Sample records for wide-angle x-ray scattering

  1. Wide angle x-ray scattering of proteins : effect of beam exposure on protein integrity.

    SciTech Connect (OSTI)

    Fischetti, R. F.; Rodi, D. J.; Mirza, A.; Makowski, L.; Illinois Inst. of Tech.

    2003-01-01T23:59:59.000Z

    Wide-angle X-ray scattering patterns from proteins in solution contain information relevant to the determination of protein fold. At relevant scattering angles, however, these data are weak, and the degree to which they might be used to categorize the fold of a protein is unknown. Preliminary work has been performed at the BioCAT insertion-device beamline at the Advanced Photon Source which demonstrates that one can collect X-ray scattering data from proteins in solution to spacings of at least 2.2 {angstrom} (q = 2.8 {angstrom}-1). These data are sensitive to protein conformational states, and are in good agreement with the scattering predicted by the program CRYSOL using the known three-dimensional atomic coordinates of the protein. An important issue in the exploitation of this technique as a tool for structural genomics is the extent to which the high intensity of X-rays available at third-generation synchrotron sources chemically or structurally damage proteins. Various data-collection protocols have been investigated demonstrating conditions under which structural degradation of even sensitive proteins can be minimized, making this technique a viable tool for protein fold categorization, the study of protein folding, unfolding, protein-ligand interactions and domain movement.

  2. Accurate small and wide angle x-ray scattering profiles from atomic models of proteins and nucleic acids

    SciTech Connect (OSTI)

    Nguyen, Hung T. [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Pabit, Suzette A.; Meisburger, Steve P.; Pollack, Lois [School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853 (United States); Case, David A., E-mail: case@biomaps.rutgers.edu [BioMaPS Institute for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854 (United States); Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2014-12-14T23:59:59.000Z

    A new method is introduced to compute X-ray solution scattering profiles from atomic models of macromolecules. The three-dimensional version of the Reference Interaction Site Model (RISM) from liquid-state statistical mechanics is employed to compute the solvent distribution around the solute, including both water and ions. X-ray scattering profiles are computed from this distribution together with the solute geometry. We describe an efficient procedure for performing this calculation employing a Lebedev grid for the angular averaging. The intensity profiles (which involve no adjustable parameters) match experiment and molecular dynamics simulations up to wide angle for two proteins (lysozyme and myoglobin) in water, as well as the small-angle profiles for a dozen biomolecules taken from the BioIsis.net database. The RISM model is especially well-suited for studies of nucleic acids in salt solution. Use of fiber-diffraction models for the structure of duplex DNA in solution yields close agreement with the observed scattering profiles in both the small and wide angle scattering (SAXS and WAXS) regimes. In addition, computed profiles of anomalous SAXS signals (for Rb{sup +} and Sr{sup 2+}) emphasize the ionic contribution to scattering and are in reasonable agreement with experiment. In cases where an absolute calibration of the experimental data at q = 0 is available, one can extract a count of the excess number of waters and ions; computed values depend on the closure that is assumed in the solution of the Ornstein–Zernike equations, with results from the Kovalenko–Hirata closure being closest to experiment for the cases studied here.

  3. Wide Angle Compton Scattering

    E-Print Network [OSTI]

    Rainer Jakob

    2000-10-16T23:59:59.000Z

    We present the handbag contribution to Wide Angle Compton Scattering (WACS) at moderately large momentum transfer obtained with a proton distribution amplitude close to the asymptotic form. In comparison it is found to be significantly larger than results from the hard scattering (pQCD) approach.

  4. Ray tracing flux calculation for the small and wide angle x-ray scattering diffraction station at the SESAME synchrotron radiation facility

    SciTech Connect (OSTI)

    Salah, Wa'el [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan); Department of Physics, The Hashemite University, Zarqa 13115 (Jordan); Sanchez del Rio, M. [European Synchrotron Radiation Facility, Bp 220, 38043 Grenoble Cedex (France); Hoorani, H. [Synchrotron-light for Experimental Science and Application in the Middle East (SESAME), P.O. Box 7, Allan 19252 (Jordan)

    2009-09-15T23:59:59.000Z

    The calculation for the optics of the synchrotron radiation small and wide angle x-ray scattering beamline, currently under construction at SESAME is described. This beamline is based on a cylindrically bent germanium (111) single crystal with an asymmetric cut of 10.5 deg., followed by a 1.2 m long rhodium coated plane mirror bent into a cylindrical form. The focusing properties of bent asymmetrically cut crystals have not yet been studied in depth. The present paper is devoted to study of a particular application of a bent asymmetrically cut crystal using ray tracing simulations with the SHADOW code. These simulations show that photon fluxes of order of 1.09x10{sup 11} photons/s will be available at the experimental focus at 8.79 keV. The focused beam dimensions will be 2.2 mm horizontal full width at half maximum (FWHM) by 0.12 mm vertical (FWHM).

  5. Surface Area and Microporosity of Carbon Aerogels from Gas Adsorption and Small- and Wide-Angle X-ray Scattering Measurements

    E-Print Network [OSTI]

    David Fairén-jiménez; Francisco Carrasco-marín; David Djurado; Françoise Bley; Françoise Ehrburger-dolle; Carlos Moreno-castilla

    2005-01-01T23:59:59.000Z

    A carbon aerogel was obtained by carbonization of an organic aerogel prepared by sol-gel polymerization of resorcinol and formaldehyde in water. The carbon aerogel was then CO2 activated at 800 °C to increase its surface area and widen its microporosity. Evolution of these parameters was followed by gas adsorption and small- and wide-angle X-ray scattering (SAXS and WAXS, respectively) with contrast variation by using dry and wet (immersion in benzene and m-xylene) samples. For the original carbon aerogel, the surface area, SSAXS, obtained by SAXS, is larger than that obtained by gas adsorption (Sads). The values become nearly the same as the degree of activation of the carbon aerogel increases. This feature is due to the widening of the narrow microporosity in the carbon aerogel as the degree of activation is increased. In addition, WAXS results show that the short-range spatial correlations into the assemblies of hydrocarbon molecules confined inside the micropores are different from those existing in the liquid phase. 1.

  6. The XMM-Newton Wide Angle Survey (XWAS): the X-ray spectrum of type-1 AGN

    E-Print Network [OSTI]

    Mateos, S; Page, M J; Watson, M G; Corral, A; Tedds, J A; Ebrero, J; Krumpe, M; Schwope, A; Ceballos, M T

    2009-01-01T23:59:59.000Z

    We discuss the broad band X-ray properties of one of the largest samples of X-ray selected type-1 AGN to date (487 objects in total), drawn from the XMM-Newton Wide Angle Survey. The objects cover 2-10 keV luminosities from ~10^{42}-10^{45} erg s^{-1} and are detected up to redshift ~4. We constrain the overall properties of the broad band continuum, soft excess and X-ray absorption, along with their dependence on the X-ray luminosity and redshift and we discuss the implications for models of AGN emission. We constrained the mean spectral index of the broad band X-ray continuum to =1.96+-0.02 with intrinsic dispersion sigma=0.27_{-0.02}^{+0.01}. The continuum becomes harder at faint fluxes and at higher redshifts and luminosities. The dependence of Gamma with flux is likely due to undetected absorption rather than to spectral variation. We found a strong dependence of the detection efficiency of objects on the spectral shape which can have a strong impact on the measured mean continuum shapes of sources at di...

  7. HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations

    E-Print Network [OSTI]

    Nagle, John F.

    HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD translocation, were provided by wide-angle X-ray scattering (WAXS) and neutron scattering. CD spectroscopy for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899, United States d CHESS, Cornell

  8. Fluctuation X-Ray Scattering

    SciTech Connect (OSTI)

    Saldin, PI: D. K.; Co-I's: J. C. H. Spence and P. Fromme

    2013-01-25T23:59:59.000Z

    The work supported by the grant was aimed at developing novel methods of finding the structures of biomolecules using x-rays from novel sources such as the x-ray free electron laser and modern synchrotrons

  9. Wide angle Compton scattering on the proton: study of power suppressed corrections

    E-Print Network [OSTI]

    Kivel, N

    2015-01-01T23:59:59.000Z

    We study the wide angle Compton scattering process on a proton within the soft collinear factorization (SCET) framework. The main purpose of this work is to estimate the effect due to certain power suppressed corrections. We consider all possible kinematical power corrections and also include the subleading amplitudes describing the scattering with nucleon helicity flip. Under certain assumptions we present a leading-order factorization formula for these amplitudes which includes the hard- and soft-spectator contributions. We apply the formalism and perform a phenomenological analysis of the cross section and asymmetries in the wide angle Compton scattering on a proton. We assume that in the relevant kinematical region where $-t,-u>2.5$~GeV$^{2}$ the dominant contribution is provided by the soft-spectator mechanism. The hard coefficient functions of the corresponding SCET operators are taken in the leading-order approximation. The analysis of existing cross section data shows that the contribution of the heli...

  10. Small Angle X-Ray Scattering Detector

    DOE Patents [OSTI]

    Hessler, Jan P.

    2004-06-15T23:59:59.000Z

    A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

  11. Wide angle Compton scattering on the proton: study of power suppressed corrections

    E-Print Network [OSTI]

    N. Kivel; M. Vanderhaeghen

    2015-04-04T23:59:59.000Z

    We study the wide angle Compton scattering process on a proton within the soft collinear factorization (SCET) framework. The main purpose of this work is to estimate the effect due to certain power suppressed corrections. We consider all possible kinematical power corrections and also include the subleading amplitudes describing the scattering with nucleon helicity flip. Under certain assumptions we present a leading-order factorization formula for these amplitudes which includes the hard- and soft-spectator contributions. We apply the formalism and perform a phenomenological analysis of the cross section and asymmetries in the wide angle Compton scattering on a proton. We assume that in the relevant kinematical region where $-t,-u>2.5$~GeV$^{2}$ the dominant contribution is provided by the soft-spectator mechanism. The hard coefficient functions of the corresponding SCET operators are taken in the leading-order approximation. The analysis of existing cross section data shows that the contribution of the helicity flip amplitudes to this observable is quite small and comparable with other expected theoretical uncertainties. We also show predictions for double polarization observables for which experimental information exists.

  12. A sample cell to study hydrate formation with x-ray scattering

    SciTech Connect (OSTI)

    Conrad, Heiko; Lehmkuehler, Felix; Sternemann, Christian; Feroughi, Omid; Tolan, Metin [Fakultaet Physik/DELTA, Technische Universitaet Dortmund, Maria-Goeppert-Mayer-Str. 2, Dortmund D-44221 (Germany); Simonelli, Laura; Huotari, Simo [European Synchrotron Radiation Facility, Boite Postale 220, Grenoble Cedex 9 F-38043 (France)

    2009-02-15T23:59:59.000Z

    We present a new sample cell for measuring nonresonant inelastic x-ray scattering spectra of a tetrahydrofuran (THF)-water liquid mixture and THF hydrate. The hydrate is formed inside the cell after nucleation seeds have been offered by a special magnetic stirring mechanism. Hydrate formation was verified by wide angle x-ray scattering and nonresonant x-ray Raman scattering spectra at the oxygen K-edge. A broad range of scattering angles can be studied with this cell which is necessary for momentum transfer dependent inelastic x-ray scattering. This cell is ideal to examine other liquid hydrate formers or other liquid samples, which have to be mixed in situ during the measurements.

  13. Nonlinear X-ray Compton Scattering

    E-Print Network [OSTI]

    Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

    2015-01-01T23:59:59.000Z

    X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

  14. Small Angle X-ray Scattering (SAXS) Laboratory Learning Experiences

    E-Print Network [OSTI]

    Meagher, Mary

    .A. & Svergun D.I. (1987). Structure Analysis by Small-Angle X-Ray and Neutron Scattering. NY: Plenum PressSmall Angle X-ray Scattering (SAXS) Laboratory Learning Experiences o - Use of small angle X-ray scattering instrumentation o - Programs that you will use SAXS (BRUKER AXS) PRIMUS (Konarev, Volkov, Koch

  15. Ab initio studies of ultrafast x-ray scattering of the photodissociation of iodine

    SciTech Connect (OSTI)

    Debnarova, Andrea; Techert, Simone [Max Planck Institute for Biophysical Chemistry, 37077 Goettingen, Am Fassberg 11 (Germany); Schmatz, Stefan [Institut fuer Physikalische Chemie, Universitaet Goettingen, 37077 Goettingen, Tammannstr. 6 (Germany)

    2010-09-28T23:59:59.000Z

    We computationally examine various aspects of the reaction dynamics of the photodissociation and recombination of molecular iodine. We use our recently proposed formalism to calculate time-dependent x-ray scattering signal changes from first principles. Different aspects of the dynamics of this prototypical reaction are studied, such as coherent and noncoherent processes, features of structural relaxation that are periodic in time versus nonperiodic dissociative processes, as well as small electron density changes caused by electronic excitation, all with respect to x-ray scattering. We can demonstrate that wide-angle x-ray scattering offers a possibility to study the changes in electron densities in nonperiodic systems, which render it a suitable technique for the investigation of chemical reactions from a structural dynamics point of view.

  16. Small Angle X-ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our Instagram Secretary Moniz9Morgan ManagingW.tepidumAngle X-ray Scattering

  17. Neutron and X-ray Scattering Study of Magnetic Manganites

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Neutron and X-ray Scattering Study of Magnetic Manganites Graeme Eoin Johnstone A Thesis submitted are performed using a variety of neutron scattering and x-ray scattering techniques. The electronic ground for analysing the results of the polarised neutron scattering experiment. There are a large number of people who

  18. Fourteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Fourteenth National School on Neutron and X-ray Scattering August 12 - 25, 2012 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

  19. Tenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Tenth National School on Neutron and X-ray Scattering September 24 - October 11, 2008 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  20. National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    15th National School on Neutron and X-ray Scattering August 10 - 24, 2013 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

  1. Thirteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Thirteenth National School on Neutron and X-ray Scattering June 11 ­ June 25, 2011 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  2. Sixteenth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Sixteenth National School on Neutron and X-ray Scattering June 14-28, 2014 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major's Neutron Scattering Science Division. Scientific Directors: Suzanne G.E. te Velthuis, Esen Ercan Alp

  3. Twelfth National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    Twelfth National School on Neutron and X-ray Scattering June 12 ­ June 26, 2010 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  4. National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering May 30 ­ June 13, 2009 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

  5. Scattering of x rays from low-Z materials

    SciTech Connect (OSTI)

    Gaines, J.L.; Kissel, L.D.; Catron, H.C.; Hansen, R.A.

    1980-08-01T23:59:59.000Z

    X rays incident on thin beryllium, boron, carbon, and other low-Z materials undergo both elastic and inelastic scattering as well as diffraction from the crystalline or crystalline-like structure of the material. Unpolarized monoenergetic x rays in the 1.5 to 8.0-keV energy range were used to determine the absolute scattering efficiency of thin beryllium, carbon, and boron foils. These measurements are compared to calculated scattering efficiencies predicted by single-atom theories. In addition, the relative scattering efficiency versus x-ray energy was measured for other low-Z foils using unpolarized bremsstrahlung x rays. In all the low-Z foils examined, we observed Bragg-like x-ray diffraction due to the ordered structure of the materials.

  6. Multi-Scaled Microstructures in Natural Rubber Characterized by Synchrotron X-ray Scattering and Optical Microscopy

    SciTech Connect (OSTI)

    Toki , S.; Hsiao, B; Amnuaypornsri , S; Sakdapipanich, J; Tanaka, Y

    2008-01-01T23:59:59.000Z

    Multi-scaled microstructures induced by natural impurities (i.e., proteins, phospholipids, carbohydrates) in natural rubber (NR) were investigated by synchrotron small-angle X-ray scattering (SAXS), wide-angle X-ray diffraction (WAXD), and optical microscopy using several kinds of untreated and chemically treated un-vulcanized samples. These microstructures include large aggregates (size less than 50 m), well-defined crystals (size less than a few 10 m), and micelles (size much less than 10 m). In un-vulcanized NR samples, even though the concentrations of natural impurities are relatively low, the dispersion of these microstructures significantly affects the mechanical properties

  7. Imaging Quantum States with X-ray Compton Scattering | Stanford...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging Quantum States with X-ray Compton Scattering Wednesday, April 8, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: Yoshiharu Sakurai (Japan Synchrotron...

  8. Magnetism studies using resonant, coherent, x-ray scattering...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Magnetism studies using resonant, coherent, x-ray scattering Monday, September 10, 2012 - 10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron...

  9. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B. (Anthony B.); Rohde, C. A. (Charles A.); Tellier, L. L. (Larry L.); Ho, Cheng,

    2002-01-01T23:59:59.000Z

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  10. X-ray server : an outline resource for simulations of x-ray diffraction and scattering.

    SciTech Connect (OSTI)

    Stepanov, S.; Biosciences Division

    2004-01-01T23:59:59.000Z

    X-ray Server is a public project operational at the APS since 1997 with the goals to explore novel network technologies for providing wide scientific community with access to personal research results, establishing scientific collaborations, and refining scientific software. The Server provides Web-based access to a number of programs developed by the author in the field of X-ray diffraction and scattering. The software code operates directly on the Server available for use without downloading. Currently seven programs are accessible that have been used more than 85,000 times. This report discusses the Server philosophy, provides an overview of the physical models and algorithms beneath the codes and demonstrates some applications of the programs. It is shown with examples and statistics how the Server goals are achieved. The plans for further X-ray Server development are outlined.

  11. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, C.M.

    1995-05-23T23:59:59.000Z

    Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

  12. High performance x-ray anti-scatter grid

    DOE Patents [OSTI]

    Logan, Clinton M. (Pleasanton, CA)

    1995-01-01T23:59:59.000Z

    An x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury.

  13. Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration

    SciTech Connect (OSTI)

    Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

    2012-05-04T23:59:59.000Z

    In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

  14. Crystal defect studies using x-ray diffuse scattering

    SciTech Connect (OSTI)

    Larson, B.C.

    1980-01-01T23:59:59.000Z

    Microscopic lattice defects such as point (single atom) defects, dislocation loops, and solute precipitates are characterized by local electronic density changes at the defect sites and by distortions of the lattice structure surrounding the defects. The effect of these interruptions of the crystal lattice on the scattering of x-rays is considered in this paper, and examples are presented of the use of the diffuse scattering to study the defects. X-ray studies of self-interstitials in electron irradiated aluminum and copper are discussed in terms of the identification of the interstitial configuration. Methods for detecting the onset of point defect aggregation into dislocation loops are considered and new techniques for the determination of separate size distributions for vacancy loops and interstitial loops are presented. Direct comparisons of dislocation loop measurements by x-rays with existing electron microscopy studies of dislocation loops indicate agreement for larger size loops, but x-ray measurements report higher concentrations in the smaller loop range. Methods for distinguishing between loops and three-dimensional precipitates are discussed and possibilities for detailed studies considered. A comparison of dislocation loop size distributions obtained from integral diffuse scattering measurements with those from TEM show a discrepancy in the smaller sizes similar to that described above.

  15. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    In Situ X-Ray Scattering Helps Optimize Printed Solar Cells In Situ X-Ray Scattering Helps Optimize Printed Solar Cells Print Wednesday, 25 February 2015 00:00 Plastic solar cells...

  16. National School on Neutron and X-ray Scattering August 10-24, 2013

    E-Print Network [OSTI]

    Kemner, Ken

    National School on Neutron and X-ray Scattering August 10-24, 2013 Argonne National Laboratory National Laboratory 3:15 ­ 3:30 Break #12;National School on Neutron and X-ray Scattering August 10 Dinner Week 1 wrap-up Picnic #12;National School on Neutron and X-ray Scattering August 10-24, 2012 Oak

  17. National School on Neutron and X-ray Scattering June 14-28, 2014

    E-Print Network [OSTI]

    Kemner, Ken

    National School on Neutron and X-ray Scattering June 14-28, 2014 Argonne National Laboratory:00 Dinner Dinner Dinner Dinner Week 1 wrap-up Picnic #12;National School on Neutron and X-ray Scattering Restaurant 9:45 - 10:45 Lecture Interaction of X-rays and Neutrons with Matter Roger Pynn University

  18. The 3D-architecture of individual free silver nanoparticles captured by X-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Barke, Ingo; Hartmann, Hannes; Rupp, Daniela; Flückiger, Leonie; Sauppe, Mario; Adolph, Marcus; Schorb, Sebastian; Bostedt, Christoph; Treusch, Rolf; Peltz, Christian; et al

    2015-02-04T23:59:59.000Z

    The diversity of nanoparticle shapes generated by condensation from gaseous matter reflects the fundamental competition between thermodynamic equilibration and the persistence of metastable configurations during growth. In the kinetically limited regime, intermediate geometries that are favoured only in early formation stages can be imprinted in the finally observed ensemble of differently structured specimens. Here we demonstrate that single-shot wide-angle scattering of femtosecond soft X-ray free-electron laser pulses allows three-dimensional characterization of the resulting metastable nanoparticle structures. For individual free ?silver particles, which can be considered frozen in space for the duration of photon exposure, both shape and orientation are uncoveredmore »from measured scattering images. We identify regular shapes, including species with fivefold symmetry and surprisingly large aspect ratio up to particle radii of the order of 100 nm. Our approach includes scattering effects beyond Born’s approximation and is remarkably efficient—opening up new routes in ultrafast nanophysics and free-electron laser science« less

  19. IN SITU SURFACE X-RAY SCATTERING STUDIES OF ELECTROSORPTION

    SciTech Connect (OSTI)

    WANG,J.X.; ADZIC,R.R.; OCKO,B.M.

