National Library of Energy BETA

Sample records for wiki content content

  1. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8.0 - HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS February 18, 2010 Rev 1 Page 1 CHAPTER 18.0 TABLE OF CONTENTS TABLE OF CONTENTS..................................................................................................................................1 PAGINATION TABLE.....................................................................................................................................1 18.0 HOISTING AND RIGGING IN HOSTILE ENVIRONMENTS

  2. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3.0 - CRITICAL, SPECIAL, & ENGINEERED LIFTS January 4, 2016 Rev 1 Page 1 CHAPTER 3.0 TABLE OF CONTENTS 3.0 CRITICAL LIFTS ....................................................................................................................................... 3 3.1 SCOPE .......................................................................................................................................................... 3 3.2 CRITICAL LIFT DETERMINATION

  3. CONTENT MODEL HOW-TO

    Energy Science and Technology Software Center (OSTI)

    003241MLTPL00 Content Model Guidelines https://github.com/usgin/usginspecs/wiki/Content-Model-Guidelines

  4. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 2, Sampling Technical Requirements Effective Date: 6/1/07 Vol. 2: i CONTENTS 1.0 SAMPLING AND ANALYSIS PROCESS .................................................................... 1-1 2.0 DATA QUALITY OBJECTIVES ................................................................................... 2-1 3.0 SAMPLING SYSTEMS .................................................................................................. 3-1 3.1 Facility Management

  5. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volume 4, Laboratory Technical Requirements Effective Date: 6/1/07 Vol. 4: i CONTENTS 1.0 QUALITY ASSURANCE OBJECTIVES......................................................................... 1-1 1.1 DATA QUALITY OBJECTIVES............................................................................ 1-1 1.2 CLIENT DATA QUALITY REQUIREMENTS ..................................................... 1-2 1.2.1 Precision

  6. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Program and Book of Abstracts Contents Organizers i-ii Detailed Program iii-viii Oral presentations 1-38 Posters P1-P27 Program Schematic back cover The LAPD Symposium brings together scientists from laser physics, low- temperature plasma chemistry and physics, and nuclear fusion. The Symposium is an important, unique, and fruitful source for cross-fertilization between these fields. Major topics include laser-aided diagnostics for fusion plasmas, industrial process plasmas, and environmental

  7. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    8 August 2005 Contents Bechtel Nevada achieves 5 million hours! 1 WSI graduates fresh members of security 1 protective forces Handling radiation emergencies 2 SiteLines features a new editor 2 Rocky Flats survey 3 NTS Swift Water Rescue Team practices on the 3 Colorado River Drilling Program overcomes challenges at the NTS 3 Toastmasters: making effective communication a 4 worldwide reality Atomic Testing Museum update 4 Two more successful shots at JASPER 5 Hazardous Substance Inventory users 5

  8. Contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 June/July 2005 Contents Fires burn Nevada Test Site in June NNSA/NSO and Department of Homeland Security break ground at the Nevada Test Site U1h ribbon cutting marks the remarkable New training grounds dedicated at NTS Changes enhance the EAP Unicorn subcritical experiment completes key milestone New communication system takes flight SiteLines goes online DNFSB visits U1a Funnel clouds at the Nevada Test Site Community Environmental Monitor receives EPA award Take Our Daughters and Sons to

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"10302015 12:46:21 PM" "Back to Contents","Data 1: Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)"...

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","New Hampshire Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic ...

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas in Underground Storage ... 6:59:57 AM" "Back to Contents","Data 1: Kansas Natural Gas in Underground Storage ...

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Nonhydrocarbon Gases Removed from Natural ... 1:08:57 AM" "Back to Contents","Data 1: Nevada Nonhydrocarbon Gases Removed from Natural ...

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Consumed" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description"," Of Series","Frequency","Latest Data for" ,"Data 1","District of Columbia Heat Content ...

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click ... Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","32016" ,"Release ...

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Natural Gas Injections into Underground ... 7:00:26 AM" "Back to Contents","Data 1: Minnesota Natural Gas Injections into Underground ...

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"5302016 7:40:48 PM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","M...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"5302016 7:40:48 PM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS2","MCRFPP12","MCRFPFL2","MCRFPNY2","MCRFPPA2","MCRFPVA2","M...

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ,,"(202) 586-8800",,,"5302016 7:40:47 PM" "Back to Contents","Data 1: Crude Oil Production" "Sourcekey","MCRFPUS1","MCRFPP11","MCRFPFL1","MCRFPNY1","MCRFPPA1","MCRFPVA1","M...

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals from Oil ... 7:01:28 AM" "Back to Contents","Data 1: Kansas Natural Gas Gross Withdrawals from Oil ...

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Kansas Natural Gas Gross Withdrawals from Gas ... 7:01:18 AM" "Back to Contents","Data 1: Kansas Natural Gas Gross Withdrawals from Gas ...

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Brazil (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NBRDMCF"...

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Gross Withdrawals from Gas ... 1:07:58 AM" "Back to Contents","Data 1: Nevada Natural Gas Gross Withdrawals from Gas ...

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Withdrawals from Oil Wells ... 1:08:20 AM" "Back to Contents","Data 1: Nevada Natural Gas Withdrawals from Oil Wells ...

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Natural Gas Deliveries to Electric Power ... 1:03:28 AM" "Back to Contents","Data 1: Nevada Natural Gas Deliveries to Electric Power ...

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Nevada Price of Natural Gas Sold to Commercial ... 1:00:55 AM" "Back to Contents","Data 1: Nevada Price of Natural Gas Sold to Commercial ...

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Motor Gasoline Sales to End Users Prices ... 8:28:36 AM" "Back to Contents","Data 1: Motor Gasoline Sales to End Users Prices " ...

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    ...,"Energy Information Administration" ,"For Help, Contact:","infoctr@eia.gov" ,,"(202) 586-8800",,,"4292016 6:42:48 AM" "Back to Contents","Data 1: U.S. LNG Imports from Indonesia ...

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Residual Fuel Oil Prices, Average - Sales to End Users ... AM" "Back to Contents","Data 1: Residual Fuel Oil Prices, Average - Sales to End Users " ...

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Spain (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NSPDMCF"...

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: East Coast (PADD 1) Net Receipts of Crude Oil and Petroleum Products by Pipeline, Tanker, Barge and Rail" "Sourcekey","MTTNRP11","MCRNRP11","MPEMNP11...

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Exports by Vessel to Japan (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0EVENUS-NJADMCF"...

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Liquefied U.S. Natural Gas Exports by Vessel to Japan (Million Cubic Feet)" "Sourcekey","NGMEPG0EVENUS-NJAMMCF" "Date","Liquefied U.S....

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Japan (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NJADMCF"...

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    AM" "Back to Contents","Data 1: Price of Liquefied U.S. Natural Gas Re-Exports to Chile (Dollars per Thousand Cubic Feet)" "Sourcekey","NGMEPG0ERENUS-NCIDMCF"...

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Crude Oil (Light-Sweet, Cushing, Oklahoma)",4,"Daily","726... to Contents","Data 1: Crude Oil (Light-Sweet, Cushing, Oklahoma)" "Sourcekey","RCLC1","...

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Minnesota Price of Natural Gas Sold to Commercial ... 6:57:30 AM" "Back to Contents","Data 1: Minnesota Price of Natural Gas Sold to Commercial ...

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alaska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Alabama Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arkansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Arizona Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","California Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Colorado Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","District of Columbia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Delaware Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Florida Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Georgia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Hawaii Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Iowa Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Idaho Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Illinois Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Kansas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Louisiana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Massachusetts Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Maryland Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Michigan Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Minnesota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Missouri Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Mississippi Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Montana Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","North Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nebraska Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Jersey Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  4. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New Mexico Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  5. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Nevada Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  6. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","New York Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  7. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Ohio Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  8. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  9. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Oregon Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  10. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Pennsylvania Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  11. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Rhode Island Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  12. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Carolina Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  13. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","South Dakota Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  14. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Tennessee Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  15. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Texas Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  16. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Utah Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  17. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  18. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Vermont Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  19. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Washington Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  20. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wisconsin Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  1. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","West Virginia Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  2. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)" ,"Click worksheet name or tab at bottom for data" ,"Worksheet Name","Description","# Of Series","Frequency","Latest Data for" ,"Data 1","Wyoming Heat Content of Natural Gas Deliveries to Consumers (BTU per Cubic Foot)",1,"Monthly","6/2016" ,"Release Date:","08/31/2016" ,"Next Release

  3. Workbook Contents

    U.S. Energy Information Administration (EIA) Indexed Site

    Contents","Data 1: U.S., PAD Districts, and States" "Sourcekey","8NA8O0NUSC","8NA8O0R10C","8NA8O0SDEC","8NA8O0SFLC","8NA8O0SGAC","8NA8O0SMDC","8NA8O0SN...

  4. EERE Website Content Checklist

    Broader source: Energy.gov [DOE]

    This checklist is a tool to guide EERE content developers and editors in creating and reviewing content for websites.

  5. Fermilab Today - Related Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Related Content Subscribe | Contact Fermilab Today | Archive | Classifieds Search GO Classifieds Director's Corner Physics in a Nutshell Frontier Science Result Tip of the Week...

  6. Content Model Guidelines

    Energy Science and Technology Software Center (OSTI)

    2013-08-01

    This wiki page provides the public with all specifications needed to create a new spreadsheet (workbook) implementation of an information exchange, so that it conforms and functions properly with NGDS validation tools.

