Sample records for width width item

  1. Distribution of neutron resonance widths

    E-Print Network [OSTI]

    Hans A. Weidenmueller

    2011-10-28T23:59:59.000Z

    Recent data on neutron resonance widths indicate disagreement with the Porter-Thomas distribution (PTD). I discuss the theoretical arguments for the PTD, possible theoretical modifications, and I summarize the experimantal evidence.

  2. Pattern Alteration: Bodice Back Width

    E-Print Network [OSTI]

    2006-03-24T23:59:59.000Z

    with the pattern mea- surements. As a guide, use the back shoulder width mea- sured 4 inches (10 cm) below the base of the neck. (Refer to line 9 on the Personal Measurement Chart.) To help determine where the alteration is needed, check t of an unaltered... ................................................................................................................................................................................. Basic fi tted bodice, princess-style bodice and shirt Here are the steps for altering a basic bodice, a princess- style bodice or a shirt: 1. Along the shoulder seam line, measure 2 inches (5 cm) from the armhole seam line and mark it. Draw a vertical...

  3. Mean Width of a Regular Simplex

    E-Print Network [OSTI]

    Finch, Steven R

    2011-01-01T23:59:59.000Z

    The mean width is a measure on n-dimensional convex bodies. An integral formula for the mean width of a regular n-simplex appeared in the electrical engineering literature in 1997. As a consequence, expressions for the expected range of a sample of n+1 normally distributed variables, for ninfty.

  4. Remarks on statistical errors in equivalent widths

    E-Print Network [OSTI]

    Klaus Vollmann; Thomas Eversberg

    2006-07-03T23:59:59.000Z

    Equivalent width measurements for rapid line variability in atomic spectral lines are degraded by increasing error bars with shorter exposure times. We derive an expression for the error of the line equivalent width $\\sigma(W_\\lambda)$ with respect to pure photon noise statistics and provide a correction value for previous calculations.

  5. Height and width of superatomic Boolean algebras

    E-Print Network [OSTI]

    Roitman, Judith A.

    1985-05-02T23:59:59.000Z

    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 94, Number 1, May 1985 HEIGHT AND WIDTH OF SUPERATOMIC BOOLEAN ALGEBRAS JUDY ROITMAN1 Abstract. Cantor-Bendixson height and width of superatomic Boolean algebras is investigated and it is shown.../Ja), and define the Cantor- Bendixson width of X, wd^), to be the supremum of all wda( X). An sBa X is (a) K-thin iff wd( X) = k. (Note: thin = w-thin.) (b) K-thin-thick iff wda(A') = k for a < k and wdK(X) = k+. (Note: thin-thick = to,-thin-thick + Just's thin...

  6. alpha reduced widths: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Paul B. Mackenzie; Michael E. Peskin 2014-04-01 117 SENSING ECG SIGNALS WITH VARIABLE PULSE WIDTH Engineering Websites Summary: SENSING ECG SIGNALS WITH VARIABLE PULSE WIDTH...

  7. Marshals, Monotone Marshals, and Hypertree-Width

    E-Print Network [OSTI]

    Adler, Isolde

    Marshals, Monotone Marshals, and Hypertree-Width Isolde Adler Mathematisches Institut Eckerstr. 1 D by the Monotone Robber and Marshals Game. While the Robber and Cops Game and its monotone variant coincide, Gott- lob, Leone and Scarcello stated the corresponding question for the Robber and Marshals Game as an open

  8. Simple method for calculating island widths

    SciTech Connect (OSTI)

    Cary, J.R.; Hanson, J.D.; Carreras, B.A.; Lynch, V.E.

    1989-01-01T23:59:59.000Z

    A simple method for calculating magnetic island widths has been developed. This method uses only information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF. In this case the method proves to be accurate to at least within 30%. 7 refs.

  9. Simple method for calculating island widths

    SciTech Connect (OSTI)

    Cary, J.R. (Department of Astrophysical, Planetary, and Atmospheric Sciences, and Department of Physics, University of Colorado, Boulder, Colorado 80309-0391 (USA)); Hanson, J.D. (Department of Physics, Auburn University, Auburn, Alabama 36849 (USA))

    1991-04-01T23:59:59.000Z

    A simple method for calculating magnetic island widths has been developed. This method uses only that information obtained from integrating along the closed field line at the island center. Thus, this method is computationally less intensive than the usual method of producing surfaces of section of sufficient detail to locate and resolve the island separatrix. This method has been implemented numerically and used to analyze the buss work islands of ATF (Fusion Technol. {bold 10}, 179 (1986)). In this case the method proves to be accurate to at least within 20% even though the islands are within a factor of 2 of overlapping.

  10. Property:Width (m) | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere I GeothermalPotentialBiopowerSolidGenerationMethod Jump to:This propertyVolume Jump to:s) Jump to:Width (m)

  11. Pulse width modulation inverter with battery charger

    DOE Patents [OSTI]

    Slicker, James M. (Union Lake, MI)

    1985-01-01T23:59:59.000Z

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a microprocessor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .theta., where .theta. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands for electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  12. Speculative Software Management of Datapath-width for Energy Optimization

    E-Print Network [OSTI]

    Seznec, André

    Speculative Software Management of Datapath-width for Energy Optimization Gilles Pokam gpokam accommodate the execution of a program on a narrower datapath-width in or- der to save energy the width of the register file to be dynamically recon- figured, providing both static and dynamic energy

  13. Global synchronization of parallel processors using clock pulse width modulation

    DOE Patents [OSTI]

    Chen, Dong; Ellavsky, Matthew R.; Franke, Ross L.; Gara, Alan; Gooding, Thomas M.; Haring, Rudolf A.; Jeanson, Mark J.; Kopcsay, Gerard V.; Liebsch, Thomas A.; Littrell, Daniel; Ohmacht, Martin; Reed, Don D.; Schenck, Brandon E.; Swetz, Richard A.

    2013-04-02T23:59:59.000Z

    A circuit generates a global clock signal with a pulse width modification to synchronize processors in a parallel computing system. The circuit may include a hardware module and a clock splitter. The hardware module may generate a clock signal and performs a pulse width modification on the clock signal. The pulse width modification changes a pulse width within a clock period in the clock signal. The clock splitter may distribute the pulse width modified clock signal to a plurality of processors in the parallel computing system.

  14. Laser diffraction process and apparatus for width measurement...

    Office of Scientific and Technical Information (OSTI)

    apparatus for width measurement of elongated objects Re-direct Destination: Size distribution of elongated objects is measured by forward scattering radiation from the objects...

  15. Capacitor charging FET switcher with controller to adjust pulse width

    DOE Patents [OSTI]

    Mihalka, Alex M. (Livermore, CA)

    1986-01-01T23:59:59.000Z

    A switching power supply includes an FET full bridge, a controller to drive the FETs, a programmable controller to dynamically control final output current by adjusting pulse width, and a variety of protective systems, including an overcurrent latch for current control. Power MOSFETS are switched at a variable frequency from 20-50 kHz to charge a capacitor load from 0 to 6 kV. A ferrite transformer steps up the DC input. The transformer primary is a full bridge configuration with the FET switches and the secondary is fed into a high voltage full wave rectifier whose output is connected directly to the energy storage capacitor. The peak current is held constant by varying the pulse width using predetermined timing resistors and counting pulses. The pulse width is increased as the capacitor charges to maintain peak current. A digital ripple counter counts pulses, and after the desired number is reached, an up-counter is clocked. The up-counter output is decoded to choose among different resistors used to discharge a timing capacitor, thereby determining the pulse width. A current latch shuts down the supply on overcurrent due to either excessive pulse width causing transformer saturation or a major bridge fault, i.e., FET or transformer failure, or failure of the drive circuitry.

  16. Sacrificial Charge and Charge Injection! Evolution of Line Width!

    E-Print Network [OSTI]

    Grant, Catherine E.

    MeV). Anti-correlated with the solar cycle. Similar structures are seen in the energy scale due background" which depends on solar cycle and activity." XIS energy scale and line width as a function of cut increasing CTI, trailing charge and event/split thresholds Evolution of Energy Scale! · Radiation damage

  17. Direct Top-Quark Width Measurement at CDF

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present a measurement of the top-quark width in the lepton+jets decay channel of tt? events produced in pp? collisions at Fermilab’s Tevatron collider and collected by the CDF II detector. From a data sample corresponding ...

  18. A Direct Measurement of the $W$ Decay Width

    SciTech Connect (OSTI)

    Vine, Troy; /University Coll. London

    2008-08-01T23:59:59.000Z

    A direct measurement of the W boson total decay width is presented in proton-antiproton collisions at {radical}s = 1.96 TeV using data collected by the CDF II detector. The measurement is made by fitting a simulated signal to the tail of the transverse mass distribution in the electron and muon decay channels. An integrated luminosity of 350 pb{sup -1} is used, collected between February 2002 and August 2004. Combining the results from the separate decay channels gives the decay width as 2.038 {+-} 0.072 GeV in agreement with the theoretical prediction of 2.093 {+-} 0.002 GeV. A system is presented for the management of detector calibrations using a relational database schema. A description of the implementation and monitoring of a procedure to provide general users with a simple interface to the complete set of calibrations is also given.

  19. A New Measurement of the $?^0$ Radiative Decay Width

    E-Print Network [OSTI]

    I. Larin; D. McNulty; E. Clinton; P. Ambrozewicz; D. Lawrence; I. Nakagawa; Y. Prok; A. Teymurazyan; A. Ahmidouch; A. Asratyan; K. Baker; L. Benton; A. M. Bernstein; V. Burkert; P. Cole; P. Collins; D. Dale; S. Danagoulian; G. Davidenko; R. Demirchyan; A. Deur; A. Dolgolenko; G. Dzyubenko; R. Ent; A. Evdokimov; J. Feng; M. Gabrielyan; L. Gan; A. Gasparian; S. Gevorkyan; A. Glamazdin; V. Goryachev; V. Gyurjyan; K. Hardy; J. He; M. Ito; L. Jiang; D. Kashy; M. Khandaker; P. Kingsberry; A. Kolarkar; M. Konchatnyi; A. Korchin; W. Korsch; S. Kowalski; M. Kubantsev; V. Kubarovsky; X. Li; P. Martel; V. Matveev; B. Mecking; B. Milbrath; R. Minehart; R. Miskimen; V. Mochalov; S. Mtingwa; S. Overby; E. Pasyuk; M. Payen; R. Pedroni; B. Ritchie; T. E. Rodrigues; C. Salgado; A. Shahinyan; A. Sitnikov; D. Sober; S. Stepanyan; W. Stephens; J. Underwood; A. Vasiliev; V. Vishnyakov; M. Wood; S. Zhou

    2010-09-09T23:59:59.000Z

    High precision measurements of the differential cross sections for $\\pi^0$ photoproduction at forward angles for two nuclei, $^{12}$C and $^{208}$Pb, have been performed for incident photon energies of 4.9 - 5.5 GeV to extract the ${\\pi^0 \\to \\gamma\\gamma}$ decay width. The experiment was done at Jefferson Lab using the Hall B photon tagger and a high-resolution multichannel calorimeter. The ${\\pi^0 \\to \\gamma\\gamma}$ decay width was extracted by fitting the measured cross sections using recently updated theoretical models for the process. The resulting value for the decay width is $\\Gamma{(\\pi^0 \\to \\gamma\\gamma)} = 7.82 \\pm 0.14 ~({\\rm stat.}) \\pm 0.17 ~({\\rm syst.}) ~{\\rm eV}$. With the 2.8% total uncertainty, this result is a factor of 2.5 more precise than the current PDG average of this fundamental quantity and it is consistent with current theoretical predictions.

  20. Width of Radio-Loud and Radio-Quiet CMEs

    E-Print Network [OSTI]

    G. Michalek; N. Gopalswamy; H. Xie

    2007-10-24T23:59:59.000Z

    In the present paper we report on the difference in angular sizes between radio-loud and radio-quiet CMEs. For this purpose we compiled these two samples of events using Wind/WAVES and SOHO/LASCO observations obtained during 1996-2005. It is shown that the radio-loud CMEs are almost two times wider than the radio-quiet CMEs (considering expanding parts of CMEs). Furthermore we show that the radio-quiet CMEs have a narrow expanding bright part with a large extended diffusive structure. These results were obtained by measuring the CME widths in three different ways.

  1. Determination of the total width of the eta' meson

    E-Print Network [OSTI]

    E. Czerwinski; P. Moskal; D. Grzonka; R. Czyzykiewicz; D. Gil; B. Kamys; A. Khoukaz; J. Klaja; P. Klaja; W. Krzemien; W. Oelert; J. Ritman; T. Sefzick; M. Siemaszko; M. Silarski; J. Smyrski; A. Taschner; M. Wolke; P. Wustner; J. Zdebik; M. Zielinski; W. Zipper

    2010-09-27T23:59:59.000Z

    Taking advantage of both the low-emittance proton-beam of the Cooler Synchrotron COSY and the high momentum precision of the COSY-11 detector system, the mass distribution of the eta' meson was measured with a resolution of 0.33 MeV/c^2 (FWHM), improving the experimental mass resolution by almost an order of magnitude with respect to previous results. Based on the sample of more than 2300 reconstructed pp --> pp eta' events the total width of the eta' meson was determined to be 0.226 +- 0.017(stat.) +- 0.014(syst.) MeV/c^2.

  2. Determination of the width of the top quark

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; /Dubna, JINR; Abbott, Braden Keim; /Oklahoma U.; Abolins, Maris A.; /Michigan State U.; Acharya, Bannanje Sripath; /Tata Inst.; Adams, Mark Raymond; /Illinois U., Chicago; Adams, Todd; /Florida State U.; Alexeev, Guennadi D.; /Dubna, JINR; Alkhazov, Georgiy D.; /St. Petersburg, INP; Alton, Andrew K.; /Michigan U. /Augustana Coll., Sioux Falls; Alverson, George O.; /Northeastern U.; Alves, Gilvan Augusto; /Rio de Janeiro, CBPF /Nijmegen U.

    2010-09-01T23:59:59.000Z

    We extract the total width of the top quark, {Lambda}{sub t}, from the partial decay width {Lambda}(t {yields} Wb) measured using the t-channel cross section for single top quark production and from the branching fraction B(t {yields} Wb) measured in t{bar t} events using up to 2.3 fb{sup -1} of integrated luminosity collected by the D0 Collaboration at the Tevatron p{bar p} Collider. The result is {Lambda}{sub t} = 1.99{sub -0.55}{sup +0.69} GeV, which translates to a top-quark lifetime of {tau}{sub t} = (3.3{sub -0.9}{sup +1.3}) x 10{sup -25} s. Assuming a high mass fourth generation b{prime} quark and unitarity of the four-generation quark-mixing matrix, we set the first upper limit on |V{sub tb{prime}}| < 0.63 at 95% C.L.

  3. Thermal Width of the UPSILON at Large 't Hooft Coupling

    SciTech Connect (OSTI)

    Noronha, Jorge [Department of Physics, Columbia University, 538 West 120 Street, New York, New York 10027 (United States); Dumitru, Adrian [Department of Natural Sciences, Baruch College, CUNY, 17 Lexington Avenue, New York, New York 10010 (United States); Graduate School and University Center, City University of New York, 365 Fifth Avenue, New York, New York 10016 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973 (United States)

    2009-10-09T23:59:59.000Z

    We use the anti-de Sitter/conformal field theory correspondence to show that the heavy quark (static) potential in a strongly coupled plasma develops an imaginary part at finite temperature. Thus, deeply bound heavy quarkonia states acquire a small nonzero thermal width when the 't Hooft coupling lambda=g{sup 2}N{sub c}>>1 and the number of colors N{sub c}->infinity. In the dual gravity description, this imaginary contribution comes from thermal fluctuations around the bottom of the classical sagging string in the bulk that connects the heavy quarks located at the boundary. We predict a strong suppression of UPSILON's in heavy-ion collisions and discuss how this may be used to estimate the initial temperature.

  4. Systematics of S- and P-wave radiation widths

    SciTech Connect (OSTI)

    Moore, M.S.

    1980-09-22T23:59:59.000Z

    The question of calculating differences in s- and p-wave radiation widths as a valid evaluation tool is explored. A purely statistical approach such as that provided by the Brink-Axel formula depends upon two factors: 1) an adequate description of the giant dipole resonance shape at energies well below the resonance, and 2) an adequate description of the level densities between the ground state and the excitation of the compound nucleus near the neutron separation energy. Some success has been obtained in certain regions of the periodic table with this simple approach, e.g., in the actinides where all nuclei exhibit similar rigid permanent deformations. However, if the method is to be used as a general evaluation procedure throughout the periodic table and particularly in regions where the radiative transition probabilities are enhanced by direct processes, it appears that much more nuclear structure information needs to be incorporated into the calculations.

  5. Measurement of effective sheath width around cutoff probe in low-pressure plasmas

    SciTech Connect (OSTI)

    Kim, D. W.; Oh, W. Y. [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of); You, S. J., E-mail: sjyou@kriss.re.kr; Kim, J. H. [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of)] [Center for Vacuum Technology, Korea Research Institute of Standards and Science, Daejeon 305-306 (Korea, Republic of); Chang, H. Y. [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)] [Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 305-701 (Korea, Republic of)

    2014-05-15T23:59:59.000Z

    Previous studies indicated that the measurement results of microwave probes can be improved by applying the adequate sheath width to their measurement models, and consequently the sheath width around the microwave probe tips has become very important information for microwave probe diagnostics. In this paper, we propose a method for measuring the argon plasma sheath width around the cutoff probe tips by applying the circuit model to the cutoff probe phase spectrum. The measured sheath width of the cutoff probe was found to be in good agreement with the floated sheath width calculated from the Child-Langmuir sheath law. The physical reasons for a discrepancy between the two measurements are also discussed.

  6. For "Ribbons" of Graphene, Width Matters | U.S. DOE Office of...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    For "Ribbons" of Graphene, Width Matters Basic Energy Sciences (BES) BES Home About Research Facilities Science Highlights Benefits of BES Funding Opportunities Basic Energy...

  7. approximate half-intensity widths: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    average and dispersion differing from reduced neutron width. The main result of the analysis: the mean spacing and neutron strength function values can be determined only...

  8. Helium-cluster decay widths of molecular states in beryllium and carbon isotopes

    E-Print Network [OSTI]

    J. C. Pei; F. R. Xu

    2007-02-01T23:59:59.000Z

    The $\\alpha$ particle and $^6$He emissions from possible molecular states in beryllium and carbon isotopes have been studied using a mean-field-type cluster potential. Calculations can reproduce well the $\\alpha$-decay widths of excited states in $^{8}$Be, $^{12}$C and $^{20}$Ne. For the nucleus $^{10}$Be, we discussed the $\\alpha$-decay widths with different shapes or decay modes, in order to understand the very different decay widths of two excited states. The widths of $^{6}$He decay from $^{12}$Be and $\\alpha$ decays from $^{13,14}$C are predicted, which could be useful for future experiments.

  9. Yield learning with line width, sample size and bridge resistance variation

    E-Print Network [OSTI]

    Hussain, Wajid

    1997-01-01T23:59:59.000Z

    observed the effects of certain noise sources such as line width variation, sample size and bridge resistance on yield learning, and determined how to account for them. In this research we will show that since line width variation is not random on a few...

  10. Multipole-multimode Floquet theory of rotational resonance width experiments: 13

    E-Print Network [OSTI]

    Griffin, Robert G.

    Multipole-multimode Floquet theory of rotational resonance width experiments: 13 C­13 C distance description of zero-quantum ZQ NMR processes using multipole-multimode Floquet theory is proposed for studying in rotational resonance width R2 W ex- periments based on multipole-multimode Floquet theory MMFT . The approach

  11. Reduced neutron widths in the nuclear data ensemble: Experiment and theory do not agree

    E-Print Network [OSTI]

    P. E. Koehler

    2011-08-11T23:59:59.000Z

    I have analyzed reduced neutron widths ({\\Gamma}_{n}^0) for the subset of 1245 resonances in the nuclear data ensemble (NDE) for which they have been reported. Random matrix theory (RMT) predicts for the Gaussian orthogonal ensemble (GOE) that these widths should follow a \\c{hi}^2 distribution having one degree of freedom ({\

  12. Downstream variations in the width of bedrock channels David R. Montgomery and Karen B. Gran

    E-Print Network [OSTI]

    Montgomery, David R.

    Downstream variations in the width of bedrock channels David R. Montgomery and Karen B. Gran the Mokelumne River show that bedrock channel width decreases substantially downstream at the contact between show systematic channel widening after flood flows and debris flow impacts. We conclude that downstream

  13. Photoluminescence line width of self-assembled Ge(Si) islands arranged between strained Si layers

    SciTech Connect (OSTI)

    Shaleev, M. V., E-mail: shaleev@ipm.sci-nnov.ru; Novikov, A. V.; Baydakova, N. A.; Yablonskiy, A. N. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Kuznetsov, O. A. [Nizhny Novgorod State University, Physico-Technical Research Institute (Russian Federation); Lobanov, D. N.; Krasilnik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2011-02-15T23:59:59.000Z

    The effect of variations in the strained Si layer thicknesses, measurement temperature, and optical excitation power on the width of the photoluminescence line produced by self-assembled Ge(Si) nanoislands, which are grown on relaxed SiGe/Si(001) buffer layers and arranged between strained Si layers, is studied. It is shown that the width of the photoluminescence line related to the Ge(Si) islands can be decreased or increased by varying the thickness of strained Si layers lying above and under the islands. A decrease in the width of the photoluminescence line of the Ge(Si) islands to widths comparable with the width of the photoluminescence line of quantum dot (QD) structures based on direct-gap InAs/GaAs semiconductors is attained with consideration of diffusive smearing of the strained Si layer lying above the islands.

  14. Direct Measurement of the Total Decay Width of the Top Quark

    E-Print Network [OSTI]

    Gomez-Ceballos, Guillelmo

    We present a measurement of the total decay width of the top quark using events with top-antitop quark pair candidates reconstructed in the final state with one charged lepton and four or more hadronic jets. We use the ...

  15. Hiding a Higgs width enhancement from off-shell gg (--> h*) --> ZZ measurements

    E-Print Network [OSTI]

    Heather E. Logan

    2015-01-16T23:59:59.000Z

    Measurements of the off-shell Higgs boson production cross section in gg (--> h*) --> ZZ have recently been used by the CMS and ATLAS collaborations to indirectly constrain the total width of the Higgs boson. I point out that the interpretation of these measurements as a Higgs width constraint can be invalidated if additional neutral Higgs boson(s) are present with masses below about 350 GeV.

  16. Nuclear magnetic absorption line widths in weak magnetic fields with a Robinson oscillator

    E-Print Network [OSTI]

    Flugum, Timothy Lee

    1987-01-01T23:59:59.000Z

    NUCLEAR MAGNETIC ABSORPTION LINE WIDTHS IN WEAK MAGNETIC FIELDS WITH A ROBINSON OSCILLATOR A Thesis by TIMOTHY LEE FLUGUM Subnntted to the Graduate College of Texas ARM University in partial fulfillment of the requirement for the degree... of MASTER OF SCIENCE August 19SI Major Subject: Physics NUCLEAR MAGNETIC ABSORPTION LINE WIDTHS IN WEAK MAGNETIC FIELDS WITH A ROBINSON OSCILLATOR A Thesis TIMOTHY LEE FLUGUM Approved as to style and content by: Nelson M. Duller (Chairman...

  17. Stringent bounds on the brane width from stellar interferometry and distant gamma ray bursts: Back to the hierarchy problem?

    E-Print Network [OSTI]

    Michael Maziashvili

    2006-07-11T23:59:59.000Z

    A simple idea restricting the brane width due to astronomical observations is proposed. Not to contradict the observational data the brane width should be of about Planck size giving therefore strict criterion in selecting the realistic braneworld models.

  18. Nonlinear dynamics of Kelvin-Helmholtz instability in a finite-width plasma flow

    SciTech Connect (OSTI)

    Shevelev, M. M.; Burinskaya, T. M., E-mail: tburinsk@iki.rssi.ru [Russian Academy of Sciences, Space Research Institute (Russian Federation)

    2013-06-15T23:59:59.000Z

    The nonlinear stage of Kelvin-Helmholtz (KH) instability in a finite-width plane-parallel plasma flow is analyzed. The analysis is performed by means of two-dimensional numerical simulations with the use of ideal magnetohydrodynamic equations describing isothermal plasma flows propagating along the magnetic field. The influence of the magnetic field strength, the plasma temperature, and the ratio of the flow width to the width of the transition layer on the formation of vortex layers and large-scale flow perturbations is investigated. It is shown that, if the wavelength of periodic perturbations is shorter than the flow width, the symmetric and antisymmetric modes develop in a qualitatively similar manner. For waves with wavelengths longer than the flow width, the development of such modes is very different due to the mutual influence of the flow boundaries. Analysis of the development of instability at different values of the Alfven Mach number M{sub A} shows that long-lived vortices with a characteristic scale length on the order of the flow width appear in a weak magnetic field for both symmetric and antisymmetric modes; however, the vortex geometries for these modes are different. In a strong magnetic field, M{sub A} {approx} 5, the phase of vortex decay for both types of modes occurs faster than in a weak field; however, in the case of an antisymmetric mode, large-scale perturbations of the flow boundary are retained for a longer time. Analysis of the evolution of the initial disturbance produced by an ensemble of random small perturbations (noise) at different plasma temperatures shows that, for a flow width comparable with the width of the transition region, the development of KH instability is always antisymmetric in character and leads to well-developed large-scale perturbations of the flow as a whole. For a cold plasma with C{sub S} < 0.5U (where C{sub S} is the speed of sound and U is the flow velocity), in contrast to hot plasma with C{sub S} > 0.5U, the development of KH instability leads to the growth of the antisymmetric mode even if the flow width is much larger than the width of the transition region.

  19. Solar wind suprathermal electron Stahl widths across high-speed stream structures

    SciTech Connect (OSTI)

    Skoug, Ruth M [Los Alamos National Laboratory; Steinberg, John T [Los Alamos National Laboratory; Goodrich, Katherine A [Los Alamos National Laboratory; Anderson, Brett R [DARTMUTH UNIV.

    2011-01-03T23:59:59.000Z

    Suprathermal electrons (100-1500 eV) observed in the solar wind typically show a strahl distribution, that is, a beam directed away from the Sun along the magnetic field direction. The strahl width observed at 1 AU is highly variable, ranging from 10-70 degrees. The obsenred finite width of the strahl results from the competition between beam focusing as the interplanetary magnetic field strength drops with distance from the Sun, and pitch-angle scattering as the beam interacts with the solar wind plasma in transit from the sun. Here we examine strahl width, observed with ACE SWEPAM across high-speed stream structures to investigate variations in electron scattering as a function of local plasma characteristics. We find that narrow strahls (less than 20 degrees wide), indicating reduced scattering, are observed within high-speed streams. Narrow strahls are also observed in both very low temperature solar wind, in association with ICMEs. Case studies of high-speed streams typically show the strahl narrowing at the leading edge of the stream. In some cases, the strahl narrows at the reverse shock or pressure wave, in other cases at the stream interface. The narrowing can either occur discontinuously or gradually over a period of hours. Within the high-speed wind, the strahl remains narrow for a period of hours to days, and then gradually broadens. The strahl width is roughly constant at all energies across these structures. For some fraction of high-speed streams, counterstreaming is associated with passage of the corotating interaction region. In these cases, we find the widths of the two counterstreaming beams frequently differ by more than 40 degrees. This dramatic difference in strahl width contrasts with observations in the solar wind as a whole, in which counterstreaming strahls typically differ in width by less than 20 degrees.