    1998-07-01T23:59:59.000Z

    A short review of the application of surface x-ray scattering techniques to the electrode/electrolyte interfaces is presented. Recent results on metal, halide, and metal-halide adlayers with three specific systems: Bi on Au(100) and Au(110); Br on Au(100) and Ag(100); and the coadsorption of Tl with Br or I on Au(111), are given as an illustration. Factors affecting ordering of pure metal and halide adlayers and the metal-halide surface compounds are discussed in some detail.

  20. Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems

    E-Print Network [OSTI]

    Boothroyd, Andrew

    Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems Russell A. Ewings 2008 #12;Abstract Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems Russell-ray scattering and neutron scattering experiments on several strongly correlated transition metal oxides

  1. Imaging Nonequilibrium Atomic Vibrations with X-ray Diffuse Scattering

    SciTech Connect (OSTI)

    Trigo, M.; Chen, J.; Vishwanath, V.H.; /SLAC; Sheu, Y.M.; /Michigan U.; Graber, T.; Henning, R.; /U. Chicago; Reis, D; /SLAC /Stanford U., Appl. Phys. Dept.; ,

    2011-03-03T23:59:59.000Z

    We use picosecond x-ray diffuse scattering to image the nonequilibrium vibrations of the lattice following ultrafast laser excitation. We present images of nonequilibrium phonons in InP and InSb throughout the Brillouin-zone which remain out of equilibrium up to nanoseconds. The results are analyzed using a Born model that helps identify the phonon branches contributing to the observed features in the time-resolved diffuse scattering. In InP this analysis shows a delayed increase in the transverse acoustic (TA) phonon population along high-symmetry directions accompanied by a decrease in the longitudinal acoustic (LA) phonons. In InSb the increase in TA phonon population is less directional.

  2. Air-core grid for scattered x-ray rejection

    DOE Patents [OSTI]

    Logan, Clinton M. (Pleasanton, CA); Lane, Stephen M. (Oakland, CA)

    1995-01-01T23:59:59.000Z

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 .mu.m pore size, 80% open area, and 4 mm thickness.

  3. Air-core grid for scattered x-ray rejection

    DOE Patents [OSTI]

    Logan, C.M.; Lane, S.M.

    1995-10-03T23:59:59.000Z

    The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

  4. Large-scale Nanostructure Simulations from X-ray Scattering Data On Graphics Processor Clusters

    E-Print Network [OSTI]

    Sarje, Abhinav

    2012-01-01T23:59:59.000Z

    X-ray Scattering Data On Graphics Processor Clusters Abhinavaccelerators. General purpose graphics processors o?er ?nethe form factors on graphics processors. Form Factor Kernel

  5. OBSERBATION OF HIGH INTENSITY X-RAYS IN INVERSE COMPTON SCATTERING EXPERIMENT

    E-Print Network [OSTI]

    OBSERBATION OF HIGH INTENSITY X-RAYS IN INVERSE COMPTON SCATTERING EXPERIMENT S. Kashiwagi, M the first results of high intensity x-ray generation using Inverse Laser Compton scattering. This experiment Synchrotron Source (LSS). It is based on inverse Compton scattering via interaction between pulsed high power

  6. Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data

    E-Print Network [OSTI]

    Nagle, John F.

    Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data electron and neutron scattering density profiles. A key result of the analysis is the molecular surface

  7. Micellar structure from comparison of X-ray and neutron small-angle scattering

    E-Print Network [OSTI]

    Boyer, Edmond

    249 Micellar structure from comparison of X-ray and neutron small-angle scattering T. Zemb and P according to the method developed by Hayter and Penfold. Both X-ray and neutron scattering signals, or by a combination of both. It has been shown recent- ly [1, 2] that it is possible in neutron scattering studies

  8. X-ray and Neutron Scattering Studies of Magnetic Domain Dynamics and Spin Structures /

    E-Print Network [OSTI]

    Chen, San-Wen

    2014-01-01T23:59:59.000Z

    Stanley. X-ray and neutron scattering from rough surfaces.1988. [3] R. Pynn. Neutron scattering by rough surfaces at39] V. F. Sears. Neutron scattering lengths and cross

  9. X-ray crystal structure and small-angle X-ray scattering of sheep liver sorbitol dehydrogenase

    SciTech Connect (OSTI)

    Yennawar, Hemant [Pennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802 (United States); Møller, Magda [Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); University of Copenhagen, DK-2100 Copenhagen (Denmark); Gillilan, Richard [Cornell High Energy Synchrotron Source, Ithaca, NY 14853 (United States); Yennawar, Neela, E-mail: nhy1@psu.edu [Pennsylvania State University, 8 Althouse Laboratory, University Park, PA 16802 (United States)

    2011-05-01T23:59:59.000Z

    The X-ray crystal structure and a small-angle X-ray scattering solution structure of sheep liver sorbitol dehydrogenase have been determined. The details of the interactions that enable the tetramer scaffold to be the functional biological unit have been analyzed. The X-ray crystal structure of sheep liver sorbitol dehydrogenase (slSDH) has been determined using the crystal structure of human sorbitol dehydrogenase (hSDH) as a molecular-replacement model. slSDH crystallized in space group I222 with one monomer in the asymmetric unit. A conserved tetramer that superposes well with that seen in hSDH (despite belonging to a different space group) and obeying the 222 crystal symmetry is seen in slSDH. An acetate molecule is bound in the active site, coordinating to the active-site zinc through a water molecule. Glycerol, a substrate of slSDH, also occupies the substrate-binding pocket together with the acetate designed by nature to fit large polyol substrates. The substrate-binding pocket is seen to be in close proximity to the tetramer interface, which explains the need for the structural integrity of the tetramer for enzyme activity. Small-angle X-ray scattering was also used to identify the quaternary structure of the tetramer of slSDH in solution.

  10. Nuclear resonant inelastic X-ray scattering and synchrotron Mossbauer spectroscopy

    E-Print Network [OSTI]

    Lin, Jung-Fu "Afu"

    Chapter 19 Nuclear resonant inelastic X-ray scattering and synchrotron Mo¨ssbauer spectroscopy with nuclear resonant inelastic X-ray scattering and synchrotron Mo¨ssbauer spectroscopy for studying magnetic to the Planck radiation function. Synchrotron Mo¨ssbauer spectra and partial phonon density of states (PDOS

  11. Accepted Manuscript Using Small Angle Solution Scattering Data in Xplor-NIH Structure Calcula-

    E-Print Network [OSTI]

    Clore, G. Marius

    and wide angle X-ray and small angle neutron scattering for biomolecular structure calculation using and wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS) data, on the otherAccepted Manuscript Using Small Angle Solution Scattering Data in Xplor-NIH Structure Calcula

  12. accurate x-ray scattering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is ove... Corrales, Lia 2012-01-01 20 Dust scattering X-ray expanding rings around gamma-ray bursts Astrophysics (arXiv) Summary: Scattering by dust grains in our Galaxy can...

  13. The Dust Scattering Model Can Not Explain The Shallow X-ray Decay in GRB Afterglows

    E-Print Network [OSTI]

    Rong-Feng Shen; Richard Willingale; Pawan Kumar; Paul T. O'Brien; Phil A. Evans

    2009-03-02T23:59:59.000Z

    A dust scattering model was recently proposed to explain the shallow X-ray decay (plateau) observed prevalently in Gamma-Ray Burst (GRB) early afterglows. In this model the plateau is the scattered prompt X-ray emission by the dust located close (about 10 to a few hundred pc) to the GRB site. In this paper we carefully investigate the model and find that the scattered emission undergoes strong spectral softening with time, due to the model's essential ingredient that harder X-ray photons have smaller scattering angle thus arrive earlier, while softer photons suffer larger angle scattering and arrive later. The model predicts a significant change, i.e., $\\Delta \\b \\sim 2 - 3$, in the X-ray spectral index from the beginning of the plateau toward the end of the plateau, while the observed data shows close to zero softening during the plateau and the plateau-to-normal transition phase. The scattering model predicts a big difference between the harder X-ray light curve and the softer X-ray light curve, i.e., the plateau in harder X-rays ends much earlier than in softer X-rays. This feature is not seen in the data. The large scattering optical depths of the dust required by the model imply strong extinction in optical, $A_V \\gtrsim $ 10, which contradicts current findings of $A_V= 0.1 - 0.7$ from optical and X-ray afterglow observations. We conclude that the dust scattering model can not explain the X-ray plateaus.

  14. Acquisition of an In-House X-ray Scattering Facility for Nanostructure Characterization and Student Training

    SciTech Connect (OSTI)

    Schuller, Ivan K [UC San Diego

    2013-08-02T23:59:59.000Z

    This equipment grant was specifically dedicated to the development of a "state of the art" x-ray scattering facility...

  15. Resonant Soft X-Ray Scattering - Combining Structural with Spectroscop...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as well as important L-edges of the 3d transition metals important in magnetic and oxide systems. Measurements of soft x-ray absorption spectra are inherently surface sensitive,...

  16. Staff at sector 30, inelastic x-ray scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector 30 Staff Advanced Photon Source A U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences national synchrotron x-ray research facility Search Button...

  17. 16th National School on Neutron and X-ray Scattering

    ScienceCinema (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-23T23:59:59.000Z

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  18. 16th National School on Neutron and X-ray Scattering

    SciTech Connect (OSTI)

    Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

    2014-07-02T23:59:59.000Z

    Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

  19. High Resolution X-Ray Scattering at Sector 3, Advanced Photon...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    about 1 meV resolution; momentum resolved inelastic x-ray scattering with about 1 meV resolution (HERIX); Synchrotron Mossbauer spectroscopy with about 10 neV resolution (SMS)....

  20. Safety & Security Guidelines Annual U.S. National School on Neutron and X-ray Scattering

    E-Print Network [OSTI]

    Safety & Security Guidelines 15th Annual U.S. National School on Neutron and X-ray Scattering-574-4600. Neutron Sciences User Programs and Outreach Office Oak Ridge National Laboratory #12;

  1. X-ray small-angle scattering from sputtered CeO{sub 2}/C bilayers

    SciTech Connect (OSTI)

    Haviar, S.; Dubau, M.; Khalakhan, I.; Vorokhta, M.; Matolinova, I.; Matolin, V. [Department of Surface and Plasma Science, Faculty of Mathematics and Physics Charles University, V Holesovickach 2, 180 00, Prague 8 (Czech Republic); Vales, V.; Endres, J.; Holy, V. [Department of Condensed Matter Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 121 16 Prague 2 (Czech Republic); Buljan, M. [Institute Ruder Boskovic, Bijenicka 54, 10000 Zagreb (Croatia); Bernstorff, S. [Sincrotrone ELETTRA, 34149 Basovizza, Trieste (Italy)

    2013-01-14T23:59:59.000Z

    Surface and interface morphology of cerium oxide/carbon bilayers used as thin-film catalysts is studied by grazing-incidence small-angle x-ray scattering, scanning electron microscopy, and atomic-force microscopy, and the dependence of the structural parameters on the thicknesses of the constituting layers is investigated. The applicability of x-ray scattering and its advantages over standard analytical methods are discussed.

  2. 136 3. Scattering The Compton scattering of an x-ray is incoherent because there are de-

    E-Print Network [OSTI]

    136 3. Scattering The Compton scattering of an x-ray is incoherent because there are de- grees of freedom in each scattering event associated with the atomic electron. Compton scattering provides of an atom are the ones that can participate in Compton scattering because they can be- come unbound from

  3. Observation of pulsed x-ray trains produced by laser-electron Compton scatterings

    SciTech Connect (OSTI)

    Sakaue, Kazuyuki; Washio, Masakazu [Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555 (Japan); Araki, Sakae; Fukuda, Masafumi; Higashi, Yasuo; Honda, Yosuke; Omori, Tsunehiko; Taniguchi, Takashi; Terunuma, Nobuhiro; Urakawa, Junji [KEK (High Energy Accelerator Research Organization), 1-1 Oho, Tsukuba, Ibaraki 305-0801 (Japan); Sasao, Noboru [Department of Physics, Kyoto University, Sakyo, Kyoto 606-8502 (Japan)

    2009-12-15T23:59:59.000Z

    X-ray generation based on laser-electron Compton scattering is one attractive method to achieve a compact laboratory-sized high-brightness x-ray source. We have designed, built, and tested such a source; it combines a 50 MeV multibunch electron linac with a mode-locked 1064 nm laser stored and amplified in a Fabry-Perot optical cavity. We directly observed trains of pulsed x rays using a microchannel plate detector; the resultant yield was found to be 1.2x10{sup 5} Hz in good agreement with prediction. We believe that the result has demonstrated good feasibility of linac-based compact x-ray sources via laser-electron Compton scatterings.

  4. Entangled valence electron-hole dynamics revealed by stimulated attosecond x-ray Raman scattering

    SciTech Connect (OSTI)

    Healion, Daniel; Zhang, Yu; Biggs, Jason D.; Govind, Niranjan; Mukamel, Shaul

    2012-09-06T23:59:59.000Z

    We show that broadband x-ray pulses can create wavepackets of valence electrons and holes localized in the vicinity of a selected atom (nitrogen, oxygen or sulfur in cysteine) by resonant stimulated Raman scattering. The subsequent dynamics reveals highly correlated motions of entangled electrons and hole quasiparticles. This information goes beyond the time-dependent total charge density derived from x-ray diffraction.

  5. Demonstration of Successful X-ray Thomson Scattering Using Picosecond K-(alpha) X-ray Sources for the Characterization of Dense Heated Matter

    SciTech Connect (OSTI)

    Kritcher, A; Neumayer, P; Lee, H J; Doeppner, T; Falcone, R; Glenzer, S; Morse, E C

    2008-05-05T23:59:59.000Z

    We discuss the first successful K-{alpha} x-ray Thomson scattering experiment from solid density plasmas for use as a diagnostic in determining the temperature, density, and ionization state of warm dense matter with picosecond resolution. The development of this source as a diagnostic and stringent requirements for successful K-{alpha} x-ray Thomson scattering are addressed. Data for the experimental techniques described in this paper [1] suggest the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future Free Electron Lasers (FEL) where comparable scattering signal levels are predicted.

  6. Small angle X-ray scattering study of coal soot formation

    SciTech Connect (OSTI)

    Winans, R. E.; Parker, J. T.; Seifert, S.; Fletcher, T. H.

    2000-02-14T23:59:59.000Z

    The objective of this study is to examine, by small angle X-ray scattering (SAXS), the formation of soot from individual coal particle combustion in a methane flat flame burner. The SAXS instrument at the Basic Energy Sciences Synchrotron Radiation Center (BESSRC) at the Advanced Photon Source (APS) can be used to observe both the formation of spherules and clusters since it can access length scales of 6--6000 {angstrom}. The high X-ray flux enables rapid acquisition of scattering data of various regions of the flame. SAXS data reveal particle size, shape, surface areas, and surface roughness.

  7. Exact limiting relation between the structure factors in neutron and x-ray scattering

    E-Print Network [OSTI]

    V. B. Bobrov; S. A. Trigger; S. N. Skovorod'ko

    2010-07-11T23:59:59.000Z

    The ratio of the static matter structure factor measured in experiments on coherent X-ray scattering to the static structure factor measured in experiments on neutron scattering is considered. It is shown theoretically that this ratio in the long-wavelength limit is equal to the nucleus charge at arbitrary thermodynamic parameters of a pure substance (the system of nuclei and electrons, where interaction between particles is pure Coulomb) in a disordered equilibrium state. This result is the exact relation of the quantum statistical mechanics. The experimental verification of this relation can be done in the long wavelength X-ray and neutron experiments.

  8. Using synchrotron X-ray scattering to study the diffusion of water in a weakly-hydrated clay sample

    E-Print Network [OSTI]

    Y. Meheust; B. Sandnes; G. Lovoll; K. J. Maloy; J. O. Fossum; G. J. da Silva; M. S. P. Mundim; R. Droppa; D. d. Miranda Fonseca

    2005-09-10T23:59:59.000Z

    We study the diffusion of water in weakly-hydrated samples of the smectite clay Na-fluorohectorite. The quasi one-dimensional samples are dry compounds of nano-layered particles consisting of ~ 80 silicate platelets. Water diffuses into a sample through the mesoporosity in between the particles, and can subsequently intercalate into the adjacent particles. The samples are placed under controlled temperature. They are initially under low humidity conditions, with all particles in a 1WL intercalation state. We then impose a high humidity at one sample end, triggering water penetration along the sample length. We monitor the progression of the humidity front by monitoring the intercalation state of the particles in space and time. This is done by determining the characteristic spacing of the nano-layered particles in situ, from synchrotron wide-angle X-ray scattering measurements. The spatial width of the intercalation front is observed to be smaller than 2mm, while its velocity decreases with time, as expected from a diffusion process.

  9. Characterization of irradiation-induced precipitates by small angle x-ray and neutron scattering experiments

    SciTech Connect (OSTI)

    Grosse, M.; Eichhorn, F.; Boehmert, J.; Brauer, G. [Research Center Rossendorf Inc., Dresden (Germany)

    1996-12-31T23:59:59.000Z

    The nature of the irradiation-induced precipitates in the VVER-440-type steel 15Kh2MFA has been investigated by the combination of small angle neutron scattering and anomalous small angle X-ray scattering. Information about the chemical composition of the irradiation-induced precipitates was obtained by the method of contrast variation. ASAXS experiments with variation of the X-ray energy near the energy of the vanadium K-absorption edge prove the content of vanadium within the irradiation-induced precipitates. The scattering density of the precipitates is lower than the scattering density of the iron matrix. The chemical shift of the vanadium-K{sub {alpha}}-absorption-edge and the results of the variation of the contribution of the magnetic scattering in the SANS experiment show, that vanadium does not precipitate in an elementary state. These results can be explained by assuming the precipitates are vanadium carbide.

  10. 2011 U.S. National School on Neutron and X-ray Scattering

    SciTech Connect (OSTI)

    Lang, Jonathan [Argonne National Laboratory (ANL); te Vethuis, Suzanne [Argonne National Laboratory (ANL); Ekkebus, Allen E [ORNL; Chakoumakos, Bryan C [ORNL; Budai, John D [ORNL

    2012-01-01T23:59:59.000Z

    The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.

  11. Kevin Yager on the Nanoscience of Studying Scattered X-Rays

    ScienceCinema (OSTI)

    Yager; Kevin

    2014-06-04T23:59:59.000Z

    Kevin Yager, a scientist at Brookhaven Lab's Center for Functional Nanomaterials, discusses his research on materials spanning just billionths of a meter. Yager specializes in making new materials through meticulously guided self-assembly and probing nanoscale structures with a technique called x-ray scattering.

  12. Alamethicin in lipid bilayers: Combined use of X-ray scattering and MD simulations Jianjun Pan a

    E-Print Network [OSTI]

    Nagle, John F.

    Alamethicin in lipid bilayers: Combined use of X-ray scattering and MD simulations Jianjun Pan of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA d Canadian Neutron Beam Centre:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering

  13. Pixel array detector for time-resolved x-ray scattering

    SciTech Connect (OSTI)

    Rodricks, B.G. [Argonne National Lab., IL (United States); Barna, S.L.; Gruner, S.M.; Shepherd, J.A.; Tate, M.W.; Wixted, R.L. [Princeton Univ., NJ (United States). Dept. of Physics

    1996-01-01T23:59:59.000Z

    This paper describes the development of a large-area hybrid pixel detector designed for time-resolved synchrotron x-ray scattering experiments where limited frames, with a high framing rate, is required. The final design parameters call for a 1024{times}1O24 pixel array device with 150-micron pixels that is 100% quantum efficient for x-rays with energy up to 20 keV, with a framing rate in the microsecond range. The device will consist of a fully depleted diode array bump bonded to a CMOS electronic storage capacitor array with eight frames per pixel. The two devices may be separated by a x-ray blocking layer that protects the radiation-sensitive electronics layer from damage. The signal is integrated in the electronics layer and stored in one of eight CMOS capacitors. After eight frames are taken, the data are then read out, using clocking electronics external to the detector, and stored in a RAM disk. Results will be presented on the development of a prototype 4{times}4 pixel electronics layer that is capable of storing at least 10,000 12-keV x-ray photons for a capacity of over 50 million electrons with a noise corresponding to 2 x-ray photons per pixel. The diode detective layer, electronics storage layer along with the radiation damage and blocking layers will be discussed.