  7. TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    AC05-00OR22800 TABLE OF CONTENTS Contents Page # TOC - i SECTION A - SOLICITATION/OFFER AND AWARD ......................................................................... A-i SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ........................................................ B-i B.1 SERVICES BEING ACQUIRED ....................................................................................B-2 B.2 TRANSITION COST, ESTIMATED COST, MAXIMUM AVAILABLE FEE, AND AVAILABLE FEE (Modification 295,

  8. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3, Revision 0 i TABLE OF CONTENTS 1.0 Summary .............................................................................................................................. 1 2.0 Introduction .......................................................................................................................... 1 3.0 Discussion ............................................................................................................................ 4 3.1 Selection of Tanks for Level Decrease

  9. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4, Revision 0 i TABLE OF CONTENTS 1.0 Summary .............................................................................................................................. 1 2.0 Introduction .......................................................................................................................... 1 3.0 Discussion ............................................................................................................................ 4 3.1 Selection of Tanks for Level Decrease

  10. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5, Revision 0 i TABLE OF CONTENTS 1.0 Summary .............................................................................................................................. 1 2.0 Introduction .......................................................................................................................... 1 3.0 Discussion ............................................................................................................................ 4 3.1 Selection of Tanks for Level Decrease

  11. Contents.key

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paul Clavin Contents Combustion Waves and Fronts in Flows P. Clavin and G. Searby Cambridge University Press (to appear) Orders of magnitude 2 Lecture 1: 1-1: Overall...

  12. TABLE OF CONTENTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    008 High Temperature Superconductivity for Electric Systems Peer Review Final Report i TABLE OF CONTENTS High Temperature Superconductivity for Electric Systems Program Overview ...... 1 The Peer Review................................................................................................................ 3 Review Criteria ................................................................................................................. 5 Guidelines

  13. Table_of_Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Table of Contents 1. Physical Security .............................................................................................................................. 1-1 101. Headquarters Security Badges ........................................................................................ 101-1 102. HSPD-12 Badges and the PIV Process ........................................................................... 102-1 103. Prohibited Articles

  14. TABLE OF CONTENTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    irecusa.org | LMI Guidelines | 0 www.irecusa.org | LMI Guidelines | i TABLE OF CONTENTS Executive Summary iv Content Overview vii Introduction 1 I. Identifying LMI Customers and Designing Facilities to Serve LMI Customers 5 A. LMI Customers 5 B. Designing Facilities to Serve LMI Customers 6 II. Barriers to Adoption and Opportunities for Engagement 11 A. Financial Barriers 11 B. Ownership Barriers and Split Incentives 14 C. Marketing, Education, and Outreach Barriers 15 D. Opportunities for

  15. Secure content objects

    DOE Patents [OSTI]

    Evans, William D.

    2009-02-24

    A secure content object protects electronic documents from unauthorized use. The secure content object includes an encrypted electronic document, a multi-key encryption table having at least one multi-key component, an encrypted header and a user interface device. The encrypted document is encrypted using a document encryption key associated with a multi-key encryption method. The encrypted header includes an encryption marker formed by a random number followed by a derivable variation of the same random number. The user interface device enables a user to input a user authorization. The user authorization is combined with each of the multi-key components in the multi-key encryption key table and used to try to decrypt the encrypted header. If the encryption marker is successfully decrypted, the electronic document may be decrypted. Multiple electronic documents or a document and annotations may be protected by the secure content object.

  16. TABLE OF CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DE-EM0001840 Page 2 of 108 WIPP Transportation Services Table of Contents SECTION B - SUPPLIES OR SERVICES AND PRICES/COSTS ................................................................ 3 SECTION C - DESCRIPTION/SPECIFICTIONS ....................................................................................... 10 SECTION D -PACKAGING AND MARKING .............................................................................................. 34 SECTION E - INSPECTION AND ACCEPTANCE

  17. Table of Contents

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    COMMUNICATIONS REQUIREMENTS OF SMART GRID TECHNOLOGIES October 5, 2010 i Table of Contents I. Introduction and Executive Summary.......................................................... 1 a. Overview of Smart Grid Benefits and Communications Needs................. 2 b. Summary of Recommendations .................................................................... 5 II. Federal Government Smart Grid Initiatives ................................................ 7 a. DOE Request for Information

  18. Contents TRU Waste Celebration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 September 2005 A publication for all members of the NNSA/NSO family Contents TRU Waste Celebration by Katherine Schwartz On July 28, 2005, Bechtel Nevada hosted a function to commemorate the dedication and hard work of every Joanne Norton of meeting the milestone of completion of characterization of all legacy waste drums stored at the NTS for 30 years." , assistant general manager for Environmental Management at BN, was equally pleased. making direct contact with it. the dedicated

  19. Personalized professional content recommendation

    DOE Patents [OSTI]

    Xu, Songhua

    2015-11-05

    A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.

  20. Microsoft Word - contents

    Office of Legacy Management (LM)

    GJO-2001-272-TAR MAC-GWDUR 1.1 UMTRA Ground Water Project Site Observational Work Plan for the Durango, Colorado, UMTRA Project Site January 2002 Prepared by U.S. Department of Energy Grand Junction Office Grand Junction, Colorado Project Number UGW 511-0006-10-000 Document Number U0143200 Work Performed Under DOE Contract Number DE-AC13-96GJ87335 This page intentionally left blank Document Number U0143200 Contents DOE/Grand Junction Office Site Observational Work Plan -Durango, Colorado January

  1. Personalized professional content recommendation

    SciTech Connect (OSTI)

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface configured to automatically monitor a user's information data stream transmitted on the Internet. A hybrid contextual behavioral and collaborative personal interest inference engine resident to a non-transient media generates automatic predictions about the interests of individual users of the system. A database server retains the user's personal interest profile based on a plurality of monitored information. The system also includes a server programmed to filter items in an incoming information stream with the personal interest profile and is further programmed to identify only those items of the incoming information stream that substantially match the personal interest profile.

  2. CONTENT MODEL HOW-TO

    Energy Science and Technology Software Center (OSTI)

    003240MLTPL00 Defining a new information exchange https://github.com/usgin/usginspecs/wiki/Defining-New-Information-Exchanges-and-Editing-Existing-Exchanges

  3. Web Content Analysis and Inventories

    Broader source: Energy.gov [DOE]

    The Office of Energy Efficiency and Renewable Energy (EERE) recommends periodic content inventories and analyses of its websites. They will help identify content that needs to be updated, edited, added, or removed for maintenance.

  4. ,"Oklahoma Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Oklahoma Heat Content of Natural Gas ... 11:00:12 AM" "Back to Contents","Data 1: Oklahoma Heat Content of Natural Gas Consumed

  5. ,"California Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","California Heat Content of Natural Gas ... 10:59:46 AM" "Back to Contents","Data 1: California Heat Content of Natural Gas Consumed

  6. ,"Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Virginia Heat Content of Natural Gas ... 11:00:21 AM" "Back to Contents","Data 1: Virginia Heat Content of Natural Gas Consumed

  7. Visual Analysis of Weblog Content

    SciTech Connect (OSTI)

    Gregory, Michelle L.; Payne, Deborah A.; McColgin, Dave; Cramer, Nick O.; Love, Douglas V.

    2007-03-26

    In recent years, one of the advances of the World Wide Web is social media and one of the fastest growing aspects of social media is the blogosphere. Blogs make content creation easy and are highly accessible through web pages and syndication. With their growing influence, a need has arisen to be able to monitor the opinions and insight revealed within their content. In this paper we describe a technical approach for analyzing the content of blog data using a visual analytic tool, IN-SPIRE, developed by Pacific Northwest National Laboratory. We highlight the capabilities of this tool that are particularly useful for information gathering from blog data.

  8. JOBAID-LAUNCHING ONLINE CONTENT

    Broader source: Energy.gov [DOE]

    In this jobaid you will learn how to launch Online Content "Items" or Courses. In the LMS you can launch most anything as an "item": documents, courses, webpages and track users that have completed...

  9. ARM - Measurement - Ice water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Ice water content The concentration (mass/vol) of ice water particles in a cloud. Categories Cloud Properties, Atmospheric State Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including

  10. ARM - Measurement - Liquid water content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    content ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Measurement : Liquid water content The concentration (mass/vol) of liquid water droplets in a cloud. Categories Cloud Properties Instruments The above measurement is considered scientifically relevant for the following instruments. Refer to the datastream (netcdf) file headers of each instrument for a list of all available measurements, including those recorded

  11. Contents

    National Nuclear Security Administration (NNSA)

    ... by creating a set of ALOHA save files or (b) to be able to rerun a scenario in the future. ... for elevation, latitude, and longitude to calculate solar radiation and air pressure. ...

  12. Contents

    Broader source: Energy.gov (indexed) [DOE]

    items, remeasurements and stranded cost recoveries 101 Note 5 - Finance income and ... 147 Note 33 - Sensitivities on areas of estimation and uncertainty 148 Note 34 - ...

  13. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    responsible contractor's processes and, as a minimum, shall be signed and dated by the following: 1. Technical Approver (see Appendix A for definition) 2. Manager responsible...

  14. contents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2-0729 Unlimited Release Printed April 2002 Sandia SCADA Program High-Security SCADA LDRD Final Report Rolf Carlson Prepared by Sandia National Laboratories Albuquerque, New Mexico 87185 and Livermore, California 94550 Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000. Approved for public release; further dissemination unlimited. Issued by Sandia National Laboratories,

  15. CONTENTS

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    organization (such as Safety or Quality Assurance). Depending upon the site-specific organizational structure, the following reviewapprovals are recommended: DOERL-92-36,...