  20. Precision measurement of the mass and width of the W boson at CDF

    SciTech Connect (OSTI)

    Malik, Sarah Alam; /University Coll. London

    2009-09-01T23:59:59.000Z

    A precision measurement of the mass and width of the W boson is presented. The W bosons are produced in proton antiproton collisions occurring at a centre of mass energy of 1.96 TeV at the Tevatron accelerator. The data used for the analyses is collected by the Collider Detector at Fermilab (CDF) and corresponds to an average integrated luminosity of 350 pb{sup -1} for the W width analysis for the electron and muon channels and an average integrated luminosity of 2350 pb{sup -1} for the W mass analysis. The mass and width of the W boson is extracted by fitting to the transverse mass distribution, with the peak of the distribution being most sensitive to the mass and the tail of the distribution sensitive to the width. The W width measurement in the electron and muon channels is combined to give a final result of 2032 {+-} 73 MeV. The systematic uncertainty on the W mass from the recoil of the W boson against the initial state gluon radiation is discussed. A systematic study of the recoil in Z {yields} e{sup +}e{sup -} events where one electron is reconstructed in the central calorimeter and the other in the plug calorimeter and its effect on the W mass is presented for the first time in this thesis.

  1. Measurement of J/psi leptonic width with the KEDR detector

    E-Print Network [OSTI]

    Anashin, V V; Baldin, E M; Barladyan, A K; Barnyakov, A Yu; Barnyakov, M Yu; Baru, S E; Basok, I Yu; Beloborodova, O L; Blinov, A E; Blinov, V E; Bobrov, A V; Bobrovnikov, V S; Bogomyagkov, A V; Bondar, A E; Buzykaev, A R; Eidelman, S I; Grigoriev, D N; Glukhovchenko, Yu M; Gulevich, V V; Gusev, D V; Karnaev, S E; Karpov, G V; Karpov, S V; Kharlamova, T A; Kiselev, V A; Kolmogorov, V V; Kononov, S A; Kotov, K Yu; Kravchenko, E A; Kudryavtsev, V N; Kulikov, V F; Kurkin, G Ya; Kuper, E A; Levichev, E B; Maksimov, D A; Malyshev, V M; Maslennikov, A L; Medvedko, A S; Meshkov, O I; Mishnev, S I; Morozov, I I; Muchnoi, N Yu; Neufeld, V V; Nikitin, S A; Nikolaev, I B; Okunev, I N; Onuchin, A P; Oreshkin, S B; Orlov, I O; Osipov, A A; Peleganchuk, S V; Pivovarov, S G; Piminov, P A; Petrov, V V; Poluektov, A O; Prisekin, V G; Ruban, A A; Sandyrev, V K; Savinov, G A; Shamov, A G; Shatilov, D N; Shwartz, B A; Simonov, E A; Sinyatkin, S V; Skrinsky, A N; Smaluk, V V; Sokolov, A V; Sukharev, A M; Starostina, E V; Talyshev, A A; Tayursky, V A; Telnov, V I; Tikhonov, Yu A; Todyshev, K Yu; Tumaikin, G M; Usov, Yu V; Vorobiov, A I; Yushkov, A N; Zhilich, V N; Zhulanov, V V; Zhuravlev, A N

    2011-01-01T23:59:59.000Z

    We report a new precise determination of the leptonic widths of the J/psi meson performed with the KEDR detector at the VEPP-4M $e^{+}e^{-}$ collider. The measured values of the J/psi parameters are: \\Gamma_{ee}\\times\\Gamma_{ee}/\\Gamma = 0.3323 \\pm 0.0064 (stat.) \\pm 0.0048 (syst.) keV \\Gamma_{ee}\\times\\Gamma_{\\mu\\mu}/\\Gamma=0.3318 \\pm 0.0052 (stat.) \\pm 0.0063 (syst.) keV. Assuming $e\\mu$ universality and using the table value of the branching ratios the leptonic \\Gamma_{ll}= 5.59 \\pm 0.12 keV width and the total \\Gamma=94.1 \\pm 2.7 keV widths were obtained. We also discuss in detail a method to calculate radiative corrections at a narrow resonance.

  2. Reappraising Transition Region Line Widths in light of Recent Alfvén Wave Discoveries

    E-Print Network [OSTI]

    Scott W. McIntosh; Bart De Pontieu; Theodore D. Tarbell

    2008-01-04T23:59:59.000Z

    We provide a new interpretation of ultraviolet transition region emission line widths observed by the SUMER instrument on the Solar and Heliospheric Observatory (SOHO). This investigation is prompted by observations of the chromosphere at unprecedented spatial and temporal resolution from the Solar Optical Telescope (SOT) on Hinode revealing that all chromospheric structures above the limb display significant transverse (Alfvenic) perturbations. We demonstrate that the magnitude, network sensitivity and apparent center-to-limb isotropy of the measured line widths (formed below 250,000K) can be explained by an observationally constrained forward-model in which the line width is caused by the line-of-sight superposition of longitudinal and Alfvenic motions on the small-scale (spicular) structures that dominate the chromosphere and low transition region.

  3. Nano-scaled graphene platelets with a high length-to-width aspect ratio

    DOE Patents [OSTI]

    Zhamu, Aruna (Centerville, OH); Guo, Jiusheng (Centerville, OH); Jang, Bor Z. (Centerville, OH)

    2010-09-07T23:59:59.000Z

    This invention provides a nano-scaled graphene platelet (NGP) having a thickness no greater than 100 nm and a length-to-width ratio no less than 3 (preferably greater than 10). The NGP with a high length-to-width ratio can be prepared by using a method comprising (a) intercalating a carbon fiber or graphite fiber with an intercalate to form an intercalated fiber; (b) exfoliating the intercalated fiber to obtain an exfoliated fiber comprising graphene sheets or flakes; and (c) separating the graphene sheets or flakes to obtain nano-scaled graphene platelets. The invention also provides a nanocomposite material comprising an NGP with a high length-to-width ratio. Such a nanocomposite can become electrically conductive with a small weight fraction of NGPs. Conductive composites are particularly useful for shielding of sensitive electronic equipment against electromagnetic interference (EMI) or radio frequency interference (RFI), and for electrostatic charge dissipation.

  4. Combination of CDF and D0 Results on the W-Boson Width

    SciTech Connect (OSTI)

    Not Available

    2005-12-01T23:59:59.000Z

    The results on the direct measurements of the W-boson width, based on the data collected by the Tevatron experiments CDF and D0 at Fermilab during Run-I from 1992 to 1996 and Run-II since 2001 are summarized. The combination of the published Run-I and preliminary Run-II results, taking correlated uncertainties properly into account, is presented. The resulting preliminary Tevatron average for the total decay width of the W boson is: {Lambda}{sub W} = 2078 {+-} 87 MeV, where the total error consists of a statistical part of 62 MeV and a systematic part of 60 MeV.

  5. UV Spectra and Excitation Delocalisation in DNA: Influence of the Spectral Width

    E-Print Network [OSTI]

    Boyer, Edmond

    T)10. Calculations are performed in the frame of the exciton theory. Molecular dynamics calculations and molecular dynamics, which have been developed recently to describe charge transfer in DNA.[81 7/6/2006 UV Spectra and Excitation Delocalisation in DNA: Influence of the Spectral Width

  6. Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan

    E-Print Network [OSTI]

    Bookhagen, Bodo

    Basin width control of faulting in the Naryn Basin, south central Kyrgyzstan Joseph K. Goode,1 the controls on this intramontane basin deformation, we study the Naryn Basin of south central Kyrgyzstan central Kyrgyzstan, Tectonics, 30, TC6009, doi:10.1029/2011TC002910. 1. Introduction [2] Deformation

  7. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOE Patents [OSTI]

    Konrad, C.E.; Boothe, R.W.

    1996-01-23T23:59:59.000Z

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figs.

  8. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOE Patents [OSTI]

    Konrad, C.E.; Boothe, R.W.

    1994-02-15T23:59:59.000Z

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements. 6 figures.

  9. SAYA's head-eye coordination system Correspondence of image-width and angle

    E-Print Network [OSTI]

    Beimel, Amos

    SAYA's head-eye coordination system Correspondence of image-width and angle 335 - 359 [deg] 0 - 25 - 25 [deg] is input, head and eyes move to right side. b) If the angle within 335 - 359 [deg] is input, head and eyes move to left side. SAYA's head-eye coordination system Correspondence of image

  10. An Estimate of the Partial Width for X(3872) into p p-bar

    E-Print Network [OSTI]

    Eric Braaten

    2008-02-17T23:59:59.000Z

    We present an estimate of the partial width of X(3872) into p p-bar under the assumption that it is a weakly-bound hadronic molecule whose constituents are a superposition of the charm mesons D^{*0} D-bar^0 and D^{0} D-bar^{*0}. The p p-bar partial width of X is therefore related to the cross section for p p-bar to D^{*0} D-bar^0 near the threshold. That cross section at an energy well above the threshold is estimated by scaling the measured cross section for p p-bar to K^{*-} K^+. It is extrapolated to the D^{*0} D-bar^0 threshold by taking into account the threshold resonance in the 1^{++} channel. The resulting prediction for the p p-bar partial width of X(3872) is proportional to the square root of its binding energy. For the current central value of the binding energy, the estimated partial width into p p-bar is comparable to that of the P-wave charmonium state chi_{c1}.

  11. Dielectron widths of the Upsilon(1S,2S,3S) resonances

    E-Print Network [OSTI]

    Besson, David Zeke

    2006-03-01T23:59:59.000Z

    We determine the dielectron widths of the Upsilon(1S), Upsilon(2S), and Upsilon(3S) resonances with better than 2% precision by integrating the cross section of e(+)e(-)->Upsilon over the e(+)e(-) center-of-mass energy. Using e(+)e(-) energy scans...

  12. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams

    SciTech Connect (OSTI)

    Khan, Inamullah; François, Raoul [Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, Avenue de Rangueil, F-31077 Toulouse (France)] [Université de Toulouse, UPS, INSA, LMDC (Laboratoire Matériaux et Durabilité des Constructions), 135, Avenue de Rangueil, F-31077 Toulouse (France); Castel, Arnaud [Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW (Australia)] [Centre for Infrastructure Engineering and Safety, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW (Australia)

    2014-02-15T23:59:59.000Z

    This paper studies the evolution of reinforcement corrosion in comparison to corrosion crack width in a highly corroded reinforced concrete beam. Cracking and corrosion maps of the beam were drawn and steel reinforcement was recovered from the beam to observe the corrosion pattern and to measure the loss of mass of steel reinforcement. Maximum steel cross-section loss of the main reinforcement and average steel cross-section loss between stirrups were plotted against the crack width. The experimental results were compared with existing models proposed by Rodriguez et al., Vidal et al. and Zhang et al. Time prediction models for a given opening threshold are also compared to experimental results. Steel cross-section loss for stirrups was also measured and was plotted against the crack width. It was observed that steel cross-section loss in the stirrups had no relationship with the crack width of longitudinal corrosion cracks. -- Highlights: •Relationship between crack and corrosion of reinforcement was investigated. •Corrosion results of natural process and then corresponds to in-situ conditions. •Comparison with time predicting model is provided. •Prediction of load-bearing capacity from crack pattern was studied.

  13. Time evolution of the fission-decay width under the influence of dissipation

    E-Print Network [OSTI]

    B. Jurado; K. -H. Schmidt; J. Benlliure

    2002-12-18T23:59:59.000Z

    Different analytical approximations to the time-dependent fission-decay width used to extract the influence of dissipation on the fission process are critically examined. Calculations with a new, highly realistic analytical approximation to the exact solution of the Fokker-Planck equation sheds doubts on previous conclusions on the dissipation strength made on the basis of less realistic approximations.

  14. FLOATING-POINT BIT-WIDTH OPTIMIZATION FOR LOW-POWER SIGNAL PROCESSING APPLICATIONS

    E-Print Network [OSTI]

    Chen, Tsuhan

    FLOATING-POINT BIT-WIDTH OPTIMIZATION FOR LOW-POWER SIGNAL PROCESSING APPLICATIONS Fang Fang design flow to the design of inverse discrete cosine transform (IDCT), and show that the power floating-point (FP) signal processing applications in low-power mobile devices, we propose a lightweight FP

  15. Mesh Width Influences Prey Retention in Spider Orb Webs Todd A. Blackledge & Jacquelyn M. Zevenbergen

    E-Print Network [OSTI]

    Blackledge, Todd

    Mesh Width Influences Prey Retention in Spider Orb Webs Todd A. Blackledge & Jacquelyn M. Zevenbergen Department of Biology, The University of Akron, Akron, OH, USA Introduction Orb webs depend upon threads, the sticky spirals of orb webs perform two important functions during prey cap- ture. First

  16. Theory of resonance in uence of sawtooth crashes on ions with large orbit width

    E-Print Network [OSTI]

    Theory of resonance in uence of sawtooth crashes on ions with large orbit width Ya. I. Kolesnichenko, V. V. Lutsenko, R. B. White, and Yu. V. Yakovenko Scienti#12;c Centre \\Institute for Nuclear predictions are in agreement with exper- imental observations2{6 on the Tokamak Fusion Test Reactor (TFTR)7

  17. Theory of resonance influence of sawtooth crashes on ions with large orbit width

    E-Print Network [OSTI]

    Theory of resonance influence of sawtooth crashes on ions with large orbit width Ya. I \\Lambda Scientific Centre ``Institute for Nuclear Research'', Kyiv, 252650, Ukraine \\Lambda are in agreement with exper­ imental observations 2--6 on the Tokamak Fusion Test Reactor (TFTR) 7 and the Joint

  18. Real time pulse width monitor for Intensified Charge Coupled Device (ICCD) electro-optic shutters

    SciTech Connect (OSTI)

    Yates, G.J.

    1996-12-01T23:59:59.000Z

    A method is described or controlling and measuring the pulse width of electrical gate pulses used for optical shuttering of image intensifier. The intensifiers are coupled to high frame rate Charge-Coupled-Devices (CCD) or Focus-Projection Scan (FPS) vidicon TV cameras for readout and telemetry of time resolved image sequences. The shutter duration or gate width of individual shutters is measured in real time and encoded in the video frame corresponding to a given shutter interval. The shutter information is updated once catch video frame by strobing new data with each TV camera vertical sync pulse. This circuitry is used in conjunction with commercial video insertion/annotation equipment to provide die shutter width information in alpha numeric text form along with the time resolved video image on a frame-by-frame basis. The measurement technique and circuitry involving a combination of high speed digital counters and analog integrators for measurements in the Ins to 1024 ns range are described. The accuracy obtained is compared with measurements obtained using batch speed DSOs. The measured data are provided in 10-bit Binary (Bi) and four decades of Binary Coded Decimal (BCD) and also displayed on four digit seven segment displays. The control circuitry including digital and analog input means for gate width selection are described. The implementation of both measurement and control circuitry into an Intensified Shuttered CCD (ISCCD) radiometric system for recording fast shuttered images at RS-170 to 4 KHz frame rates is presented.

  19. Search for Invisibly Decaying Higgs Bosons with Large Decay Width Using the OPAL Detector at LEP

    E-Print Network [OSTI]

    Abbiendi, G; Åkesson, P F; Alexander, G; Anagnostou, G; Anderson, K J; Asai, S; Axen, D; Bailey, I; Barberio, E; Barillari, T; Barlow, R J; Batley, J Richard; Bechtle, P; Behnke, T; Bell, K W; Bell, P J; Bella, G; Bellerive, A; Benelli, G; Bethke, Siegfried; Biebel, O; Boeriu, O; Bock, P; Boutemeur, M; Braibant, S; Brown, R M; Burckhart, H J; Campana, S; Capiluppi, P; Carnegie, R K; Carter, A A; Carter, J R; Chang, C Y; Charlton, D G; Ciocca, C; Csilling, A; Cuani, M; Dado, S; de Roeck, A; De Wolf, E A; Desch, K; Dienes, B; Dubbert, J; Duchovni, E; Duckeck, G; Duerdoth, I P; Etzion, E; Fabbri, F; Ferrari, P; Fiedler, F; Fleck, I; Ford, M; Frey, A; Gagnon, P; Gary, J W; Geich-Gimbel, C; Giacomelli, G; Giacomelli, P; Giunta, M; Goldberg, J; Gross, E; Grunhaus, J; Gruwé, M; Sen-Gupta, A; Hajdu, C; Hamann, M; Hanson, G G; Harel, A; Hauschild, M; Hawkes, C M; Hawkings, R; Herten, G; Heuer, R D; Hill, J C; Horváth, D; Igo-Kemenes, P; Ishii, K; Jeremie, H; Jovanovic, P; Junk, T R; Kanzaki, J; Karlen, D; Kawagoe, K; Kawamoto, T; Keeler, R K; Kellogg, R G; Kennedy, B W; Kluth, S; Kobayashi, T; Kobel, M; Komamiya, S; Kramer, T; Krasznahorkay, A; Krieger, P; Von Krogh, J; Kühl, T; Kupper, M; Laerty, G D; Landsman, H; Lanske, D; Lellouch, D; Letts, J; Levinson, L; Lillich, J; Lloyd, S L; Loebinger, F K; Lü, J; Ludwig, A; Ludwig, J; Mader, W; Marcellini, S; Martin, A J; Mashimo, T; Mättig, P; McKenna, J; McPherson, R A; Meijers, F; Menges, W; Merritt, F S; Mes, H; Meyer, N; Michelini, A; Mihara, S; Mikenberg, G; Miller, D J; Mohr, W; Mori, T; Mutter, A; Nagai, K; Nakamura, I; Nanjo, H; Neal, H A; Nisius, R; O'Neale, S W; Oh, A; Oreglia, M J; Orito, S; Pahl, C; Pásztor, G; Pater, J R; Pilcher, J E; Pinfold, J L; Plane, D E; Pooth, O; Przybycien, M B; Quadt, A; Rabbertz, K; Rembser, C; Renkel, P; Roney, J M; Rossi, A M; Rozen, Y; Runge, K; Sachs, K; Saeki, T; Sarkisyan-Grinbaum, E; Schaile, A D; Schaile, O; Schar-Hansen, P; Schieck, J; Schörner-Sadenius, T; Schröder, M; Schumacher, M; Seuster, R; Shears, T G; Shen, B C; Sherwood, P; Skuja, A; Smith, A M; Sobie, R J; Söldner-Rembold, S; Spanó, F; Stahl, A; Strom, D; Ströhmer, R; Tarem, S; Tasevsky, M; Teuscher, R; Thomson, M A; Torrence, E; Toya, D; Tran, P; Trigger, I; Trócsányi, Z L; Tsur, E; Turner-Watson, M F; Ueda, I; Ujvári, B; Vollmer, C F; Vannerem, P; Vertesi, R; Verzocchi, M; Voss, H; Vossebeld, Joost Herman; Ward, C P; Ward, D R; Watkins, P M; Watson, A T; Watson, N K; Wells, P S; Wengler, T; Wermes, N; Wilson, G W; Wilson, J A; Wolf, G; Wyatt, T R; Yamashita, S; Zer-Zion, D; Zivkovic, L

    2007-01-01T23:59:59.000Z

    This paper describes a topological search for an invisibly decaying Higgs boson,H, produced via the Bjorken process (e+e- -> HZ). The analysis is based on data recorded using the OPAL detector at LEP at centre-of-mass energies from 183 to 209 GeV corresponding to a total integrated luminosity of 629pb-1. In the analysis only hadronic decays of the Z boson are considered. A scan over Higgs boson masses from 1 to 120 GeV and decay widths from 1 to 3000 GeV revealed no indication for a signal in the data. From a likelihood ratio of expected signal and Standard Model background we determine upper limits on cross-section times branching ratio to an invisible final state. For moderate Higgs boson decay widths, these range from about 0.07pb Mh = 60GeV) to 0.57pb (Mh = 114GeV). For decay widths above 200GeV the upper limits are of the order of 0.15pb. The results can be interpreted in general scenarios predicting a large invisible decay width of the Higgs boson. As an example we interpret the results in the so-called...

  20. Bounding the Higgs width at the LHC: complementary results from H?WW

    SciTech Connect (OSTI)

    Campbell, John M.; Ellis, R. Keith; Williams, Ciaran

    2014-03-01T23:59:59.000Z

    We investigate the potential of the process gg ? H? WW to provide bounds on the Higgs width. Recent studies using off-shell H? ZZ events have shown that Run 1 LHC data can constrain the Higgs width, $\\Gamma_H < (25-45) \\Gamma_{H}^{\\rm SM}$. Using 20 fb-1 of 8 TeV ATLAS data, we estimate a bound on the Higgs boson width from the WW channel between $\\Gamma_H < (100-500) \\Gamma_H^{SM}$. The large spread in limits is due to the range of cuts applied in the existing experimental analysis. The stricter cuts designed to search for the on-shell Higgs boson limit the potential number of off-shell events, weakening the constraints. As some of the cuts are lifted the bounds improve. We show that there is potential in the high transverse mass region to produce upper bounds of the order of $(25-50) \\Gamma_H^{SM}$, depending strongly on the level of systematic uncertainty that can be obtained. Thus, if these systematics can be controlled, a constraint on the Higgs boson width from the H ? WW$ decay mode can complement a corresponding limit from H ? ZZ.

  1. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Boothe, Richard W. (Roanoke, VA)

    1994-01-01T23:59:59.000Z

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  2. Method and apparatus for improved efficiency in a pulse-width-modulated alternating current motor drive

    DOE Patents [OSTI]

    Konrad, Charles E. (Roanoke, VA); Boothe, Richard W. (Roanoke, VA)

    1996-01-01T23:59:59.000Z

    A scheme for optimizing the efficiency of an AC motor drive operated in a pulse-width-modulated mode provides that the modulation frequency of the power furnished to the motor is a function of commanded motor torque and is higher at lower torque requirements than at higher torque requirements.

  3. Length: 238' Width: 55' Draft: 15' Full-load displacement: 3,024 LT

    E-Print Network [OSTI]

    Russell, Lynn

    AGOR 28 Length: 238' Width: 55' Draft: 15' Full-load displacement: 3,024 LT Berthing: 20 Crew, 24 profiling system, deep-, mid- and shallow-water acoustic doppler current profilers, acoustic navigation safety and load control · Condition-based power monitoring system for improved efficiency and control

  4. CO line width and the black hole -- bulge relationship at high redshift

    E-Print Network [OSTI]

    Xue-Bing Wu

    2007-02-05T23:59:59.000Z

    Recently, it has been suggested that the CO line width (FWHM(CO)) is a surrogate for the bulge velocity dispersion ($\\sigma$) of the host galaxies of high-redshift quasars, and the black hole -- bulge ($M_{BH}-\\sigma$) relation obtained with this assumption departs significantly from the $M_{BH}-\\sigma$ relation in the local universe. In this study, we first present an investigation of the correlation between the CO line width and the bulge velocity dispersion using a sample of 33 nearby Seyfert galaxies. We find that the formula adopted in previous studies, $\\sigma=\\rm{FWHM(CO)}/2.35$, is generally not a good approximation. Using it, one may underestimate the value of bulge velocity dispersion significantly when the CO line is narrower than 400 $km s^{-1}$. By involving the galactic inclination angle $i$ as an additional parameter, we obtain a tight correlation between the inclination-corrected CO line width and the bulge velocity dispersion, namely, $\\rm {FWHM(CO)}/\\sin i=-67.16\\pm80.18+(3.62\\pm0.68)\\sigma$. Using this new relation, we can better estimate the bulge velocity dispersion from the CO line width if the galactic inclination is known. We apply this new relation to nine high-redshift quasars with CO line detections and find that they are consistent with the local $M_{BH}-\\sigma$ relation if their inclination angles are around $15^o$. The possible smaller inclinations of the high-redshift quasars are preferred because of their relatively greater likelihood of detection, and are also consistent with their relatively smaller CO line widths compared to submillimeter galaxies (SMGs) at high redshift having a similar total amount of molecular gas. Future observations are needed to confirm these results.

  5. Constraints on the Higgs boson total width using H*(126) -> ZZ events

    E-Print Network [OSTI]

    Roberto Covarelli

    2014-05-16T23:59:59.000Z

    Constraints are set on the Higgs boson decay width, Gamma_H, using off-shell production and decay to ZZ in the four-lepton (4l), or two-lepton-two-neutrino (2l2nu) final states. The analysis is based on the data collected in 2012 by the CMS experiment at the LHC, corresponding to an integrated luminosity L = 19.7 fb^{-1} at sqrt(s) = 8 TeV. A maximum-likelihood fit of invariant mass and kinematic discriminant distributions in the 4l case and of transverse mass or missing energy distributions in the 2l2nu case is performed. The result of it, combined with the 4l measurement near the resonance peak, leads to an upper limit on the Higgs boson width of Gamma_H < 4.2 x Gamma_H^SM at the 95% confidence level, assuming Gamma_H^SM = 4.15 MeV.

  6. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, Gary W. (Livermore, CA)

    1996-01-01T23:59:59.000Z

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board.

  7. The In-medium Mass and Widths of Light Vector Mesons

    SciTech Connect (OSTI)

    Djalali, C.; Paolone, M. [University of South Carolina, Department of Physics and Astronomy, Columbia, SC 29208 (United States); Weygand, D. [Thomas Jefferson National Accelerator Facility, Newport News, VA 23606 (United States); Wood, M. H. [Canisius College, Department of Physics, Buffalo, NY 14208 (United States); Nasseripour, R. [George Washington University, Department of Physics, Washington, DC 20052 (United States)

    2011-05-23T23:59:59.000Z

    Partial restoration of chiral symmetry in ordinary nuclear matter suggests the modification of properties of vector mesons, such as a shift in mass and/or a change of width. Photoproduction of vector mesons off nuclei were performed at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS). The properties of the {rho}, {omega} and {phi} mesons were investigated via their rare leptonic decay to e+e-. This decay channel has an advantage over hadronic modes as it eliminates final state interactions in the nuclear matter. After subtracting the combinatorial background, the meson mass distributions were extracted for each of the nuclear targets. No significant mass shift is observed, however substantial increase in the widths of the mesons is reported.

  8. Expected Precision of Higgs Boson Partial Widths within the Standard Model

    E-Print Network [OSTI]

    G. Peter Lepage; Paul B. Mackenzie; Michael E. Peskin

    2015-04-22T23:59:59.000Z

    We discuss the sources of uncertainty in calculations of the partial widths of the Higgs boson within the Standard Model. The uncertainties come from two sources: the truncation of perturbation theory and the uncertainties in input parameters. We review the current status of perturbative calculations and note that these are already reaching the parts-per-mil level of accuracy for the major decay modes. The main sources of uncertainty will then come from the parametric dependences on alpha_s, m_b, and m_c. Knowledge of these parameters is systematically improvable through lattice gauge theory calculations. We estimate the precision that lattice QCD will achieve in the next decade and the corresponding precision of the Standard Model predictions for Higgs boson partial widths.

  9. The nucleon thermal width due to pion-baryon loops and its contribution in Shear viscosity

    E-Print Network [OSTI]

    Ghosh, Sabyasachi

    2015-01-01T23:59:59.000Z

    In the real-time thermal field theory, the standard expression of shear viscosity for the nucleonic constituents is derived from the two point function of nucleonic viscous stress tensors at finite temperature and density. The finite thermal width or Landau damping is traditionally included in the nucleon propagators. This thermal width is calculated from the in-medium self-energy of nucleon for different possible pion-baryon loops. The dynamical part of nucleon-pion-baryon interactions are taken care by the effective Lagrangian densities of standard hadronic model. The shear viscosity to entropy density ratio of nucleonic component decreases with the temperature and increases with the nucleon chemical potential. However, adding the contribution of pionic component, total viscosity to entropy density ratio also reduces with the nucleon chemical potential when the mixing effect between pion and nucleon components in the mixed gas is considered. Within the hadronic domain, viscosity to entropy density ratio of ...

  10. Apparatus for controlling the scan width of a scanning laser beam

    DOE Patents [OSTI]

    Johnson, G.W.

    1996-10-22T23:59:59.000Z

    Swept-wavelength lasers are often used in absorption spectroscopy applications. In experiments where high accuracy is required, it is desirable to continuously monitor and control the range of wavelengths scanned (the scan width). A system has been demonstrated whereby the scan width of a swept ring-dye laser, or semiconductor diode laser, can be measured and controlled in real-time with a resolution better than 0.1%. Scan linearity, or conformity to a nonlinear scan waveform, can be measured and controlled. The system of the invention consists of a Fabry-Perot interferometer, three CAMAC interface modules, and a microcomputer running a simple analysis and proportional-integral control algorithm. With additional modules, multiple lasers can be simultaneously controlled. The invention also includes an embodiment implemented on an ordinary PC with a multifunction plug-in board. 8 figs.