  14. The diagnostic capability of x-ray scattering parameters for the characterization of breast cancer

    SciTech Connect (OSTI)

    Elshemey, Wael M.; Desouky, Omar S.; Fekry, Mostafa M.; Talaat, Sahar M.; Elsayed, Anwar A. [Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Department of Radiation Physics, National Centre for Radiation Research and Technology, Madinet Nasr 13759 (Egypt); Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt); Department of Pathology, Faculty of Medicine, Cairo University, Cairo 11559 (Egypt); Department of Biophysics, Faculty of Science, Cairo University, Giza 12613 (Egypt)

    2010-08-15T23:59:59.000Z

    Purpose: The evaluation of the diagnostic capability of easy to measure x-ray scattering profile characterization parameters for the detection of breast cancer in excised samples. The selected parameters are the full width at half maximum (FWHM) and area under the x-ray scattering profile of breast tissue in addition to the ratio of scattering intensities (I{sub 2}/I{sub 1}%) at 1.6 nm{sup -1} to that at 1.1 nm{sup -1} (corresponding to scattering from soft and adipose tissues, respectively). Methods: A histopathologist is asked to classify 36 excised breast tissue samples into healthy or malignant. A conventional x-ray diffractometer is used to acquire the scattering profiles of the investigated samples. The values of three profile characterization parameters are calculated and the diagnostic capability of each is evaluated by determining the optimal cutoffs of scatter diagrams, calculating the diagnostic indices, and plotting the receiver operating characteristic (ROC) curves. Results: At the calculated optimal cutoff for each of the examined parameters, the sensitivity ranged from 78% (for area under curve) up to 94% (for FWHM), the specificity ranged from 94%[for I{sub 2}/I{sub 1}% and area under curve] up to 100% (for FWHM), and the diagnostic accuracy ranged from 86% (for area under curve) up to 97% (for FWHM). The area under the ROC curves is greater than 0.95 for all of the investigated parameters, reflecting a highly accurate diagnostic performance. Conclusions: The discussed tests offered a means to quantitatively evaluate the performance of the suggested breast tissue x-ray scattering characterization parameters. The performance results are promising, indicating that the evaluated parameters would be considered a tool for fast, on spot probing of breast cancer in excised tissue samples.

  15. BIOISIS: Biological Macromolecules by Small Angle X-ray Scattering (SAXS)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Tainer, John (Scripps Research Institute); Hura, Greg (LBNL); Rambo, Robert P. (LBNL)

    BIOISIS is an open access database dedicated to the study of biological macromolecules by small angle X-ray scattering (SAXS). BIOISIS aims to become the complete source for the deposition, distribution and maintenance of small angle X-ray scattering data and technologies. The database is designed around the concept of an ôexperimentö and relates a specific experiment to a set of genes, organisms, computational models and experimental data. As of May 2012, BIOSIS contains 7,118 genes covering four different organisms. Forty-two modeled structures are available. Clicking on a structures reveals scattering curves, experimental conditions, and experimental values. The data are collected at Beamline 12.3.1 of the Advanced Light Source (ALS).[Copied with editing from http://www.bioisis.net/about

  16. SU-E-I-01: A Fast, Analytical Pencil Beam Based Method for First Order X-Ray Scatter Estimation of Kilovoltage Cone Beam X-Rays

    SciTech Connect (OSTI)

    Liu, J; Bourland, J [Wake Forest University, Winston-salem, NC (United States)

    2014-06-01T23:59:59.000Z

    Purpose: To analytically estimate first-order x-ray scatter for kV cone beam x-ray imaging with high computational efficiency. Methods: In calculating first-order scatter using the Klein-Nishina formula, we found that by integrating the point-to-point scatter along an interaction line, a “pencil-beam” scatter kernel (BSK) can be approximated to a quartic expression when the imaging field is small. This BSK model for monoenergetic, 100keV x-rays has been verified on homogeneous cube and cylinder water phantoms by comparing with the exact implementation of KN formula. For heterogeneous medium, the water-equivalent length of a BSK was acquired with an improved Siddon's ray-tracing algorithm, which was also used in calculating pre- and post- scattering attenuation. To include the electron binding effect for scattering of low-kV photons, the mean corresponding scattering angle is determined from the effective point of scattered photons of a BSK. The behavior of polyenergetic x-rays was also investigated for 120kV x-rays incident to a sandwiched infinite heterogeneous slab phantom, with the electron binding effect incorporated. Exact computation and Monte Carlo simulations were performed for comparisons, using the EGSnrc code package. Results: By reducing the 3D volumetric target (o(n{sup 3})) to 2D pencil-beams (o(n{sup 2})), the computation expense can be generally lowered by n times, which our experience verifies. The scatter distribution on a flat detector shows high agreement between the analytic BSK model and exact calculations. The pixel-to-pixel differences are within (-2%, 2%) for the homogeneous cube and cylinder phantoms and within (0, 6%) for the heterogeneous slab phantom. However, the Monte Carlo simulation shows increased deviation of the BSK model toward detector periphery. Conclusion: The proposed BSK model, accommodating polyenergetic x-rays and electron binding effect at low kV, shows great potential in efficiently estimating the first-order scatter from small imaging fields. We are investigating more thoroughly to improve performance and explore applications.

  17. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

    2014-01-01T23:59:59.000Z

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  18. Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering

    SciTech Connect (OSTI)

    Niedziela, J. L., E-mail: niedzielajl@ornl.gov [Instrument and Source Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States); Stone, M. B., E-mail: stonemb@ornl.gov [Quantum Condensed Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

    2014-09-08T23:59:59.000Z

    We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80?K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

  19. Maximum entropy deconvolution of resonant inelastic x-ray scattering spectra

    E-Print Network [OSTI]

    J. Laverock; A. R. H. Preston; D. Newby Jr; K. E. Smith; S. B. Dugdale

    2012-02-10T23:59:59.000Z

    Resonant inelastic x-ray scattering (RIXS) has become a powerful tool in the study of the electronic structure of condensed matter. Although the linewidths of many RIXS features are narrow, the experimental broadening can often hamper the identification of spectral features. Here, we show that the Maximum Entropy technique can successfully be applied in the deconvolution of RIXS spectra, improving the interpretation of the loss features without a severe increase in the noise ratio.

  20. Reflectivity and scattering measurements of an Advanced X-ray Astrophysics Facility test coating sample

    SciTech Connect (OSTI)

    Bixler, J.V.; Mauche, C.W.; Hailey, C.J.; Madison, L. [Laboratory for Experimental Astrophysics, Lawrence Livermore National Laboratory, Livermore, California 94550 (United States)

    1995-10-01T23:59:59.000Z

    Reflectivity and scattering profile measurements were made on a gold-coated witness sample produced to evaluate mirror coatings for the Advanced X-ray Astrophysics Facility program. Reflectivity measurements were made at Al K, Ti K, and Cu K energies as a function of incident graze angle. The results are fit to a model that includes the effects of roughness, particulate and organic contamination layers, and gold-coating density. Reflectivities are close to theoretical, with the difference being well accounted for by 4.1 A of roughness at spatial frequencies above 4 {mu}m{sup {minus}1}, a gold-coating density equal to 0.98 bulk, and a surface contaminant layer 27 A thick. Scattering measurements extending to {plus_minus}35 arcmin of the line center were obtained by the use of Al K x rays and incidence angles from 0.75{degree} to 3{degree}. The scattering profiles imply a power spectral density of surface-scattering frequencies that follows a power law with an index of {minus}1.0 and a total surface roughness for the spatial frequency band between 0.05 {mu}m{sup {minus}1} and 4 {mu}m{sup {minus}1} of 3.3 A. Combining the roughnesses derived from both the reflectivity and scattering measurements yields a total roughness of 5.3 A for scattering frequencies between 0.05 {mu}m{sup {minus}1} and 15,000 {mu}m{sup {minus}1}.

  1. Resonant scattering of an X-ray photon by a heavy atom

    SciTech Connect (OSTI)

    Hopersky, A. N., E-mail: hopersky_vm_1@rgups.ru; Nadolinsky, A. M. [Rostov State University of Transport Communication (Russian Federation)

    2007-10-15T23:59:59.000Z

    The influence of many-body and relativistic effects on the absolute values and shape of the double differential cross section for the resonant scattering of a linearly polarized X-ray photon by a free xenon atom near the K-shell ionization threshold has been theoretically analyzed. The evolution of the spatially extended structure of the scattering cross section to the K{sub {alpha}}{sub ,{beta}} structure of the X-ray spectrum of the xenon atom emission has been demonstrated. The calculations have been performed in the dipole approximation for the anomalous dispersion component of the total inelastic scattering amplitude and in the impulse approximation for the contact component of this amplitude. The contribution of the Rayleigh (elastic) scattering component is taken into account using the methods developed in Hopersky et al., J. Phys. B 30, 5131 (1997). The effects of the radial relaxation of the electron shells, spin-orbit splitting, double excitation/ionization of the atomic ground state, as well as the Auger and radiative decays of the produced main vacancies, are considered. Using the results obtained by Tulkki, Phys. Rev. A 32, 3153 (1985) and Biggs et al., At. Data Nucl. Data Tables 16, 201 (1975), the nonrelativistic Hartree-Fock wavefunctions are changed to the relativistic Dirac-Hartree-Fock wavefunctions of the single-particle scattering states when constructing the process probability amplitude. The calculations are predicting and are in good agreement with the synchrotron experiment on the measurement of the absolute values and shape of the double differential cross section for the resonant scattering of an X-ray photon by a free xenon atom reported by Czerwinski et al., Z. Phys. A 322, 183 (1985)

  2. Scattering Theory When an x-ray beam (or neutron or light) passes through a material with

    E-Print Network [OSTI]

    Beaucage, Gregory

    Scattering Theory When an x-ray beam (or neutron or light) passes through a material radiation is scattered in directions that differ from that of the incident beam. Scattering arises since x of scattered radiation resulting from this process bears a direct relationship to the structure (the pattern

  3. K-alpha X-ray Thomson Scattering From Dense Plasmas

    SciTech Connect (OSTI)

    Kritcher, Andrea L. [Nuclear Engineering Department, University of California Berkeley, Berkeley, CA 94709 (United States); Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Neumayer, Paul; Castor, John; Doeppner, Tilo; Landen, Otto L.; Ng, Andrew; Pollaine, Steve; Price, Dwight; Glenzer, Siegfried H. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Falcone, Roger W.; Ja Lee, Hae [Physics Department, University of California Berkeley, Berkeley, CA 94709 (United States); Lee, Richard W. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94551 (United States); Physics Department, University of California Berkeley, Berkeley, CA 94709 (United States); Morse, Edward C. [Nuclear Engineering Department, University of California Berkeley, Berkeley, CA 94709 (United States)

    2009-09-10T23:59:59.000Z

    Spectrally resolved Thomson scattering using ultra-fast K-alpha x rays has measured the compression and heating of shocked compressed matter. The evolution and coalescence of two shock waves traveling through a solid density LiH target were characterized by the elastic scattering component. The density and temperature at shock coalescence, 2.2 eV and 1.7x10{sup 23} cm{sup -3}, were determined from the plasmon frequency shift and the relative intensity of the elastic and inelastic scattering features in the collective scattering regime. The observation of plasmon scattering at coalescence indicates a transition to the dense metallic state in LiH. The density and temperature regimes accessed in these experiments are relevant for inertial confinement fusion experiments and for the study of planetary formation.

  4. Compact x-ray source based on burst-mode inverse Compton scattering at 100 kHz

    E-Print Network [OSTI]

    Bessuille, J.

    A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness ...

  5. USING THE X-RAY DUST SCATTERING HALO OF CYGNUS X-1 TO DETERMINE DISTANCE AND DUST DISTRIBUTIONS

    E-Print Network [OSTI]

    Xiang, Jingen

    We present a detailed study of the X-ray dust scattering halo of the black hole candidate Cygnus X-1 based on two Chandra High Energy Transmission Gratings Spectrometer observations. Using 18 different dust models, including ...

  6. X-ray Dust Scattering at Small Angles: The Complete Halo around GX13+1

    E-Print Network [OSTI]

    Randall K. Smith

    2008-05-04T23:59:59.000Z

    The exquisite angular resolution available with Chandra should allow precision measurements of faint diffuse emission surrounding bright sources, such as the X-ray scattering halos created by interstellar dust. However, the ACIS CCDs suffer from pileup when observing bright sources, and this creates difficulties when trying to extract the scattered halo near the source. The initial study of the X-ray halo around GX13+1 using only the ACIS-I detector done by Smith, Edgar & Shafer (2002) suffered from a lack of sensitivity within 50'' of the source, limiting what conclusions could be drawn. To address this problem, observations of GX13+1 were obtained with the Chandra HRC-I and simultaneously with the RXTE PCA. Combined with the existing ACIS-I data, this allowed measurements of the X-ray halo between 2-1000''. After considering a range of dust models, each assumed to be smoothly distributed with or without a dense cloud along the line of sight, the results show that there is no evidence in this data for a dense cloud near the source, as suggested by Xiang et al. (2005). Finally, although no model leads to formally acceptable results, the Weingartner & Draine (2001) and nearly all of the composite grain models from Zubko, Dwek & Arendt (2004) give poor fits.

  7. Attosecond Thomson-scattering x-ray source driven by laser-based electron acceleration

    SciTech Connect (OSTI)

    Luo, W. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China) [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Zhuo, H. B.; Yu, T. P. [College of Science, National University of Defense Technology, Changsha 410073 (China)] [College of Science, National University of Defense Technology, Changsha 410073 (China); Ma, Y. Y. [College of Science, National University of Defense Technology, Changsha 410073 (China) [College of Science, National University of Defense Technology, Changsha 410073 (China); Applied Ion Beam Physics Laboratory, Institute of Modern Physics, Fudan University, Shanghai 200433 (China); Song, Y. M.; Zhu, Z. C. [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China)] [School of Nuclear Science and Technology, University of South China, Hengyang 421001 (China); Yu, M. Y. [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China) [Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027 (China); Theoretical Physics I, Ruhr University, D-44801 Bochum (Germany)

    2013-10-21T23:59:59.000Z

    The possibility of producing attosecond x-rays through Thomson scattering of laser light off laser-driven relativistic electron beams is investigated. For a ?200-as, tens-MeV electron bunch produced with laser ponderomotive-force acceleration in a plasma wire, exceeding 10{sup 6} photons/s in the form of ?160 as pulses in the range of 3–300 keV are predicted, with a peak brightness of ?5 × 10{sup 20} photons/(s mm{sup 2} mrad{sup 2} 0.1% bandwidth). Our study suggests that the physical scheme discussed in this work can be used for an ultrafast (attosecond) x-ray source, which is the most beneficial for time-resolved atomic physics, dubbed “attosecond physics.”.

  8. Eur. J. Biochem. 85, 529-534 (1978) X-Ray and Neutron Small-Angle Scattering Studies

    E-Print Network [OSTI]

    1978-01-01T23:59:59.000Z

    Eur. J. Biochem. 85, 529-534 (1978) X-Ray and Neutron Small-Angle Scattering Studies of the Complex-ray and neutron scattering techniques. In this work, we concentrated mainly on radius of gyration analyses and a neutron scattering experiment is performed in 21-Iz0 solvent. This decrease simply reflects the fact

  9. Z .Reviews in Molecular Biotechnology 74 2000 207 231 X-ray and neutron surface scattering for studying

    E-Print Network [OSTI]

    Kuhl, Tonya L.

    Z .Reviews in Molecular Biotechnology 74 2000 207 231 X-ray and neutron surface scattering,U , Tonya L. Kuhlb , Joyce Y. Wongc , Gregory S. Smitha,1 a Manuel Lujan Jr. Neutron Scattering Center is defined as the Zratio of the number of particles neutrons or .photons elastically and specularly scattered

  10. The accurate assessment of small-angle X-ray scattering data

    SciTech Connect (OSTI)

    Grant, Thomas D. [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); Luft, Joseph R. [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); SUNY Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States); Carter, Lester G.; Matsui, Tsutomu; Weiss, Thomas M.; Martel, Anne [Stanford Synchrotron Radiation Lightsource, 2575 Sand Hill Road, MS69, Menlo Park, CA 94025 (United States); Snell, Edward H., E-mail: esnell@hwi.buffalo.edu [Hauptman–Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203 (United States); SUNY Buffalo, 700 Ellicott Street, Buffalo, NY 14203 (United States)

    2015-01-01T23:59:59.000Z

    A set of quantitative techniques is suggested for assessing SAXS data quality. These are applied in the form of a script, SAXStats, to a test set of 27 proteins, showing that these techniques are more sensitive than manual assessment of data quality. Small-angle X-ray scattering (SAXS) has grown in popularity in recent times with the advent of bright synchrotron X-ray sources, powerful computational resources and algorithms enabling the calculation of increasingly complex models. However, the lack of standardized data-quality metrics presents difficulties for the growing user community in accurately assessing the quality of experimental SAXS data. Here, a series of metrics to quantitatively describe SAXS data in an objective manner using statistical evaluations are defined. These metrics are applied to identify the effects of radiation damage, concentration dependence and interparticle interactions on SAXS data from a set of 27 previously described targets for which high-resolution structures have been determined via X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. The studies show that these metrics are sufficient to characterize SAXS data quality on a small sample set with statistical rigor and sensitivity similar to or better than manual analysis. The development of data-quality analysis strategies such as these initial efforts is needed to enable the accurate and unbiased assessment of SAXS data quality.

  11. Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering

    SciTech Connect (OSTI)

    Eliezer, D.

    1994-06-01T23:59:59.000Z

    Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

  12. Time Resolved Collapse of a Folding Protein Observed with Small Angle X-Ray Scattering

    SciTech Connect (OSTI)

    Pollack, L.; Tate, M. W.; Finnefrock, A. C.; Kalidas, C.; Trotter, S.; Darnton, N. C.; Lurio, L.; Austin, R. H.; Batt, C. A.; Gruner, S. M. (and others)

    2001-05-21T23:59:59.000Z

    High-intensity, ''pink'' beam from an undulator was used in conjunction with microfabricated rapid-fluid mixing devices to monitor the early events in protein folding with time resolved small angle x-ray scattering. This Letter describes recent work on the protein bovine {beta} -lactoglobulin where collapse from an expanded to a compact set of states was directly observed on the millisecond time scale. The role of chain collapse, one of the initial stages of protein folding, is not currently understood. The characterization of transient, compact states is vital in assessing the validity of theories and models of the folding process.

  13. Dynamics of bulk fluctuations in a lamellar phase studied by coherent x-ray scattering

    E-Print Network [OSTI]

    Doru Constantin; Guillaume Brotons; Tim Salditt; Eric Freyssingeas; Anders Madsen

    2015-04-07T23:59:59.000Z

    Using x-ray photon correlation spectroscopy, we studied the layer fluctuations in the lamellar phase of an ionic lyotropic system. We measured the relaxation rate of in-plane (undulation) fluctuations as a function of the wave vector. Static and dynamic results obtained during the same experiment were combined to yield the values of both elastic constants of the lamellar phase (compression and bending moduli) as well as that of the sliding viscosity. The results are in very good agreement with dynamic light-scattering data, validating the use of the technique in ordered phases.

  14. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of Tri-Block Copolymers Print

  15. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of Tri-Block Copolymers

  16. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of Tri-Block

  17. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of Tri-BlockResonant Soft

  18. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of Tri-BlockResonant

  19. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection TechnicalResonant Soft X-Ray Scattering of Tri-BlockResonantResonant

  20. Ultrafast K{alpha} x-ray Thomson scattering from shock compressed lithium hydride

    SciTech Connect (OSTI)

    Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Nuclear Engineering Department, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Castor, J.; Doeppner, T.; Landen, O. L.; Ng, A.; Pollaine, S.; Price, D.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Falcone, R. W.; Lee, H. J. [Physics Department, University of California Berkeley, Berkeley, California 94709 (United States); Lee, R. W. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Physics Department, University of California Berkeley, Berkeley, California 94709 (United States); Holst, B.; Redmer, R. [Institut fuer Physik, Universitaet Rostock, D-18051 Rostock (Germany); Morse, E. C. [Nuclear Engineering Department, University of California Berkeley, Berkeley, California 94709 (United States)

    2009-05-15T23:59:59.000Z

    Spectrally and temporally resolved x-ray Thomson scattering using ultrafast Ti K{alpha} x rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 ns heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transition to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of 3 times solid density. The quality of data achieved in these experiments demonstrates the capability for single shot dynamic characterization of dense shock compressed matter. The conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility, Lawrence Livermore National Laboratory.