  16. Add Java extensions to your wiki: Java applets can bring dynamic functionality to your wiki pages

    SciTech Connect (OSTI)

    Scarberry, Randall E.

    2008-08-12

    Virtually everyone familiar with today’s world wide web has encountered the free online encyclopedia Wikipedia many times. What you may not know is that Wikipedia is driven by an excellent open-source product called MediaWiki which is available to anyone for free. This has led to a proliferation of wiki sites devoted to just about any topic one can imagine. Users of a wiki can add content -- all that is required of them is that they type in their additions into their web browsers using the simple markup language called wikitext. Even better, the developers of wikitext made it extensible. With a little server-side development of your own, you can add your own custom syntax. Users aware of your extensions can then utilize them on their wiki pages with a few simple keystrokes. These extensions can be custom decorations, formatting, web applications, and even instances of the venerable old Java applet. One example of a Java applet extension is the Jmol extension (REF), used to embed a 3-D molecular viewer. This article will walk you through the deployment of a fairly elaborate applet via a MediaWiki extension. By no means exhaustive -- an entire book would be required for that -- it will demonstrate how to give the applet resize handles using using a little Javascript and CSS coding and some popular Javascript libraries. It even describes how a user may customize the extension somewhat using a wiki template. Finally, it explains a rudimentary persistence mechanism which allows applets to save data directly to the wiki pages on which they reside.

  17. ,"Texas Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","Texas Heat Content of Natural Gas ...2016 6:34:00 AM" "Back to Contents","Data 1: Texas Heat Content of Natural Gas Consumed

  18. SECTION J - TABLE OF CONTENTS

    National Nuclear Security Administration (NNSA)

    Conformed to Mod 0108 DE-NA0000622 Section J Page i PART III - LIST OF DOCUMENTS, EXHIBITS, AND OTHER ATTACHMENTS SECTION J LIST OF APPENDICES TABLE OF CONTENTS Appendix A Statement of Work (Replaced by Mod 002; Modified Mod 016; Replaced Mod 029) Appendix B Performance Evaluation Plan (Replaced by Mods 002, 016, 020, 029, 0084) Appendix C Contractor's Transition Plan Appendix D Sensitive Foreign Nations Control Appendix E Performance Guarantee Agreement(s) Appendix F National Work Breakdown

  19. CONTENTS OF A VISIT REQUEST

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTENTS OF A VISIT REQUEST All visit requests are required to be submitted via JPAS according to AFI 31-101 and the NISPOM. Our SMO code is KV1MFSCC6. Please do not send an annual visit request for the conference. Use the dates of the conference for the duration of the visit. Please list Bing Serafico, 505-853-0451 as the Point of Contract for the visit. NOTE: Only use the following information if your companies DO NOT have access to JPAS. All faxed visit request for personnel that are in JPAS

  20. Help:Contents | Open Energy Information

    Open Energy Info (EERE)

    Widgets OpenEI Widgets (visit a particular Widget page for specific documentation) Personal customization Preferences Wiki administration Sysops and permissions The following...

  1. Energy.gov Content Management System

    Broader source: Energy.gov [DOE]

    Energy.gov Content Management SystemEERE's websites are hosted in Energy.gov's Drupal content management system (CMS), which is maintained by the U.S. Department of Energy's Public Affairs Office.

  2. Template:ContentAssist | Open Energy Information

    Open Energy Info (EERE)

    ContentAssist Jump to: navigation, search This is the ContentAssist template. It is intended for inclusion on any page and will highlight extracted energy-related terms from the...

  3. ISOLATING CONTENT AND METADATA FROM WEBLOGS USING CLASSIFICATION AND RULE-BASED APPROACHES

    SciTech Connect (OSTI)

    Marshall, Eric J.; Bell, Eric B.

    2011-09-04

    The emergence and increasing prevalence of social media, such as internet forums, weblogs (blogs), wikis, etc., has created a new opportunity to measure public opinion, attitude, and social structures. A major challenge in leveraging this information is isolating the content and metadata in weblogs, as there is no standard, universally supported, machine-readable format for presenting this information. We present two algorithms for isolating this information. The first uses web block classification, where each node in the Document Object Model (DOM) for a page is classified according to one of several pre-defined attributes from a common blog schema. The second uses a set of heuristics to select web blocks. These algorithms perform at a level suitable for initial use, validating this approach for isolating content and metadata from blogs. The resultant data serves as a starting point for analytical work on the content and substance of collections of weblog pages.

  4. Standard Format and Content for Emergency Plans

    Broader source: Directives, Delegations, and Requirements [Office of Management (MA)]

    1997-08-21

    This volume addresses recommended emergency plan format and content for Operational Emergency Base Programs and Operational Emergency Hazardous Material Programs. Canceled by DOE G 151.1-3.

  5. Energy.gov Content Management System Webforms

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, Energy.gov's content management system (CMS) has the ability to create webforms.

  6. ,"West Virginia Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","West Virginia Heat Content of Natural Gas ... AM" "Back to Contents","Data 1: West Virginia Heat Content of Natural Gas Consumed

  7. Web Content Analysis and Inventories: Template and FY 2014 Inventory...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Content Analysis and Inventories: Template and FY 2014 Inventory Web Content Analysis and ... It also includes a notes field, which can be used for a Web content analysis. Content ...

  8. Training Program Content, 4/10/95

    Broader source: Energy.gov [DOE]

    The objective of this surveillance is to evaluate the effectiveness of the contractor's program for establishing the content of training programs.  The process to be evaluated includes (1)...

  9. Widget:ContentAssist | Open Energy Information

    Open Energy Info (EERE)

    ContentAssist Jump to: navigation, search This widget generates a bar of recommended reading related to the page on which it is embedded. Additionally, this widget mines the...

  10. Table of Contents for Desk Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    September, 2014 U. S. Department of Energy - Real Estate Desk Guide Revised 2014 Real Estate Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide............................................................................... 1 Chapter 2-- Introduction ................................................................................................. 3 Chapter 3-- Planning Policy ........................................................................................... 9 Chapter 4-- Real

  11. BETO Quiz - Interactive Content | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BETO Quiz - Interactive Content BETO Quiz - Interactive Content Welcome to the Bioenergy Quiz! Navigate through the quiz by clicking on the circular buttons and selecting the correct answers to the questions. Use the scrollbar to move down the page and view all of the information displayed. Hover over words and phrases highlighted in orange for an explanation of terms. Share the information by clicking on the buttons in the Share This block. Use the arrow button found in the bottom right-hand

  12. RH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-07-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  13. AVLIS documentation overview and tables of contents

    SciTech Connect (OSTI)

    Not Available

    1984-11-15

    Three documents constitute the executive summary series in Data Package III: this document (Documentation Overview and Tables of Contents (E001)) plus the AVLIS Production Plant Executive Summary (E010) and the AVLIS Production Plant Overall Design Report (E020). They provide progressively greater detail on the key information and conclusions contained within the data package. The Executive Summary and Overall Design Report present summaries of each Data Package III document. They are intended to provide a global overview of AVLIS Production Plant deployment including program planning, project management, schedules, engineering design, production, operations, capital cost, and operating cost. The purpose of Overview and Tables of Contents is threefold: to briefly review AVLIS goals for Data Package III documentation, to present an overview of the contents of the data package, and to provide a useful guide to information contained in the numerous documents comprising the package.

  14. CH-TRU Waste Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2008-01-16

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. Remote-Handled Transuranic Content Codes

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2006-12-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  16. Local content of bipartite qubit correlations

    SciTech Connect (OSTI)

    Branciard, Cyril; Gisin, Nicolas [Group of Applied Physics, University of Geneva, 1211 Geneva (Switzerland); Scarani, Valerio [Centre for Quantum Technologies and Department of Physics, National University of Singapore, 117543 Singapore (Singapore)

    2010-02-15

    One of the last open problems concerning two qubits in a pure state is to find the exact local content of their correlation, in the sense of Elitzur, Popescu, and Rohrlich (EPR2) [A. C. Elitzur, S. Popescu, and D. Rohrlich, Phys. Lett. A162, 25 (1992)]. We propose an EPR2 decomposition that allows us to prove, for a wide range of states |{psi}({theta})>=cos{theta}|00>+sin{theta}|11>, that their local content is p{sub L}({theta})=cos2{theta}. We also share reflections on how to possibly extend this result to all two-qubit pure states.

  17. How to create formatted blocks to hold OpenEI wiki content |...

    Open Energy Info (EERE)

    format, which you can see in use on the OpenEI frontpage. As an example of the migration, please see below. You can see that classes after "block-v1" moved in addition to...

  18. OpenEI:Core content policies | Open Energy Information

    Open Energy Info (EERE)

    Core content policies Jump to: navigation, search OpenEI models its core content policies after those established by the Wikipedia.1 Specifically, the OpenEI core content...

  19. ,"New Mexico Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","New Mexico Heat Content of Natural Gas ... 10:27:06 AM" "Back to Contents","Data 1: New Mexico Heat Content of Natural Gas Consumed

  20. ,"North Carolina Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Carolina Heat Content of Natural Gas ... 10:27:02 AM" "Back to Contents","Data 1: North Carolina Heat Content of Natural Gas ...

