Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Mastication of forest biomass for wildfire hazard reduction and forest health improvement has expanded dramatically  

E-Print Network [OSTI]

Mastication of forest biomass for wildfire hazard reduction and forest health improvement has or tree spacing is adequate to allow sufficient room for equipment operation. b. Carefully review

2

State of Colorado Wildfire Hazard  

E-Print Network [OSTI]

State of Colorado Wildfire Hazard Mitigation Plan Colorado Multi-Hazards Mitigation Plan July 2002 the May 2001 Report to the Governor, Colorado Wildland Urban Interface; Section 2 includes the Hazard the status of the Wildland Urban Interface in Colorado; the hazards that exist; mitigation measures

3

Biomass and Bioenergy 31 (2007) 638645 Forest bioenergy system to reduce the hazard of wildfires  

E-Print Network [OSTI]

Biomass and Bioenergy 31 (2007) 638­645 Forest bioenergy system to reduce the hazard of wildfires for bioenergy. The start-up project is in the Nutrioso area of the Alpine Ranger District, Apache. The outlet for the wood fuel pellets is the growing market for house and business heating, and co

4

Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest landscape of northeastern China  

E-Print Network [OSTI]

Comparing fuel reduction treatments for reducing wildfire size and intensity in a boreal forest, Columbia, MO 65211, USA H I G H L I G H T S · Focusing on fuel load may ignore effects of other spatial controls on fire. · We used burn probability to combine effects of fuel load and other spatial controls

He, Hong S.

5

Pyrogeography of the Southeast USA: Exploring the Relationships between Wildfire and Climate  

E-Print Network [OSTI]

Wildfire plays a contradictory role as both a hazard and a necessary ecological process in certain ecosystems. A variety of factors influence wildfire, including fuel type and quantity, land management policies, and patterns of human activity...

Labosier, Christopher

2014-07-08T23:59:59.000Z

6

Hazard Categorization Reduction via Nature of the Process Argument  

SciTech Connect (OSTI)

This paper documents the Hazard Categorization (HC) and Critical Safety Evaluation (CSE) for activities performed using an Inspection Object (IO) in excess of the single parameter subcritical limit of 700 g of U-235. By virtue of exceeding the single parameter subcritical limit and the subsequent potential for criticality, the IO HC is initially categorized as HC2. However, a novel application of the nature of the process argument was employed to reduce the IO HC from HC2 to less than HC3 (LTHC3). The IO is composed of five separate uranium metal plates that total no greater than 3.82 kg of U-235 (U(20)). The IO is planned to be arranged in various configurations. As the IO serves as a standard for experimentation aimed at establishing techniques for detection of fissionable materials, it may be placed in close proximity to various reflectors, moderators, or both. The most reactive configurations of the IO were systematically evaluated and shown that despite the mass of U-235 and potential positioning near various reflectors and moderators, the IO cannot be assembled into a critical configuration. Therefore, the potential for criticality does not exist. With Department of Energy approval, a Hazards Assessment Document with high-level (facility-level) controls on the plates negates the potential for criticality and satisfies the nature of the process argument to reduce the HC from HC2 to LTHC3.

Chelise A. Van De Graaff; Dr. Chad Pope; J. Todd Taylor

2012-05-01T23:59:59.000Z

7

Research Summary Wildfires in Wales  

E-Print Network [OSTI]

relating to arson and its motivations, wildfire research and research into the social drivers of wildfires in partnership and to address the wider social drivers of wildfire arson. o There is low public awareness

8

Wildfire Policy in Transition Yellowstone  

E-Print Network [OSTI]

Wildfire Policy in Transition 1910 #12;Yellowstone 1988 #12;Colorado South Canyon Fire 1994 #12;#12;Wildfire Policy in Transition 1910 #12;

9

asteroid impact hazard: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Peter 2015-01-01 87 Ten years after wildfires: How does varying tree mortality impact fire hazard and forest resiliency? Environmental Sciences and Ecology Websites Summary: 30...

10

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 1999  

SciTech Connect (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 1999. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 199a). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 1999, these CY 1999 goals were extended to CY 2000 for all waste streams that generated waste in 1999. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 51 waste streams met or exceeded their reduction goal based on the CY 1999 data.

Bechtel Jacobs Company LLC

2000-03-01T23:59:59.000Z

11

The East Tennessee Technology Park Progress Report for the Tennessee Hazardous Waste Reduction Act for Calendar Year 2000  

SciTech Connect (OSTI)

This report is prepared for the East Tennessee Technology Park (formerly the Oak Ridge K-25 Site) (ETTP) in compliance with the ''Tennessee Hazardous Waste Reduction Act of 1990'' (THWRA) (TDEC 1990), Tennessee Code Annotated 68-212-306. Annually, THWRA requires a review of the site waste reduction plan, completion of summary waste reduction information as part of the site's annual hazardous waste reporting, and completion of an annual progress report analyzing and quantifying progress toward THWRA-required waste stream-specific reduction goals. This THWRA-required progress report provides information about ETTP's hazardous waste streams regulated under THWRA and waste reduction progress made in calendar year (CY) 2000. This progress report also documents the annual review of the site plan, ''Oak Ridge Operations Environmental Management and Enrichment Facilities (EMEF) Pollution Prevention Program Plan'', BJC/OR-306/R1 (Bechtel Jacobs Company 2000). In 1996, ETTP established new goal year ratios that extended the goal year to CY 1999 and targeted 50 percent waste stream-specific reduction goals. In CY 2000, these goals were extended to CY 2001 for all waste streams that generated waste in 2000. Of the 70 ETTP RCRA waste streams tracked in this report from base years as early as CY 1991, 50 waste streams met or exceeded their reduction goal based on the CY 2000 data.

Bechtel Jacobs Company LLC

2001-03-01T23:59:59.000Z

12

Identifying the Impact of the Built Environment on Wildfire Property Damage in California  

E-Print Network [OSTI]

Wildfires are a natural hazard that present an increasing risk to communities in fire-prone areas. This study examines the impacts of the municipal-level built environment upon fire damages in California, a particularly fire-vulnerable state...

Makino, Takashi Michael

2013-05-08T23:59:59.000Z

13

Earthquake risk reduction in the United States: An assessment of selected user needs and recommendations for the National Earthquake Hazards Reduction Program  

SciTech Connect (OSTI)

This Assessment was conducted to improve the National Earthquake Hazards Reduction Program (NEHRP) by providing NEHRP agencies with information that supports their user-oriented setting of crosscutting priorities in the NEHRP strategic planning process. The primary objective of this Assessment was to take a ``snapshot`` evaluation of the needs of selected users throughout the major program elements of NEHRP. Secondary objectives were to conduct an assessment of the knowledge that exists (or is being developed by NEHRP) to support earthquake risk reduction, and to begin a process of evaluating how NEHRP is meeting user needs. An identification of NEHRP`s strengths also resulted from the effort, since those strengths demonstrate successful methods that may be useful to NEHRP in the future. These strengths are identified in the text, and many of them represent important achievements since the Earthquake Hazards Reduction Act was passed in 1977.

NONE

1994-12-31T23:59:59.000Z

14

Why is Eastern Redcedar a Hazardous Fuel?  

E-Print Network [OSTI]

Why is Eastern Redcedar a Hazardous Fuel? Why is Eastern Redcedar a Hazardous Fuel? Homes built the destruction of fire-tolerant trees if a wildfire moves through the area. Creating fuel breaks (such ignite it. · When ERC grows in forests and wood- lands, it acts as a ladder fuel to allow fire to climb

Balasundaram, Balabhaskar "Baski"

15

Maine Department of Environmental Protection Washington State Department of Ecology California Environmental Protection Agency State House Station 17 Hazardous Waste & Toxics Reduction 1001 I Street  

E-Print Network [OSTI]

Maine Department of Environmental Protection Washington State Department of Ecology California Environmental Protection Agency State House Station 17 Hazardous Waste & Toxics Reduction 1001 I Street Augusta, said Ted Sturdevant, Director of the Washington State Department of Ecology. We need a federal law

16

Ornament is dangerous : a wildfire hazard center for Los Angeles  

E-Print Network [OSTI]

There is no such thing as an unadorned building. While the the role and relevance of ornament in architecture has been criticized for centuries, its position has been, for the most part, supported as essential to architecture. ...

Trimble, Matthew Alexander

2008-01-01T23:59:59.000Z

17

Hazardous Waste Management (North Dakota)  

Broader source: Energy.gov [DOE]

The Department of Health is the designated agency to administer and coordinate a hazardous waste management program to provide for the reduction of hazardous waste generation, reuse, recovery, and...

18

MANAGING DATA AND COMPUTATIONAL COMPLEXITY FOR IMMERSIVE WILDFIRE VISUALIZATION  

E-Print Network [OSTI]

for communities throughout the world. They cause millions of dollars in damage and lead to loss of lives. The development of computational mod- els to predict wildfire behavior is necessary to minimize wildfire damages. It is the unpredictability of wildfires that make them so dangerous. It is this reason that so much time and money is spent

Dascalu, Sergiu

19

Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -the Mid-Infrared at 278, 298,NIST 800-53 National Renewable EnergyReducingReduction

20

Reduction of COD in leachate from a hazardous waste landfill adjacent to a coke-making facility  

SciTech Connect (OSTI)

A hazardous waste landfill adjacent to a coke manufacturing facility was in operation between July 1990 and December 1991. A system was constructed to collect and treat the leachate from the landfill prior to discharge to the river. Occasionally, the discharge from the treatment facility exceeded the permit limitations for Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), and Total Organic Carbon (TOC). The objectives of this study were to determine treatment methods which would enable compliance with the applicable discharge limits; to establish the desired operating conditions of the process; and to investigate the effect of various parameters such as pH, catalyst dosage, and reaction time on the COD destruction efficiency. The characteristics of the landfill leachate in question were significantly variable in terms of chemical composition. A review of the influent quality data suggests that the COD concentration ranges between 80 and 390 mg/l. The oxidation processes using Fenton`s reagent or a combination of UV/hydrogen peroxide/catalyst are capable of reducing the COD concentration of the leachate below the discharge limitation of 35 mg/l. The estimated capital cost associated with the Fenton`s reagent process is approximately $525,000, and the annual operating and maintenance cost is $560,000. The estimated capital cost for the UV/hydrogen peroxide/catalyst treatment system is $565,000. The annual operating and maintenance cost of this process would be approximately $430,000.

Banerjee, K.; O`Toole, T.J. [Chester Environmental, Moon Township, PA (United States)

1995-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Pine Ridge Area Community Wildfire Protection Plan  

E-Print Network [OSTI]

Pine Ridge Area Community Wildfire Protection Plan Update 2013 West Ash Fire: Wednesday August 29 the boundary of the original plan to include all the area within the Upper Niobrara White Natural Resource, 2012 #12;Facilitated by: Nebraska Forest Service In cooperation with: Region 23 Fire Protection

Farritor, Shane

22

ARIZONA COOPERATIVE Climate Change and Wildfire  

E-Print Network [OSTI]

and Woodlands Summary of Issue Wildfire requires three things to burn: heat, fuel and oxygen. If one 1998) and warming temperatures coupled with recent drought conditions. In many cases, high force managers to consider new management #12;2 The University of Arizona Cooperative Extension

Crimmins, Michael A.

23

WILDFIRE IGNITION RESISTANCE ESTIMATOR WIZARD SOFTWARE DEVELOPMENT REPORT  

SciTech Connect (OSTI)

This report describes the development of a software tool, entitled “WildFire Ignition Resistance Estimator Wizard” (WildFIRE Wizard, Version 2.10). This software was developed within the Wildfire Ignition Resistant Home Design (WIRHD) program, sponsored by the U. S. Department of Homeland Security, Science and Technology Directorate, Infrastructure Protection & Disaster Management Division. WildFIRE Wizard is a tool that enables homeowners to take preventive actions that will reduce their home’s vulnerability to wildfire ignition sources (i.e., embers, radiant heat, and direct flame impingement) well in advance of a wildfire event. This report describes the development of the software, its operation, its technical basis and calculations, and steps taken to verify its performance.

Phillips, M.; Robinson, C.; Gupta, N.; Werth, D.

2012-10-10T23:59:59.000Z

24

Hydrologic conditions controlling runoff generation immediately after wildfire  

E-Print Network [OSTI]

and frequency are forecast to increase in response to changes in global climate [Kitzberger et al., 2007 of ecosystems and water resources by wildfire [e.g., Neary et al., 1999; Cannon et al., 2001]. [3] Wildfire, charcoal, and mineral material [Moody et

25

2011 Colorado Wildfire Season September 12, 2011 Weekly Update  

E-Print Network [OSTI]

Page 1 2011 Colorado Wildfire Season September 12, 2011 Weekly Update About this report: This weekly wildfire report is provided by the Colorado State Forest Service to keep you current on the fire situation in Colorado. The report will be released every Monday from May 2 to Oct. 24, along with daily

Hardy, Darel

26

17 September 2012 Wildfires and energy generation: what's the link?  

E-Print Network [OSTI]

creation in the green energy sector for rural communities in the BC interiorMEDIA TIP 17 September 2012 Wildfires and energy to increase as a result of climate change, rural communities across BC are removing

Pedersen, Tom

27

Landowner perception, awareness, and adoption of wildfire programs in the Southern United States  

E-Print Network [OSTI]

...................................................... 3 II LITERATURE REVIEW..................................................................... 5 2.1 History of Fire Policy in the United States .............................. 5 2.2 Hazard Fuel Reduction and Bioenergy: Policies... legislation such as the Healthy Forest Initiative (HFI) and HFRA are designed, in part, to expedite and streamline the processes involved with carrying out this mission (Stephens and Ruth 2005). 2.2 Hazard Fuel Reduction and Bioenergy: Policies, Programs...

Jarrett, Adam R.

2009-05-15T23:59:59.000Z

28

Hazardous Waste Program (Alabama)  

Broader source: Energy.gov [DOE]

This rule states criteria for identifying the characteristics of hazardous waste and for listing hazardous waste, lists of hazardous wastes, standards for the management of hazardous waste and...

29

Hazards Survey and Hazards Assessments  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This volume is to assist DOE Operations/Field Offices and operating contractors in complying with the DOE O 151.1 requirement that Hazards Surveys and facility-specific Hazards Assessments be prepared, maintained, and used for emergency planning purposes. Canceled by DOE G 151.1-2.

1997-08-21T23:59:59.000Z

30

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT  

E-Print Network [OSTI]

THE GRADUATE CERTIFICATE IN ENVIRONMENTAL HAZARD MANAGEMENT Offered by The College of Architecture and The Hazard Reduction and Recovery Center Texas A&M University #12;2 THE GRADUATE CERTIFICATE IN ENVIRONMENTAL..................................................................................3 C. Approved Courses in the College of Architecture .............................4 D. Approved

31

Predicting the effect of climate change on wildfire behavior and initial attack success  

E-Print Network [OSTI]

wildfire behavior and initial attack success Van Rheenen, N.2006a. “Analysing initial attack on wildland fires usingwildfire behavior and initial attack success Fried, J.S. ,

Fried, Jeremy S.

2008-01-01T23:59:59.000Z

32

Use of Prescribed Fire to Reduce Wildfire Robert E. Martin, J. Boone Kauffman, and Joan  

E-Print Network [OSTI]

reduces fire hazard and potential fire behavior primarily by reducing fuel quantity and continuity of excessive biomass; it has set the stage for high-intensity, high-fuel- consumption, stand-removal fires. These include maintenance of stand composition, increase in water quantity and quality, reduction

Standiford, Richard B.

33

Wildfire ignition resistant home design(WIRHD) program: Full-scale testing and demonstration final report.  

SciTech Connect (OSTI)

The primary goal of the Wildfire ignition resistant home design(WIRHD) program was to develop a home evaluation tool that could assess the ignition potential of a structure subjected to wildfire exposures. This report describes the tests that were conducted, summarizes the results, and discusses the implications of these results with regard to the vulnerabilities to homes and buildings.

Quarles, Stephen, L.; Sindelar, Melissa

2011-12-13T23:59:59.000Z

34

GENERAL TECHNICAL REPORT PSW-GTR-245 Wildfire Management Policies in Algeria  

E-Print Network [OSTI]

Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires, November 5-11, 2012, Mexico of the Fourth International Symposium on Fire Economics, Planning, and Policy: Climate Change and Wildfires 383 is a Mediterranean country strongly conditioned by the physical, biological, climatic and environmental

Standiford, Richard B.

35

2011 Colorado Preparedness Plan Page 1 of 4 2011 Colorado Wildfire Preparedness Plan  

E-Print Network [OSTI]

2011 Colorado Preparedness Plan Page 1 of 4 2011 Colorado Wildfire Preparedness Plan Recommendation to the Governor AUTHORIZATION: COLORADO REVISED STATUTE 23-31-309 The Wildfire Preparedness Fund in Colorado was authorized by the 2006 Legislature through Senate Bill 06-096, which also appropriated funding

36

Spatial variation in extreme winds predicts large wildfire locations in chaparral ecosystems  

E-Print Network [OSTI]

Click Here for Full Article Spatial variation in extreme winds predicts large wildfire locations. There is a surprising lack of information about extreme wind patterns worldwide, and more quantitative analyses. Hall (2010), Spatial variation in extreme winds predicts large wildfire locations in chaparral

Wildermuth, Mary C

37

Hazard Baseline Documentation  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

This standard establishes uniform Office of Environmental Management (EM) guidance on hazard baseline documents that identify and control radiological and non-radiological hazards for all EM facilities.

1995-12-04T23:59:59.000Z

38

Wildfires may contribute more to global warming than previously predicted  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhat MakesEnergyWhyWildfires may

39

Wildfires may contribute more to global warming than previously predicted  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhat MakesEnergyWhyWildfires

40

Hazardous Waste Management Training  

E-Print Network [OSTI]

Hazardous Waste Management Training Persons (including faculty, staff and students) working with hazardous materials should receive annual training that addresses storage, use, and disposal of hazardous before handling hazardous waste. Departments are re- quired to keep records of training for as long

Dai, Pengcheng

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

HAZARDOUS MATERIALS EMERGENCY RESPONSE  

E-Print Network [OSTI]

ANNEX Q HAZARDOUS MATERIALS EMERGENCY RESPONSE #12;ANNEX Q - HAZARDOUS MATERIALS EMERGENCY RESPONSE 03/10/2014 v.2.0 Page Q-1 PROMULGATION STATEMENT Annex Q: Hazardous Materials Emergency Response, and contents within, is a guide to how the University conducts a response specific to a hazardous materials

42

Track 3: Exposure Hazards  

Broader source: Energy.gov [DOE]

ISM Workshop Presentations Knoxville Convention Center, Knoxville, TN August 2009 Track 3: Exposure Hazards

43

Georgia Hazardous Waste Management Act  

Broader source: Energy.gov [DOE]

The Georgia Hazardous Waste Management Act (HWMA) describes a comprehensive, Statewide program to manage hazardous wastes through regulating hazardous waste generation, transportation, storage,...

44

Vegetation and wildfire controls on sediment yield in bedrock Roman A. DiBiase1  

E-Print Network [OSTI]

sensitive to climate, tectonics, and wildfire. Predicting landscape response to these pertur- bations demands a quantitative understanding of erosion processes. However, existing models for hillslope sediment scale, our measurements match records of postfire sediment yield from nearby retention basins. Contrary

DiBiase, Roman A.

45

Exposure assessment of particulate matter air pollution before, during, and after the 2003 Southern California wildfires  

E-Print Network [OSTI]

1999. Health Impacts of Biomass Air Pollution. In: Healthpublic health impacts of PM air pollution fro m wildfiresAir pollution and emergency room visits for asthma in Santa Clara County, California. Environmental Health

Wu, J; Winer, A M; Delfino, R J

2006-01-01T23:59:59.000Z

46

Hazardous Waste Management (Arkansas)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program is carried out by the Arkansas Department of Environmental Quality which administers its' program under the Hazardous Waste management Act (Arkansas Code Annotated 8-7...

47

Hazardous Waste Management (Delaware)  

Broader source: Energy.gov [DOE]

The act authorizes the Delaware Department of Natural Resources and Environment Control (DNREC) to regulate hazardous waste and create a program to manage sources of hazardous waste. The act...

48

Hazard Analysis Database report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Database for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J.

1997-08-12T23:59:59.000Z

49

Hazard analysis results report  

SciTech Connect (OSTI)

This document describes and defines the Hazard Analysis Results for the Tank Waste Remediation System Final Safety Analysis Report.

Niemi, B.J., Westinghouse Hanford

1996-09-30T23:59:59.000Z

50

WEATHER HAZARDS Basic Climatology  

E-Print Network [OSTI]

Prediction Center (SPC) Watch Atmospheric conditions are right for hazardous weather ­ hazardous weather is likely to occur Issued by SPC Warning Hazardous weather is either imminent or occurring Issued by local NWS office #12;Outlooks--SPC Storm Prediction Center (SPC) Outlook=Convective Outlook Day 1 Day 2

51

Hazard Analysis Database Report  

SciTech Connect (OSTI)

The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from the results of the hazard evaluations, and (2) Hazard Topography Database: Data from the system familiarization and hazard identification.

GRAMS, W.H.

2000-12-28T23:59:59.000Z

52

Hazardous Materials and Controlled Hazardous Substances (Maryland)  

Broader source: Energy.gov [DOE]

A permit is required to own, establish, operate, or maintain a facility in the state of Maryland that transfers quantities of a single hazardous material in excess of 100,000 pounds at any time...

53

04/14/2011 ATOC -3500 Ryan Sanford Wildfire Emissions  

E-Print Network [OSTI]

billion (annually) 2. Particulate matter (PM10) a. Health hazard b. Visibility/ air quality 3. Dioxins/ Furans dibenzo-p-dioxins and dibenzofurans a. React relatively fast with OH radicals (k~10^-12 cm3

Toohey, Darin W.

54

Wildfire and development : why stronger links to land-use planning are needed to save lives, protect property, and minimize economic risk  

E-Print Network [OSTI]

Exploding growth along the Colorado Front Range has expanded the wildland-urban interface-the area where homes and vegetation mix. This area, known as the WUI, is at high risk of wildfires. Wildfire risk is based on both ...

Mowery, Molly Anne

2008-01-01T23:59:59.000Z

55

Hazardous Wastes Management (Alabama)  

Broader source: Energy.gov [DOE]

This legislation gives regulatory authority to the Department of Environmental Management to monitor commercial sites for hazardous wastes; fees on waste received at such sites; hearings and...

56

Surveillance Guides - Hazards Control  

Broader source: Energy.gov (indexed) [DOE]

briefings adequately address controls for the identified hazards? Examples would be lockouttagout requirements, hold points, confined space, radiological work permits, fire...

57

Radiation Hazards Program (Minnesota)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Health, set allowable radiation standards and mitigation practices, as well as procedures for the transportation of hazardous material.

58

Hazardous Material Security (Maryland)  

Broader source: Energy.gov [DOE]

All facilities processing, storing, managing, or transporting hazardous materials must be evaluated every five years for security issues. A report must be submitted to the Department of the...

59

Sensitivity of global wildfire occurrences to various factors in the context of global change1 and J. O. Kaplan3  

E-Print Network [OSTI]

18 meteorology driven by 2000-2050 climate change are found to increase the global annual total191 Sensitivity of global wildfire occurrences to various factors in the context of global change1 Y of global change (including changes in climate,11 land use/land cover, and population density) on wildfire

Wu, Shiliang

60

K Basin Hazard Analysis  

SciTech Connect (OSTI)

The K East (KE)/K West (KW) Basins in the 100 K Area of the Hanford Site have been used for storage of irradiated N Reactor and single-pass reactor fuel. Remaining spent fuel is continuing to be stored underwater in racks and canisters in the basins while fuel retrieval activities proceed to remove the fuel from the basins. The Spent Nuclear Fuel (SNF) Project is adding equipment to the facility in preparation for removing the fuel and sludge from the basins In preparing this hazard analysis, a variety of hazard analysis techniques were used by the K Basins hazard analysis team, including hazard and operability studies, preliminary hazard analyses, and ''what if'' analyses (WHC-SD-SNF-PHA-001, HNF-2032, HNF-2456, and HNF-SD-SNF-SAD-002). This document summarizes the hazard analyses performed as part of the safety evaluations for the various modification projects and combines them with the original hazard analyses to create a living hazard analysis document. As additional operational activities and modifications are developed, this document will be updated as needed to ensure it covers all the hazards at the K Basins in a summary form and to ensure the subsequent safety analysis is bounding. This hazard analysis also identifies the preliminary set of design features and controls that the facility could rely on to prevent or reduce the frequency or mitigate consequences of identified accident conditions based on their importance and significance to safety. The operational controls and institutional programs relied on for prevention or mitigation of an uncontrolled release are identified as potential technical safety requirements. All operational activities and energy sources at the K Basins are evaluated in this hazard analysis. Using a systematic approach, this document identifies hazards created by abnormal operating conditions and external events (e.g., earthquakes) that have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and complies with the requirements of 10 CFR 830.

SEMMENS, L.S.

2001-04-20T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Hazardous Waste Management (New Mexico)  

Broader source: Energy.gov [DOE]

The New Mexico Environment Department's Hazardous Waste Bureau is responsible for the management of hazardous waste in the state. The Bureau enforces the rules established by the Environmental...

62

Hazardous Sites Cleanup Act (Pennsylvania)  

Broader source: Energy.gov [DOE]

This Act tasks the Pennsylvania Department of Environmental Protection with regulating hazardous waste. The department is charged with siting, review, permitting and development of hazardous waste...

63

Hazardous Waste Management (Michigan)  

Broader source: Energy.gov [DOE]

A person shall not generate, dispose, store, treat, or transport hazardous waste in this state without complying with the requirements of this article. The department, in the conduct of its duties...

64

Hazardous Waste Management (Oklahoma)  

Broader source: Energy.gov [DOE]

This article states regulations for the disposal of hazardous waste. It also provides information about permit requirements for the transport, treatment and storage of such waste. It also mentions...

65

Proceedings Hazards and Disasters  

E-Print Network [OSTI]

Liang-Chun Chen, Jie-Ying Wu, Yi-Chung Liu, Sung-Ying Chien HAZARDS EDUCATION BY GEOGRAPHERS: A DECADE-DISASTER CONDOMINIUM HOUSING RECONSTRUCTION AND HOUSEHOLD CHARACTERISTICS............. 35 Jie-Ying Wu, Liang-Chun Chen

Wang, Hai

66

K Basins Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062, Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

WEBB, R.H.

1999-12-29T23:59:59.000Z

67

K Basin Hazard Analysis  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

PECH, S.H.

2000-08-23T23:59:59.000Z

68

Automated Job Hazards Analysis  

Broader source: Energy.gov [DOE]

AJHA Program - The Automated Job Hazard Analysis (AJHA) computer program is part of an enhanced work planning process employed at the Department of Energy's Hanford worksite. The AJHA system is routinely used to performed evaluations for medium and high risk work, and in the development of corrective maintenance work packages at the site. The tool is designed to ensure that workers are fully involved in identifying the hazards, requirements, and controls associated with tasks.

69

A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil environmental  

E-Print Network [OSTI]

of surface energy balance [Liu et al., 2005], soil thermal and hydrological regimes [MacKay, 1995; Burn, 1998A dynamic organic soil biogeochemical model for simulating the effects of wildfire on soil not comprehensively considered how interactions among fire disturbance, soil environmental conditions

Wagner, Diane

70

A Note on Dynamic Data Driven Wildfire Modeling , L.P. Franca1  

E-Print Network [OSTI]

of the interactions of fire, weather, and fuel, driven by remote sensing data of fire location and land surfaceA Note on Dynamic Data Driven Wildfire Modeling J. Mandel1 , M. Chen1 , L.P. Franca1 , C. Johns1 of Colorado Denver, Denver, CO 80217-3364, USA 2 National Center for Atmospheric Research, Boulder, CO 80307

Douglas, Craig C.

71

Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River, California  

E-Print Network [OSTI]

Suspended-sediment rating curve response to urbanization and wildfire, Santa Ana River, California January 2007; published 18 May 2007. [1] River suspended-sediment concentrations provide insights from landscape processes or human disturbance. Here we show that suspended-sediment concentrations

72

Vegetation and wildfire controls on sediment yield in bedrock Roman A. DiBiase1  

E-Print Network [OSTI]

, tectonics, and wildfire. Predicting landscape response to these pertur- bations demands a quantitative scale, our measurements match records of postfire sediment yield from nearby retention basins. Contrary-term landscape evolution, and increasing fire frequency in response to climate change may not result

73

Demonstrating the Validity of a Wildfire Craig C. Douglas1,2  

E-Print Network [OSTI]

of the Atmosphere-Fire Model The original modeling system is composed of two parts: a numerical weather prediction model and a fire behavior model that models the growth of a wildfire in response to weather, fuel-time weather data, images, and sensor streams. The system changes the forecast as new data is received. We

Mandel, Jan

74

The Colorado State Forest Service is the lead state agency for forestry and wildfire expertise.  

E-Print Network [OSTI]

The Colorado State Forest Service is the lead state agency for forestry and wildfire expertise. Colorado State Forest Service http://csfs.colostate.edu/ CSFS is proud to be a part of the Warner College of Natural Resources at Colorado State University, headquartered in Fort Collins. We have approximately 130

75

Department of Chemical and Mechanical Engineering Fall 2012 Wildfire Suppression Using Liquid Nitrogen  

E-Print Network [OSTI]

, these methods are not always enough to stop the fire from wreaking havoc; this is where Air Products comes inPENNSTATE Department of Chemical and Mechanical Engineering Fall 2012 Wildfire Suppression Using the team and sponsor decided that the product design which most effectively met customer needs was a ground

Demirel, Melik C.

76

Spatial Variation in Extreme Winds Predicts Large Wildfire Locations in Chaparral Ecosystems  

E-Print Network [OSTI]

Spatial Variation in Extreme Winds Predicts Large Wildfire Locations in Chaparral Ecosystems Max A are also reported to experience large fires driven by extreme wind events. The following are a sample from the popular press that highlight the importance of hot and dry winds in driving the growth of large fires

Moritz, Max A.

77

HAZARDOUS WASTE LABEL DEPAUL UNIVERSITY  

E-Print Network [OSTI]

- Hazardous Ignitable Reactive Toxic Oxidizer Other ( explain ) Generator Building Dept. HAZARDOUS WASTE LABEL: Generator Building Dept. Please fill out the hazardous waste label on line and download labels on to a plainHAZARDOUS WASTE LABEL DEPAUL UNIVERSITY ENVIRONMENTAL HEALTH & SAFETY 5-4170 Corrosive Non

Schaefer, Marcus

78

Hazardous Waste Disposal Sites (Iowa)  

Broader source: Energy.gov [DOE]

These sections contain information on fees and monitoring relevant to operators of hazardous waste disposal sites.