  1. Ultrafast K-(alpha) X-ray Thomson Scattering from Shock Compressed Lithium Hydride

    SciTech Connect (OSTI)

    Kritcher, A L; Neumayer, P; Castor, J; Doeppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Holst, B; Redmer, R; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

    2008-12-10T23:59:59.000Z

    Spectrally and temporally resolved x ray Thomson scattering using ultrafast Ti K-{alpha} x-rays has provided experimental validation for modeling of the compression and heating of shocked matter. The coalescence of two shocks launched into a solid density LiH target by a shaped 6 nanosecond heater beam was observed from rapid heating to temperatures of 2.2 eV, enabling tests of shock timing models. Here, the temperature evolution of the target at various times during shock progression was characterized from the intensity of the elastic scattering component. The observation of scattering from plasmons, electron plasma oscillations, at shock coalescence indicates a transition to a dense metallic plasma state in LiH. From the frequency shift of the measured plasmon feature the electron density was directly determined with high accuracy, providing a material compression of a factor of three times solid density. The quality of data achieved in these experiments demonstrates the capability for single-shot dynamic characterization of dense shock compressed matter. The conditions probed in this experiment are relevant for the study of the physics of planetary formation and to characterize inertial confinement fusion targets for experiments such as on the National Ignition Facility (NIF), LLNL.

  2. Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques

    SciTech Connect (OSTI)

    Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

    2014-09-24T23:59:59.000Z

    A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

  3. Spectral softening in the X-RAY afterglow of GRB 130925A as predicted by the dust scattering model

    SciTech Connect (OSTI)

    Zhao, Yi-Nan; Shao, Lang, E-mail: lshao@hebtu.edu.cn [Department of Space Science and Astronomy, Hebei Normal University, Shijiazhuang 050024 (China)

    2014-07-01T23:59:59.000Z

    Gamma-ray bursts (GRBs) usually occur in a dense star-forming region with a massive circumburst medium. The small-angle scattering of intense prompt X-ray emission off the surrounding dust grains will have observable consequences and sometimes can dominate the X-ray afterglow. In most of the previous studies, only the Rayleigh-Gans (RG) approximation is employed for describing the scattering process, which works accurately for the typical size of grains (with radius of a ? 0.1 ?m) in the diffuse interstellar medium. When the size of the grains may significantly increase, as in a more dense region where GRBs would occur, the RG approximation may not be valid enough for modeling detailed observational data. In order to study the temporal and spectral properties of the scattered X-ray emission more accurately with potentially larger dust grains, we provide a practical approach using the series expansions of anomalous diffraction (AD) approximation based on the complicated Mie theory. We apply our calculations to understand the puzzling X-ray afterglow of recently observed GRB 130925A that showed a significant spectral softening. We find that the X-ray scattering scenarios with either AD or RG approximation adopted could well reproduce both the temporal and spectral profile simultaneously. Given the plateau present in the early X-ray light curve, a typical distribution of smaller grains as in the interstellar medium would be suggested for GRB 130925A.

  4. The XMM-Newton Wide Angle Survey (XWAS)

    E-Print Network [OSTI]

    Esquej, P; Carrera, F J; Mateos, S; Tedds, J; Watson, M G; Corral, A; Ebrero, J; Krumpe, M; Rosen, S R; Ceballos, M T; Schwope, A; Page, C; Alonso-Herrero, A; Caccianiga, A; Della Ceca, R; Gonzalez-Martín, O; Lamer, G; Severgnini, P

    2013-01-01T23:59:59.000Z

    This programme is aimed at obtaining one of the largest X-ray selected samples of identified active galactic nuclei to date in order to characterise such a population at intermediate fluxes, where most of the Universe's accretion power originates. We present the XMM-Newton Wide Angle Survey (XWAS), a new catalogue of almost a thousand X-ray sources spectroscopically identified through optical observations. A sample of X-ray sources detected in 68 XMM-Newton pointed observations was selected for optical multi-fibre spectroscopy. Optical counterparts and corresponding photometry of the X-ray sources were obtained from the SuperCOSMOS Sky Survey. Candidates for spectroscopy were initially selected with magnitudes down to R~21, with preference for X-ray sources having a flux F(0.5-4.5 keV) >10^-14 erg s^-1 cm^-2. Optical spectroscopic observations performed at the Anglo Australian Telescope Two Degree Field were analysed, and the derived spectra were classified based on optical emission lines. We have identified ...

  5. Simultaneous measurements of several state variables in shocked carbon by imaging x-ray scattering

    SciTech Connect (OSTI)

    Gamboa, E. J., E-mail: eliseo@umich.edu; Drake, R. P.; Keiter, P. A.; Trantham, M. R. [University of Michigan, Ann Arbor, Michigan 48109 (United States)] [University of Michigan, Ann Arbor, Michigan 48109 (United States); Falk, K.; Montgomery, D. S.; Benage, J. F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-04-15T23:59:59.000Z

    We apply the novel experimental technique of imaging x-ray Thomson scattering to measure the spatial profiles of the temperature, ionization state, relative material density, and the shock speed in a high-energy density system. A blast wave driven in a low-density foam is probed with 90? scattering of 7.8?keV helium-like nickel x-rays, which are spectrally dispersed and resolved in one spatial dimension by a doubly curved crystal. The inferred properties of the shock are shown to be self-consistent with 1D analytical estimates. These high-resolution measurements enable a direct comparison of the observed temperature with the results from hydrodynamic simulations. We find good agreement with the simulations for the temperature at the shock front but discrepancies in the modeling of the spatial temperature profile and shock speed. These results indicate the challenges in modeling the shock dynamics of structured materials like foams, commonly used in many high-energy density and laboratory astrophysics experiments.

  6. Resonant Soft X-ray Scattering Studies of Multiferroic YMn2O5

    SciTech Connect (OSTI)

    Partzsch, S.; Wilkins, S.B.; Schierle, E.; Soltwisch, V.; Hill, J.P.; Weschke, E.; Souptel, D.; Buchner, B.; Geck, J.

    2011-06-17T23:59:59.000Z

    We performed soft x-ray resonant scattering at the MnL{sub 2,3}- and OK edges of YMn{sub 2}O{sub 5}. While the resonant intensity at the MnL{sub 2,3} edges represent the magnetic order parameter, the resonant scattering at the OK edge is found to be directly related to the macroscopic ferroelectric polarization. The latter observation reveals the important role of the spin-dependent Mn-O hybridization for the multiferroicity of YMn{sub 2}O{sub 5}. We present details about how to obtain correct energy dependent lineshapes and discuss the origin of the resonant intensity at the OK edge.

  7. Supplementary data for HIV-1 Tat membrane interaction probed using X-ray and neutron scattering, CD, and MD simulations

    E-Print Network [OSTI]

    Nagle, John F.

    1 Supplementary data for HIV-1 Tat membrane interaction probed using X-ray and neutron scattering- spacing are linearly related. Figure S3. Neutron scattering from stacks of DOPC:DOPE (3:1)/Tat, x=0 of Physics, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, 3 NIST Center for Neutron

  8. Measuring the mean and scatter of the X-ray luminosity -- optical richness relation for maxBCG galaxy clusters

    E-Print Network [OSTI]

    E. S. Rykoff; T. A. McKay; M. R. Becker; A. Evrard; D. E. Johnston; B. P. Koester; E. Rozo; E. S. Sheldon; R. H. Wechsler

    2007-12-05T23:59:59.000Z

    Determining the scaling relations between galaxy cluster observables requires large samples of uniformly observed clusters. We measure the mean X-ray luminosity--optical richness (L_X--N_200) relation for an approximately volume-limited sample of more than 17,000 optically-selected clusters from the maxBCG catalog spanning the redshift range 0.1X-ray emission from many clusters using ROSAT All-Sky Survey data, we are able to measure mean X-ray luminosities to ~10% (including systematic errors) for clusters in nine independent optical richness bins. In addition, we are able to crudely measure individual X-ray emission from ~800 of the richest clusters. Assuming a log-normal form for the scatter in the L_X--N_200 relation, we measure \\sigma_\\ln{L}=0.86+/-0.03 at fixed N_200. This scatter is large enough to significantly bias the mean stacked relation. The corrected median relation can be parameterized by L_X = (e^\\alpha)(N_200/40)^\\beta 10^42 h^-2 ergs/s, where \\alpha = 3.57+/-0.08 and \\beta = 1.82+/-0.05. We find that X-ray selected clusters are significantly brighter than optically-selected clusters at a given optical richness. This selection bias explains the apparently X-ray underluminous nature of optically-selected cluster catalogs.

  9. Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range

    DOE Patents [OSTI]

    Smith, Peter D. (Santa Fe, NM); Claytor, Thomas N. (White Rock, NM); Berry, Phillip C. (Albuquerque, NM); Hills, Charles R. (Los Alamos, NM)

    2010-10-12T23:59:59.000Z

    An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

  10. National School on Neutron and X-ray Scattering Building 223 Auditorium, Room B002 September 24 -October 11, 2008 Argonne National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering Building 223 Auditorium, Room B002 September 24 (HFIR) Neutron Scattering Science Division Oak Ridge Laboratory 10:15 - 10:30 Break 9:30 - 9:45 Break 10 School on Neutron and X-ray Scattering Building 8600, Main Lobby September 24 - October 11, 2008 Oak

  11. Ultra-high Resolution Optics for EUV and Soft X-ray Inelastic Scattering

    E-Print Network [OSTI]

    Voronov, Dmitry L.

    2010-01-01T23:59:59.000Z

    16. Yu. Shvyd’ko, X-Ray Optics, Berlin: Springer-Verlag,Ultra-high Resolution Optics for EUV and Soft X-rayspectral resolution soft x-ray optics. Conventionally in the

  12. Changes in the Atomic Structure through Glass Transition Observed by X-Ray Scattering

    SciTech Connect (OSTI)

    Egami, Takeshi [ORNL

    2012-01-01T23:59:59.000Z

    The glass transition involves a minor change in the internal energy, and yet the physical and mechanical properties of a glass change dramatically. In order to determine the evolution of the atomic structure through the glass transition, we employed in-situ synchrotron X-ray scattering measurements as a function of temperature on a model material: Zr-Cu-Al metallic glass. We found that the thermal expansion at the atomic level is smaller than the macroscopic thermal expansion, and significantly increases above the glass transition temperature. The observed changes in the pair-distribution function (PDF) are explained in terms of the fluctuations in the local atomic volume and their change through the glass transition.

  13. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS)

    SciTech Connect (OSTI)

    Hura, Greg L.; Menon, Angeli L.; Hammel, Michal; Rambo, Robert P.; Poole II, Farris L.; Tsutakawa, Susan E.; Jenney Jr, Francis E.; Classen, Scott; Frankel, Kenneth A.; Hopkins, Robert C.; Yang, Sungjae; Scott, Joseph W.; Dillard, Bret D.; Adams, Michael W. W.; Tainer, John A.

    2009-07-20T23:59:59.000Z

    We present an efficient pipeline enabling high-throughput analysis of protein structure in solution with small angle X-ray scattering (SAXS). Our SAXS pipeline combines automated sample handling of microliter volumes, temperature and anaerobic control, rapid data collection and data analysis, and couples structural analysis with automated archiving. We subjected 50 representative proteins, mostly from Pyrococcus furiosus, to this pipeline and found that 30 were multimeric structures in solution. SAXS analysis allowed us to distinguish aggregated and unfolded proteins, define global structural parameters and oligomeric states for most samples, identify shapes and similar structures for 25 unknown structures, and determine envelopes for 41 proteins. We believe that high-throughput SAXS is an enabling technology that may change the way that structural genomics research is done.

  14. Small angle neutron and X-ray scattering studies of carbons prepared using inorganic templates

    SciTech Connect (OSTI)

    Sandi, G.; Thiyagarajan, P.; Winans, R.E.; Carrado, K.A.

    1997-09-01T23:59:59.000Z

    Small angle neutron (SANS) and X-ray (SAXS) scattering analyses of carbons derived from organic-loaded inorganic template materials, used as anodes in lithium ion cells, have been performed. Two clays were used as templates to load the organic precursors, pillared montmorrillonite (PILC), a layered silicate clay whose sheets have been permanently propped open by sets of thermally stable molecular props, and sepiolite, a natural channeled clay. Five different organic precursors were used to load the PILC: pyrene, styrene, pyrene/trioxane copolymer, ethylene and propylene, whereas only propylene and ethylene were used to load sepiolite. Pyrolysis took place at 700{degrees}C under nitrogen. Values such as hole radius, fractal dimension, cutoff length and density of the final carbons will be compared as a function of the clay and carbon precursors.

  15. Ultra-fast x-ray Thomson scattering measurements of coalescing shock-heated matter

    SciTech Connect (OSTI)

    Kritcher, A; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

    2008-05-29T23:59:59.000Z

    The experiment in this work was preformed at the Titan laser facility (S1) where a short pulse beam at a wavelength of 1053nm delivered up to 350J in 0.5 to 20 ps and a long pulse beam at 527nm, 2{omega} frequency provided energies up to 450J in 1 to 6 ns. Long pulse shaping in this experiment, similar to future capabilities at NIF, was primarily a 4ns long foot with an intensity of 1 x 10{sup 13} W/cm{sup 2}, followed by a 2ns long peak with an intensity of 3 x 10{sup 13} W/cm{sup 2}. A {approx} 600 um phase plate was used on the long pulse beam to moderate non-uniformities in the intensity profile. An illustration of the Thomson scattering setup for this experiment is provided in Fig. 1 of the main text. A nearly mono-energetic scattering source of {Delta}E/E {approx} 0.3% in the 4.5 keV Ti K-alpha line was produced via intense short-pulse laser irradiation of 1.9 x 3 x 0.01 mm Ti foils, creating energetic keV electrons in the process (S2, S3). The nearly isotropic source emission (S4) is produced in the cold solid density bulk of the foil from electron K shell ionization of neutral or weakly ionized atoms, with an emission size on the order of the laser focal spot. By optimizing the laser intensity and pulse width to 4.4 x 10{sup 16} W cm{sup -2}, a total of 2.3 x 10{sup 13} x-ray photons have been produced into 4{pi}. This value corresponds to a conversion efficiency of laser energy into Ti K-alpha x-ray energy of 5 x 10{sup -5}, see Fig. S1. These sources provide {approx}10 ps x-ray pulses as measured experimentally (S5).

  16. X-ray resonant magnetic scattering and x-ray magnetic circular dichroism branching ratios, L[subscript 3] / L[subscript 2], for heavy rare earths

    SciTech Connect (OSTI)

    Lee, Yongbin; Kim, Jong-Woo; Goldman, Alan I.; Harmon, Bruce N. (Iowa State)

    2010-07-19T23:59:59.000Z

    In this study we have used first principles electronic structure methods to investigate the detailed contributions to the L{sub 3}/L{sub 2} branching ratio in the heavy rare earth elements. The calculations use the full potential, relativistic, linear augmented plane wave method with the LSDA+U approach for consideration of the local 4f electronic orbitals. With no spin orbit coupling (SOC) in the conducting bands, and with the same radial function for the 2p{sub 3/2} and 2p{sub 1/2} core states, the branching ratio (BR) is exactly 1:-1 for the x-ray magnetic circular dichroism spectra of the ferromagnetic heavy rare earth metals. However, with full SOC the BR ranges from 1.5 to 6.0 in going from Gd to Er. The energy and spin dependence of the 5d radial functions are important. The results point to problems with modified atomic models which have been proposed to explain the BR. Recent x-ray resonant magentic scattering experiments on (Gd,Tb,Dy,Ho,Er,Tm)Ni{sub 2}Ge{sub 2} are discussed.

  17. Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering

    SciTech Connect (OSTI)

    Chen, Lingling

    1996-04-01T23:59:59.000Z

    Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

  18. National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory May 30-June 14, 2009 Air Travel Arrangements The Argonne Division of Educational Programs has made to Argonne - June 8 through and including June 13, 2009 Daily bus transportation will be provided for School

  19. National School on Neutron and X-ray Scattering Argonne National Laboratory and Oak Ridge National Laboratory

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering Argonne National Laboratory and Oak Ridge National Laboratory June 12-26, 2010 Schedule for Saturday, June 12, 2010 School participants arrive at Argonne and check in at the Argonne Guest House, Building 460. 3:00 PM until 8:00 PM - Registration and informal get

  20. National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory

    E-Print Network [OSTI]

    National School on Neutron and X-ray Scattering Oak Ridge National Laboratory and Argonne National Laboratory June 11-25, 2011 Air Travel Arrangements The Argonne Division of Educational Programs has made at the Argonne Guest House at approximately 6:00 p.m. (CDT). Dinner will be provided upon arrival to the hotel

  1. Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering

    E-Print Network [OSTI]

    Nagle, John F.

    neutron and X-ray scattering Jianjun Pan a, , Frederick A. Heberle a , Stephanie Tristram-Nagle b Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 378316100 Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 378316453, USA e Canadian

  2. Neutron and X-ray Scattering Techniques have proved so successful in condensed matter studies that a wide variety of sample environments have been developed in consquence. Many

    E-Print Network [OSTI]

    Boyer, Edmond

    Foreword Neutron and X-ray Scattering Techniques have proved so successful in condensed matter whose function is to develop and optimise the techniques appropriate to neutron scattering. Since other neutron and X-ray research centres have similar technical support groups, it was felt timely to unité

  3. Relaxation transition in glass-forming polybutadiene as revealed by nuclear resonance X-ray scattering

    SciTech Connect (OSTI)

    Kanaya, Toshiji; Inoue, Rintaro [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)] [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Saito, Makina [Elettra-Sincrotrone Trieste, S. S. 14 Km 163.5, I-34149 Trieste (Italy)] [Elettra-Sincrotrone Trieste, S. S. 14 Km 163.5, I-34149 Trieste (Italy); Seto, Makoto [Research Reactor Institute, Kyoto University, Kumatori, Osaka-fu 590-0494 (Japan)] [Research Reactor Institute, Kyoto University, Kumatori, Osaka-fu 590-0494 (Japan); Yoda, Yoshitaka [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo-ken 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, Sayo, Hyogo-ken 679-5198 (Japan)

    2014-04-14T23:59:59.000Z

    We investigated the arrest mechanism of molecular motions in a glass forming polybutadiene near the glass transition using a new nuclear resonance synchrotron X-ray scattering technique to cover a wide time range (10{sup ?9} to 10{sup ?5} s) and a scattering vector Q range (9.6–40 nm{sup ?1}), which have never been accessed by other methods. Owing to the wide time and Q ranges it was found for the first time that a transition of the ?-process to the slow ?-process (or the Johari-Goldstein process) was observed in a Q range higher than the first peak in the structure factor S(Q) at the critical temperature T{sub c} in the mode coupling theory. The results suggest the important roles of hopping motions below T{sub c}, which was predicted by the recent extended mode coupling theory and the cooperative motions due to the strong correlation at the first peak in S(Q) in the arrest mechanism.

  4. Concept to diagnose mix with imaging x-ray Thomson scattering

    SciTech Connect (OSTI)

    Keiter, Paul A.; Gamboa, Eliseo J.; Huntington, Channing M.; Kuranz, Carolyn C. [Department of Atmospheric, Oceanic and Space Sciences, University of Michigan, Ann Arbor, Michigan 48103 (United States)

    2012-10-15T23:59:59.000Z

    Turbulent mixing of two fluid species is a ubiquitous problem, prevalent in systems such as inertial confinement fusion (ICF) capsule implosions, supernova remnants, and other astrophysical systems. In complex, high Reynolds number compressible high energy density (HED) flows such as these, hydrodynamic instabilities initiate the turbulent mixing process, which can then feedback and alter the mean hydrodynamic motion through nonlinear processes. In order to predict how these systems evolve under turbulent conditions, models are used. However, these models require detailed quantitative data to validate and constrain their detailed physics models as well as improve them. Providing this much needed data is currently at the forefront of HED research but is proving elusive due to a lack of available diagnostics capable of directly measuring detailed flow variables. Thomson scattering is a promising technique in this regard as it provides fundamental conditions of the flow ({rho}, T, Zbar) due to its direct interaction with the small scales of the fluid or plasma and was recently considered as a possible mix diagnostic. With the development of imaging x-ray Thomson scattering (IXRTS) obtaining spatial profiles of these variables is within reach. We propose a novel use of the IXRTS technique that will provide more detailed quantitative data required for model validation in mix experiments.

  5. Nucleation and Ordering of an Electrodeposited Two-Dimensional Crystal: Real-Time X-Ray Scattering and Electronic Measurements

    SciTech Connect (OSTI)

    Finnefrock, A.C.; Ringland, K.L.; Brock, J.D. [School of Applied Engineering Physics and Materials Science Center, Cornell University, Ithaca, New York 14853 (United States)] [School of Applied Engineering Physics and Materials Science Center, Cornell University, Ithaca, New York 14853 (United States); Buller, L.J.; Abruna, H.D. [Department of Chemistry and Materials Science Center, Cornell University, Ithaca, New York 14853 (United States)] [Department of Chemistry and Materials Science Center, Cornell University, Ithaca, New York 14853 (United States)

    1998-10-01T23:59:59.000Z

    We have studied {ital in situ} the ordering of a two-dimensional Cu-Cl crystal electrodeposited on a Pt(111) surface. We simultaneously measured x-ray scattering and chronoamperometric transients during Cu desorption and subsequent ordering of the Cu-Cl crystal. In all cases, the current transient occurs on a shorter time scale than the development of crystalline order. The ordering time diverges with applied potential, consistent with the nucleation and growth of two-dimensional islands. We see a time-dependent narrowing of the x-ray peak, corresponding to the growing islands. {copyright} {ital 1998} {ital The American Physical Society}

  6. Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facility

    SciTech Connect (OSTI)

    Döppner, T.; Kritcher, A. L.; Bachmann, B.; Burns, S.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Neumayer, P. [Gesellschaft für Schwerionenphysik, 64291 Darmstadt (Germany); Kraus, D. [University of California, Berkeley, California 94720 (United States); Falcone, R. W. [University of California, Berkeley, California 94720 (United States); Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States)

    2014-11-15T23:59:59.000Z

    We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4–10?keV is optimized for scattering experiments using a Zn He-? x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/?E = 220 at 9.8 keV.