  1. ,"North Dakota Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Data for" ,"Data 1","North Dakota Heat Content of Natural Gas ... 10:27:03 AM" "Back to Contents","Data 1: North Dakota Heat Content of Natural Gas ...

  2. Method of determining a content of a nuclear waste container

    DOE Patents [OSTI]

    Bernardi, Richard T.; Entwistle, David

    2003-04-22

    A method and apparatus are provided for identifying contents of a nuclear waste container. The method includes the steps of forming an image of the contents of the container using digital radiography, visually comparing contents of the image with expected contents of the container and performing computer tomography on the container when the visual inspection reveals an inconsistency between the contents of the image and the expected contents of the container.

  3. Table of Contents for Desk Guide

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    May, 2013 U. S. Department of Energy - Real Estate Desk Guide Revised 2013 Real Estate Desk Guide Table of Contents Chapter 1-- Purpose of Desk Guide ........................................................................ 1 Chapter 2-- Introduction ......................................................................................... 3 Chapter 3-- Planning Policy .................................................................................... 7 Chapter 4-- Real Estate Function

  4. T-663: Cisco Content Services Gateway ICMP Processing Flaw Lets...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3: Cisco Content Services Gateway ICMP Processing Flaw Lets Remote Users Deny Service T-663: Cisco Content Services Gateway ICMP Processing Flaw Lets Remote Users Deny Service July...

  5. Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Educating Consumers: New Content on Diesel Vehicles, Diesel Exhaust Fluid, and Selective Catalytic Reduction Technologies on the AFDC Educating Consumers: New Content on Diesel ...

  6. Does Water Content or Flow Rate Control Colloid Transport in...

    Office of Scientific and Technical Information (OSTI)

    Does Water Content or Flow Rate Control Colloid Transport in Unsaturated Porous Media? Citation Details In-Document Search Title: Does Water Content or Flow Rate Control Colloid ...

  7. Headquarters Facilities Master Security Plan- Table of Contents

    Office of Energy Efficiency and Renewable Energy (EERE)

    2016 Headquarters Facilities Master Security Plan - Table of Contents Table of Contents for the 2016 Headquarters Facilities Master Security Plan (HQFMSP).

  8. Energy.gov Data Tables in Content Management System | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Data Tables in Content Management System Energy.gov Data Tables in Content Management System For Office of Energy Efficiency and Renewable Energy (EERE) websites, follow these...

  9. Widget:DivContentWrapper | Open Energy Information

    Open Energy Info (EERE)

    div For example: Widget:DivContentWrapper | classui-corner-all | stylebackground-color: green; padding: 5px; color: white; | contentText Text Retrieved from "http:...

  10. Remote possibly hazardous content container sampling device

    DOE Patents [OSTI]

    Volz, David L.

    1998-01-01

    The present invention relates to an apparatus capable of sampling enclosed containers, where the contents of the container is unknown. The invention includes a compressed air device capable of supplying air pressure, device for controlling the amount of air pressure applied, a pneumatic valve, a sampling device having a hollow, sampling insertion needle suspended therein and device to communicate fluid flow between the container and a containment vessel, pump or direct reading instrument.

  11. Application Content and Evaluation Criteria/Process

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Evaluation Criteria/Process Reginald Tyler Golden Field Office Office of Hydrogen, Fuel Cells and Infrastructure Technologies Application Content o Separate Applications for Each Major Topic o Title Should Identify the Topic Area o Application - SF 424 o Budget File - SF 424A o Project Summary - 1 page, non-proprietary Project Narrative o Provide clear description of the technical concept and how you plan to accomplish the work. o Include a description of the relevance of and justification for

  12. CONTENTS Gas Hydrate-Bearing Sand

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CONTENTS Gas Hydrate-Bearing Sand Reservoir Systems in the Offshore of India: Results of the India National Gas Hydrate Program Expedition 02 ..............1 The Potential for Abiotic Methane in Arctic Gas Hydrates .................9 Coupled Thermo-Hydro-Chemo- Mechanical (THCM) Models for Hydrate-Bearing Sediments ....13 Emerging Issues in the Development of Geologic Models for Gas Hydrate Numerical Simulation ................19 Announcements ...................... 23 * DOE/NETL FY2016 Methane

  13. Analysis of Joint Masonry Moisture Content Monitoring

    SciTech Connect (OSTI)

    Ueno, Kohta

    2015-10-01

    Adding insulation to the interior side of walls of masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw, have known solutions, but wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated versus non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  14. Analysis of Joist Masonry Moisture Content Monitoring

    SciTech Connect (OSTI)

    Ueno, Kohta

    2015-10-08

    There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.

  15. ,"U.S. Heat Content of Natural Gas Consumed"

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Deliveries to Consumers (BTU per Cubic Foot)","U.S. Total Consumption of Heat Content of Natural Gas (BTU per Cubic Foot)","U.S. Heat Content of Natural Gas Deliveries to ...

  16. SWS Online Tool now includes Multifamily Content, plus a How...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SWS Online Tool now includes Multifamily Content, plus a How-To Webinar SWS Online Tool now includes Multifamily Content, plus a How-To Webinar This announcement contains ...

  17. Reducing the moisture content of clean coals

    SciTech Connect (OSTI)

    Kehoe, D. )

    1992-12-01

    Coal moisture content can profoundly effect the cost of burning coal in utility boilers. Because of the large effect of coal moisture, the Empire State Electric Energy Research Corporation (ESEERCO) contracted with the Electric Power Research Institute to investigate advanced coal dewatering methods at its Coal Quality Development Center. This report contains the test result on the high-G solid-bowl centrifuge, the second of four devices to be tested. The high-G solid-bowl centrifuge removes water for coal by spinning the coal/water mixture rapidly in a rotating bowl. This causes the coal to cling to the sides of the bowl where it can be removed, leaving the water behind. Testing was performed at the CQDC to evaluate the effect of four operating variables (G-ratio, feed solids concentration, dry solids feed rate, and differential RPM) on the performance of the high-G solid-bowl centrifuge. Two centrifuges of different bowl diameter were tested to establish the effect of scale-up of centrifuge performance. Testing of the two centrifuges occurred from 1985 through 1987. CQDC engineers performed 32 tests on the smaller of the two centrifuges, and 47 tests on the larger. Equations that predict the performance of the two centrifuges for solids recovery, moisture content of the produced coal, and motor torque were obtained. The equations predict the observed data well. Traditional techniques of establishing the performance of centrifuge of different scale did not work well with the two centrifuges, probably because of the large range of G-ratios used in the testing. Cost of operating a commercial size bank of centrifuges is approximately $1.72 per ton of clean coal. This compares well with thermal drying, which costs $1.82 per ton of clean coal.

  18. Improved Technique of Hydrogen Content Analysis by Slow Neutron Scattering

    DOE R&D Accomplishments [OSTI]

    Rainwater, L. J.; Havens, W. W. Jr.

    1945-02-28

    A slow-neutron-transmission method fro determining the H content of fluorcarbons is described (G.Y.)

  19. Web Content Analysis and Inventories: Template and FY 2014 Inventory

    Office of Energy Efficiency and Renewable Energy (EERE)

    A content inventory and analysis will help identify content that needs to be updated, edited, added, or removed for maintenance. They're also recommended prior to starting a website redesign. This content template and sample inventory were created in Excel. The sample lists URLs, page names, navigation, navigation hierarchy, and section placement for each page on the website. It also includes a notes field, which can be used for a Web content analysis.

  20. Microsoft Word - Permit Table of Contents 2-2014 (2).docx

    Office of Environmental Management (EM)

    Table of Contents February 2014 WIPP Permit - Table of Contents PART 1 - GENERAL PERMIT CONDITIONS ... 1...

  1. Expanded Content Envelope For The Model 9977 Packaging

    SciTech Connect (OSTI)

    Abramczyk, G. A.; Loftin, B. M.; Nathan, S. J.; Bellamy, J. S.

    2013-07-30

    An Addendum was written to the Model 9977 Safety Analysis Report for Packaging adding a new content consisting of DOE-STD-3013 stabilized plutonium dioxide materials to the authorized Model 9977 contents. The new Plutonium Oxide Content (PuO{sub 2}) Envelope will support the Department of Energy shipment of materials between Los Alamos National Laboratory and Savannah River Site facilities. The new content extended the current content envelope boundaries for radioactive material mass and for decay heat load and required a revision to the 9977 Certificate of Compliance prior to shipment. The Addendum documented how the new contents/configurations do not compromise the safety basis presented in the 9977 SARP Revision 2. The changes from the certified package baseline and the changes to the package required to safely transport this material is discussed.

  2. Featured Content | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Content High Energy Physics (HEP) HEP Home About Research Facilities Science Highlights Benefits of HEP Funding Opportunities Advisory Committees Community Resources Featured Content 2016 2015 2014 2013 2012-2008 Reports Contact Information High Energy Physics U.S. Department of Energy SC-25/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3624 F: (301) 903-2597 E: Email Us More Information » Community Resources Featured Content Print Text Size: A A A

  3. Energy.gov Content Management System Requirements and Guidance | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy Energy.gov Content Management System Requirements and Guidance Energy.gov Content Management System Requirements and Guidance The Office of Energy Efficiency and Renewable Energy's (EERE's) websites are hosted in Energy.gov's Drupal content management system (CMS), which is maintained by the U.S. Department of Energy's Public Affairs Office. Learn more about Energy.gov's Drupal CMS requirements and guidance for: Page types Block types Linking File naming conventions Optimizing

  4. Thorium, uranium and rare earth elements content in lanthanide...

    Office of Scientific and Technical Information (OSTI)

    Thorium, uranium and rare earth elements content in lanthanide concentrate (LC) and water ... in lanthanide concentrate (LC) and water leach purification (WLP) residue of Lynas ...