  11. Expected Precision of Higgs Boson Partial Widths within the Standard Model

    E-Print Network [OSTI]

    G. Peter Lepage; Paul B. Mackenzie; Michael E. Peskin

    2014-04-01T23:59:59.000Z

    We discuss the sources of uncertainty in calculations of the partial widths of the Higgs boson within the Standard Model. The uncertainties come from two sources: the truncation of perturbation theory and the uncertainties in input parameters. We review the current status of perturbative calculations and note that these are already reaching the parts-per-mil level of accuracy for the major decay modes. The main sources of uncertainty will then come from the parametric dependences on alpha_s, m_b, and m_c. Knowledge of these parameters is systematically improvable through lattice gauge theory calculations. We estimate the precision that lattice QCD will achieve in the next decade and the corresponding precision of the Standard Model predictions for Higgs boson partial widths.

  12. Galactic interstellar abundance surveys with IUE. II. The equivalent widths and column densities

    SciTech Connect (OSTI)

    Van Steenberg, M.E.; Shull, J.M.

    1988-06-01T23:59:59.000Z

    This paper continues a survey of interstellar densities, abundances, and cloud structure in the Galaxy, using the International Ultraviolet Explorer (IUE) satellite. Equivalent widths of 18 ultraviolet resonance transitions are presented and column densities for Si II, Mn II, Fe II, S II, and Zn II toward 261 early-type stars are derived. These equivalent widths and column densities agree within the stated errors of earlier Copernicus, BUSS, or IUE surveys of Mn II, Fe II, S II, and Zn II for 45 stars in common. The column densities are derived from single-component curves of growth with a common b-value based on that of Fe II and Si II. 63 references.

  13. The S-D mixing and dielectron widths of higher charmonium 1{sup --} states

    SciTech Connect (OSTI)

    Badalian, A. M., E-mail: badalian@itep.r [Institute of Theoretical and Experimental Physics (Russian Federation); Bakker, B. L. G. [Vrije Universiteit, Department of Physics and Astronomy (Netherlands); Danilkin, I. V. [Moscow Engineering Physics Institute (Russian Federation)

    2009-04-15T23:59:59.000Z

    The dielectron widths of {psi}(4040), {psi}(4160), and {psi}(4415), and their ratios are shown to be in good agreement with experiment, if in all cases the S-D mixing with a large mixing angle {theta} {approx_equal} 34 deg. is taken. Arguments are presented why continuum states give small contributions to the wave functions at the origin. We find that the Y (4360) resonance, considered as a pure 3 {sup 3}D{sub 1} state, would have very small dielectron width, {Gamma}{sub ee}(Y (4360)) = 0.060 keV. On the contrary, for large mixing between the 4 {sup 3}S{sub 1} and 3 {sup 3}D{sub 1} states with the mixing angle {theta} = 34.8 deg., {Gamma}{sub ee}({psi}(4415)) = 0.57 keV coincides with the experimental number, while a second physical resonance, probably Y (4360), has also a rather large {Gamma}{sub ee}(Y ({approx}4400)) = 0.61 keV. For the higher Y (4660) resonance, considered as a pure 5 {sup 3}S{sub 1} state, we predict the dielectron width {Gamma}{sub ee}(Y (4660)) = 0.70 keV, but it becomes significantly smaller, namely 0.31 keV, if the mixing angle between the 5 {sup 3}S{sub 1} and 4 {sup 3}D{sub 1} states has the characteristic value {theta} = 34 deg. The mass and dielectron width of the 6 {sup 3}S{sub 1} charmonium state are calculated.

  14. Nuclear Targets for a Precision Measurement of the Neutral Pion Radiative Width

    E-Print Network [OSTI]

    P. Martel; E. Clinton; R. McWilliams; D. Lawrence; R. Miskimen; A. Ahmidouch; P. Ambrozewicz; A. Asratyan; K. Baker; L. Benton; A. Bernstein; P. Cole; P. Collins; D. Dale; S. Danagoulian; G. Davidenko; R. Demirchyan; A. Deur; A. Dolgolenko; G. Dzyubenko; A. Evdokimov; J. Feng; M. Gabrielyan; L. Gan; A. Gasparian; O. Glamazdin; V. Goryachev; V. Gyurjyan; K. Hardy; M. Ito; M. Khandaker; P. Kingsberry; A. Kolarkar; M. Konchatnyi; O. Korchin; W. Korsch; S. Kowalski; M. Kubantsev; V. Kubarovsky; I. Larin; V. Matveev; D. McNulty; B. Milbrath; R. Minehart; V. Mochalov; S. Mtingwa; I. Nakagawa; S. Overby; E. Pasyuk; M. Payen; R. Pedroni; Y. Prok; B. Ritchie; C. Salgado; A. Sitnikov; D. Sober; W. Stephens; A. Teymurazyan; J. Underwood; A. Vasiliev; V. Verebryusov; V. Vishnyakov; M. Wood

    2008-11-13T23:59:59.000Z

    A technique is presented for precision measurements of the area densities, density * T, of approximately 5% radiation length carbon and 208Pb targets used in an experiment at Jefferson Laboratory to measure the neutral pion radiative width. The precision obtained in the area density for the carbon target is +/- 0.050%, and that obtained for the lead target through an x-ray attenuation technique is +/- 0.43%.

  15. Poisson statistics for random deformed band matrices with power law band width

    E-Print Network [OSTI]

    Vladimir Pchelin

    2015-05-25T23:59:59.000Z

    We show Poisson statistics for random band matrices which diagonal entries have Gaussian components. These components are possibly as small as $n^{-\\varepsilon}$. Particularly, our result is applicable for a band matrix cut from the GUE with the band width satisfying $w^{3.5}density of states (DOS) is obtained for complex deformed Gaussian band matrices with arbitrary $w$. A lower estimate of the DOS is also proven for arbitrary $w$ in a certain class of band matrices.

  16. Hadronic decay width from finite-volume energy spectrum in lattice QCD

    SciTech Connect (OSTI)

    Giudice, Pietro; Peardon, Michael J. [School of Mathematics, Trinity College, Dublin 2 (Ireland)

    2010-08-05T23:59:59.000Z

    The standard approach to determine the parameters of a resonance is based on the study of the volume dependence of the energy spectrum. In this work we study a non-linear sigma model coupled to a scalar field in which a resonance emerges. Using an analysis method introduced recently, based on the concept of probability distribution, it is possible to determine the mass and the width of the resonance.

  17. Nonlinear classical model for the decay widths of isoscalar giant monopole resonances

    SciTech Connect (OSTI)

    Papachristou, P. K.; Mavrommatis, E.; Diakonos, F. K. [Department of Physics, University of Athens, GR-15771, Athens (Greece); Constantoudis, V. [Institute of Microelectronics (IMEL), NCSR 'Demokritos', P. O. Box 60228, Aghia Paraskevi, Attiki, Greece 15310 and Physics Department, National Technical University, Athens (Greece); Wambach, J. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Schlossgartenstr. 9, D-64289 Darmstadt (Germany)

    2008-04-15T23:59:59.000Z

    The decay of the isoscalar giant monopole resonance (ISGMR) in nuclei is studied by means of a nonlinear classical model consisting of several noninteracting nucleons (particles) moving in a potential well with an oscillating nuclear surface (wall). The motion of the nuclear surface is described by means of a collective variable that appears explicitly in the Hamiltonian as an additional degree of freedom. The total energy of the system is therefore conserved. Although the particles do not directly interact with each other, their motions are indirectly coupled by means of their interaction with the moving nuclear surface. We consider as free parameters in this model the degree of collectivity and the fraction of nucleons that participate to the decay of the collective excitation. Specifically, we have calculated the decay width of the ISGMR in the spherical nuclei {sup 208}Pb, {sup 144}Sm, {sup 116}Sn, and {sup 90}Zr. Despite its simplicity and its purely classical nature, the model reproduces the trend of the experimental data that show that with increasing mass number the decay width decreases. Moreover the experimental results (with the exception of {sup 90}Zr) can be well fitted using appropriate values for the free parameters mentioned above. It is also found that these values allow for a good description of the experimentally measured {sup 112}Sn and {sup 124}Sn decay widths. In addition, we give a prediction for the decay width of the exotic isotope {sup 132}Sn for which there is experimental interest. The agreement of our results with the corresponding experimental data for medium-heavy nuclei is dictated by the underlying classical mechanics, i.e., the behavior of the maximum Lyapunov exponent as a function of the system size.

  18. Spectral line width decrease in the solar corona: resonant energy conversion from Alfv{é}n to acoustic waves

    E-Print Network [OSTI]

    T. V. Zaqarashvili; R. Oliver; J. L. Ballester

    2007-03-13T23:59:59.000Z

    Observations reveal an increase with height of the line width of several coronal spectral lines probably caused by outwardly propagating Alfv{\\'e}n waves. However, the spectral line width sometimes shows a sudden decrease at a height 0.1-0.2 R, where the ratio of sound to Alfven speeds may approach unity. Qualitative analysis shows that the resonant energy conversion from Alfven to acoustic waves near the region of the corona where the plasma $\\beta$ approaches unity may explain the observed spectral line width reduction.

  19. Statistical distributions of level widths and conductance peaks in irregularly shaped quantum dots

    SciTech Connect (OSTI)

    Alhassid, Y.; Lewenkopf, C.H. [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520 (United States)] [Center for Theoretical Physics, Sloane Physics Laboratory, Yale University, New Haven, Connecticut 06520 (United States); [Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States)

    1995-11-20T23:59:59.000Z

    Analytical expressions for width and conductance peak distributions for quantum dots with multichannel leads in the Coulomb blockade regime are presented for both limits of conserved and broken time-reversal symmetry. The results are valid for any number of nonequivalent and correlated channels, and the distributions are expressed in terms of the channel correlation matrix {ital M} in each lead. The matrix {ital M} is also given in closed form. A chaotic billiard is used as a model to test numerically the theoretical predictions. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  20. Dependence of various SOL widths on plasma current and density in NSTX H-mode plasmas

    SciTech Connect (OSTI)

    Ahn, J; Maingi, R; Boedo, J; Soukhanovskii, V A

    2009-02-12T23:59:59.000Z

    The dependence of various SOL widths on the line-averaged density ({ovr n}{sub e}) and plasma current (l{sub p}) for the quiescent H-mode plasmas with Type-V ELMs in the National Spherical Torus Experiment (NSTX) was investigated. It is found that the heat flux SOL width ({lambda}{sub q}), measured by the IR camera, is virtually insensitive to {ovr n}{sub e} and has a strong negative dependence on l{sub p}. This insensitivity of {lambda}{sub q} to {ovr n}{sub e} is consistent with the scaling law from JET H-mode plasmas that shows a very weak dependence on the upstream density. The electron temperature, ion saturation current density, electron density, and electron pressure decay lengths ({lambda}{sub Te}, {lambda}{sub jsat}, {lambda}{sub ne}, and {lambda}{sub pe}, respectively) measured by the probe showed that {lambda}{sub Te} and {lambda}{sub jsat} have strong negative dependence on l{sub p}, whereas {lambda}{sub ne} and {lambda}{sub pe} revealed only a little or no dependence. The dependence of {lambda}{sub Te} on l{sub p} is consistent with the scaling law in the literature while {lambda}{sub ne} and {lambda}{sub pe} dependence shows a different trend.

  1. Measurement of the W boson mass and width using a novel recoil model

    SciTech Connect (OSTI)

    Wetstein, Matthew J.; /Maryland U.

    2009-01-01T23:59:59.000Z

    This dissertation presents a direct measurement of the W boson mass (M{sub W}) and decay width ({Lambda}{sub W}) in 1 fb{sup -1} of W {yields} e{nu} collider data at D0 using a novel method to model the hadronic recoil. The mass is extracted from fits to the transverse mass M{sub T}, p{sub T}(e), and E{sub T} distributions. The width is extracted from fits to the tail of the M{sub T} distribution. The electron energy measurement is simulated using a parameterized model, and the recoil is modeled using a new technique by which Z recoils are chosen from a data library to match the p{sub T} and direction of each generated W boson. We measure the the W boson mass to be M{sub W} = 80.4035 {+-} 0.024(stat) {+-} 0.039(syst) from the M{sub T}, M{sub W} = 80.4165 {+-} 0.027(stat) {+-} 0.038(syst) from the pT(e), and MW = 80.4025 {+-} 0.023(stat) {+-} 0.043(syst) from the E{sub T} distributions. {Lambda}{sub W} is measured to be {Lambda}{sub W} = 2.025 {+-} 0.038(stat) {+-} 0.061(syst) GeV.

  2. Determining matrix elements and resonance widths from finite volume: the dangerous mu-terms

    E-Print Network [OSTI]

    G. Takacs

    2011-10-10T23:59:59.000Z

    The standard numerical approach to determining matrix elements of local operators and width of resonances uses the finite volume dependence of energy levels and matrix elements. Finite size corrections that decay exponentially in the volume are usually neglected or taken into account using perturbation expansion in effective field theory. Using two-dimensional sine-Gordon field theory as "toy model" it is shown that some exponential finite size effects could be much larger than previously thought, potentially spoiling the determination of matrix elements in frameworks such as lattice QCD. The particular class of finite size corrections considered here are mu-terms arising from bound state poles in the scattering amplitudes. In sine-Gordon model, these can be explicitly evaluated and shown to explain the observed discrepancies to high precision. It is argued that the effects observed are not special to the two-dimensional setting, but rather depend on general field theoretic features that are common with models relevant for particle physics. It is important to understand these finite size corrections as they present a potentially dangerous source of systematic errors for the determination of matrix elements and resonance widths.

  3. Measurement of the Mass and Width of the Ds1(2536)+ Meson

    SciTech Connect (OSTI)

    Lees, J.P.; Poireau, V.; Prencipe, E.; Tisserand, V.; /Annecy, LAPP; Garra Tico, J.; Grauges, E.; /Barcelona U., ECM; Martinelli, M.; /INFN, Trieste /Trieste U.; Milanes, D.A.; /INFN, Trieste /Trieste U.; Palano, A.; /INFN, Trieste /Trieste U.; Pappagallo, M.; /INFN, Trieste /Trieste U. /INFN, Bari /Bari U. /Bari U. /INFN, Bari; Eigen, G.; Stugu, B.; Sun, L.; /Bergen U.; Brown, D.N.; Kerth, L.T.; Kolomensky, Yu.G.; Lynch, G.; Osipenkov, I.L.; /LBL, Berkeley /UC, Berkeley; Koch, H.; Schroeder, T.; /Ruhr U., Bochum; Asgeirsson, D.J.; /British Columbia U. /Brunel U. /Novosibirsk, IYF /UC, Irvine /UC, Riverside /UC, Santa Barbara /UC, Santa Cruz /Caltech /Cincinnati U. /Colorado U. /Colorado State U. /Dortmund U. /Dresden, Tech. U. /Ecole Polytechnique /Edinburgh U. /INFN, Trieste /INFN, Trieste /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /INFN, Ferrara /Ferrara U. /Frascati /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /INFN, Trieste /Trieste U. /INFN, Trieste /INFN, Genoa /Genoa U. /Indian Inst. Tech., Guwahati /Harvard U. /Harvey Mudd Coll. /Heidelberg U. /Humboldt U., Berlin /Imperial Coll., London /Iowa State U. /Iowa State U. /Johns Hopkins U. /Orsay, LAL /LLNL, Livermore /Liverpool U. /Queen Mary, U. of London /Royal Holloway, U. of London /Louisville U. /Mainz U., Inst. Kernphys. /Manchester U., Comp. Sci. Dept. /Maryland U. /Massachusetts U., Amherst /MIT /McGill U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Milan /Milan U. /Mississippi U. /Montreal U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Naples /Naples U. /NIKHEF, Amsterdam /Notre Dame U. /Ohio State U. /Oregon U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /INFN, Trieste /INFN, Trieste /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Padua /Padua U. /Paris U., VI-VII /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Perugia /Perugia U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /INFN, Pisa /Princeton U. /INFN, Trieste /INFN, Trieste /INFN, Trieste /Trieste U. /INFN, Trieste /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /INFN, Trieste /INFN, Trieste /INFN, Rome /Rome U. /Rostock U. /Rutherford /DAPNIA, Saclay /SLAC /South Carolina U. /Southern Methodist U. /Stanford U., Phys. Dept. /SUNY, Albany /Tel Aviv U. /Tennessee U. /Texas U. /Texas U., Dallas /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Turin /Turin U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /INFN, Trieste /Trieste U. /Valencia U., IFIC /Victoria U. /Warwick U. /Wisconsin U., Madison

    2011-08-19T23:59:59.000Z

    The decay width and mass of the D{sub s1}(2536){sup +} meson are measured via the decay channel D{sub s1}{sup +} {yields} D*{sup +} K{sub S}{sup 0} using 385 fb{sup -1} of data recorded with the BABAR detector in the vicinity of the {Upsilon}(4S) resonance at the PEP-II asymmetric-energy electron-positron collider. The result for the decay width is {Gamma}(D{sub s1}{sup +}) = 0.92 {+-} 0.03 (stat.) {+-} 0.04 (syst.)MeV. For the mass, a value of m(D{sub s1}{sup +}) = 2535.08 {+-} 0.01 (stat.) {+-} 0.15 (syst.)MeV/c{sup 2} is obtained. The mass difference between the D{sub s1}{sup +} and the D*{sup +} is measured to be m(D{sub s1}{sup +})-m(D*{sup +}) = 524.83 {+-} 0.01 (stat.) {+-} 0.04 (syst.)MeV/c{sup 2}, representing a significant improvement compared to the current world average. The unnatural spin-parity assignment for the D{sub s1}{sup +} meson is confirmed.

  4. The nucleon thermal width due to pion-baryon loops and its contribution in Shear viscosity

    E-Print Network [OSTI]

    Sabyasachi Ghosh

    2015-03-24T23:59:59.000Z

    In the real-time thermal field theory, the standard expression of shear viscosity for the nucleonic constituents is derived from the two point function of nucleonic viscous stress tensors at finite temperature and density. The finite thermal width or Landau damping is traditionally included in the nucleon propagators. This thermal width is calculated from the in-medium self-energy of nucleon for different possible pion-baryon loops. The dynamical part of nucleon-pion-baryon interactions are taken care by the effective Lagrangian densities of standard hadronic model. The shear viscosity to entropy density ratio of nucleonic component decreases with the temperature and increases with the nucleon chemical potential. However, adding the contribution of pionic component, total viscosity to entropy density ratio also reduces with the nucleon chemical potential when the mixing effect between pion and nucleon components in the mixed gas is considered. Within the hadronic domain, viscosity to entropy density ratio of the nuclear matter is gradually reducing as temperature and nucleon chemical potential are growing up and therefore the nuclear matter is approaching toward the (nearly) perfect fluid nature.

  5. A Precision Measurement of the Ds1 (2536)+ Meson Mass and Decay Width

    SciTech Connect (OSTI)

    BABAR Collaboration,

    2006-09-26T23:59:59.000Z

    The decay width and the mass of the D{sub s1}(2536){sup {+-}} have been measured via the decay channel D{sub s1}{sup {+-}} {yields} D*{sup {+-}}K{sub S}{sup 0} using 232 fb{sup -1} of data collected with the BABAR detector at the PEP-II asymmetric-energy e{sup +}e{sup -} storage ring. The result for the decay width is {Lambda}(D{sub s1}{sup {+-}}) = (1.03 {+-} 0.05 {+-} 0.12) MeV/c{sup 2}, with the first error denoting the statistical uncertainty and the second one the systematic uncertainty. For the mass, a value of m(D{sub s1}{sup {+-}}) = (2534.85 {+-} 0.02 {+-} 0.40) MeV/c{sup 2} has been obtained. The systematic error is dominated by the uncertainty on the D*{sup {+-}} mass. The mass difference between the D{sub s1}{sup {+-}} and D*{sup {+-}} has been measured to be {Delta}m = (524.85 {+-} 0.02 {+-} 0.04) MeV/c{sup 2}.

  6. Method and apparatus for pulse width modulation control of an AC induction motor

    DOE Patents [OSTI]

    Geppert, Steven (Bloomfield Hills, MI); Slicker, James M. (Union Lake, MI)

    1984-01-01T23:59:59.000Z

    An inverter is connected between a source of DC power and a three-phase AC induction motor, and a micro-processor-based circuit controls the inverter using pulse width modulation techniques. In the disclosed method of pulse width modulation, both edges of each pulse of a carrier pulse train are equally modulated by a time proportional to sin .THETA., where .THETA. is the angular displacement of the pulse center at the motor stator frequency from a fixed reference point on the carrier waveform. The carrier waveform frequency is a multiple of the motor stator frequency. The modulated pulse train is then applied to each of the motor phase inputs with respective phase shifts of 120.degree. at the stator frequency. Switching control commands of electronic switches in the inverter are stored in a random access memory (RAM) and the locations of the RAM are successively read out in a cyclic manner, each bit of a given RAM location controlling a respective phase input of the motor. The DC power source preferably comprises rechargeable batteries and all but one of the electronic switches in the inverter can be disabled, the remaining electronic switch being part of a "flyback" DC-DC converter circuit for recharging the battery.

  7. Above-threshold multiphoton detachment from the H- ion by 10.6-?m radiation: Angular distributions and partial widths

    E-Print Network [OSTI]

    Chu, Shih-I; Telnov, Dmitry A.

    1994-11-01T23:59:59.000Z

    We present a general procedure for accurate nonperturbative treatment of the angular distribution and partial widths for multiphoton above-threshold detachment (ATD) of atoms or negative ions in intense laser fields. The procedure consists...

  8. Width dependent transition of quantized spin-wave modes in Ni{sub 80}Fe{sub 20} square nanorings

    SciTech Connect (OSTI)

    Banerjee, Chandrima; Saha, Susmita; Barman, Saswati; Barman, Anjan, E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700098 (India); Rousseau, Olivier [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Otani, YoshiChika [CEMS-RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Institute for Solid State Physics, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8581 (Japan)

    2014-10-28T23:59:59.000Z

    We investigated optically induced ultrafast magnetization dynamics in square shaped Ni{sub 80}Fe{sub 20} nanorings with varying ring width. Rich spin-wave spectra are observed whose frequencies showed a strong dependence on the ring width. Micromagnetic simulations showed different types of spin-wave modes, which are quantized upto very high quantization number. In the case of widest ring, the spin-wave mode spectrum shows quantized modes along the applied field direction, which is similar to the mode spectrum of an antidot array. As the ring width decreases, additional quantization in the azimuthal direction appears causing mixed modes. In the narrowest ring, the spin-waves exhibit quantization solely in azimuthal direction. The different quantization is attributed to the variation in the internal field distribution for different ring width as obtained from micromagnetic analysis and supported by magnetic force microscopy.

  9. Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Myra, J. R. [Lodestar Research Corporation, Boulder, CO (United States); Russell, D. A. [Lodestar Research Corporation, Boulder, CO (United States); D'Ippolito, D. A. [Lodestar Research Corporation, Boulder, CO (United States); Ahn, J- W [Oak Ridge National Lab., TN (United States); Maingi, R. [Oak Ridge National Lab., TN (United States); Maqueda, R. J. [Princeton Plasma Physics Lab., NJ (United States); Lundberg, D. P. [Princeton Plasma Physics Lab., NJ (United States); Stotler, D. P. [Princeton Plasma Physics Lab., NJ (United States); Zweben, S. J. [Princeton Plasma Physics Lab., NJ (United States); Boedo, J. [Univ. of California at San Diego, CA (United States); Umansky, M. [Lawrence Livermore National Lab., Livermore, CA (United States)

    2011-01-10T23:59:59.000Z

    Reduced model simulations of turbulence in the edge and scrape-off-layer (SOL) region of a spherical torus or tokamak plasma are employed to address the physics of the scrape-off-layer heat flux width. The simulation model is an electrostatic two-dimensional fluid turbulence model, applied in the plane perpendicular to the magnetic field at the outboard midplane of the torus. The model contains curvature-driven-interchange modes, sheath losses, and both perpendicular turbulent diffusive and convective (blob) transport. These transport processes compete with classical parallel transport to set the SOL width. Midplane SOL profiles of density, temperature and parallel heat flux are obtained from the simulation and compared with experimental results from the National Spherical Torus Experiment (NSTX) [S. M. Kaye, et al., Phys. Plasmas 8, 1977 (2001)] to study the scaling of the heat flux width with power and plasma current. It is concluded that midplane turbulence is the main contributor to the SOL heat flux width for the low power H-mode discharges studied, while additional physics is required to explain the plasma current scaling of the SOL heat flux width observed experimentally in higher power discharges. Intermittent separatrix spanning convective cells are found to be the main mechanism that sets the near-SOL width in the simulations. The roles of sheared flows and blob trapping vs. emission are discussed.

  10. Reduced model simulations of the scrape-off-layer heat-flux width and comparison with experiment

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Myra, J. R.; Russell, D. A.; D’Ippolito, D. A.; Ahn, J.-W.; Maingi, R.; Maqueda, R. J.; Lundberg, D. P.; Stotler, D. P.; Zweben, S. J.; Boedo, J.; et al

    2011-01-01T23:59:59.000Z

    Reduced model simulations of turbulence in the edge and scrape-off-layer (SOL) region of a spherical torus or tokamak plasma are employed to address the physics of the scrape-off-layer heat flux width. The simulation model is an electrostatic two-dimensional fluid turbulence model, applied in the plane perpendicular to the magnetic field at the outboard midplane of the torus. The model contains curvature-driven-interchange modes, sheath losses, and both perpendicular turbulent diffusive and convective (blob) transport. These transport processes compete with classical parallel transport to set the SOL width. Midplane SOL profiles of density, temperature and parallel heat flux are obtained from themore »simulation and compared with experimental results from the National Spherical Torus Experiment (NSTX) to study the scaling of the heat flux width with power and plasma current. It is concluded that midplane turbulence is the main contributor to the SOL heat flux width for the low power H-mode discharges studied, while additional physics is required to explain the plasma current scaling of the SOL heat flux width observed experimentally in higher power discharges. Intermittent separatrix spanning convective cells are found to be the main mechanism that sets the near-SOL width in the simulations. The roles of sheared flows and blob trapping vs. emission are discussed.« less

  11. Single line-of-sight dual energy backlighter for mix width experiments

    SciTech Connect (OSTI)

    Baker, K. L., E-mail: baker7@llnl.gov; Glendinning, S. G.; Martinez, D.; Dittrich, T. R.; MacLaren, S. A.; Felker, S.; Seugling, R.; Doane, D.; Wallace, R. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Guymer, T. M.; Moore, A. S. [AWE, Aldermaston, Reading, Berkshire RG7 4PR (United Kingdom); Whiting, N.; Sorce, C. [Laboratory for Laser Energetics, Rochester, New York 14627 (United States)

    2014-11-15T23:59:59.000Z

    We present a diagnostic technique used to spatially multiplex two x-ray radiographs of an object onto a detector along a single line-of-sight. This technique uses a thin, <2 ?m, cosputtered backlighter target to simultaneously produce both Ni and Zn He{sub ?} emission. A Ni picket fence filter, 500 ?m wide bars and troughs, is then placed in front of the detector to pass only the Ni He{sub ?} emission in the bar region and both energies in the trough region thereby spatially multiplexing the two radiographs on a single image. Initial experimental results testing the backlighter spectrum are presented along with simulated images showing the calculated radiographic images though the nickel picket fence filter which are used to measure the mix width in an accelerated nickel foam.