  7. anomalous x-ray scattering: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from the soft X-rays emitted by the neutron-star surface. The relation between these heating rates and measured near-infrared fluxes in the K and Ks bands places severe...

  8. Resonant Soft X-Ray Scattering of Tri-Block Copolymers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods. An X-Ray Probe for Soft...

  9. Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds

    SciTech Connect (OSTI)

    Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

    1995-12-31T23:59:59.000Z

    Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

  10. Analysis of Order Formation in Block Copolymer Thin Films UsingResonant Soft X-Ray Scattering

    SciTech Connect (OSTI)

    Virgili, Justin M.; Tao, Yuefei; Kortright, Jeffrey B.; Balsara,Nitash P.; Segalman, Rachel A.

    2006-11-27T23:59:59.000Z

    The lateral order of poly(styrene-block-isoprene) copolymer(PS-b-PI) thin films is characterized by the emerging technique ofresonant soft X-ray scattering (RSOXS) at the carbon K edge and comparedto ordering in bulk samples of the same materials measured usingconventional small-angle X-ray scattering. We show resonance using theoryand experiment that the loss of scattering intensity expected with adecrease in sample volume in the case of thin films can be overcome bytuning X-rays to the pi* resonance of PS or PI. Using RSOXS, we study themicrophase ordering of cylinder- and phere-forming PS-b-PI thin films andcompare these results to position space data obtained by atomic forcemicroscopy. Our ability to examine large sample areas (~;9000 mu m2) byRSOXS enables unambiguous identification of the lateral lattice structurein the thin films. In the case of the sphere-forming copolymer thin film,where the spheres are hexagonally arranged, the average sphere-to-spherespacing is between the bulk (body-centered cubic) nearest neighbor andbulk unit cell spacings. In the case of the cylinder-forming copolymerthin film, the cylinder-to-cylinder spacing is within experimental errorof that obtained in the bulk.

  11. Effects of grazing incidence conditions on the x-ray diffuse scattering from self-assembled nanoscale islands

    SciTech Connect (OSTI)

    Schmidbauer, M.; Grigoriev, D.; Hanke, M.; Schaefer, P.; Wiebach, T.; Koehler, R. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, Newtonstrasse 15, 12489 Berlin (Germany)

    2005-03-15T23:59:59.000Z

    Grazing incidence small-angle x-ray scattering and grazing incidence x-ray diffraction from SiGe nanoscale islands grown on Si(001) substrate were investigated. Experiments and corresponding theoretical simulations based on the distorted-wave Born approximation were carried out. The strain field inside and in the vicinity of the SiGe islands was calculated in the framework of linear elasticity theory using the numerical finite element method. The diffuse intensity pattern in reciprocal space reveals a well-resolved fine structure with prominent maxima and a complicated fringe pattern. The distribution of diffuse intensity in reciprocal space strongly depends on the angle of incidence with respect to the sample surface. The results obtained substantiate the important role of basically five (grazing incidence small-angle x-ray) and nine (grazing incidence diffraction) scattering channels that have to be considered for a complete understanding of the scattering scenario. A refined island model concerning shape, size, and Ge composition was elaborated.

  12. Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies

    SciTech Connect (OSTI)

    Bu, Wei

    2009-08-15T23:59:59.000Z

    Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

  13. National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak Ridge, Tennessee

    E-Print Network [OSTI]

    Pennycook, Steve

    National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak:30 Lecture Inelastic Neutron Scattering B. D. Gaulin McMaster University Lecture Magnetic Scattering B. D Break Break Break Break 9:45 - 10:45 Lecture Continued Inelastic Neutron Scattering B. D. Gaulin Mc

  14. Your access to the Oak Ridge National Laboratory (ORNL) is approved beginning Sunday, June 20, 2010, for the second week of the Neutron X-ray Scattering School.

    E-Print Network [OSTI]

    Pennycook, Steve

    , for the second week of the Neutron X-ray Scattering School. Please be certain to bring photo identification access to the Target Facility.) · General User Access Training for Neutron Scattering Users, Neutron Scattering Science User Office Oak Ridge National Laboratory ORNL Neutron Scattering School June

  15. Probing single magnon excitations in Sr?IrO? using O K-edge resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, X.; Dean, M. P. M.; Liu, J.; Chiuzbaian, S. G.; Jaouen, N.; Nicolaou, A.; Yin, W. G.; Rayan Serrao, C.; Ramesh, R.; Ding, H.; et al

    2015-05-27T23:59:59.000Z

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr?IrO?, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edgemore »RIXS energy resolutions in the hard X-ray region is usually poor.« less

  16. Probing single magnon excitations in Sr?IrO? using O K-edge resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, X. [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Brookhaven National Lab. (BNL), Upton, NY (United States); Collaborative Innovation Center of Quantum Matter, Beijing (China); Dean, M. P. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Liu, J. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiuzbaian, S. G. [Sorbonne Univ., Paris (France); Synchrotron SOLEIL, Saint-Aubin (France); Jaouen, N. [Synchrotron SOLEIL, Saint-Aubin (France); Nicolaou, A. [Synchrotron SOLEIL, Saint-Aubin (France); Yin, W. G. [Brookhaven National Lab. (BNL), Upton, NY (United States); Rayan Serrao, C. [Univ. of California, Berkeley, CA (United States); Ramesh, R. [Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ding, H. [Chinese Academy of Sciences (CAS), Beijing (China). Beijing National Lab. for Condensed Matter Physics (BNLCP-CAS); Collaborative Innovation Center of Quantum Matter, Beijing (China); Hill, J. P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-05-27T23:59:59.000Z

    Resonant inelastic X-ray scattering (RIXS) at the L-edge of transition metal elements is now commonly used to probe single magnon excitations. Here we show that single magnon excitations can also be measured with RIXS at the K-edge of the surrounding ligand atoms when the center heavy metal elements have strong spin-orbit coupling. This is demonstrated with oxygen K-edge RIXS experiments on the perovskite Sr?IrO?, where low energy peaks from single magnon excitations were observed. This new application of RIXS has excellent potential to be applied to a wide range of magnetic systems based on heavy elements, for which the L-edge RIXS energy resolutions in the hard X-ray region is usually poor.

  17. Evidence for the Importance of Resonance Scattering in X-Ray Emission Line Profiles of the O Star Zeta Puppis

    SciTech Connect (OSTI)

    Leutenegger, M.A.; /Columbia U.; Owocki, S.P.; /Bartol Research Inst.; Kahn, S.M.; /KIPAC, Menlo Park; Paerels, F.B.S.; /Columbia U.

    2006-10-10T23:59:59.000Z

    We fit the Doppler profiles of the He-like triplet complexes of O VII and N VI in the X-ray spectrum of the O star {zeta} Pup, using XMM-Newton RGS data collected over {approx} 400 ks of exposure. We find that they cannot be well fit if the resonance and intercombination lines are constrained to have the same profile shape. However, a significantly better fit is achieved with a model incorporating the effects of resonance scattering, which causes the resonance line to become more symmetric than the intercombination line for a given characteristic continuum optical depth {tau}{sub *}. We discuss the plausibility of this hypothesis, as well as its significance for our understanding of Doppler profiles of X-ray emission lines in O stars.

  18. Phase-based x-ray scattering—A possible method to detect cancer cells in a very early stage

    SciTech Connect (OSTI)

    Feye-Treimer, U., E-mail: feye-treimer@helmholtz-berlin.de; Treimer, W. [Department of Mathematics, Physics and Chemistry, University of Applied Sciences, D-13353 Berlin, Germany and Joint Department G-GTOMO, Helmholtz Zentrum fuer Materialien und Energie Berlin, D-14109 Berlin (Germany)] [Department of Mathematics, Physics and Chemistry, University of Applied Sciences, D-13353 Berlin, Germany and Joint Department G-GTOMO, Helmholtz Zentrum fuer Materialien und Energie Berlin, D-14109 Berlin (Germany)

    2014-05-15T23:59:59.000Z

    Purpose: This theoretical work contains a detailed investigation of the potential and sensitivity of phase-based x-ray scattering for cancer detection in biopsies if cancer is in a very early stage of development. Methods: Cancer cells in their early stage of development differ from healthy ones mainly due to their faster growing cell nuclei and the enlargement of their densities. This growth is accompanied by an altered nucleus–plasma relation for the benefit of the cell nuclei, that changes the physical properties especially the index of refraction of the cell and the one of the cell nuclei. Interaction of radiation with matter is known to be highly sensitive to small changes of the index of refraction of matter; therefore a detection of such changes of volume and density of cell nuclei by means of high angular resolved phase-based scattering of x rays might provide a technique to distinguish malignant cells from healthy ones ifthe cell–cell nucleus system is considered as a coherent phase shifting object. Then one can observe from a thin biopsy which represents a monolayer of cells (no multiple scattering) that phase-based x-ray scattering curves from healthy cells differ from those of cancer cells in their early stage of development. Results: Detailed calculations of x-ray scattering patterns from healthy and cancer cell nuclei yield graphs and numbers with which one can distinguish healthy cells from cancer ones, taking into account that both kinds of cells occur in a tissue within a range of size and density. One important result is the role and the influence of the (lateral) coherence width of the radiation on the scattering curves and the sensitivity of phase-based scattering for cancer detection. A major result is that a larger coherence width yields a larger sensitivity for cancer detection. Further import results are calculated limits for critical sizes and densities of cell nuclei in order to attribute the investigated tissue to be healthy or diseased. Conclusions: With this proposed method it should be in principle possible to detect cancer cells in apparently healthy tissues in biopsies and/or in samples of the far border region of abscised or excised tissues. Thus this method could support established methods in diagnostics of cancer-suspicious samples.

  19. Anomalous small angle x-ray scattering studies of amorphous metal-germanium alloys

    SciTech Connect (OSTI)

    Rice, M.

    1993-12-01T23:59:59.000Z

    This dissertation addresses the issue of composition modulation in sputtered amorphous metal-germanium thin films with the aim of understanding the intermediate range structure of these films as a function of composition. The investigative tool used in this work is anomalous small-angle X-ray scattering (ASAXS). The primary focus of this investigation is the amorphous iron-germanium (a-Fe{sub x}Ge{sub 100-x}) system with particular emphasis on the semiconductor-rich regime. Brief excursions are made into the amorphous tungsten-germanium (a-W{sub x}Ge{sub 100-x}) and the amorphous molybdenum-germanium (a-Mo{sub x}Ge{sub 100-x}) systems. All three systems exhibit an amorphous structure over a broad composition range extending from pure amorphous germanium to approximately 70 atomic percent metal when prepared as sputtered films. Across this composition range the structures change from the open, covalently bonded, tetrahedral network of pure a-Ge to densely packed metals. The structural changes are accompanied by a semiconductor-metal transition in all three systems as well as a ferromagnetic transition in the a-Fe{sub x}Ge{sub 100-x} system and a superconducting transition in the a-Mo{sub x}Ge{sub 100-x} system. A long standing question, particularly in the a-Fe{sub x}Ge{sub 100-x} and the a-Mo{sub x}Ge{sub 100-x} systems, has been whether the structural changes (and therefore the accompanying electrical and magnetic transitions) are accomplished by homogeneous alloy formation or phase separation. The application of ASAXS to this problem proves unambiguously that fine scale composition modulations, as distinct from the simple density fluctuations that arise from cracks and voids, are present in the a-Fe{sub x}Ge{sub 100-x}, a-W{sub x}Ge{sub 100-x}, and a-Mo{sub x}Ge{sub 100-x} systems in the semiconductor-metal transition region. Furthermore, ASAXS shows that germanium is distributed uniformly throughout each sample in the x<25 regime of all three systems.

  20. Tunable X-ray source

    DOE Patents [OSTI]

    Boyce, James R. (Williamsburg, VA)

    2011-02-08T23:59:59.000Z

    A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

  1. Joint anisotropy characterization and image formation in wide-angle synthetic aperture radar

    E-Print Network [OSTI]

    Varshney, Kush R. (Kush Raj)

    2006-01-01T23:59:59.000Z

    Imagery formed from wide-angle synthetic aperture radar (SAR) measurements has fine cross-range resolution in principle. However, conventional SAR image formation techniques assume isotropic scattering, which is not valid ...

  2. Inelastic x-ray scattering study of supercooled liquid and solid silicon.

    SciTech Connect (OSTI)

    Alatas, A.; Said, A.; Sinn, H.; Alp, E.E.; Kodituwakku, C.N.; Saboungi, M.L.; Price, D.L.; X-Ray Science Division; Western Michigan Univ.; Purdue Univ.; CRMD-CNRS; CRMHT-CNRS

    2006-01-01T23:59:59.000Z

    Momentum-resolved inelastic x-ray scattering (IXS) technique is one of the powerful methods for the study of dynamical properties of a given system even in extreme conditions like high temperature and high pressure. At the same time, experimental studies of physical and structural properties of liquids have multiplied in recent years with the advent of containerless techniques. These methods reduce the possibility of contamination of specimens and remove external nucleation sites. Therefore, by combining the IXS method with the levitation method, the dynamical properties of stable liquids up to 3000 K and supercooled phase of liquids can be studied. Silicon is a basic material in the semiconductor industry and has been the subject of a large amount of experimental and theoretical studies over a long time. In the crystalline phase at ambient conditions, silicon is a diamond-structured semiconductor, but upon melting it undergoes a semiconductor-to-metal transition accompanied by significant changes in the structure and density. The coordination number increases from 4 in the solid to about 6.5 in the liquid, and liquid density is increased by about 10%. The principal purpose of the present study was to determine silicon's elastic modulus from the measurement of averaged sound speed determined from IXS. The experiments were carried out at the Advanced Photon Source (APS) beamline 3-ID with a high-resolution monochromator consisting of two nested channel-cut crystals and four backscattering analyzer setups in the horizontal scattering plane 6 m from the sample. The requirements for very high energy resolution and the basic principles of such instrumentation are discussed elsewhere as referenced. The levitation apparatus was enclosed in a bell jar specially designed for backscattering geometry with a separation of 10 cm between the sample and the detector. Silicon spheres of 2 to 3 mm in diameter were suspended in an argon gas jet and heated with a 270 W CO{sub 2} laser beam. Temperatures were measured during the experiment with a pyrometer whose operating wavelength was 0.65 {micro}m. The temperature gradient on the sample was estimated to be about +/- 20 K. The energy scans were taken for supercooled-liquid and hot-solid silicon at temperature T=1620 K. Sound velocities were determined from the initial slope of the excitation frequencies. Then, the longitudinal moduli for hotsolid and supercooled-liquid silicon were calculated from L = v{sub L}{sup 2}{rho} using measured velocities. In these calculations, density values were taken from Ohsaka et al. as referenced. Results are presented in Table 1. together with room-temperature, hot-solid single-crystal measurements, and stable-liquid values. Room-temperature longitudinal moduli were calculated from the values of the single-crystal elastic constants. They were measured between 300 K and 870 K. Since there was no phase transition up to temperature 1620 K for hot-solid silicon, it is reasonable to extrapolate these data to 1620 K in order to compare to our results for the hot solid. A significant difference (about 20%) is observed between our measurement and the extrapolated single-crystal value of the longitudinal modulus for solid silicon at temperature 1620K. This reduction of the longitudinal modulus may be an indication of the pre-melting. The factor of more than two change in the elastic modulus between supercooled liquid and hot solid at the same temperature can be attributed to the semiconductor-to-metal transition in silicon associated with melting. Also, the longitudinal modulus of the stable liquid is reported in Table 1. About a 10% difference is observed between the modulus of the supercooled and the stable liquid silicon. This can be interpreted as silicon still maintaining metallic properties with a significant increase in the degree of the directional bonding upon supercooling, as found in the x-ray diffraction and ab initio MD studies. All these results are discussed in reference.

  3. Week 2 AGENDA: National School on Neutron and X-ray Scattering page 1 of 5 Oak Ridge National Laboratory [9/30/08

    E-Print Network [OSTI]

    Pennycook, Steve

    Week 2 AGENDA: National School on Neutron and X-ray Scattering page 1 of 5 Oak Ridge National Ridge National Laboratory Dean Myles, Director ORNL Neutron Scattering Science Division 1 GROUPS [A,B,C,D,E,F,G,H,I] Iran Thomas Auditorium Lecture Inelastic Neutron Scattering R. Osborn, ANL ALL

  4. INHOMOGENEITIES IN TYPE Ib/c SUPERNOVAE: AN INVERSE COMPTON SCATTERING ORIGIN OF THE X-RAY EMISSION

    SciTech Connect (OSTI)

    Bjoernsson, C.-I., E-mail: bjornsson@astro.su.se [Department of Astronomy, AlbaNova University Center, Stockholm University, SE-106 91 Stockholm (Sweden)

    2013-05-20T23:59:59.000Z

    Inhomogeneities in a synchrotron source can severely affect the conclusions drawn from observations regarding the source properties. However, their presence is not always easy to establish, since several other effects can give rise to similar observed characteristics. It is argued that the recently observed broadening of the radio spectra and/or light curves in some Type Ib/c supernovae is a direct indication of inhomogeneities. As compared to a homogeneous source, this increases the deduced velocity of the forward shock and the observed correlation between total energy and shock velocity could in part be due to a varying covering factor. The X-ray emission from at least some Type Ib/c supernovae is unlikely to be synchrotron radiation from an electron distribution accelerated in a nonlinear shock. Instead it is shown that the observed correlation during the first few hundred days between the radio, X-ray, and bolometric luminosities indicates that the X-ray emission is inverse Compton scattering of the photospheric photons. Inhomogeneities are consistent with equipartition between electrons and magnetic fields in the optically thin synchrotron emitting regions.

  5. Focus characterization at an X-ray free-electron laser by coherent scattering and speckle analysis

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sikorski, Marcin; Song, Sanghoon; Schropp, Andreas; Seiboth, Frank; Feng, Yiping; Alonso-Mori, Roberto; Chollet, Matthieu; Lemke, Henrik T.; Sokaras, Dimosthenis; Weng, Tsu-Chien; et al

    2015-05-01T23:59:59.000Z

    X-ray focus optimization and characterization based on coherent scattering and quantitative speckle size measurements was demonstrated at the Linac Coherent Light Source. Its performance as a single-pulse free-electron laser beam diagnostic was tested for two typical focusing configurations. The results derived from the speckle size/shape analysis show the effectiveness of this technique in finding the focus' location, size and shape. In addition, its single-pulse compatibility enables users to capture pulse-to-pulse fluctuations in focus properties compared with other techniques that require scanning and averaging.

  6. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    E-Print Network [OSTI]

    Zastrau, Ulf; Foerster, Eckhart; Galtier, Eric Ch; Gamboa, Eliseo; Glenzer, Siegfried H; Heimann, Philipp; Marschner, Heike; Nagler, Bob; Schropp, Andreas; Wehrhan, Ortrud; Lee, Hae Ja

    2014-01-01T23:59:59.000Z

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution $\\Delta E/E = 1.1\\cdot 10^{-4}$ and wave-number resolution of $\\Delta k/k = 3\\cdot 10^{-3}$, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to $5.2/$\\AA\\ in 100 separate bins, with only 0.34\\% wavenumber blurring. The dispersion of 0.418~eV/$13.5\\,\\mu$m agrees with predictions within 1.3\\%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic HAPG spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1~eV and a significant range of wavenumbers must be covered in one exposure.