  5. Section 15: Content of Compliance Recertification Application(s)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Content of Compliance Recertification Application(s) (40 CFR § 194.15) United States Department of Energy Waste Isolation Pilot Plant Carlsbad Field Office Carlsbad, New Mexico Compliance Recertification Application 2014 Content of Compliance Recertification Application(s) (40 CFR § 194.15) Table of Contents 15.0 Content of Compliance Recertification Application(s) (40 CFR § 194.15) 15.1 Requirements 15.2 Background 15.3 1998 Certification Decision 15.4 Changes in the CRA-2004 15.5 EPA's

  6. Energy.gov Content Management System Data Tables

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, follow these guidelines for creating Section 508-compliant data tables in the Energy.gov content management system.

  7. Similarity Engine: Using Content Similarity to Improve Memory...

    Office of Scientific and Technical Information (OSTI)

    Similarity to Improve Memory Resilience. Citation Details In-Document Search Title: Similarity Engine: Using Content Similarity to Improve Memory Resilience. Abstract not provided. ...

  8. Energy.gov Content Management System Block Types

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, learn about the variety of block types available in the Energy.gov Drupal content management system (CMS).

  9. Modification of Lignin Content of Plant Cell Walls - Energy Innovation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Biomass and Biofuels Biomass and Biofuels Find More Like This Return to Search Modification of Lignin Content of Plant Cell Walls Brookhaven National Laboratory Contact BNL About ...

  10. Information Content of the Low-Energy Electric Dipole Strength...

    Office of Scientific and Technical Information (OSTI)

    Purpose: We study the information content carried by the ... Methods: We use the self-consistent nuclear density ... Country of Publication: United States Language: English Word ...

  11. Featured Content | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources » Featured Content Advanced Scientific Computing Research (ASCR) ASCR Home About Research Facilities Science Highlights Benefits of ASCR Funding Opportunities Advanced Scientific Computing Advisory Committee (ASCAC) Community Resources Featured Content 2016 Archive ASCR Discovery ASCR Program Documents ASCR Workshops and Conferences Contact Information Advanced Scientific Computing Research U.S. Department of Energy SC-21/Germantown Building 1000 Independence Ave., SW Washington, DC

  12. Consideration of Factors Affecting Strip Effluent PH and Sodium Content

    SciTech Connect (OSTI)

    Peters, T.

    2015-07-29

    A number of factors were investigated to determine possible reasons for why the Strip Effluent (SE) can sometimes have higher than expected pH values and/or sodium content, both of which have prescribed limits. All of the factors likely have some impact on the pH values and Na content.

  13. Mercury Contents of Natural Thermal and Mineral Fluids, In- U...

    Open Energy Info (EERE)

    Paper 713 Jump to: navigation, search OpenEI Reference LibraryAdd to library Book Section: Mercury Contents of Natural Thermal and Mineral Fluids, In- U.S. Geological...

  14. A Review Of Water Contents Of Nominally Anhydrous Natural Minerals...

    Open Energy Info (EERE)

    Of Water Contents Of Nominally Anhydrous Natural Minerals In The Mantles Of Earth, Mars And The Moon Jump to: navigation, search OpenEI Reference LibraryAdd to library Journal...

  15. Application Content and Evaluation Criteria/Process | Department...

    Office of Environmental Management (EM)

    Presentation on Application Content and Evaluation CriteriaProcess presented at the PEM fuel cell pre-solicitation meeting held May 26, 2005 in Arlington, VA. fcwrkshpreg.pdf ...

  16. Recent content in Databus | OpenEI Community

    Open Energy Info (EERE)

    Question Groups Menu You must login in order to post into this group. Recent content Hello-Sorry for the delay in... Use of DynamicAggregationProcessor I submitted a pull...

  17. Impact of Fission Products Impurity on the Plutonium Content...

    Office of Scientific and Technical Information (OSTI)

    Impact of Fission Products Impurity on the Plutonium Content of Metal- and Oxide- Fuels in Sodium Cooled Fast Reactors Citation Details In-Document Search Title: Impact of Fission ...

  18. Recent content in Linked Open Data Workshop in Washington, D...

    Open Energy Info (EERE)

    Recent content in Linked Open Data Workshop in Washington, D.C. Home Name Post date sort icon Type Detailed Planning Kicks Off Jweers 27 Sep 2012 - 06:53 Blog entry Notes from the...

  19. T-544: Cisco Security Advisory: Cisco Content Services Gateway...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a single content service to be active on the Cisco CSG2 and can be exploited via crafted TCP packets. A three-way handshake is not required to exploit either of these...

  20. Recommending personally interested contents by text mining, filtering, and interfaces

    SciTech Connect (OSTI)

    Xu, Songhua

    2015-10-27

    A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.

  1. Recommending personally interested contents by text mining, filtering, and interfaces

    DOE Patents [OSTI]

    xu, Songhua

    2015-11-05

    A personalized content recommendation system includes a client interface device configured to monitor a user's information data stream. A collaborative filter remote from the client interface device generates automated predictions about the interests of the user. A database server stores personal behavioral profiles and user's preferences based on a plurality of monitored past behaviors and an output of the collaborative user personal interest inference engine. A programmed personal content recommendation server filters items in an incoming information stream with the personal behavioral profile and identifies only those items of the incoming information stream that substantially matches the personal behavioral profile. The identified personally relevant content is then recommended to the user following some priority that may consider the similarity between the personal interest matches, the context of the user information consumption behaviors that may be shown by the user's content consumption mode.

  2. OSTI search tools cited for "high quality" content | OSTI, US...

    Office of Scientific and Technical Information (OSTI)

    Thomson Scientific recently selected several OSTI search tools and Science.gov for inclusion in Current Web Contents(tm), a growing collection of scholarly Web sites. Thomson cited ...

  3. Featured Content | U.S. DOE Office of Science (SC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources » Featured Content Fusion Energy Sciences (FES) FES Home About Research Facilities Science Highlights Benefits of FES Funding Opportunities Fusion Energy Sciences Advisory Committee (FESAC) Community Resources Featured Content 2016 Workshop Reports FES Presentations FES Program Documents Contact Information Fusion Energy Sciences U.S. Department of Energy SC-24/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-4941 F: (301) 903-8584 E: Email Us More

  4. Transcription factors for modification of lignin content in plants

    DOE Patents [OSTI]

    Wang, Huanzhong; Chen, Fang; Dixon, Richard A.

    2015-06-02

    The invention provides methods for modifying lignin, cellulose, xylan, and hemicellulose content in plants, and for achieving ectopic lignification and, for instance, secondary cell wall synthesis in pith cells, by altered regulation of a WRKY transcription factor. Nucleic acid constructs for altered WRKY-TF expression are described. Transgenic plants are provided that comprise modified pith cell walls, and lignin, cellulose, and hemicellulose content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops.

  5. Plants with modified lignin content and methods for production thereof

    SciTech Connect (OSTI)

    Zhao, Qiao; Chen, Fang; Dixon, Richard A.

    2014-08-05

    The invention provides methods for decreasing lignin content and for increasing the level of fermentable carbohydrates in plants by down-regulation of the NST transcription factor. Nucleic acid constructs for down-regulation of NST are described. Transgenic plants are provided that comprise reduced lignin content. Plants described herein may be used, for example, as improved biofuel feedstock and as highly digestible forage crops. Methods for processing plant tissue and for producing ethanol by utilizing such plants are also provided.

  6. DOE NEPA Guidance and Requirements - Search Index - List of Contents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy List of Contents DOE NEPA Guidance and Requirements - Search Index - List of Contents Return to Download Page The NEPA Guidance and Requirements - Search Index includes: A Brief Guide - DOE-wide Contracts For NEPA Documentation [DOE][2003] A Citizen's Guide to the NEPA - Having Your Voice Heard [CEQ][2007] A Resource Handbook on DOE Transportation Risk Assessment [DOE][2002] Actions During the NEPA Process - Interim Actions [DOE][2003] Administrative Record Guidance

  7. DOE NEPA Guidance and Requirements - Search Index - Table of Contents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Table of Contents DOE NEPA Guidance and Requirements - Search Index - Table of Contents Return to Download Page The DOE NEPA Guidance and Requirements - Search Index includes: NEPA Guidance and Requirements Documents Issued by Published A Brief Guide - DOE-wide Contracts For NEPA Documentation DOE 2003 A Citizen's Guide to the NEPA - Having Your Voice Heard CEQ 2007 A Resource Handbook on DOE Transportation Risk Assessment DOE 2002 Actions During the NEPA Process -

  8. RH-TRU Waste Content Codes (RH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  9. Turbidimetric determination of the total glucozinolate content of rape

    SciTech Connect (OSTI)

    Kononova, R.V.; Chaika, I.K.; Levitskii, A.P.; Lucashenok, E.V.