79

Chemical process hazards analysis  

SciTech Connect (OSTI)

The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

NONE

1996-02-01T23:59:59.000Z

80

Identification of Aircraft Hazards  

SciTech Connect (OSTI)

Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

K. Ashley

2006-12-08T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Environmental Hazards and  

E-Print Network [OSTI]

. 2. Pollution -Mexico. 3. Transboundary pollution. 4. Conservation of natural resources - UnitedEnvironmental Hazards and Bioresource Management in the United States- Mexico Borderlands Edited. -(Special studies ;v. 3) Includes bibliographical references. ISBN 0-87903-503-X 1. Pollution -United States

Murphy, Bob

82

Missouri Hazardous Waste Management Law (Missouri)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Program, administered by the Hazardous Waste Management Commission in the Department of Natural Resources, regulates the processing, transportation, and disposal of hazardous...

83

Montana Hazardous Waste Act (Montana)  

Broader source: Energy.gov [DOE]

This Act addresses the safe and proper management of hazardous wastes and used oil, the permitting of hazardous waste facilities, and the siting of facilities. The Department of Environmental...

84

Hazardous Waste Management (Indiana)  

Broader source: Energy.gov [DOE]

The state supports the implementation of source reduction, recycling, and other alternative solid waste management practices over incineration and land disposal. The Department of Environmental...

85

A Wildfire Behavior Modeling System at Los Alamos National Laboratory for Operational Applications  

SciTech Connect (OSTI)

To support efforts to protect facilities and property at Los Alamos National Laboratory from damages caused by wildfire, we completed a multiyear project to develop a system for modeling the behavior of wildfires in the Los Alamos region. This was accomplished by parameterizing the FARSITE wildfire behavior model with locally gathered data representing topography, fuels, and weather conditions from throughout the Los Alamos region. Detailed parameterization was made possible by an extensive monitoring network of permanent plots, weather towers, and other data collection facilities. We also incorporated a database of lightning strikes that can be used individually as repeatable ignition points or can be used as a group in Monte Carlo simulation exercises and in other randomization procedures. The assembled modeling system was subjected to sensitivity analyses and was validated against documented fires, including the Cerro Grande Fire. The resulting modeling system is a valuable tool for research and management. It also complements knowledge based on professional expertise and information gathered from other modeling technologies. However, the modeling system requires frequent updates of the input data layers to produce currently valid results, to adapt to changes in environmental conditions within the Los Alamos region, and to allow for the quick production of model outputs during emergency operations.

S.W. Koch; R.G.Balice

2004-11-01T23:59:59.000Z

86

PUREX facility hazards assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities.

Sutton, L.N.

1994-09-23T23:59:59.000Z

87

Enhancing Railroad Hazardous Materials Transportation Safety...  

Office of Environmental Management (EM)

Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Enhancing Railroad Hazardous Materials Transportation Safety Rail Routing Presentation made by Kevin...

88

Journal of Hazardous Materials 194 (2011) 1523 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Chromate reduction in FeJournal of Hazardous Materials 194 (2011) 15­23 Contents lists available at ScienceDirect Journal Engineering, University of Leeds, Leeds LS2 9JT, UK d Diamond Light Source, Harwell Science and Innovation

Burke, Ian

89

Demand Reduction  

Broader source: Energy.gov [DOE]

Grantees may use funds to coordinate with electricity supply companies and utilities to reduce energy demands on their power systems. These demand reduction programs are usually coordinated through...

90

Wildfire Policy in Transition: Where There's Smoke, There's .... Mirrors James E. Hubbard, State Forester, Colorado State Forest Service, Colorado State University,  

E-Print Network [OSTI]

Hubbard -1 Wildfire Policy in Transition: Where There's Smoke, There's .... Mirrors 3/26/03 James E-5060 Policy-making is a reflection of the public's perceived need for change. For much of the 20th century, wildfire policy in the United States was "all fires out by 10 A.M." This policy was instituted in 1935

91

Risk Analysis, Vol. 33, No. 6, 2013 DOI: 10.1111/j.1539-6924.2012.01911.x Wildfire Exposure Analysis on the National Forests  

E-Print Network [OSTI]

Risk Analysis, Vol. 33, No. 6, 2013 DOI: 10.1111/j.1539-6924.2012.01911.x Wildfire Exposure disturbances, and the demand for quan- titative risk-based tools and assessments has grown dramatically government entities are engaged in risk assessments and decision support modeling to map wildfire risk

92

Hazardous Materials Introduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr FlickrGuidedCH2M HILL Secretary MonizSiteAboutRadioactiveHazardous

93

ORISE: Hazard Assessments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas Conchas recoveryLaboratory |CHEMPACK Mapping ApplicationEnvironment AtGraduateHazard

94

Fire Hazards Listing  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-Series toESnet4:EpitaxialtransatlanticUnified| DepartmentFindingHazards Listing

95

Geographic Information System (GIS) Emergency Support for the May 2000 Cerro Grande Wildfire, Los Alamos, New Mexico, USA  

SciTech Connect (OSTI)

In May 2000 the Cerro Grande wildfire swept through Los Alamos, New Mexico, burning approximately 17,400 ha (43,000 acres) and causing evacuation of Los Alamos National Laboratory (LANL) and the communities of Los Alamos and White Rock. An integral part of emergency response during the fire was the use of geographic information system (GIS) technology, which continues to be used in support of post-fire restoration and environmental monitoring. During the fire Laboratory GIS staff and volunteers from other organizations worked to produce maps and provide support for emergency managers, including at an emergency GIS facility in Santa Fe. Subsequent to the fire, Laboratory GIS teams supported the multiagency Burned Area Emergency Rehabilitation (BAER) team to provide GIS data and maps for planning mitigation efforts. The GIS teams continue to help researchers, operations personnel, and managers deal with the tremendous changes caused by the fire. Much of the work is under the auspices of the Cerro Grande Rehabilitation Project (CGRP) to promote recovery from fire damage, improve information exchange, enhance emergency management, and conduct mitigation activities. GIS efforts during the fire provided important lessons about institutional matters, working relationships, and emergency preparedness. These lessons include the importance of (1) an integrated framework for assessing natural and human hazards in a landscape context; (2) a strong GIS capability for emergency response; (3) coordinated emergency plans for GIS operations; (4) a method for employees to report their whereabouts and receive authoritative information during an evacuation; (5) GIS data that are complete, backed-up, and available during an emergency; (6) adaptation of GIS to the circumstances of the emergency; (7) better coordination in the GIS community; (8) better integration of GIS into LANL operations; and (9) a central data warehouse for data and metadata. These lessons are important for planning future directions of GIS at LANL. Growing maturity of GIS is expected to lead to standardization and a better-integrated, more-coordinated approach to data sharing and emergency management at LANL, and within DOE, in accord with the federal government's increasing focus on electronic communication for its organizational and public interactions.

C.R.Mynard; G.N.Keating; P.M.Rich; D.R. Bleakly

2003-05-01T23:59:59.000Z

96

Hazardous Substances Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Commissioner of the Department of Agriculture has the authority to promulgate regulations declaring specified substances to be hazardous and establishing labeling, transportation, storage, and...

97

Hazardous Waste Facilities Siting (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe the siting and permitting process for hazardous waste facilities and reference rules for construction, operation, closure, and post-closure of these facilities.

98

Hazardous Waste Transporter Permits (Connecticut)  

Broader source: Energy.gov [DOE]

Transportation of hazardous wastes into or through the State of Connecticut requires a permit. Some exceptions apply. The regulations provide information about obtaining permits and other permit...

99

Nebraska Hazardous Waste Regulations (Nebraska)  

Broader source: Energy.gov [DOE]

These regulations, promulgated by the Department of Environmental Quality, contain provisions pertaining to hazardous waste management, waste standards, permitting requirements, and land disposal...

100

Hazardous Waste Act (New Mexico)  

Broader source: Energy.gov [DOE]

"Hazardous waste" means any solid waste or combination of solid wastes that because of their quantity, concentration or physical, chemical or infectious characteristics may:  cause or significantly...

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Management of hazardous medical waste in Croatia  

SciTech Connect (OSTI)

This article provides a review of hazardous medical waste production and its management in Croatia. Even though Croatian regulations define all steps in the waste management chain, implementation of those steps is one of the country's greatest issues. Improper practice is evident from the point of waste production to final disposal. The biggest producers of hazardous medical waste are hospitals that do not implement existing legislation, due to the lack of education and funds. Information on quantities, type and flow of medical waste are inadequate, as is sanitary control. We propose an integrated approach to medical waste management based on a hierarchical structure from the point of generation to its disposal. Priority is given to the reduction of the amounts and potential for harm. Where this is not possible, management includes reduction by sorting and separating, pretreatment on site, safe transportation, final treatment and sanitary disposal. Preferred methods should be the least harmful for human health and the environment. Integrated medical waste management could greatly reduce quantities and consequently financial strains. Landfilling is the predominant route of disposal in Croatia, although the authors believe that incineration is the most appropriate method. In a country such as Croatia, a number of small incinerators would be the most economical solution.

Marinkovic, Natalija [Medical School University of Zagreb, Department for Chemistry and Biochemistry, Salata 3b, 10 000 Zagreb (Croatia)], E-mail: nmarinko@snz.hr; Vitale, Ksenija; Holcer, Natasa Janev; Dzakula, Aleksandar ['Andrija Stampar' School of Public Health, Medical School University of Zagreb, Rockefellerova 4, 10 000 Zagreb (Croatia); Pavic, Tomo [Ministry of Health and Social Welfare, Ksaver 200, 10 000 Zagreb (Croatia)

2008-07-01T23:59:59.000Z

102

REPORT NO. 8 radiation hazards  

E-Print Network [OSTI]

REPORT NO. 8 REVISED guidance for the control of radiation hazards in uranium mining SEPTEMBER 1967 OF RADIATION HAZARDS IN URANIUM MINING SEPTEMBER 1967 Staff Report of the FEDERAL RADIATION COUNCIL #12;FEDERAL...... .... .._ _.... Section I. Introduction. . . Section II. The Radiation Environment AssociatedWith Uranium Mining. Section

103

Hazardous Waste Management Standards and Regulations (Kansas)  

Broader source: Energy.gov [DOE]

This act states the standards and regulations for the management of hazardous waste. No person shall construct, modify or operate a hazardous waste facility or otherwise dispose of hazardous waste...

104

Hazardous Waste Facility Siting Program (Maryland)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Facilities Siting Board is responsible for overseeing the siting of hazardous waste facilities in Maryland, and will treat hazardous waste facilities separately from low-level...

105

Wildfire Suppression Equipment Engines CSFS has placed 140 federal excess property vehicles located throughout the state. Our  

E-Print Network [OSTI]

Wildfire Suppression Equipment Engines ­ CSFS has placed 140 federal excess property vehicles fire engines and provides all major maintenance. The all-wheel drive (4x4 and 6x6) engines are equipped equipment such as hose, nozzles, and hand tools. These engines are inspected annually and updated

106

Advanced Membrane Systems: Recovering Wasteful and Hazardous...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the Gasoline Tank Advanced Membrane Systems: Recovering Wasteful and Hazardous Fuel Vapors at the...

107

Wildfire Risk Mapping over the State of Mississippi: Land Surface Modeling Approach  

SciTech Connect (OSTI)

Three fire risk indexes based on soil moisture estimates were applied to simulate wildfire probability over the southern part of Mississippi using the logistic regression approach. The fire indexes were retrieved from: (1) accumulated difference between daily precipitation and potential evapotranspiration (P-E); (2) top 10 cm soil moisture content simulated by the Mosaic land surface model; and (3) the Keetch-Byram drought index (KBDI). The P-E, KBDI, and soil moisture based indexes were estimated from gridded atmospheric and Mosaic-simulated soil moisture data available from the North American Land Data Assimilation System (NLDAS-2). Normalized deviations of these indexes from the 31-year mean (1980-2010) were fitted into the logistic regression model describing probability of wildfires occurrence as a function of the fire index. It was assumed that such normalization provides more robust and adequate description of temporal dynamics of soil moisture anomalies than the original (not normalized) set of indexes. The logistic model parameters were evaluated for 0.25 x0.25 latitude/longitude cells and for probability representing at least one fire event occurred during 5 consecutive days. A 23-year (1986-2008) forest fires record was used. Two periods were selected and examined (January mid June and mid September December). The application of the logistic model provides an overall good agreement between empirical/observed and model-fitted fire probabilities over the study area during both seasons. The fire risk indexes based on the top 10 cm soil moisture and KBDI have the largest impact on the wildfire odds (increasing it by almost 2 times in response to each unit change of the corresponding fire risk index during January mid June period and by nearly 1.5 times during mid September-December) observed over 0.25 x0.25 cells located along the state of Mississippi Coast line. This result suggests a rather strong control of fire risk indexes on fire occurrence probability over this region.

Cooke, William H. [Mississippi State University (MSU); Mostovoy, Georgy [Mississippi State University (MSU); Anantharaj, Valentine G [ORNL; Jolly, W. Matt [USDA Forest Service

2012-01-01T23:59:59.000Z

108

Method of recycling hazardous waste  

SciTech Connect (OSTI)

The production of primary metal from ores has long been a necessary, but environmentally devastating process. Over the past 20 years, in an effort to lessen environmental impacts, the metal processing industry has developed methods for recovering metal values from certain hazardous wastes. However, these processes leave residual molten slag that requires disposal in hazardous waste landfills. A new process recovers valuable metals, metal alloys, and metal oxides from hazardous wastes, such as electric arc furnace (EAF) dust from steel mills, mill scale, spent aluminum pot liners, and wastewater treatment sludge from electroplating. At the same time, the process does not create residual waste for disposal. This new method uses all wastes from metal production processes. These hazardous materials are converted to three valuable products - mineral wool, zinc oxide, and high-grade iron.

NONE

1999-11-11T23:59:59.000Z

109

Hazardous and Industrial Waste (Minnesota)  

Broader source: Energy.gov [DOE]

This section describes standards that must be met by facilities generating and processing hazardous and industrial waste, as well as required permits for the construction and operation of such a...

110

Hazardous Waste Management Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The Hazardous Waste Management Regulations follow the EPA's definitions and guidelines for the most part, which are listed in 40 CFR parts 260-282. In addition to these federal regulations the...

111

Hazardous Waste Management (North Carolina)  

Broader source: Energy.gov [DOE]

These rules identify and list hazardous waste and set standards for the generators and operators of such waste as well as owners or operators of waste facilities. They also stats standards for...

112

Health Hazards in Indoor Air  

E-Print Network [OSTI]

Health Hazards in Indoor Air. In Proceedings of the 2010for VOCs from post-1990 indoor air concentration studies inUnion project on indoor air pollutants. Allergy, 2008. 63(

Logue, Jennifer M.

2012-01-01T23:59:59.000Z

113

FIRE HAZARDS ANALYSIS - BUSTED BUTTE  

SciTech Connect (OSTI)

The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events.

R. Longwell; J. Keifer; S. Goodin

2001-01-22T23:59:59.000Z

114

LOG HAZARD REGRESSION Huiying Sun  

E-Print Network [OSTI]

LOG HAZARD REGRESSION by Huiying Sun Ph.D, Harbin Institute of Technology, Harbin, CHINA, 1991 .................................................................... .................................................................... .................................................................... .................................................................... THE UNIVERSITY OF BRITISH COLUMBIA September, 1999 c flHuiying Sun, 1999 #12; Abstract We propose using

Heckman, Nancy E.

115

Toxic hazards of underground excavation  

SciTech Connect (OSTI)

Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

1982-09-01T23:59:59.000Z

116

Integrating Total Quality Management (TQM) and hazardous waste management  

SciTech Connect (OSTI)

The Resource Conservation and Recovery Act (RCRA) of 1976 and its subsequent amendments have had a dramatic impact on hazardous waste management for business and industry. The complexity of this law and the penalties for noncompliance have made it one of the most challenging regulatory programs undertaken by the Environmental Protection Agency (EPA). The fundamentals of RCRA include ``cradle to grave`` management of hazardous waste, covering generators, transporters, and treatment, storage, and disposal facilities. The regulations also address extensive definitions and listing/identification mechanisms for hazardous waste along with a tracking system. Treatment is favored over disposal and emphasis is on ``front-end`` treatment such as waste minimization and pollution prevention. A study of large corporations such as Xerox, 3M, and Dow Chemical, as well as the public sector, has shown that well known and successful hazardous waste management programs emphasize pollution prevention and employment of techniques such as proactive environmental management, environmentally conscious manufacturing, and source reduction. Nearly all successful hazardous waste programs include some aspects of Total Quality Management, which begins with a strong commitment from top management. Hazardous waste management at the Rocky Flats Plant is further complicated by the dominance of ``mixed waste`` at the facility. The mixed waste stems from the original mission of the facility, which was production of nuclear weapons components for the Department of Energy (DOE). A Quality Assurance Program based on the criterion in DOE Order 5700.6C has been implemented at Rocky Flats. All of the elements of the Quality Assurance Program play a role in hazardous waste management. Perhaps one of the biggest waste management problems facing the Rocky Flats Plant is cleaning up contamination from a forty year mission which focused on production of nuclear weapon components.

Kirk, N. [Colorado State Univ., Fort Collins, CO (United States)

1993-11-01T23:59:59.000Z

117

Preliminary hazards analysis -- vitrification process  

SciTech Connect (OSTI)

This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1994-06-01T23:59:59.000Z

118

Nitrate reduction  

DOE Patents [OSTI]

Nitrates are reduced to nitrogen gas by contacting the nitrates with a metal to reduce the nitrates to nitrites which are then contacted with an amide to produce nitrogen and carbon dioxide or acid anions which can be released to the atmosphere. Minor amounts of metal catalysts can be useful in the reduction of the nitrates to nitrites. Metal salts which are formed can be treated electrochemically to recover the metals.

Dziewinski, Jacek J. (Los Alamos, NM); Marczak, Stanislaw (Los Alamos, NM)

2000-01-01T23:59:59.000Z

119

CRAD, Hazardous Waste Management- December 4, 2007  

Broader source: Energy.gov [DOE]

Hazardous Waste Management Implementation Inspection Criteria, Approach, and Lines of Inquiry (HSS CRAD 64-30)

120

Bulletin No. 233 Ergonomic Hazards of the  

E-Print Network [OSTI]

July, 2004 Bulletin No. 233 Ergonomic Hazards of the Seated Posture Ergonomic Hazards of the Seated it is possible for these injuries to heal themselves when the ergonomic hazard is removed, cases do exist where;PAGE 2 ERGONOMIC HAZARDS of the SEATED POSTURE BULLETIN NO. 233 Ergonomic interventions to reduce

Martin, Jeff

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Radiological hazards of alpha-contaminated waste  

SciTech Connect (OSTI)

The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process.

Rodgers, J.C.

1982-01-01T23:59:59.000Z

122

INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION  

SciTech Connect (OSTI)

The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.

R.J. Garrett

2005-02-17T23:59:59.000Z

123

WHC fire hazards analysis policy  

SciTech Connect (OSTI)

The purpose of this document is to establish the fire protection policy for Westinghouse Hanford Company (WHC) relative to US Department of Energy (DOE) directives for Fire Hazards Analyses (FHAs) and their relationship to facility Safety Analysis Reports (SARs) as promulgated by the DOE Richland Operations Office.

Evans, C.B.

1994-04-01T23:59:59.000Z

124

Laboratory Waste Disposal HAZARDOUS GLASS  

E-Print Network [OSTI]

of in normal trash containers. Pasteur pipettes Other pipettes and tips (glass or plastic) Slides and cover bodies (without needles) Container: Sturdy and leakproof with Hazardous Glass label. Either: Plastic resistant, leakproof plastic carboy with green sharps label. Do not fill these containers completely. Leave

Sheridan, Jennifer

125

Massachusetts Hazardous Waste Management Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act contains regulations for safe disposal of hazardous waste, and establishes that a valid license is required to collect, transport, store, treat, use, or dispose of hazardous waste. Short...

126

Oklahoma Hazardous Waste Management Act (Oklahoma)  

Broader source: Energy.gov [DOE]

A hazardous waste facility permit from the Department of Environmental Quality is required to store, treat or dispose of hazardous waste materials, or to construct, own or operate any facility...

127

Georgia Hazardous Site Response Act (Georgia)  

Broader source: Energy.gov [DOE]

The Georgia Hazardous Site Response Act is Georgia’s version of Superfund. The Act provides for graduated fees on the disposal of hazardous waste, a trust fund to enable the EPD to clean up or plan...

128

IntroductionIntroduction The Ashland BLM Field Office has actively pursued fuel reduction since 1996. Treatment  

E-Print Network [OSTI]

IntroductionIntroduction The Ashland BLM Field Office has actively pursued fuel reduction since hazardous fuels in the wildland urban interface (WUI). The Ashland Field Office has completed 12 landscape

Muir, Patricia

129

D-Area Preliminary Hazards Analysis  

SciTech Connect (OSTI)

A comprehensive review of hazards associated with the D-Area was performed to identify postulated event scenarios.

Blanchard, A. [Westinghouse Savannah River Company, AIKEN, SC (United States); Paik, I.R. [Westinghouse Safety Management Solutions, , ()

1998-04-01T23:59:59.000Z

130

CONTROL OF HAZARDOUS ENERGY 12.A GENERAL  

E-Print Network [OSTI]

on or near any system that produces, uses, or stores hazardous energy, a hazardous energy control program by the contractor-managed HECP (e.g., QA's on construction sites, etc.), they shall comply with the contractor and implementation of these activities. Each shall inform the other of their HECPs and Hazardous Energy Control (HEC

US Army Corps of Engineers

131

Focus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste  

E-Print Network [OSTI]

-hazardous solid chemicals may go in the trash. Have you disposed of "waste-like", legacy and unknown c Manage anyFocus Sheet | Hazardous Waste Checklist How to be ready for state hazardous waste inspectors. See a hazardous waste inspection. ons, rrosive. n hemicals? ical waste. Waste-like chemicals have als Are you

Wilcock, William

132

Canister Storage Building (CSB) Hazard Analysis Report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) Hazard Analysis to support the final CSB Safety Analysis Report and documents the results. This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis process identified hazardous conditions and material-at-risk, determined causes for potential accidents, identified preventive and mitigative features, and qualitatively estimated the frequencies and consequences of specific occurrences. The hazard analysis was performed by a team of cognizant CSB operations and design personnel, safety analysts familiar with the CSB, and technical experts in specialty areas. The material included in this report documents the final state of a nearly two-year long process. Attachment A provides two lists of hazard analysis team members and describes the background and experience of each. The first list is a complete list of the hazard analysis team members that have been involved over the two-year long process. The second list is a subset of the first list and consists of those hazard analysis team members that reviewed and agreed to the final hazard analysis documentation. The material included in this report documents the final state of a nearly two-year long process involving formal facilitated group sessions and independent hazard and accident analysis work. The hazard analysis process led to the selection of candidate accidents for further quantitative analysis. New information relative to the hazards, discovered during the accident analysis, was incorporated into the hazard analysis data in order to compile a complete profile of facility hazards. Through this process, the results of the hazard and accident analyses led directly to the identification of safety structures, systems, and components, technical safety requirements, and other controls required to protect the public, workers, and environment.

POWERS, T.B.

2000-03-16T23:59:59.000Z

133

Implementation of the hazardous debris rule  

SciTech Connect (OSTI)

Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

Sailer, J.E.

1993-01-05T23:59:59.000Z

134

NGNP SITE 2 HAZARDS ASSESSMENT  

SciTech Connect (OSTI)

The Next Generation Nuclear Plant (NGNP) Project initiated at Idaho National Laboratory (INL) by the U.S. Department of Energy pursuant to the 2005 Energy Policy Act, is based on research and development activities supported by the Generation IV Nuclear Energy Systems Initiative. The principal objective of the NGNP Project is to support commercialization of the high temperature gas-cooled reactor (HTGR) technology. The HTGR is a helium-cooled and graphite-moderated reactor that can operate at temperatures much higher than those of conventional light water reactor (LWR) technologies. Accordingly, it can be applied in many industrial applications as a substitute for burning fossil fuels, such as natural gas, to generate process heat in addition to producing electricity, which is the principal application of current LWRs. Nuclear energy in the form of LWRs has been used in the U.S. and internationally principally for the generation of electricity. However, because the HTGR operates at higher temperatures than LWRs, it can be used to displace the use of fossil fuels in many industrial applications. It also provides a carbon emission-free energy supply. For example, the energy needs for the recovery and refining of petroleum, for the petrochemical industry and for production of transportation fuels and feedstocks using coal conversion processes require process heat provided at temperatures approaching 800 C. This temperature range is readily achieved by the HTGR technology. This report summarizes a site assessment authorized by INL under the NGNP Project to determine hazards and potential challenges that site owners and HTGR designers need to be aware of when developing the HTGR design for co-location at industrial facilities, and to evaluate the site for suitability considering certain site characteristics. The objectives of the NGNP site hazard assessments are to do an initial screening of representative sites in order to identify potential challenges and restraints to be addressed in design and licensing processes; assure the HTGR technology can be deployed at variety of sites for a range of applications; evaluate potential sites for potential hazards and describe some of the actions necessary to mitigate impacts of hazards; and, provide key insights that can inform the plant design process. The report presents a summary of the process methodology and the results of an assessment of hazards typical of a class of candidate sites for the potential deployment of HTGR reactor technology. The assessment considered health and safety, and other important siting characteristics to determine the potential impact of identified hazards and potential challenges presented by the location for this technology. A four reactor module nuclear plant (2000 to 2400 MW thermal), that co-generates steam, electricity for general use in the plant, and hot gas for use in a nearby chemical processing facility, to provide the requisite performance and reliability was assumed for the assessment.

Wayne Moe

2011-10-01T23:59:59.000Z

135

Hazardous and Radioactive Mixed Waste  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish hazardous waste management procedures for facilities operated under authority of the Atomic Energy Act of 1954, as amended (AEA). The procedures will follow. to the extent practicable, regulations issued by the Environmental Protection Agency (EPA) pursuant to the Resource Conservation and Recovery Act of 1976 (RCRA). Although Department of Energy (DOE) operations conducted under authority other than the AEA are subject to EPA or State regulations conforming with RCRA, facilities administered under the authority of the AEA are not bound by such requirements.

1982-12-31T23:59:59.000Z

136

ARM - SGP Rural Driving Hazards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc Documentation RUC :ProductsSCM Forcing Data DerivedInstrumentsPolarExtendedRural Driving Hazards

137

Containment remedies: Minimizing hazard, not just exposure, cuts liabilities  

SciTech Connect (OSTI)

An important consequence of the trend to reduce Superfund cleanup costs has been a definite shift away from treatment to pure containment remedies. The issue that merits more attention, however, is whether reductions in short term costs may be offset by longer term liabilities. Containment remedies that focus entirely on reducing exposures and hence risk are vulnerable to various failures of key components that may not necessarily be prevented by operation and maintenance programs. A sensible alternative is to also include some hazard reduction, especially by in situ technology. By doing so, longer term liabilities associated with various failure modes of containment remedies can be greatly reduced. Corporate accounting systems ignore such liabilities. The insurance industry, large companies, brownfield developers, and the government are currently ignoring liabilities that inevitably will become all too real, because pure containment remedies are not permanently effective.

Hirschhorn, J.S. [Hirschhorn and Associates, Wheaton, MD (United States)

1996-12-31T23:59:59.000Z

138

Hazardous waste management in the Pacific basin  

SciTech Connect (OSTI)

Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

1994-11-01T23:59:59.000Z

139

Freeze Concentration Applied to Hazardous Waste Management  

E-Print Network [OSTI]

steps to remove or destroy the hazardous components prior to discharge. Incineration is widely used to destroy a broad range of these hazardous components. Its disposal efficiency is often used when defining the Best Available Technology for EPA... standards. However, high water content streams are expensive to incinerate since the incinerator must be designed to handle the feed volume even though the water in the feed is in itself harmless. Some hazardous components require operating temperatures...

Ruemekorf, R.

140

Hazardous Liquid Pipelines and Storage Facilities (Iowa)  

Broader source: Energy.gov [DOE]

This statute regulates the permitting, construction, monitoring, and operation of pipelines transporting hazardous liquids, including petroleum products and coal slurries. The definition used in...

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

DC Hazardous Waste Management (District of Columbia)  

Broader source: Energy.gov [DOE]

This regulation regulates the generation, storage, transportation, treatment, and disposal of hazardous waste, and wherever feasible, reduces or eliminates waste at the source. It is the policy of...

142

Hazardous Waste Management System-General (Ohio)  

Broader source: Energy.gov [DOE]

This chapter of the law establishes that the Ohio Environmental Protection Agency provides general regulations regarding hazardous waste, including landfills. Specific passages refer to the...

143

Chapter 38 Hazardous Waste Permitting Process (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes the general provisions for storage, treatment, recycling, or disposal of hazardous waste. It provides information about permits and specific requirements...

144

Hazardous Waste Minimum Distance Requirements (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations set minimum distance requirements between certain types of facilities that generate, process, store, and dispose of hazardous waste and other land uses. The regulations require an...

145

Identification of Hazards, 3/9/95  

Broader source: Energy.gov [DOE]

The objective of this surveillance is to evaluate the effectiveness of the contractor's hazards identification programs.  Surveillance activities encompass maintenance and implementation of safety...

146

Mission Support Alliance, LLC Volpentest Hazardous Materials...  

Broader source: Energy.gov (indexed) [DOE]

Organization (FERO) roles and responsibilities, training requirements and the conduct of operations. Each project is responsible for developing and maintaining EP Hazards...

147

Canister storage building hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''.

POWERS, T.B.

1999-05-11T23:59:59.000Z

148

Hazardous Material Transportation Safety (South Dakota)  

Broader source: Energy.gov [DOE]

This legislation authorizes the Division of Highway Safety, in the Department of Public Safety, to promulgate regulations pertaining to the safe transportation of hazardous materials by a motor...

149

Hazardous Material Packaging for Transport - Administrative Procedures  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establ1sh administrative procedures for the certification and use of radioactive and other hazardous materials packaging by the Department of Energy (DOE).