  12. Finite-Width Bundle is Most Stable in a Solution with Salt

    E-Print Network [OSTI]

    Takuya Saito; Kenichi Yoshikawa

    2010-04-21T23:59:59.000Z

    We applied the mean-field approach to a columnar bundle assembled by the parallel arrangement of stiff polyelectrolyte rods in a salt bath. The electrostatic potential can be divided into two regions: inside the bundle for condensed counter-ions, and outside the bundle for free small ions. To determine the distribution of condensed counter-ions inside the bundle, we use a local self-consistent condition that depends on the charge density, the electrostatic potential, and the net polarization. The results showed that, upon bundle formation, the electric charge of polyelectrolytes, even those inside the bundle, tend to survive in an inhomogeneous manner, and thus their width remains finite under thermal equilibrium because of the long-range effect of charge instability.

  13. Temperature Width and Spin Structure of Superfluid 3He-A1 in Aerogel

    E-Print Network [OSTI]

    G. A. Baramidze; G. A. Kharadze

    2003-07-24T23:59:59.000Z

    The influence of spin-exchange scattering centers on the triplet Cooper pairing is considered to explore the behavior of superfluid 3He in high porosity aerogel containing 3He atoms localized at the surface of silica strands. The homogeneously located and isotropically scattering system of spin-polarized ``impurity'' centers is adopted as a simple model to investigate the contribution of spin-exchange scattering chanel for quasiparticles to the formation of non-unitary superfluid A1-phase in aerogel environment. It is demonstrated that an interference between the potential and exchange parts of quasiparticle scattering against spin-polarized ``impurity'' centers can change considerably the temperature width and the spin structure of A_{1}-phase in aerogel.

  14. Two-photon widths of the {chi}{sub cJ} states of charmonium

    SciTech Connect (OSTI)

    Ecklund, K. M. [State University of New York at Buffalo, Buffalo, New York 14260 (United States); Love, W.; Savinov, V. [University of Pittsburgh, Pittsburgh, Pennsylvania 15260 (United States); Lopez, A.; Mendez, H.; Ramirez, J. [University of Puerto Rico, Mayaguez, Puerto Rico 00681 (Puerto Rico); Ge, J. Y.; Miller, D. H.; Shipsey, I. P. J.; Xin, B. [Purdue University, West Lafayette, Indiana 47907 (United States); Adams, G. S.; Anderson, M.; Cummings, J. P.; Danko, I.; Hu, D.; Moziak, B.; Napolitano, J. [Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); He, Q.; Insler, J.; Muramatsu, H. [University of Rochester, Rochester, New York 14627 (United States)] (and others)

    2008-11-01T23:59:59.000Z

    Using a data sample of 24.5x10{sup 6} {psi}(2S) the reactions {psi}(2S){yields}{gamma}{chi}{sub cJ}, {chi}{sub cJ}{yields}{gamma}{gamma} have been studied for the first time to determine the two-photon widths of the {chi}{sub cJ} states of charmonium in their decay into two photons. The measured quantities are B({psi}(2S){yields}{gamma}{chi}{sub c0})xB({chi}{sub c0}{yields}{gamma}{gamma})=(2.17{+-}0.32{+-}0.10)x10{sup -5} and B({psi}(2S){yields}{gamma}{chi}{sub c2})xB({chi}{sub c2}{yields}{gamma}{gamma})=(2.68{+-}0.28{+-}0.15)x10{sup -5}. Using values for B({psi}(2S){yields}{gamma}{chi}{sub c0,c2}) and {gamma}({chi}{sub c0,c2}) from the literature the two-photon widths are derived to be {gamma}{sub {gamma}}{sub {gamma}}({chi}{sub c0})=(2.36{+-}0.35{+-}0.22) keV, {gamma}{sub {gamma}}{sub {gamma}}({chi}{sub c2})=(0.66{+-}0.07{+-}0.06) keV, and R{identical_to}{gamma}{sub {gamma}}{sub {gamma}}({chi}{sub c2})/{gamma}{sub {gamma}}{sub {gamma}}({chi}{sub c0})=0.278{+-}0.050{+-}0.036. The importance of the measurement of R is emphasized. For the forbidden transition, {chi}{sub c1}{yields}{gamma}{gamma}, an upper limit of {gamma}{sub {gamma}}{sub {gamma}}({chi}{sub c1})<0.03 keV is established.

  15. Interaction between corrosion crack width and steel loss in RC beams corroded under load

    SciTech Connect (OSTI)

    Malumbela, Goitseone, E-mail: malumbela@mopipi.ub.b [Dpt. of Civil Eng., Univ. of Cape Town, Private Bag X3, Rondebosch, 7700 (South Africa); Alexander, Mark; Moyo, Pilate [Dpt. of Civil Eng., Univ. of Cape Town, Private Bag X3, Rondebosch, 7700 (South Africa)

    2010-09-15T23:59:59.000Z

    This paper presents results and discussions on an experimental study conducted to relate the rate of widening of corrosion cracks with the pattern of corrosion cracks as well as the level of steel corrosion for RC beams (153 x 254 x 3000 mm) that were corroded whilst subjected to varying levels of sustained loads. Steel corrosion was limited to the tensile reinforcement and to a length of 700 mm at the centre of the beams. The rate of widening of corrosion cracks as well as strains on uncracked faces of RC beams was constantly monitored during the corrosion process, along the corrosion region and along other potential cracking faces of beams using a demec gauge. The distribution of the gravimetric mass loss of steel along the corrosion region was measured at the end of the corrosion process. The results obtained showed that: the rate of widening of each corrosion crack is dependent on the overall pattern of the cracks whilst the rate of corrosion is independent of the pattern of corrosion cracks. A mass loss of steel of 1% was found to induce a corrosion crack width of about 0.04 mm.

  16. H-beta Line Width and the UV-X-ray Spectra of Luminous AGN

    E-Print Network [OSTI]

    B. J. Wills; Z. Shang; J. M. Yuan

    2000-05-08T23:59:59.000Z

    The width of the broad H-beta emission line is the primary defining characteristic of the NLS1 class. This parameter is also an important component of Boroson and Green's optical Eigenvector 1 (EV1), which links steeper soft X-ray spectra with narrower H-beta emission, stronger H-beta blue wing, stronger optical Fe II emission, and weaker [O III] lambda 5007. Potentially, EV1 represents a fundamental physical process linking the dynamics of fueling and outflow with the accretion rate. We attempted to understand these relationships by extending the optical spectra into the UV for a sample of 22 QSOs with high quality soft-X-ray spectra, and discovered a whole new set of UV relationships that suggest that high accretion rates are linked to dense gas and perhaps nuclear starbursts. While it has been argued that narrow (BLR) H-beta means low Black Hole mass in luminous NLS1s, the C IV, lambda 1549 and Ly alpha emission lines are broader, perhaps the result of outflows driven by their high Eddington accretion rates. We present some new trends of optical-UV with X-ray spectral energy distributions. Steeper X-ray spectra appear associated with stronger UV relative to optical continua, but the presence of strong UV absorption lines is associated with depressed soft X-rays and redder optical-UV continua.

  17. Low mass dark matter and invisible Higgs width in darkon models

    SciTech Connect (OSTI)

    Cai Yi; Ren Bo [INPAC, Department of Physics, Shanghai Jiao Tong University, Shanghai (China); He Xiaogang [INPAC, Department of Physics, Shanghai Jiao Tong University, Shanghai (China); Department of Physics and Center for Theoretical Sciences, National Taiwan University, Taipei, Taiwan (China)

    2011-04-15T23:59:59.000Z

    The Standard Model (SM) plus a real gauge-singlet scalar field dubbed darkon (SM+D) is the simplest model possessing a weakly interacting massive particle (WIMP) dark matter candidate. In this model, the parameters are constrained from dark matter relic density and direct searches. The fact that interaction between darkon and SM particles is only mediated by a Higgs boson exchange may lead to significant modifications to the Higgs boson properties. If the dark matter mass is smaller than half of the Higgs boson mass, then a Higgs boson can decay into a pair of darkons resulting in a large invisible branching ratio. The Higgs boson will be searched for at the LHC and may well be discovered in the near future. If a Higgs boson with a small invisible decay width will be found, the SM+D model with small dark matter mass will be in trouble. We find that by extending the SM+D to a two Higgs doublet model plus a darkon (THDM+D) it is possible to have a Higgs boson with a small invisible branching ratio and at the same time the dark matter can have a low mass. We also comment on other implications of this model.

  18. Interference effects of neutral MSSM Higgs bosons with a generalised narrow-width approximation

    E-Print Network [OSTI]

    Elina Fuchs

    2014-11-19T23:59:59.000Z

    Mixing effects in the MSSM Higgs sector can give rise to a sizeable interference between the neutral Higgs bosons. On the other hand, factorising a more complicated process into production and decay parts by means of the narrow-width approximation (NWA) simplifies the calculation. The standard NWA, however, does not account for interference terms. Therefore, we introduce a generalisation of the NWA (gNWA) which allows for a consistent treatment of interference effects between nearly mass-degenerate particles. Furthermore, we apply the gNWA at the tree and 1-loop level to an example process where the neutral Higgs bosons $h$ and $H$ are produced in the decay of a heavy neutralino and subsequently decay into a fermion pair. The $h-H$ propagator mixing is found to agree well with the approximation of Breit-Wigner propagators times finite wave-function normalisation factors, both leading to a significant interference contribution. The factorisation of the interference term based on on-shell matrix elements reproduces the full interference result within a precision of better than 1% for the considered process. The gNWA also enables the inclusion of contributions beyond the 1-loop order into the most precise prediction.

  19. Spatial analysis of hypocenter to fault relationships for determining fault process zone width in Japan.

    SciTech Connect (OSTI)

    Arnold, Bill Walter; Roberts, Barry L.; McKenna, Sean Andrew; Coburn, Timothy C. (Abilene Christian University, Abilene, TX)

    2004-09-01T23:59:59.000Z

    Preliminary investigation areas (PIA) for a potential repository of high-level radioactive waste must be evaluated by NUMO with regard to a number of qualifying factors. One of these factors is related to earthquakes and fault activity. This study develops a spatial statistical assessment method that can be applied to the active faults in Japan to perform such screening evaluations. This analysis uses the distribution of seismicity near faults to define the width of the associated process zone. This concept is based on previous observations of aftershock earthquakes clustered near active faults and on the assumption that such seismic activity is indicative of fracturing and associated impacts on bedrock integrity. Preliminary analyses of aggregate data for all of Japan confirmed that the frequency of earthquakes is higher near active faults. Data used in the analysis were obtained from NUMO and consist of three primary sources: (1) active fault attributes compiled in a spreadsheet, (2) earthquake hypocenter data, and (3) active fault locations. Examination of these data revealed several limitations with regard to the ability to associate fault attributes from the spreadsheet to locations of individual fault trace segments. In particular, there was no direct link between attributes of the active faults in the spreadsheet and the active fault locations in the GIS database. In addition, the hypocenter location resolution in the pre-1983 data was less accurate than for later data. These pre-1983 hypocenters were eliminated from further analysis.

  20. A pulse width modulated picket fence pulser to reduce accelerator start-up transients

    SciTech Connect (OSTI)

    Reass, William A [Los Alamos National Laboratory; Balmes, Anthony A [Los Alamos National Laboratory; Bradley, Joseph T [Los Alamos National Laboratory; Netz, Dana [Los Alamos National Laboratory; Sandoval, Jacob B [Los Alamos National Laboratory

    2010-01-01T23:59:59.000Z

    This paper describes a solid state modulator used to control the input beam to the Los Alamos Neutron Science Center 'LANSCE' 800 MeV accelerator. This electrostatic Ground Level Deflector (GLD) chops the beam after the 750 keV injection energy. Two GLD's are utilized, one for the 'H+' beam and another for the 'H-' beam. These modulators are mounted on the vacuum beam pipe and directly operate sets of deflection plates. To minimize the accelerator beam start up transients, the beam is let into the accelerator cavity structures by a pulse width modulated picket fence operating between 0 and 12 kV. As the deflection plate structure appears as a capacitive load, a totem-pole switching network is utilized to facilitate rise and fall times of {approx}50 ns that is able to sink and source current to minimize beam induced sidewall activation. This paper will describe the system design and provides operational results as now presently utilized on the LANSCE accelerator system.

  1. 1564 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006 Schemes for Eliminating Transient-Width

    E-Print Network [OSTI]

    Delgado-Frias, José G.

    1564 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 53, NO. 3, JUNE 2006 Schemes for Eliminating is the ability to bypass SEUs and SETs. This is crit- ical for performance, as it allows the system to proceed widths can be substantial (up to 2 ns), and so high-performance systems cannot afford to pause operations

  2. Pump pulse-width dependence of grazing-incidence pumped transient collisional soft-x-ray lasers M. Berrill,1

    E-Print Network [OSTI]

    Rocca, Jorge J.

    Pump pulse-width dependence of grazing-incidence pumped transient collisional soft-x-ray lasers M 2007 The output energy dependence of high repetition rate grazing incidence pumped Ni-like Mo, Ni-like Ag, and Ne-like Ti transient collisional soft x-ray lasers on the duration of the pump pulse

  3. Testing the Lambda(1520) hyperon in-medium width in near-threshold proton-nucleus reactions

    E-Print Network [OSTI]

    E. Ya. Paryev

    2010-10-01T23:59:59.000Z

    In the framework of the nuclear spectral function approach for incoherent primary proton-nucleon and secondary pion-nucleon production processes we study the inclusive Lambda(1520) hyperon production in the interaction of 2.83 GeV protons with nuclei. In particular, the A and momentum dependences of the absolute and relative Lambda(1520) hyperon yields are investigated in two scenarios for its in-medium width. Our model calculations show that the pion-nucleon production channel contributes distinctly to the "low-momentum" Lambda(1520) creation both in light and heavy nuclei in the chosen kinematics and, hence, has to be taken into consideration on close examination of the dependences of the Lambda(1520) hyperon yields on the target mass number with the aim of getting information on its width in the medium. They also demonstrate that both the A dependence of the relative Lambda(1520) hyperon production cross section and momentum dependence of the absolute Lambda(1520) hyperon yield at incident energy of interest are appreciably sensitive to the Lambda(1520) in-medium width, which means that these observables may be an important tool to determine the above width.

  4. Stark Widths and Shifts Dependence on the Rest Core Charge of the Emitters within ns-np Transition Arrays

    SciTech Connect (OSTI)

    Scepanovic, Mara [Faculty of Natural Sciences, University of Montenegro, POB 211, 81000 Podgorica (Montenegro); Puric, Jagos [Faculty of Physics, University of Belgrade, POB 368, 11001 Belgrade (Serbia)

    2010-01-21T23:59:59.000Z

    Stark width and shift simultaneous dependence on the upper level ionization potential and rest core charge of the emitter has been evaluated and discussed. It has been verified that the found relations, connecting Stark broadening parameters with upper level ionization potential and rest core charge of the emitters for particular electron temperature and density, can be used for prediction of Stark line width and shift data in case of ions for which observed data, or more detailed calculations, are not yet available. Stark widths and shifts published data are used to demonstrate the existence of other kinds of regularities within similar spectra of different elements and their ionization stages. The emphasis is on the Stark parameter dependence on the upper level ionization potential and on the rest core charge for the lines from similar spectra of multiply charged ions. The found relations connecting Stark widths and shift parameters with upper level ionization potential, rest core charge and electron temperature were used for a prediction of new Stark broadening data, thus avoiding much more complicated procedures.

  5. Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Polyimide Layers for 3D-MMICs on Si

    E-Print Network [OSTI]

    Tentzeris, Manos

    Coupling Between Microstrip Lines With Finite Width Ground Plane Embedded in Polyimide Layers for 3 multiple layers of polyimide are required for constructing Si/SiGe monolithic microwave ground planes embedded in the polyimide are often used. However, the closely spaced TFMS lines

  6. Measurements of the top quark mass and decay width with the D0 detector

    SciTech Connect (OSTI)

    Ilchenko, Yuriy

    2011-11-01T23:59:59.000Z

    The top quark discovery in 1995 at Fermilab is one of the major proofs of the standard model (SM). Due to its unique place in SM, the top quark is an important particle for testing the theory and probing for new physics. This article presents most recent measurements of top quark properties from the D0 detector. In particular, the measurement of the top quark mass, the top antitop mass difference and the top quark decay width. The discovery of the top quark in 1995 confirmed the existence of a third generation of quarks predicted in the standard model (SM). Being the heaviest elementary particle known, the top quark appears to become an important particle in our understanding of the standard model and physics beyond it. Because of its large mass the top quark has a very short lifetime, much shorter than the hadronization time. The predicted lifetime is only 3.3 {center_dot} 10{sup -25}s. Top quark is the only quark whose properties can be studied in isolation. A Lorentz-invariant local Quantum Field Theory, the standard model is expected to conserve CP. Due to its unique properties, the top quark provides a perfect test of CPT invariance in the standard model. An ability to look at the quark before being hadronized allows to measure directly mass of the top quark and its antiquark. An observation of a mass difference between particle and antiparticle would indicate violation of CPT invariance. Top quark through its radiative loop correction to the W mass constrains the mass of the Higgs boson. A precise measurement of the top quark mass provides useful information to the search of Higgs boson by constraining its region of possible masses. Another interesting aspect is that the top quark's Yukawa coupling to the Higgs boson is very close to unity (0.996 {+-} 0.006). That implies it may play a special role in the electroweak symmetry breaking mechanism.

  7. Investigation of Pitch and Jaw Width to Decrease Delivery Time of Helical Tomotherapy Treatments for Head and Neck Cancer

    SciTech Connect (OSTI)

    Moldovan, Monica [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Fontenot, Jonas D., E-mail: jfontenot@marybird.com [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Gibbons, John P. [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA (United States); Lee, Tae Kyu [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Rosen, Isaac I. [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA (United States); Fields, Robert S. [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Hogstrom, Kenneth R. [Mary Bird Perkins Cancer Center, Baton Rouge, LA (United States); Department of Physics and Astronomy, Louisiana State University and Agricultural and Mechanical College, Baton Rouge, LA (United States)

    2011-01-01T23:59:59.000Z

    Helical tomotherapy plans using a combination of pitch and jaw width settings were developed for 3 patients previously treated for head and neck cancer. Three jaw widths (5, 2.5, and 1 cm) and 4 pitches (0.86, 0.43, 0.287, and 0.215) were used with a (maximum) modulation factor setting of 4. Twelve plans were generated for each patient using an identical optimization procedure (e.g., number of iterations, objective weights, and penalties, etc.), based on recommendations from TomoTherapy (Madison, WI). The plans were compared using isodose plots, dose volume histograms, dose homogeneity indexes, conformity indexes, radiobiological models, and treatment times. Smaller pitches and jaw widths showed better target dose homogeneity and sparing of normal tissue, as expected. However, the treatment time increased inversely proportional to the jaw width, resulting in delivery times of 24 {+-} 1.9 min for the 1-cm jaw width. Although treatment plans produced with the 2.5-cm jaw were dosimetrically superior to plans produced with the 5-cm jaw, subsequent calculations of tumor control probabilities and normal tissue complication probabilities suggest that these differences may not be radiobiologically meaningful. Because treatment plans produced with the 5-cm jaw can be delivered in approximately half the time of plans produced with the 2.5-cm jaw (5.1 {+-} 0.6 min vs. 9.5 {+-} 1.1 min), use of the 5-cm jaw in routine treatment planning may be a viable approach to decreasing treatment delivery times from helical tomotherapy units.

  8. Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan; et al.,

    2014-09-01T23:59:59.000Z

    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma[H], using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse femtobarns at a centre-of-mass energy sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. A simultaneous maximum likelihood fitmore »to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of Gamma[H] « less

  9. Measurements of the mass and width of the eta_c using psi' -> gamma eta_c

    E-Print Network [OSTI]

    BESIII Collaboration; M. Ablikim; M. N. Achasov; D. Alberto; D. J. Ambrose; F. F. An; Q. An; Z. H. An; J. Z. Bai; R. B. Ferroli; Y. Ban; J. Becker; N. Berger; M. B. Bertani; J. M. Bian; E. Bogera; O. Bondarenko; I. Boyko; R. A. Briere; V. Bytev; X. Cai; A. C. Calcaterra; G. F. Cao; J. F. Chang; G. Chelkova; G. Chen; H. S. Chen; H. X. Chen; J. C. Chen; M. L. Chen; S. J. Chen; Y. Chen; Y. B. Chen; H. P. Cheng; Y. P. Chu; D. Cronin-Hennessy; H. L. Dai; J. P. Dai; D. Dedovich; Z. Y. Deng; I. Denysenkob; M. Destefanis; W. L. Ding; Y. Ding; L. Y. Dong; M. Y. Dong; S. X. Du; J. Fang; S. S. Fang; C. Q. Feng; C. D. Fu; J. L. Fu; Y. Gao; C. Geng; K. Goetzen; W. X. Gong; M. Greco; M. H. Gu; Y. T. Gu; Y. H. Guan; A. Q. Guo; L. B. Guo; Y. P. Guo; Y. L. Han; X. Q. Hao; F. A. Harris; K. L. He; M. He; Z. Y. He; Y. K. Heng; Z. L. Hou; H. M. Hu; J. F. Hu; T. Hu; B. Huang; G. M. Huang; J. S. Huang; X. T. Huang; Y. P. Huang; T. Hussain; C. S. Ji; Q. Ji; X. B. Ji; X. L. Ji; L. K. Jia; L. L. Jiang; X. S. Jiang; J. B. Jiao; Z. Jiao; D. P. Jin; S. Jin; F. F. Jing; N. Kalantar-Nayestanaki; M. Kavatsyuk; W. Kuehn; W. Lai; J. S. Lange; J. K. C. Leung; C. H. Li; Cheng Li; Cui Li; D. M. Li; F. Li; G. Li; H. B. Li; J. C. Li; K. Li; Lei Li; N. B. Li; Q. J. Li; S. L. Li; W. D. Li; W. G. Li; X. L. Li; X. N. Li; X. Q. Li; X. R. Li; Z. B. Li; H. Liang; Y. F. Liang; Y. T. Liang; G. R. Liao; X. T. Liao; B. J. Liu; C. L. Liu; C. X. Liu; C. Y. Liu; F. H. Liu; Fang Liu; Feng Liu; H. Liu; H. B. Liu; H. H. Liu; H. M. Liu; H. W. Liu; J. P. Liu; K. Liu; K. Liu; K. Y. Liu; Q. Liu; S. B. Liu; X. Liu; X. H. Liu; Y. B. Liu; Yong Liu; Z. A. Liu; Zhiqiang Liu; Zhiqing Liu; H. Loehner; G. R. Lu; H. J. Lu; J. G. Lu; Q. W. Lu; X. R. Lu; Y. P. Lu; C. L. Luo; M. X. Luo; T. Luo; X. L. Luo; M. Lv; C. L. Ma; F. C. Ma; H. L. Ma; Q. M. Ma; S. Ma; T. Ma; X. Y. Ma; M. Maggiora; Q. A. Malik; H. Mao; Y. J. Mao; Z. P. Mao; J. G. Messchendorp; J. Min; T. J. Min; R. E. Mitchell; X. H. Mo; N. Yu. Muchnoi; Y. Nefedov; I. B. Nikolaev; Z. Ning; S. L. Olsen; Q. Ouyang; S. P. Pacettic; J. W. Park; M. Pelizaeus; K. Peters; J. L. Ping; R. G. Ping; R. Poling; C. S. J. Pun; M. Qi; S. Qian; C. F. Qiao; X. S. Qin; J. F. Qiu; K. H. Rashid; G. Rong; X. D. Ruan; A. Sarantsevd; J. Schulze; M. Shao; C. P. Shene; X. Y. Shen; H. Y. Sheng; M. R. Shepherd; X. Y. Song; S. Spataro; B. Spruck; D. H. Sun; G. X. Sun; J. F. Sun; S. S. Sun; X. D. Sun; Y. J. Sun; Y. Z. Sun; Z. J. Sun; Z. T. Sun; C. J. Tang; X. Tang; E. H. Thorndike; H. L. Tian; D. Toth; G. S. Varner; B. Wang; B. Q. Wang; K. Wang; L. L. Wang; L. L. Wang; L. S. Wang; M. Wang; P. Wang; P. L. Wang; Q. Wang; Q. J. Wang; S. G. Wang; X. F. Wang; X. L. Wang; Y. D. Wang; Y. F. Wang; Y. Q. Wang; Z. Wang; Z. G. Wang; Z. Y. Wang; D. H. Wei; Q. G. Wen; S. P. Wen; U. Wiedner; L. H. Wu; N. Wu; W. Wu; Z. Wu; Z. J. Xiao; Y. G. Xie; Q. L. Xiu; G. F. Xu; G. M. Xu; H. Xu; Q. J. Xu; X. P. Xu; Y. Xu; Z. R. Xu; Z. Xue; L. Yan; W. B. Yan; Y. H. Yan; H. X. Yang; T. Yang; Y. Yang; Y. X. Yang; H. Ye; M. Ye; M. H. Ye; B. X. Yu; C. X. Yu; S. P. Yu; C. Z. Yuan; W. L. Yuan; Y. Yuan; A. A. Zafar; A. Z. Zallo; Y. Zeng; B. X. Zhang; B. Y. Zhang; C. C. Zhang; D. H. Zhang; H. H. Zhang; H. Y. Zhang; J. Zhang; J. Q. Zhang; J. W. Zhang; J. Y. Zhang; J. Z. Zhang; L. Zhang; S. H. Zhang; T. R. Zhang; X. J. Zhang; X. Y. Zhang; Y. Zhang; Y. H. Zhang; Y. S. Zhang; Z. P. Zhang; Z. Y. Zhang; G. Zhao; H. S. Zhao; Jingwei Zhao; Lei Zhao; Ling Zhao; M. G. Zhao; Q. Zhao; S. J. Zhao; T. C. Zhao; X. H. Zhao; Y. B. Zhao; Z. G. Zhao; A. Zhemchugova; B. Zheng; J. P. Zheng; Y. H. Zheng; Z. P. Zheng; B. Zhong; J. Zhong; L. Zhou; X. K. Zhou; X. R. Zhou; C. Zhu; K. Zhu; K. J. Zhu; S. H. Zhu; X. L. Zhu; X. W. Zhu; Y. S. Zhu; Z. A. Zhu; J. Zhuang; B. S. Zou; J. H. Zou; J. X. Zuo

    2012-06-01T23:59:59.000Z

    The mass and width of the lowest lying S-wave spin singlet charmonium state, the eta_c, are measured using a data sample of 1.06x10^8 psi' decays collected with the BESIII detector at the BEPCII storage ring. We use a model that incorporates interference between the signal reaction, psi' -> gamma eta_c, and a non-resonant radiative background to successfully describe the line shape of the eta_c. We measure the eta_c mass to be 2984.3 +- 0.6 +- 0.6 MeV/c^2 and the total width to be 32.0 +- 1.2 +- 1.0 MeV, where the first errors are statistical and the second are systematic.

  10. The evolution of the width of X-ray flares with time in Gamma-ray bursts

    SciTech Connect (OSTI)

    Bernardini, Maria Grazia [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); ICRANet, P.le della Repubblica 10, I-65100 Pescara (Italy); Chincarini, Guido; Margutti, Raffaella [INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (Italy); University of Milano Bicocca, Physics Dept., P.zza della Scienza 3, I-20126 Milano (Italy)

    2010-10-15T23:59:59.000Z

    We present one of the most intriguing results obtained with an updated catalog of 113 early time (i.e. t{sub pk} < or approx. 1000 s) and 36 late time (i.e. t{sub pk} > or approx. 1000 s) X-ray flares detected by Swift in the afterglows of Gamma-Ray Bursts (GRB): the evolution of the width of the flares with time. This result, together with other properties investigated on early and late time flares and bright flares, provides a clear observational property that every model aiming at explaining the GRB emission has to face.

  11. Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    E-Print Network [OSTI]

    CMS Collaboration

    2014-07-25T23:59:59.000Z

    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma[H], using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse femtobarns at a centre-of-mass energy sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of Gamma[H] < 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass.