  7. Bent crystal spectrometer for both frequency and wavenumber resolved x-ray scattering at a seeded free-electron laser

    SciTech Connect (OSTI)

    Zastrau, Ulf, E-mail: ulf.zastrau@uni-jena.de [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Fletcher, Luke B.; Galtier, Eric Ch.; Gamboa, Eliseo; Glenzer, Siegfried H.; Heimann, Philipp; Nagler, Bob; Schropp, Andreas; Lee, Hae Ja [Stanford Linear Accelerator Center (SLAC), 2575 Sand Hill Road, Menlo Park, California 94025 (United States); Förster, Eckhart [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany); Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena (Germany); Marschner, Heike; Wehrhan, Ortrud [Institute of Optics and Quantum Electronics, Friedrich-Schiller University Jena, Max-Wien-Platz 1, 07743 Jena (Germany)

    2014-09-15T23:59:59.000Z

    We present a cylindrically curved GaAs x-ray spectrometer with energy resolution ?E/E = 1.1 ×?10{sup ?4} and wave-number resolution of ?k/k = 3 ×?10{sup ?3}, allowing plasmon scattering at the resolution limits of the Linac Coherent Light Source (LCLS) x-ray free-electron laser. It spans scattering wavenumbers of 3.6 to 5.2/Å in 100 separate bins, with only 0.34% wavenumber blurring. The dispersion of 0.418 eV/13.5??m agrees with predictions within 1.3%. The reflection homogeneity over the entire wavenumber range was measured and used to normalize the amplitude of scattering spectra. The proposed spectrometer is superior to a mosaic highly annealed pyrolytic graphite spectrometer when the energy resolution needs to be comparable to the LCLS seeded bandwidth of 1 eV and a significant range of wavenumbers must be covered in one exposure.

  8. Ultra-fast x-ray Thomson scattering measurements of insulator-metal transition in shock-compressed matter

    SciTech Connect (OSTI)

    Kritcher, A; Neumayer, P; Castor, J; Doppner, T; Falcone, R W; Landen, O L; Lee, H J; Lee, R W; Morse, E C; Ng, A; Pollaine, S; Price, D; Glenzer, S H

    2008-05-16T23:59:59.000Z

    Spectrally resolved scattering of ultra-short pulse laser-generated K-{alpha} x rays has been applied to measure the heating and compression of shocked solid-density lithium hydride. Two shocks launched by a nanosecond laser pulse coalesce yielding pressures of 400 gigapascals. The evolution of the intensity of the elastic (Rayleigh) scattering component indicates rapid heating to temperatures of 25,000 K on a 100 ps time scale. At shock coalescence, the scattering spectra show the collective plasmon oscillations indicating the transition to the dense metallic plasma state. The plasmon frequency determines the material compression, which is found to be a factor of three thereby reaching conditions in the laboratory important for studying astrophysics phenomena.

  9. Center for X-Ray Optics, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-08-01T23:59:59.000Z

    This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

  10. Wide Angle Effects in Galaxy Surveys

    E-Print Network [OSTI]

    Yoo, Jaiyul

    2013-01-01T23:59:59.000Z

    Current and future galaxy surveys cover a large fraction of the entire sky with a significant redshift range, and the recent theoretical development shows that general relativistic effects are present in galaxy clustering on very large scales. This trend has renewed interest in the wide angle effect in galaxy clustering measurements, in which the distant-observer approximation is often adopted. Using the full wide-angle formula for computing the redshift-space correlation function, we show that compared to the sample variance, the deviation in the redshift-space correlation function from the simple Kaiser formula with the distant-observer approximation is negligible in the SDSS and is completely irrelevant in future galaxy surveys such as Euclid and the BigBOSS, if the theoretical prediction from the Kaiser formula is averaged over the survey volume and the non-uniform distribution of cosine angle between the line-of-sight and the pair separation directions is properly considered. We also find small correctio...

  11. SU-E-I-76: Matching Primary and Scattered X-Ray Spectra for Use in Calculating the Diagnostic Radiation Index of Protection

    SciTech Connect (OSTI)

    Pasciak, A [University of Tennessee Medical Center, Knoxville, TN (United States); Jones, A [MD Anderson Cancer Center, Houston, TX (United States); Wagner, L [UT Medical School, Houston, TX (United States)

    2014-06-01T23:59:59.000Z

    Purpose: Lightweight lead-free or lead-composite protective garments exploit k-edge interactions to attenuate scattered X-rays. Manufacturers specify the protective value of garments in terms of lead equivalence at a single kVp. This is inadequate, as the protection provided by such garments varies with radiation quality in different use conditions. We present a method for matching scattered X-ray spectra to primary X-ray spectra. The resulting primary spectra can be used to measure penetration through protective garments, and such measurements can be weighted and summed to determine a Diagnostic Radiation Index for Protection (DRIP). Methods: Scattered X-ray spectra from fluoroscopic procedures were modeled using Monte Carlo techniques in MCNP-X 2.7. Data on imaging geometry, operator position, patient size, and primary beam spectra were gathered from clinical fluoroscopy procedures. These data were used to generate scattered X-ray spectra resulting from procedural conditions. Technical factors, including kV and added filtration, that yielded primary X-ray spectra that optimally matched the generated scattered X-ray spectra were identified through numerical optimization using a sequential quadratic programming (SQP) algorithm. Results: The primary spectra generated with shape functions matched the relative flux in each bin of the scattered spectra within 5%, and half and quarter-value layers matched within 0.1%. The DRIP for protective garments can be determined by measuring the penetration through protective garments using the matched primary spectra, then calculating a weighted average according to the expected clinical use of the garment. The matched primary spectra are specified in terms of first and second half-value layers in aluminum and acrylic. Conclusion: Lead equivalence is inadequate for completely specifying the protective value of garments. Measuring penetration through a garment using full scatter conditions is very difficult. The primary spectra determined in this work allow for practical primary penetration measurements to be made with equipment readily available to clinical medical physicists.

  12. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important TrinityEnergyIn Situ X-Ray

  13. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important TrinityEnergyIn Situ X-RayIn

  14. In Situ X-Ray Scattering Helps Optimize Printed Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) EnvironmentalGyroSolé(tm)HydrogenRFP » Important TrinityEnergyIn Situ X-RayInIn

  15. A general framework and review of scatter correction methods in x-ray cone-beam computerized tomography. Part 1: Scatter compensation approaches

    SciTech Connect (OSTI)

    Ruehrnschopf, Ernst-Peter; Klingenbeck, Klaus [Siemens AG, Healthcare Sector, Imaging and Therapy Division, Forchheim (Germany)

    2011-07-15T23:59:59.000Z

    Since scattered radiation in cone-beam volume CT implies severe degradation of CT images by quantification errors, artifacts, and noise increase, scatter suppression is one of the main issues related to image quality in CBCT imaging. The aim of this review is to structurize the variety of scatter suppression methods, to analyze the common structure, and to develop a general framework for scatter correction procedures. In general, scatter suppression combines hardware techniques of scatter rejection and software methods of scatter correction. The authors emphasize that scatter correction procedures consist of the main components scatter estimation (by measurement or mathematical modeling) and scatter compensation (deterministic or statistical methods). The framework comprises most scatter correction approaches and its validity also goes beyond transmission CT. Before the advent of cone-beam CT, a lot of papers on scatter correction approaches in x-ray radiography, mammography, emission tomography, and in Megavolt CT had been published. The opportunity to avail from research in those other fields of medical imaging has not yet been sufficiently exploited. Therefore additional references are included when ever it seems pertinent. Scatter estimation and scatter compensation are typically intertwined in iterative procedures. It makes sense to recognize iterative approaches in the light of the concept of self-consistency. The importance of incorporating scatter compensation approaches into a statistical framework for noise minimization has to be underscored. Signal and noise propagation analysis is presented. A main result is the preservation of differential-signal-to-noise-ratio (dSNR) in CT projection data by ideal scatter correction. The objective of scatter compensation methods is the restoration of quantitative accuracy and a balance between low-contrast restoration and noise reduction. In a synopsis section, the different deterministic and statistical methods are discussed with respect to their properties and applications. The current paper is focused on scatter compensation algorithms. The multitude of scatter estimation models will be dealt with in a separate paper.

  16. X-ray scattering studies of structure and dynamics of surfaces and interfaces of polymeric liquids

    E-Print Network [OSTI]

    Jiang, Zhang

    2007-01-01T23:59:59.000Z

    and S. K. Sinha, “Structure and dynamics of thin polymer ?Scattering Studies of Structure and Dynamics of Surfaces andScattering Studies of Structure and Dynamics of Surfaces and

  17. An alternative scheme of angular-dispersion analyzers for high-resolution medium-energy inelastic X-ray scattering

    E-Print Network [OSTI]

    Huang, Xian-Rong

    2011-01-01T23:59:59.000Z

    The development of medium-energy inelastic X-ray scattering (IXS) optics with meV and sub-meV resolution has attracted considerable efforts in recent years. Meanwhile, there are also concerns or debates about the fundamental and feasibility of the involved schemes. Here the central optical component, the back-reflection angular-dispersion monochromator or analyzer, is analyzed. The results show that the multiple-beam diffraction effect together with transmission-induced absorption can noticeably reduce the diffraction efficiency, although it may not be a fatal threat. In order to improve the efficiency, a simple four-bounce analyzer is proposed that completely avoids these two adverse effects. The new scheme is illustrated to be a feasible alternative approach for developing meV- to sub-meV-resolution IXS spectroscopy.

  18. Resonant inelastic x-ray scattering study of charge excitations in superconducting and nonsuperconducting PrFeAsO??y

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jarrige, I.; Nomura, T.; Ishii, K.; Gretarsson, H.; Kim, Y.-J.; Kim, J.; Upton, M.; Casa, D.; Gog, T.; Ishikado, M.; Fukuda, T.; Yoshida, M.; Hill, J. P.; Liu, X.; Hiraoka, N.; Tsuei, K. D.; Shamoto, S.

    2012-09-01T23:59:59.000Z

    We report the first observation by momentum-resolved resonant inelastic x-ray scattering of charge excitations in an iron-based superconductor and its parent compound, PrFeAsO?.? and PrFeAsO, respectively, with two main results. First, using calculations based on a 16-band dp model, we show that the energy of the lowest-lying excitations, identified as dd interband transitions of dominant xz,yz orbital character, exhibits a dramatic dependence on electron correlation. This enables us to estimate the Coulomb repulsion U and Hund's coupling J, and to highlight the role played by J in these peculiar orbital-dependent electron correlation effects. Second, we show that short-range antiferromagnetic correlations, which are a prerequisite to the occurrence of these excitations at the ? point, are still present in the superconducting state.

  19. Small-angle x-ray scattering measurements of the microstructure of liquid helium mixtures adsorbed in aerogel

    SciTech Connect (OSTI)

    Lurio, L. B.; Mulders, N.; Paetkau, M.; Chan, M. H. W.; Mochrie, S. G. J. [Department of Physics, Northern Illinois University, DeKalb, Illinois 60115 (United States); Department of Physics, University of Delaware, Newark, Delaware 19716 (United States); Department of Physics and Astronomy, Okanagan College, British Columbia V1Y4X8 (Canada); Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Department of Physics, Yale University, New Haven, Connecticut 06511 (United States)

    2007-07-15T23:59:59.000Z

    Small-angle x-ray scattering (SAXS) was used to measure the microstructure of isotopic mixtures of {sup 3}He and {sup 4}He adsorbed into silica aerogels as a function of temperature and {sup 3}He concentration. The SAXS measurements could be well described by the formation of a nearly pure film of {sup 4}He which separates from the bulk mixture onto the aerogel strands and which thickens with decreasing temperature. Previous observations of a superfluid {sup 3}He-rich phase are consistent with superfluidity existing within this film phase. Observed differences between different density aerogels are explained in terms of the depletion of {sup 4}He from the bulk mixture due to film formation.

  20. The phonon density of states of (alpha) and (delta)-Plutonium by inelastic x-ray scattering

    SciTech Connect (OSTI)

    Manley, M E; Said, A; Fluss, M J; Wall, M; Lashley, J C; Alatas, A; Moore, K T

    2008-10-08T23:59:59.000Z

    Inelastic x-ray scattering measurements of the phonon density of states (DOS) were performed on polycrystalline samples of pure {alpha}-Pu and {delta}-Pu{sub 0.98}Ga{sub 0.02} at room temperature. The heat capacity of {alpha}-Pu is well reproduced by contributions calculated from the measured phonon DOS plus conventional thermal expansion and electronic contributions, showing that {alpha}-Pu is a 'well-behaved' metal in this regard. A comparison of the phonon DOS of the two phases at room temperature surprised us in that the vibrational entropy difference between them is only a quarter of the total entropy difference expected from known thermodynamic measurements. The missing entropy is too large to be accounted for by conventional electronic entropy and evidence from the literature rules out a contribution from spin fluctuations. Possible alternative sources for the missing entropy are discussed.

  1. Structure of Flame-Made Silica Nanoparticles by Ultra-Small-Angle X-ray Scattering

    E-Print Network [OSTI]

    Beaucage, Gregory

    by thermophoretic sampling and microscopy that provided consistent results with light scattering with respect thermophoretically collected samples and image analysis of t

  2. Narrowband inverse Compton scattering x-ray sources at high laser intensities

    E-Print Network [OSTI]

    Seipt, D; Surzhykov, A; Fritzsche, S

    2014-01-01T23:59:59.000Z

    Narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser pulses suffer from a limitation of the allowed laser intensity due to the onset of nonlinear effects that increase their bandwidth. It has been suggested that laser pulses with a suitable frequency modulation could compensate this ponderomotive broadening and reduce the bandwidth of the spectral lines, which would allow to operate narrowband Compton sources in the high-intensity regime. In this paper we, therefore, present the theory of nonlinear Compton scattering in a frequency modulated intense laser pulse. We systematically derive the optimal frequency modulation of the laser pulse from the scattering matrix element of nonlinear Compton scattering, taking into account the electron spin and recoil. We show that, for some particular scattering angle, an optimized frequency modulation completely cancels the ponderomotive broadening for all harmonics of the backscattered light. We also explore how sensitive this compensation ...

  3. Monitoring simultaneously the growth of nanoparticles and aggregates by in situ ultra-small-angle x-ray scattering

    SciTech Connect (OSTI)

    Kammler, Hendrik K.; Beaucage, Gregory; Kohls, Douglas J.; Agashe, Nikhil; Ilavsky, Jan [Particle Technology Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, ML F23, CH-8092 Zurich (Switzerland); Department of Chemical and Materials Engineering, University of Cincinnati, 540 Engineering Research Center, Cincinnati, Ohio 45221-0012 (United States); UNICAT, Advanced Photon Source, Building 438D, 9700 South Cass Avenue, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2005-03-01T23:59:59.000Z

    Ultra-small-angle x-ray scattering can provide information about primary particles and aggregates from a single scattering experiment. This technique is applied in situ to flame aerosol reactors for monitoring simultaneously the primary particle and aggregate growth dynamics of oxide nanoparticles in a flame. This was enabled through the use of a third generation synchrotron source (Advanced Photon Source, Argonne IL, USA) using specialized scattering instrumentation at the UNICAT facility which is capable of simultaneously measuring nanoscales to microscales (1 nm to 1 {mu}m). More specifically, the evolution of primary-particle diameter, mass-fractal dimension, geometric standard deviation, silica volume fraction, number concentration, radius of gyration of the aggregate, and number of primary particles per aggregate are measured along the flame axis for two different premixed flames. All these particle characteristics were derived from a single and nonintrusive measurement technique. Flame temperature profiles were measured in the presence of particles by in situ Fourier transform infrared spectroscopy and thermophoretic sampling was used to visualize particle growth with height above the burner as well as in the radial direction.

  4. X-ray Raman scattering with Bragg diffraction in a La-based superlattice

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    at the BESSY synchrotron facility. The spectral bandwidth of the quasi- monochromatic radiation delivered of attention, in connection with the development of third generation synchrotrons [9-11]. Inelastic scattering

  5. Protein Folding Dynamics Detected By Time-Resolved Synchrotron X-ray Small-Angle Scattering Technique

    SciTech Connect (OSTI)

    Fujisawa, Tetsuro; Takahashi, Satoshi [RIKEN Harima Institute, SPring-8 Center, Laboratory for Biometal Science, Hyogo 679-5148 (Japan); Institute for Protein Research, Osaka University Suita Osaka 565-0871/CREST, JST (Japan)

    2007-03-30T23:59:59.000Z

    The polypeptide collapse is an essential dynamics in protein folding. To understand the mechanism of the collapse, in situ observation of folding by various probes is necessary. The changes in secondary and tertiary structures in the folding process of globular proteins, whose chain lengths are less than 300 polypeptides, were observed by circular dichrosim and intrinsic fluorescence spectroscopies, respectively. On the other hand, those in protein compactness could be only detected by using time-resolved synchrotron x-ray small-angle scattering technique. The observed dynamics for several proteins with different topologies suggested a common folding mechanism termed 'collapse and search' dynamics, in which the polypeptide collapse precedes the formation of the native contact formation. In 'collapse and search' dynamics, the most outstanding feature lied in the compactness of the initial intermediates. The collapsed intermediates demonstrated the scaling relationship between radius of gyration (Rg) and chain length with a scaling exponent of 0.35 {+-} 0.11, which is close to the value (1/3) predicted by mechano-statistical theory for the collapsed globules of polymers in poor solvent. Thus, it was suggested that the initial collapse is caused by the coil-globule transition of polymers. Since the collapse is essential to the folding of larger proteins, further investigations on the collapse likely lead to an important insight into the protein folding phenomena.

  6. Investigating Silicon-Based Photoresists with Coherent Anti-Stokes Raman Scattering and X-ray Micro-spectroscopy

    E-Print Network [OSTI]

    Caster, Allison G.

    2010-01-01T23:59:59.000Z

    LIGHT (X- RAYS , EUV, ULTRAFAST PULSES ), OR HEAT . T HEthe “on” time of an ultrafast pulse is referred to as thepeak-power of the ultrafast pulses, purely electronic four-

  7. Hydrostatic low-range pressure applications of the Paris-Edinburgh cell utilising polymer gaskets for diffuse x-ray scattering measurements.

    SciTech Connect (OSTI)

    Chapman, K. W.; Chupas, P. J.; Kurtz, C.; Locke, D.; Parise, J. B.; Hriljac, J. A.; Stony Brook Univ.; Univ. of Birmingham

    2007-01-01T23:59:59.000Z

    The use of a polymeric Torlon (polyamide-imide) gasket material in a Paris-Edinburgh pressure cell for in situ high-pressure X-ray scattering measurements is demonstrated. The relatively low bulk modulus of the gasket allows for fine control of the sample pressure over the range 0.01-0.42 GPa. The quality of the data obtained in this way is suitable for Bragg and pair distribution function analysis.

  8. Mass fractal characteristics of wet sonogels as determined by small-angle x-ray scattering and differential scanning calorimetry

    SciTech Connect (OSTI)

    Vollet, D. R.; Donatti, D. A.; Ibanez Ruiz, A.; Gatto, F. R. [Departamento de Fisica, Unesp-Univerisdade Estadual Paulista, IGCE, P.O. Box 178 CEP 13500-970 Rio Claro, SP (Brazil)

    2006-07-01T23:59:59.000Z

    Low density silica sonogels were prepared from acid sonohydrolysis of tetraethoxysilane. Wet gels were studied by small-angle x-ray scattering (SAXS) and differential scanning calorimetry (DSC). The DSC tests were carried out under a heating rate of 2 deg. C/min from -120 deg. C up to 30 deg. C. Aerogels were obtained by CO{sub 2} supercritical extraction and characterized by nitrogen adsorption and SAXS. The DSC thermogram displays two distinct endothermic peaks. The first, a broad peak extending from about -80 deg. C up to practically 0 deg. C, was associated to the melting of ice nanocrystals with a crystal size distribution with 'pore' diameter ranging from 1 or 2 nm up to about 60 nm, as estimated from Thomson's equation. The second, a sharp peak with onset temperature close to 0 deg. C, was attributed to the melting of macroscopic crystals. The DSC incremental 'nanopore' volume distribution is in reasonable agreement with the incremental pore volume distribution of the aerogel as determined from nitrogen adsorption. No macroporosity was detected by nitrogen adsorption, probably because the adsorption method applies stress on the sample during measurement, leading to a underestimation of pore volume, or because often positive curvature of the solid surface is in aerogels, making the nitrogen condensation more difficult. According to the SAXS results, the solid network of the wet gels behaves as a mass fractal structure with mass fractal dimension D=2.20{+-}0.01 in a characteristic length scale below {xi}=7.9{+-}0.1 nm. The mass fractal characteristics of the wet gels have also been probed from DSC data by means of an earlier applied modeling for generation of a mass fractal from the incremental ''pore'' volume distribution curves. The results are shown to be in interesting agreement with the results from SAXS.