1986-09-30T23:59:59.000Z

150

Louisiana Hazardous Waste Control Law (Louisiana)  

Broader source: Energy.gov [DOE]

The Louisiana Department of Environmental Quality is responsible for administering the Louisiana Hazardous Waste Control Law and the regulations created under that law.

151

Fire hazards analysis of central waste complex  

SciTech Connect (OSTI)

This document analyzes the fire hazards associated with operational the Central Waste Complex. It provides the analysis and recommendations necessary to ensure compliance with applicable fire codes.

Irwin, R.M.

1996-05-30T23:59:59.000Z

152

Extremely Hazardous Substances Risk Management Act (Delaware)  

Broader source: Energy.gov [DOE]

This act lays out provisions for local governments to implement regulations and standards for the management of extremely hazardous substances, which are defined and categorized as follows:

153

Oil and Hazardous Substance Discharge Preparedness (Minnesota)  

Broader source: Energy.gov [DOE]

Anyone who owns or operates a vessel or facility that transports, stores, or otherwise handles hazardous wastes must take reasonable steps to prevent the discharge of those materials.

154

Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: A new nuclear disaster about to happen?  

E-Print Network [OSTI]

Wildfires in Chernobyl-contaminated forests and risks to the population and the environment: A new June 2014 Accepted 20 August 2014 Available online xxxx Keywords: Chernobyl accident Forest fires Redistribution Radionuclides Risks Radioactive contamination in Ukraine, Belarus and Russia after the Chernobyl

155

Wildland fire emissions, carbon, and climate: Seeing the forest and the trees A cross-scale assessment of wildfire and carbon dynamics  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Seeing the forest and the trees ­ A cross, 59812, USA a r t i c l e i n f o Article history: Available online xxxx Keywords: Carbon Fire Emissions. Measurements of wildfire carbon emissions are thus highly biased by the spatial and temporal scales that bound

Montana, University of

156

Wildland fire emissions, carbon, and climate: Seeing the forest and the trees A cross-scale assessment of wildfire and carbon dynamics  

E-Print Network [OSTI]

Wildland fire emissions, carbon, and climate: Seeing the forest and the trees ­ A cross. Measurements of wildfire carbon emissions are thus highly biased by the spatial and temporal scales that bound.g., vegetation composition and structure, carbon emissions) occur and inter- act. Improved understanding

157

Trajectories of change in sagebrush steppe vegetation communities in relation to multiple wildfires  

SciTech Connect (OSTI)

Repeated perturbations, both biotic and abiotic, can lead to fundamental changes in the nature of ecosystems including changes in state. Sagebrush-steppe communities provide important habitat for wildlife and grazing for livestock. Fire is an integral part of these systems, but there is concern that increased ignition frequencies and invasive species are fundamentally altering these systems. Despite these issues, the majority of studies of fire effects in Artemisia tridentata wyomingensis-dominated systems have focused on the effects of single burns. The Arid Lands Ecology Reserve (ALE), in south-central Washington (U.S.A.), was one of the largest areas of continuous shrub-steppe habitat in the state until large wildfires burnt the majority of it in 2000 and 2007. We analysed data from permanent vegetation transects established in 1996 and resampled in 2002 and 2009. Our objective was to describe how the fires, and subsequent post-fire restoration efforts, affected communities successional pathways. Plant communities differed in response to repeated fire and restoration; these differences could largely be ascribed to the functional traits of the dominant species. Low elevation communities, previously dominated by obligate seeders, moved farthest from their initial composition and were dominated by weedy, early successional species in 2009. Higher elevation sites with resprouting shrubs, native bunchgrasses and few invasive species were generally more resilient to the effects of repeated disturbances. Shrub cover has been almost entirely removed from ALE, though there is evidence of recovery where communities were dominated by re-sprouters. Cheatgrass (Bromus tectorum) dominance was reduced by herbicide application in areas where it was previously abundant but increased significantly in untreated areas. Several re-sprouting species, notably Phlox longifolia and Poa secunda, expanded remarkably following competitive release from shrub canopies and/or abundant cheatgrass. Our results suggest that community dynamics can be understood through a state-and-transition model with two axes (shrub/grass and native/invasive abundance), though such models also need to account for differences in plant functional traits and disturbance regimes. We use our results to develop an illustrative model that will be expanded with further research.

Davies, G. M.; Bakker, J. D.; Dettweiler-Robinson, E.; Dunwiddie, Peter W.; Hall, S. A.; Downs, Janelle L.; Evans, J.

2012-07-01T23:59:59.000Z

158

Comparison of Hazard Analysisp y Requirements of I&C  

E-Print Network [OSTI]

) M di l D i A id tShip Accident (Ferry Sewol) Medical Device Accident (Therac-25) 3 NPP Accident­ Software Fault Tree Analysis ­ By AECL, Nancy Leveson Name of Software Hazards No % Remarks For construct hazard 4 7For construct hazard 4 7 Initialization hazard 4 7 IF-THEN-ELSE construct hazard 38 67 CASE

159

Frozen Ground 9 PERMAFROST HAZARDS IN MOUNTAINS  

E-Print Network [OSTI]

and other forms of creeping mountain permafrost may be the source of a number of hazards. Rock glaciers of large rock avalanche disasters are examples of mountain hazards. In the case of the September 20, 2002, rock-ice avalanche at Kolka-Karmadon in the Russian Caucasus, a combined rock-ice avalanche

Kääb, Andreas

160

Natural phenomena hazards, Hanford Site, Washington  

SciTech Connect (OSTI)

This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity.

Conrads, T.J.

1998-09-29T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Fire and explosion hazards of oil shale  

SciTech Connect (OSTI)

The US Bureau of Mines publication presents the results of investigations into the fire and explosion hazards of oil shale rocks and dust. Three areas have been examined: the explosibility and ignitability of oil shale dust clouds, the fire hazards of oil shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles. 10 refs., 54 figs., 29 tabs.

Not Available

1989-01-01T23:59:59.000Z

162

Energy and solid/hazardous waste  

SciTech Connect (OSTI)

This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

None

1981-12-01T23:59:59.000Z

163

Sustainable System for Residual Hazards Management  

SciTech Connect (OSTI)

Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today’s waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous longterm management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by externalintrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the longterm success of the prescribed system. In fact, given that society has become more reliant on and confident of engineered controls, there may be a growing tendency to be even less concerned with institutional controls.

Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

2004-06-01T23:59:59.000Z

164

Uintah -a scalable framework for hazard analysis Martin Berzins  

E-Print Network [OSTI]

Uintah - a scalable framework for hazard analysis Martin Berzins Scientific Computing and Imaging of Uintah to a petascale problem in hazard analysis arising from "sympathetic" explosions in which. Devices containing such materials undergo extensive testing for hazard classification prior

Utah, University of

165

Assessment of Health Hazards of Repeated Inhalation of Diesel...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Health Hazards of Repeated Inhalation of Diesel Emissions, with Comparisons to Other Source Emissions Assessment of Health Hazards of Repeated Inhalation of Diesel Emissions, with...

166

Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations (Mississippi)  

Broader source: Energy.gov [DOE]

The purpose of the Hazardous and Nonhazardous Solid Waste Applicant Disclosure Regulations is to help maintain accountability and track data on the hazardous and nonhazardous waste sites in...

167

DOE Standard 1020 - Natural Phenomena Hazard analysis and Design...  

Broader source: Energy.gov (indexed) [DOE]

1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities DOE Standard 1020 - Natural Phenomena Hazard analysis and Design Criteria for DOE Facilities...

168

CRAD, Packaging and Transfer of Hazardous Materials and Materials...  

Office of Environmental Management (EM)

CRAD, Packaging and Transfer of Hazardous Materials and Materials of National Security Interest Assessment Plan CRAD, Packaging and Transfer of Hazardous Materials and Materials of...

169

Evaluation of the SRS Seismic Hazard Considering the EPRI 2013...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of the SRS Seismic Hazard Considering the EPRI 2013 Ground Motion Model Evaluation of...

170

New Mexico: Solar Glare Hazard Analysis Tool Maximizes Energy...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

National Laboratories developed the Solar Glare Hazard Analysis Tool (SGHAT), a free Web-based tool that can quickly calculate potential visual hazards from proposed solar...

171

A Volcanologist'S Review Of Atmospheric Hazards Of Volcanic Activity...  

Open Energy Info (EERE)

atmospheric hazards caused by explosive volcanic activity. The hazard posed by fine silicate ash with long residence time in the atmosphere is probably much less serious than...

172

Hazardous Waste Compliance Program Plan  

SciTech Connect (OSTI)

The Hazardous Waste Compliance Program Plan (HWCPP) describes how the Rocky Flats Plant institutes a more effective waste management program designed to achieve and maintain strict adherence to the Resource Conservation and Recovery Act (RCRA) requirements. Emphasis is given to improve integration of line operations with programmatic and functional support activities necessary to achieve physical compliance to RCRA regulated equipment, facilities and operations at the floor level. This program focuses on specific activities occurring or which need to occur within buildings containing RCRA regulated units and activities. The plan describes a new approach to achieving and maintaining compliance. This approach concentrates authority and accountability for compliance with the line operating personnel, with support provided from the programmatic functions. This approach requires a higher degree of integration and coordination between operating and program support organizations. The principal changes in emphases are; (1) increased line operations involvement, knowledge and accountability in compliance activities, (2) improved management systems to identify, correct and/or avoid deficiencies and (3) enhanced management attention and employee awareness of compliance related matters.

Potter, G.L.; Holstein, K.A.

1994-05-01T23:59:59.000Z

173

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

Chang, Robert C. W. (Martinez, GA)

1994-01-01T23:59:59.000Z

174

Apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

Chang, R.C.W.

1994-12-20T23:59:59.000Z

175

Apparatus for transporting hazardous materials  

DOE Patents [OSTI]

An apparatus and method are provided for selectively receiving, transporting, and releasing one or more radioactive or other hazardous samples for analysis on a differential thermal analysis (DTA) apparatus. The apparatus includes a portable sample transporting apparatus for storing and transporting the samples and includes a support assembly for supporting the transporting apparatus when a sample is transferred to the DTA apparatus. The transporting apparatus includes a storage member which includes a plurality of storage chambers arrayed circumferentially with respect to a central axis. An adjustable top door is located on the top side of the storage member, and the top door includes a channel capable of being selectively placed in registration with the respective storage chambers thereby permitting the samples to selectively enter the respective storage chambers. The top door, when closed, isolates the respective samples within the storage chambers. A plurality of spring-biased bottom doors are located on the bottom sides of the respective storage chambers. The bottom doors isolate the samples in the respective storage chambers when the bottom doors are in the closed position. The bottom doors permit the samples to leave the respective storage chambers from the bottom side when the respective bottom doors are in respective open positions. The bottom doors permit the samples to be loaded into the respective storage chambers after the analysis for storage and transport to a permanent storage location.

Osterman, Robert A. (Canonsburg, PA); Cox, Robert (West Mifflin, PA)

1992-01-01T23:59:59.000Z

176

WESF natural phenomena hazards survey  

SciTech Connect (OSTI)

A team of engineers conducted a systematic natural hazards phenomena (NPH) survey for the 225-B Waste Encapsulation and Storage Facility (WESF). The survey is an assessment of the existing design documentation to serve as the structural design basis for WESF, and the Interim Safety Basis (ISB). The lateral force resisting systems for the 225-B building structures, and the anchorages for the WESF safety related systems were evaluated. The original seismic and other design analyses were technically reviewed. Engineering judgment assessments were made of the probability of NPH survival, including seismic, for the 225-B structures and WESF safety systems. The method for the survey is based on the experience of the investigating engineers,and documented earthquake experience (expected response) data.The survey uses knowledge on NPH performance and engineering experience to determine the WESF strengths for NPH resistance, and uncover possible weak links. The survey, in general, concludes that the 225-B structures and WESF safety systems are designed and constructed commensurate with the current Hanford Site design criteria.

Wagenblast, G.R., Westinghouse Hanford

1996-07-01T23:59:59.000Z

177

Mobile machine hazardous working zone warning system  

DOE Patents [OSTI]

A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine. 3 figs.

Schiffbauer, W.H.; Ganoe, C.W.

1999-08-17T23:59:59.000Z

178

Mobile machine hazardous working zone warning system  

DOE Patents [OSTI]

A warning system is provided for a mobile working machine to alert an individual of a potentially dangerous condition in the event the individual strays into a hazardous working zone of the machine. The warning system includes a transmitter mounted on the machine and operable to generate a uniform magnetic field projecting beyond an outer periphery of the machine in defining a hazardous working zone around the machine during operation thereof. A receiver, carried by the individual and activated by the magnetic field, provides an alarm signal to alert the individual when he enters the hazardous working zone of the machine.

Schiffbauer, William H. (Connellsville, PA); Ganoe, Carl W. (Pittsburgh, PA)

1999-01-01T23:59:59.000Z

179

283-E and 283-W hazards assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the 200 area water treatment plants 283-E and 283-W located on the US DOE Hanford Site. Operation of the water treatment plants is the responsibility of ICF Kaiser Hanford Company (ICF KH). This hazards assessment was conducted to provide emergency planning technical basis for the water treatment plants. This document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A which requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

Sutton, L.N.

1994-09-26T23:59:59.000Z

180

Hazards Control Department annual technology review, 1987  

SciTech Connect (OSTI)

This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

Griffith, R.V.; Anderson, K.J. (eds.)

1988-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Hazardous waste operational plan for site 300  

SciTech Connect (OSTI)

This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department.

Roberts, R.S.

1982-02-12T23:59:59.000Z

182

Massachusetts Hazardous Waste Facility Siting Act (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act establishes the means by which developers of proposed hazardous waste facilities will work with the community in which they wish to construct a facility. When the intent to construct,...

183

Hazardous Waste Management Act (South Dakota)  

Broader source: Energy.gov [DOE]

It is the public policy of the state of South Dakota to regulate the control and generation, transportation, treatment, storage, and disposal of hazardous wastes. The state operates a comprehensive...

184

Improving Tamper Detection for Hazardous Waste Security  

SciTech Connect (OSTI)

Since September 11, waste managers are increasingly expected to provide effective security for their hazardous wastes. Tamper-indicating seals can help. This paper discusses seals, and offers recommendations for how to choose and use them.

Johnston, R. G.; Garcia, A. R. E.; Pacheco, N.; Martinez, R. K.; Martinez, D. D.; Trujillo, S. J.; Lopez, L. N.

2003-02-26T23:59:59.000Z

185

Hazardous Materials Packaging and Transportation Safety  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

The Order establishes safety requirements for the proper packaging and transportation of Department of offsite shipments and onsite transfers of radioactive and other hazardous materials, and for modal transportation.

2015-04-20T23:59:59.000Z

186

Oil or Hazardous Spills Releases Law (Georgia)  

Broader source: Energy.gov [DOE]

The Oil or Hazardous Spills Law requires notice to the Environmental Protection Division of the State Department of Natural Resources Emergency Operations Center when there is a spill or release of...

187

CONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH)  

E-Print Network [OSTI]

working practice and will encourage the evolution of a positive health and safety culture within the orgCONTROL of SUBSTANCES HAZARDOUS TO HEALTH (COSHH) Guidance Notes on Risk Assessment HEALTH & SAFETY............................................................................................................9 2.6. Safety Data Sheets (SDS

188

Rainfall-induced Landslide Hazard Rating System  

E-Print Network [OSTI]

This research develops a Landslide Hazard Rating System for the rainfall-induced landslides in the Chenyulan River basin area in central Taiwan. This system is designed to provide a simplified and quick evaluation of the ...

Chen, Yi-Ting, Civ. E., Massachusetts Institute of Technology

2011-01-01T23:59:59.000Z

189

Hazardous materials transportation and emergency response programs  

SciTech Connect (OSTI)

This presentation consists of the following visual aids; (1) detailed routing capabilities of truck, rail, barge; (2) legislative data base for hazardous materials; and (3) emergency response of accident site Eddyville, Kentucky (airports in vicinity of Eddyville, KY).

Joy, D.S.; Fore, C.S.

1983-01-01T23:59:59.000Z

190

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

Richard C. Logan

2002-03-28T23:59:59.000Z

191

Exploratory Studies Facility Subsurface Fire Hazards Analysis  

SciTech Connect (OSTI)

The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events.

J. L. Kubicek

2001-09-07T23:59:59.000Z

192

Hazard Baseline Downgrade Effluent Treatment Facility  

SciTech Connect (OSTI)

This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility.

Blanchard, A.

1998-10-21T23:59:59.000Z

193

Process safety management for highly hazardous chemicals  

SciTech Connect (OSTI)

Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

NONE

1996-02-01T23:59:59.000Z

194

Canister storage building hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

Krahn, D.E.; Garvin, L.J.

1997-07-01T23:59:59.000Z

195

Cold Vacuum Drying Facility hazard analysis report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

Krahn, D.E.

1998-02-23T23:59:59.000Z

196

Advanced Technology for Railway Hydraulic Hazard Forecasting  

E-Print Network [OSTI]

Page 1.1 Map of Total Railway Hydraulic Hazard Events from 1982-2011 ............ 2 1.2 90 mi Effective Radar Coverage for Reliable Rainfall Rate Determination ....................................................................... 5 3... Administration (FRA) for the period of 1982-2011. This data was compiled from the FRA Office of Safety Analysis website (FRA, 2011). A map of the railway hydraulic hazard events over the same time period is displayed in Figure 1.1. Table 1.1. U.S. Railway...

Huff, William Edward 1988-

2012-12-05T23:59:59.000Z

197

Rules and Regulations for Hazardous Waste Management (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations establish permitting and operational requirements for hazardous waste facilities. They are designed to minimize...

198

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network [OSTI]

umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers, cabinets

Boynton, Walter R.

199

umces-safety@umces.edu Hazard Communication umces-  

E-Print Network [OSTI]

Communication umces- safety@umces.edu Hazardous chemicals can be found in laboratory refrigerators, freezers

Boynton, Walter R.

200

Nuclear Waste Reduction  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Nuclear Waste Reduction Pyroprocessing is a promising technology for recycling used nuclear fuel and improving the associated waste management options. The process...

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

An evaluation of the effectiveness of the US Department of Energy Integrated Safety Process (SS-21) for Nuclear Explosive Operations using quantitative hazard analysis  

SciTech Connect (OSTI)

This paper evaluates the effectiveness of the US Department of Energy Integrated Safety Process or ``Seamless Safety (SS-21)`` program for reducing risk associated with nuclear explosive operations. A key element in the Integrated Safety Process is the use of hazard assessment techniques to evaluate process design changes in parallel or concurrently with process design and development. This concurrent hazard assessment method recently was employed for the B61-0, 2 & 5 and W69 nuclear explosive dismantlement activities. This paper reviews the SS-21 hazard assessment process and summarizes the results of the concurrent hazard assessments performed for the B61 and W69 dismantlement programs. Comparisons of quantitative hazard assessment results before and after implementation of the SS-21 design process shed light on the effectiveness of the SS-21 program for achieving risk reduction.

Fischer, S.R.; Konkel, H.; Bott, T.; Eisenhawer, S.; Auflick, J.; Houghton, K.; Maloney, K.; DeYoung, L.; Wilson, M. [Los Alamos National Lab., NM (United States)]|[Sandia National Labs., Albuquerque, NM (United States)

1996-03-01T23:59:59.000Z

202

Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations  

DOE Patents [OSTI]

A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate.

Wasserman, Stephen R. (Darien, IL); Anderson, Kenneth B. (Lisle, IL); Song, Kang (Woodridge, IL); Yuchs, Steven E. (Naperville, IL); Marshall, Christopher L. (Naperville, IL)

1998-01-01T23:59:59.000Z

203

Repository Subsurface Preliminary Fire Hazard Analysis  

SciTech Connect (OSTI)

This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M&O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents.

Richard C. Logan

2001-07-30T23:59:59.000Z

204

TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS  

SciTech Connect (OSTI)

This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls.

KRIPPS, L.J.

2006-07-31T23:59:59.000Z

205

Advanced Materials Laboratory hazards assessment document  

SciTech Connect (OSTI)

The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

Barnett, B.; Banda, Z.

1995-10-01T23:59:59.000Z

206

A Non-Aqueous Reduction Process for Purifying 153Gd Produced in Natural Europium Targets  

SciTech Connect (OSTI)

Gadolinium-153 is a low-energy gamma-emitter used in nuclear medicine imaging quality assurance. Produced in nuclear reactors using natural Eu2O3 targets, 153Gd is radiochemically separated from europium isotopes by europium reduction. However, conventional aqueous europium reduction produces hydrogen gas, a flammability hazard in radiological hot cells. We altered the traditional reduction method, using methanol as the process solvent to nearly eliminate hydrogen gas production. This new, non-aqueous reduction process demonstrates greater than 98% europium removal and gadolinium yields of 90%.

Johnsen, Amanda M.; Soderquist, Chuck Z.; McNamara, Bruce K.; Fisher, Darrell R.

2013-08-01T23:59:59.000Z

207

Robots, systems, and methods for hazard evaluation and visualization  

DOE Patents [OSTI]

A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

2013-01-15T23:59:59.000Z

208

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

Coyne, Martin J. (Pittsburgh, PA); Fiscus, Gregory M. (McMurray, PA); Sammel, Alfred G. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

209

Remote vacuum compaction of compressible hazardous waste  

DOE Patents [OSTI]

A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

1998-10-06T23:59:59.000Z

210

Hanford Site radioactive hazardous materials packaging directory  

SciTech Connect (OSTI)

The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

McCarthy, T.L.

1995-12-01T23:59:59.000Z

211

Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation  

SciTech Connect (OSTI)

The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

1986-11-01T23:59:59.000Z

212

Technological options for management of hazardous wastes from US Department of Energy facilities  

SciTech Connect (OSTI)

This report provides comprehensive information on the technological options for management of hazardous wastes generated at facilities owned or operated by the US Department of Energy (DOE). These facilities annually generate a large quantity of wastes that could be deemed hazardous under the Resource Conservation and Recovery Act (RCRA). Included in these wastes are liquids or solids containing polychlorinated biphenyls, pesticides, heavy metals, waste oils, spent solvents, acids, bases, carcinogens, and numerous other pollutants. Some of these wastes consist of nonnuclear hazardous chemicals; others are mixed wastes containing radioactive materials and hazardous chemicals. Nearly 20 unit processes and disposal methods are presented in this report. They were selected on the basis of their proven utility in waste management and potential applicability at DOE sites. These technological options fall into five categories: physical processes, chemical processes, waste exchange, fixation, and ultimate disposal. The options can be employed for either resource recovery, waste detoxification, volume reduction, or perpetual storage. Detailed descriptions of each technological option are presented, including information on process performance, cost, energy and environmental considerations, waste management of applications, and potential applications at DOE sites. 131 references, 25 figures, 23 tables.

Chiu, S.; Newsom, D.; Barisas, S.; Humphrey, J.; Fradkin, L.; Surles, T.

1982-08-01T23:59:59.000Z

213

Preliminary Hazards Analysis Plasma Hearth Process  

SciTech Connect (OSTI)

This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment.

Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)] [Science Applications International Corp., Pleasanton, CA (United States)

1993-11-01T23:59:59.000Z

214

Control Of Hazardous Energy Lockout/Tagout  

E-Print Network [OSTI]

Control Of Hazardous Energy Lockout/Tagout Millersville University - Office Of Environmental Health & Safety Scope & Application The Lockout/Tagout program applies to the control of energy during servicing of this program is to establish procedures for affixing appropriate lockout or tagout devices to energy

Hardy, Christopher R.

215

Burning hazardous waste in cement kilns  

SciTech Connect (OSTI)

The cement manufacturing process is one of the oldest in the world, having been in practice for over 2000 years. It is also one of the most energy intensive, with up to 65 percent of the cost of the product attributable to energy consumption. In addition to high energy demand, the process conditions include extremely high temperatures. Cement clinker forms when the correct mixture of raw materials is heated to 2650/sup 0/ F. This requires combustion temperatures exceeding 3000/sup 0/ F. under oxidizing conditions. To accomplish this, gas temperatures above 2000/sup 0/ F. occur for several seconds (typically five seconds), which is much longer than residence times in permitted hazardous waste incinerators. These conditions are extremely favorable to the destruction of organic compounds and have led to extensive investigation into the potential for burning hazardous waste in cement kilns. Cement kilns consuming hazardous wastes have been tested for air emissions under various operating conditions. The substantial body of information on the emissions and handling of hazardous wastes from these studies has demonstrated that effective destruction of wastes can be accomplished with the added benefits of energy conservation and no significant change in air emissions.

Chadbourne, J.F.; Helmsteller, A.J.

1983-06-01T23:59:59.000Z

216

Hazardous and Radioactive Mixed Waste Program  

Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

To establish Department of Energy (DOE) hazardous and radioactive mixed waste policies and requirements and to implement the requirements of the Resource Conservation and Recovery Act (RCRA) within the framework of the environmental programs established under DOE O 5400.1. This directive does not cancel any directives.

1989-02-22T23:59:59.000Z

217

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD  

E-Print Network [OSTI]

COLORADO FRONT RANGE SEISMICITY AND SEISMIC HAZARD Anne F. Sheehan University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 John D. Godchaux Trinity University, San Antonio, TX Noah Hughes University of Colorado at Boulder, 2200 Colorado Avenue, Boulder, CO 80309 Key Terms: earthquake

Sheehan, Anne F.

218

The Transboundary Movement of Hazardous Waste in the Mediterranean Regional Context  

E-Print Network [OSTI]

HAZARDOUS WASTE IN MEDITERRANEAN Moreover, the Mediterranean Protocol,Protocol Area by transboundary movements of hazardous wastes (wastes subject to this Protocol; Annex II: List of hazardous

Scovazzi, Tullio

2000-01-01T23:59:59.000Z

219

E-Print Network 3.0 - agency listed hazardous Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Listing of Hazardous Waste 40 CFR... Hazardous Waste Management Regulations 6 NYCRR 371 Identification and Listing of Hazardous Waste 6 NYCRR 372... Substance Bulk Storage...

220

Method for encapsulating and isolating hazardous cations, medium for encapsulating and isolating hazardous cations  

DOE Patents [OSTI]

A method for encapsulating hazardous cations is provided comprising supplying a pretreated substrate containing the cations; contacting the substrate with an organo-silane compound to form a coating on the substrate; and allowing the coating to cure. A medium for containing hazardous cations is also provided, comprising a substrate having ion-exchange capacity and a silane-containing coating on the substrate. 3 figs.

Wasserman, S.R.; Anderson, K.B.; Song, K.; Yuchs, S.E.; Marshall, C.L.

1998-04-28T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Hazardous waste management in the Texas construction industry  

E-Print Network [OSTI]

This pilot study reports the statewide, regulatory compliance of general construction contractors in Texas who generated regulated amounts of hazardous waste during 1990, defined by existing state and federal hazardous-waste-management regulations...

Sprinkle, Donald Lee

1991-01-01T23:59:59.000Z

222

Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.  

SciTech Connect (OSTI)

This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

1986-04-01T23:59:59.000Z

223

Permit Fees for Hazardous Waste Material Management (Connecticut)  

Broader source: Energy.gov [DOE]

These regulations describe applicable fees for permit application, modification, and transfer for permits related to hazardous waste management.

224

340 Waste handling Facility Hazard Categorization and Safety Analysis  

SciTech Connect (OSTI)

The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3.

T. J. Rodovsky

2010-10-25T23:59:59.000Z

225

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

be shipped directly from site and recycled through the WA State Hazardous Waste Service Contract. Please call

Wilcock, William

226

Natural phenomena hazards evaluation of equipment and piping of Gaseous Diffusion Plant Uranium Enrichment Facility  

SciTech Connect (OSTI)

In support of the Gaseous Diffusion Plant Safety Analysis Report Upgrade program (GDP SARUP), a natural phenomena hazards evaluation was performed for the main process equipment and piping in the uranium enrichment buildings at Paducah and Portsmouth gaseous diffusion plants. In order to reduce the cost of rigorous analyses, the evaluation methodology utilized a graded approach based on an experience data base collected by SQUG/EPRI that contains information on the performance of industrial equipment and piping during past earthquakes. This method consisted of a screening walkthrough of the facility in combination with the use of engineering judgment and simple calculations. By using these screenings combined with evaluations that contain decreasing conservatism, reductions in the time and cost of the analyses were significant. A team of experienced seismic engineers who were trained in the use of the DOE SQUG/EPRI Walkdown Screening Material was essential to the success of this natural phenomena hazards evaluation.

Singhal, M.K.; Kincaid, J.H.; Hammond, C.R.; Stockdale, B.I.; Walls, J.C. [Oak Ridge National Lab., TN (United States). Technical Programs and Services; Brock, W.R.; Denton, D.R. [Lockheed Martin Energy Systems, Inc., Oak Ridge, TN (United States)

1995-12-31T23:59:59.000Z

227

Waste Encapsulation and Storage Facility (WESF) Hazards Assessment  

SciTech Connect (OSTI)

This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification.

COVEY, L.I.

2000-11-28T23:59:59.000Z

228

NIH POLICY MANUAL 3034 -Working with Hazardous Materials  

E-Print Network [OSTI]

NIH POLICY MANUAL 3034 - Working with Hazardous Materials Issuing Office: ORS/DOHS (301) 496-2960 Release Date: 3/21/06 1. Explanation of Material Transmitted: This release establishes NIH policy and procedure governing work with hazardous chemicals as described in the NIH Hazard Communication Program

Bandettini, Peter A.

229

Mapping future hazards for south east London Dr Stephen Blenkinsop  

E-Print Network [OSTI]

) Vulnerability information Risk maps #12;Heat Outputs · 5km heat wave prediction grids. · 1km pro-rata disaggregated temperature & heat wave projection grids. · 1km relative heat wave hazard grid combining heat wave hazard (relative). · 200m heat wave risk grids combining relative heat wave hazard with predictions

Wirosoetisno, Djoko

230

Preliminary hazards analysis for the National Ignition Facility  

SciTech Connect (OSTI)

This report documents the Preliminary Hazards Analysis (PHA) for the National Ignition Facility (NIF). In summary, it provides: a general description of the facility and its operation; identification of hazards at the facility; and details of the hazards analysis, including inventories, bounding releases, consequences, and conclusions. As part of the safety analysis procedure set forth by DOE, a PHA must be performed for the NIF. The PHA characterizes the level of intrinsic potential hazard associated with a facility, and provides the basis for hazard classification. The hazard classification determines the level of safety documentation required, and the DOE Order governing the safety analysis. The hazard classification also determines the level of review and approval required for the safety analysis report. The hazards of primary concern associated with NIF are radiological and toxicological in nature. The hazard classification is determined by comparing facility inventories of radionuclides and chemicals with threshold values for the various hazard classification levels and by examining postulated bounding accidents associated with the hazards of greatest significance. Such postulated bounding accidents cannot take into account active mitigative features; they must assume the unmitigated consequences of a release, taking into account only passive safety features. In this way, the intrinsic hazard level of the facility can be ascertained.