  12. Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs

    SciTech Connect (OSTI)

    Khachatryan, Vardan [Yerevan Physics Institute (Armenia); et al.,

    2014-09-01T23:59:59.000Z

    Constraints are presented on the total width of the recently discovered Higgs boson, Gamma[H], using its relative on-shell and off-shell production and decay rates to a pair of Z bosons, where one Z boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The analysis is based on the data collected by the CMS experiment at the LHC in 2011 and 2012, corresponding to integrated luminosities of 5.1 inverse femtobarns at a centre-of-mass energy sqrt(s) = 7 TeV and 19.7 inverse femtobarns at sqrt(s) = 8 TeV. A simultaneous maximum likelihood fit to the measured kinematic distributions near the resonance peak and above the Z-boson pair production threshold leads to an upper limit on the Higgs boson width of Gamma[H] < 22 MeV at a 95% confidence level, which is 5.4 times the expected value in the standard model at the measured mass.

  13. Direct Bound on the Total Decay Width of the Top Quark in pp? Collisions at ?s=1.96??TeV

    E-Print Network [OSTI]

    Bauer, Gerry P.

    We present the first direct experimental bound on the total decay width of the top quark, ?[subscript t], using 955??pb[superscript -1] of the Tevatron’s pp? collisions recorded by the Collider Detector at Fermilab. We ...

  14. Relative proton and gamma widths of astrophysically important states in 30S studied in the beta-decay of 31Ar

    E-Print Network [OSTI]

    G. T. Koldste; B. Blank; M. J. G. Borge; J. A. Briz; M. Carmona-Gallardo; L. M. Fraile; H. O. U. Fynbo; J. Giovinazzo; J. G. Johansen; A. Jokinen; B. Jonson; T. Kurturkian-Nieto; J. H. Kusk; T. Nilsson; A. Perea; V. Pesudo; E. Picado; K. Riisager; A. Saastamoinen; O. Tengblad; J. -C. Thomas; J. Van de Walle

    2013-05-20T23:59:59.000Z

    Resonances just above the proton threshold in 30S affect the 29P(p,gamma)30S reaction under astrophysical conditions. The (p,gamma)-reaction rate is currently determined indirectly and depends on the properties of the relevant resonances. We present here a method for finding the ratio between the proton and gamma partial widths of resonances in 30S. The widths are determined from the beta-2p and beta-p-gamma decay of 31Ar, which is produced at the ISOLDE facility at the European research organization CERN. Experimental limits on the ratio between the proton and gamma partial widths for astrophysical relevant levels in 30S have been found for the first time. A level at 4688(5) keV is identified in the gamma spectrum, and an upper limit on the proton to gamma width of 0.26 (95 % C.L.) is found. In the two-proton spectrum two levels at 5227(3) keV and 5847(4) keV are identified. These levels are previously seen to gamma decay and upper limits on the gamma to proton width of 0.5 and 9, respectively, (95 % C.L.) are found, where the latter differs from previous calculations.

  15. Shell width Three bumps

    E-Print Network [OSTI]

    and resource managers generally agree that with climate change warming Alaska waters, it is no longer a matter be mottled dark brown to dark green, with small yellow patches. The bottom may be orange or red during of water salinity and temperature. They can also survive upstream of river mouths in some estuarine

  16. Direct measurement of the W boson decay width in proton-antiproton collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Zhu, Jun-jie

    2004-10-01T23:59:59.000Z

    This dissertation describes a direct measurement of the W boson total decay width, {Lambda}{sub W}, using the D0 detector at the Fermilab Tevatron Collider. The measurement uses an integrated luminosity of 177.3 pb{sup -1} data, collected during the 2002-2003 run. The width is determined from the shape of the transverse mass distribution, M{sub T}, by fitting the data in the tail region 100 < M{sub T} < 200 GeV. The result if {Lambda}{sub W} = 2.011 {+-} 0.093(stat) {+-} 0.107(syst) GeV.

  17. X-Ray Reflection Nebulae with Large Equivalent Widths of Neutral Iron Ka Line in the Sgr C Region

    E-Print Network [OSTI]

    Hiroshi Nakajima; Takeshi Go Tsuru; Masayoshi Nobukawa; Hironori Matsumoto; Katsuji Koyama; Hiroshi Murakami; Atsushi Senda; Shigeo Yamauchi

    2008-11-12T23:59:59.000Z

    This paper reports on the first results of the Suzaku observation in the Sgr C region. We detected four diffuse clumps with strong line emission at 6.4keV, Ka from neutral or low-ionized Fe. One of them, M359.38-0.00, is newly discovered with Suzaku. The X-ray spectra of the two bright clumps, M359.43-0.07 and M359.47-0.15, after subtracting the Galactic center diffuse X-ray emission (GCDX), exhibit strong Ka line from FeI with large equivalent widths (EWs) of 2.0-2.2keV and clear Kb of FeI. The GCDX in the Sgr C region is composed of the 6.4keV- and 6.7keV-associated components. These are phenomenologically decomposed by taking relations between EWs of the 6.4keV and 6.7keV lines. Then the former EWs against the associated continuum in the bright clump regions are estimated to be 2.4(+2.3_-0.7)keV. Since the two different approaches give similar large EWs of 2keV, we strongly suggest that the 6.4keV clumps in the Sgr C region are due to X-ray reflection/fluorescence (the X-ray reflection nebulae).

  18. On the equivalent width of the Fe K$\\alpha$ line produced by a dusty absorber in active galactic nuclei

    E-Print Network [OSTI]

    Gohil, Raj

    2015-01-01T23:59:59.000Z

    Obscured AGNs provide an opportunity to study the material surrounding the central engine. Geometric and physical constraints on the absorber can be deduced from the reprocessed AGN emission. In particular, the obscuring gas may reprocess the nuclear X-ray emission producing a narrow Fe K$\\alpha$ line and a Compton reflection hump. In recent years, models of the X-ray reflection from an obscuring torus have been computed; however, although the reflecting gas may be dusty, the models do not yet take into account the effects of dust on the predicted spectrum. We study this problem by analyzing two sets of models, with and without the presence of dust, using the one dimensional photo-ionization code Cloudy. The calculations are performed for a range of column densities ($22 hydrogen densities ( $6 <{\\rm log}[n_H(\\rm cm^{-3})]< 8$). The calculations show the presence of dust can enhance the Fe K$\\alpha$ equivalent width (EW) in the reflected spectrum by factor...

  19. Deficiency of large equivalent width Lyman-alpha emission in luminous Lyman break galaxies at z~5-6?

    E-Print Network [OSTI]

    Masataka Ando; Kouji Ohta; Ikuru Iwata; Masayuki Akiyama; Kentaro Aoki; Naoyuki Tamura

    2006-06-28T23:59:59.000Z

    We report a deficiency of luminous Lyman break galaxies (LBGs) with a large rest-frame equivalent width (EW_rest) of Lyman-alpha emission at z~5-6. Combining our spectroscopic sample of LBGs at z~5 and those from the literature, we found that luminous LBGs at z~5-6 generally show weak Lyman-alpha emissions, while faint LBGs show a wide range of Lyman-alpha EW_rest and tend to have strong (EW_rest >20A) Lyman-alpha emissions; i.e., there is a deficiency of strong Lyman-alpha emission in luminous LBGs. There seems to be a threshold UV luminosity for the deficiency; it is M_1400 = -21.5 \\~ -21.0 mag, which is close to or somewhat brighter than the M* of the UV luminosity function at z~5 and 6. Since the large EW_rest of Lyman-alpha emission can be seen among the faint LBGs, the fraction of Lyman-alpha emitters in LBGs may change rather abruptly with the UV luminosity. If the weakness of Lyman-alpha emission is due to dust absorption, the deficiency suggests that luminous LBGs at z=5-6 tend to be in dusty and more chemically evolved environments and started star formation earlier than faint ones, though other causes cannot be ruled out.

  20. "Cooling Rate Variations in IAB/IIIcd Iron Meteorites As Observed Using the Width of the Tetrataenite Phase and Island Phase in the Cloudy Zone"

    E-Print Network [OSTI]

    Mountziaris, T. J.

    "Cooling Rate Variations in IAB/IIIcd Iron Meteorites As Observed Using the Width these meteorites cooled, and ultimately, how their parent asteroid formed. Meteorites are pieces shown that it is possible to determine the relative cooling rates of meteorites at low temperatures

  1. Relationship between the gamma-ray burst pulse width and energy due to the Doppler effect of fireballs

    E-Print Network [OSTI]

    Y. -P. Qin; Y. -M. Dong; R. -J. Lu; B. -B. Zhang; L. -W. Jia

    2005-07-01T23:59:59.000Z

    We study in details how the pulse width of gamma-ray bursts is related with energy under the assumption that the sources concerned are in the stage of fireballs. Due to the Doppler effect of fireballs, there exists a power law relationship between the two quantities within a limited range of frequency. The power law range and the power law index depend strongly on the observed peak energy $E_p$ as well as the rest frame radiation form, and the upper and lower limits of the power law range can be determined by $E_p$. It is found that, within the same power law range, the ratio of the $FWHM$ of the rising portion to that of the decaying phase of the pulses is also related with energy in the form of power laws. A platform-power-law-platform feature could be observed in the two relationships. In the case of an obvious softening of the rest frame spectrum, the two power law relationships also exist, but the feature would evolve to a peaked one. Predictions on the relationships in the energy range covering both the BATSE and Swift bands for a typical hard burst and a typical soft one are made. A sample of FRED (fast rise and exponential decay) pulse bursts shows that 27 out of the 28 sources belong to either the platform-power-law-platform feature class or the peaked feature group, suggesting that the effect concerned is indeed important for most of the sources of the sample. Among these bursts, many might undergo an obvious softening evolution of the rest frame spectrum.

  2. Non-smooth Chemical Freeze-out and Apparent Width of Wide Resonances and Quark Gluon Bags in a Thermal Environment

    E-Print Network [OSTI]

    K. A. Bugaev; A. I. Ivanytskyi; D. R. Oliinychenko; E. G. Nikonov; V. V. Sagun; G. M. Zinovjev

    2014-05-06T23:59:59.000Z

    Here we develop the hadron resonance gas model with the Gaussian width of hadron resonances. This model allows us to treat the usual hadrons and the quark gluon bags on the same footing and to study the stability of the results obtained within different formulations of the hadron resonance gas model. In this work we perform a successful fit of 111 independent hadronic multiplicity ratios measured for $\\sqrt{s_{NN}} $= 2.7- 200 GeV. We demonstrate that in a narrow range of collision energy $\\sqrt{s_{NN}} =$ 4.3-4.9 GeV there exist peculiar irregularities in various thermodynamic quantities found at chemical freeze-out. The most remarkable irregularity is an unprecedented jump of the number of effective degrees of freedom observed in this narrow energy range which is seen in all realistic versions of the hadron resonance gas model. Therefore, the developed concept is called the non-smooth chemical freeze-out. We are arguing that these irregularities evidence for the possible formation of quark gluon bags. In order to develop other possible signals of their formation here we study the apparent width of wide hadronic resonances and quark gluon bags in a thermal environment. Two new effects generated for the wide resonances and quark gluon bags by a thermal medium are discussed here: the near threshold thermal resonance enhancement and the near threshold thermal resonance sharpening. On the basis of the new effects we argue that the most optimistic chance to find experimentally the quark gluon bags may be related to their sharpening and enhancement in a thermal medium. In this case the wide quark gluon bags may appear directly or in decays as narrow resonances that are absent in the tables of elementary particles and that have the apparent width about 50-120 MeV and the mass about or above 2.5 GeV.

  3. Testing the Influence of Surface Tension and Finite Width of QGP Bags on the QCD Matter EOS Properties at NICA Energies

    E-Print Network [OSTI]

    Kyrill A. Bugaev

    2009-09-03T23:59:59.000Z

    Here I give some strong arguments that the central issues for theoretical studies of the (tri)critical endpoint of the QCD phase diagram are the surface tension of large/heavy QGP bags and their medium dependent width. Then I discuss three major directions to further develop the realistic exactly solvable statistical models which simultaneously are able to describe the 1-st order deconfinement phase transition, the 2-nd order one and the cross-over. Also I analyze the most necessary projects that have to be studied in order to formulate the reliable and convincing signals of the mixed phase formation at NICA energies.

  4. Measurement of the strong interaction induced shift and width of the 1s state of kaonic deuterium at J-PARC

    E-Print Network [OSTI]

    J. Zmeskal; M. Sato; S. Ajimura; M. Bazzi; G. Beer; C. Berucci; H. Bhang; D. Bosnar; M. Bragadireanu; P. Buehler; L. Busso; M. Cargnelli; S. Choi; A. Clozza; C. Curceanu; A. D'uffizi; S. Enomoto; L. Fabbietti; D. Faso; C. Fiorini; H. Fujioka; F. Ghio; R. Golser; C. Guaraldo; T. Hashimoto; R. S. Hayano; T. Hiraiwa; M. Iio; M. Iliescu; K. Inoue; S. Ishimoto; T. Ishiwatari; K. Itahashi; M. Iwai; M. Iwasaki; S. Kawasaki; J. Lachner; P. Levi Sandri; Y. Ma; J. Marton; Y. Matsuda; Y. Mizoi; O. Morra; P. Moskal; T. Nagae; H. Noumi; H. Ohnishi; S. Okada; H. Outa; D. Pietreanu; K. Piscicchia; M. Poli Lener; A. Romero Vidal; Y. Sada; A. Sakaguchi; F. Sakuma; E. Sbardella; A. Scordo; M. Sekimoto; H. Shi; M. Silarski; D. Sirghi; F. Sirghi; K. Suzuki; S. Suzuki; T. Suzuki; K. Tanida; H. Tatsuno; M. Tokuda; A. Toyoda; I. Tucakovic; K. Tsukada; O. Vazquez Doce; E. Widmann; T. Yamaga; T. Yamazaki; Q. Zhang

    2015-01-22T23:59:59.000Z

    The antikaon-nucleon interaction close to threshold provides crucial information on the interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD. In this context the importance of kaonic deuterium X-ray spectroscopy has been well recognized, but no experimental results have yet been obtained due to the difficulty of the measurement. We propose to measure the shift and width of the kaonic deuterium 1s state with an accuracy of 60 eV and 140 eV respectively at J-PARC. These results together with the kaonic hydrogen data (KpX at KEK, DEAR and SIDDHARTA at DAFNE) will then permit the determination of values of both the isospin I=0 and I=1 antikaon-nucleon scattering lengths and will provide the most stringent constraints on the antikaon-nucleon interaction, promising a breakthrough. Refined Monte Carlo studies were performed, including the investigation of background suppression factors for the described setup. These studies have demonstrated the feasibility of determining the shift and width of the kaonic deuterium atom 1s state with the desired accuracy of 60 eV and 140 eV.

  5. Measurements of the Higgs boson mass and width in the four-lepton final state and electron reconstruction in the CMS experiment at the LHC

    E-Print Network [OSTI]

    Dalchenko, Mykhailo; Charlot, Claude

    This thesis document reports measurements of the mass and width of the new boson re- cently discovered at the Large Hadron Collider (LHC), candidating to be the Standard Model Higgs boson. The analysis uses proton-proton collision data recorded by the Compact Muon Solenoid (CMS) detector at the LHC, corresponding to integrated luminosities of $5.1~fb^{?1}$ at $7~$TeV center of mass energy and $19.7~fb^{?1}$ at $8~$TeV center of mass energy. Set of events selecting Higgs boson via the $H\\to ZZ$ decay channel, where both $Z$ bosons decay to electron or muon lepton pairs, is used for the Higgs boson properties measurements. A precise measurement of its mass has been performed and gives $125.6\\pm0.4\\mbox{(stat)}\\pm0.2\\mbox{(syst)}~$GeV. Constraints on the Higgs boson width were established using its off-shell production and decay to a pair of $Z$ bosons, where one $Z$ boson decays to an electron or muon pair, and the other to an electron, muon, or neutrino pair. The obtained result is an upper limit on the Hi...

  6. Pump-beam-induced optical damage depended on repetition frequency and pulse width in 4-dimethylamino-N Prime -methyl-4 Prime -stilbazolium tosylate crystal

    SciTech Connect (OSTI)

    Matsukawa, Takeshi; Nawata, Kouji; Notake, Takashi; Qi Feng; Kawamata, Hiroshi; Minamide, Hiroaki [Tera-photonics Laboratory, RIKEN, 519-1399, Aramaki-Aoba, Aoba-ku, Sendai 980-0845 (Japan)

    2013-07-08T23:59:59.000Z

    We investigated the dependence of optical damage to an organic nonlinear optical crystal of 4-dimethylamino-N Prime -methyl-4 Prime -stilbazolium tosylate (DAST) on the repetition frequency and pulse width of the pump beam used to cause the thermal damage. For a pump beam with a pulse width of 15 ns at a wavelength of 1064 nm, the highest damage threshold of 8.0 J/cm{sup 2} was measured for repetition frequencies in the range from 10 to 40 Hz. On the other hand, DAST crystals were easily damaged under the repetition rates from 50 to 100 Hz. For 600-ps pulses, a higher damage threshold that was a factor of 11 to 28 times higher in terms of peak intensity was obtained compared with that of 15-ns pulses. In both the cases of 15-ns pulse duration and 600-ps duration, we demonstrated that the thermal effects in DAST crystals dominated the optical damage, which depended on thermal accumulation and dissipation.

  7. Electrical system for pulse-width modulated control of a power inverter using phase-shifted carrier signals and related operating methods

    DOE Patents [OSTI]

    Welchko, Brian A. (Torrance, CA)

    2012-02-14T23:59:59.000Z

    Systems and methods are provided for pulse-width modulated control of power inverter using phase-shifted carrier signals. An electrical system comprises an energy source and a motor. The motor has a first set of windings and a second set of windings, which are electrically isolated from each other. An inverter module is coupled between the energy source and the motor and comprises a first set of phase legs coupled to the first set of windings and a second set of phase legs coupled to the second set of windings. A controller is coupled to the inverter module and is configured to achieve a desired power flow between the energy source and the motor by modulating the first set of phase legs using a first carrier signal and modulating the second set of phase legs using a second carrier signal. The second carrier signal is phase-shifted relative to the first carrier signal.

  8. Measurement of high-energy (10–60 keV) x-ray spectral line widths with eV accuracy

    SciTech Connect (OSTI)

    Seely, J. F., E-mail: seelyjf@gmail.com; Feldman, U. [Artep Inc., 2922 Excelsior Springs Court, Ellicott City, Maryland 21042 (United States); Glover, J. L.; Hudson, L. T.; Ralchenko, Y.; Henins, Albert [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Pereira, N. [Ecopulse Inc., P. O. Box 528, Springfield, Virginia 22152 (United States); Di Stefano, C. A.; Kuranz, C. C.; Drake, R. P. [University of Michigan, Ann Arbor, Michigan 48109 (United States); Chen, Hui; Williams, G. J.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States)

    2014-11-15T23:59:59.000Z

    A high resolution crystal spectrometer utilizing a crystal in transmission geometry has been developed and experimentally optimized to measure the widths of emission lines in the 10–60 keV energy range with eV accuracy. The spectrometer achieves high spectral resolution by utilizing crystal planes with small lattice spacings (down to 2d = 0.099 nm), a large crystal bending radius and Rowland circle diameter (965 mm), and an image plate detector with high spatial resolution (60 ?m in the case of the Fuji TR image plate). High resolution W L-shell and K-shell laboratory test spectra in the 10–60 keV range and Ho K-shell spectra near 47 keV recorded at the LLNL Titan laser facility are presented. The Ho K-shell spectra are the highest resolution hard x-ray spectra recorded from a solid target irradiated by a high-intensity laser.

  9. Power Spectrum Analysis for Optical Tweezers, II: Laser Wavelength Dependence of Parasitic Filtering, and how to Achieve High Band-Width

    E-Print Network [OSTI]

    Berg-Sørensen, K; Weber, T; Schmidt, C F; Flyvbjerg, H; Berg-Sorensen, Kirstine; Peterman, Erwin J. G.; Weber, Tom; Schmidt, Christoph F.; Flyvbjerg, Henrik

    2006-01-01T23:59:59.000Z

    In a typical optical tweezers detection system, the position of a trapped object is determined from laser light impinging on a quadrant photodiode. When the laser is infrared and the photodiode is of silicon, they can act together as an unintended low-pass filter. This parasitic effect is due to the high transparency of silicon to near-infrared light. A simple model that accounts for this phenomenon (Berg-Sorensen et al., J. Appl. Phys., 93, 3167-3176 (2003)) is here solved for frequencies up to 100 kHz, and for laser wavelengths between 750 and 1064 nm. The solution is applied to experimental data in the same range, and is demonstrated to give this detection system of optical tweezers a bandwidth, accuracy, and precision that is limited only by the data acquisition board's band-width and bandpass ripples, here 96.7 kHz, resp. 0.005 dB.

  10. Knots and k-width

    E-Print Network [OSTI]

    Hass, Joel; Hyam Rubinstein, J.; Thompson, Abigail

    2009-01-01T23:59:59.000Z

    Council. Research of Abigail Thompson was supported in partHyam Rubinstein · Abigail Thompson Received: 29 April 2008 /J. Hass ( B · A. Thompson Department of Mathematics,

  11. Measurement of the strong interaction induced shift and width of the 1s state of kaonic deuterium at J-PARC

    E-Print Network [OSTI]

    Zmeskal, J; Ajimura, S; Bazzi, M; Beer, G; Berucci, C; Bhang, H; Bosnar, D; Bragadireanu, M; Buehler, P; Busso, L; Cargnelli, M; Choi, S; Clozza, A; Curceanu, C; D'uffizi, A; Enomoto, S; Fabbietti, L; Faso, D; Fiorini, C; Fujioka, H; Ghio, F; Golser, R; Guaraldo, C; Hashimoto, T; Hayano, R S; Hiraiwa, T; Iio, M; Iliescu, M; Inoue, K; Ishimoto, S; Ishiwatari, T; Itahashi, K; Iwai, M; Iwasaki, M; Kawasaki, S; Lachner, J; Sandri, P Levi; Ma, Y; Marton, J; Matsuda, Y; Mizoi, Y; Morra, O; Moskal, P; Nagae, T; Noumi, H; Ohnishi, H; Okada, S; Outa, H; Pietreanu, D; Piscicchia, K; Lener, M Poli; Vidal, A Romero; Sada, Y; Sakaguchi, A; Sakuma, F; Sbardella, E; Scordo, A; Sekimoto, M; Shi, H; Silarski, M; Sirghi, D; Sirghi, F; Suzuki, K; Suzuki, S; Suzuki, T; Tanida, K; Tatsuno, H; Tokuda, M; Toyoda, A; Tucakovic, I; Tsukada, K; Doce, O Vazquez; Widmann, E; Yamaga, T; Yamazaki, T; Zhang, Q

    2015-01-01T23:59:59.000Z

    The antikaon-nucleon interaction close to threshold provides crucial information on the interplay between spontaneous and explicit chiral symmetry breaking in low-energy QCD. In this context the importance of kaonic deuterium X-ray spectroscopy has been well recognized, but no experimental results have yet been obtained due to the difficulty of the measurement. We propose to measure the shift and width of the kaonic deuterium 1s state with an accuracy of 60 eV and 140 eV respectively at J-PARC. These results together with the kaonic hydrogen data (KpX at KEK, DEAR and SIDDHARTA at DAFNE) will then permit the determination of values of both the isospin I=0 and I=1 antikaon-nucleon scattering lengths and will provide the most stringent constraints on the antikaon-nucleon interaction, promising a breakthrough. Refined Monte Carlo studies were performed, including the investigation of background suppression factors for the described setup. These studies have demonstrated the feasibility of determining the shift a...

  12. Magneto-optical resonance of electromagnetically induced absorption with high contrast and narrow width in a vapour cell with buffer gas

    E-Print Network [OSTI]

    D. V. Brazhnikov; A. V. Taichenachev; V. I. Yudin

    2014-08-11T23:59:59.000Z

    The method for observing the high-contrast and narrow-width resonances of electromagnetically induced absorption (EIA) in the Hanle configuration under counterpropagating light waves is proposed. We theoretically analyze the absorption of a probe light wave in presence of counterpropagating one with the same frequency as the function of a static magnetic field applied along the vectors of light waves, propagating in a vapour cell. Here, as an example, we study a "dark" type of atomic dipole transition Fg=1-->Fe=1 in D1 line of 87Rb, where usually the electromagnetically induced transparency (EIT) can be observed. To obtain the EIA signal one should proper chose the polarizations of light waves and intensities. In contrast of regular schemes for observing EIA signals (in a single travelling light wave in the Hanle configuration or in a bichromatic light field consisted of two travelling waves), the proposed scheme allows one to use buffer gas to significantly enhance properties of the resonance. Also the dramatic influence of atomic transition openness on contrast of the resonance is revealed, that gives great advantage in comparison with cyclic atomic transitions. The obtained results can be interesting in high-resolution spectroscopy, nonlinear and magneto-optics.

  13. Laplacian Growth II: Saffman - Taylor Problem Without Surface Tension in Filtration Combustion: Formation of One Finger with Half of the Channel Width

    E-Print Network [OSTI]

    Oleg Kupervasser

    2014-05-22T23:59:59.000Z

    Filtration combustion is described by Laplacian growth without surface tension. These equations have elegant analytical solutions that replace the complex integro-differential motion equations by simple differential equations of pole motion in a complex plane. The main problem with such a solution is the existence of finite time singularities. To prevent such singularities, nonzero surface tension is usually used.However, nonzero surface tension does not exist in filtration combustion, and this destroys the analytical solutions. However, a more elegant approach exists for solving the problem. First, we can introduce a small amount of pole noise to the system. Second, for regularisation of the problem, we throw out all new poles that can produce a finite time singularity. It can be strictly proved that the asymptotic solution for such a system is a single finger. Moreover, the qualitative consideration demonstrates that a finger with 1/2 of the channel width is statistically stable. Therefore, all properties of such a solution are exactly the same as those of the solution with nonzero surface tension under numerical noise. The solution of the ST problem without surface tension is similar to the solution for the equation of cellular flames in the case of the combustion of gas mixtures.

  14. Extraction of the width of the W boson from measurements of ?(pp-bar?W+X)×B(W? e?) and ?(pp-bar?Z+X)×B(Z? ee) and their ratio

    E-Print Network [OSTI]

    Baringer, Philip S.; Coppage, Don; Hebert, C.; Abbott, B.; Abolins, M.; Abramov, V.; Acharya, B. S.; Adam, I.; Adams, D. L.; Adams, M.

    2000-03-03T23:59:59.000Z

    PHYSICAL REVIEW D, VOLUME 61, 072001Extraction of the width of the W boson from measurements of s?pp¯\\W¿X?ˆB?W\\en? and s?pp¯\\Z¿X?ˆB?Z\\ee? and their ratio B. Abbott,45 M. Abolins,42 V. Abramov,18 B. S. Acharya,11 I. Adam,44 D. L. Adams,54 M. Adams,28...(pp¯?Z1X)3B(Z?ee)522163~stat!64~syst!610~lum! pb. From these, we derive s(pp¯?W1X)3B(W?en)/s(pp¯?Z1X)3B(Z?ee)510.4360.15~stat! 60.20~syst!60.10~NLO!, B(W?en)50.104460.0015~stat!60.0020~syst!60.0017~theory!60.0010~NLO!, and GW52.16960.031~stat!60.042~syst...

  15. Direct Measurement of the W Boson Width

    E-Print Network [OSTI]

    Baringer, Philip S.; Bean, Alice; Clutter, Justace Randall; McGivern, Carrie Lynne; Moulik, Tania; Wilson, Graham Wallace; Abazov, V. M.; Abbott, B.; Abolins, M.; Acharya, B. S.; Adams, M.; Adams, T.

    2009-12-04T23:59:59.000Z

    , Dublin, Ireland 32Korea Detector Laboratory, Korea University, Seoul, Korea 33SungKyunKwan University, Suwon, Korea 34CINVESTAV, Mexico City, Mexico 35FOM-Institute NIKHEF and University of Amsterdam/NIKHEF, Amsterdam, The Netherlands 36Radboud University... ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 2peTp#1;T½1#1; cosð#3;#5;Þ#3; p , where #3;#5; is the opening angle between the electron and neutrino in the plane perpendicu- lar to the beam axis, and peT and p#1;T are the transverse momenta of the electron and neutrino, respectively...

