHS 11-033 revision Animal Research Protocols Involving Hazardous Chemicals I. OVERVIEW Hazardous Chemicals: Known or suspect carcinogens, reproductive toxins or other highly toxic substances (e. Reference the SU Chemical Hygiene Plan for hazardous chemical definitions. Potential Exposures: Research

  10. Modeling household adoption of earthquake hazard adjustments: a longitudinal panel study of Southern California and Western Washington residents 

    E-Print Network [OSTI]

    Arlikatti, Sudha S

    2006-10-30

    This research, aimed at advancing the theory of environmental hazard adjustment processes by contrasting households from three cities in a high seismic hazard area with households from three other cities in a moderate seismic hazard area...

  11. A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty

    E-Print Network [OSTI]

    Gevers, Michel

    A Comparison Between Model Reduction and Controller Reduction: Application to a PWR Nuclear Planty model reduction with controller reduction for the same PWR system. We show that closed-loop techniques to the design of a low-order con- troller for a realistic model of order 42 of a Pressurized Water Reactor (PWR

  12. Inter-relation between technical and jurisdictional aspects of hazardous waste management in Houston 

    E-Print Network [OSTI]

    Vasavada, Nishith Maheshbhai

    1987-01-01

    13 ? Location of spills in the Houston metroplex 66 Figure 14 ? Conceptual diagram of hazardous waste volume treated and stored 110 Figure 15 ? Conceptual diagram of cumulative hazardous waste storage backlog 110 Figure 16 ? Hazardous waste... waste, small quantity generators, underground storage tanks, etc. , using Houston, Texas as a metroplex for case study. 2. To detail the above areas of hazardous waste problems in Houston through field study and literature review and develop a model...

  13. 10/2/2006 SLAC-I-760-2A08Z-001-R002 HAZARDOUS WASTE DETERMINATION FORM

    E-Print Network [OSTI]

    Wechsler, Risa H.

    /2/2006 SLAC-I-760-2A08Z-001-R002 HAZARDOUS WASTE DETERMINATION FORM For RP Use Only Hazardous Waste;________________________________________________________________________________________________ 10/2/2006 SLAC-I-760-2A08Z-001-R002 HAZARDOUS WASTE DETERMINATION FORM For RP Use Only Hazardous Waste Codes:Hazardous Classification: [ ] Non-Hazardous [ ] RCRA Waste [ ] Non-RCRA Waste (CA Haz Waste

  14. Hazardous Materials Reporting UT-B Contracts Div Page 1 of 1

    E-Print Network [OSTI]

    Hazardous Materials Reporting UT-B Contracts Div July 2006 Page 1 of 1 haz-mat-rept-ext-venx-july06.doc HAZARDOUS MATERIALS REPORTING (July 2006) (a) The Company is required by regulations to maintain records and report on quantities of hazardous materials that are on site at U. S. Department

  15. Level I Guidance Documentation Environmental: Hazardous Waste: Satellite Accumulation Areas (SAA)

    E-Print Network [OSTI]

    Entekhabi, Dara

    "Hazardous Waste", (2) the container's contents written out (e.g. "WASTE OIL, no formulas, no abbreviations(10/28/03) Level I ­ Guidance Documentation Environmental: Hazardous Waste: Satellite Accumulation Areas (SAA) 1. Is all hazardous waste stored in the satellite accumulation area (SAA)? 2

  16. Navy aquatic hazardous waste sites: the problem and possible solutions. Final report

    SciTech Connect (OSTI)

    Johnston, R.K.; Wild, W.J.; Richter, K.E.; Lapota, D.; Stang, P.M.

    1989-08-01

    Data on 367 hazardous waste disposal sites at 58 Navy Marine Corps activities, located in the coastal zone, were reviewed to characterize the contaminants, disposal methods, and potentially impacted environments present at navy aquatic hazardous waste sites. This report identifies Navy aquatic hazardous waste site problems, assesses technology requirements, and describes remedial pilot projects being initiated at impacted aquatic sites.

  17. Modeling hazardous fire potential within a completed fuel treatment network in the northern Sierra Nevada

    E-Print Network [OSTI]

    Stephens, Scott L.

    fuel models in treated areas had much less impact on hazardous fire potential, indicating a robust in untreated areas over time, result- ing in an increase in overall fire hazard. This suggests additionalModeling hazardous fire potential within a completed fuel treatment network in the northern Sierra

  18. Hazard Communication Definitions Chemical means any substance or mixture of substances

    E-Print Network [OSTI]

    Slatton, Clint

    Hazard Communication Definitions Chemical means any substance or mixture of substances Container that contains a hazardous chemical. Exposure or exposed means that an employee is subjected in the course of employment to a chemical that is a physical or health hazard and includes potential (e.g. accidental

  19. University of Connecticut Health Center Policy for Transporting, Shipping, Importing / Exporting Hazardous Materials

    E-Print Network [OSTI]

    Kim, Duck O.

    Hazardous Materials Policy The University of Connecticut Health Center requires that all materials classified as "hazardous materials" by the U.S. Department of Transportation and/or the State of Connecticut be transported in approved containers and in compliance with all transportation regulations. Hazardous materials

  20. Are you shipping a DOT Hazardous Material? Is your material listed

    E-Print Network [OSTI]

    Pawlowski, Wojtek

    Are you shipping a DOT Hazardous Material? Is your material listed on the DOT Hazmat Table? http://www.myregs.com/dotrspa/ (select Hazmat Table upper left) Your material is a Hazardous Material and must be shipped following the full regulations. Follow the instructions on the linked page, select the hazard of the material