Brereton, S.J.

1993-10-01T23:59:59.000Z

231

Diesel particles -a health hazard 1 Diesel particles  

E-Print Network [OSTI]

Diesel particles - a health hazard 1 Diesel particles - a health hazard #12;The Danish Ecological Council - August 20042 Diesel particles - a health hazard ISBN: 87-89843-61-4 Text by: Christian Ege 33150777 Fax no.: +45 33150971 E-mail: info@ecocouncil.dk www.ecocouncil.dk #12;Diesel particles - a health

232

HAPs-Rx: Precombustion Removal of Hazardous Air Pollutant Precursors  

SciTech Connect (OSTI)

CQ Inc. and its project team members--Howard University, PrepTech Inc., Fossil Fuel Sciences, the United States Geological Survey (USGS), and industry advisors--are applying mature coal cleaning and scientific principles to the new purpose of removing potentially hazardous air pollutants from coal. The team uniquely combines mineral processing, chemical engineering, and geochemical expertise. This project meets more than 11 goals of the U.S. Department of Energy (DOE), the National Energy Strategy, and the 1993 Climate Change Action Plan. During this project: (1) Equations were developed to predict the concentration of trace elements in as-mined and cleaned coals. These equations, which address both conventional and advanced cleaning processes, can be used to increase the removal of hazardous air pollutant precursors (HAPs) by existing cleaning plants and to improve the design of new cleaning plants. (2) A promising chemical method of removing mercury and other HAPs was developed. At bench-scale, mercury reductions of over 50 percent were achieved on coal that had already been cleaned by froth flotation. The processing cost of this technology is projected to be less than $3.00 per ton ($3.30 per tonne). (3) Projections were made of the average trace element concentration in cleaning plant solid waste streams from individual states. Average concentrations were found to be highly variable. (4) A significantly improved understanding of how trace elements occur in coal was gained, primarily through work at the USGS during the first systematic development of semiquantitative data for mode of occurrence. In addition, significant improvement was made in the laboratory protocol for mode of occurrence determination. (5) Team members developed a high-quality trace element washability database. For example, the poorest mass balance closure for the uncrushed size and washability data for mercury on all four coals is 8.44 percent and the best is 0.46 percent. This indicates an extremely high level of reproducibility of the data. In addition, a series of ''round-robin'' tests involving various laboratories was performed to assure analytical accuracy. (6) A comparison of the cost of lowering mercury emissions through the use of coal cleaning technologies versus the use of post-combustion control methods such as activated carbon injection indicates that, in many cases, coal cleaning may prove to be the lower-cost option. The most significant disadvantage for using coal cleaning for control of mercury emissions is that a reduction of 90 percent or greater from as-fired coal has not yet been demonstrated, even at laboratory-scale.

David J. Akers; Clifford E. Raleigh

1998-03-16T23:59:59.000Z

233

Nat. Hazards Earth Syst. Sci., 6, 779802, 2006 www.nat-hazards-earth-syst-sci.net/6/779/2006/  

E-Print Network [OSTI]

-induced hazards that are representative for a whole class of hazards: Accidents due to nuclear power plants (NPP- ments (like embassies in the case of conventional threats) dis- play in the eye of potential aggressors

Paris-Sud XI, Université de

234

REDUCTIONS WITHOUT REGRET: SUMMARY  

SciTech Connect (OSTI)

This paper briefly summarizes the series in which we consider the possibilities for losing, or compromising, key capabilities of the U.S. nuclear force in the face of modernization and reductions. The first of the three papers takes an historical perspective, considering capabilities that were eliminated in past force reductions. The second paper is our attempt to define the needed capabilities looking forward in the context of the current framework for force modernization and the current picture of the evolving challenges of deterrence and assurance. The third paper then provides an example for each of our undesirable outcomes: the creation of roach motels, box canyons, and wrong turns.

Swegle, J.; Tincher, D.

2013-09-16T23:59:59.000Z

235

Split driveshaft pump for hazardous fluids  

DOE Patents [OSTI]

A pump having a split driveshaft for use in pumping hazardous fluids wherein only one driveshaft becomes contaminated by the fluid while the second remains isolated from the fluid. The pump has a first portion and a second portion. The first portion contains a pump motor, the first driveshaft, a support pedestal, and vapor barriers and seals. The second portion contains a second, self-lubricating driveshaft and an impeller. The first and second driveshafts are connected together by a releasable coupling. A shield and a slinger deployed below the coupling prevent fluid from the second portion from reaching the first portion. In operation, only the second assembly comes into contact with the fluid being pumped, so the risk of contamination of the first portion by the hazardous fluid is reduced. The first assembly can be removed for repairs or routine maintenance by decoupling the first and second driveshafts and disconnecting the motor from the casing.

Evans, II, Thomas P. (Aiken, SC); Purohit, Jwalit J. (Evans, GA); Fazio, John M. (Orchard Park, NY)

1995-01-01T23:59:59.000Z

236

Shedding a new light on hazardous waste  

SciTech Connect (OSTI)

The sun's ability to detoxify waterborne chemicals has long been known; polluted streams, for example, become cleaner as they flow through sunlit areas. Solar detoxification harnesses this natural degradation process for beneficial ends, producing simple, nonhazardous substances from hazardous organic chemicals. Solar detoxification systems now being developed break down these chemicals without using the fossil fuels required by conventional technologies. Sunlight destroys hazardous waste because of the distinctive properties of photons, the packets of energy that make up sunlight. Low-energy photons add thermal energy that will heat toxic chemicals; high-energy photons add the energy needed to break the chemical bonds of these chemicals. The detoxification process discussed here takes advantage of this latter group of photons found in the ultraviolet portion of the solar spectrum. 4 figs.

Reece, N.

1991-02-01T23:59:59.000Z

237

Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and  

E-Print Network [OSTI]

Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic hazard to Hispaniola and the northeast Caribbean region" Uri S. ten Brink, William H. Bakun), Seismic hazard from the Hispaniola subduction zone: Correction to "Historical perspective on seismic

ten Brink, Uri S.

238

The HIT method: A hazard identification technique  

SciTech Connect (OSTI)

This report explains a technique for analyzing systems and operations to identify hazards and needed controls. The HIT method can be used both as a design tool and as a risk analysis tool. As a design tool, this method identifies requirements for design criteria. As part of a risk analysis effort, HIT identifies potential accident sequences that can become part of the safety analysis documentation. Within this report the HIT method is described in detail with emphasis on application of the technique.

Howard, H.H.; Faust, C.L.

1990-01-01T23:59:59.000Z

239

Natural phenomena hazards site characterization criteria  

SciTech Connect (OSTI)

The criteria and recommendations in this standard shall apply to site characterization for the purpose of mitigating Natural Phenomena Hazards (wind, floods, landslide, earthquake, volcano, etc.) in all DOE facilities covered by DOE Order 5480.28. Criteria for site characterization not related to NPH are not included unless necessary for clarification. General and detailed site characterization requirements are provided in areas of meteorology, hydrology, geology, seismology, and geotechnical studies.

Not Available

1994-03-01T23:59:59.000Z

240

WHC natural phenomena hazards mitigation implementation plan  

SciTech Connect (OSTI)

Natural phenomena hazards (NPH) are unexpected acts of nature which pose a threat or danger to workers, the public or to the environment. Earthquakes, extreme winds (hurricane and tornado),snow, flooding, volcanic ashfall, and lightning strike are examples of NPH at Hanford. It is the policy of U.S. Department of Energy (DOE) to design, construct and operate DOE facilitiesso that workers, the public and the environment are protected from NPH and other hazards. During 1993 DOE, Richland Operations Office (RL) transmitted DOE Order 5480.28, ``Natural Phenomena Hazards Mitigation,`` to Westinghouse Hanford COmpany (WHC) for compliance. The Order includes rigorous new NPH criteria for the design of new DOE facilities as well as for the evaluation and upgrade of existing DOE facilities. In 1995 DOE issued Order 420.1, ``Facility Safety`` which contains the same NPH requirements and invokes the same applicable standards as Order 5480.28. It will supersede Order 5480.28 when an in-force date for Order 420.1 is established through contract revision. Activities will be planned and accomplished in four phases: Mobilization; Prioritization; Evaluation; and Upgrade. The basis for the graded approach is the designation of facilities/structures into one of five performance categories based upon safety function, mission and cost. This Implementation Plan develops the program for the Prioritization Phase, as well as an overall strategy for the implemention of DOE Order 5480.2B.

Conrads, T.J.

1996-09-11T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Staged mold for encapsulating hazardous wastes  

DOE Patents [OSTI]

A staged mold for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1990-01-01T23:59:59.000Z

242

Economics of Grade Reduction  

E-Print Network [OSTI]

A Study of the General Principles of the Economics to Be Effected By the Reduction of Grades, the Elimination of Rise and Fall and Curvature, and the Bettering of the Other Physical Condition on the ST. Louis & San Francisco Railroad Lines....

Neff, Paul J.

1914-02-10T23:59:59.000Z

243

Global Threat Reduction Initiative  

E-Print Network [OSTI]

Global Threat Reduction Initiative ­ Conversion Program: Reduced Enrichment for Research and Test the dual application of splitting the atom, U.S. policy towards civilian use of highly enriched uranium and test reactors fueled first with low enriched uranium (LEU) and then later with HEU. By the early 1970s

Kemner, Ken

244

Liquor Activity Reduction (LAR) Programme - 12397  

SciTech Connect (OSTI)

Waste material from the reprocessing of irradiated fuel has been stored under water for several decades leading to the water becoming highly radioactive. As a critical enabler to the decommissioning strategy for the Sellafield site, the Liquor Activity Reduction (LAR) programme has been established to provide a processing route for this highly radioactive liquor. This paper reviews the progress that has been made since the start of routine LAR transfer cycles (July 2010) and follows on from the earlier paper presented at WM2011. The paper focuses on the learning from the first full year of routine LAR transfer cycles and the application of this learning to the wider strategies for the treatment of further radioactive liquid effluents on the Sellafield site. During this period over 100,000 Curies of radioactivity has been safely removed and treated. The past year has witnessed the very successful introduction of the LAR programme. This has lead to hazard reduction at MSSS and demonstration that the SIXEP facility can meet the significantly increased challenge that the LAR programme represents. Part of the success has been the ability to predict and deliver a realistic production schedule with the availability of the MSSS, EDT and SIXEP facilities being central to this. Most importantly, the LAR programme has been successful in bringing together key stakeholders to deliver this work while integrating with the existing, day to day, demands of the Sellafield site. (authors)

Pether, Colin; Carrol, Phil; Birkett, Eddie; Kibble, Matthew [Sellafield Ltd, Cumbria (United Kingdom)

2012-07-01T23:59:59.000Z

245

Hanford facility dangerous waste permit application, 325 hazardous waste treatment units. Revision 1  

SciTech Connect (OSTI)

This report contains the Hanford Facility Dangerous Waste Permit Application for the 325 Hazardous Waste Treatment Units (325 HWTUs) which consist of the Shielded Analytical Laboratory, the 325 Building, and the 325 Collection/Loadout Station Tank. The 325 HWTUs receive, store, and treat dangerous waste generated by Hanford Facility programs. Routine dangerous and/or mixed waste treatment that will be conducted in the 325 HWTUs will include pH adjustment, ion exchange, carbon absorption, oxidation, reduction, waste concentration by evaporation, precipitation, filtration, solvent extraction, solids washing, phase separation, catalytic destruction, and solidification/stabilization.

NONE

1997-07-01T23:59:59.000Z

246

Certification Plan, low-level waste Hazardous Waste Handling Facility  

SciTech Connect (OSTI)

The purpose of this plan is to describe the organization and methodology for the certification of low-level radioactive waste (LLW) handled in the Hazardous Waste Handling Facility (HWHF) at Lawrence Berkeley Laboratory (LBL). This plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end-product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; an executive summary of the Waste Management Quality Assurance Implementing Management Plan (QAIMP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. This plan provides guidance from the HWHF to waste generators, waste handlers, and the Waste Certification Specialist to enable them to conduct their activities and carry out their responsibilities in a manner that complies with the requirements of WHC-WAC. Waste generators have the primary responsibility for the proper characterization of LLW. The Waste Certification Specialist verifies and certifies that LBL LLW is characterized, handled, and shipped in accordance with the requirements of WHC-WAC. Certification is the governing process in which LBL personnel conduct their waste generating and waste handling activities in such a manner that the Waste Certification Specialist can verify that the requirements of WHC-WAC are met.

Albert, R.

1992-06-30T23:59:59.000Z

247

Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part  

E-Print Network [OSTI]

Hazard Communication (Worker Right to Know) As a UW employee, you have the right to know about hazards to which you may be exposed as part of your work assignment. The University's Hazard Communication the hazard communication training you need? A combination of hazard communication training resources

Wilcock, William

248

Natural hazards phenomena mitigation with respect to seismic hazards at the Environmental Restoration Disposal Facility  

SciTech Connect (OSTI)

This report provides information on the seismic hazard for design of the proposed Environmental Restoration Disposal Facility (ERDF), a facility designed for the disposal of wastes generated during the cleanup of Hanford Site aggregate areas. The preferred ERDF site is located south and east of 200 East and 200 West Areas. The Washington State Groundwater Protection Program (WAC 173-303-806 (4)(a)(xxi)) requires that the characteristics of local and regional hydrogeology be defined. A plan for that work has been developed (Weekes and Borghese 1993). In addition, WAC 173-303-282 provides regulatory guidance on siting a dangerous waste facility, and US Department of Energy (DOE) Order 5480.28 requires consideration of natural phenomena hazards mitigation for DOE sites and facilities. This report provides information to evaluate the ERDF site with respect to seismic hazard. The ERDF will be a Corrective Action Management Unit (CAMU) as defined by 40 CFR 260.10.

Reidel, S.P.

1994-01-06T23:59:59.000Z

249

Method and apparatus for using hazardous waste form non-hazardous aggregate  

SciTech Connect (OSTI)

This patent describes an apparatus for converting hazardous waste into non-hazardous, non-leaching aggregate, the apparatus. It comprises: a source of particulate solid materials, volatile gases and gaseous combustion by-products; oxidizing means comprising at least one refractory-lined, water-cooled, metal-walled vessel; means for introducing the particulate solid material, volatile gases and gaseous combustion by-products to the oxidizing means; means for inducing combustion in the oxidizing means, the heat of combustion forming molten slag and noncombustible fines from noncombustible material; means for accumulating the slag; means for introducing the noncombustible fines to the molten slag; means for removing the mixture from the apparatus; and means for cooling the mixture to form the non-hazardous, non-leaching aggregates.

Kent, J.M.; Robards, H.L. Jr.

1992-07-28T23:59:59.000Z

250

Aluminum reduction cell electrode  

DOE Patents [OSTI]

The invention is directed to cathode modules comprised of refractory hard metal materials, such as TiB[sub 2], for an electrolytic cell for the reduction of alumina wherein the modules may be installed and replaced during operation of the cell and wherein the structure of the cathode modules is such that the refractory hard metal materials are not subjected to externally applied forces or rigid constraints. 9 figs.

Goodnow, W.H.; Payne, J.R.

1982-09-14T23:59:59.000Z

251

Hydrates represent gas source, drilling hazard  

SciTech Connect (OSTI)

Gas hydrates look like ordinary ice. However, if a piece of such ice is put into warm water its behavior will be different from the ordinary melting of normal ice. In contrast, gas hydrates cause bubbles in the warm water, which indicates the high content of gas in the hydrate crystals. The presence of four components is required: gas itself, water, high pressure, and low temperature. The paper discusses how hydrates form, hydrates stability, South Caspian hydrates, and hydrates hazards for people, ships, pipelines, and drilling platforms.

Bagirov, E. [Azerbaijan Academy of Sciences, Baku (Azerbaijan); Lerche, I. [Univ. of South Carolina, Columbia, SC (United States)

1997-12-01T23:59:59.000Z

252

Hazardous Material Shipments | The Ames Laboratory  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960Options forHazardous

253

Enhancing Railroad Hazardous Materials Transportation Safety  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGY TAX POLICIES AND INTER-JURISDICTIONAL CHALLENGESRailroad Hazardous g Materials

254

Rapid guide to hazardous air pollutants  

SciTech Connect (OSTI)

Concise and easy to use, this book brings together a wealth of hard-to-gather information in one compact pocket guide. It offers--in alphabetical order--detailed profiles of the 189 elements and compounds determined to be hazardous air pollutants by the 1990 Amendments of the Clean Air Act. The profile for each pollutant includes: fundamental identification data (CAS number, molecular formula, formula weight, synonyms); uses (primarily in the manufacture of chemicals and as a component in the manufacturing process); physical properties (such as boiling point, density, vapor pressures, color); chemical properties (such as air/water reactivity, reactivity with skin or metal, flash point, heat of combustion); health risks, including toxic exposure guidelines, toxicity data, and acute and chronic risks; hazard risks (the substance`s potential for accidents, fires, explosions, corrosion, and chemical incompatibility); exposure routes tracking the activities, environment, sources, and occupations that tend to lead to exposure; regulatory status, listing the primary laws and citations of regulated chemicals; and important additional information on symptoms, first aid, firefighting methods, protective equipment, and safe storage.

Beim, H.J.; Spero, J.; Theodore, L.

1998-12-31T23:59:59.000Z

255

Method and apparatus for incinerating hazardous waste  

DOE Patents [OSTI]

An incineration apparatus and method for disposal of infectious hazardous waste including a fluidized bed reactor containing a bed of granular material. The reactor includes a first chamber, a second chamber, and a vertical partition separating the first and second chambers. A pressurized stream of air is supplied to the reactor at a sufficient velocity to fluidize the granular material in both the first and second chambers. Waste materials to be incinerated are fed into the first chamber of the fluidized bed, the fine waste materials being initially incinerated in the first chamber and subsequently circulated over the partition to the second chamber wherein further incineration occurs. Coarse waste materials are removed from the first chamber, comminuted, and recirculated to the second chamber for further incineration. Any partially incinerated waste materials and ash from the bottom of the second chamber are removed and recirculated to the second chamber for further incineration. This process is repeated until all infectious hazardous waste has been completely incinerated.

Korenberg, Jacob (York, PA)

1990-01-01T23:59:59.000Z

256

The Hazard Posed by Depleted Uranium Munitions  

E-Print Network [OSTI]

This paper assesses the radiological and chemical hazards resulting from the use of depleted uranium (DU) munitions. Due to the low radioactivity of DU, radiological hazards to individuals would become significant in comparison to natural background radiation doses only in cases of prolonged contact---for example, when shards of a DU penetrator remain embedded in a soldier's body. Although the radiation doses to virtually all civilians would be very low, the cumulative "population dose" resulting from the dispersal of hundreds of tons of DU, as occurred during the Gulf War, could result in up to ten cancer deaths. It is highly unlikely that exposures of persons downwind from the use of DU munitions or consuming food or water contaminated by DU dust would reach the estimated threshold for chemical heavy-metal effects. The exposures of soldiers in vehicles struck by DU munitions could be much higher, however, and persons who subsequently enter such vehicles without adequate respiratory protection could potentially be at risk. Soldiers should be trained to avoid unnecessary exposure to DU, and vehicles struck by DU munitions should be made inaccessible to curious civilians. INTRODUCTION

Steve Fetter And; Steve Fetter A

257

Fire hazard analysis for the fuel supply shutdown storage buildings  

SciTech Connect (OSTI)

The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility.

REMAIZE, J.A.

2000-09-27T23:59:59.000Z

258

HAZARD CATEGORIZATION OF ENVIRONMENTAL RESTORATION SITES AT HANFORD WASHINGTON  

SciTech Connect (OSTI)

Environmental restoration activities, defined here as work to identify and characterize contaminated sites and then contain, treat, remove or dispose of the contamination, now comprises a significant fraction of work in the DOE complex. As with any other DOE activity, a safety analysis must be in place prior to commencing restoration. The rigor and depth of this safety analysis is in part determined by the site's hazard category. This category in turn is determined by the facility's hazardous material inventory and the consequences of its release. Progressively more complicated safety analyses are needed as a facility's hazard category increases from radiological to hazard category three (significant local releases) to hazard category two (significant on-site releases). Thus, a facility's hazard category plays a crucial early role in helping to determine the level of effort devoted to analysis of the facility's individual hazards. Improper determination of the category can result in either an inadequate safety analysis in the case of underestimation of the hazard category, or an unnecessarily cumbersome analysis in the case of overestimation. Contaminated sites have been successfully categorized and safely restored or remediated at the former DOE production site at Hanford, Washington. This paper discusses various means used to categorize former plutonium production or support sites at Hanford. Both preliminary and final hazard categorization is discussed. The importance of the preliminary (initial) hazard categorization in guiding further DOE involvement and approval of the safety analyses is discussed. Compliance to DOE direction provided in ''Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports'', DOE-STD-1027-92, is discussed. DOE recently issued 10 CFR 830, Subpart B which codifies previous DOE safety analysis guidance and orders. The impact of 10 CFR 830, Subpart B on hazard categorization is also discussed.

BISHOP, G.E.

2001-05-01T23:59:59.000Z

259

Vegetation Cover Analysis of Hazardous Waste Sites in Utah and...  

Broader source: Energy.gov (indexed) [DOE]

M.; Im, J.; Tullis, J. A remote sensing and GIS-assisted spatial decision support system for hazardous waste site monitoring. Photogramm. Eng. Remote Sensing 2009, 75,...

260

Fees For Disposal Of Hazardous Waste Or Substances (Alabama)  

Broader source: Energy.gov [DOE]

The article lists annual payments to be made to counties, restrictions on disposal of hazardous waste, additional fees collected by counties and penalties.

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Chapter 32 Standards Applicable to Generators of Hazardous Waste (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes procedures to establish the applicable general provisions for generators of hazardous waste. It also establishes recordkeeping and reporting standards....

262

EIS-0286: Hanford Solid (Radioactive and Hazardous) Waste Program  

Broader source: Energy.gov [DOE]

The Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact Statement (HSW EIS) analyzes the proposed waste management practices at the Hanford Site.

263

Dust: A major environmental hazard on the earth's moon  

SciTech Connect (OSTI)

On the Earth's Moon, obvious hazards to humans and machines are created by extreme temperature fluctuations, low gravity, and the virtual absence of any atmosphere. The most important other environmental factor is ionizing radiation. Less obvious environmental hazards that must be considered before establishing a manned presence on the lunar surface are the hazards from micrometeoroid bombardment, the nuisance of electro-statically-charged lunar dust, and an alien visual environment without familiar clues. Before man can establish lunar bases and lunar mining operations, and continue the exploration of that planet, we must develop a means of mitigating these hazards. 4 refs.

Heiken, G.; Vaniman, D.; Lehnert, B.

1990-01-01T23:59:59.000Z

264

Title 40 CFR 300 National Oil and Hazardous Substances Pollution...  

Open Energy Info (EERE)

National Oil and Hazardous Substances Pollution Contingency Plan Jump to: navigation, search OpenEI Reference LibraryAdd to library Legal Document- Federal RegulationFederal...

265

Chapter 31 Identification and Listing of Hazardous Waste (Kentucky)  

Broader source: Energy.gov [DOE]

This administrative regulation establishes the general provisions necessary for identification and listing of a hazardous waste. The regulation also establishes the criteria for identifying the...

266

Hanford Site Solid (Radioactive and Hazardous) Waste Program...  

Office of Environmental Management (EM)

Office 2 3 TITLE: 4 Revised Draft Hanford Site Solid (Radioactive and Hazardous) Waste Program Environmental Impact 5 Statement, Richland, Benton County, Washington (DOE...

267

Program Review, Workplace Inspections, Hazards Analysis And Abatement  

Broader source: Energy.gov [DOE]

This document provides guidance information and suggested procedures for performing program review, workplace inspections, hazards analysis, and abatement, successfully at DOE Federal employee worksites.

268

additive hazards model: Topics by E-print Network  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

of spatial occurrence of landslides by discriminant analysis Boyer, Edmond 212 Lesson 1. Natural Hazards & Natural Disasters Geosciences Websites Summary: Lesson 1. Natural...

269

Packaging and Transfer of Hazardous Materials and Materials of...  

Broader source: Energy.gov (indexed) [DOE]

PACKAGING AND TRANSFER OF HAZARDOUS MATERIALS AND MATERIALS OF NATIONAL SECURITY INTEREST Assessment Plan NNSANevada Site Office Facility Representative Division Performance...

270

Prevention, Abatement, and Control of Hazardous Substance Release (Iowa)  

Broader source: Energy.gov [DOE]

The Department of Natural Resources is authorized to establish rules regarding the prevention and mitigation of hazardous substance release. These sections contain information on the notification...

271

South Carolina Hazardous Waste Management Act (South Carolina)  

Broader source: Energy.gov [DOE]

The Department of Health and Environmental Control is authorized to promulgate rules and regulations to prevent exposure of persons, animals, or the environment to hazardous waste. The construction...

272

October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday...  

Office of Environmental Management (EM)

Tuesday, October 21st Session Presentations October 2014 Natural Phenomena Hazards (NPH) Meeting - Tuesday, October 21st Session Presentations Presentations Relative Movements for...

273

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis  

Office of Environmental Management (EM)

Pantex Facility 10-Year Natural Phenomena Flood Hazard Analysis Presented by and October, 2011 Presentation Outline I. Introductions II. Pantex III. 10 Year Update IV. Final...

274

Surveillance Guide - OSS 19.5 Hazardous Waste Operations and...  

Broader source: Energy.gov (indexed) [DOE]

RL Facility Representative Program March 21, 1995 Surveillance Guide OSS 19.5 Revision 0 Hazardous Waste Operations and Emergency Response Page 6 of Error Bookmark...

275

Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy...  

Energy Savers [EERE]

for NNSA's Los Alamos National Laboratory (LANL), located in Los Alamos, New Mexico. Fact Sheet, Preliminary Notice of Violation: Four Hazardous Energy Control Events at...

276

NEW MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

MEXICO ENVIRONMENT DEPARTMENT Hazardous Waste Burealt SUSANA MARTINEZ Governor 2905 Rodeo Park Drive East, Building 1 Santa Fe, New Mexico 875056303 Phone (50S) 476-6000 Fax...

277

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-01-01T23:59:59.000Z

278

A perspective of hazardous waste and mixed waste treatment technology at the Savannah River Site  

SciTech Connect (OSTI)

Treatment technologies for the preparation and treatment of heavy metal mixed wastes, contaminated soils, and mixed mercury wastes are being considered at the Savannah River Site (SRS), a DOE nuclear material processing facility operated by Westinghouse Savannah River Company (WSRC). The proposed treatment technologies to be included at the Hazardous Waste/Mixed Waste Treatment Building at SRS are based on the regulatory requirements, projected waste volumes, existing technology, cost effectiveness, and project schedule. Waste sorting and size reduction are the initial step in the treatment process. After sorting/size reduction the wastes would go to the next applicable treatment module. For solid heavy metal mixed wastes the proposed treatment is macroencapsulation using a thermoplastic polymer. This process reduces the leachability of hazardous constituents from the waste and allows easy verification of the coating integrity. Stabilization and solidification in a cement matrix will treat a wide variety of wastes (i.e. soils, decontamination water). Some pretreatments may be required (i.e. Ph adjustment) before stabilization. Other pretreatments such as soil washing can reduce the amount of waste to be stabilized. Radioactive contaminated mercury waste at the SRS comes in numerous forms (i.e. process equipment, soils, and lab waste) with the required treatment of high mercury wastes being roasting/retorting and recovery. Any unrecyclable radioactive contaminated elemental mercury would be amalgamated, utilizing a batch system, before disposal.

England, J.L.; Venkatesh, S.; Bailey, L.L.; Langton, C.A.; Hay, M.S.; Stevens, C.B.; Carroll, S.J.

1991-12-31T23:59:59.000Z

279

The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard;  

E-Print Network [OSTI]

The red triangles are volcano locations. Dark-orange areas have a higher volcanic hazard; light-orange areas have a lower volcanic hazard. Dark-gray areas have a higher ash fall hazard; light-gray areas have a lower ash fall hazard. Information is based on data during the past 10,000 years. Bottom, from left

Torgersen, Christian

280

A complete electrical hazard classification system and its application  

SciTech Connect (OSTI)

The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of electrical hazards. The new comprehensive electrical hazard classification system uses a combination of voltage, shock current available, fault current available, power, energy, and waveform to classify all forms of electrical hazards. Based on this electrical hazard classification system, many new tools have been developed, including (a) work controls for these hazards, (b) better selection of PPE for R&D work, (c) improved training, and (d) a new Severity Ranking Tool that is used to rank electrical accidents and incidents with various forms of electrical energy.

Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

2009-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

COMMUNITY WILDFIRE PROTECTION PLANS  

E-Print Network [OSTI]

natural resource knowledge and technical expertise to the planning process, particularly in the areas of GIS and mapping, vegetation management, assessment of values and risks and funding strategies. WHAT of the community, priorities for fuel treatment may include critical watersheds, public water and power facilities

282

327 Building fire hazards analysis implementation plan  

SciTech Connect (OSTI)

In March 1998, the 327 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U.S. Department of Energy, Richland Operations Office (DOE-E) for implementation by B and W Hanford Company (BWC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in five areas and provided nine recommendations (11 items) to bring the 327 Building into compliance. A status is provided for each recommendation in this document. BWHC will use this Implementation Plan to bring the 327 Building and its operation into compliance with DOE Order 5480.7A and IUD 5480.7.

BARILO, N.F.