    1986-03-01

    The objective of the investigation was to develop a procedure for the determination of the total GZ (glucozinolate--non-nurishing substances found in rapeseed) content from the content of sulfate ion SO/sup 2 -4/which is formed in the fermentative hydrolysis of GZ, based on the degree of turbidity formed by the addition of a barium chloride solution in the presence of the surfactant Tween-80 (poly(20)ethoxysorbitan monooleate.). The supernatant liquid is used to determine the SO/sup 2 -4 -/ion before and after fermentative hydrolysis. The GZ content of the analyzed sample of rapeseed raw material was calculated from an equation. Data show that the precision, reliability, and reproducibility of the results obtained by the proposed method are satisfactory. The procedure can be sued for serial analysis in selection establishments as well as feed production plants.

  10. Measurement of Moisture Content in Sand, Slag, and Crucible Materials

    SciTech Connect (OSTI)

    Gray, J.H.

    1999-09-20

    The deinventory process at Rocky Flats (RFETS) has included moisture content measurements of sand, slag, and crucible (SSC) materials by performing weight loss measurements at 210 degrees - 220 degrees Celsius on representative samples prior to packaging for shipment. Shipping requirements include knowledge of the moisture content. Work at the Savannah River Technology Center (SRTC) showed that the measurement at 210 degrees - 220 degrees Celsius did not account for all of the moisture. The objective of the work in this report was to determine if the measurement at 210 degrees - 220 degrees Celsius at RFETS could be used to set upper bounds on moisture content and therefore, eliminate the need for RFETS to unpack, reanalyze and repack the material.

  11. Content Analysis for Proactive Intelligence: Marshaling Frame Evidence

    SciTech Connect (OSTI)

    Sanfilippo, Antonio P.; Cowell, Andrew J.; Tratz, Stephen C.; Boek, Annie M.; Cowell, Amanda K.; Posse, Christian; Pouchard, Line C.

    2007-07-22

    Modeling and simulation have great potential as technologies capable of aiding analysts in making accurate predictions of future situations to help provide competitive advantage and avoid strategic surprise. However, to make modeling and simulation effective, an evidence marshaling process is needed that addresses the information needs of the modeling task, as detailed by subject matter experts. We suggest that such an evidence marshaling process can be obtained by combining natural language processing and content analysis techniques to provide quantified qualitative content assessments, and describe a case study with specific reference to the acquisition and marshaling of frames from unstructured text.

  12. Content Analysis for Proactive Intelligence: Marshaling Frame Evidence.

    SciTech Connect (OSTI)

    Sanfilippo, Antonio; Cowell, Andrew; Pouchard, Line Catherine

    2007-07-01

    Modeling and simulation have great potential as technologies capable of aiding analysts in making accurate predictions of future situations to help provide competitive advantage and avoid strategic surprise. However, to make modeling and simulation effective, an evidence-marshaling process is needed that addresses the information needs of the modeling task, as detailed by subject matter experts. We suggest that such an evidence-marshaling process can be obtained by combining natural language processing and content analysis techniques to provide quantified qualitative content assessments, and describe a case study on the acquisition and marshaling of frames from unstructured text.

  13. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  14. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-12-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  15. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-06-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  16. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-09-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  17. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-05-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  18. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-01-18

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  19. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-02-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  20. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  1. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-12-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  2. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  3. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-11-20

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  4. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-08-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  5. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2007-06-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  6. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2006-09-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  7. CH-TRU Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-10-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  8. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-10-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  9. CH-TRU Waste Content Codes (CH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2004-12-01

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  10. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-03-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  11. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-15

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codesand corresponding shipping categories for "Controlled Shipments

  12. CH-TRU Waste Content Codes (CH-TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions LLC

    2005-01-30

    The CH-TRU Waste Content Codes (CH-TRUCON) document describes the inventory of the U.S. Department of Energy (DOE) CH-TRU waste within the transportation parameters specified by the Contact-Handled Transuranic Waste Authorized Methods for Payload Control (CH-TRAMPAC). The CH-TRAMPAC defines the allowable payload for the Transuranic Package Transporter-II (TRUPACT-II) and HalfPACT packagings. This document is a catalog of TRUPACT-II and HalfPACT authorized contents and a description of the methods utilized to demonstrate compliance with the CH-TRAMPAC. A summary of currently approved content codes by site is presented in Table 1. The CH-TRAMPAC describes "shipping categories" that are assigned to each payload container. Multiple shipping categories may be assigned to a single content code. A summary of approved content codes and corresponding shipping categories is provided in Table 2, which consists of Tables 2A, 2B, and 2C. Table 2A provides a summary of approved content codes and corresponding shipping categories for the "General Case," which reflects the assumption of a 60-day shipping period as described in the CH-TRAMPAC and Appendix 3.4 of the CH-TRU Payload Appendices. For shipments to be completed within an approximately 1,000-mile radius, a shorter shipping period of 20 days is applicable as described in the CH-TRAMPAC and Appendix 3.5 of the CH-TRU Payload Appendices. For shipments to WIPP from Los Alamos National Laboratory (LANL), Nevada Test Site, and Rocky Flats Environmental Technology Site, a 20-day shipping period is applicable. Table 2B provides a summary of approved content codes and corresponding shipping categories for "Close-Proximity Shipments" (20-day shipping period). For shipments implementing the controls specified in the CH-TRAMPAC and Appendix 3.6 of the CH-TRU Payload Appendices, a 10-day shipping period is applicable. Table 2C provides a summary of approved content codes and corresponding shipping categories for "Controlled Shipments

  13. RH-TRU Waste Content Codes (RH TRUCON)

    SciTech Connect (OSTI)

    Washington TRU Solutions

    2007-05-01

    The Remote-Handled Transuranic (RH-TRU) Content Codes (RH-TRUCON) document describes the inventory of RH-TRU waste within the transportation parameters specified by the Remote-Handled Transuranic Waste Authorized Methods for Payload Control (RH-TRAMPAC).1 The RH-TRAMPAC defines the allowable payload for the RH-TRU 72-B. This document is a catalog of RH-TRU 72-B authorized contents by site. A content code is defined by the following components: A two-letter site abbreviation that designates the physical location of the generated/stored waste (e.g., ID for Idaho National Laboratory [INL]). The site-specific letter designations for each of the sites are provided in Table 1. A three-digit code that designates the physical and chemical form of the waste (e.g., content code 317 denotes TRU Metal Waste). For RH-TRU waste to be transported in the RH-TRU 72-B, the first number of this three-digit code is 3. The second and third numbers of the three-digit code describe the physical and chemical form of the waste. Table 2 provides a brief description of each generic code. Content codes are further defined as subcodes by an alpha trailer after the three-digit code to allow segregation of wastes that differ in one or more parameter(s). For example, the alpha trailers of the subcodes ID 322A and ID 322B may be used to differentiate between waste packaging configurations. As detailed in the RH-TRAMPAC, compliance with flammable gas limits may be demonstrated through the evaluation of compliance with either a decay heat limit or flammable gas generation rate (FGGR) limit per container specified in approved content codes. As applicable, if a container meets the watt*year criteria specified by the RH-TRAMPAC, the decay heat limits based on the dose-dependent G value may be used as specified in an approved content code. If a site implements the administrative controls outlined in the RH-TRAMPAC and Appendix 2.4 of the RH-TRU Payload Appendices, the decay heat or FGGR limits

  14. OpenEI Community - wiki

    Open Energy Info (EERE)

    helpful information for OpenEI wiki authors

    Enabling developers to use energy web services on OpenEI, REEGLE.info, Data.gov and across the web. We help developers...

  15. wiki | OpenEI Community

    Open Energy Info (EERE)

    data, and helpful information for OpenEI wiki authors Enabling developers to use energy web services on OpenEI, REEGLE.info, Data.gov and across the web. We help developers find...

  16. Modification of lignin content and composition in plants

    DOE Patents [OSTI]

    Ye, Zheng-Hua

    2002-01-01

    Plants and methods of preparing plants having reduced lignin content and/or altered lignin composition are provided. The activities of caffeoyl-CoA O-methyltransferase and/or caffeic acid O-methyltransferase enzymes in the modified plants are reduced.

  17. Survey of mercury, cadmium and lead content of household batteries

    SciTech Connect (OSTI)

    Recknagel, Sebastian; Radant, Hendrik; Kohlmeyer, Regina

    2014-01-15

    Highlights: • A well selected sample of 146 batteries was analysed for its heavy metals content. • A comparison was made between heavy metals contents in batteries in 2006 and 2011. • No significant change after implementation of the new EU Batteries Directive. • Severe differences in heavy metal contents were found in different battery-types. - Abstract: The objective of this work was to provide updated information on the development of the potential impact of heavy metal containing batteries on municipal waste and battery recycling processes following transposition of the new EU Batteries Directive 2006/66/EC. A representative sample of 146 different types of commercially available dry and button cells as well as lithium-ion accumulators for mobile phones were analysed for their mercury (Hg)-, cadmium (Cd)- and lead (Pb)-contents. The methods used for preparing the cells and analysing the heavy metals Hg, Cd, and Pb were either developed during a former study or newly developed. Several batteries contained higher mass fractions of mercury or cadmium than the EU limits. Only half of the batteries with mercury and/or lead fractions above the marking thresholds were labelled. Alkaline–manganese mono-cells and Li-ion accumulators, on average, contained the lowest heavy metal concentrations, while zinc–carbon batteries, on average, contained the highest levels.