  9. Mass fractal characteristics of silica sonogels as determined by small-angle x-ray scattering and nitrogen adsorption

    SciTech Connect (OSTI)

    Donatti, D.A.; Vollet, D.R.; Ibanez Ruiz, A.; Mesquita, A.; Silva, T.F.P. [Unesp-Universidade Estadual Paulista, IGCE, Departamento de Fisica, P.O. Box 178 CEP, 13500-970 Rio Claro, Sao Paulo (Brazil)

    2005-01-01T23:59:59.000Z

    A sample series of silica sonogels was prepared using different water-tetraethoxysilane molar ratio (r{sub w}) in the gelation step of the process in order to obtain aerogels with different bulk densities after the supercritical drying. The samples were analyzed by means of small-angle x-ray-scattering (SAXS) and nitrogen-adsorption techniques. Wet sonogels exhibit mass fractal structure with fractal dimension D increasing from {approx}2.1 to {approx}2.4 and mass-fractal correlation length {xi} diminishing from {approx}13 nm to {approx}2 nm, as r{sub w} is changed in the nominal range from 66 to 6. The process of obtaining aerogels from sonogels and heat treatment at 500 deg. C, in general, increases the mass-fractal dimension D, diminishes the characteristic length {xi} of the fractal structure, and shortens the fractal range at the micropore side for the formation of a secondary structured particle, apparently evolved from the original wet structure at a high resolution level. The overall mass-fractal dimension D of aerogels was evaluated as {approx}2.4 and {approx}2.5, as determined from SAXS and from pore-size distribution by nitrogen adsorption, respectively. The fine structure of the 'secondary particle' developed in the obtaining of aerogels could be described as a surface-mass fractal, with the correlated surface and mass-fractal dimensions decreasing from {approx}2.4 to {approx}2.0 and from {approx}2.7 to {approx}2.5, respectively, as the aerogel bulk density increases from 0.25 (r{sub w}=66) up to 0.91 g/cm{sup 3} (r{sub w}=6)

  10. Automated high pressure cell for pressure jump x-ray diffraction

    SciTech Connect (OSTI)

    Brooks, Nicholas J.; Gauthe, Beatrice L. L. E.; Templer, Richard H.; Ces, Oscar; Seddon, John M. [Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom); Terrill, Nick J. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Rogers, Sarah E. [ISIS, Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0QX (United Kingdom)

    2010-06-15T23:59:59.000Z

    A high pressure cell for small and wide-angle x-ray diffraction measurements of soft condensed matter samples has been developed, incorporating a fully automated pressure generating network. The system allows both static and pressure jump measurements in the range of 0.1-500 MPa. Pressure jumps can be performed as quickly as 5 ms, both with increasing and decreasing pressures. Pressure is generated by a motorized high pressure pump, and the system is controlled remotely via a graphical user interface to allow operation by a broad user base, many of whom may have little previous experience of high pressure technology. Samples are loaded through a dedicated port allowing the x-ray windows to remain in place throughout an experiment; this facilitates accurate subtraction of background scattering. The system has been designed specifically for use at beamline I22 at the Diamond Light Source, United Kingdom, and has been fully integrated with the I22 beamline control systems.

  11. Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering

    SciTech Connect (OSTI)

    Kim, Min Gyu [Ames Laboratory

    2012-08-28T23:59:59.000Z

    The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

  12. Combining THz laser excitation with resonant soft X-ray scattering at the Linac Coherent Light Source

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Turner, Joshua J.; Dakovski, Georgi L.; Hoffmann, Matthias C.; Hwang, Harold Y.; Zarem, Alex; Schlotter, William F.; Moeller, Stefan; Minitti, Michael P.; Staub, Urs; Johnson, Steven; et al

    2015-05-01T23:59:59.000Z

    This paper describes the development of new instrumentation at the Linac Coherent Light Source for conducting THz excitation experiments in an ultra high vacuum environment probed by soft X-ray diffraction. This consists of a cantilevered, fully motorized mirror system which can provide 600 kV cm?¹ electric field strengths across the sample and an X-ray detector that can span the full Ewald sphere with in-vacuum motion. The scientific applications motivated by this development, the details of the instrument, and spectra demonstrating the field strengths achieved using this newly developed system are discussed.

  13. A Survey of Students from the National School on Neutron and X-ray Scattering: Communication Habits and Preferences

    SciTech Connect (OSTI)

    Bryant, Rebecca [Bryant Research, LLC

    2010-12-01T23:59:59.000Z

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world. And the SNS is one of the world's most intense pulse neutron beams. Management of these resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD started conducting the National School on Neutron and X-ray Scattering (NXS) in conjunction with the Advanced Photon Source (APS) at Argonne National Laboratory in 2007. This survey was conducted to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites and social media, for communicating with students about neutron science The survey was conducted in two phases using a classic qualitative investigation to confirm language and content followed by a survey designed to quantify issues, assumptions, and working hypotheses. Phase I consisted of a focus group in late June 2010 with students attending NXS. The primary intent of the group was to inform development of an online survey. Phase two consisted of an online survey that was developed and pre-tested in July 2010 and launched on August 9, 2010 and remained in the field until September 9, 2010. The survey achieved an overall response rate of 48% for a total of 157 completions. The objective of this study is to determine the most effective ways to reach students with information about what SNS and HFIR offer the scientific community, including content and communication vehicles. The emphasis is on gaining insights into compelling messages and the most effective channels, e.g., Web sites, social media, for communicating with students about neutron science.

  14. Sub-100-ps structural dynamics of horse heart myoglobin probed by time-resolved X-ray solution scattering

    E-Print Network [OSTI]

    Ihee, Hyotcherl

    Sub-100-ps structural dynamics of horse heart myoglobin probed by time-resolved X-ray solution-slicing Structural dynamics Myoglobin a b s t r a c t Here we report sub-100-ps structural dynamics of horse heart rearrangement [27]. In this work, we extend the time-slicing scheme to a protein, horse heart myoglobin (Mb

  15. Propagation of a strong x-ray pulse: Pulse compression, stimulated Raman scattering, amplified spontaneous emission, lasing without inversion, and four-wave mixing

    SciTech Connect (OSTI)

    Sun Yuping; Wang Chuankui [College of Physics and Electronics, Shandong Normal University, 250014 Jinan (China); Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm (Sweden); Liu Jicai; Gel'mukhanov, Faris [Department of Theoretical Chemistry, School of Biotechnology, Royal Institute of Technology, S-10691 Stockholm (Sweden)

    2010-01-15T23:59:59.000Z

    We study the compression of strong x-ray pulses from x-ray free-electron lasers (XFELs) propagating through the resonant medium of atomic argon. The simulations are based on the three-level model with the frequency of the incident x-ray pulse tuned in the 2p{sub 3/2}-4s resonance. The pulse propagation is accompanied by the self-seeded stimulated resonant Raman scattering (SRRS). The SRRS starts from two channels of amplified spontaneous emission (ASE), 4s-2p{sub 3/2} and 3s-2p{sub 3/2}, which form the extensive ringing pattern and widen the power spectrum. The produced seed field triggers the Stokes ASE channel 3s-2p{sub 3/2}. The population inversion is quenched for longer propagation distances where the ASE is followed by the lasing without inversion (LWI), which amplifies the Stokes component. Both ASE and LWI reshape the input pulse: The compressed front part of the pulse (up to 100 as) is followed by the long tail of the ringing and beating between the pump and Stokes frequencies. The pump pulse also generates weaker Stokes and anti-Stokes fields caused by four-wave mixing. These four spectral bands have fine structures caused by the dynamical Stark effect. A slowdown of the XFEL pulse up to 78% of the speed of light in vacuum is found because of a large nonlinear refractive index.

  16. Morphology of gold nanoparticles determined by full-curve fitting of the light absorption spectrum. Comparison with X-ray scattering and electron microscopy data

    E-Print Network [OSTI]

    Kostyantyn Slyusarenko; Benjamin Abécassis; Patrick Davidson; Doru Constantin

    2015-04-04T23:59:59.000Z

    UV-Vis absorption spectroscopy is frequently used to characterize the size and shape of gold nanoparticles. We present a full-spectrum model that yields reliable results for the commonly encountered case of mixtures of spheres and rods in varying proportions. We determine the volume fractions of the two populations, the aspect ratio distribution of the nanorods (average value and variance) and the interface damping parameter. We validate the model by checking the fit results against small-angle X-ray scattering and transmission electron microscopy data and show that correctly accounting for the polydispersity in aspect ratio is essential for a quantitative description of the longitudinal plasmon peak.

  17. Separable-spherical-wave approximation: Application to x-ray-absorption fine-structure multiple scattering in ReO sub 3

    SciTech Connect (OSTI)

    Houser, B. (Department of Physics, MS 68, Eastern Washington University, Cheney, Washington 99004 (United States)); Ingalls, R.; Rehr, J.J. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1992-04-01T23:59:59.000Z

    Rehr and Albers have shown that the exact x-ray-absorption fine-structure (XAFS) propagator may be expanded in a separable matrix form, and that the lowest-order term in the expansion yields XAFS formulas that contain spherical-wave corrections, yet retain the simplicity of the plane-wave approximation. This separable-spherical-wave approximation was used to model the multiple-scattering contributions to the XAFS spectrum of rhenium trioxide. We report a modest improvement over the plane-wave approximation.

  18. BioSAXS Sample Changer: a robotic sample changer for rapid and reliable high-throughput X-ray solution scattering experiments

    SciTech Connect (OSTI)

    Round, Adam, E-mail: around@embl.fr; Felisaz, Franck [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Fodinger, Lukas; Gobbo, Alexandre [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Huet, Julien [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Villard, Cyril [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Blanchet, Clement E., E-mail: around@embl.fr [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Pernot, Petra; McSweeney, Sean [ESRF, 6 Rue Jules Horowitz, 38000 Grenoble (France); Roessle, Manfred; Svergun, Dmitri I. [EMBL c/o DESY, Notkestrasse 85, 22603 Hamburg (Germany); Cipriani, Florent, E-mail: around@embl.fr [European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France); Université Grenoble Alpes–EMBL–CNRS, 71 Avenue des Martyrs, CS 90181, 38042 Grenoble (France)

    2015-01-01T23:59:59.000Z

    A robotic sample changer for solution X-ray scattering experiments optimized for speed and to use the minimum amount of material has been developed. This system is now in routine use at three high-brilliance European synchrotron sites, each capable of several hundred measurements per day. Small-angle X-ray scattering (SAXS) of macromolecules in solution is in increasing demand by an ever more diverse research community, both academic and industrial. To better serve user needs, and to allow automated and high-throughput operation, a sample changer (BioSAXS Sample Changer) that is able to perform unattended measurements of up to several hundred samples per day has been developed. The Sample Changer is able to handle and expose sample volumes of down to 5 µl with a measurement/cleaning cycle of under 1 min. The samples are stored in standard 96-well plates and the data are collected in a vacuum-mounted capillary with automated positioning of the solution in the X-ray beam. Fast and efficient capillary cleaning avoids cross-contamination and ensures reproducibility of the measurements. Independent temperature control for the well storage and for the measurement capillary allows the samples to be kept cool while still collecting data at physiological temperatures. The Sample Changer has been installed at three major third-generation synchrotrons: on the BM29 beamline at the European Synchrotron Radiation Facility (ESRF), the P12 beamline at the PETRA-III synchrotron (EMBL@PETRA-III) and the I22/B21 beamlines at Diamond Light Source, with the latter being the first commercial unit supplied by Bruker ASC.

  19. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-01T23:59:59.000Z

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with the previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.

  20. High-energy magnetic excitations in overdoped La 2 - x Sr x CuO 4 studied by neutron and resonant inelastic x-ray scattering

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wakimoto, S.; Ishii, K.; Kimura, H.; Fujita, M.; Dellea, G.; Kummer, K.; Braicovich, L.; Ghiringhelli, G.; Debeer-Schmitt, L. M.; Granroth, G. E.

    2015-05-01T23:59:59.000Z

    We have performed neutron inelastic scattering and resonant inelastic x-ray scattering (RIXS) at the Cu-L? edge to study high-energy magnetic excitations at energy transfers of more than 100 meV for overdoped La2-xSrxCuO? with x=0.25 (Tc=15 K) and x=0.30 (nonsuperconducting) using identical single-crystal samples for the two techniques. From constant-energy slices of neutron-scattering cross sections, we have identified magnetic excitations up to ~250 meV for x=0.25. Although the width in the momentum direction is large, the peak positions along the (?,?) direction agree with the dispersion relation of the spin wave in the nondoped La?CuO? (LCO), which is consistent with themore »previous RIXS results of cuprate superconductors. Using RIXS at the Cu-L? edge, we have measured the dispersion relations of the so-called paramagnon mode along both (?,?) and (?,0) directions. Although in both directions the neutron and RIXS data connect with each other and the paramagnon along (?,0) agrees well with the LCO spin-wave dispersion, the paramagnon in the (?,?) direction probed by RIXS appears to be less dispersive and the excitation energy is lower than the spin wave of LCO near (?/2,?/2). Thus, our results indicate consistency between neutron inelastic scattering and RIXS, and elucidate the entire magnetic excitation in the (?,?) direction by the complementary use of two probes. The polarization dependence of the RIXS profiles indicates that appreciable charge excitations exist in the same energy range of magnetic excitations, reflecting the itinerant character of the overdoped sample. A possible anisotropy in the charge excitation intensity might explain the apparent differences in the paramagnon dispersion in the (?,?) direction as detected by the x-ray scattering.« less

  1. Calibration procedures for charge-coupled device x-ray detectors S. L. Barnaa)

    E-Print Network [OSTI]

    Gruner, Sol M.

    Calibration procedures for charge-coupled device x-ray detectors S. L. Barnaa) Department for publication 29 March 1999 Calibration procedures are described for use with electronic x-ray detectors variations for both small-angle and wide-angle applications. The accuracy of the calibration procedures

  2. Vacancy-induced nanoscale phase separation in KxFe2–ySe? single crystals evidenced by Raman scattering and powder x-ray diffraction

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Lazarevi?, N.; Abeykoon, M.; Stephens, P. W.; Lei, Hechang; Bozin, E. S.; Petrovic, C.; Popovi?, Z. V.

    2012-08-01T23:59:59.000Z

    Polarized Raman scattering spectra of KxFe2–ySe? were analyzed in terms of peculiarities of both I4/m and I4/mmm space group symmetries. The presence of the Raman active modes from both space group symmetries (16 Raman-active modes of the I4/m phase and two Raman-active modes of the I4/mmm phase) confirmed the existence of two crystallographic domains with different space group symmetry in a KxFe2–ySe? sample. High-resolution synchrotron powder x-ray diffraction structural refinement of the same sample confirmed the two-phase description, and determined the atomic positions and occupancies for both domains.

  3. Evolution of crystalline structures of poly([epsilon]-caprolactone)/polycarbonate blends; 1: Isothermal crystallization kinetics as probed by synchrotron small-angle x-ray scattering

    SciTech Connect (OSTI)

    Cheung, Y.W.; Stein, R.S. (Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering); Chu, B.; Wu, G. (State Univ. of New York at Stony Brook, Long Island, NY (United States))

    1994-06-20T23:59:59.000Z

    Evolution of the poly([epsilon]-caprolactone) (PCL) lamellae in blends of PCL/PC (polycarbonate) was monitored by synchrotron small-angle X-ray scattering (SAXS). The effects of crystallization temperature, PC concentration, and PC crystallinity on the PCL lamellar growth in the PCL-rich blends were investigated. The half-crystallization time derived from the temporal change of the peak intensity increased with crystallization temperature and generally increased with the addition of PC. For a given blend composition, the lamellar growth rate increased with increasing PC crystallinity. The interlamellar spacing initially varied with time and then approached a plateau value at the later stage of crystallization. An insertion mechanism is proposed in which the PCL is crystallized in the amorphous intralamellar phase. This model is also consistent with the quantitative SAXS results, which suggested that random mixing of PCL and PC lamellae occurred in the semicrystalline (PCL)/semicrystalline (PC) state.

  4. Study of the Crystalline Morphology Evolution of PET and PET/PC Blends by Time-resolved Synchrotron Small Angle X-ray Scattering (SAXS) and DSC

    SciTech Connect (OSTI)

    Barbosa, Irineu; Larocca, Nelson M.; Hage, Elias [Dep. de Engenharia de Materiais, Universidade Federal de Sao Carlos, Sao Carlos, SP (Brazil); Plivelic, Tomas S.; Torriani, Iris L. [Laboratorio Nacional de Luz Sincrotron, Campinas, SP (Brazil); Mantovani, Gerson L. [Centro de Engenharia, Modelagem e Ciencias Sociais Aplicadas, Universidade Federal do ABC, 09090-400 Santo Andre, SP (Brazil)

    2009-01-29T23:59:59.000Z

    Isothermal melt crystallization of poly(ethylene terephthalate)(PET) and PET/PC (polycarbonate) blend, with and without a transesterification catalyst, was studied by time-resolved small-angle X-ray scattering (SAXS) and differential scanning calorimetry (DSC) in order to achieve the variation of the morphological parameters throughout the whole crystallization time. For neat PET, the catalyst promotes a decrease of the crystal lamellar thickness but for the blend no variations were observed. The effect of incorporation of catalyst in crystallization kinetics was very distinct in PET pure and the blend: in the former the catalyst leads to an increase of this kinetics while for the latter it was observed a decreasing.

  5. Combined x-ray scattering, radiography, and velocity interferometry/streaked optical pyrometry measurements of warm dense carbon using a novel technique of shock-and-release

    SciTech Connect (OSTI)

    Falk, K.; Collins, L. A.; Kagan, G.; Kress, J. D.; Montgomery, D. S.; Srinivasan, B. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Gamboa, E. J. [University of Michigan, Ann Arbor, Michigan 48109 (United States) [University of Michigan, Ann Arbor, Michigan 48109 (United States); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, MS 72, Menlo Park, California 94025 (United States); Tzeferacos, P. [Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637 (United States)] [Flash Center for Computational Science, University of Chicago, Chicago, Illinois 60637 (United States); Benage, J. F. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States) [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)

    2014-05-15T23:59:59.000Z

    This work focused on a new application of the shock-and-release technique for equation of state (EOS) measurements. Warm dense matter states at near normal solid density and at temperatures close to 10?eV in diamond and graphite samples were created using a deep release from a laser-driven shock at the OMEGA laser facility. Independent temperature, density, and pressure measurements that do not depend on any theoretical models or simulations were obtained using imaging x-ray Thomson scattering, radiography, velocity interferometry, and streaked optical pyrometry. The experimental results were reproduced by the 2-D FLASH radiation hydrodynamics simulations finding a good agreement. The final EOS measurement was then compared with widely used SESAME EOS models as well as quantum molecular dynamics simulation results for carbon, which were very consistent with the experimental data.

  6. J. Mol. Biol. (1975) 99, 15-25 On the Interpretation of Small-angle X-ray Solution Scattering

    E-Print Network [OSTI]

    Harrison, Stephen C.

    1975-01-01T23:59:59.000Z

    scattering points of unit weight with angular co-ordinates 8t, ~b~,we have g, = Y..:,* (el,i,,) (2) t=1 since

  7. Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus

    SciTech Connect (OSTI)

    Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Karr, Dale B.; Nix, Jay C.; Sobrado, Pablo; Tanner, John J. (Missouri); (LBNL); (VPI-SU)

    2012-05-14T23:59:59.000Z

    UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.

  8. Probing the MgATP-Bound Conformation of the Nitrogenase Fe Protein By Solution Small-Angle X-Ray Scattering

    SciTech Connect (OSTI)

    Sarma, R.; Mulder, D.W.; Brecht, E.; Szilagyi, R.K.; Seefeldt, L.C.; Tsuruta, H.; Peters, J.W.; /Montana State U. /SLAC, SSRL /Utah State U.

    2009-04-30T23:59:59.000Z

    The MgATP-bound conformation of the Fe protein of nitrogenase from Azotobacter vinelandii has been examined in solution by small-angle X-ray scattering (SAXS) and compared to existing crystallographically characterized Fe protein conformations. The results of the analysis of the crystal structure of an Fe protein variant with a Switch II single-amino acid deletion recently suggested that the MgATP-bound state of the Fe protein may exist in a conformation that involves a large-scale reorientation of the dimer subunits, resulting in an overall elongated structure relative to the more compact structure of the MgADP-bound state. It was hypothesized that the Fe protein variant may be a conformational mimic of the MgATP-bound state of the native Fe protein largely on the basis of the observation that the spectroscopic properties of the [4Fe-4S] cluster of the variant mimicked in part the spectroscopic signatures of the native nitrogenase Fe protein in the MgATP-bound state. In this work, SAXS studies reveal that the large-scale conformational differences between the native Fe protein and the variant observed by X-ray crystallography are also observed in solution. In addition, comparison of the SAXS curves of the Fe protein nucleotide-bound states to the nucleotide-free states indicates that the conformation of the MgATP-bound state in solution does not resemble the structure of the variant as initially proposed, but rather, at the resolution of this experiment, it resembles the structure of the nucleotide-free state. These results provide insights into the Fe protein conformations that define the role of MgATP in nitrogenase catalysis.

  9. X-Ray Data from the X-Ray Data Booklet Online

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Thompson, Albert C.; Attwood, David T.; Gullikson, Eric M.; Howells, Malcolm R.; Kortright, Jeffrey B.; Robinson, Arthur L.; Underwood, James H.; Kim, Kwang-Je; Kirz, Janos; Lindau, Ingolf; Pianetta, Piero; Winick, Herman; Williams, Gwyn P.; Scofield, James H.

    The original X-Ray Data Booklet, published in 1985, became a classic reference source. The online version has been significantly revised and updated to reflect today's science. Hundreds of pages of authoritative data provide the x-ray properties of elements, information on synchrotron radiation, scattering processes, optics and detectors, and other related calculations, formulas, and data tables.