1999-05-10T23:59:59.000Z

283

Potential health hazards of radiation. Fact Sheet  

SciTech Connect (OSTI)

During World War II and the Cold War, the federal government developed and operated industrial facilities for the research, production, and testing of nuclear weapons, as well as other scientific and engineering research. These processes left a legacy of radioactive and chemical waste, environmental contamination, and hazardous facilities and materials at well over 100 sites. Some of these sites processed uranium and vanadium, and upon closure, left behind millions of cubic yards of mill tailings on the sites and throughout the nearby communities. The U.S. Department of Energy (DOE) administers the cleanup of these areas to minimize the risks to the public and environment from exposure to the tailings and the radon gas they produce.

none,

2009-05-19T23:59:59.000Z

284

Improving tamper detection for hazardous waste security  

SciTech Connect (OSTI)

After September 11, waste managers are increasingly expected to provide improved levels of security for the hazardous materials in their charge. Many low-level wastes that previously had minimal or no security must now be well protected, while high-level wastes require even greater levels of security than previously employed. This demand for improved security comes, in many cases, without waste managers being provided the necessary additional funding, personnel, or security expertise. Contributing to the problem is the fact that--at least in our experience--waste managers often fail to appreciate certain types of security vulnerabilities. They frequently overlook or underestimate the security risks associated with disgruntled or compromised insiders, or the potential legal and political liabilities associated with nonexistent or ineffective security. Also frequently overlooked are potential threats from waste management critics who could resort to sabotage, vandalism, or civil disobedience for purposes of discrediting a waste management program.

Johnston, R. G. (Roger G.); Garcia, A. R. E. (Anthony R. E.); Pacheco, A. N. (Adam N.); Trujillo, S. J. (Sonia J.); Martinez, R. K. (Ronald K.); Martinez, D. D. (Debbie D.); Lopez, L. N. (Leon N.)

2002-01-01T23:59:59.000Z

285

Aluminum reduction cell electrode  

DOE Patents [OSTI]

The invention is directed to an anode-cathode structure for an electrolytic cell for the reduction of alumina wherein the structure is comprised of a carbon anode assembly which straddles a wedge-shaped refractory hard metal cathode assembly having steeply sloped cathodic surfaces, each cathodic surface being paired in essentially parallel planar relationship with an anode surface. The anode-cathode structure not only takes into account the structural weakness of refractory hard metal materials but also permits the changing of the RHM assembly during operation of the cell. Further, the anode-cathode structure enhances the removal of anode gas from the interpolar gap between the anode and cathode surfaces. 10 figs.

Payne, J.R.

1983-09-20T23:59:59.000Z

286

MULTI-HAZARD RESISTANT HIGHWAY BRIDGE PIERS HAVING  

E-Print Network [OSTI]

of California to its main suspension bridges and the detailed shots of the Golden Gate and Brooklyn bridgesMULTI-HAZARD RESISTANT HIGHWAY BRIDGE PIERS HAVING CONCRETE-FILLED STEEL TUBE Shuichi FUJIKURA1 of a multi-hazard bridge pier concept, i.e., a bridge pier system capable of providing an adequate level

Bruneau, Michel

287

Overview of hazardous-waste regulation at federal facilities  

SciTech Connect (OSTI)

This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

Tanzman, E.; LaBrie, B.; Lerner, K.

1982-05-01T23:59:59.000Z

288

Open problem: Dynamic Relational Models for Improved Hazardous Weather Prediction  

E-Print Network [OSTI]

. Current weather radar detection and prediction sys- tems primarily rely on numerical models. We proposeOpen problem: Dynamic Relational Models for Improved Hazardous Weather Prediction Amy McGovern1, #12;Dynamic Relational Models for Improved Hazardous Weather Prediction Radar velocity Radar

McGovern, Amy

289

Chemical Applications of Electrohydraulic Cavitation for Hazardous Waste Control  

E-Print Network [OSTI]

to the destruction or transformation of hazardous chemical substances such as high-temperature incineration, amended activated sludge digestion, anaerobic digestion and conventional physicochemical treatment. Pulsed-power plasma discharge technology may have.... Current approaches to the treatment of hazardous chemical wastes include high temperature incineration, chemical oxidation with and UV light, membrane separation, activated carbon adsorption, substrate-specific biodegration, electron beam bombardment...

Hoffmann, M. R.

290

Fire hazards analysis for solid waste burial grounds  

SciTech Connect (OSTI)

This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation.

McDonald, K.M.

1995-09-28T23:59:59.000Z

291

Compliance of Hazardous Waste Satellite Accumulation Areas (SAAs)  

E-Print Network [OSTI]

through prevention, minimization, and recycling · Classroom or one-on-one waste generator training, other DOE and University waste organizations · Flammable waste cans, 30-gallon, 55-gallon drums (steelCompliance of Hazardous Waste Satellite Accumulation Areas (SAAs) All Hazardous waste generated

292

Economic Analysis of Commercial Idling Reduction Technologies...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Technologies: Which idling reduction system is most economical for truck owners? Economic Analysis of Commercial Idling Reduction Technologies: Which idling reduction system...

293

Fire Hazards Analysis for the 200 Area Interim Storage Area  

SciTech Connect (OSTI)

This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards.

JOHNSON, D.M.

2000-01-06T23:59:59.000Z

294

Hazardous waste research and development in the Pacific Basin  

SciTech Connect (OSTI)

The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste.

Cirillo, R.R.; Carpenter, R.A. (Argonne National Lab., IL (USA); Environment and Policy Inst., Honolulu, HI (USA))

1989-01-01T23:59:59.000Z

295

Evaluation of Horizontal Seismic Hazard of Shahrekord, Iran  

SciTech Connect (OSTI)

This paper presents probabilistic horizontal seismic hazard assessment of Shahrekord, Iran. It displays the probabilistic estimate of Peak Ground Horizontal Acceleration (PGHA) for the return period of 75, 225, 475 and 2475 years. The output of the probabilistic seismic hazard analysis is based on peak ground acceleration (PGA), which is the most common criterion in designing of buildings. A catalogue of seismic events that includes both historical and instrumental events was developed and covers the period from 840 to 2007. The seismic sources that affect the hazard in Shahrekord were identified within the radius of 150 km and the recurrence relationships of these sources were generated. Finally four maps have been prepared to indicate the earthquake hazard of Shahrekord in the form of iso-acceleration contour lines for different hazard levels by using SEISRISK III software.

Amiri, G. Ghodrati [Iran University of Science and Technology--Islamic Azad University of Shahrekord, Narmak, Tehran 16846 (Iran, Islamic Republic of); Dehkordi, M. Raeisi [Department of Civil Engineering, Islamic Azad University of Shahrekord (Iran, Islamic Republic of); Amrei, S. A. Razavian [College of Civil Engineering, Iran University of Science and Technology, Tehran (Iran, Islamic Republic of); Kamali, M. Koohi [Department of Civil Engineering, Islamic Azad University of Shahrekord (Iran, Islamic Republic of)

2008-07-08T23:59:59.000Z

296

E-Print Network 3.0 - assessing hazards aircraft Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

hazard. Dark-gray areas have a higher ash fall hazard; light-gray areas have... a lower ash fall hazard. Information is based on data during the past 10,000 years. Bottom, from...

297

Large Wind Property Tax Reduction  

Broader source: Energy.gov [DOE]

In 2001, North Dakota established property tax reductions for commercial wind turbines constructed before 2011. Originally, the law reduced the taxable value of centrally-assessed* wind turbines...

298

Nonlinear noise reduction for electrocardiograms  

E-Print Network [OSTI]

Nonlinear noise reduction for electrocardiograms Thomas Schreiber Physics Department, University time series. The underlying physiological process, the electrochemical excitation of cardiac tissue

Kaplan, Daniel T.

299

SCR Technologies for NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

SCR Technology for NOx Reduction Outline Necessity of NOx Exhaust Gas Aftertreatment Air-assisted Dosing Systems (HD applications) Field experience with DENOXTRONIC for MDHD...

300

WIPP Hazardous Waste Facility Permit Update  

SciTech Connect (OSTI)

The Waste Isolation Pilot Plant (WIPP) Hazardous Waste Facility Permit (HWFP) was issued on October 27, 1999 [1]. Since that time, the WIPP has sought modifications to clarify the permit language, provide alternative methods for meeting permit requirements and to update permit conditions. Significant advancements have been made in transuranic (TRU) waste management as the result of modifications to the HWFP. Among these advancements is a modification to obtain a drum age criteria (DAC) value to perform headspace gas sampling on drums to be super-compacted and placed in a 100-gallon overpack drum. In addition, the Section 311 permit modification request that would allow for more efficient waste characterization, and the modification to authorize the shipment and disposal of Remote-Handled (RH) TRU waste were merged together and submitted to the regulator as the Consolidated Permit Modification Request (PMR). The submittal of the Consolidated PMR came at the request of the regulator as part of responses to Notices of Deficiency (NODs) for the separate PMRs which had been submitted in previous years. Section 311 of the fiscal year 2004 Energy and Water Developments Appropriations Act (Public Law 108-137) [2] directs the Department of Energy to submit a permit modification that limits waste confirmation to radiography or visual examination of a statistical subpopulation of containers. Section 311 also specifically directs that disposal room performance standards be to be met by monitoring for volatile organic compounds in the underground disposal rooms. This statute translates into the elimination of other waste confirmation methods such as headspace gas sampling and analysis and solids sampling and analysis. These methods, as appropriate, will continue to be used by the generator sites during hazardous waste determinations or characterization activities. This modification is expected to reduce the overall cost of waste analysis by hundreds of millions of dollars [3]. Combining both the chap. 311 and RH TRU waste permit modification requests allows for both the regulator and DOE to expedite action on the modification requests. The Combined PMR reduces costs by having only one administrative process for both modification requests. (authors)

Kehrman, B.; Most, W. [Washington Regulatory and Environmental Services, 4021 National Parks Highway, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Hydrogen Compression, Storage, and Dispensing Cost Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Hydrogen Compression, Storage, and Dispensing Cost Reduction Workshop Addendum Document states additional...

302

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on High-Stability-Low-Cost Supports Contiguous Platinum Monolayer Oxygen Reduction Electrocatalysts on...

303

Hazard screening application guide. Safety Analysis Report Update Program  

SciTech Connect (OSTI)

The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

none,

1992-06-01T23:59:59.000Z

304

Massachusetts Oil and Hazardous Material Release Prevention and Response Act, State Superfund Law (Massachusetts)  

Broader source: Energy.gov [DOE]

This Act contains information on prevention strategies for hazardous material release, permits for facilities managing hazardous waste, and response tactics and liability in the event such release...

305

Quality Services: Solid Wastes, Part 361: Siting of Industrial Hazardous Waste Facilities (New York)  

Broader source: Energy.gov [DOE]

These regulations describe the siting of new industrial hazardous waste facilities located wholly or partially within the State. Industrial hazardous waste facilities are defined as facilities used...

306

Quality Services: Solid Wastes, Parts 370-376: Hazardous Waste Management System (New York)  

Broader source: Energy.gov [DOE]

These regulations prescribe the management of hazardous waste facilities in New York State. They identify and list different types of hazardous wastes and describe standards for generators,...

307

E-Print Network 3.0 - avoiding hazards caused Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

published... . If so, the hazardous energy must be controlled using an appropriate lockout procedure (see Control... of Hazardous Energy: General Requirements). This procedure...

308

E-Print Network 3.0 - arrows radiological hazards Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

published... . If so, the hazardous energy must be controlled using an appropriate lockout procedure (see Control... of Hazardous Energy: General Requirements). This procedure...

309

Resource Management Services: Water Regulation, Parts 595-599: Hazardous Substances (New York)  

Broader source: Energy.gov [DOE]

These regulations aim to prevent the release of hazardous substances into surface water and groundwater resources. They contain guidance for facilities which store and process hazardous substances,...

310

E-Print Network 3.0 - acid gas hazards Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AND SCOPE Arizona State University... Management, generate a variety of hazardous chemical wastes. ASU is classified as a hazardous waste generator... ) and has been assigned...

311

324 Building fire hazards analysis implementation plan  

SciTech Connect (OSTI)

In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U S. Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480 7A. Additionally, one observation was provided. A status is provided for each recommendation in this document. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process BWHC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480 7A and RLID 5480.7.

BARILO, N.F.

1999-05-10T23:59:59.000Z

312

Health and Safety Procedures Manual for hazardous waste sites  

SciTech Connect (OSTI)

The Oak Ridge National Laboratory Chemical Assessments Team (ORNL/CAT) has developed this Health and Safety Procedures Manual for the guidance, instruction, and protection of ORNL/CAT personnel expected to be involved in hazardous waste site assessments and remedial actions. This manual addresses general and site-specific concerns for protecting personnel, the general public, and the environment from any possible hazardous exposures. The components of this manual include: medical surveillance, guidance for determination and monitoring of hazards, personnel and training requirements, protective clothing and equipment requirements, procedures for controlling work functions, procedures for handling emergency response situations, decontamination procedures for personnel and equipment, associated legal requirements, and safe drilling practices.

Thate, J.E.

1992-09-01T23:59:59.000Z

313

Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes  

SciTech Connect (OSTI)

This document details Lawrence Livermore National Laboratory's (LLNL) criteria and processes for determining if potentially volumetrically contaminated or potentially surface contaminated wastes are to be managed as material containing residual radioactivity or as non-radioactive. This document updates and replaces UCRL-AR-109662, Criteria and Procedures for the Certification of Nonradioactive Hazardous Waste (Reference 1), also known as 'The Moratorium', and follows the guidance found in the U.S. Department of Energy (DOE) document, Performance Objective for Certification of Non-Radioactive Hazardous Waste (Reference 2). The 1992 Moratorium document (UCRL-AR-109662) is three volumes and 703 pages. The first volume provides an overview of the certification process and lists the key radioanalytical methods and their associated Limits of Sensitivities. Volumes Two and Three contain supporting documents and include over 30 operating procedures, QA plans, training documents and organizational charts that describe the hazardous and radioactive waste management system in place in 1992. This current document is intended to update the previous Moratorium documents and to serve as the top-tier LLNL institutional Moratorium document. The 1992 Moratorium document was restricted to certification of Resource Conservation and Recovery Act (RCRA), State and Toxic Substances Control Act (TSCA) hazardous waste from Radioactive Material Management Areas (RMMA). This still remains the primary focus of the Moratorium; however, this document increases the scope to allow use of this methodology to certify other LLNL wastes and materials destined for off-site disposal, transfer, and re-use including non-hazardous wastes and wastes generated outside of RMMAs with the potential for DOE added radioactivity. The LLNL organization that authorizes off-site transfer/disposal of a material or waste stream is responsible for implementing the requirements of this document. The LLNL Radioactive and Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements.

Dominick, J

2008-12-18T23:59:59.000Z

314

Livestock Odor Reduction Demonstration Project  

E-Print Network [OSTI]

Livestock Odor Reduction Demonstration Project Objectives The 1996 and 1997 Iowa General Assembly-share basis to livestock producers and operators selected to carry out various demonstration projects. Organization The Livestock Odor Reduction Demonstration Project was administered by ISU Extension. Stewart

Lin, Zhiqun

315

Environmental Sustainability Paper Usage / Reduction  

E-Print Network [OSTI]

;carbon footprint and develop carbon reduction projects around IT and staff/student behaviour change is supported by the Environmental Sustainability Manager and is seen as a key link to the University's Carbon Management Programme (e.g. to produce a forecast of carbon reductions as required by the Carbon Trust

316

Comprehensive Poverty Reduction Strategies in  

E-Print Network [OSTI]

Comprehensive Poverty Reduction Strategies in Canada: Policy or Window Dressing? Charles Plante, Upstream: Institute for a Healthy Society #12;Overview What is poverty? Current state of poverty in Saskatchewan What is a Comprehensive Poverty Reduction Strategy (CPRS)? Are CPRS effective at reducing

Peak, Derek

317

Chemical inventory control program for mixed and hazardous waste facilities at SRS  

SciTech Connect (OSTI)

Mixed Waste (MW) and Hazardous Waste (HW) are being stored at the Savannah River Site (SRS) pending onsite and/or offsite treatment and disposal. The inventory control for these wastes has recently been brought under Technical Safety Requirements (TSR) in accordance with DOE Order 5480.22. With the TSRs was the question of the degree of rigor with which the inventory is to be tracked, considering that the variety of chemicals present, or that could be present, numbers in the hundreds. This paper describes the graded approach program to track Solid Waste (SW) inventories relative to TSRs. The approach uses a ratio of the maximum anticipated chemical inventory to the permissible inventory in accordance with Emergency Response Planning Guideline (ERPG) limits for on- and off-site receptors. A specific threshold ratio can then be determined. The chemicals above this threshold ratio are to be included in the chemical inventory control program. The chemicals that fall below the threshold ratio are managed in accordance with existing practice per State and RCRA hazardous materials requirements. Additionally, the facilities are managed in accordance with process safety management principles, specifically using process hazards analyses, which provides safety assurance for even the small quantities that may be excluded from the formal inventory control program. The method yields a practical approach to chemical inventory control, while maintaining appropriate chemical safety margins. The resulting number of specific chemicals that require inclusion in a rigorous inventory control program is greatly reduced by about 80%, thereby resulting in significant reduction in chemical data management while preserving appropriate safety margins.

Ades, M.J.; Vincent, A.M. III

1997-07-01T23:59:59.000Z

318

Upgrades to meet LANL SF, 121-2011, hazardous waste facility permit requirements  

SciTech Connect (OSTI)

Members of San IIdefonso have requested information from LANL regarding implementation of the revision to LANL's Hazardous Waste Facility Permit (the RCRA Permit). On January 26, 2011, LANL staff from the Waste Disposition Project and the Environmental Protection Division will provide a status update to Pueblo members at the offices of the San IIdefonso Department of Environmental and Cultural Preservation. The Waste Disposition Project presentation will focus on upgrades and improvements to LANL waste management facilities at TA-50 and TA-54. The New Mexico Environment Department issued LANL's revised Hazardous Waste Facility permit on November 30, 2010 with a 30-day implementation period. The Waste Disposition Project manages and operates four of LANL's permitted facilities; the Waste Characterization, Reduction and Repackaging Facility (WCRRF) at TA-SO, and Area G, Area L and the Radioassay and Nondestructive Testing facility (RANT) at TA-54. By implementing a combination of permanent corrective action activities and shorter-term compensatory measures, WDP was able to achieve functional compliance on December 30, 2010 with new Permit requirements at each of our facilities. One component of WOP's mission at LANL is centralized management and disposition of the Laboratory's hazardous and mixed waste. To support this mission objective, WOP has undertaken a project to upgrade our facilities and equipment to achieve fully compliant and efficient waste management operations. Upgrades to processes, equipment and facilities are being designed to provide defense-in-depth beyond the minimum, regulatory requirements where worker safety and protection of the public and the environment are concerned. Upgrades and improvements to enduring waste management facilities and operations are being designed so as not to conflict with future closure activities at Material Disposal Area G and Material Disposal Area L.

French, Sean B [Los Alamos National Laboratory; Johns - Hughes, Kathryn W [Los Alamos National Laboratory

2011-01-21T23:59:59.000Z

319

EA-0688: Hazardous Waste Staging Facility, Pantex Plant, Amarillo, Texas  

Broader source: Energy.gov [DOE]

This EA evaluates the environmental impacts of a proposal to construct the Hazardous Waste Staging Facility that would help to alleviate capacity problems as well as provide a single compliant...

320

Category 3 threshold quantities for hazard categorization of nonreactor facilities  

SciTech Connect (OSTI)

This document provides the information necessary to determine Hazard Category 3 threshold quantities for those isotopes of interest not listed in WHC-CM-4-46, Section 4, Table 1.''Threshold Quantities.''

Mandigo, R.L.

1996-02-13T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Job Hazard Analysis Manual Updated 10/6/04  

E-Print Network [OSTI]

and fire hazards from area Electrical Shock Improper grounding, improper operations and maintenance Lockout Activation during repair Auto start and/or human error Lockout/Tagout Noise Equipment Operation Use Hearing

Escher, Christine

322

Trends and Opportunities in Industrial Hazardous Waste Minimization  

E-Print Network [OSTI]

This paper describes trends and opportunities in Resource Conservation and Recovery Act hazardous waste minimization. It uses U.S. Environmental Protection Agency data gathered since 1989 from over 20,000 facilities that account for almost all...

Atlas, M.

323

Hazardous Waste Remedial Actions Program annual progress report, FY 1990  

SciTech Connect (OSTI)

The Hazardous Waste Remedial Actions Programs (HAZWRAP), a unit of Martin Marietta Energy Systems, Inc., supports the Department of Energy (DOE) Oak Ridge Operations Office in broadly environmental areas, especially those relating to waste management and environmental restoration. HAZWRAP comprises six program areas, which are supported by central administrative and technical organizations. Existing programs deal with airborne hazardous substances, pollution prevention, remedial actions planning, environmental restoration, technology development, and information and data systems. HAZWRAP's mission to develop, promote, and apply-cost-effective hazardous waste management and environmental technologies to help solve national problems and concerns. HAZWRAP seeks to serve as integrator for hazardous waste and materials management across the federal government. It applies the unique combination of research and development (R D) capabilities, technologies, management expertise, and facilities in the Energy Systems complex to address problems of national importance. 24 figs., 10 tabs.

Not Available

1990-12-01T23:59:59.000Z

324

Hazardous Materials Shipping Policy for Laboratories Policy Statement  

E-Print Network [OSTI]

Page 1 Hazardous Materials Shipping Policy for Laboratories Policy Statement In order to ensure shall follow the procedures established in this policy. Reason for Policy/Purpose Transportation # Policy Statement............................................................................... 1 Reason

Shull, Kenneth R.

325

RCRA Hazardous Waste Part A Permit Application: Instructions...  

Open Energy Info (EERE)

Part A Permit Application: Instructions and Form (EPA Form 8700-23) Jump to: navigation, search OpenEI Reference LibraryAdd to library Form: RCRA Hazardous Waste Part A Permit...

326

Geologic Hazards Associated With a Proposed Dam on the Yarlung-  

E-Print Network [OSTI]

such reports (Biron and Dodin, 2007). However, given the persistent media reports, the pressing water-resources downstream in the Brahmapu- tra system in northeastern India and Bangladesh, and hazards asso- ciated

Kidd, William S. F.

327

Order Module--self-study program: HAZARDOUS WASTE OPERATIONS...  

Energy Savers [EERE]

also help prepare you for the practice at the end of this module and for the criterion test. Before continuing, you should obtain a copy of the regulation at Hazardous waste...

328

RFPs Due for Hazardous Fuel Wood to Energy Grant  

Broader source: Energy.gov [DOE]

The U.S. Forest Service requests proposals for the 2014 Hazardous Fuel Wood to Energy (W2E) Grant.  The outcome anticipated under this funding mechanism will advance the United States Department of...

329

PRECOMBUSTION REMOVAL OF HAZARDOUS AIR POLLUTANT PRECURSORS  

SciTech Connect (OSTI)

In response to growing environmental concerns reflected in the 1990 Clean Air Act Amendment (CAAA), the United States Department of Energy (DOE) sponsored several research and development projects in late 1995 as part of an initiative entitled Advanced Environmental Control Technologies for Coal-Based Power Systems. The program provided cost-shared support for research and development projects that could accelerate the commercialization of affordable, high-efficiency, low-emission, coal-fueled electric generating technologies. Clean coal technologies developed under this program would serve as prototypes for later generations of technologies to be implemented in the industrial sector. In order to identify technologies with the greatest potential for commercial implementation, projects funded under Phase I of this program were subject to competitive review by DOE before being considered for continuation funding under Phase II. One of the primary topical areas identified under the DOE initiative relates to the development of improved technologies for reducing the emissions of air toxics. Previous studies have suggested that many of the potentially hazardous air pollutant precursors (HAPPs) occur as trace elements in the mineral matter of run-of-mine coals. As a result, these elements have the potential to be removed prior to combustion at the mine site by physical coal cleaning processes (i.e., coal preparation). Unfortunately, existing coal preparation plants are generally limited in their ability to remove HAPPs due to incomplete liberation of the mineral matter and high organic associations of some trace elements. In addition, existing physical coal cleaning plants are not specifically designed or optimized to ensure that high trace element rejections may be achieved.

Unknown

2000-10-09T23:59:59.000Z

330

Cold Vacuum Drying (CVD) Facility Hazards Analysis Report  

SciTech Connect (OSTI)

This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) Hazard Analysis to support the CVDF Final Safety Analysis Report and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports,'' and implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports.''

CROWE, R.D.

2000-08-07T23:59:59.000Z

331

Sandia National Laboratories, California Hazardous Materials Management Program annual report.  

SciTech Connect (OSTI)

The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

Brynildson, Mark E.

2011-02-01T23:59:59.000Z

332

Tentative criteria for the design and installation of electrical power systems subject to seismic hazard  

SciTech Connect (OSTI)

The paper discusses the need to study the criteria for the design and installation of electrical power systems in buildings subject to seismic hazard. Nowadays, all the recommended seismic requirements (according to: Uniform Building Code UBC, Structural Engineers Association of California SEAOC, National Earthquake Hazards Reduction Program NEHRP) do not specifically take into account the electrical or technological power systems. The paper analyzes the problems an earthquake can cause with regard to the functional reliability and continuity of supply of electrical power systems. Therefore, it proposes design and installation requirements, to be graduated according to building occupancy categories. Basically, the criteria relative to the installation of the electrical equipment are an appropriate extension of those general static ones for nonstructural components. Their consideration is essential for the settlement of the design criteria, which, as far as the configuration and the size of the electrical power system are concerned, aim at limiting the same installation problems. Other general design criteria, aimed as a guarantee for the supply continuity and system reliability, have a particular use in these appliances.

Parise, G.; Ferranti, F. [Univ. of Rome La Sapienza (Italy). Electrical Engineering Dept.; Colozza, R.

1995-12-31T23:59:59.000Z

333

Hazard classification criteria for non-nuclear facilities  

SciTech Connect (OSTI)

Sandia National Laboratories` Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications.

Mahn, J.A.; Walker, S.A.

1997-03-01T23:59:59.000Z

334

Nat. Hazards Earth Syst. Sci., 11, 26632675, 2011 www.nat-hazards-earth-syst-sci.net/11/2663/2011/  

E-Print Network [OSTI]

is responsible for studying the safety and hazards of abandoned mines. One of the main scientific aims- gan on new extraction facilities and the mine operator kindly agreed to collaborate on the experiment

Boyer, Edmond

335

Putting It Down: Hazardous-Waste Management in the Throwaway Culture  

E-Print Network [OSTI]

protocols existed for these indicators. 68 Even granting that EPA's testing criteria for hazardous waste

Stockton, Wendy

1981-01-01T23:59:59.000Z

336

Hazard Communication Definitions Chemical means any substance or mixture of substances  

E-Print Network [OSTI]

hazard or a health hazard, a simple asphyxiant, combustible dust, pyrophoric gas or hazard not otherwise of the following hazardous effects: explosive; flammable (gases, aerosols, liquids or solids); oxidizer (liquid a phrase that describes recommended measures that should be taken to minimize or prevent adverse effects

Slatton, Clint

337

Reuse in Hazard Analysis: Identification and Shamus P. Smith and Michael D. Harrison  

E-Print Network [OSTI]

, for example, Hazard and Op- erability Studies (HAZOP) [11], Failure Modes and Effect Analysis (FMEA) [6

Harrison, Michael

338

Nevada State Energy Reduction Plan  

Broader source: Energy.gov [DOE]

As mandated by the Nevada statutes, the Nevada Energy Office prepared a state energy reduction plan which requires state agencies, departments, and other entities in the Executive Branch to reduce...

339

Economics of Steam Pressure Reduction  

E-Print Network [OSTI]

Economics of Steam Pressure Reduction is a technical paper that addresses the operating and economic advantages associated with the program to lower the steam operating pressure. Evaluation of a testing program will be discussed. The paper...

Sylva, D. M.

340

Frequency Analysis of Aircraft hazards for License Application  

SciTech Connect (OSTI)

The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

K. Ashley

2006-10-24T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Vitrification of M-Area Mixed (Hazardous and Radioactive) F006 Wastes: I. Sludge and Supernate Characterization  

SciTech Connect (OSTI)

Technologies are being developed by the US Department of Energy's (DOE) Nuclear Facility sites to convert low-level and mixed (hazardous and radioactive) wastes to a solid stabilized waste form for permanent disposal. One of the alternative technologies is vitrification into a borosilicate glass waste form. The Environmental Protection Agency (EPA) has declared vitrification the Best Demonstrated Available Technology (BDAT) for high-level radioactive mixed waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The DOE Office of Technology Development (OTD) has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Stabilization of low level and hazardous wastes in glass are in accord with the 1988 Savannah River Technology Center (SRTC), then the Savannah River Laboratory (SRL), Professional Planning Committee (PPC) recommendation that high nitrate containing (low-level) wastes be incorporated into a low temperature glass (via a sol-gel technology). The investigation into this new technology was considered timely because of the potential for large waste volume reduction compared to solidification into cement.

Jantzen, C.M.

2001-10-05T23:59:59.000Z

342

Organic and inorganic hazardous waste stabilization using combusted oil shale  

SciTech Connect (OSTI)

A laboratory study was conducted at the Western Research Institute to evaluate the ability of combusted oil shale to stabilize organic and inorganic constituents of hazardous wastes. The oil shale used in the research was a western oil shale retorted in an inclined fluidized-bed reactor. Two combustion temperatures were used, 1550{degrees}F and 1620{degrees}F (843{degrees}C and 882{degrees}C). The five wastes selected for experimentation were an API separator sludge, creosote-contaminated soil, mixed metal oxide/hydroxide waste, metal-plating sludge, and smelter dust. The API separator sludge and creosote-contaminated soil are US EPA-listed hazardous wastes and contain organic contaminants. The mixed metal oxide/hydroxide waste, metal-plating sludge (also an EPA-listed waste), and smelter dust contain high concentrations of heavy metals. The smelter dust and mixed metal oxide/hydroxide waste fail the Toxicity Characteristic Leaching Procedure (TCLP) for cadmium, and the metalplating sludge fails the TCLP for chromium. To evaluate the ability of the combusted oil shales to stabilize the hazardous wastes, mixtures involving varying amounts of each of the shales with each of the hazardous wastes were prepared, allowed to equilibrate, and then leached with deionized, distilled water. The leachates were analyzed for the hazardous constituent(s) of interest.

Sorini, S.S.; Lane, D.C.