  18. Energy.gov Content Management System Page Types

    Broader source: Energy.gov [DOE]

    For Office of Energy Efficiency and Renewable Energy (EERE) websites, learn about the standard page types available in the Energy.gov Drupal content management system (CMS). For information about other available page types, or to request a new kind of page type, contact the Site Coordinators.

  19. WFIP NOAA Final Report - Page i DE-EE0003080 TABLE OF CONTENTS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WFIP NOAA Final Report - Page i DE-EE0003080 TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................................. i Executive Summary .................................................................................................................................. 1 1. Project Overview

  20. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1997 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  1. Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales...

    U.S. Energy Information Administration (EIA) Indexed Site

    Content, Sales Type, and PAD District 242 Energy Information Administration Petroleum Marketing Annual 1996 Table 41. No. 2 Diesel Fuel Prices by Sulfur Content, Sales Type,...

  2. STIP Footer Content | OSTI, US Dept of Energy Office of Scientific...

    Office of Scientific and Technical Information (OSTI)

    Footer Content STIP Footer Content My Profile Create Review OSTI.Gov Newsletter - Issue ... PoliciesImportant Links National Library of Energy science.gov ...

  3. Method and apparatus for determining fat content of tissue

    DOE Patents [OSTI]

    Weber, Thomas M.; Spletzer, Barry L.; Bryan, Jon R.; Dickey, Fred M.; Shagam, Richard N.; Gooris, Luc

    2001-01-01

    A method and apparatus for determining characteristics of tissue is disclosed. The method comprises supplying optical energy to a tissue and detecting at a plurality of locations consequent energy scattered by the tissue. Analysis of the scattered energy as taught herein provides information concerning the properties of the tissue, specifically information related to the fat and lean content and thickness of the tissue. The apparatus comprises a light source adapted to deliver optical energy to a tissue. A plurality of detectors can be mounted at different positions relative to the source to detect energy scattered by the tissue. A signal processor as taught herein can determine characteristics of the tissue from the signals from the detectors and locations of the detectors, specifically information related to the fat and lean content and thickness of the tissue.

  4. Process for production of synthesis gas with reduced sulfur content

    DOE Patents [OSTI]

    Najjar, Mitri S.; Corbeels, Roger J.; Kokturk, Uygur

    1989-01-01

    A process for the partial oxidation of a sulfur- and silicate-containing carbonaceous fuel to produce a synthesis gas with reduced sulfur content which comprises partially oxidizing said fuel at a temperature in the range of 1800.degree.-2200.degree. F. in the presence of a temperature moderator, an oxygen-containing gas and a sulfur capture additive which comprises an iron-containing compound portion and a sodium-containing compound portion to produce a synthesis gas comprising H.sub.2 and CO with a reduced sulfur content and a molten slag which comprises (i) a sulfur-containing sodium-iron silicate phase and (ii) a sodium-iron sulfide phase. The sulfur capture additive may optionally comprise a copper-containing compound portion.

  5. Method for creating high carbon content products from biomass oil

    DOE Patents [OSTI]

    Parker, Reginald; Seames, Wayne

    2012-12-18

    In a method for producing high carbon content products from biomass, a biomass oil is added to a cracking reactor vessel. The biomass oil is heated to a temperature ranging from about 100.degree. C. to about 800.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to crack the biomass oil. Tar is separated from the cracked biomass oil. The tar is heated to a temperature ranging from about 200.degree. C. to about 1500.degree. C. at a pressure ranging from about vacuum conditions to about 20,700 kPa for a time sufficient to reduce the tar to a high carbon content product containing at least about 50% carbon by weight.

  6. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, Archie H.; Carapella, Jeffrey C.; Gallagher, Alan C.

    1995-01-01

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH.sub.4) over a high temperature, 2000.degree. C., tungsten (W) filament in the proximity of a high temperature, 400.degree. C., substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20-30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content.

  7. Deposition of device quality low H content, amorphous silicon films

    DOE Patents [OSTI]

    Mahan, A.H.; Carapella, J.C.; Gallagher, A.C.

    1995-03-14

    A high quality, low hydrogen content, hydrogenated amorphous silicon (a-Si:H) film is deposited by passing a stream of silane gas (SiH{sub 4}) over a high temperature, 2,000 C, tungsten (W) filament in the proximity of a high temperature, 400 C, substrate within a low pressure, 8 mTorr, deposition chamber. The silane gas is decomposed into atomic hydrogen and silicon, which in turn collides preferably not more than 20--30 times before being deposited on the hot substrate. The hydrogenated amorphous silicon films thus produced have only about one atomic percent hydrogen, yet have device quality electrical, chemical, and structural properties, despite this lowered hydrogen content. 7 figs.

  8. T-544: Cisco Security Advisory: Cisco Content Services Gateway Vulnerabilities

    Broader source: Energy.gov [DOE]

    Cisco IOS Software Release 12.4(24)MD1 on the Cisco CSG2 contains two vulnerabilities that can be exploited by a remote, unauthenticated attacker to create a denial of service condition that prevents traffic from passing through the CSG2. These vulnerabilities require only a single content service to be active on the Cisco CSG2 and can be exploited via crafted TCP packets. A three-way handshake is not required to exploit either of these vulnerabilities.

  9. Assembly of Repeat Content Using Next Generation Sequencing Data

    SciTech Connect (OSTI)

    labutti, Kurt; Kuo, Alan; Grigoriev, Igor; Copeland, Alex

    2014-03-17

    Repetitive organisms pose a challenge for short read assembly, and typically only unique regions and repeat regions shorter than the read length, can be accurately assembled. Recently, we have been investigating the use of Pacific Biosciences reads for de novo fungal assembly. We will present an assessment of the quality and degree of repeat reconstruction possible in a fungal genome using long read technology. We will also compare differences in assembly of repeat content using short read and long read technology.

  10. CRF Researchers Are Source for 2015 QTR Sidebar Content

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Researchers Are Source for 2015 QTR Sidebar Content - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste

  11. Determining inert content in coal dust/rock dust mixture

    DOE Patents [OSTI]

    Sapko, Michael J.; Ward, Jr., Jack A.

    1989-01-01

    A method and apparatus for determining the inert content of a coal dust and rock dust mixture uses a transparent window pressed against the mixture. An infrared light beam is directed through the window such that a portion of the infrared light beam is reflected from the mixture. The concentration of the reflected light is detected and a signal indicative of the reflected light is generated. A normalized value for the generated signal is determined according to the relationship .phi.=(log i.sub.c `log i.sub.co) / (log i.sub.c100 -log i.sub.co) where i.sub.co =measured signal at 0% rock dust i.sub.c100 =measured signal at 100% rock dust i.sub.c =measured signal of the mixture. This normalized value is then correlated to a predetermined relationship of .phi. to rock dust percentage to determine the rock dust content of the mixture. The rock dust content is displayed where the percentage is between 30 and 100%, and an indication of out-of-range is displayed where the rock dust percent is less than 30%. Preferably, the rock dust percentage (RD%) is calculated from the predetermined relationship RD%=100+30 log .phi.. where the dust mixture initially includes moisture, the dust mixture is dried before measuring by use of 8 to 12 mesh molecular-sieves which are shaken with the dust mixture and subsequently screened from the dust mixture.

  12. 2008 Annual Merit Review Results Summary - Cover and Table of Contents |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Cover and Table of Contents 2008 Annual Merit Review Results Summary - Cover and Table of Contents DOE Vehicle Technologies Annual Merit Review 2008_merit_review_contents.pdf (120.29 KB) More Documents & Publications 2008 Annual Merit Review Results Summary Headquarters Facilities Master Security Plan - Table of Contents EIS-0436: Draft Environmental Impact Statement

  13. Content-addressable memory based enforcement of configurable policies

    SciTech Connect (OSTI)

    Berg, Michael J

    2014-05-06

    A monitoring device for monitoring transactions on a bus includes content-addressable memory ("CAM") and a response policy unit. The CAM includes an input coupled to receive a bus transaction tag based on bus traffic on the bus. The CAM stores data tags associated with rules of a security policy to compare the bus transaction tag to the data tags. The CAM generates an output signal indicating whether one or more matches occurred. The response policy unit is coupled to the CAM to receive the output signal from the CAM and to execute a policy action in response to the output signal.

  14. Measurements of the kaon content in tau decays

    SciTech Connect (OSTI)

    Ronan, M.T. )

    1992-02-01

    Results on measurements of the kaon content in one-prong and three-prong [tau] decays are presented for data taken by the TPC/2[gamma] detector at PEP. Using a self-consistent procedure to measure exclusive and inclusive decays, the one-prong analysis extends previous work to kaon decay modes. Three-prong results [ital K][pi][pi], [ital K][pi] and [ital KKK] decay modes provide improved branching ratios and a first look at strange axial-vector couplings in [tau] decays.

  15. CHARACTERIZATION OF HYDROGEN CONTENT IN ZIRCALOY-4 NUCLEAR FUEL CLADDING

    SciTech Connect (OSTI)

    Pfeif, E. A.; Mishra, B.; Olson, D. L.; Lasseigne, A. N.; Krzywosz, K.; Mader, E. V.