  16. Pattern Alteration: Upper Arm Sleeve Width

    E-Print Network [OSTI]

    2006-08-04T23:59:59.000Z

    in the upper arm are unbecoming and may form excess vertical folds (Fig. 2). The Personal Measurement Chart (line 10) shows how much to alter. Figure 1. Tight sleeve Figure 2. Loose sleeve 2... ................................................................................................................................................................................. Figure 3. Tissue paper Figure 4. Sleeve Sleeve Figure 5. Sleeve Sleeve Figure 6. Figure 7. Sleeve Figure 8. Spread Lap Spread Lap Cut away Tissue Tissue Basic and raglan style garments 1. Trace the cutting line of the set-in sleeve cap on tissue...

  17. ACRONYMS AND ABBREVIATIONS HXWXD HEIGHT WIDTH DEPTH

    E-Print Network [OSTI]

    Dyer, Bill

    PROJECTION SCREEN VOLTS ALTERNATING PRE AMPLIFIER PROJECTOR LIFT RED, GREEN, BLUE UNLESS OTHERWISE NOTED SINGLE MODE FIBER OWNER FURNISHED EQUIPMENT VIDEO CONFERENCE RGBHV SUB WOOFERSUB VAC U.O.N. VC TELCO TV TYP. TELEVISION TYPICAL SIM. SMF SPKR RS RU RR SIMILAR SPEAKER RACK UNIT RIGHT REAR PROJECTORPROJ. QTY

  18. Measurement of the Mass and Width and Study of the Spin of the Xi(1690)0 Resonance from Lambdac+ --> Lambda anti-K0 K+ Decay at Babar

    E-Print Network [OSTI]

    The BABAR Collaboration; B. Aubert

    2006-07-23T23:59:59.000Z

    The Xi(1690)0 resonance is observed in the Lambda anti-K0 channel in the decay Lambdac+ --> Lambda anti-K0 K+, from a data sample corresponding to a total integrated luminosity of ~ 200 fb-1 recorded by the Babar detector at the PEPII asymmetric-energy e+ e- collider operating at ~ 10.58 GeV and ~ 10.54 GeV center-of-mass energies. A fit to the Dalitz plot intensity distribution corresponding to the coherent superposition of amplitudes describing Lambda a0(980)+ and Xi(1690)0 K+ production yields mass and width values of 1684.7 +/- 1.3 (stat.) +2.2 -1.6 (syst.) MeV/c2, and $8.1 +3.9 -3.5 (stat.) +1.0 -0.9 (syst.) MeV, respectively, for the Xi(1690)0, while the spin is found to be consistent with value of 1/2 on the basis of studies of the (Lambda KS) angular distribution.

  19. Final Technical Report for SBIR entitled Four-Dimensional Finite-Orbit-Width Fokker-Planck Code with Sources, for Neoclassical/Anomalous Transport Simulation of Ion and Electron Distributions

    SciTech Connect (OSTI)

    Harvey, R. W. [CompX; Petrov, Yu. V. [CompX

    2013-12-03T23:59:59.000Z

    Within the US Department of Energy/Office of Fusion Energy magnetic fusion research program, there is an important whole-plasma-modeling need for a radio-frequency/neutral-beam-injection (RF/NBI) transport-oriented finite-difference Fokker-Planck (FP) code with combined capabilities for 4D (2R2V) geometry near the fusion plasma periphery, and computationally less demanding 3D (1R2V) bounce-averaged capabilities for plasma in the core of fusion devices. Demonstration of proof-of-principle achievement of this goal has been carried out in research carried out under Phase I of the SBIR award. Two DOE-sponsored codes, the CQL3D bounce-average Fokker-Planck code in which CompX has specialized, and the COGENT 4D, plasma edge-oriented Fokker-Planck code which has been constructed by Lawrence Livermore National Laboratory and Lawrence Berkeley Laboratory scientists, where coupled. Coupling was achieved by using CQL3D calculated velocity distributions including an energetic tail resulting from NBI, as boundary conditions for the COGENT code over the two-dimensional velocity space on a spatial interface (flux) surface at a given radius near the plasma periphery. The finite-orbit-width fast ions from the CQL3D distributions penetrated into the peripheral plasma modeled by the COGENT code. This combined code demonstrates the feasibility of the proposed 3D/4D code. By combining these codes, the greatest computational efficiency is achieved subject to present modeling needs in toroidally symmetric magnetic fusion devices. The more efficient 3D code can be used in its regions of applicability, coupled to the more computationally demanding 4D code in higher collisionality edge plasma regions where that extended capability is necessary for accurate representation of the plasma. More efficient code leads to greater use and utility of the model. An ancillary aim of the project is to make the combined 3D/4D code user friendly. Achievement of full-coupling of these two Fokker-Planck codes will advance computational modeling of plasma devices important to the USDOE magnetic fusion energy program, in particular the DIII-D tokamak at General Atomics, San Diego, the NSTX spherical tokamak at Princeton, New Jersey, and the MST reversed-field-pinch Madison, Wisconsin. The validation studies of the code against the experiments will improve understanding of physics important for magnetic fusion, and will increase our design capabilities for achieving the goals of the International Tokamak Experimental Reactor (ITER) project in which the US is a participant and which seeks to demonstrate at least a factor of five in fusion power production divided by input power.

  20. ON THE WIDTH x(3.55)-> Y 3n

    E-Print Network [OSTI]

    Flory, Curt A.

    2012-01-01T23:59:59.000Z

    Energy under Contract W-7405-ENG-48. M. Peskin, Nucl. Phys.Energy under Contract W-7405-ENG-48. + < ~gll ~a L: X •r I~

  1. THE WIDTH OF THE CHARGE DISTRIBUTION IN FISSION

    E-Print Network [OSTI]

    Myers, W.D.

    2010-01-01T23:59:59.000Z

    strongly damped nuclear collisions or in fission. Since theDistribution in Fission William 0. Myers Nuclear Science

  2. Sacrificial Charge and Charge Injection! Evolution of Line Width!

    E-Print Network [OSTI]

    Grant, Catherine E.

    . Similar structures are seen in the energy scale due to sacrificial charge. " Solar Min Solar Max increasing CTI, trailing charge and event/split thresholds Evolution of Energy Scale! · Radiation damage! Catherine Grant, Bev LaMarr, Eric Miller and Mark Bautz (MIT Kavli Institute)! Instruments and Data! · Front

  3. ablated plasma width: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposed simple kinetic model for a sequential decay of heavy QGP bags formed in high energy elementary particle collisions it is argued that by measuring the energy dependence of...

  4. Surface effect on domain wall width in ferroelectrics

    E-Print Network [OSTI]

    2009-10-26T23:59:59.000Z

    Oct 26, 2009 ... ponent of displacement on the boundaries between the dead layer and ... double electric layer is formed due to either the physical dead layer a or intrinsic ..... by the Science and Technology Center in Ukraine, Project. No.

  5. Operator analysis of $p_T$-widths of TMDs

    E-Print Network [OSTI]

    Boer, D; Mulders, P J

    2015-01-01T23:59:59.000Z

    Transverse momentum dependent (TMD) parton distribution functions (PDFs), TMDs for short, are defined as the Fourier transform of matrix elements of nonlocal combinations of quark and gluon fields. The nonlocality is bridged by gauge links, which for TMDs have characteristic paths (future or past pointing), giving rise to a process dependence that breaks universality. It is possible, however, to construct sets of universal TMDs of which in a given process particular combinations are needed with calculable, process-dependent, coefficients. This occurs for both T-odd and T-even TMDs, including also the {\\it unpolarized} quark and gluon TMDs. This extends the by now well-known example of T-odd TMDs that appear with opposite sign in single-spin azimuthal asymmetries in semi-inclusive deep inelastic scattering or in the Drell-Yan process. In this paper we analyze the cases where TMDs enter multiplied by products of two transverse momenta, which includes besides the $p_T$-broadening observable, also instances with ...

  6. Long-pulse-width narrow-bandwidth solid state laser

    DOE Patents [OSTI]

    Dane, C. Brent (Livermore, CA); Hackel, Lloyd A. (Livermore, CA)

    1997-01-01T23:59:59.000Z

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications.

  7. Measurement of di-lepton widths and branching fractions

    E-Print Network [OSTI]

    -- bb (Y) and cc () states Bottominia: ­ B(Y) = B((nS)+-) for n=1,2,3 PRL 94, 012001 (2005) ­ ee(Y) = ((nS)e+e-) for n=1,2,3 PRL 96, 092003 (2006) Charmonia: ­ B(J/) = B(J/+-) for =e, PRD 71, 111103(R) (2005) ­ ee(J/) = (J/e+e-) PRD 73, 051103(R) (2006) ­ ee[(2S)] = ((2S)e+e-) PRL 96, 082004 (2006) ­ ee

  8. Groovin' with the Big Band(width) Kevin Woods

    E-Print Network [OSTI]

    Woods, Kevin

    other factions vie for increasingly precious bandwidth. As a result, there has been increasing pressure

  9. Long-pulse-width narrow-bandwidth solid state laser

    DOE Patents [OSTI]

    Dane, C.B.; Hackel, L.A.

    1997-11-18T23:59:59.000Z

    A long pulse laser system emits 500-1000 ns quasi-rectangular pulses at 527 nm with near diffraction-limited divergence and near transform-limited bandwidth. The system consists of one or more flashlamp-pumped Nd:glass zig-zag amplifiers, a very low threshold stimulated-Brillouin-scattering (SBS) phase conjugator system, and a free-running single frequency Nd:YLF master oscillator. Completely passive polarization switching provides eight amplifier gain passes. Multiple frequency output can be generated by using SBS cells having different pressures of a gaseous SBS medium or different SBS materials. This long pulse, low divergence, narrow-bandwidth, multi-frequency output laser system is ideally suited for use as an illuminator for long range speckle imaging applications. Because of its high average power and high beam quality, this system has application in any process which would benefit from a long pulse format, including material processing and medical applications. 5 figs.

  10. Bounding the Higgs Width Through Interferometry | SciTech Connect

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced Materials Find FindRewindParticleBorn on anJeffersonBound

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This SectionNews3,

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7, 2015 Time:

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7, 2015

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7, 20153, 2015

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7, 20153,

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7, 20153,7,

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7, 20153,7,4,

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9, 2015

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9, 20156,

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9, 20156,2,

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9,

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9,6, 2015

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9,6, 20153,

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9,6,

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9,6,7, 2015

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn This7,9,6,7,

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECIn

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECInStaff Discuss

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECInStaff DiscussNew

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECInStaff

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECInStaffMimicking

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation FeedbackCSTECInStaffMimicking4

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentation

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry Scientists Receive

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry Scientists ReceiveNew

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry Scientists

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry ScientistsStudy

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree Foundry

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better Way of

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better Way

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better WayDOE Deputy

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better WayDOE

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better WayDOEOn the

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better WayDOEOn

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5 CLAIRE

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5 CLAIREOne

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5Berkley Lab

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5Berkley LabA

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5Berkley

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA Better5Berkley4

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryA

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhanced Water Vapor

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhanced Water

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhanced WaterMapping

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhanced

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenterDioxideDocumentationThree FoundryAEnhancedNon-invasive

  1. Action Items

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613Portsmouth SitePresentations |State WindEconomic Dialogue | DepartmentACTION ITEMS

  2. MATERIALS TRANSFER AGREEMENT for incoming item(s)

    E-Print Network [OSTI]

    Northern British Columbia, University of

    MATERIALS TRANSFER AGREEMENT for incoming item(s) To be used when an item(s) is being provided for demonstration or loaner purposes. This Materials Transfer Agreement ("Agreement") is made by and between, the University is interested in receiving from the Provider certain material(s), defined below

  3. LS-69 DEVELOPING PULSE WIDTH MODULATED POWER SUPPLY FOR THE GeV...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Connected Load 2.3 Resonant Power Converter With Parallel Connected Load TWO-QUADRANT POWER CONTROLLERS 3.1 Transistorized Two-Quadrant Chopper Control 3.2 3.3 Resonant...

  4. Investigation of spectrally broad gain multiple-width quantum well material for colliding pulse

    E-Print Network [OSTI]

    and MWQW devices, are shown in Fig. 1. At zero net modal gain, confined material gain is equal just below 1:5 kA cmÀ2 ; the net modal gain contribution is zero at 1560 nm, corresponding contributed to the zero net modal gain before the narrow wells at a current density of 2­3 kA cmÀ2 : The 6

  5. E-Print Network 3.0 - alpha decay widths Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    relationship for the alpha decay... life-time was derived on the ground of the fission theory of alpha ... Source: Ecole Polytechnique, Centre de mathmatiques Collection:...

  6. The effect of selection on ventral feather tract and inferior space width in broiler type chickens

    E-Print Network [OSTI]

    Kiker, John Thomas

    1970-01-01T23:59:59.000Z

    used in the selection index were chosen by characterizing and correlating the feathered and nonfeathered regions of the breast with other phenotypic characteristics of economic im- portance and then reducing the number of traits to those most highly... of sez, 'bx'eed ox conformation. An early covering of feathers over the keel bone appeared to serve as protec- tion, thereby reducing the incidence of breast blisters. Tunk and Savage (1956) reported similar results when they plucked feathers from...

  7. Pickling cucumber yield as influenced by plant population, spacing and bed width

    E-Print Network [OSTI]

    Burkett, Albert Leroy

    1974-01-01T23:59:59.000Z

    assistance in planting, thinning and harvesting the trials made this thesis possible. Foundation Seed Section provided help in harvesting the crop, and to them sincere thanks are extended. Special thanks are extended to Agricultural Manufacturing... Page 1 Spacings and plant populations used in the pickling cucumber once-over mechanical harvesting study. 15 2 Effect of spacing on yield and quality of pickling cucumbers in number of fruit snd fruit weight in kg from the once-over harvest, 25...

  8. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    E-Print Network [OSTI]

    Philipp Gerhold; Karl Jansen; Jim Kallarackal

    2012-03-20T23:59:59.000Z

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling.

  9. FPGA Based Sinusoidal Pulse Width Modulated Waveform Generation for Solar (PV) Rural Home Power Inverter

    E-Print Network [OSTI]

    Singh, S N

    2010-01-01T23:59:59.000Z

    With the increasing concern about global environmental protection and energy demand due to rapid growth of population in developing countries and the diminishing trend of resources of conventional grid supply, the need to produce freely available pollution free natural energy such as solar/wind energy has been drawing increasing interest in every corner of the world. In an effort to utilize these energies effectively through Power converter, a great deal of research is being carried out by different researchers / scientist and engineers at different places in the world to meet the increasing demand of load. The study presents methodology to integrate solar (PV) energy (which is freely available in every corner of the world) with grid source and supplement the existing grid power in rural houses during its cut off or restricted supply period. In order to get consistency in supply a DG is also added as a standby source in the proposed integration of network. The software using novel Direct PWM modulation strate...

  10. Variable-Width Datapath for On-Chip Network Static Power Reduction

    SciTech Connect (OSTI)

    Michelogiannakis, George; Shalf, John

    2013-11-13T23:59:59.000Z

    With the tight power budgets in modern large-scale chips and the unpredictability of application traffic, on-chip network designers are faced with the dilemma of designing for worst- case bandwidth demands and incurring high static power overheads, or designing for an average traffic pattern and risk degrading performance. This paper proposes adaptive bandwidth networks (ABNs) which divide channels and switches into lanes such that the network provides just the bandwidth necessary in each hop. ABNs also activate input virtual channels (VCs) individually and take advantage of drowsy SRAM cells to eliminate false VC activations. In addition, ABNs readily apply to silicon defect tolerance with just the extra cost for detecting faults. For application traffic, ABNs reduce total power consumption by an average of 45percent with comparable performance compared to single-lane power-gated networks, and 33percent compared to multi-network designs.

  11. Pulse width modulated push-pull driven parallel resonant converter with active free-wheel

    DOE Patents [OSTI]

    Reass, William A.; Schrank, Louis

    2004-06-22T23:59:59.000Z

    An apparatus and method for high frequency alternating power generation to control kilowatts of supplied power in microseconds. The present invention includes a means for energy storage, push-pull switching means, control electronics, transformer means, resonant circuitry and means for excess energy recovery, all in electrical communication. A push-pull circuit works synchronously with a force commutated free-wheel transistor to provide current pulses to a transformer. A change in the conduction angle of the push-pull circuit changes the amount of energy coupled into the transformer's secondary oscillating circuit, thereby altering the induced secondary resonating voltage. At the end of each pulse, the force commutated free-wheel transistor causes residual excess energy in the primary circuit to be transmitted back to the storage capacitor for later use.

  12. 3352 IEEE SENSORS JOURNAL, VOL. 14, NO. 10, OCTOBER 2014 Width-Modulated Microfluidic Columns

    E-Print Network [OSTI]

    Heflin, Randy

    ) on chromatographic performance is also evaluated. Moreover, with our improved fabrication process, multiple serially ECCS-1002279. The Associate Editor coordinating the review process was Prof. Srinivas Tadigadapa. H limits, GC has established itself in a multitude of fields (petrochemical indus- try, pharmaceutical

  13. Methods, systems and apparatus for adjusting duty cycle of pulse width modulated (PWM) waveforms

    DOE Patents [OSTI]

    Gallegos-Lopez, Gabriel; Kinoshita, Michael H; Ransom, Ray M; Perisic, Milun

    2013-05-21T23:59:59.000Z

    Embodiments of the present invention relate to methods, systems and apparatus for controlling operation of a multi-phase machine in a vector controlled motor drive system when the multi-phase machine operates in an overmodulation region. The disclosed embodiments provide a mechanism for adjusting a duty cycle of PWM waveforms so that the correct phase voltage command signals are applied at the angle transitions. This can reduce variations/errors in the phase voltage command signals applied to the multi-phase machine so that phase current may be properly regulated thus reducing current/torque oscillation, which can in turn improve machine efficiency and performance, as well as utilization of the DC voltage source.

  14. METALLICITY AS A SOURCE OF DISPERSION IN THE SNIa BOLOMETRIC LIGHT CURVE LUMINOSITY-WIDTH RELATIONSHIP

    SciTech Connect (OSTI)

    Bravo, E. [Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Carrer Comte d'Urgell 187, 08036 Barcelona (Spain); DomInguez, I. [Departamento de Fisica Teorica y del Cosmos, Universidad de Granada, 18071 Granada (Spain); Badenes, C. [Benoziyo Center for Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Piersanti, L.; Straniero, O. [INAF-Osservatorio Astronomico di Teramo, via mentore Maggini snc, 64100 Teramo (Italy)], E-mail: eduardo.bravo@upc.edu, E-mail: inma@ugr.es, E-mail: carles@wise.tau.ac.il

    2010-03-10T23:59:59.000Z

    The recognition that the metallicity of Type Ia supernova (SNIa) progenitors might bias their use for cosmological applications has led to an increasing interest in its role in shaping SNIa light curves. We explore the sensitivity of the synthesized mass of {sup 56}Ni, M({sup 56}Ni), to the progenitor metallicity starting from pre-main-sequence models with masses M {sub 0} = 2-7 M {sub sun} and metallicities Z = 10{sup -5}-0.10. The interplay between convective mixing and carbon burning during the simmering phase eventually raises the neutron excess, {eta}, and leads to a smaller {sup 56}Ni yield, but does not change substantially the dependence of M({sup 56}Ni) on Z. Uncertain attributes of the progenitor white dwarf, like the central density, have a minor effect on M({sup 56}Ni). Our main results are: (1) a sizeable amount of {sup 56}Ni is synthesized during incomplete Si-burning, which leads to a stronger dependence of M({sup 56}Ni) on Z than obtained by assuming that {sup 56}Ni is produced in material that burns fully to nuclear statistical equilibrium; (2) in one-dimensional delayed detonation simulations a composition dependence of the deflagration-to-detonation transition (DDT) density gives a nonlinear relationship between M({sup 56}Ni) and Z and predicts a luminosity larger than previously thought at low metallicities (however, the progenitor metallicity alone cannot explain the whole observational scatter of SNIa luminosities); and (3) an accurate measurement of the slope of the Hubble residuals versus metallicity for a large enough data set of SNIa might give clues to the physics of DDT in thermonuclear explosions.

  15. Laser diffraction process and apparatus for width measurement of elongated objects

    DOE Patents [OSTI]

    Naqwi, Amir A.; Fandrey, Christopher W.

    2006-07-04T23:59:59.000Z

    Size distribution of elongated objects is measured by forward scattering radiation from the objects at a range of scatter angles. The scattered radiation is refracted to locations on a scatter detector based on the scatter angles and independent of the location of the objects along the radiation axis. The intensity of radiation is sensed at each position on the scatter detector, and signals representative of the intensities at the positions are processed and compared to masks to identify a size distribution. The scatter detector may include individual radiation detectors arranged to receive refracted radiation representing respective ranges of scatter angles to thereby compensate for lower radiation intensities scattered from smaller objects.

  16. Width distribution of contact lines on a disordered substrate Sebastien Moulinet,1

    E-Print Network [OSTI]

    Moulinet, Sébastien

    plate with chromium impurities clear dots , partially covered by a water meniscus dark region . The so of this system 8­10 , which is characterized by long-range interac- tions. Very recently, experiments with water be derived from an energy function, which incorporates the potential energy due to the driving force f

  17. Fjords viscous fingering: Selection width and opening angle 1 Matthew Thrasher,

    E-Print Network [OSTI]

    Texas at Austin. University of

    blocks of solutions of zero­surface­tension Laplacian growth equation.# Experiments in rectangular capillary number = , where is viscosity of V is the local interfacial velocity, surface tension air penetrating viscous fluid interfacial tension# #2#. exact solutions interface free finite­time singularities

  18. Central Characterization Program (CCP) TRU Nonconforming Item...

    Office of Environmental Management (EM)

    TRU Nonconforming Item Reporting and Control Central Characterization Program (CCP) TRU Nonconforming Item Reporting and Control This document was used to determine facts and...

  19. PSEP \\\\' eight Summary COMMON ITEMS

    E-Print Network [OSTI]

    Rathbun, Julie A.

    . .70 1. 45 0· .22 102:'60 101. 00 6.00 #12;PSEP Weight Summary Solar Panel Weights Item Substrate Skins (2) 0.008" Adhesive ChannelS Gussets Core Pads Insulator (G... lO) 0.003" Solar Cells Cells (420. and Cable SolarPariels Sunshield,13asif. . '.' .' Antenna Support and Positioning Solar

  20. An empirical comparison of item response theory and classical test theory item/person statistics

    E-Print Network [OSTI]

    Courville, Troy Gerard

    2004-11-15T23:59:59.000Z

    - and IRT-Based Item Discrimination Indexes (n=1000)................................ 89 TABLE Page 11 Comparability of Item Statistics from the Two Measurement Frameworks: Average Correlations between CTT- and IRT-Based Item... Discrimination Indexes (Point-biserial and Fisher Z Transformed (n=100)......................................... 90 12 Comparability of Item Statistics From the Two Measurement Frameworks: Average Correlations between CTT- and IRT-Based Item...

  1. JOBAID-SELF ASSIGNING COURSES (ITEMS)

    Broader source: Energy.gov [DOE]

    In this jobaid you will learn to use the Course Catalog, Browse Catalog, Recommended Items, Locate and Self-Assign Items (Courses) Using the Search Catalog features, Narrow Course Searches using...

  2. New Item is requested directly by Physician

    E-Print Network [OSTI]

    Oliver, Douglas L.

    New Item is requested directly by Physician and communicated to Materials Management via email New Item is requested via Special Needs Report and communicated to Materials Management via email New Item is requested via Vendor Rep on behalf of Physician and is communicated to Materials Management via email

  3. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is notItem NotItem

  4. Item # Item Description Unit Size Supplier # Supplier Name Price Busch Stockroom Product List

    E-Print Network [OSTI]

    Garfunkel, Eric

    Item # Item Description Unit Size Supplier # Supplier Name Price Qty On Hand Last Price Update;Item # Item Description Unit Size Supplier # Supplier Name Price Qty On Hand Last Price Update BuschGas 1.00 3,559 03/20/2014 797 Oil Vacuum Pump - 1 Liter S41455 Fisher 9.48 0 03/27/2008 796 Oil Vacuum

  5. 518 IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 23, NO. 10, OCTOBER 2013 Designing the Width of Substrate

    E-Print Network [OSTI]

    Bornemann, Jens

    , 2013. Date of publication August 30, 2013; date of current version October 03, 2013. This work are with the Department of Electrical and Computer Engineering, University of Victoria, Victoria, BC V8W 3P6, Canada (e

  6. Relationship between different channel light curves of gamma-ray burst pulses shown in aspects other than the pulse width

    E-Print Network [OSTI]

    Yi-Ping Qin

    2004-11-13T23:59:59.000Z

    In this paper, we employ the peak count rate{\\bf \\}$C_p$ and the total count $C_{total}$ of light curves to study in the corresponding aspects the relationship between different channel light curves. To make a direct comparison between count rates of different channel light curves we introduce a plot of $C(\\tau)$ versus $C_H(\\tau)$, where $C(\\tau)$ is the count rate of a channel and $C_H(\\tau)$ is the count rate of a definite cannel, channel H (see the text). According to the plot we define $\\Delta C_{\\max}$ as the maximum deviation of the two count rate values of $C(\\tau)$ associated with a same count rate value of $% C_H(\\tau)$ and define $\\Delta S$ as the area confined by the close curve of $C(\\tau)$ in the plot to measure the difference of the rising and decaying portions of a light curve relative to the count rate of channel H. Under the assumption that some GRBs observed are in the stage of fireballs which expand relativistically, predictions on the relationships between the four quantities{\\bf (}$C_p$, $C_{total}$, $\\Delta C_{\\max}$, and $\\Delta S$) and energy within a wide band, calculated with different rest frame radiation forms and two typical Lorentz factors ($\\Gamma =20$ and 200), are made and presented, which would make the test of our model with the coming Swift data easier. Interpretations to the relationships within the mechanism of fireballs are also presented.

  7. A Bayesian model for predicting local El Niño events using tree ring widths and cellulose ?18O

    E-Print Network [OSTI]

    Nippert, Jesse B.; Hooten, Mevin B.; Sandquist, Darren R.; Ward, Joy K.

    2010-03-16T23:59:59.000Z

    . Eggemeyer, K. D., T. Awada, F. E. Harvey, D. A. Wedin, X. Zhou, and C. W. Zanner (2009), Seasonal changes in the depth of water uptake for encroaching trees Juniperus virginiana and Pinus ponderosa and two dominant C4 grasses in a semiarid grassland, Tree...

  8. CAB-DWTM for 5 μm trace-width deposition of solar cell metallization top-contacts

    SciTech Connect (OSTI)

    Justin Hoey; Drew Thompson; Matt Robinson; Zakaria Mahmud; Orven F. Swenson; Iskander S. Akhatov; Douglas L. Schulz

    2009-06-08T23:59:59.000Z

    This paper reviews methods for creating solar cell grid contacts and explores how cell efficiency can be increased using CAB-DW{trademark}. Specifically, the efficiency of p-i-n structure solar cells built in-house with 90 {micro}m sputtered lines and 5 {micro}m CAB-DW lines were compared. Preliminary results of the comparison show a marked improvement in solar cell efficiency using CAB-DW. In addition to this, a theoretical and experimental analysis of the dynamics of particle impaction on a substrate (i.e. whether particle stick or bounce) will be discussed including how this analysis may lead to further improvement of CAB-DW.

  9. Tailor Blank Casting - Control of sheet width using an electromagnetic edge dam in aluminium twin roll casting

    E-Print Network [OSTI]

    McBrien, Martin; Allwood, Julian M.; Barekar, Nilam S.

    2015-04-01T23:59:59.000Z

    stock products such as coils of the manufacturing industries which take these stock d reshape them to make consumer products, for exam- rs. This makes the supply chain subtractive—a large the metal cast is removed and does not reach the final roduct... , as bor casting tria For the c zero, a hori P m h + 2#3; si Using th plays an im metal conta separation as the solid sion in the dge dam (EMED); (b) longitudinal view, centreline of strip, EMED on; w, EMED on, far edge. the biggest challenge...