1991-04-01T23:59:59.000Z

343

AN ENHANCED HAZARD ANALYSIS PROCESS FOR THE HANFORD TANK FARMS  

SciTech Connect (OSTI)

CH2M HILL Hanford Group, Inc., has expanded the scope and increased the formality of process hazards analyses performed on new or modified Tank Farm facilities, designs, and processes. The CH2M HILL process hazard analysis emphasis has been altered to reflect its use as a fundamental part of the engineering and change control process instead of simply being a nuclear safety analysis tool. The scope has been expanded to include identification of accidents/events that impact the environment, or require emergency response, in addition to those with significant impact to the facility worker, the offsite, and the 100-meter receptor. Also, there is now an expectation that controls will be identified to address all types of consequences. To ensure that the process has an appropriate level of rigor and formality, a new engineering standard for process hazards analysis was created. This paper discusses the role of process hazards analysis as an information source for not only nuclear safety, but also for the worker-safety management programs, emergency management, environmental programs. This paper also discusses the role of process hazards analysis in the change control process, including identifying when and how it should be applied to changes in design or process.

SHULTZ MV

2008-05-15T23:59:59.000Z

344

Hazard Assessment of Chemical Air Contaminants Measured in Residences  

SciTech Connect (OSTI)

Identifying air pollutants that pose a potential hazard indoors can facilitate exposure mitigation. In this study, we compiled summary results from 77 published studies reporting measurements of chemical pollutants in residences in the United States and in countries with similar lifestyles. These data were used to calculate representative mid-range and upper bound concentrations relevant to chronic exposures for 267 pollutants and representative peak concentrations relevant to acute exposures for 5 activity-associated pollutants. Representative concentrations are compared to available chronic and acute health standards for 97 pollutants. Fifteen pollutants appear to exceed chronic health standards in a large fraction of homes. Nine other pollutants are identified as potential chronic health hazards in a substantial minority of homes and an additional nine are identified as potential hazards in a very small percentage of homes. Nine pollutants are identified as priority hazards based on the robustness of measured concentration data and the fraction of residences that appear to be impacted: acetaldehyde; acrolein; benzene; 1,3-butadiene; 1,4-dichlorobenzene; formaldehyde; naphthalene; nitrogen dioxide; and PM{sub 2.5}. Activity-based emissions are shown to pose potential acute health hazards for PM{sub 2.5}, formaldehyde, CO, chloroform, and NO{sub 2}.

Logue, J.M.; McKone, T.E.; Sherman, M. H.; Singer, B.C.

2010-05-10T23:59:59.000Z

345

Plasma-assisted catalytic reduction system  

DOE Patents [OSTI]

Non-thermal plasma gas treatment is combined with selective catalytic reduction to enhance NO{sub x} reduction in oxygen-rich vehicle engine exhausts. 8 figs.

Vogtlin, G.E.; Merritt, B.T.; Hsiao, M.C.; Wallman, P.H.; Penetrante, B.M.

1998-01-27T23:59:59.000Z

346

Electrocatalytic Reactivity for Oxygen Reduction of Palladium...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reactivity for Oxygen Reduction of Palladium-Modified Carbon Nanotubes Synthesized in Supercritical Fluid. Electrocatalytic Reactivity for Oxygen Reduction of Palladium-Modified...

347

Facile and controllable electrochemical reduction of graphene...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and controllable electrochemical reduction of graphene oxide and its applications. Facile and controllable electrochemical reduction of graphene oxide and its applications....

348

Characterizing Test Methods and Emissions Reduction Performance...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign Characterizing Test Methods and Emissions Reduction...

349

Demonstrating Fuel Consumption and Emissions Reductions with...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Fuel Consumption and Emissions Reductions with Next Generation Model-Based Diesel Engine Control Demonstrating Fuel Consumption and Emissions Reductions with Next Generation...

350

Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View Proceedings of the Second International Symposium on Fire Economics, Planning, and Policy: A Global View  

E-Print Network [OSTI]

assistance, community recognition, and regulatory programs. These classifications are identified, such as educational campaigns to multi-faceted wildfire risk management plans. Complex programs may include a mix of public outreach and educational programs, wildfire hazard assessments, homeowner assistance

Standiford, Richard B.

351

Federal Agency Hazardous Waste Compliance Docket (docket). Revision 1  

SciTech Connect (OSTI)

The Federal Facilities Hazardous Waste Compliance Docket (``docket``) identifies Federal facilities that may be contaminated with hazardous substances and that must be evaluated to determine if they pose a risk to public health or the environment The docket, required by Section 120(c) of the Comprehensive Environmental Response, Compensation, and Liability Act of 1980 (CERCLA), as amended by the Superfund Amendments and Reauthorization Act of 1986 (SARA), also provides a vehicle for making information about potentially contaminated facilities available to the public. Facilities listed on the docket must complete site assessments that provide the Environmental Protection Agency (EPA) with information needed to determine whether or not the facility should be included on he National Priorities List (NPL). This Information Brief, which revises the previous Federal Agency Hazardous Waste Compiliance Docket Information Brief, provides updated information on the docket listing process, the implications of listing, and facility status after listing.

Not Available

1994-01-01T23:59:59.000Z

352

Hazardous-waste analysis plan for LLNL operations  

SciTech Connect (OSTI)

The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

Roberts, R.S.

1982-02-12T23:59:59.000Z

353

Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document  

SciTech Connect (OSTI)

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

Banda, Z.; Wood, C.L.

1995-08-01T23:59:59.000Z

354

Simulation Technology Laboratory Building 970 hazards assessment document  

SciTech Connect (OSTI)

The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

Wood, C.L.; Starr, M.D.

1994-11-01T23:59:59.000Z

355

Microbial reduction of iron ore  

DOE Patents [OSTI]

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry.

Hoffmann, Michael R. (Pasadena, CA); Arnold, Robert G. (Pasadena, CA); Stephanopoulos, Gregory (Pasadena, CA)

1989-01-01T23:59:59.000Z

356

Microbial reduction of iron ore  

DOE Patents [OSTI]

A process is provided for reducing iron ore by treatment with microorganisms which comprises forming an aqueous mixture of iron ore, microorganisms operable for reducing the ferric iron of the iron ore to ferrous iron, and a substrate operable as an energy source for the microbial reduction; and maintaining the aqueous mixture for a period of time and under conditions operable to effect the reduction of the ore. Preferably the microorganism is Pseudomonas sp. 200 and the reduction conducted anaerobically with a domestic wastewater as the substrate. An aqueous solution containing soluble ferrous iron can be separated from the reacted mixture, treated with a base to precipitate ferrous hydroxide which can then be recovered as a concentrated slurry. 11 figs.

Hoffmann, M.R.; Arnold, R.G.; Stephanopoulos, G.

1989-11-14T23:59:59.000Z

357

Forest Fuels ReductionForest Fuels Reduction Department of  

E-Print Network [OSTI]

are the soil management and watershed implications from alternative fuels reduction approaches? 3. How do and implement appropriate technologies to meet sustainable forest management objectives involving fuels Management 1. What should the size and distribution of the residual woody material be on-site from a fire

Bolding, M. Chad

358

Survey of hazardous materials used in nuclear testing  

SciTech Connect (OSTI)

The use of hazardous'' materials in routine underground nuclear tests at the Nevada Test Site has been reviewed. In addition the inventory of test yields, originally reported in 1976 has been updated. A trail down-hole inventory'' has been conducted for a selected test. The inorganic hazardous materials introduced during testing (with the exception of lead and the fissionable materials) produce an incremental change in the quantity of such materials already present in the geologic media surrounding the test points. 1 ref., 3 tabs.

Bryant, E.A.; Fabryka-Martin, J.

1991-02-01T23:59:59.000Z

359

Containment and stabilization technologies for mixed hazardous and radioactive wastes  

SciTech Connect (OSTI)

A prevalent approach to the cleanup of waste sites contaminated with hazardous chemicals and radionuclides is to contain and/or stabilize wastes within the site. Stabilization involves treating the wastes in some fashion, either in situ or above ground after retrieval, to reduce the leachability and release rate of waste constituents to the environment. This approach is generally reserved for radionuclide contaminants, inorganic hazardous contaminants such as heavy metals, and nonvolatile organic contaminants. This paper describes the recent developments in the technical options available for containing and stabilizing wastes. A brief description of each technology is given along with a discussion of the most recent developments and examples of useful applications.

Buelt, J.L.

1993-05-01T23:59:59.000Z

360

Modern tornado design of nuclear and other potentially hazardous facilities  

SciTech Connect (OSTI)

Tornado wind loads and other tornado phenomena, including tornado missiles and differential pressure effects, have not usually been considered in the design of conventional industrial, commercial, or residential facilities in the United States; however, tornado resistance has often become a design requirement for certain hazardous facilities, such as large nuclear power plants and nuclear materials and waste storage facilities, as well as large liquefied natural gas storage facilities. This article provides a review of current procedures for the design of hazardous industrial facilities to resist tornado effects. 23 refs., 19 figs., 13 tabs.

Stevenson, J.D. [J.D. Stevenson Consulting Engineer, Cleveland, OH (United States); Zhao, Y. [Battele Energy Systems Group, Columbus, OH (United States)

1996-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Lead reduction in ambient air  

SciTech Connect (OSTI)

The Bureau of Mines evaluated the emission control methods, including the capital investments and operating cost, necessary for further reducing lead levels in ambient air at the Glover, Herculaneum, and Buick smelter-refineries in Missouri and the East Helena, MT, smelter. This report presents theoretically achievable lead emission reductions and estimated capital and operating costs.

Smith, R.D.; Kiehn, O.A.; Wilburn, D.R.; Bowyer, R.C.

1987-01-01T23:59:59.000Z

362

Beta Reduction Constraints Manuel Bodirsky Katrin Erk  

E-Print Network [OSTI]

Beta Reduction Constraints Manuel Bodirsky Katrin Erk Alexander Koller Joachim Niehren Programming partially. In this paper, we introduce beta reduction constraints to describe beta reduction steps between partially known lambda terms. We show that beta reduction constraints can be expressed in an extension

Paris-Sud XI, Université de

363

Adaptive Port Reduction in Static Condensation  

E-Print Network [OSTI]

Adaptive Port Reduction in Static Condensation JL Eftang DBP Huynh DJ Knezevic EM Rønquist a framework for adaptive reduction of the degrees of freedom associated with ports in static condensation (SC reduction for the interior of a component with model order reduction on the ports in order to rapidly

Rønquist, Einar M.

364

UNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all students, staff, and  

E-Print Network [OSTI]

chemical waste, hazardous solid chemical waste (i.e. items that have been contaminated with hazardous are preferred for all hazardous liquid chemical waste. - Plastic bags are preferred for all hazardous solidUNBC Hazardous Waste Guide Proper waste management practices are essential for the safety of all

Northern British Columbia, University of

365

Dynamic reduction, Version 1. 0  

SciTech Connect (OSTI)

This report describes the theoretical background of the EPRI Dynamic Reduction DYNRED V 1.0. EPRI initiated research under project RP763 to develop the original reduction program DYNEQU. This program was the first to be based on the concept of aggregating of coherent groups of synchronous generators into a single equivalent generator model. While technically advanced, DYNEQU proved difficult to use. Since then, the stability problems encountered in power system planning and operations have changed. The emphasis on first swing transient stability has been replaced by emphasis on inter-area oscillations and voltage stability. The method of identification of coherent generators used in DYNEQU is based on the comparison of rotor angle swings, in a linearized system model, following a fault. It has been shown that this method of coherency identification is good for first swing stability. For inter-area oscillation studies, this method of generator aggregation is less accurate. Far better, are identification methods based on the structure of the power system. Because of these changes in the requirements for reduced order power system models, a new dynamic reduction program (DYNRED) has been developed under EPRI project RP2447-1. It is coherency based, as is DYNEQU, but it has structurally based coherency identification methods in addition to the method used in DYNEQU. This report describes the techniques used in DYNRED, that is: Coherency Identification; Network Reduction; Method of Aggregation, Generator Aggregation, Excitation Aggregation, Primemover/Governor Aggregation. An example of the application of DYNRED to the reduction of a large interconnected power system model is also presented. DYNRED uses the special modeling and network solution techniques developed to enable systems having up to 12,000 bus to be studied. Dynamic data is completely compatible between MASS, PEALS, and the EPRI Extended Transient Midterm Stability Program (ETMSP).

Rogers, G.J.; Wong, D.Y.; Ottevangers, J.; Wang, L. (Ontario Hydro, Toronto, ON (Canada))

1993-04-01T23:59:59.000Z

366

Modelling and Hazard Analysis for Contaminated Sediments Using Stamp Model  

E-Print Network [OSTI]

Modelling and Hazard Analysis for Contaminated Sediments Using Stamp Model Karim Hardy* , Franck or contaminants) of contaminated sediments have become very efficient. These technologies, which are particularly sections. The first describes the Novosol® process for treating contaminated sediments. The second

Boyer, Edmond

367

Studies on Hazard Characterization for Performance-based Structural Design  

E-Print Network [OSTI]

-based design procedures. This research examined and extended the state-of-the-art in hazard characterization (wind and surge) and risk-based design procedures (seismic). State-of-the-art hurricane models (including wind field, tracking and decay models...

Wang, Yue

2010-07-14T23:59:59.000Z

368

Sorting and disposal of hazardous laboratory Radioactive waste  

E-Print Network [OSTI]

Sorting and disposal of hazardous laboratory waste Radioactive waste Solid radioactive waste or in a Perspex box. Liquid radioactive waste collect in a screw-cap plastic bottle, ½ or 1 L size. Place bottles in a tray to avoid spill Final disposal of both solid and radioactive waste into the yellow barrel

Maoz, Shahar

369

Focus Sheet | Hydrofluoric Acid Health hazards of hydrofluoric acid  

E-Print Network [OSTI]

Focus Sheet | Hydrofluoric Acid Health hazards of hydrofluoric acid Hydrofluoric acid (HF characterized by weight loss, brittle bones, anemia, and general ill health. Safe use If possible, avoid working to exposures. #12;Focus Sheet | Hydrofluoric Acid Environmental Health and Safety Environmental Programs Office

Wilcock, William

370

Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility  

SciTech Connect (OSTI)

This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

JOHNSON, B.H.

1999-08-19T23:59:59.000Z

371

Phase 2 fire hazard analysis for the canister storage building  

SciTech Connect (OSTI)

The fire hazard analysis assesses the risk from fire in a facility to ascertain whether the fire protection policies are met. This document provides a preliminary FHA for the CSB facility. Open items have been noted in the document. A final FHA will be required at the completion of definitive design, prior to operation of the facility.

Sadanaga, C.T., Westinghouse Hanford

1996-07-01T23:59:59.000Z

372

Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure  

SciTech Connect (OSTI)

The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved.

MYOTT, C.F.

2000-02-03T23:59:59.000Z

373

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

air pollution control agency and the Department of Labor and Industries (L&I) at least ten (10) days construction and renovation projects. Asbestos is a stringently regulated hazardous material and many Construction projects which impact existing building materials must include an environmental consultant

Wilcock, William

374

Landslide hazard zonation in Namasigue and El Triunfo, Southern Honduras  

E-Print Network [OSTI]

was to test two models to determine the feasibility of creating landslide hazard maps. Data were used to determine how landslide occurrence was affected by the variables in the model. Four easily observable variables were used for both models: slope, aspect...

Perotto-Baldivieso, Humberto Lauro

2000-01-01T23:59:59.000Z

375

Recent Electrical Events Highlight Equipment-Failure Hazards  

E-Print Network [OSTI]

Recent Electrical Events Highlight Equipment-Failure Hazards FOR DETAILS: Occurrence Reports: NA Investigators: Antonia Tallarico, 665-6988 Mark Hunsinger, 665-1496 Susan Voss, 667-5979 LANL Chief Electrical-OA at 665-0033. February 14, 2007 LANL 2007-0004 GUIDANCE: Resources at hand LIR 402-600-01.3, "Electrical

376

Virginia Wetlands Report Sea Level Rise & Other Coastal Hazards  

E-Print Network [OSTI]

Virginia Wetlands Report Sea Level Rise & Other Coastal Hazards: The Risks of Coastal Living See. Climate change is bringing increased temperatures, rising sea level, more frequent storms and increased in tide levels. From these records it is not only clear that water levels are rising, they appear

377

UNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety  

E-Print Network [OSTI]

project having the potential to impact lead-containing building materials, including lead paint. ResultsUNIVERSITY OF WASHINGTON Hazardous Materials Environmental Health & Safety Design Guide Lead Basis, lead-containing materials have the potential to negatively impact the health of construction workers

Wilcock, William

378

Guidance Note 052 RISK ASSESSMENTS FOR HAZARDOUS CHEMICALS  

E-Print Network [OSTI]

;safety data or the condition of the substance is in doubt due to its age, it should be disposed and fresh with regard to all aspects of handling hazardous substances including receipt, storage, use, transport and disposal. Likewise, DSEAR requires assessment and control of fire and explosion risks presented

379

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy's (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency's (EPA's) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-01-01T23:59:59.000Z

380

The Hazardous Waste/Mixed Waste Disposal Facility  

SciTech Connect (OSTI)

The Hazardous Waste/Mixed Waste Disposal Facility (HW/MWDF) will provide permanent Resource Conservation and Recovery Act (RCRA) permitted storage, treatment, and disposal for hazardous and mixed waste generated at the Department of Energy`s (DOE) Savannah River Site (SRS) that cannot be disposed of in existing or planned SRS facilities. Final design is complete for Phase I of the project, the Disposal Vaults. The Vaults will provide RCRA permitted, above-grade disposal capacity for treated hazardous and mixed waste generated at the SRS. The RCRA Part B Permit application was submitted upon approval of the Permit application, the first Disposal Vault is scheduled to be operational in mid 1994. The technical baseline has been established for Phase II, the Treatment Building, and preliminary design work has been performed. The Treatment Building will provide RCRA permitted treatment processes to handle a variety of hazardous and mixed waste generated at SRS in preparation for disposal. The processes will treat wastes for disposal in accordance with the Environmental Protection Agency`s (EPA`s) Land Disposal Restrictions (LDR). A RCRA Part B Permit application has not yet been submitted to SCDHEC for this phase of the project. The Treatment Building is currently scheduled to be operational in late 1996.

Bailey, L.L.

1991-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

loods. Earthquakes. Winter storms. Fire. Hazardous spills. Public safety  

E-Print Network [OSTI]

, break, or cause a fire--such as a water heater or bookshelf ). Annually inspect your home for hazards to your home. What would you do if basic services--water, gas, electricity, or telephones--were cut off the water, gas, and electric- ity at the main switches. Keep necessary tools near gas and water shut

Tullos, Desiree

382

Coding Hazardous Tree Failures for a Data Management System  

E-Print Network [OSTI]

management; computer programs; coding. The Author Lee A. Paine is a forest pathologist, stationed in Berkeley in the manual on the indicated pages. Page 7, just above H. Property or Person Directly Affected, insert: CityCoding Hazardous Tree Failures for a Data Management System Lee A. Paine PACIFIC SOUTHWEST

Standiford, Richard B.

383

Surface Fire Hazards Analysis Technical Report-Constructor Facilities  

SciTech Connect (OSTI)

The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events.

R.E. Flye

2000-10-24T23:59:59.000Z

384

Electrical Sitchgear Building No. 5010-ESF Fire Hazards Technical Report  

SciTech Connect (OSTI)

The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives, identified in DOE Order 420.1, Change 2, Fire Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire or related event; (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of the employees, the public, and the environment; (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; (4) Property losses from a fire and related events exceeding defined limits established by DOE; and (5) Critical process controls and safety class systems being damaged as a result of a fire and related event.

N.M. Ruonavaara

2001-05-08T23:59:59.000Z

385

Hazards Data Distribution System (HDDS) Explorer Help Documentation  

E-Print Network [OSTI]

Hazards Data Distribution System (HDDS) Explorer Help Documentation Version 1.1 March 2014 #12;Page: ii Document History Number Date and Sections Notes 1 August 2013 Original document 1.0 2 September information on Access to Events #12;Page: iii Table of contents Document History

386

Reduction of biomass formation in biotreatment processes  

E-Print Network [OSTI]

Fund, has authorized remedial actions for hazardous waste management. National Contingency Plan is the first enacted in the Clean Water Act by CERCLA. The goal of remedial action is to minimize the impact on human health and the environment. A large..., Clean Air Act, Resource Conservation and Recovery Act (RCRA), and Environmental Protection Agency (EPA) [5]. Because of the toxicity of hazardous wastes, the Comprehensive Environmental, Compensation and Liability Act (CERCLA), better known as Super...

Hung, Shu-Chi

1993-01-01T23:59:59.000Z

387

ALTERNATE APPROACH TO HAZARD CATEGORIZATION FOR SALTSTONE FACILITY AT SRS  

SciTech Connect (OSTI)

The Saltstone Facility at Savannah River Site (SRS) was originally segmented into two segments: the Saltstone Production Facility (SPF) and the Saltstone Disposal Facility (SDF). Based on the inventory of radionuclides available for release the SPF and SDF were categorized as Nonreactor Hazard Category (HC)-3. The hazard categorization recognized the SDF will contain contributions of radionuclides which would exceed the HC-2 Threshold Quantity (TQ) in the form of grout. However it was determined not to impact the facility hazard categorization based on the grout being in a solid, monolithic form which was not easily dispersible. But, the impact of a quantity of unset grout expected to be present at the vault following operation of the process was not addressed. A Potential Inadequacy in Safety Analysis (PISA) was later issued based on the hazard categorization determination for the facility not addressing unset grout. This initiated a re-evaluation of the accident scenarios within the hazards analysis. During this re-evaluation, the segmentation of the facility was challenged based on the potential interaction between facility segments; specifically, the leachate return line and the grout transfer line, which were considered separate segments, are located in close proximity at one point. such that for certain events (NPH as well as External Vehicle Impact) both could be damaged simultaneously and spill contents on the ground that could commingle. This would violate the guideline for segmentation. Therefore, the Hazard Categorization (HC) was reevaluated based on the facility being a single segment and including the additional unset grout as part of total inventory. This total inventory far exceeded the limit for HC-2 TQ and made the facility's initial categorization as HC-2. However, alternative analysis methodology based on credible release fractions allowed in DOE-STD-1027-92 (Ref.1) showed that the Saltstone facility could still be categorized as Hazard Category 3 Nuclear Facility with no segmentation. Since it was the first time any facility at SRS tried this alternate approach safety analyst had to face substantial resistance and reservations from both the facility and local DOE customers which were eventually overcome with approval and acceptance from DOE-HQ.

Roy, B.

2009-04-28T23:59:59.000Z

388

Nat. Hazards Earth Syst. Sci., 6, 941954, 2006 www.nat-hazards-earth-syst-sci.net/6/941/2006/  

E-Print Network [OSTI]

on the discontinuity and natural slope features. First, to obtain rock source areas (RSAs), data obtained from Sciences Determination of the rockfall source in an urban settlement area by using a rule-based fuzzy of the rockfall hazard was determined by various techniques basing on the selec- tion of a rockfall source

Paris-Sud XI, Université de

389

Nat. Hazards Earth Syst. Sci., 8, 6779, 2008 www.nat-hazards-earth-syst-sci.net/8/67/2008/  

E-Print Network [OSTI]

Hazards and Earth System Sciences Is there a trend in extremely high river temperature for the next is corrected by the medium cluster length, which represents thermal inertia of water during extremely hot-evaluate the extreme hot tempera- tures, which the rivers water could reach in the next decades, by taking the climatic

Boyer, Edmond

390

Electrical Hazards The greater hazards related to electricity are electrical shock and fire. Electrical shock occurs when  

E-Print Network [OSTI]

, the amount of current, the duration of exposure, and whether the skin is wet or dry. Water is a good for the level of hazard. Lab coats (knee-length) and proper footwear are required for work involving chemicals or moving machinery. · Leave behind protective equipment (lab coats, gloves, etc.) when leaving the work

Petriu, Emil M.

391

Nat. Hazards Earth Syst. Sci., 8, 559571, 2008 www.nat-hazards-earth-syst-sci.net/8/559/2008/  

E-Print Network [OSTI]

frequently affect the slopes of ice-capped volcanoes. They can be triggered by volcano-ice interac- tions Hazards and Earth System Sciences Assessing lahars from ice-capped volcanoes using ASTER satellite data reservoirs are supposed to be a more realistic scenario for lahar genera- tion than sudden ice melting

Kääb, Andreas

392

LAB HAZARD CHECKLIST Please check the hazards that are associated with your lab and complete the section  

E-Print Network [OSTI]

Radiation Hazards ­Any work involving class 3b or 4 lasers Flammable Gas ­ Compressed gas cylinders that contain flammable gas Toxic Gas ­ Compressed gas cylinders that contain toxic gas Flammable Materials release Radioactive Materials ­ Radiochemicals and sealed radiation sources Radio Frequency or Microwave

Firestone, Jeremy

393

Emergency response planning for railroad transportation related spills of oil or other hazardous materials  

E-Print Network [OSTI]

awareness. Americans began to ask, "What if something similar happened here?" Chemicals with hazardous properties have become part of daily life. Industry, government, and the public have become aware of the need to respond to problems involving hazardous...

Reeder, Geoffrey Benton

1995-01-01T23:59:59.000Z

394

Application of probabilistic consequence analysis to the assessment of potential radiological hazards of fusion reactors  

E-Print Network [OSTI]

A methodology has been developed to provide system reliability criteria based on an assessment of the potential radiological hazards associated with a fusion reactor design and on hazard constraints which prevent fusion ...

Sawdye, Robert William

1978-01-01T23:59:59.000Z

395

A model for determining the fate of hazardous constituents in waste during in-vessel composting  

E-Print Network [OSTI]

Composting is one of the techniques that has evolved as a safe disposal and predisposal alternative to the stringent regulations on hazardous waste disposal. The implementation of this technique needs careful evaluation of the processes a hazardous...

Bollineni, Prasanthi

1994-01-01T23:59:59.000Z

396

Stable reduction product of misonidazole  

SciTech Connect (OSTI)

The predominant stable product (greater than 80%) of the anaerobic radiation chemical reduction (pH 7, formate, N/sub 2/O) of misonidazole (MISO) has been identified as the cyclic guanidinium ion MISO-DDI, a 4,5-dihydro-4,5-dihydroxyimidazolium ion. This cation was prepared as its sulfate salt by the reaction of glyoxal and the appropriate N-substituted guanidinium sulfate. Its formation during MISO reduction was established by NMR spectral comparison and by derivatization as glyoxal bis-oxime, which was formed in 86% yield in fully reduced systems. The toxicity of pure MISO-DDI X sulfate was examined in vivo (C/sub 3/H mice) and in vitro (CHO cells). This product is less toxic than the parent MISO and free glyoxal. A reactive, short-lived, intermediate is suggested as the agent responsible for the toxicity of MISO under hypoxic conditions.

Panicucci, R.; McClelland, R.A.; Rauth, A.M.

1986-07-01T23:59:59.000Z

397

Wind load reduction for heliostats  

SciTech Connect (OSTI)

This report presents the results of wind-tunnel tests supported through the Solar Energy Research Institute (SERI) by the Office of Solar Thermal Technology of the US Department of Energy as part of the SERI research effort on innovative concentrators. As gravity loads on drive mechanisms are reduced through stretched-membrane technology, the wind-load contribution of the required drive capacity increases in percentage. Reduction of wind loads can provide economy in support structure and heliostat drive. Wind-tunnel tests have been directed at finding methods to reduce wind loads on heliostats. The tests investigated primarily the mean forces, moments, and the possibility of measuring fluctuating forces in anticipation of reducing those forces. A significant increase in ability to predict heliostat wind loads and their reduction within a heliostat field was achieved.

Peterka, J.A.; Hosoya, N.; Bienkiewicz, B.; Cermak, J.E.

1986-05-01T23:59:59.000Z

398

Emissions Reduction Impact of Renewables  

E-Print Network [OSTI]

p. 1 Energy Systems Laboratory ? 2012 EMISSIONS REDUCTION IMPACT OF RENEWABLES October 2012 Jeff Haberl, Bahman Yazdani, Charles Culp Energy Systems Laboratory Texas A&M University p. 2 Energy Systems Laboratory ? 2012... Do TCEQ: Vince Meiller, Bob Gifford ERCOT: Warren Lasher USEPA: Art Diem, Julie Rosenberg ACKNOWLEDGEMENTS p. 3 Energy Systems Laboratory ? 2012 RENEWABLES Solar PV Solar Thermal Hydro Biomass Landfill Gas Geothermal p. 4...

Haberl, J. S.; Yazdani, B.; Culp, C.

2012-01-01T23:59:59.000Z

399

Inter-relation between technical and jurisdictional aspects of hazardous waste management in Houston  

E-Print Network [OSTI]

of hazardous waste such as dump sites, landfills, hazardous material spills, underground storage tanks and others come from journals and reports. This literature is used for background information and for evaluating the Hazardous Waste Issues Groundwater... related Transport, ation related Wastewater related Spills Transportation Pretreatment Small quantity Generators Dump sites Landfi 1 Is Plant-site contamination Underground storage tanks Figure I-Hazardous waste ismm classification current...

Vasavada, Nishith Maheshbhai

1987-01-01T23:59:59.000Z

400

Seismic Vulnerability Assessment Waste Characterization Reduction and Repackaging Building, TA-50-69  

SciTech Connect (OSTI)

This report presents the results of the seismic structural analyses completed on the Waste Characterization Reduction and Repackaging (WCRR) Building in support of ongoing safety analyses. WCRR is designated as TA-50-69 at Los Alamos National Laboratory, Los Alamos, New Mexico. The facility has been evaluated against Department of Energy (DOE) seismic criteria for Natural Phenomena Hazards (NPH) Performance Category II (PC 2). The seismic capacities of two subsystems within the WCRR building, the material handling glove box and the lift rack immediately adjacent to the Glove Box are also documented, and the results are presented.

M.W.Sullivan; J.Ruminer; I.Cuesta

2003-02-02T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

RCRA, superfund and EPCRA hotline training module. Introduction to: Hazardous waste identification (40 cfr part 261) updated July 1996  

SciTech Connect (OSTI)

The module introduces a specific hazardous waste identification process, which involves asking and analyzing a series of questions about any waste being evaluated. It analyzes in detail the Resource Conservation and Recovery Act (RCRA) definition of `hazardous waste.` It explains concepts that are essential to identifying a RCRA hazardous waste: hazardous waste listing, hazardous waste characteristics, the `mixture` and `derived-from` rules, the `contained-in` policy, and the hazardous waste identification rules (HWIR).