    2010-02-22

    Assessment of hydrogen uptake of underwater nuclear fuel clad and component materials will enable improved monitoring of fuel health. Zirconium alloys are used in nuclear reactors as fuel cladding, fuel channels, guide tubes and spacer grids, and are available for inspection in spent fuel pools. With increasing reactor exposure zirconium alloys experience hydrogen ingress due to neutron interactions and water-side corrosion that is not easily quantified without destructive hot cell examination. Contact and non-contact nondestructive techniques, using Seebeck coefficient measurements and low frequency impedance spectroscopy, to assess the hydrogen content and hydride formation within zircaloy 4 material that are submerged to simulate spent fuel pools are presented.

  16. PERFORMANCE OF A CONTAINMENT VESSEL CLOSURE FOR RADIOACTIVE GAS CONTENTS

    SciTech Connect (OSTI)

    Blanton, P.; Eberl, K.

    2010-07-09

    This paper presents a summary of the design and testing of the containment vessel closure for the Bulk Tritium Shipping Package (BTSP). This package is a replacement for a package that has been used to ship tritium in a variety of content configurations and forms since the early 1970s. The containment vessel closure incorporates features specifically designed for the containment of tritium when subjected to the normal and hypothetical conditions required of Type B radioactive material shipping Packages. The paper discusses functional performance of the containment vessel closure of the BTSP prototype packages and separate testing that evaluated the performance of the metallic C-Rings used in a mock BTSP closure.

  17. Definition of Small Gram Quantity Contents for Type B Radioactive Material Transportation Packages: Activity-Based Content Limitations

    SciTech Connect (OSTI)

    Sitaraman, S; Kim, S; Biswas, D; Hafner, R; Anderson, B

    2010-10-27

    Since the 1960's, the Department of Transportation Specification (DOT Spec) 6M packages have been used extensively for transportation of Type B quantities of radioactive materials between Department of Energy (DOE) facilities, laboratories, and productions sites. However, due to the advancement of packaging technology, the aging of the 6M packages, and variability in the quality of the packages, the DOT implemented a phased elimination of the 6M specification packages (and other DOT Spec packages) in favor of packages certified to meet federal performance requirements. DOT issued the final rule in the Federal Register on October 1, 2004 requiring that use of the DOT Specification 6M be discontinued as of October 1, 2008. A main driver for the change was the fact that the 6M specification packagings were not supported by a Safety Analysis Report for Packaging (SARP) that was compliant with Title 10 of the Code of Federal Regulations part 71 (10 CFR 71). Therefore, materials that would have historically been shipped in 6M packages are being identified as contents in Type B (and sometimes Type A fissile) package applications and addenda that are to be certified under the requirements of 10 CFR 71. The requirements in 10 CFR 71 include that the Safety Analysis Report for Packaging (SARP) must identify the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents (10 CFR 71.33(b)(1) and 10 CFR 71.33(b)(2)), and that the application (i.e., SARP submittal or SARP addendum) demonstrates that the external dose rate (due to the maximum radioactivity of radioactive constituents and maximum quantities of fissile constituents) on the surface of the packaging (i.e., package and contents) not exceed 200 mrem/hr (10 CFR 71.35(a), 10 CFR 71.47(a)). It has been proposed that a 'Small Gram Quantity' of radioactive material be defined, such that, when loaded in a transportation package, the dose rates at external points of an unshielded packaging

  18. Format and Content Guide for DOE Low-Level Waste Disposal Facility...

    Office of Environmental Management (EM)

    Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility ... for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans CONTENTS ...

  19. Recent content in Increase Natural Gas Energy Efficiency | OpenEI...

    Open Energy Info (EERE)

    content in Increase Natural Gas Energy Efficiency Home No posts have been made in this group yet. Groups Menu You must login in order to post into this group. Recent content Global...

  20. Building America Webinar: Put New Tools and Content on the Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Put New Tools and Content on the Building America Solution Center To Work for You Building America Webinar: Put New Tools and Content on the Building America Solution Center To...

  1. STIP 2.0 Static Content for Front Page Body | OSTI, US Dept of...

    Office of Scientific and Technical Information (OSTI)

    Static Content for Front Page Body STIP 2.0 Static Content for Front Page Body My Profile Create Review OSTI.Gov Newsletter - April-May 2016 Issue 15 OSTIblog: Thorium - An ...

  2. Building America Webinar: Put New Tools and Content on the Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Content on the Building America Solution Center To Work for You Building America Webinar: Put New Tools and Content on the Building America Solution Center To Work for You ...

  3. Building America Webinar: Put New Tools and Content on the Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Put New Tools and Content on the Building America Solution Center To Work for You Building America Webinar: Put New Tools and Content on the Building America Solution Center To ...

  4. BioDiesel Content On-board monitoring | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    BioDiesel Content On-board monitoring BioDiesel Content On-board monitoring onboard fuel monitoring of fuel and biofuel qualities using an optical sensor for engine ...

  5. Computer Modeling of Violent Intent: A Content Analysis Approach

    SciTech Connect (OSTI)

    Sanfilippo, Antonio P.; Mcgrath, Liam R.; Bell, Eric B.

    2014-01-03

    We present a computational approach to modeling the intent of a communication source representing a group or an individual to engage in violent behavior. Our aim is to identify and rank aspects of radical rhetoric that are endogenously related to violent intent to predict the potential for violence as encoded in written or spoken language. We use correlations between contentious rhetoric and the propensity for violent behavior found in documents from radical terrorist and non-terrorist groups and individuals to train and evaluate models of violent intent. We then apply these models to unseen instances of linguistic behavior to detect signs of contention that have a positive correlation with violent intent factors. Of particular interest is the application of violent intent models to social media, such as Twitter, that have proved to serve as effective channels in furthering sociopolitical change.

  6. Sulfur Content, Weighted Average Refinery Crude Oil Input Qualities

    U.S. Energy Information Administration (EIA) Indexed Site

    (Percent) Type: Sulfur Content API Gravity Period: Monthly Annual Download Series History Download Series History Definitions, Sources & Notes Definitions, Sources & Notes Show Data By: Type Area Jan-16 Feb-16 Mar-16 Apr-16 May-16 Jun-16 View History U.S. 1.43 1.38 1.43 1.39 1.43 1.47 1985-2016 PADD 1 0.75 0.63 0.83 0.88 0.90 0.86 1985-2016 East Coast 0.68 0.55 0.76 0.81 0.84 0.79 1985-2016 Appalachian No. 1 1.53 1.57 1.51 1.74 1.58 1.59 1985-2016 PADD 2 1.56 1.58 1.56 1.58 1.45 1.55

  7. Cermet anode compositions with high content alloy phase

    DOE Patents [OSTI]

    Marschman, S.C.; Davis, N.C.

    1989-10-03

    Cermet electrode compositions comprising NiO-NiFe[sub 2]O[sub 4]-Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe[sub 2]O[sub 4] oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm[sup [minus]1] cm[sup [minus]1]. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  8. Cermet anode compositions with high content alloy phase

    DOE Patents [OSTI]

    Marschman, Steven C.; Davis, Norman C.

    1989-01-01

    Cermet electrode compositions comprising NiO-NiFe.sub.2 O.sub.4 -Cu-Ni, and methods for making, are disclosed. Addition of nickel metal prior to formation and densification of a base mixture into the cermet allows for an increase in the total amount of copper and nickel that can be contained in the NiO-NiFe.sub.2 O.sub.4 oxide system. Nickel is present in a base mixture weight concentration of from 0.1% to 10%. Copper is present in the alloy phase in a weight concentration of from 10% to 30% of the densified composition. Such cermet electrodes can be formed to have electrical conductivities well in excess of 100 ohm.sup.-1 cm.sup.-1. Other alloy and oxide system cermets having high content metal phases are also expected to be manufacturable in accordance with the invention.

  9. Immunoassay panel profile for detecting total PCB content

    SciTech Connect (OSTI)

    Friedman, S.; Allen, R.; Gui, J.; Barren, E.; Berdahl, D.

    1995-12-31

    Immunoassay test kits are being widely used to provide rapid, inexpensive screening of soil samples for the presence of PCBs at or above a given threshold value. Currently available immunoassay methods are sensitive to aroclor preparations that contain the more highly chlorinated PCB congeners. The interpretation of these tests is accomplished by comparison to an appropriate aroclor standard. If PCB contamination at a site has undergone significant changes through weathering or biological degradation, or if contamination has occurred from lower chlorinated species, the relative sensitivity of available test methods is reduced. This paper describes the results of a program to develop and demonstrate an Immunoassay Panel Method that normalizes the recovery of PCBs detected and thereby provides an accurate representation of the total PCB content of a sample. The development and validation of this method, and the associative correlation testing data using laboratory and environmental samples, will be discussed.

  10. Catalytic conversion of alcohols to hydrocarbons with low benzene content

    DOE Patents [OSTI]

    Narula, Chaitanya K.; Davison, Brian H.; Keller, Martin

    2016-03-08

    A method for converting an alcohol to a hydrocarbon fraction having a lowered benzene content, the method comprising: converting said alcohol to a hydrocarbon fraction by contacting said alcohol, under conditions suitable for converting said alcohol to said hydrocarbon fraction, with a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon fraction, and contacting said hydrocarbon fraction with a benzene alkylation catalyst, under conditions suitable for alkylating benzene, to form alkylated benzene product in said hydrocarbon fraction. Also described is a catalyst composition useful in the method, comprising a mixture of (i) a metal-loaded zeolite catalyst catalytically active for converting said alcohol to said hydrocarbon, and (ii) a benzene alkylation catalyst, in which (i) and (ii) may be in a mixed or separated state. A reactor for housing the catalyst and conducting the reaction is also described.