  10. Fast Particle Finite Orbit Width and Larmor Radius Effects on Lown Toroidicity induced Alfv'en Eigenmode Excitation

    E-Print Network [OSTI]

    'en Eigenmode Excitation N. N. Gorelenkov \\Lambda , C. Z. Cheng, G. Y. Fu Princeton Plasma Physics Laboratory, P im­ prove the previous version of NOVA­K code [Fu G. Y., Cheng C. Z., Wong K. L., Phys. Fluids B 5

  11. Fast Particle Finite Orbit Width and Larmor Radius E ects on Low-n Toroidicity induced Alfv en Eigenmode Excitation

    E-Print Network [OSTI]

    Eigenmode Excitation N. N. Gorelenkov , C. Z. Cheng, G. Y. Fu Princeton Plasma Physics Laboratory, P.O. Box the previous version of NOVA-K code Fu G. Y., Cheng C. Z., Wong K. L., Phys. Fluids B 5 4040 1994 which

  12. the ultrasonic methods find the width of a gap by measuring the time needed for a high frequency

    E-Print Network [OSTI]

    Kosmopoulos, Dimitrios I.

    of the measurement is high and there is no risk of damaging the product since the measurement is non- contact in the production process can be identi®ed and corrected as they occur, saving time, energy and labor inspection of gaps. ``Third Dimen- sion Software Ltd.'' [7] has implemented a device called ``Gap Gun

  13. New technologies for item monitoring

    SciTech Connect (OSTI)

    Abbott, J.A. [EG & G Energy Measurements, Albuquerque, NM (United States); Waddoups, I.G. [Sandia National Labs., Albuquerque, NM (United States)

    1993-12-01T23:59:59.000Z

    This report responds to the Department of Energy`s request that Sandia National Laboratories compare existing technologies against several advanced technologies as they apply to DOE needs to monitor the movement of material, weapons, or personnel for safety and security programs. The authors describe several material control systems, discuss their technologies, suggest possible applications, discuss assets and limitations, and project costs for each system. The following systems are described: WATCH system (Wireless Alarm Transmission of Container Handling); Tag system (an electrostatic proximity sensor); PANTRAK system (Personnel And Material Tracking); VRIS (Vault Remote Inventory System); VSIS (Vault Safety and Inventory System); AIMS (Authenticated Item Monitoring System); EIVS (Experimental Inventory Verification System); Metrox system (canister monitoring system); TCATS (Target Cueing And Tracking System); LGVSS (Light Grid Vault Surveillance System); CSS (Container Safeguards System); SAMMS (Security Alarm and Material Monitoring System); FOIDS (Fiber Optic Intelligence & Detection System); GRADS (Graded Radiation Detection System); and PINPAL (Physical Inventory Pallet).

  14. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is notItem Not

  15. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is notItem Not

  16. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is notItem Not

  17. Items Prohibited for Purchase January 2012

    E-Print Network [OSTI]

    Pennycook, Steve

    Items Prohibited for Purchase January ­ 2012 Advertising/Public Relations Items Alcohol (ethyl SJEOW extension cord with power indicator light in the cord connector. Catalog Numbers: 01287 01288 Turnbuckles Wire rope (slings, clips [clamps]) Illegal supplies purchased through Cuba, Iran, Libya, North

  18. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found ItemRomero-Redondo, C"Voth,Jaehoon"Zhu, Jian -longDocumentItem

  19. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is not available

  20. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The item you requested, OSTI ID 1018612, is not

  1. Number Plastic Type Common Items Number of Items (tally) 1 polyethylene terephthalate

    E-Print Network [OSTI]

    Schladow, S. Geoffrey

    End Time: Number Plastic Type Common Items Number of Items (tally) 1 polyethylene terephthalate Soft drink, water and beer bottles; mouthwash bottles; peanut butter containers; salad dressing and vegetable oil containers; ovenable food trays. 2 high density polyethylene Milk jugs, juice bottles; bleach

  2. SciTech Connect: Item Not Found

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found ItemRomero-Redondo, C"Voth,Jaehoon"Zhu, Jian

  3. ITEM #XXX-XXXX-XXXXX Page 1 of 7

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ITEM #XXX-XXXX-XXXXX Page 1 of 7 Montana Board of Regents LEVEL II REQUEST FORM Item Number: XXX suicide, bringing the number of documented #12;ITEM #XXX-XXXX-XXXXX Page 2 of 7 Montana Board of Regents LEVEL II REQUEST FORM Item Number: XXX-XXXX-XXXXX Meeting Date: attempts to 5,500 annually1 . Our

  4. Electric germs Source: scenta Rate this item

    E-Print Network [OSTI]

    Lovley, Derek

    Electric germs Source: scenta Rate this item People in remote areas could benefit from fuel cells that contain bacteria that grows prolifically on the graphite anodes of fuel cells and can conduct electricity that isolating a bacterium generated pow er in fuel cells efficiently. Geobacter sulfurreducens is bacteria

  5. ITEM #10(a) Proposed Academic Certificate Program

    E-Print Network [OSTI]

    O'Toole, Alice J.

    ITEM #10(a) Proposed Academic Certificate Program Title: Graduate Certificate in Product Lifecycle to an order-centric view in the 90s to product-centric view today. As product lifecycles shrink, innovation. The product lifecycle perspective becomes more important because it provides a holistic view across disparate

  6. Inventory List Item Number Brief Description Price Preferred Vendor

    E-Print Network [OSTI]

    Inventory List UT Austin Item Number Brief Description Price Preferred Vendor L0146 Adapter, Glass w/Screw Top, Amber, 4 dram $0.56 VWRSC 4/21/14 Page - 1 #12;Inventory List UT Austin Item Number;Inventory List UT Austin Item Number Brief Description Price Preferred Vendor S0027 CD, Recordable $0

  7. Guide to good practices for the development of test items

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    While the methodology used in developing test items can vary significantly, to ensure quality examinations, test items should be developed systematically. Test design and development is discussed in the DOE Guide to Good Practices for Design, Development, and Implementation of Examinations. This guide is intended to be a supplement by providing more detailed guidance on the development of specific test items. This guide addresses the development of written examination test items primarily. However, many of the concepts also apply to oral examinations, both in the classroom and on the job. This guide is intended to be used as guidance for the classroom and laboratory instructor or curriculum developer responsible for the construction of individual test items. This document focuses on written test items, but includes information relative to open-reference (open book) examination test items, as well. These test items have been categorized as short-answer, multiple-choice, or essay. Each test item format is described, examples are provided, and a procedure for development is included. The appendices provide examples for writing test items, a test item development form, and examples of various test item formats.

  8. Feed mechanism and method for feeding minute items

    DOE Patents [OSTI]

    Stringer, Timothy Kent; Yerganian, Simon Scott

    2012-11-06T23:59:59.000Z

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  9. Feed mechanism and method for feeding minute items

    SciTech Connect (OSTI)

    Stringer, Timothy Kent (Bucyrus, KS); Yerganian, Simon Scott (Lee's Summit, MO)

    2009-10-20T23:59:59.000Z

    A feeding mechanism and method for feeding minute items, such as capacitors, resistors, or solder preforms. The mechanism is adapted to receive a plurality of the randomly-positioned and randomly-oriented extremely small or minute items, and to isolate, orient, and position one or more of the items in a specific repeatable pickup location wherefrom they may be removed for use by, for example, a computer-controlled automated assembly machine. The mechanism comprises a sliding shelf adapted to receive and support the items; a wiper arm adapted to achieve a single even layer of the items; and a pushing arm adapted to push the items into the pickup location. The mechanism can be adapted for providing the items with a more exact orientation, and can also be adapted for use in a liquid environment.

  10. The Impact of the Item Types and Number of Solution Steps of Multiple-Choice Items on Item Difficulty and Discrimination and Test Reliability

    E-Print Network [OSTI]

    Atalmis, Erkan Hasan

    2014-08-31T23:59:59.000Z

    were generated and administered to approximately 1500 7th and 8th grade students in the United States and Turkey. Bi-factor Item Response Theory (IRT) was applied to assess dimensionality related to the number of solution steps of items. Multiple...

  11. Extraction of the width of the W boson from measurements of ,,pp\\WX...B,,W\\e ... and ,,pp\\ZX...B,,Z\\ee... and their ratio

    E-Print Network [OSTI]

    Toback, David

    ,27 Y. Gershtein,51 B. Gibbard,48 B. Gobbi,30 B. Go´mez,5 G. Go´mez,38 P. I. Goncharov,18 J. L. Gonza

  12. Analysis of collective spin-wave modes at different points within the hysteresis loop of a one-dimensional magnonic crystal comprising alternative-width nanostripes

    E-Print Network [OSTI]

    Adeyeye, Adekunle

    , Singapore 117685, Singapore 6 School of Physics M013, University of Western Australia, 35 Stirling Hwy, 6009 Western Australia, Australia Received 17 June 2010; revised manuscript received 7 October 2010; published and forbidden magnonic energy bands. The measured frequencies as a function of the exchanged wave vector have

  13. Experimental Test of a Newly Proposed Empirical Relationship between the Centroid and Width of the Giant Quadrupole-Resonance and the Neutron Binding-Energy of the Nucleus

    E-Print Network [OSTI]

    Garg, U.; Beard, K. B.; Ye, D.; Galonsky, A.; Murakami, T.; Winfield, J. S.; Lui, YW; Youngblood, David H.

    1990-01-01T23:59:59.000Z

    , Michigan 48824 Y.-W. Lui and D. H. Youngblood Cyclotron Institute, Texas A &M University, College Station, Texas 77843 (Received 27 October 1989) Via the inelastic scattering of 50 MeV/nucleon ' N ions, the giant quadrupole resonance in "Ni and Ni has... (1987). A. Wapstra and K. Bos, At. Data Nucl. Data Tables 19, 215 (1977). 41 BRIEF REPORTS 1847 5U. Garg, P. Bogucki, J. D. Bronson, Y.-W. Lui, C. M. Rozsa, and D. H. Youngblood, Phys. Rev. C 25, 3204 (1982). ~D. S. Oakley, M. R. Braunstein, J. J...

  14. Turbine blade platform film cooling with simulated stator-rotor purge flow with varied seal width and upstream wake with vortex

    E-Print Network [OSTI]

    Blake, Sarah Anne

    2009-05-15T23:59:59.000Z

    The turbine blade platform can be protected from hot mainstream gases by injecting cooler air through the gap between stator and rotor. The effectiveness of this film cooling method depends on the geometry of the slot, the quantity of injected air...

  15. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 46, NO. 11, NOVEMBER 2008 3601 Air-Broadened Half-Widths of the 22-and

    E-Print Network [OSTI]

    Gamache, Robert R.

    and weather prediction, including instruments at the surface (e.g., [1]­[4]), on high-altitude research Research of the U.S. Department of Energy as part of the Atmospheric Radiation Measurement Program measurement errors. In this paper, measurements from ground-based radiometers situated at two Atmospheric

  16. Abstract-Thermal resistance has been measured for high speed SiGe HBT's with various emitter widths and lengths. The

    E-Print Network [OSTI]

    Rieh, Jae-Sung

    , a compensation is made in order to account for the self-heating effect in the first measurement, since it related and the junction temperature, for which a temperature-sensitive electrical parameter (TSEP) is utilized in order

  17. An N-atom Collective State Atomic Clock with Root-N Fold Increase in Effective Frequency and Root-N Fold Reduction in Fringe Width

    E-Print Network [OSTI]

    May E. Kim; Resham Sarkar; Renpeng Fang; Selim M. Shahriar

    2014-12-15T23:59:59.000Z

    We describe a collective state atomic clock with Ramsey fringes narrowed by a factor of $\\sqrt{N}$ compared to a conventional clock, N being the number of non-interacting atoms, without violating the uncertainty relation. This narrowing is explained as being due to interferences among the collective states, representing an effective $\\sqrt{N}$ fold increase in the clock frequency, without entanglement. The detection process, which measures a collective state, can be used to increase the quantum efficiency of detection significantly, yielding a net improvement in stability by as much as a factor of 10.

  18. The e ects of variations in jet width on the growth of baroclinic waves: Implications for midwinter Paci c stormtrack variability.

    E-Print Network [OSTI]

    Columbia University

    -365-8736 and Edmund K. M. Chang ITPA/MSRC Stony Brook University, SUNY Stony Brook, NY 11794-5000 email: kmchang to regions of enhanced baroclinic and barotropic shear of the large scale ow (Lau, 1988; Hoskins and Valdes

  19. Binary classification of items of interest in a repeatable process

    DOE Patents [OSTI]

    Abell, Jeffrey A.; Spicer, John Patrick; Wincek, Michael Anthony; Wang, Hui; Chakraborty, Debejyo

    2014-06-24T23:59:59.000Z

    A system includes host and learning machines in electrical communication with sensors positioned with respect to an item of interest, e.g., a weld, and memory. The host executes instructions from memory to predict a binary quality status of the item. The learning machine receives signals from the sensor(s), identifies candidate features, and extracts features from the candidates that are more predictive of the binary quality status relative to other candidate features. The learning machine maps the extracted features to a dimensional space that includes most of the items from a passing binary class and excludes all or most of the items from a failing binary class. The host also compares the received signals for a subsequent item of interest to the dimensional space to thereby predict, in real time, the binary quality status of the subsequent item of interest.

  20. Suspect Counterfeit Items Criteria Review and Approach Document...

    Broader source: Energy.gov (indexed) [DOE]

    SuspectCounterfeit Items Criteria Review and Approach Document (CRAD) NNSANevada Site Office Facility Representative Division Phase 1 - Management Performance Objective:...

  1. ITEM #XXX-XXXX-XXXXX Page 1 of 8

    E-Print Network [OSTI]

    Maxwell, Bruce D.

    ITEM #XXX-XXXX-XXXXX Page 1 of 8 Montana Board of Regents LEVEL II REQUEST FORM aItem Number: XXX-XXXX-XXXXX Meeting Date #XXX-XXXX-XXXXX Page 2 of 8 Montana Board of Regents LEVEL II REQUEST FORM

  2. Inventory List Item Number Brief Description Price Preferred Vendor

    E-Print Network [OSTI]

    Inventory List UT Austin Item Number Brief Description Price Preferred Vendor E0060 1 kb DNA Ladder0042 Taq DNA Polymerase - 2,000 units $224.48 NEWEN 4/21/14 Page - 1 #12;Inventory List UT Austin Item

  3. Inventory List Item Number Brief Description Price Preferred Vendor

    E-Print Network [OSTI]

    Inventory List UT Austin Item Number Brief Description Price Preferred Vendor Y0044 #BL21 STAR DE3.44 LIFET Y0041 Purelink Genomic DNA (50) $90.39 LIFET 4/21/14 Page - 1 #12;Inventory List UT Austin Item

  4. Item Weighting Techniques for Collaborative Linas Baltrunas and Francesco Ricci

    E-Print Network [OSTI]

    Ricci, Francesco

    of an item for predicting the rating of another item and it is computed as a correlation coefficient between-Bolzano Domeninkanerplatz 3, Bozen, Italy e-mail: {lbaltrunas,fricci}@unibz.it B. Berendt et al. (Eds.): Knowl. Disc. Enhan

  5. Guidelines for Disposing Electronic Items on Campus STATE PROPERTY ONLY

    E-Print Network [OSTI]

    Harms, Kyle E.

    Association of Electronics Recyclers Throwing e-waste away and having it end up in a landfill is also a directGuidelines for Disposing Electronic Items on Campus STATE PROPERTY ONLY As technology advances more and more, electronics become obsolete. Broken or faulty electronic items sometimes end up in dumpsters

  6. User Guide for Disposal of Unwanted Items and Electronic Waste

    E-Print Network [OSTI]

    Mullins, Dyche

    User Guide for Disposal of Unwanted Items and Electronic Waste January 31, 2012 Jointly developed metal and wood o Waste/trash management o Recycle, reuse or disposal of materials D&S does not process o and electronics of all types (working or not) o Furniture o Reusable/Recyclable items o Assets with UC Property

  7. Exploring monotonicity in polytomous item response data Brian W. Junker

    E-Print Network [OSTI]

    Junker, Brian

    response variables X j in terms of a unidimensional latent variable `: ffl the item step response functionsExploring monotonicity in polytomous item response data Brian W. Junker Department of Statistics@stat.cmu.edu In many psychological and educational settings it is natural or desirable to assume that the responses

  8. AVOID BECOMING A VICTIM OF COUNTERFEIT ITEMS

    SciTech Connect (OSTI)

    WARRINER RD

    2011-07-13T23:59:59.000Z

    In today's globalized economy, we cannot live without imported products. Most people do not realize how thin the safety net of regulation and inspection really is. Less than three percent of imported products receive any form of government inspection prior to sale. Avoid flea markets, street vendors and deep discount stores. The sellers of counterfeit wares know where to market their products. They look for individuals who are hungry for a brand name item but do not want to pay a brand name price for it. The internet provides anonymity to the sellers of counterfeit products. Unlike Europe, U.S. law does not hold internet-marketing organizations, responsible for the quality of the products sold on their websites. These organizations will remove an individual vendor when a sufficient number of complaints are lodged, but they will not take responsibility for the counterfeit products you may have purchased. EBay has a number of counterfeit product guides to help you avoid being a victim of the sellers of these products. Ten percent of all medications taken worldwide are counterfeit. If you do buy medications on-line, be sure that the National Association of Boards of Pharmacy Verified Internet Pharmacy Practice Sites (VIPPS) recommends the pharmacy you choose to use. Inspect all medication purchases and report any change in color, shape, imprinting or odor to your pharmacist. If you take generic medications these attributes may change from one manufacturer to another. Your pharmacist should inform you of any changes when you refill your prescription. If they do not, get clarification prior to taking the medication. Please note that the Federal Drug Administration (FDA) does not regulate supplements. The FDA only steps in when a specific supplement proves to cause physical harm or contains a regulated ingredient. Due to counterfeiting, Underwriters Laboratories (UL) changed their label design three times since 1996. The new gold label should be attached to the cord or body of most office and home electrical products (please see the picture to the left). Holiday lights may have the UL marking in red or green instead of the universal black. A red UL mark indicates the product is approved for outdoor as well as indoor service. The green UL mark indicates the product is only to be used indoors. A small number of home electrical products may bear an Interteck (ETL) approval. This label is also acceptable. An Interteck label includes black print on a white background bearing the circular ETL logo. Most manufacturers are proud of their products and strive to gain name recognition as well as foster repeat business. This is not true of counterfeiters. The very first thing most counterfeiters try to do is make their products untraceable. Their products may bear the nation of origin but that is all. This is a common practice with metal components such as pipe fittings and flanges. This is also true of hoisting and rigging equipment such as shackles, turnbuckles and chain. Sadly, this has also occurred with the purchase of some safety equipment such as arc-flash retardant coveralls. Learn the national standards associated with products you are purchasing. Clearly specify these requirements on the procurements you make.

  9. Multi-item memory in the primate prefrontal cortex

    E-Print Network [OSTI]

    Warden, Melissa R. (Melissa Rhoads)

    2006-01-01T23:59:59.000Z

    The ability to retain multiple items in short-term memory is fundamental for cognition, yet almost nothing is known about its neural basis. To explore the mechanisms underlying this ability, we trained two monkeys to ...

  10. How to locate and remove large email items from ANUmail

    E-Print Network [OSTI]

    the attachment and then select Save Note: Please ensure you copy the files to your personal storage devices (eg This document is designed to assist students to determine large email items, save them in their personal storage

  11. Suspect/Counterfeit Items Information Guide for Subcontractors/Suppliers

    SciTech Connect (OSTI)

    Tessmar, Nancy D. [Los Alamos National Laboratory; Salazar, Michael J. [Los Alamos National Laboratory

    2012-09-18T23:59:59.000Z

    Counterfeiting of industrial and commercial grade items is an international problem that places worker safety, program objectives, expensive equipment, and security at risk. In order to prevent the introduction of Suspect/Counterfeit Items (S/CI), this information sheet is being made available as a guide to assist in the implementation of S/CI awareness and controls, in conjunction with subcontractor's/supplier's quality assurance programs. When it comes to counterfeit goods, including industrial materials, items, and equipment, no market is immune. Some manufactures have been known to misrepresent their products and intentionally use inferior materials and processes to manufacture substandard items, whose properties can significantly cart from established standards and specifications. These substandard items termed by the Department of Energy (DOE) as S/CI, pose immediate and potential threats to the safety of DOE and contractor workers, the public, and the environment. Failure of certain systems and processes caused by an S/CI could also have national security implications at Los Alamos National Laboratory (LANL). Nuclear Safety Rules (federal Laws), DOE Orders, and other regulations set forth requirements for DOE contractors to implement effective controls to assure that items and services meet specified requirements. This includes techniques to implement and thereby minimizing the potential threat of entry of S/CI to LANL. As a qualified supplier of goods or services to the LANL, your company will be required to establish and maintain effective controls to prevent the introduction of S/CI to LANL. This will require that your company warrant that all items (including their subassemblies, components, and parts) sold to LANL are genuine (i.e. not counterfeit), new, and unused, and conform to the requirements of the LANL purchase orders/contracts unless otherwise approved in writing to the Los Alamos National Security (LANS) contract administrator/procurements specialist.

  12. The 1992 Pacific Northwest Residential Energy Survey : Phase 1 : Book 3 : Item-by-item Crosstabulations.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration. End-Use Research Section; Applied Management & Planning Group (Firm)

    1993-06-01T23:59:59.000Z

    This book constitutes a portion of the primary documentation for the 1992 Pacific Northwest Residential Energy Survey, Phase I. The complete 33-volume set of primary documentation provides information needed by energy analysts and interpreters with respect to planning, execution, data collection, and data management of the PNWRES92-I process. Thirty of these volumes are devoted to different ``views`` of the data themselves, with each view having a special purpose or interest as its focus. Analyses and interpretations of these data will be the subjects of forthcoming publications. Conducted during the late summer and fall months of 1992, PNWRES92-I had the over-arching goal of satisfying basic requirements for a variety of information about the stock of residential units in Bonneville`s service region. Surveys with a similar goal were conducted in 1979 and 1983. This volume discerns the information by the particular Bonneville Area Office. ``Selected crosstabulations`` refers to a set of nine survey items of wide interest (Dwelling Type, Ownership Type, Year-of-Construction, Dwelling Size, Primary Space-Heating Fuel, Primary Water-Heating Fuel, Household Income for 1991, Utility Type, and Space-Heating Fuels: Systems and Equipment) that were crosstabulated among themselves.

  13. Manakin Case Study: visualizing geospatial metadata and complex items

    E-Print Network [OSTI]

    Mikeal, Adam; Green, Cody; Maslov, Alexey; Phillips, Scott; Weimer, Kathy; Leggett, John

    2007-07-16T23:59:59.000Z

    :/handle.tamu.edu/1969.1/2490, and has been featured as an Editor’s Pick on Yahoo.com for its use of the Yahoo! Maps API. This presentation is the third in a set of thre about the Manakin project. This presentation discusses a specific use case of using Manakin...-based interface obvious choice for context Yahoo! Maps chosen for ease of API and aesthethic qualities Geographic coordinates were available for every item Map places every item into a geographic context Allows user to quickly determine coverage area...

  14. Method using a density field for locating related items for data mining

    DOE Patents [OSTI]

    Wylie, Brian N. (Albuquerque, NM)

    2002-01-01T23:59:59.000Z

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method makes use of numeric values as a measure of similarity between each pairing of items. The items are given initial coordinates in the space. An energy is then determined for each item from the item's distance and similarity to other items, and from the density of items assigned coordinates near the item. The distance and similarity component can act to draw items with high similarities close together, while the density component can act to force all items apart. If a terminal condition is not yet reached, then new coordinates can be determined for one or more items, and the energy determination repeated. The iteration can terminate, for example, when the total energy reaches a threshold, when each item's energy is below a threshold, after a certain amount of time or iterations.

  15. The Hierarchical Rater Model for Rated Test Items and its Application to Large-Scale Educational

    E-Print Network [OSTI]

    Junker, Brian

    items have become a standard part of the educational assessment landscape. Some achieve- ment targets

  16. Method of data mining including determining multidimensional coordinates of each item using a predetermined scalar similarity value for each item pair

    DOE Patents [OSTI]

    Meyers, Charles E. (Albuquerque, NM); Davidson, George S. (Albuquerque, NM); Johnson, David K. (Albuquerque, NM); Hendrickson, Bruce A. (Albuquerque, NM); Wylie, Brian N. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A method of data mining represents related items in a multidimensional space. Distance between items in the multidimensional space corresponds to the extent of relationship between the items. The user can select portions of the space to perceive. The user also can interact with and control the communication of the space, focusing attention on aspects of the space of most interest. The multidimensional spatial representation allows more ready comprehension of the structure of the relationships among the items.

  17. Assessing Invariance of Factor Structures and Polytomous Item Response Model Parameter Estimates

    E-Print Network [OSTI]

    Reyes, Jennifer McGee

    2012-02-14T23:59:59.000Z

    .e., identical items, different people) for the homogenous graded response model (Samejima, 1969) and the partial credit model (Masters, 1982)? To evaluate measurement invariance using IRT methods, the item discrimination and item difficulty parameters... obtained from the GRM need to be equivalent across datasets. The YFCY02 and YFCY03 GRM item discrimination parameters (slope) correlation was 0.828. The YFCY02 and YFCY03 GRM item difficulty parameters (location) correlation was 0...

  18. EXHIBITION INSTALLATION AND DISMANTLING Item Handling and Housing

    E-Print Network [OSTI]

    Mathis, Wayne N.

    EXHIBITION INSTALLATION AND DISMANTLING Item Handling and Housing A. For general handling's and Don'ts. B. For examples of housing options and alternatives for paper artifacts, see Housing and Environment Options for Display, Housing and Environment Options for Storage, or consult a conservator. 1. All

  19. DOE Hosts Festival to Collect Items for Area Food Banks

    Broader source: Energy.gov [DOE]

    WASHINGTON, D.C. – Deputy Secretary of Energy Daniel Poneman and a representative of the Capital Area Food Bank are among the guest speakers at an event this Tuesday, July 31, to collect food items for the DOE Feeds Families drive.

  20. List of OTC Products (Items subject to change without notice)

    E-Print Network [OSTI]

    Stuart, Steven J.

    List of OTC Products (Items subject to change without notice) Allergy/Cough/Cold/Flu Symptoms * Requires Valid ID for purchase/18 yo Cough Drops Cherry 30ct Cold Eeze tablets 18ct Allergy Tablets 24ct Loratidine D* 10ct Comtrex Cold and Cough* Daytime* Softgels 12 & 20ct Nighttime* Softgels 12ct Banophen Tabs

  1. TRAINING PENGUINS TO INTERACT WITH ENRICHMENT ITEMS FOR LASTING EFFECTS

    E-Print Network [OSTI]

    Timberlake, William D.

    TRAINING PENGUINS TO INTERACT WITH ENRICHMENT ITEMS FOR LASTING EFFECTS Eduardo J. Fernandez decades, zoo have begun to focus more on the use of enrichment to promote the "well-being" of their animals, (Markowitz & Aday, 1998). One purpose of enrichment is to promote more naturalistic behaviors

  2. New Algorithms for Finding Approximate Frequent Item Sets

    E-Print Network [OSTI]

    Berthold, Michael R.

    New Algorithms for Finding Approximate Frequent Item Sets Christian Borgelt1 , Christian Braune1,2 , Tobias K¨otter3 and Sonja Gr¨un4,5 1 European Centre for Soft Computing c/ Gonzalo Guti´errez Quir´os s/n.borgelt@softcomputing.es, christian.braune@st.ovgu.de, tobias.koetter@uni-konstanz.de, s.gruen@fz-juelich.de Abstract. In standard

  3. Internationally Standardized Cost Item Definitions for Decommissioning of Nuclear Installations

    SciTech Connect (OSTI)

    Lucien Teunckens; Kurt Pflugrad; Candace Chan-Sands; Ted Lazo

    2000-06-04T23:59:59.000Z

    The European Commission (EC), the International Atomic Energy Agency (IAEA), and the Organization for Economic Cooperation and Development/Nuclear Energy Agency (OECD/NEA) have agreed to jointly prepare and publish a standardized list of cost items and related definitions for decommissioning projects. Such a standardized list would facilitate communication, promote uniformity, and avoid inconsistency or contradiction of results or conclusions of cost evaluations for decommissioning projects carried out for specific purposes by different groups. Additionally, a standardized structure would also be a useful tool for more effective cost management. This paper describes actual work and result thus far.