NONE

1996-07-01T23:59:59.000Z

402

The evaluation of an analytical protocol for the determination of substances in waste for hazard classification  

E-Print Network [OSTI]

1 The evaluation of an analytical protocol for the determination of substances in waste for hazard The classification of waste as hazardous could soon be assessed in Europe using largely the hazard properties of its knowledge of the component constituents of a given waste will therefore be necessary. An analytical protocol

Boyer, Edmond

403

ELECTRICAL SAFETY HAZARDS HANDBOOK Littelfuse is the global leader in circuit protection  

E-Print Network [OSTI]

ELECTRICAL SAFETY HAZARDS HANDBOOK #12;Littelfuse is the global leader in circuit protection's Leading Provider of Circuit Protection Solutions #12;LITTELFuSE ELECTRICAL SAFETY HAZARDS HANDBOOK This Electrical Safety Hazards Handbook was developed for general education purposes only and is not intended

404

Introduction to NIH Hazard Communication Program The National Institutes of Health's comprehensive Occupational Safety and Health  

E-Print Network [OSTI]

Introduction to NIH Hazard Communication Program The National Institutes of Health's comprehensive Occupational Safety and Health Program has been established to provide NIH employees with places and conditions of employment in which the risk of exposures to potential hazards is minimized. The NIH Hazard Communication

Bandettini, Peter A.

405

Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks  

SciTech Connect (OSTI)

This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

T. M. Blakley; W. D. Schofield

2007-09-10T23:59:59.000Z

406

Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer  

E-Print Network [OSTI]

. Keywords: Indoor air quality; hazard analysis; residential; criteria pollutants; VOCs; air toxics Citation Health Hazards in Indoor Air J.M. Logue, M. H. Sherman, B.C. Singer.S. Dept. of Housing and Urban Development Office of Healthy Homes and Lead Hazard Control through

407

Pressure Vessel Burst Program: Automated hazard analysis for pressure vessels  

SciTech Connect (OSTI)

The design, development, and use of a Windows based software tool, PVHAZARD, for pressure vessel hazard analysis is presented. The program draws on previous efforts in pressure vessel research and results of a Pressure Vessel Burst Test Study. Prior papers on the Pressure Vessel Burst Test Study have been presented to the ASME, AIAA, JANNAF, NASA Pressure Systems Seminar, and to a DOD Explosives Safety Board subcommittee meeting. Development and validation is described for simplified blast (overpressure/impulse) and fragment (velocity and travel distance) hazard models. The use of PVHAZARD in making structural damage and personnel injury estimates is discussed. Efforts in-progress are reviewed including the addition of two-dimensional and three-dimensional (2D and 3D) hydrodynamic code analyses to supplement the simplified models, and the ability to assess barrier designs for protection from fragmentation.

Langley, D.R. [Aerospace Corp., Kennedy Space Center, FL (United States); Chrostowski, J.D. [ACTA Inc., Torrance, CA (United States); Goldstein, S. [Aerospace Corp., El Segundo, CA (United States); Cain, M. [General Physics Corp., Titusville, FL (United States)

1996-12-31T23:59:59.000Z

408

National Environmental Policy Act Hazards Assessment for the TREAT Alternative  

SciTech Connect (OSTI)

This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

Boyd D. Christensen; Annette L. Schafer

2013-11-01T23:59:59.000Z

409

National Environmental Policy Act Hazards Assessment for the TREAT Alternative  

SciTech Connect (OSTI)

This document provides an assessment of hazards as required by the National Environmental Policy Act for the alternative of restarting the reactor at the Transient Reactor Test (TREAT) facility by the Resumption of Transient Testing Program. Potential hazards have been identified and screening level calculations have been conducted to provide estimates of unmitigated dose consequences that could be incurred through this alternative. Consequences considered include those related to use of the TREAT Reactor, experiment assembly handling, and combined events involving both the reactor and experiments. In addition, potential safety structures, systems, and components for processes associated with operating TREAT and onsite handling of nuclear fuels and experiments are listed. If this alternative is selected, a safety basis will be prepared in accordance with 10 CFR 830, “Nuclear Safety Management,” Subpart B, “Safety Basis Requirements.”

Boyd D. Christensen; Annette L. Schafer

2014-02-01T23:59:59.000Z

410

Carbon Dioxide Reduction Through Urban Forestry  

E-Print Network [OSTI]

. Retrieval Terms: urban forestry, carbon dioxide, sequestration, avoided energy The Authors E. Gregory McCarbon Dioxide Reduction Through Urban Forestry: Guidelines for Professional and Volunteer Tree; Simpson, James R. 1999. Carbon dioxide reduction through urban forestry

Standiford, Richard B.

411

Viscous drag reduction in boundary layers  

SciTech Connect (OSTI)

The present volume discusses the development status of stability theory for laminar flow control design, applied aspects of laminar-flow technology, transition delays using compliant walls, the application of CFD to skin friction drag-reduction, active-wave control of boundary-layer transitions, and such passive turbulent-drag reduction methods as outer-layer manipulators and complex-curvature concepts. Also treated are such active turbulent drag-reduction technique applications as those pertinent to MHD flow drag reduction, as well as drag reduction in liquid boundary layers by gas injection, drag reduction by means of polymers and surfactants, drag reduction by particle addition, viscous drag reduction via surface mass injection, and interactive wall-turbulence control.

Bushnell, D.M.; Hefner, J.N.

1990-01-01T23:59:59.000Z

412

Extracellular Reduction of Hexavalent Chromium by Cytochromes...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Extracellular Reduction of Hexavalent Chromium by Cytochromes MtrC and OmcA of...

413

Electricity Generation and Emissions Reduction Decisions  

E-Print Network [OSTI]

Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General analysis, and public education in global environmental change. It seeks to provide leadership;1 Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium

414

Hydrothermal oxidation of Navy shipboard excess hazardous materials  

SciTech Connect (OSTI)

This study demonstrated effective destruction, using a novel supercritical water oxidation reactor, of oil, jet fuel, and hydraulic fluid, common excess hazardous materials found on-board Navy vessels. This reactor uses an advanced injector design to mix the hazardous compounds with water, oxidizer, and a supplementary fuel and it uses a transpiring wall to protect the surface of the reactor from corrosion and salt deposition. Our program was divided into four parts. First, basic chemical kinetic data were generated in a simple, tubular-configured reactor for short reaction times (<1 second) and long reaction times (>5 seconds) as a function of temperature. Second, using the data, an engineering model was developed for the more complicated industrial reactor mentioned above. Third, the three hazardous materials were destroyed in a quarter-scale version of the industrial reactor. Finally, the test data were compared with the model. The model and the experimental results for the quarter-scale reactor are described and compared in this report. A companion report discusses the first part of the program to generate basic chemical kinetic data. The injector and reactor worked as expected. The oxidation reaction with the supplementary fuel was initiated between 400 {degrees}C and 450 {degrees}C. The released energy raised the reactor temperature to greater than 600 {degrees}C. At that temperature, the hazardous materials were efficiently destroyed in less than five seconds. The model shows good agreement with the test data and has proven to be a useful tool in designing the system and understanding the test results. 16 refs., 17 figs., 11 tabs.

LaJeunesse, C.A.; Haroldsen, B.L.; Rice, S.F.; Brown, B.G.

1997-03-01T23:59:59.000Z

415

Conversion of hazardous materials using supercritical water oxidation  

DOE Patents [OSTI]

A process for destruction of hazardous materials in a medium of supercritical water without the addition of an oxidant material. The harzardous material is converted to simple compounds which are relatively benign or easily treatable to yield materials which can be discharged into the environment. Treatment agents may be added to the reactants in order to bind certain materials, such as chlorine, in the form of salts or to otherwise facilitate the destruction reactions.

Rofer, Cheryl K. (Los Alamos, NM); Buelow, Steven J. (Los Alamos, NM); Dyer, Richard B. (Los Alamos, NM); Wander, Joseph D. (Parker, FL)

1992-01-01T23:59:59.000Z

416

Fire hazards evaluation for light duty utility arm system  

SciTech Connect (OSTI)

In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented.

HUCKFELDT, R.A.

1999-02-24T23:59:59.000Z

417

Removal of radioactive and other hazardous material from fluid waste  

DOE Patents [OSTI]

Hollow glass microspheres obtained from fly ash (cenospheres) are impregnated with extractants/ion-exchangers and used to remove hazardous material from fluid waste. In a preferred embodiment the microsphere material is loaded with ammonium molybdophosphonate (AMP) and used to remove radioactive ions, such as cesium-137, from acidic liquid wastes. In another preferred embodiment, the microsphere material is loaded with octyl(phenyl)-N-N-diisobutyl-carbamoylmethylphosphine oxide (CMPO) and used to remove americium and plutonium from acidic liquid wastes.

Tranter, Troy J. (Idaho Falls, ID); Knecht, Dieter A. (Idaho Falls, ID); Todd, Terry A. (Aberdeen, ID); Burchfield, Larry A. (W. Richland, WA); Anshits, Alexander G. (Krasnoyarsk, RU); Vereshchagina, Tatiana (Krasnoyarsk, RU); Tretyakov, Alexander A. (Zheleznogorsk, RU); Aloy, Albert S. (St. Petersburg, RU); Sapozhnikova, Natalia V. (St. Petersburg, RU)

2006-10-03T23:59:59.000Z

418

Fourth DOE Natural Phenomena Hazards Mitigation Conference: Proceedings. Volume 1  

SciTech Connect (OSTI)

This conference allowed an interchange in the natural phenomena area among designers, safety professionals, and managers. The papers presented in Volume I of the proceedings are from sessions I - VIII which cover the general topics of: DOE standards, lessons learned and walkdowns, wind, waste tanks, ground motion, testing and materials, probabilistic seismic hazards, risk assessment, base isolation and energy dissipation, and lifelines and floods. Individual papers are indexed separately. (GH)

Not Available

1993-12-31T23:59:59.000Z

419

Relative trajectory data reduction analysis  

E-Print Network [OSTI]

REDATIVE TRAJECTORY DATA RFDUCTION ANA1. YS1S A Thesis KENNE'Ill Vi. GRANT Subrnitl ed to the Gratluate College of 'J exas ASM University in pa) &ial full'illment of the reouir ament for the degree of MASTER OF SCIENCE August 1969 Major... Trajectory Data Reduction Analysis. (August 1969) Kenneth W. Grant, B. A. , University of California at Riverside Directed by: Dr. Rudolph Freund Knowledge of missile/drone intercept parameters is extremely important in the analysis of ordnance system...

Grant, Kenneth William

1969-01-01T23:59:59.000Z

420

A Compressed Air Reduction Program  

E-Print Network [OSTI]

A COMPRESSED AIR REDUCTION PROGRAM K. Dwight Hawks General Motors Corporation - Ruick-Oldsmobi1e-Cadillac Group Warren, Michigan ABSTRACT The reascn for implementing this program was to assist the plant in Quantifying some of its leaks... in the equipme~t throuqhout the plant and to provide direction as to which leaks are yenerat~ng high uti 1ity costs. The direction is very beneficial in lIlaking maintenance aware of prolill,Pls within equipment .IS \\Iell as notifying them as to whf're thei...

Hawks, K. D.

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Understanding ammonia selective catalytic reduction kinetics...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

temperature programmed reduction (TPR), and electron paramagnetic resonance (EPR) spectroscopy. Catalytic properties are examined using NO oxidation, ammonia oxidation,...

422

Bifunctional Catalysts for the Selective Catalytic Reduction...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Reduction (DEER) Conference Presentation: Argonne National Laboratory 2004deermarshall.pdf More Documents & Publications Bifunctional Catalysts for the Selective Catalytic...

423

Chemical Hazards and Safety Issues in Fusion Safety Design  

SciTech Connect (OSTI)

Radiological inventory releases have dominated accident consequences for fusion; these consequences are important to analyze and are generally the most severe result of a fusion facility accident event. However, the advent of, or plan for, large-scale usage of some toxic materials poses the additional hazard of chemical exposure from an accident event. Examples of toxic chemicals are beryllium for magnetic fusion and fluorine for laser fusion. Therefore, chemical exposure consequences must also be addressed in fusion safety assessment. This paper provides guidance for fusion safety analysis. US Department of Energy (DOE) chemical safety assessment practices for workers and the public are reviewed. The US Environmental Protection Agency (EPA) has published some guidance on public exposure to releases of mixtures of chemicals, this guidance has been used to create an initial guideline for treating mixed radiological and toxicological releases in fusion; for example, tritiated hazardous dust from a tokamak vacuum vessel. There is no convenient means to judge the hazard severity of exposure to mixed materials. The chemical fate of mixed material constituents must be reviewed to determine if there is a separate or combined radiological and toxicological carcinogenesis, or if other health threats exist with radiological carcinogenesis. Recommendations are made for fusion facility chemical safety evaluation and safety guidance for protecting the public from chemical releases, since such levels are not specifically identified in the DOE fusion safety standard.

Cadwallader, L.C. [Idaho National Engineering and Environmental Laboratory (United States)

2003-09-15T23:59:59.000Z

424

Fire hazard analysis of the radioactive mixed waste trenchs  

SciTech Connect (OSTI)

This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation`s activity. Transient flammables and combustibles present that support the operation`s activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0.

McDonald, K.M. [Westinghouse Hanford Co., Richland, WA (United States)

1995-04-27T23:59:59.000Z

425

Ross Hazardous and Toxic Materials Handling Facility: Environmental Assessment.  

SciTech Connect (OSTI)

The Bonneville Power Administration (BPA) owns a 200-acre facility in Washington State known as the Ross Complex. Activities at the Ross Complex routinely involve handling toxic substances such as oil-filled electrical equipment containing polychlorinated biphenyls (PCBs), organic and inorganic compounds for preserving wood transmission poles, and paints, solvents, waste oils, and pesticides and herbicides. Hazardous waste management is a common activity on-site, and hazardous and toxic substances are often generated from these and off-site activities. The subject of this environmental assessment (EA) concerns the consolidation of hazardous and toxic substances handling at the Complex. This environmental assessment has been developed to identify the potential environmental impacts of the construction and operation of the proposal. It has been prepared to meet the requirements of the National Environmental Policy Act (NEPA) to determine if the proposed action is likely to have a significant impact on the environment. In addition to the design elements included within the project, mitigation measures have been identified within various sections that are now incorporated within the project. This facility would be designed to improve the current waste handling practices and to assist BPA in meeting Federal and state regulations.

URS Consultants, Inc.

1992-06-01T23:59:59.000Z

426

Method for encapsulating hazardous wastes using a staged mold  

DOE Patents [OSTI]

A staged mold and method for stabilizing hazardous wastes for final disposal by molding an agglomerate of the hazardous wastes and encapsulating the agglomerate. Three stages are employed in the process. In the first stage, a first mold body is positioned on a first mold base, a mixture of the hazardous wastes and a thermosetting plastic is loaded into the mold, the mixture is mechanically compressed, heat is applied to cure the mixture to form a rigid agglomerate, and the first mold body is removed leaving the agglomerate sitting on the first mold base. In the second stage, a clamshell second mold body is positioned around the agglomerate and the first mold base, a powdered thermoplastic resin is poured on top of the agglomerate and in the gap between the sides of the agglomerate and the second mold body, the thermoplastic is compressed, heat is applied to melt the thermoplastic, and the plastic is cooled jacketing the agglomerate on the top and sides. In the third stage, the mold with the jacketed agglomerate is inverted, the first mold base is removed exposing the former bottom of the agglomerate, powdered thermoplastic is poured over the former bottom, the first mold base is replaced to compress the thermoplastic, heat is applied to melt the new thermoplastic and the top part of the jacket on the sides, the plastic is cooled jacketing the bottom and fusing with the jacketing on the sides to complete the seamless encapsulation of the agglomerate.

Unger, Samuel L. (Los Angeles, CA); Telles, Rodney W. (Alhambra, CA); Lubowitz, Hyman R. (Rolling Hills Estates, CA)

1989-01-01T23:59:59.000Z

427

Mission: Possible. Center of Excellence for Hazardous Materials Management  

SciTech Connect (OSTI)

The Center of Excellence for Hazardous Materials Management (CEHMM) was established in May 2004 as a nonprofit research organization. Its purpose is to develop a sustainable technical/scientific community located in Carlsbad, New Mexico, that interacts worldwide to find solutions to hazardous materials management issues. An important part of the mission is to achieve improved protection of worker safety, human health, and the environment. Carlsbad has a large technical community due to the presence of the Waste Isolation Pilot Plant (WIPP) and its many contractors and support organizations. These groups include the Carlsbad Environmental Monitoring and Research Center, Washington Group International, Los Alamos National Laboratory, and Sandia National Laboratories. These organizations form the basis of a unique knowledge community with strengths in many areas, such as geosciences, actinide chemistry, environmental monitoring, and waste transportation. CEHMM works cooperatively with these organizations and others to develop projects that will maintain this knowledge community beyond the projected closure date of WIPP. At present, there is an emphasis in bio-monitoring, air monitoring, hazardous materials educational programs, and endangered species remediation. CEHMM is also currently working with a group from the American Nuclear Society to help facilitate their conference scheduled for April 2006 in Carlsbad. CEHMM is growing rapidly and is looking forward to a diverse array of new projects. (authors)

Bartlett, W.T.; Prather-Stroud, W. [Center of Excellence for Hazardous Materials Management, 505 North Main Street, Carlsbad, NM 88220 (United States)

2006-07-01T23:59:59.000Z

428

A modeling framework for investment planning in interdependent infrastructures in multi-hazard environments.  

SciTech Connect (OSTI)

Currently, much of protection planning is conducted separately for each infrastructure and hazard. Limited funding requires a balance of expenditures between terrorism and natural hazards based on potential impacts. This report documents the results of a Laboratory Directed Research&Development (LDRD) project that created a modeling framework for investment planning in interdependent infrastructures focused on multiple hazards, including terrorism. To develop this framework, three modeling elements were integrated: natural hazards, terrorism, and interdependent infrastructures. For natural hazards, a methodology was created for specifying events consistent with regional hazards. For terrorism, we modeled the terrorist's actions based on assumptions regarding their knowledge, goals, and target identification strategy. For infrastructures, we focused on predicting post-event performance due to specific terrorist attacks and natural hazard events, tempered by appropriate infrastructure investments. We demonstrate the utility of this framework with various examples, including protection of electric power, roadway, and hospital networks.

Brown, Nathanael J. K.; Gearhart, Jared Lee; Jones, Dean A.; Nozick, Linda Karen; Prince, Michael

2013-09-01T23:59:59.000Z

429

Evaluation of alternative nonflame technologies for destruction of hazardous organic waste  

SciTech Connect (OSTI)

The US Department of Energy`s Mixed Waste Focus Area (MWFA) commissioned an evaluation of mixed waste treatment technologies that are alternatives to incineration for destruction of hazardous organic wastes. The purpose of this effort is to evaluate technologies that are alternatives to open-flame, free-oxygen combustion (as exemplified by incinerators), and recommend to the Waste Type Managers and the MWFA which technologies should be considered for further development. Alternative technologies were defined as those that have the potential to: destroy organic material without use of open-flame reactions with free gas-phase oxygen as the reaction mechanism; reduce the offgas volume and associated contaminants (metals, radionuclides, and particulates) emitted under normal operating conditions; eliminate or reduce the production of dioxins and furans; and reduce the potential for excursions in the process that can lead to accidental release of harmful levels of chemical or radioactive materials. Twenty-three technologies were identified that have the potential for meeting these requirements. These technologies were rated against the categories of performance, readiness for deployment, and environment safety, and health. The top ten technologies that resulted from this evaluation are Steam Reforming, Electron Beam, UV Photo-Oxidation, Ultrasonics, Eco Logic reduction process, Supercritical Water oxidation, Cerium Mediated Electrochemical Oxidation, DETOX{sup SM}, Direct Chemical Oxidation (peroxydisulfate), and Neutralization/Hydrolysis.

Schwinkendorf, W.E. [Lockheed Idaho Technologies Co., Idaho Falls, ID (United States); Musgrave, B.C. [BC Musgrave, Inc. (United States); Drake, R.N. [Drake Engineering, Inc. (United States)

1997-04-01T23:59:59.000Z

430

Health hazard evaluation report No. HETA 81-112-1372, Culley Generating Station, Yankeetown, Indiana  

SciTech Connect (OSTI)

To evaluate worker exposure to boiler gases and coal dust, NIOSH conducted a combined environmental and medical evaluation at the Culley facility in August 1981. Environmental samples were collected to evaluate employee exposure to airborne concentrations of nitrogen dioxide, nitric oxide, sulfur dioxide, coal dust, fly ash, crystalline silica, and asbestos. In addition, boiler gas leaks were evaluated. While the majority of personal samples were below current criteria, a health hazard did exist for some employees exposed to sulfur dioxide. In addition, a potential for exposure to boiler gases exists due to boiler leaks. Respiratory symptoms of cough, phlegm production, and wheezing were twice the expected rate for this group of workers. The X-ray data revealed four cases of pneumoconiosis in the Culley workers. The relative youth and the low seniority of this workforce may explain the absence of group PFT reductions. If preventive engineering measures are employed, the occurrence of continued group health effects will likely be reduced. Recommendations are made for an improved respiratory protection program, reducing leaks from process equipment, and for periodic environmental monitoring of the employees.

Zey, J.N.; Donohue, M.

1983-09-01T23:59:59.000Z

431

R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being  

E-Print Network [OSTI]

R/V Thomas G. Thompson Hazardous Material Storage and Inventory Sheet · All hazardous material must be inventoried and accounted for by a Marine Technician BEFORE being loaded aboard the vessel. · The correct inventory forms. · All safety equipment such as eye protection, aprons, gloves, respirators, etc. must

Wilcock, William

432

Dimensional Reduction in Quantum Gravity  

E-Print Network [OSTI]

The requirement that physical phenomena associated with gravitational collapse should be duly reconciled with the postulates of quantum mechanics implies that at a Planckian scale our world is not 3+1 dimensional. Rather, the observable degrees of freedom can best be described as if they were Boolean variables defined on a two-dimensional lattice, evolving with time. This observation, deduced from not much more than unitarity, entropy and counting arguments, implies severe restrictions on possible models of quantum gravity. Using cellular automata as an example it is argued that this dimensional reduction implies more constraints than the freedom we have in constructing models. This is the main reason why so-far no completely consistent mathematical models of quantum black holes have been found. Essay dedicated to Abdus Salam.

G. 't Hooft

2009-03-20T23:59:59.000Z

433

Greenhouse Gas Reductions: SF6  

ScienceCinema (OSTI)

Argonne National Laboratory is leading the way in greenhouse gas reductions, particularly with the recapture and recycling of sulfur hexafluoride (SF6). SF6 is a gas used in industry as an anti-arcing agent. It is an extremely potent greenhouse gas ? one pound of SF6 is equivalent to 12 tons of carbon dioxide. While the U.S. does not currently regulate SF6 emissions, Argonne is proactively and voluntarily recovering and recycling to reduce SF6 emissions. Argonne saves over 16,000 tons of SF6 from being emitted into the atmosphere each year, and by recycling the gas rather than purchasing it new, we save taxpayers over $208,000 each year.

Anderson, Diana

2013-04-19T23:59:59.000Z

434

Electrolyte treatment for aluminum reduction  

DOE Patents [OSTI]

A method of treating an electrolyte for use in the electrolytic reduction of alumina to aluminum employing an anode and a cathode, the alumina dissolved in the electrolyte, the treating improving wetting of the cathode with molten aluminum during electrolysis. The method comprises the steps of providing a molten electrolyte comprised of ALF.sub.3 and at least one salt selected from the group consisting of NaF, KF and LiF, and treating the electrolyte by providing therein 0.004 to 0.2 wt. % of a transition metal or transition metal compound for improved wettability of the cathode with molten aluminum during subsequent electrolysis to reduce alumina to aluminum.

Brown, Craig W. (Seattle, WA); Brooks, Richard J. (Seattle, WA); Frizzle, Patrick B. (Seattle, WA); Juric, Drago D. (Bulleen, AU)

2002-01-01T23:59:59.000Z

435

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman

2004-07-01T23:59:59.000Z

436

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-01-01T23:59:59.000Z

437

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect (OSTI)

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office`s program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

438

An OSHA based approach to safety analysis for nonradiological hazardous materials  

SciTech Connect (OSTI)

The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities.

Yurconic, M.

1992-08-01T23:59:59.000Z

439

Water Use Reduction and Efficiency | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Water Use Reduction and Efficiency Water Use Reduction and Efficiency Water Use Reduction and Efficiency The Federal Energy Management Program (FEMP) provides agencies with...

440

Water Use Reduction and Efficiency Case Studies | Department...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Program Areas Water Use Reduction Water Use Reduction and Efficiency Case Studies Water Use Reduction and Efficiency Case Studies These case studies feature examples of water...

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

REDUCTION CAPACITY OF SALTSTONE AND SALTSTONE COMPONENTS  

SciTech Connect (OSTI)

The duration that saltstone retains its ability to immobilize some key radionuclides, such as technetium (Tc), plutonium (Pu), and neptunium (Np), depends on its capacity to maintain a low redox status (or low oxidation state). The reduction capacity is a measure of the mass of reductants present in the saltstone; the reductants are the active ingredients that immobilize Tc, Pu, and Np. Once reductants are exhausted, the saltstone loses its ability to immobilize these radionuclides. The reduction capacity values reported here are based on the Ce(IV)/Fe(II) system. The Portland cement (198 {micro}eq/g) and especially the fly ash (299 {micro}eq/g) had a measurable amount of reduction capacity, but the blast furnace slag (820 {micro}eq/g) not surprisingly accounted for most of the reduction capacity. The blast furnace slag contains ferrous iron and sulfides which are strong reducing and precipitating species for a large number of solids. Three saltstone samples containing 45% slag or one sample containing 90% slag had essentially the same reduction capacity as pure slag. There appears to be some critical concentration between 10% and 45% slag in the Saltstone formulation that is needed to create the maximum reduction capacity. Values from this work supported those previously reported, namely that the reduction capacity of SRS saltstone is about 820 {micro}eq/g; this value is recommended for estimating the longevity that the Saltstone Disposal Facility will retain its ability to immobilize radionuclides.

Roberts, K.; Kaplan, D.

2009-11-30T23:59:59.000Z

442

Essays in Collaborative Wildfire Planning  

E-Print Network [OSTI]

034014. Godschalk, D.R. , Beatley, T. , Berke, P. , Brower,Free Press. Berke, P.R. , & Beatley, T. (1992). Planning forhttp://www.gao.gov Godschalk, W. , Beatley, T. , Berke, P. ,

Smith, Rachel Carolyn

2011-01-01T23:59:59.000Z

443

Control of hazardous energy sources (lockout/tagout procedures)  

SciTech Connect (OSTI)

The Occupational Safety and Health Administration (OSHA) Standard 29 CFR 1910.147 addresses practices and procedures that are necessary to disable machinery or equipment and to prevent the release of potentially hazardous energy during maintenance operations. The standard contains definitive criteria for establishing an effective program for locking out or tagging out energy isolating devices. The standard contains major training requirements for those authorized to use the energy isolating devices and those that are affected by their use. Periodic inspections are required at least annually to ensure that the energy control procedures continue to be implemented properly.

Seidel, K.G.

1991-01-01T23:59:59.000Z

444

SYNTHESIS OF SAFETY ANALYSIS AND FIRE HAZARD ANALYSIS METHODOLOGIES  

SciTech Connect (OSTI)

Successful implementation of both the nuclear safety program and fire protection program is best accomplished using a coordinated process that relies on sound technical approaches. When systematically prepared, the documented safety analysis (DSA) and fire hazard analysis (FHA) can present a consistent technical basis that streamlines implementation. If not coordinated, the DSA and FHA can present inconsistent conclusions, which can create unnecessary confusion and can promulgate a negative safety perception. This paper will compare the scope, purpose, and analysis techniques for DSAs and FHAs. It will also consolidate several lessons-learned papers on this topic, which were prepared in the 1990s.

Coutts, D

2007-04-17T23:59:59.000Z

445

Environmental Hazards Assessment Program. Quarterly report, July--September 1993  

SciTech Connect (OSTI)

The objectives of the EHAP program stated in the proposal to DOE are to: (1) develop a holistic, national basis for risk assessment, risk management, and risk communication which recognizes the direct impact of environmental hazards on the health and well-being of all, (2) develop a pool of talented scientists and experts in cleanup activities, especially in human health aspects, and (3) identify needs and develop programs addressing the critical shortage of well-educated, highly-skilled technical and scientific personnel to address the health oriented aspects of environmental restoration and waste management.

Not Available

1993-12-01T23:59:59.000Z

446

Solar Processes for the Destruction of Hazardous Chemicals  

SciTech Connect (OSTI)

Solar technologies are being developed to address a wide range of environmental problems. Sunlight plays a role in the passive destruction of hazardous substances in soil, water, and air. Development of processes that use solar energy to remediate environmental problems or to treat process wastes is underway in laboratories around the world. This paper reviews progress in understanding the role of solar photochemistry in removing man-made chemicals from the environment, and developing technology that uses solar photochemistry for this purpose in an efficient manner.

Blake, D. M.

1993-06-01T23:59:59.000Z

447

Hazardous Waste Facility Permit Public Comments to Community Relations Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960OptionsHazardous Waste

448

Hazardous Waste Facility Permit Public Comments to Community Relations Plan  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Bigfront.jpgcommunity200cell 9Harvey Brooks, 1960OptionsHazardous Waste

449

The WIPP Hazardous Waste Facility Permit Improvements--2007 Update  

SciTech Connect (OSTI)

The most significant changes to the Waste Isolation Pilot Plant Hazardous Waste Facility Permit to date were completed during the past year with the implementation of significant revisions to the Waste Analysis Plan and the authorization to dispose of remote-handled transuranic waste. The modified Permit removes the requirement for reporting headspace gas sampling and analysis results for every container of transuranic mixed waste and provides for the use of radiography and visual examination to confirm a statistically representative subpopulation of the waste stream in each waste shipment as well as other changes that streamline the analytical data management process. Implementation began on November 17, 2006. (authors)

Kehrman, R.; Most, W. [Washington Regulatory and Environmental Services, Carlsbad, NM (United States)

2007-07-01T23:59:59.000Z

450

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents [OSTI]

A compact cyclone filter train for the removal of hazardous and radiologi particles from a gaseous fluid medium which permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired.

Bench, Thomas R. (Pittsburgh, PA)

1998-01-01T23:59:59.000Z

451

Compact cyclone filter train for radiological and hazardous environments  

DOE Patents [OSTI]

A compact cyclone filter train is disclosed for the removal of hazardous and radiological particles from a gaseous fluid medium. This filter train permits a small cyclone separator to be used in a very small space envelope due to the arrangement of the filter housing adjacent to the separator with the cyclone separator and the filters mounted on a plate. The entire unit will have a hoist connection at the center of gravity so that the entire unit including the separator, the filters, and the base can be lifted and repositioned as desired. 3 figs.

Bench, T.R.

1998-04-28T23:59:59.000Z

452

Sandia National Laboratories: Solar Glare Hazard Analysis Tool  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 -theErikGroundbreaking WorkTransformationSitingMolten Salt TestGlare Hazard Analysis

453

NOx reduction in gas turbine combustors  

E-Print Network [OSTI]

NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Submitted to the Graduate College of Texas A&M University in partial fullfillment of the requirement for the degree of MASTER OF SCIENCE August 1976 Major Subject: Mechanical... Engineering NOx REDUCTION IN GAS TURBINE COMBUSTORS A Thesis by Nak Won Sung Approved as to style and content by: (Chairman of Committe (Head of Department) (Member) August 1976 "40308 (Member) 1 1. 1 ABSTRACT NOx Reduction in Gas Turbine...

Sung, Nak Won

1976-01-01T23:59:59.000Z

454

NOx reduction methods and apparatuses  

DOE Patents [OSTI]

A NO.sub.x reduction method includes treating a first gas containing NO.sub.x, producing a second gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the second gas to N.sub.2, and producing a third gas containing less NO.sub.x than the first gas, substantially all of the third gas NO.sub.x being NO. The method also includes treating the third gas, producing a fourth gas containing NO.sub.2, reducing a portion of the NO.sub.2 in the fourth gas to N.sub.2, and producing a fifth gas containing less NO.sub.x than the third gas, substantially all of the fifth gas NO.sub.x being NO. Treating the first and/or third gas can include treatment with a plasma. Reducing a portion of the NO.sub.2 in the second and/or fourth gas can include reducing with a catalyst. The method can further include controlling energy consumption of the plasmas independent of each other.

Tonkyn, Russell G.; Barlow, Stephan E.; Balmer, M. Lou; Maupin, Gary D.

2004-10-26T23:59:59.000Z

455

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

2005-07-01T23:59:59.000Z

456

Plasma Assisted Catalysis System for NOx Reduction  

Broader source: Energy.gov (indexed) [DOE]

SCHEMATIC Catalyst for NOx Reduction Plasma Region Exhaust Flow Solid State Pulser Power Modulator Motor Generator ENGINE Air Diesel Fuel Converter NO X + HC(Diesel) NO 2 +...

457

Pollution Prevention - Environmental Impact Reduction Checklists...  

Broader source: Energy.gov (indexed) [DOE]

provides a valuable opportunity for Federal agency NEPA309 reviewers to incorporate pollution prevention and environmental impact reduction into actions (or projects). This...

458

Enantioselective copper-catalysed reductive Michael cyclisations   

E-Print Network [OSTI]

Hydrometalation of ?,?-unsaturated carbonyl compounds provides access to reactive metal enolates, which can then be trapped by a suitable electrophile. The coppercatalysed reductive aldol reaction involves hydrometalation ...

Oswald, Claire Louise

2010-01-01T23:59:59.000Z

459

Puget Sound Clean Cities Petroleum Reduction Project  

Broader source: Energy.gov (indexed) [DOE]

3 universities, 9 private businesses Overview Puget Sound Clean Cities Coalition Petroleum Reduction Project - DE-EE0002020 Project Objectives: * Reduce petroleum use in the...

460

Fire hazard analysis for Plutonium Finishing Plant complex  

SciTech Connect (OSTI)

A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

MCKINNIS, D.L.

1999-02-23T23:59:59.000Z

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Environmental and occupational hazards of the anesthesia workplace  

SciTech Connect (OSTI)

Our present state of research and knowledge strongly suggests that the volatile agents, halothane, enflurane and isoflurane, present only a minimal threat to our environment. Nitrous oxide, however, has ozone-depleting potential as well as a greenhouse gas effect which may contribute much to the problem of global warming over the next few decades. Release of anesthetic gases into the atmosphere presents a small problem in contrast to other sources of ozone-depleting chemicals and greenhouse gases, but anesthesia providers have a responsibility to minimize unnecessary atmospheric pollution by reevaluating the use of N2O, using low flows of gases and exploring the use of activated charcoal absorption in the scavenging systems to remove volatile agents. Infectious waste, radiation, lasers, chemicals and waste gases pose possible occupational health hazards in the operating room. Each of us should play a critical role in monitoring harmful substances and should actively practice techniques which would lessen the hazards. We should be cognizant of the fact that sources not yet introduced into our environment may have adverse effects on our health and that vigilance and education are key factors in maintaining a safe work environment.24 references.

Kole, T.E.

1990-10-01T23:59:59.000Z

462

Occupational exposures to uranium: processes, hazards, and regulations  

SciTech Connect (OSTI)

The United States Uranium Registry (USUR) was formed in 1978 to investigate potential hazards from occupational exposure to uranium and to assess the need for special health-related studies of uranium workers. This report provides a summary of Registry work done to date. The history of the uranium industry is outlined first, and the current commercial uranium industry (mining, milling, conversion, enrichment, and fuel fabrication) is described. This description includes information on basic processes and areas of greatest potential radiological exposure. In addition, inactive commercial facilities and other uranium operations are discussed. Regulation of the commercial production industry for uranium fuel is reported, including the historic development of regulations and the current regulatory agencies and procedures for each phase of the industry. A review of radiological health practices in the industry - facility monitoring, exposure control, exposure evaluation, and record-keeping - is presented. A discussion of the nonradiological hazards of the industry is provided, and the final section describes the tissue program developed as part of the Registry.

Stoetzel, G.A.; Fisher, D.R.; McCormack, W.D.; Hoenes, G.R.; Marks, S.; Moore, R.H.; Quilici, D.G.; Breitenstein, B.D.

1981-04-01T23:59:59.000Z

463

Hazardous Waste/Mixed Waste Treatment Building throughput study  

SciTech Connect (OSTI)

The hazardous waste/mixed waste HW/MW Treatment Building (TB) is the specified treatment location for solid hazardous waste/mixed waste at SRS. This report provides throughput information on the facility based on known and projected waste generation rates. The HW/MW TB will have an annual waste input for the first four years of approximately 38,000 ft{sup 3} and have an annual treated waste output of approximately 50,000 ft{sup 3}. After the first four years of operation it will have an annual waste input of approximately 16,000 ft{sup 3} and an annual waste output of approximately 18,000 ft. There are several waste streams that cannot be accurately predicted (e.g. environmental restoration, decommissioning, and decontamination). The equipment and process area sizing for the initial four years should allow excess processing capability for these poorly defined waste streams. A treatment process description and process flow of the waste is included to aid in understanding the computations of the throughput. A description of the treated wastes is also included.

England, J.L.; Kanzleiter, J.P.

1991-12-18T23:59:59.000Z

464

Deterministic hazard quotients (HQs): Heading down the wrong road  

SciTech Connect (OSTI)

The use of deterministic hazard quotients (HQs) in ecological risk assessment is common as a screening method in remediation of brownfield sites dominated by total petroleum hydrocarbon (TPH) contamination. An HQ {ge} 1 indicates further risk evaluation is needed, but an HQ {le} 1 generally excludes a site from further evaluation. Is the predicted hazard known with such certainty that differences of 10% (0.1) do not affect the ability to exclude or include a site from further evaluation? Current screening methods do not quantify uncertainty associated with HQs. To account for uncertainty in the HQ, exposure point concentrations (EPCs) or ecological benchmark values (EBVs) are conservatively biased. To increase understanding of the uncertainty associated with HQs, EPCs (measured and modeled) and toxicity EBVs were evaluated using a conservative deterministic HQ method. The evaluation was then repeated using a probabilistic (stochastic) method. The probabilistic method used data distributions for EPCs and EBVs to generate HQs with measurements of associated uncertainty. Sensitivity analyses were used to identify the most important factors significantly influencing risk determination. Understanding uncertainty associated with HQ methods gives risk managers a more powerful tool than deterministic approaches.

Wilde, L.; Hunter, C.; Simpson, J. [Golder Associates Inc., Redmond, WA (United States)

1995-12-31T23:59:59.000Z

465

M-Area hazardous waste management facility groundwater monitoring report -- first quarter 1994. Volume 1  

SciTech Connect (OSTI)

This report describes the groundwater monitoring and corrective action program at the M-Area Hazardous Waste Management Facility (HWMF) at the Savannah River Site (SRS) during first quarter 1994 as required by South Carolina Hazardous Waste Permit SC1-890-008-989 and section 264.100(g) of the South Carolina Hazardous Waste Management Regulations. During first quarter 1994, 42 point-of-compliance (POC) wells at the M-Area HWMF were sampled for drinking water parameters.

Evans, C.S.; Washburn, F.; Jordan, J.; Van Pelt, R.

1994-05-01T23:59:59.000Z

466

SLUDGE TREATMENT PROJECT ENGINEERED CONTAINER RETRIEVAL AND TRANSFER SYSTEM PRELIMINARY DESIGN HAZARD ANALYSIS SUPPLEMENT 1  

SciTech Connect (OSTI)

This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

FRANZ GR; MEICHLE RH

2011-07-18T23:59:59.000Z

467

A mathematical model to predict leaching of hazardous inorganic wastes from solidified/stabilized waste forms  

E-Print Network [OSTI]

and Reauthorization Act (SARA). The other important law dealing with hazardous wastes is the Resource Conservation and Recovery Act (RCRA), enacted in 1976 and significantly amended by the Hazardous and Solid Waste Amendments of 1984, RCRA provides "cradle... in 1980 to provide funding and enforcement authority to the EPA for cleaning up the numerous hazardous waste sites existing in the United States. In 1986, the act was made more comprehensive with the addition of the Superfund Amendments...

Sabharwal, Krishan

1993-01-01T23:59:59.000Z

468

Examining Local Jurisdictions' Capacity and Commitment For Hazard Mitigation Policies and Strategies along the Texas Coast  

E-Print Network [OSTI]

local jurisdiction land use planning may be absent (Beatley, 2009; Burby, 2003; Burby, 2006). Second, this research will seek to provide useful approaches for measuring capacity and commitment at the local level based on the literature and empirical.... The biophysical hazard events that take place in the coastal area are often defined as coastal hazards (Beatley, 2009). In addition, Klee (1999) states that the coastal hazard zone ?extends inland from the shorelines which are likely to be affected...

Husein, Rahmawati

2012-07-16T23:59:59.000Z

469

Composite Materials for Hazard Mitigation of Reactive Metal Hydrides.  

SciTech Connect (OSTI)

In an attempt to mitigate the hazards associated with storing large quantities of reactive metal hydrides, polymer composite materials were synthesized and tested under simulated usage and accident conditions. The composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride. Composites with vinyl-containing siloxane oligomers were also polymerized with and without added styrene and divinyl benzene. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride reduced the inherent hydrogen storage capacity of the material. The composites were found to be initially effective at reducing the amount of heat released during oxidation. However, upon cycling the composites, the mitigating behavior was lost. While the polymer composites we investigated have mitigating potential and are physically robust, they undergo a chemical change upon cycling that makes them subsequently ineffective at mitigating heat release upon oxidation of the metal hydride. Acknowledgements The authors would like to thank the following people who participated in this project: Ned Stetson (U.S. Department of Energy) for sponsorship and support of the project. Ken Stewart (Sandia) for building the flow-through calorimeter and cycling test stations. Isidro Ruvalcaba, Jr. (Sandia) for qualitative experiments on the interaction of sodium alanate with water. Terry Johnson (Sandia) for sharing his expertise and knowledge of metal hydrides, and sodium alanate in particular. Marcina Moreno (Sandia) for programmatic assistance. John Khalil (United Technologies Research Corp) for insight into the hazards of reactive metal hydrides and real-world accident scenario experiments. Summary In an attempt to mitigate and/or manage hazards associated with storing bulk quantities of reactive metal hydrides, polymer composite materials (a mixture of a mitigating polymer and a metal hydride) were synthesized and tested under simulated usage and accident conditions. Mitigating the hazards associated with reactive metal hydrides during an accident while finding a way to keep the original capability of the active material intact during normal use has been the focus of this work. These composites were made by polymerizing vinyl monomers using free-radical polymerization chemistry, in the presence of the metal hydride, in this case a prepared sodium alanate (chosen as a representative reactive metal hydride). It was found that the polymerization of styrene and divinyl benzene could be initiated using AIBN in toluene at 70 degC. The resulting composite materials can be either hard or brittle solids depending on the cross-linking density. Thermal decomposition of these styrene-based composite materials is lower than neat polystyrene indicating that the chemical nature of the polymer is affected by the formation of the composite. The char-forming nature of cross-linked polystyrene is low and therefore, not an ideal polymer for hazard mitigation. To obtain composite materials containing a polymer with higher char-forming potential, siloxane-based monomers were investigated. Four vinyl-containing siloxane oligomers were polymerized with and without added styrene and divinyl benzene. Like the styrene materials, these composite materials exhibited thermal decomposition behavior significantly different than the neat polymers. Specifically, the thermal decomposition temperature was shifted approximately 100 degC lower than the neat polymer signifying a major chemical change to the polymer network. Thermal analysis of the cycled samples was performed on the siloxane-based composite materials. It was found that after 30 cycles the siloxane-containing polymer composite material has similar TGA/DSC-MS traces as the virgin composite material indicating that the polymer is physically intact upon cycling. Hydrogen capacity measurements revealed that addition of the polymer to the metal hydride in the form of a composite material reduced the inherent hydrogen storage capacity of the material. This

Pratt, Joseph William; Cordaro, Joseph Gabriel; Sartor, George B.; Dedrick, Daniel E.; Reeder, Craig L.

2012-02-01T23:59:59.000Z

470

OSS 19.5 Hazardous Waste Operations and Emergency Response 3/21/95  

Broader source: Energy.gov [DOE]

 The objective of this surveillance is to ensure that workers who are performing activities associated with characterizing, handling, processing, storing or transporting hazardous wastes are...

471

Rules and Regulations for the Investigation and Remediation of Hazardous Material Releases (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations establish procedures for the investigation and remediation of contamination resulting from the unpermitted release of hazardous materials. The regulations aim to protect water...

472

Automated accountability of hazardous materials at AlliedSignal Inc., Kansas City Division  

SciTech Connect (OSTI)

The Department of Energy`s (DOE) Kansas City Plant (KCP), currently operated by AlliedSignal Inc. has developed a comprehensive Hazardous Material Information System (HMIS). The purpose of this system is to provide a practical and automated method to collect, analyze and distribute hazardous material information to DOE, KCP associates, and regulatory agencies. The drivers of the HMIS are compliance with OSHA Hazard Communications, SARA reporting, pollution prevention, waste minimization, control and tracking of hazards, and emergency response. This report provides a discussion of this system.

Depew, P.L.

1993-12-01T23:59:59.000Z

473

Mass Movement-Induced Tsunami Hazard on Perialpine Lake Lucerne (Switzerland): Scenarios and Numerical Experiments  

E-Print Network [OSTI]

Mass Movement-Induced Tsunami Hazard on Perialpine Lake Lucerne (Switzerland): Scenarios of the sediments of Lake Lucerne have shown that massive subaqueous mass movements affecting unconsolidated

Gilli, Adrian

474

Problem Investigation in High-Hazard Industries: Creating and Negotiational Learning  

E-Print Network [OSTI]

High-hazard or high-reliability organizations are ideal for the study of organizational learning processes because of their intense mindfulness regarding problems. We ...

Carroll, John S.

2002-06-07T23:59:59.000Z

475

E-Print Network 3.0 - arsenic-induced health hazards Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

information systems will provide... environmental hazards and noninfectious diseases or other health effects. The mission of EPHT is to improve... or other disabilities...

476

E-Print Network 3.0 - airflow hazard visualization Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Single Pass Airflow General... Hazardous Materials 100 % Single Pass HVAC Notes: HVAC: Air ... Source: Ohta, Shigemi - Theory Group, Institute of Particle and Nuclear...

477

E-Print Network 3.0 - assessing earthquake hazards Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

> 7) in 2010 alone, and many earthquakes occur... to earthquake hazards possible in the near future using satellite radar and expert system interpretation... of these to be...

478

Rules and Regulations for Underground Storage Facilities Used for Petroleum Products and Hazardous Materials (Rhode Island)  

Broader source: Energy.gov [DOE]

These regulations apply to underground storage facilities for petroleum and hazardous waste, and seek to protect water resources from contamination. The regulations establish procedures for the...

479

Test Methods and Protocols for Environmental and Safety Hazards Associated with Home Energy Retrofits  

SciTech Connect (OSTI)

A number of health hazards and hazards to the durability of homes may be associated with energy retrofitting and home renovation projects. Among the hazards associated with energy retrofit work, exposure to radon is thought to cause more than 15,000 deaths per year in the U.S., while carbon monoxide poisoning results in about 20,000 injuries and 450 deaths per year. Testing procedures have been developed for identifying and quantifying hazards during retrofitting. These procedures commonly include a battery of tests to screen combustion appliances for safe operation, including worst case depressurization measurement, backdrafting (spillage) under depressurized or normal conditions, and carbon monoxide production.

Cautley, D.; Viner, J.; Lord, M.; Pearce, M.

2012-12-01T23:59:59.000Z

480

Steam Load Reduction Guidance Emergency Management Program  

E-Print Network [OSTI]

Steam Load Reduction Guidance Emergency Management Program v October 2014 Steam_Load_Reduction_Guidance_DSRDSR 1.0 PurposeandScope Utilities provides steam to the campus community for space heating, hot water in the steam distribution system or the Central Energy Plant, the preservation of building infrastructure

Pawlowski, Wojtek

Note: This page contains sample records for the topic "wildfire hazard reduction" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

REDUCTIONS WITHOUT REGRET: HISTORICAL PERSPECTIVES  

SciTech Connect (OSTI)

This is the first of three papers (in addition to an introductory summary) aimed at providing a framework for evaluating future reductions or modifications of the U.S. nuclear force, first by considering previous instances in which nuclear-force capabilities were eliminated; second by looking forward into at least the foreseeable future at the features of global and regional deterrence (recognizing that new weapon systems currently projected will have expected lifetimes stretching beyond our ability to predict the future); and third by providing examples of past or possible undesirable outcomes in the shaping of the future nuclear force, as well as some closing thoughts for the future. This paper examines the circumstances and consequences of the elimination of ? The INF-range Pershing II ballistic missile and Gryphon Ground-Launched Cruise Missile (GLCM), deployed by NATO under a dual-track strategy to counter Soviet intermediate-range missiles while pursuing negotiations to limit or eliminate all of these missiles. ? The Short-Range Attack Missile (SRAM), which was actually a family of missiles including SRAM A, SRAM B (never deployed), and SRAM II and SRAM T, these last two cancelled during an over-budget/behind-schedule development phase as part of the Presidential Nuclear Initiatives of 1991 and 1992. ? The nuclear-armed version of the Tomahawk Land-Attack Cruise Missile (TLAM/N), first limited to shore-based storage by the PNIs, and finally eliminated in deliberations surrounding the 2010 Nuclear Posture Review Report. ? The Missile-X (MX), or Peacekeeper, a heavy MIRVed ICBM, deployed in fixed silos, rather than in an originally proposed mobile mode. Peacekeeper was likely intended as a bargaining chip to facilitate elimination of Russian heavy missiles. The plan failed when START II did not enter into force, and the missiles were eliminated at the end of their intended service life. ? The Small ICBM (SICBM), or Midgetman, a road-mobile, single-warhead missile for which per-unit costs were climbing when it was eliminated under the PNIs. Although there were liabilities associated with each of these systems, there were also unique capabilities; this paper lays out the pros and cons for each. Further, we articulate the capabilities that were eliminated with these systems.

Swegle, J.; Tincher, D.

2013-09-09T23:59:59.000Z

482

Method and apparatus for the management of hazardous waste material  

DOE Patents [OSTI]

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal.

Murray, Jr., Holt (Hopewell, NJ)

1995-01-01T23:59:59.000Z

483

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents [OSTI]

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P{sub 2}O{sub 5} and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe{sup 3+} provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided. 21 figs.

Day, D.E.

1998-05-12T23:59:59.000Z

484

Apparatus for the plasma destruction of hazardous gases  

DOE Patents [OSTI]

A plasma cell for destroying hazardous gases is described. An electric-discharge cell having an electrically conducting electrode onto which an alternating high-voltage waveform is impressed and a dielectric barrier adjacent thereto, together forming a high-voltage electrode, generates self-terminating discharges throughout a volume formed between this electrode and a grounded conducting liquid electrode. The gas to be transformed is passed through this volume. The liquid may be flowed, generating thereby a renewable surface. Moreover, since hydrochloric and hydrofluoric acids may be formed from destruction of various chlorofluorocarbons in the presence of water, a conducting liquid may be selected which will neutralize these corrosive compounds. The gases exiting the discharge region may be further scrubbed if additional purification is required. 4 figs.

Kang, M.

1995-02-07T23:59:59.000Z

485

Method and apparatus for the management of hazardous waste material  

DOE Patents [OSTI]

A container for storing hazardous waste material, particularly radioactive waste material, consists of a cylindrical body and lid of precipitation hardened C17510 beryllium-copper alloy, and a channel formed between the mated lid and body for receiving weld filler material of C17200 copper-beryllium alloy. The weld filler material has a precipitation hardening temperature lower than the aging kinetic temperature of the material of the body and lid, whereby the weld filler material is post weld heat treated for obtaining a weld having substantially the same physical, thermal, and electrical characteristics as the material of the body and lid. A mechanical seal assembly is located between an interior shoulder of the body and the bottom of the lid for providing a vacuum seal. 40 figs.

Murray, H. Jr.

1995-02-21T23:59:59.000Z

486

Design characteristics for facilities which process hazardous particulate  

SciTech Connect (OSTI)

Los Alamos National Laboratory is establishing a research and processing capability for beryllium. The unique properties of beryllium, including light weight, rigidity, thermal conductivity, heat capacity, and nuclear properties make it critical to a number of US defense and aerospace programs. Concomitant with the unique engineering properties are the health hazards associated with processing beryllium in a particulate form and the potential for worker inhalation of aerosolized beryllium. Beryllium has the lowest airborne standard for worker protection compared to all other nonradioactive metals by more than an order of magnitude. This paper describes the design characteristics of the new beryllium facility at Los Alamos as they relate to protection of the workforce. Design characteristics to be reviewed include; facility layout, support systems to minimize aerosol exposure and spread, and detailed review of the ventilation system design for general room air cleanliness and extraction of particulate at the source.

Abeln, S.P.; Creek, K.; Salisbury, S.

1998-12-01T23:59:59.000Z

487

Seismic Hazard Assessment of the Sheki-Ismayilli Region, Azerbaijan  

SciTech Connect (OSTI)

Seismic hazard assessment is an important factor in disaster management of Azerbaijan Republic. The Shaki-Ismayilli region is one of the earthquake-prone areas in Azerbaijan. According to the seismic zoning map, the region is located in intensity IX zone. Large earthquakes in the region take place along the active faults. The seismic activity of the Shaki-Ismayilli region is studied using macroseismic and instrumental data, which cover the period between 1250 and 2003. Several principal parameters of earthquakes are analyzed: maximal magnitude, energetic class, intensity, depth of earthquake hypocenter, and occurrence. The geological structures prone to large earthquakes are determined, and the dependence of magnitude on the fault length is shown. The large earthquakes take place mainly along the active faults. A map of earthquake intensity has been developed for the region, and the potential seismic activity of the Shaki-Ismayilli region has been estimated.

Ayyubova, Leyla J. [Geology Institute, Azerbaijan National Academy of Sciences, 29A, H. Javid Ave., Baku 1143 (Azerbaijan)

2006-03-23T23:59:59.000Z

488

Iron phosphate compositions for containment of hazardous metal waste  

DOE Patents [OSTI]

An improved iron phosphate waste form for the vitrification, containment and long-term disposition of hazardous metal waste such as radioactive nuclear waste is provided. The waste form comprises a rigid iron phosphate matrix resulting from the cooling of a melt formed by heating a batch mixture comprising the metal waste and a matrix-forming component. The waste form comprises from about 30 to about 70 weight percent P.sub.2 O.sub.5 and from about 25 to about 50 weight percent iron oxide and has metals present in the metal waste chemically dissolved therein. The concentration of iron oxide in the waste form along with a high proportion of the iron in the waste form being present as Fe.sup.3+ provide a waste form exhibiting improved chemical resistance to corrosive attack. A method for preparing the improved iron phosphate waste forms is also provided.

Day, Delbert E. (Rolla, MO)

1998-01-01T23:59:59.000Z

489

Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms  

E-Print Network [OSTI]

Air Quality: Monthly Hazardous Material Use, Fuel Consumption, and Equipment Operation Forms Department: Chemical and General Safety Program: Air Quality Owner: Program Manager Authority: ES&H Manual, Chapter 30, Air Quality1 The conditions of SLAC's air quality permits specify that all subject hazardous

Wechsler, Risa H.

490

Hazard elimination using backwards reachability techniques in discrete and hybrid models  

E-Print Network [OSTI]

One of the most important steps in hazard analysis is determining whether a particular design can reach a hazardous state and, if it could, how to change the design to ensure that it does not. In most cases, this is done ...

Neogi, Natasha A. (Natasha Anita), 1976-

2002-01-01T23:59:59.000Z

491

Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground  

SciTech Connect (OSTI)

This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility.

Gaschott, L.J.

1995-06-16T23:59:59.000Z

492

Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102  

SciTech Connect (OSTI)

Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis.

SHULTZ, M.V.

1999-04-05T23:59:59.000Z

493

An evaluation of current hazardous material management procedures for the Texas Department of Transportation  

E-Print Network [OSTI]

Dealing with hazardous materials on a day-to-day basis requires a fine--tuned material management system to minimize risk of exposure or injury to workers or to the public. An effective hazardous material management system should also keep up...

Lovell, Cheryl Alane

1993-01-01T23:59:59.000Z

494

Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk  

E-Print Network [OSTI]

1 Optimizing Tank Car Safety Design to Reduce Hazardous Materials Transportation Risk M. Rapik Saat hazardous materials transport risk by rail · Tank Car Design Optimization Model Tank car weight and capacity model Metrics to assess tank car performance Illustration of the optimization model

Barkan, Christopher P.L.

495

Fire and explosion hazards of oil shale. Report of Investigations/1989  

SciTech Connect (OSTI)

This publication presents the results of investigations into the fire and explosion hazards of oil-shale rocks and dust. Three areas were examined: the explosibility and ignitability of oil-shale dust clouds, the fire hazards of oil-shale dust layers on hot surfaces, and the ignitability and extinguishment of oil shale rubble piles.

Not Available

1989-01-01T23:59:59.000Z

496

Journal of Hazardous Materials 262 (2013) 456463 Contents lists available at ScienceDirect  

E-Print Network [OSTI]

of Hazardous Materials journal homepage: www.elsevier.com/locate/jhazmat Perfluorooctanoic acid degradationJournal of Hazardous Materials 262 (2013) 456­463 Contents lists available at ScienceDirect Journal light, indicating that UV radiation is required for PFOA decomposition. Spectroscopic analysis indicates

Alvarez, Pedro J.

497

Research on the Use of Robotics in Hazardous Environments at Sandia National Laboratories  

SciTech Connect (OSTI)

Many hazardous material handling needs exist in remote unstructured environments. Currently these operations are accomplished using personnel in direct contact with the hazards. A safe and cost effective alternative to this approach is the use of intelligent robotic systems for safe handling, packaging, transport, and even excavation of hazardous materials. The Intelligent Systems and Robotics Center of Sandia National Laboratories has developed and deployed robotic technologies for use in hazardous environments, three of which have been deployed in DOE production facilities for handling of special nuclear materials. Other systems are currently under development for packaging special nuclear materials. This paper presents an overview of the research activities, including five delivered systems, at %ndia National Laboratories on the use of robotics in hazardous environments.

Kwok, Kwan S.

1999-05-04T23:59:59.000Z

498

Addressing Control of Hazardous Energy (COHE) Requirements in a Laser Safety Program  

SciTech Connect (OSTI)

OSHA regulation 29CFR1910.147 specifies control of hazardous energy requirements for 'the servicing and maintenance of machines and equipment in which the unexpected energization or start up of the machines or equipment, or release of stored energy could cause injury to employees.' Class 3B and Class 4 laser beams must be considered hazardous energy sources because of the potential for serious eye injury; careful consideration is therefore needed to safely de-energize these lasers. This paper discusses and evaluates control of hazardous energy principles in this OSHA regulation, in ANSI Z136.1 ''Safe Use of Lasers,'' and in ANSI Z244.1 ''Control of Hazardous Energy, Lockout/Tagout and Alternative Methods.'' Recommendations are made for updating and improving CoHE (control of hazardous energy) requirements in these standards for their applicability to safe laser operations.

Woods, Michael; /SLAC

2012-02-15T23:59:59.000Z

499

Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100  

SciTech Connect (OSTI)

The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations.

Borgeson, M.E.

1994-11-09T23:59:59.000Z

500

Kinetics of the reduction of the zinc oxide in zinc ferrite with iron  

SciTech Connect (OSTI)

Electric arc furnace (EAF) dust, which can be considered as a by-product of the steel recycling process, contains significant quantities of recoverable zinc and iron, as well as hazardous elements such as cadmium, lead and chromium, which can be leached by ground water. The zinc in the EAF dust is found almost entirely in the form of either zinc oxide or zinc ferrite, the latter accounting for 20 to 50 percent of the total zinc. It is important that an efficient process be developed which renders the dust inert, while reclaiming the valuable metals to off-set processing costs. During the conventional carbothermic reduction processes, iron is formed, and this iron can participate in the reduction of the zinc oxide in zinc ferrite. In the present work, the reduction of the zinc oxide in zinc ferrite by iron according to the following reaction: ZnO{sup {sm_bullet}}Fe{sub 2}O{sub (s.s.)} + 2 Fe{sub (s)} = Zn{sub (g)} + 4 FeO{sub (s)} was studied in an argon atmosphere using a thermogravimetric technique. First, a thermodynamic analysis was performed using the F*A*C*T computational system. Then, the effects of briquette aspect ratio (l/d), temperature, zinc ferrite particle size, amount of iron added, as well as additions such as lime, sodium chloride, and calcium fluoride were investigated.

Donald, J.R.; Pickles, C.A. [Queen`s Univ., Kingston, Ontario (Canada). Dept. of Materials and Metallurgical Engineering

1995-12-31T23:59:59.000Z