  4. Suspect/Counterfeit Items Awareness Training Manual | Department of Energy

    Energy Savers [EERE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof Energy 2, 2015 - January 16, 2015 SummarySuspect and Counterfeit Items Memo

  5. Control of Suspect/Counterfeit and Defective Items

    SciTech Connect (OSTI)

    Sheriff, Marnelle L.

    2013-09-03T23:59:59.000Z

    This procedure implements portions of the requirements of MSC-MP-599, Quality Assurance Program Description. It establishes the Mission Support Alliance (MSA) practices for minimizing the introduction of and identifying, documenting, dispositioning, reporting, controlling, and disposing of suspect/counterfeit and defective items (S/CIs). employees whose work scope relates to Safety Systems (i.e., Safety Class [SC] or Safety Significant [SS] items), non-safety systems and other applications (i.e., General Service [GS]) where engineering has determined that their use could result in a potential safety hazard. MSA implements an effective Quality Assurance (QA) Program providing a comprehensive network of controls and verification providing defense-in-depth by preventing the introduction of S/CIs through the design, procurement, construction, operation, maintenance, and modification of processes. This procedure focuses on those safety systems, and other systems, including critical load paths of lifting equipment, where the introduction of S/CIs would have the greatest potential for creating unsafe conditions.

  6. Method of locating related items in a geometric space for data mining

    DOE Patents [OSTI]

    Hendrickson, Bruce A. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity.

  7. Method of locating related items in a geometric space for data mining

    DOE Patents [OSTI]

    Hendrickson, B.A.

    1999-07-27T23:59:59.000Z

    A method for locating related items in a geometric space transforms relationships among items to geometric locations. The method locates items in the geometric space so that the distance between items corresponds to the degree of relatedness. The method facilitates communication of the structure of the relationships among the items. The method is especially beneficial for communicating databases with many items, and with non-regular relationship patterns. Examples of such databases include databases containing items such as scientific papers or patents, related by citations or keywords. A computer system adapted for practice of the present invention can include a processor, a storage subsystem, a display device, and computer software to direct the location and display of the entities. The method comprises assigning numeric values as a measure of similarity between each pairing of items. A matrix is constructed, based on the numeric values. The eigenvectors and eigenvalues of the matrix are determined. Each item is located in the geometric space at coordinates determined from the eigenvectors and eigenvalues. Proper construction of the matrix and proper determination of coordinates from eigenvectors can ensure that distance between items in the geometric space is representative of the numeric value measure of the items' similarity. 12 figs.

  8. Apparatus and method for identification and recognition of an item with ultrasonic patterns from item subsurface micro-features

    DOE Patents [OSTI]

    Perkins, R.W.; Fuller, J.L.; Doctor, S.R.; Good, M.S.; Heasler, P.G.; Skorpik, J.R.; Hansen, N.H.

    1995-09-26T23:59:59.000Z

    The present invention is a means and method for identification and recognition of an item by ultrasonic imaging of material microfeatures and/or macrofeatures within the bulk volume of a material. The invention is based upon ultrasonic interrogation and imaging of material microfeatures within the body of material by accepting only reflected ultrasonic energy from a preselected plane or volume within the material. An initial interrogation produces an identification reference. Subsequent new scans are statistically compared to the identification reference for making a match/non-match decision. 15 figs.

  9. The Hierarchical Rater Model for Rated Test Items and its Application to Large-Scale Educational Assessment Data

    E-Print Network [OSTI]

    -ended (or "constructed response") test items have become a standard part of the educational assessment

  10. The Impact of Misspecifying A Higher Level Nesting Structure in Item Response Theory Models: A Monte Carlo Study

    E-Print Network [OSTI]

    Zhou, Qiong

    2013-08-02T23:59:59.000Z

    Discussion .............................................................................................................. 42 CHAPTER IV STUDY TWO: A MULTILEVEL ITEM RESPONSE THEORY ANALYSIS OF PISA 2009 DATA...

  11. Meeting Action Items and Highlights from the Bio-Derived Liquids...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the Bio-Derived Liquids to Hydrogen Distributed Reforming Working Group (BILIWG) & Hydrogen Production Technical Team Research Review Meeting Action Items and Highlights...

  12. Conceptual design: Subtask 1. B of the Major Item System Mapping project

    SciTech Connect (OSTI)

    Bengtson, P.Y.; Hadder, G.R.; Stevens, M.M.; Loffman, R.S.; Holcomb, B.D.; Thomas, B.; Zuschneid, P.B.; Guy, M.S.

    1984-05-01T23:59:59.000Z

    This Conceptual Design document, which reflects the completion of the systems design stage, is a requirement of an Oak Ridge National Laboratory project to develop a Major Item System Mapping (MISM) software system. This document will be followed in implementing the project for data collection, programming, documentation, and user training. The purpose of the MISM project is to collect a variety of data on items of equipment managed by the Army and to map the items into systems. This information will be used for a variety of budgeting and managing purposes. The mapping of items into systems is necessary because funding and analyses are based on an equipment system concept.

  13. MIP-based heuristics for multi-item capacitated lot-sizing problem ...

    E-Print Network [OSTI]

    2005-09-30T23:59:59.000Z

    take into account a set of additional constraints. ... about safety stock deficits for which we introduce a unitary cost parameter for each item at each period.

  14. NQA-1 Requirements for Commercial Grade Item Acceptance: ICONE20-54738

    SciTech Connect (OSTI)

    Van Valkenburg, Taunia S. [Los Alamos National Laboratory; Holmes, Richard A. [Los Alamos National Laboratory; Tepley, Daniel J. [Los Alamos National Laboratory; Sandquist, Gary [APPLIED SCIENCE PROFESSIONALS

    2012-07-19T23:59:59.000Z

    Objectives are: (1) Present the DOE Chemistry and Metallurgy Research Replacement (CMRR) Project Commercial Grade Item (CGI) Dedication Process; and (2) Present CMRR Project CGI Lessons-Learned.

  15. High-Q, Ultra-narrow Line-width Lasers on a Silicon Chip E. H. Bernhardi, L. Agazzi, J. D. B. Bradley, F. Ay, K. Wrhoff, and M. Pollnau

    E-Print Network [OSTI]

    Twente, Universiteit

    . 1. Illustration of advanced photonic circuit with integrated Er-doped waveguide amplifiers) schematic of an adiabatic inverted taper structure to couple light from Si to Al2O3:Er3+ waveguides [4] #12 20 250 5 10 15 20 25 Fig. 3. (left) Internal net gain as a function of wavelength for an amplifier

  16. Wind Integration Forum June 6, 2011 Action Items Update December, 2011

    E-Print Network [OSTI]

    Wind Integration Forum June 6, 2011 Action Items Update December, 2011 The action items from the June 6 Wind Integration Steering Committee are repeated below, followed by brief summaries of progress concern over possible impacts on grid stability from the growing wind fleet. BPA will report back

  17. Managing Inventory of Items with Replacement Wei Huang Vidhyadhar Kulkarni 1

    E-Print Network [OSTI]

    Kulkarni, Vidyadhar G.

    Managing Inventory of Items with Replacement Warranty Wei Huang Vidhyadhar Kulkarni 1 Jayashankar items under warranty. We model this setting as a multi-period single product inventory problem where that neglects warranty repairs. Keyword: Warranty, Inventory, Stochastic Demand, Information. 1 This work

  18. Evaluation of Segmentation Techniques for Inventory Management in Large Scale Multi-Item Inventory Systems1

    E-Print Network [OSTI]

    Rossetti, Manuel D.

    1 Evaluation of Segmentation Techniques for Inventory Management in Large Scale Multi-Item Inventory Systems1 Manuel D. Rossetti2 , Ph. D., P. E. Department of Industrial Engineering University of their inventory policies in a large-scale multi-item inventory system. Conventional inventory segmentation

  19. Warranty and Fair Pricing for Used Items in Two-Dimensional Boyan Dimitrov

    E-Print Network [OSTI]

    Stanchev, Peter

    and is valid during some limited future time of use, or until some future mileage is driven, whichever comesWarranty and Fair Pricing for Used Items in Two-Dimensional Life Time Boyan Dimitrov Dept-dimensional life to illustrate how cost characteristics should be fairly assessed. Pricing of used items

  20. AUTOPAYITEM -A SOFTWARE TOOL TO MANAGE PAY ITEMS FOR HIGHWAY DESIGN

    E-Print Network [OSTI]

    Tian, Zong Z.

    standards and procedures of the Idaho Transportation Department (ITD). API can be described as a Micro of AutoPayItem (API), a computer software tool that manages highway design pay items based on the current Language (MDL) is the primary tool for coding the software. API allows highway designers a single point

  1. The Hierarchical Rater Model for Rated Test Items and its Application to LargeScale Educational Assessment Data 1

    E-Print Network [OSTI]

    ­ended (or ``constructed response'') test items have become a standard part of the educational assessment

  2. THE IMPACT OF ANCHOR ITEM EXPOSURE ON MEAN/SIGMA LINKING AND IRT TRUE SCORE EQUATING UNDER THE NEAT DESIGN

    E-Print Network [OSTI]

    Barri, Moatasim Asaad

    2013-08-31T23:59:59.000Z

    have evaluated the impact of exposed anchor items on the IRT equating process using Monte Carlo investigations (Jurich, DeMars, & Goodman, 2012; Jurich, Goodman, & Becker, 2010). However, studies of item exposure up to this date 3 have not placed... condition that included examinees with a low level of ability or the condition with the organized item theft group. Few studies have investigated the impact of exposed anchor items on the IRT equating process using Monte Carlo investigations. Jurich, De...

  3. Polar Maps at the William C. Wonders Map Collection, University of Alberta Display items -PLC June 2008

    E-Print Network [OSTI]

    MacMillan, Andrew

    Polar Maps at the William C. Wonders Map Collection, University of Alberta Display items - PLC June, University of Alberta Display items - PLC June 2008 C:\\Documents and Settings items - PLC June 2008 C:\\Documents and Settings\\mclarke\\Desktop\\PolarLibraries.doc10/3/2008 3 7 Title

  4. Microsoft PowerPoint - 5.3 Item 01 Top Kill Operation Status...

    Broader source: Energy.gov (indexed) [DOE]

    5.3 Item 01 Top Kill Operation Status 09 June 1400.pptx More Documents & Publications Microsoft PowerPoint - Enterprise Top Hat Phases - 07-04-2010.pptx Microsoft PowerPoint -...

  5. Guideline for the seismic technical evaluation of replacement items for nuclear power plants

    SciTech Connect (OSTI)

    Harris, S.P.; Cushing, R.W. (EQE International, San Francisco, CA (United States)); Johnson, H.W. (Programmatic Solutions, Smithtown, NY (United States)); Abeles, J.M. (System 1, Inc., Potomac, MD (United States))

    1993-02-01T23:59:59.000Z

    Seismic qualification for equipment originally installed in nuclear power plants was typically performed by the original equipment suppliers or manufactures (OES/OEM). Many of the OES/OEM no longer maintain quality assurance programs with adequate controls for supplying nuclear equipment. Utilities themselves must provide reasonable assurance in the continued seismic adequacy of such replacement items. This guideline provides practical, cost-effective techniques which can be used to provide reasonable assurance that replacement items will meet seismic performance requirements necessary to maintain the seismic design basis of commercial nuclear power plants. It also provides a method for determining when a seismic technical evaluation of replacement items (STERI) is required as part of the procurement process for spare and replacement items. Guidance on supplier program requirements necessary to maintain continued seismic adequacy and on documentation of maintaining required seismic adequacy is also included.

  6. SIGNIFICANT ITEMS (Sis) FY 2010 House Appropriations Committee Report 111-220

    E-Print Network [OSTI]

    Items Adult Acute Leukemia - The Committee is encouraged by ongoing research on adult acute leukemia on the epigenetic regulation of gene expression that may contribute to progression and survival in acute leukemia. Recent studies show that there may be a distinct type of acute leukemia associated with a profound

  7. FY 2015 OFFICE OF BUDGET & FINANCE STRATEGIC PLAN Strategic Plan Items & Projects

    E-Print Network [OSTI]

    O'Toole, Alice J.

    .2.4. Implement Activity Guide Functionality in SIS 3.3. Improve Processes and Systems 3.3.1. Deliver the ProjectsFY 2015 OFFICE OF BUDGET & FINANCE STRATEGIC PLAN Strategic Plan Items & Projects 1.0. OPERATIONAL Policies and SAPs 1.1.2. Expand Utilization and Effectiveness of askYODA 1.1.3. Implement Continuous

  8. Bill of materials Table 1 lists significant items purchased in the construction of the prosthesis testbed.

    E-Print Network [OSTI]

    Collins, Steven H.

    Bill of materials Table 1 lists significant items purchased in the construction of the prosthesis Marine Universal prosthesis adapter (titanium) 1 FND-227014 Ohio Willow Wood Series springs purchased in the construction of the prosthesis testbed. Stock materials (e.g. aluminum bars, steel shafts

  9. General Terms & Conditions -Purchase Order Commercial Items & Services Under $100,000 (September 2014)

    E-Print Network [OSTI]

    , or items: (1) Shall be listed by a nationally recognized testing laboratory (NRTL) or(2) Shall be field evaluated and labeled by a NRTL at the Seller's expense. The NRTL's evaluation label must appear on the equipment, and the Seller shall provide the NRTL's evaluation report with the equipment. 6. COMPLIANCE

  10. FPGA Acceleration for the Frequent Item Problem Jens Teubner Rene Mueller Gustavo Alonso

    E-Print Network [OSTI]

    Teubner, Jens

    associated with modern CPU architectures are well known: high power consumption, heat dissipation, network data paths (network-CPU, disk-CPU) to reduce the load and amount of data that hits the CPU [4]. What a basic data mining operation, the calculation of frequent items in a data collection, and show how it can

  11. Where can I recycle it year-round? Item Local Recycling Locations

    E-Print Network [OSTI]

    Escher, Christine

    Where can I recycle it year-round? Item Local Recycling Locations Styrofoam First Alternative Co-op Recycling Center, 1007 SE 3rd St., 541-753-3115 (small fee) Packing Peanuts OSU Surplus, 644 SW 13 th St., 541-737-7347 Commercial shipping stores Film Plastics First Alternative Co-op Recycling Center, 1007

  12. Meyers DR-1 GSA Data Repository Item for: "Resolving Milankovitchian Controversies

    E-Print Network [OSTI]

    Meyers, Stephen R.

    Meyers DR-1 GSA Data Repository Item for: "Resolving Milankovitchian Controversies: The Triassic Latemar Limestone and the Eocene Green River Formation" Stephen R. Meyers Department of Geological" (Meyers, 2008). Topics addressed here include: (1) an introduction to the ASM methodology, (2) specific

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home | Beamlines

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home | Beamlines

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home | BeamlinesEquipment

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home | BeamlinesEquipment

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home |

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home |Porous

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home |Porous3 Probing

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home |Porous3

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home |Porous3Uncovering

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD Home

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD HomeFunctionalized

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD HomeFunctionalized3

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMD

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMDComputational Design of a

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMDComputational Design of

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMDComputational Design

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMDComputational

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMDComputationalThe Influence

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMDComputationalThe

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew UserCAMDComputationalTheChemically

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 Carbon Nanotube Porins Mimic

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated CodesTransparencyDOE Project Taps HPCNew4 Carbon Nanotube Porins

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout HPMC OMS8,

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout HPMC OMS8,12,

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout HPMC

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout HPMC17, 2014

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout HPMC17,

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout HPMC17,6,

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout HPMC17,6,27,

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7, 2013 Time:

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7, 2013

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7, 2013, 2013

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7, 2013,

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7, 2013,15,

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7, 2013,15,2,

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7,

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7,December 10,

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew VisibleToolAboutAbout7,December

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am Speaker: Dr.

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am Speaker:

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am Speaker:1,

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am Speaker:1,8,

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4, 2014 Time:

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4, 2014

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5, 2014

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5, 201415,

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3, 2014

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3, 20140,

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3,

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3,, 2014

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3,, 20147,

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3,,

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3,,1, 2014

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3,,1,

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3,,1,6,

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00 am4,5,3,,1,6,3,

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:00

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 2014 Time:

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 2014 Time:4,

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 2014 Time:4,1,

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 2014

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 20144, 2014

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 20144, 201417,

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 20144, 201417,

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 20144, 201417,

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 20144,

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007, 20144,LIBRA

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007,

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time: 11:007,Scheduling

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1 Specifications

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1 Specifications0.5

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITAN X Specifications

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITAN X

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITAN XThree Foundry

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITAN XThree

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITAN XThreeMolecular

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITAN

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITANArron Phillips

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITANArron

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITANArronSmart

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014 Time:1TITANArronSmartFoundry

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014Weber-Bargioni Shares Love of

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014Weber-Bargioni Shares Love

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014Weber-Bargioni Shares

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014Weber-Bargioni

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014Weber-BargioniFoundry

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4, 2014Weber-BargioniFoundryRachel

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ of Smart Windows

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ of Smart

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ of SmartWelcome

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ of

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ ofIn Water as In

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ ofIn Water as

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ ofIn Water as2013

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ ofIn Water

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ ofIn WaterFoundry

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ ofIn

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ ofInResearchers

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQ

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQHolistic Cell

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQHolistic CellAn

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQHolistic

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQHolisticThree

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the IQHolisticThreeJeff

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising the

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGood Vibrations:

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGood Vibrations:In

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGood

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGoodBright Future for

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGoodBright Future

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGoodBright FutureA

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGoodBright

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGoodBrightDiscovery

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising theGoodBrightDiscovery4

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry Volunteers

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4 Weber-Bargioni

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4Organic

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4OrganicA New

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4OrganicA

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4 Foundry4OrganicAXiang

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4Characterizing Hot

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4Characterizing

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3 Raising4CharacterizingIndustrial

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water Interface From the

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water Interface From

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water Interface FromFall

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water Interface

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water InterfaceFoundry

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water InterfaceFoundryOn the

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water InterfaceFoundryOn

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/Water

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/WaterDispelling a

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/WaterDispelling aNew Insights

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/WaterDispelling aNew

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/WaterDispelling aNewProbing

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/WaterDispelling

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011RNew4,3Oil/WaterDispellingCombinatorial

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorod formation with

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorod formation withDefining

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorod formation

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorod formationA Comprehensive

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorod formationA

  11. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorod formationAEngineering

  12. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorod

  13. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't Matter:

  14. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't Matter:1.

  15. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't Matter:1.2.

  16. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't Matter:1.2.3.

  17. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't

  18. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5. Complete

  19. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5. Complete6.

  20. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.

  1. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8. Go to

  2. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8. Go to9.

  3. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8. Go to9.0.

  4. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8. Go

  5. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8. Go2.

  6. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8. Go2.3.

  7. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8. Go2.3.4.

  8. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8.

  9. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8.6.

  10. News Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2 Revealing nanorodSize Doesn't5.8.6.7.

  11. Seminar Item

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz is TakingDepartment ofDepartment ofDepartment0, 2014

  12. A New Item Response Theory Model for Open-Ended Online Homework with Multiple Allowed Attempts

    E-Print Network [OSTI]

    Gönülate?, Emre

    2015-01-01T23:59:59.000Z

    Item Response Theory (IRT) was originally developed in traditional exam settings, and it has been shown that the model does not readily transfer to formative assessment in the form of online homework. We investigate if this is mostly due to learner traits that do not become apparent in exam settings, namely random guessing due to lack of diligence or dedication, and copying work from other students or resources. Both of these traits mask the true ability of the learner, which is the only trait considered in most mainstream unidimensional IRT models. We find that indeed the introduction of these traits allows to better assess the true ability of the learners, as well as to better gauge the quality of assessment items. Correspondence of the model traits to self-reported behavior is investigated and confirmed. We find that of these two traits, copying answers has a larger influence on initial homework attempts than random guessing.

  13. An Integrated RFID and Barcode Tagged Item Inventory System for Deployment at New Brunswick Laboratory

    SciTech Connect (OSTI)

    Younkin, James R [ORNL; Kuhn, Michael J [ORNL; Gradle, Colleen [New Brunswick Laboratory, Argonne, IL; Preston, Lynne [U.S. Department of Energy, Office of Health, Safety and Security; Thomas, Brigham B. [ORNL; Laymance, Leesa K [ORNL; Kuziel, Ron [DOE SC - Chicago Office

    2012-01-01T23:59:59.000Z

    New Brunswick Laboratory (NBL) has a numerous inventory containing thousands of plutonium and uranium certified reference materials. The current manual inventory process is well established but is a lengthy process which requires significant oversight and double checking to ensure correctness. Oak Ridge National Laboratory has worked with NBL to develop and deploy a new inventory system which utilizes handheld computers with barcode scanners and radio frequency identification (RFID) readers termed the Tagged Item Inventory System (TIIS). Certified reference materials are identified by labels which incorporate RFID tags and barcodes. The label printing process and RFID tag association process are integrated into the main desktop software application. Software on the handheld computers syncs with software on designated desktop machines and the NBL inventory database to provide a seamless inventory process. This process includes: 1) identifying items to be inventoried, 2) downloading the current inventory information to the handheld computer, 3) using the handheld to read item and location labels, and 4) syncing the handheld computer with a designated desktop machine to analyze the results, print reports, etc. The security of this inventory software has been a major concern. Designated roles linked to authenticated logins are used to control access to the desktop software while password protection and badge verification are used to control access to the handheld computers. The overall system design and deployment at NBL will be presented. The performance of the system will also be discussed with respect to a small piece of the overall inventory. Future work includes performing a full inventory at NBL with the Tagged Item Inventory System and comparing performance, cost, and radiation exposures to the current manual inventory process.

  14. Reyes et al., p. 1 DATA REPOSITORY ITEM FOR: Expansion of alpine glaciers in Pacific North

    E-Print Network [OSTI]

    Barclay, David J.

    Reyes et al., p. 1 DATA REPOSITORY ITEM FOR: Expansion of alpine glaciers in Pacific North America in the first millennium A.D. Site Latitude Longitude (ºN) (ºW) Lillooet Glacier 50º45' 123º46' Bridge Glacier 50º49' 123º29' Miserable Glacier 51°04' 123°52' Tiedemann Glacier 51º21' 124º56' Frank Mackie Glacier

  15. Determining importance and grading of items and activities for the Yucca Mountain Project

    SciTech Connect (OSTI)

    DeKlever, R. [Raytheon Services Nevada, Las Vegas, NV (United States); Verna, B. [Dept. of Energy, Las Vegas, NV (United States)

    1993-12-31T23:59:59.000Z

    Raytheon Services Nevada (RSN), in support of the Department of Energy`s (DOE) Yucca Mountain Project, has been responsible for the Title 2 designs of the initial structures, systems, and components for the Exploratory Studies Facility (ESF), and the creation of the design output documents for the Surface-Based Testing (SBT) programs. The ESF and SBT programs are major scientific contributors to the overall site characterization program which will determine the suitability of Yucca Mountain to contain a proposed High Level Nuclear Waste (HLNW) repository. Accurate, traceable and objective characterization and testing documentation that is germane to the protection of public health and safety, and the environment, and that satisfies all the requirements of 10 CFR Part 60(1), must be established, evaluated and accepted. To assure that these requirements are satisfied, specific design functions and products, including items and activities depicted within respective design output documents, are subjected to the requirements of an NRC and DOE-approved Quality Assurance (QA) program. An evaluation (classification) is applied to these items and activities to determine their importance to radiological safety (ITS) and waste isolation (ITWI). Subsequently, QA program controls are selected (grading) for the items and activities. RSN has developed a DOE-approved classification process that is based on probabilistic risk assessment (PRA) techniques and that uses accident/impact scenarios. Results from respective performance assessment and test interference evaluations are also integrated into the classification analyses for various items. The methodology and results of the RSN classification and grading processes, presented herein, relative to ESF and SBT design products, demonstrates a solid, defensible methodological basis for classification and grading.

  16. Bi-factor Multidimensional Item Response Theory Modeling for Subscores Estimation, Reliability, and Classification

    E-Print Network [OSTI]

    Md Desa, Zairul Nor Deana

    2012-08-31T23:59:59.000Z

    , test linking, equating and scaling (Kolen & Brennan, 2004), item banking, computer-based testing and computerized adaptive testing (Dras- gow & Olson-Buchanan, 1999; Mills et al., 2002; Parshall et al., 2001; van der Linden & Glas, 2000; Wainer & Dorans... decisions at student and school-level decisions (Sinharay et al., 2007; Haberman, 2008; Haberman et al., 2009; Puhan et al., 2010). The application of Bayesian approach has shown improved reliability of the overall score or subscores estimates (Kolen & Tong...

  17. Identification of items and activities important to waste form acceptance by Westinghouse GoCo sites

    SciTech Connect (OSTI)

    Plodinec, M.J.; Marra, S.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Dempster, J. [West Valley Demonstration Project, NY (United States); Randklev, E.H. [Hanford Waste Vitrification Plant (United States)

    1993-10-12T23:59:59.000Z

    The Department of Energy has established specifications (Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms, or WAPS) for canistered waste forms produced at Hanford, Savannah River, and West Valley. Compliance with these specifications requires that each waste form producer identify the items and activities which must be controlled to ensure compliance. As part of quality assurance oversight activities, reviewers have tried to compare the methodologies used by the waste form producers to identify items and activities important to waste form acceptance. Due to the lack of a documented comparison of the methods used by each producer, confusion has resulted over whether the methods being used are consistent. This confusion has been exacerbated by different systems of nomenclature used by each producer, and the different stages of development of each project. The waste form producers have met three times in the last two years, most recently on June 28, 1993, to exchange information on each producer`s program. These meetings have been sponsored by the Westinghouse GoCo HLW Vitrification Committee. This document is the result of this most recent exchange. It fills the need for a documented comparison of the methodologies used to identify items and activities important to waste form acceptance. In this document, the methodology being used by each waste form producer is summarized, and the degree of consistency among the waste form producers is determined.

  18. Mokken scale analysis of mental health and wellbeing questionnaire item responses: a nonparametric IRT method in empirical research for applied health researchers

    E-Print Network [OSTI]

    Stochl, Jan; Jones, Peter B; Croudace, Tim J

    2012-06-11T23:59:59.000Z

    potentially useful items are rejected because of the shape of their item response functions, with the result that other aspects of scale performance are likely to be compromised to some extent. For ex- ample, reliability estimated from the conforming items may... . No violations of the invariant item ordering requirement are present. We can therefore consider the results of this first ex- emplar Mokken scaling analysis as supportive of a GHQ-12 scale which, within each subscale, satisfies IIO and therefore both subscales...

  19. 2007 IEEE International Conference on Signal Processing and Communications (ICSPC 2007), 24-27 November 2007, Dubai, United Arab Emirates UNSUPERVISED ELIMINATION OF MEDIA ITEMS IN

    E-Print Network [OSTI]

    Gabbouj, Moncef

    -27 November 2007, Dubai, United Arab Emirates UNSUPERVISED ELIMINATION OF MEDIA ITEMS IN CONTENT-BASED IMAGE

  20. What to do with Your Waste All major types of waste are listed below. Click on the item that you want to

    E-Print Network [OSTI]

    Evans, Paul

    of the Environment Team. B Batteries Books Bulbs Bulky Items C Cans Cardboard Clinical Waste Clothing Paint Paper Plastics Printer/Toner Cartridges R Radioactive Waste S Sharp Items T Toner Cartridges WWhat to do with Your Waste All major types of waste are listed below. Click on the item that you