  10. Two wide-angle imaging neutral-atom spectrometers

    SciTech Connect (OSTI)

    McComas, D.J.

    1997-12-31T23:59:59.000Z

    The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

  11. Transient x-ray diffraction and its application to materials science and x-ray optics

    SciTech Connect (OSTI)

    Hauer, A.A.; Kopp, R.; Cobble, J.; Kyrala, G.; Springer, R. [and others

    1997-12-01T23:59:59.000Z

    Time resolved x-ray diffraction and scattering have been applied to the measurement of a wide variety of physical phenomena from chemical reactions to shock wave physics. Interest in this method has heightened in recent years with the advent of versatile, high power, pulsed x-ray sources utilizing laser plasmas, electron beams and other methods. In this article, we will describe some of the fundamentals involved in time resolved x-ray diffraction, review some of the history of its development, and describe some recent progress in the field. In this article we will emphasize the use of laser-plasmas as the x-ray source for transient diffraction.

  12. Chest x-Rays

    Broader source: Energy.gov [DOE]

    The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

  13. X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Henke, B.L.; Gullikson, E.M.; Davis, J.C.

    The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

  14. A promising concept for using near-surface measuring angles in angle-resolved x-ray photoelectron spectroscopy considering elastic scattering effects

    SciTech Connect (OSTI)

    Oswald, S.; Oswald, F. [IFW Dresden, Postfach 270116, D-01171 Dresden (Germany)

    2011-02-01T23:59:59.000Z

    The increasing number of applications of very thin films requires both reliable thin-layer and interface characterization. A powerful method for characterization in the nanometer thickness range is the angle-resolved x-ray photoelectron spectroscopy (ARXPS). This is a nondestructive depth-profiling method, which can provide elemental content as well as chemical information. Two of the drawbacks of ARXPS are, that it requires dedicated mathematical modeling and that, at least up until now, its use has been restricted away from near-surface angles. In this paper we present a method for the mathematical description of a few, hitherto unaccounted, measurement effects in order to improve the simulations of ARXPS data for complex surface structures. As an immediate application, we propose a simple algorithm to consider the effects of elastic scattering in the standard ARXPS data interpretation, which in principle would allow the use of the whole angular range for the analysis; thus leading to a significant increase in the usable information content from the measurements. The potential of this approach is demonstrated with model calculations for a few thin film examples.

  15. Investigations of the R5(SixGe1-x)4 Intermetallic Compounds by X-Ray Resonant Magnetic Scattering

    SciTech Connect (OSTI)

    Lizhi Tan

    2008-08-18T23:59:59.000Z

    The XRMS experiment on the Gd{sub 5}Ge{sub 4} system has shown that, below the Neel temperature, T{sub N} = 127 K, the magnetic unit cells is the same as the chemical unit cell. From azimuth scans and the Q dependence of the magnetic scattering, all three Gd sites in the structure were determined to be in the same magnetic space group Pnma. The magnetic moments are aligned along the c-axis and the c-components of the magnetic moments at the three different sites are equal. The ferromagnetic slabs are stacked antiferromagnetically along the b-direction. They found an unusual order parameter curve in Gd{sub 5}Ge{sub 4}. A spin-reorientation transition is a possibility in Gd{sub 5}Ge{sub 4}, which is similar to the Tb{sub 5}Ge{sub 4} case. Tb{sub 5}Ge{sub 4} possesses the same Sm{sub 5}Ge{sub 4}-type crystallographic structure and the same magnetic space group as Gd{sub 5}Ge{sub 4} does. The difference in magnetic structure is that Tb{sub 5}Ge{sub 4} has a canted one but Gd{sub 5}Ge{sub 4} has nearly a collinear one in the low temperature antiferromagnetic phase. The competition between the magneto-crystalline anisotropy and the nearest-neighbor magnetic exchange interactions may allow a 3-dimensional canted antiferromagnetic structure in Tb{sub 5}Ge{sub 4}. The spin-reorientation transition in both Gd{sub 5}Ge{sub 4} and Tb{sub 5}Ge{sub 4} may arise from the competition between the magnetic anisotropy from the spin-orbit coupling of the conduction electrons and the dipolar interactions anisotropy.

  16. X-ray laser

    DOE Patents [OSTI]

    Nilsen, Joseph (Livermore, CA)

    1991-01-01T23:59:59.000Z

    An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

  17. Portable X-Ray, K-Edge Heavy Metal Detector

    SciTech Connect (OSTI)

    Fricke, V.

    1999-10-25T23:59:59.000Z

    The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.

  18. X-ray absorption in distant type II QSOs

    E-Print Network [OSTI]

    Krumpe, M; Corral, A; Schwope, A D; Carrera, F J; Barcons, X; Page, M; Mateos, S; Tedds, J A; Watson, M G

    2008-01-01T23:59:59.000Z

    We present the results of the X-ray spectral analysis of an XMM-Newton-selected type II QSO sample with z>0.5 and 0.5-10 keV flux of 0.3-33 x 10^{-14} erg/s/cm^2. The distribution of absorbing column densities in type II QSOs is investigated and the dependence of absorption on X-ray luminosity and redshift is studied. We inspected 51 spectroscopically classified type II QSO candidates from the XMM-Newton Marano field survey, the XMM-Newton-2dF wide angle survey (XWAS), and the AXIS survey to set-up a well-defined sample with secure optical type II identifications. Fourteen type II QSOs were classified and an X-ray spectral analysis performed. Since most of our sources have only ~40 X-ray counts (PN-detector), we carefully studied the fit results of the simulated X-ray spectra as a function of fit statistic and binning method. We determined that fitting the spectra with the Cash-statistic and a binning of minimum one count per bin recovers the input values of the simulated X-ray spectra best. Above 100 PN coun...

  19. X-ray beam finder

    DOE Patents [OSTI]

    Gilbert, H.W.

    1983-06-16T23:59:59.000Z

    An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

  20. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, R.D.; Huang, Z.

    1998-10-20T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

  1. Compton backscattered collmated X-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    2000-01-01T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  2. Compton backscattered collimated x-ray source

    DOE Patents [OSTI]

    Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

    1998-01-01T23:59:59.000Z

    A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

  3. X-Ray Diagnostics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-Ray Diagnostics X-Ray

  4. In situ synchrotron based x-ray techniques as monitoring tools for atomic layer deposition

    SciTech Connect (OSTI)

    Devloo-Casier, Kilian, E-mail: Kilian.DevlooCasier@Ugent.be; Detavernier, Christophe; Dendooven, Jolien [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent (Belgium); Ludwig, Karl F. [Physics Department, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215 (United States)

    2014-01-15T23:59:59.000Z

    Atomic layer deposition (ALD) is a thin film deposition technique that has been studied with a variety of in situ techniques. By exploiting the high photon flux and energy tunability of synchrotron based x-rays, a variety of new in situ techniques become available. X-ray reflectivity, grazing incidence small angle x-ray scattering, x-ray diffraction, x-ray fluorescence, x-ray absorption spectroscopy, and x-ray photoelectron spectroscopy are reviewed as possible in situ techniques during ALD. All these techniques are especially sensitive to changes on the (sub-)nanometer scale, allowing a unique insight into different aspects of the ALD growth mechanisms.

  5. Residual stress measurement using X-ray diffraction

    E-Print Network [OSTI]

    Anderoglu, Osman

    2005-02-17T23:59:59.000Z

    -rays..............................................................................................16 2.4. Bragg's Law ..........................................................................................................18 2.5. Diffractometer Geometry... Figure 2.2 Schematic showing the basic components of a modern x-ray tube. Beryllium window is highly transparent to x-rays...............................15 Figure 2.3 Coherent scattering from an electron to a point P...

  6. Small-angle scattering investigations of poly([epsilon]-caprolactone)/polycarbonate blends -- 2: Small-angle X-ray and light scattering study of semicrystalline/semicrystalline and semicrystalline/amorphous blend morphologies

    SciTech Connect (OSTI)

    Cheung, Y.W.; Stein, R.S. (Univ. of Massachusetts, Amherst, MA (United States). Dept. of Polymer Science and Engineering); Lin, J.S.; Wignall, G.D. (Oak Ridge National Lab., Oak Ridge, TN (United States))

    1994-04-25T23:59:59.000Z

    Crystalline morphologies of poly([epsilon]-caprolactone) (PCL) and polycarbonate (PC) blends were probed with small-angle X-ray scattering (SAXS) and small-angle light scattering (SALS). Quantitative SAXS analysis suggested that random mixing of PCL and PC lamellae occurred in the semicrystalline/semicrystalline state. Two distinct regions of incorporation were identified in the semicrystalline/amorphous state. It was found that PCL was rejected from the PC interlamellar region in the PCL-rich blends. In contrast, PCL was incorporated into the amorphous phase between the crystalline lamellae in the PC-rich blends. This transition from interlamellar exclusion to interlamellar inclusion may be related to the glass transition temperatures or the mobility of the blends. It is proposed that the mode of incorporation or exclusion is governed by the competition between entropy and diffusion. Additionally, SALS coupled with optical microscopy indicated that PC is an effective nucleating agent for PCL crystallization as manifested by the reduction of PCL spherulitic size with the addition of PC.

  7. Theoretical standards in x-ray spectroscopies

    SciTech Connect (OSTI)

    Not Available

    1992-01-01T23:59:59.000Z

    We propose to extend our state-of-the-art, ab initio XAFS (X-ray absorption fine structure) codes, FEFF. Our current work has been highly successful in achieving accurate, user-friendly XAFS standards, exceeding the performance of both tabulated standards and other codes by a considerable margin. We now propose to add the capability to treat more complex materials. This includes multiple-scattering, polarization dependence, an approximate treatment of XANES (x-ray absorption near edge structure), and other improvements. We also plan to adapt FEFF to other spectroscopies, e.g. photoelectron diffraction (PD) and diffraction anomalous fine structure (DAFS).

  8. Characterization of a Fe/Y{sub 2}O{sub 3} metal/oxide interface using neutron and x-ray scattering

    SciTech Connect (OSTI)

    Watkins, E. B.; Majewski, J., E-mail: demkowicz@mit.edu, E-mail: jarek@lanl.gov [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Kashinath, A. [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Computational Modeling Technology, Aramco Research Center—Boston, Cambridge, Massachusetts 02139 (United States); Wang, P. [Lujan Neutron Scattering Center, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Intel Corporation, Hillsboro, Oregon, 97006 (United States); Baldwin, J. K. [Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Demkowicz, M. J., E-mail: demkowicz@mit.edu, E-mail: jarek@lanl.gov [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States)

    2014-07-28T23:59:59.000Z

    The structure of metal/oxide interfaces is important to the radiation resistance of oxide dispersion-strengthened steels. We find evidence of gradual variations in stoichiometry and magnetization across a Fe/Y{sub 2}O{sub 3} metal/oxide heterophase interface using neutron and x-ray reflectometry. These findings suggest that the Fe/Y{sub 2}O{sub 3} interface is a transitional zone approximately ?64?Å-thick containing mixtures or compounds of Fe, Y, and O. Our results illustrate the complex chemical and magnetic nature of Fe/oxide interfaces and demonstrate the utility of combined neutron and x-ray techniques as tools for characterizing them.

  9. Bomb Detection Using Backscattered X-Rays

    SciTech Connect (OSTI)

    Jacobs, J.; Lockwood, G.; Selph, M; Shope, S.; Wehlburg, J.

    1998-10-01T23:59:59.000Z

    Bomb Detection Using Backscattered X-rays* Currently the most common method to determine the contents of a package suspected of containing an explosive device is to use transmission radiography. This technique requires that an x-ray source and film be placed on opposite sides of the package. This poses a problem if the pachge is placed so that only one side is accessible, such as against a wall. There is also a threat to persomel and property since exTlosive devices may be "booby trapped." We have developed a method to x-ray a paclage using backscattered x-rays. This procedure eliminates the use of film behind the target. All of the detection is done from the same side as the source. When an object is subjected to x-rays, some of them iare scattered back towards the source. The backscattenng of x-rays is propordoml to the atomic number (Z) of the material raised to the 4.1 power. This 24"' dependence allows us to easily distinguish between explosives, wires, timer, batteries, and other bomb components. Using transmission radiography-to image the contents of an unknown package poses some undesirable risks. The object must have an x-ray film placed on the side opposite the x-ray source; this cannot be done without moving the package if it has been placed firmly against a wall or pillar. Therefore it would be extremely usefid to be able to image the contents of a package from only one side, without ever having to disturb the package itself. where E is the energy of the incoming x-ray. The volume of x-rays absorbed is important because it is, of course, directly correlated to the intensity of x-mys that will be scattered. Most of the x-rays that scatter will do so in a genemlly forward direction; however, a small percentage do scatter in a backward direction. Figure 1 shows a diagram of the various fates of x-rays directed into an object. The package that was examined in this ex~enment was an attache case made of pressed fiberboardwith a vinyl covering. It was approxirmtely 36 cm wide by 51 cm long by 13 cm deep. The case was placed on an aluminum sheet under the x-ray source. Because of the laborato~ setup, the attache case was rastered in the y-coordinate direction, while the x-ray source mstered in the x-coordinate direction. However, for field use, the x-ray source would of course raster in both the x- and y-coordinate directions, while the object under interrogation would remain stationary and undisturbed. A mobile system for use by law enforcement agencies or bomb disposal squads needs to be portable and somewhat durable. A 300 kV x-ray source should be sufficient for the task requirements and can be mounted on a mobile system. A robotic carriage could be used to transport the x-ray source and the CCD camera to the proximity of the suspect package. The controlling and data analyzing elements of the system' could then be maintained at a &tie distance from the possible explosive. F@re 8 shows a diagram of a conceptual design of a possible system for this type of use. The use of backscattered x-rays for interrogation of packages that may contain explosive devices has been shown to be feasible inthelaboratory. Usinga 150kVx-ray source anddetectors consisting of plastic scintillating material, all bomb components including the wiring were detectable. However, at this time the process requires more time than is desirable for the situations in which it will most likely be needed. Further development of the technology using CCD cameras, rather than the plastic stint illator detectors, shows promise of leading to a much faster system, as well as one with better resolution. Mounting the x- ray source and the CCD camera on a robotic vehicle while keeping the controlling and analyzing components and the opemting personnel a safe distance away from the suspect package will allow such a package to be examined at low risk to human life.

  10. Krill-eye : Superposition Compound Eye for Wide-Angle Imaging via GRIN Lenses

    E-Print Network [OSTI]

    Hiura, Shinsaku

    We propose a novel wide angle imaging system inspired by compound eyes of animals. Instead of using a single lens, well compensated for aberration, we used a number of simple lenses to form a compound eye which produces ...

  11. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, Melvin A. (Woodside, CA); Boyers, David G. (Mountain View, CA); Pincus, Cary (Sunnyvale, CA)

    1991-01-01T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  12. X-ray lithography source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31T23:59:59.000Z

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  13. X-ray absorption in distant type II QSOs

    E-Print Network [OSTI]

    M. Krumpe; G. Lamer; A. Corral; A. D. Schwope; F. J. Carrera; X. Barcons; M. Page; S. Mateos; J. A. Tedds; M. G. Watson

    2008-03-10T23:59:59.000Z

    We present the results of the X-ray spectral analysis of an XMM-Newton-selected type II QSO sample with z>0.5 and 0.5-10 keV flux of 0.3-33 x 10^{-14} erg/s/cm^2. The distribution of absorbing column densities in type II QSOs is investigated and the dependence of absorption on X-ray luminosity and redshift is studied. We inspected 51 spectroscopically classified type II QSO candidates from the XMM-Newton Marano field survey, the XMM-Newton-2dF wide angle survey (XWAS), and the AXIS survey to set-up a well-defined sample with secure optical type II identifications. Fourteen type II QSOs were classified and an X-ray spectral analysis performed. Since most of our sources have only ~40 X-ray counts (PN-detector), we carefully studied the fit results of the simulated X-ray spectra as a function of fit statistic and binning method. We determined that fitting the spectra with the Cash-statistic and a binning of minimum one count per bin recovers the input values of the simulated X-ray spectra best. Above 100 PN counts, the free fits of the spectrum's slope and absorbing hydrogen column density are reliable. We find only moderate absorption (N_H=(2-10) x 10^22 cm^-2) and no obvious trends with redshift and intrinsic X-ray luminosity. In a few cases a Compton-thick absorber cannot be excluded. Two type II objects with no X-ray absorption were discovered. We find no evidence for an intrinsic separation between type II AGN and high X-ray luminosity type II QSO in terms of absorption. The stacked X-ray spectrum of our 14 type II QSOs shows no iron K-alpha line. In contrast, the stack of the 8 type II AGN reveals a very prominent iron K-alpha line at an energy of ~ 6.6 keV and an EW ~ 2 keV.

  14. X-ray spectrometry

    SciTech Connect (OSTI)

    Markowicz, A.A.; Van Grieken, R.E.

    1986-04-01T23:59:59.000Z

    In the period under review, i.e, through 1984 and 1985, some 600 articles on XRS (X-ray spectrometry) were published; most of these have been scanned and the most fundamental ones are discussed. All references will refer to English-language articles, unless states otherwise. Also general books have appeared on quantitative EPXMA (electron-probe X-ray microanalysis) and analytical electron microscopy (AEM) as well as an extensive review on the application of XRS to trace analysis of environmental samples. In the period under review no radically new developments have been seen in XRS. However, significant improvements have been made. Gain in intensities has been achieved by more efficient excitation, higher reflectivity of dispersing media, and better geometry. Better understanding of the physical process of photon- and electron-specimen interactions led to complex but more accurate equations for correction of various interelement effects. Extensive use of micro- and minicomputers now enables fully automatic operation, including qualitative analysis. However, sample preparation and presentation still put a limit to further progress. Although some authors find XRS in the phase of stabilization or even stagnation, further gradual developments are expected, particularly toward more dedicated equipment, advanced automation, and image analysis systems. Ways are outlined in which XRS has been improved in the 2 last years by excitation, detection, instrumental, methodological, and theoretical advances. 340 references.

  15. High-Energy X-ray Studies of Real Materials Under Real Conditions and in Real Time

    SciTech Connect (OSTI)

    Almer, Jonathan (ANL) [ANL

    2011-05-11T23:59:59.000Z

    High-energy x-rays from 3rd generation synchrotron sources, including the APS, possess a unique combination of high penetration power and high spatial, reciprocal space, and temporal resolution. These characteristics can be exploited to non-destructively measure phase, texture and strain distributions under extreme environments including thermo-mechanical loading, high-pressure, irradiation and supercritical environments. Over the past several years, the 1-ID beamline has developed a number of programs for these purposes, namely (i) high-energy diffraction microscopy, in which grain and sub-grain volumes are mapped in polycrystalline aggregates, and (ii) combined small-and wide-angle x-ray scattering which permits information over a broad range of length scales to be collected from the same (micron-level) volume. These programs have been increasingly used to test and extend predictive simulations of materials behavior over size scales ranging from nm to mm. Select studies will be presented including nucleation and growth of nanomaterials, void and structural evolution in complex composites under thermo-mechanical and irradiated environments, and microstructural changes in layered systems including thermal-barrier coatings, batteries and fuel cells. Finally, extension of these programs, through the planned APS upgrade, to higher spatio-temporal resolution will be described.

  16. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Stone, Gary F. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA); Chornenky, Victor I. (Minnetonka, MN)

    2002-01-01T23:59:59.000Z

    A miniature x-ray source capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature x-ray source comprises a compact vacuum tube assembly containing a cathode, an anode, a high voltage feedthru for delivering high voltage to the anode, a getter for maintaining high vacuum, a connection for an initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is highly x-ray transparent and made, for example, from boron nitride. The compact size and potential for remote operation allows the x-ray source, for example, to be placed adjacent to a material sample undergoing analysis or in proximity to the region to be treated for medical applications.

  17. X-Ray Diffraction Microscopy of Magnetic Structures

    SciTech Connect (OSTI)

    Turner, J.; Lima, E.; Huang, X.; Krupin, O.; Seu, K.; Parks, D.; Kevan, S.; Kisslinger, K.; McNulty, I.; Gambino, R.; Mangin, S.; Roy, S. and Fischer, P.

    2011-07-14T23:59:59.000Z

    We report the first proof-of-principle experiment of iterative phase retrieval from magnetic x-ray diffraction. By using the resonant x-ray excitation process and coherent x-ray scattering, we show that linearly polarized soft x rays can be used to image both the amplitude and the phase of magnetic domain structures. We recovered the magnetic structure of an amorphous terbium-cobalt thin film with a spatial resolution of about 75 nm at the Co L{sub 3} edge at 778 eV. In comparison with soft x-ray microscopy images recorded with Fresnel zone plate optics at better than 25 nm spatial resolution, we find qualitative agreement in the observed magnetic structure.

  18. X-ray and neutron scattering studies of the Rb?MnF? and Cu?â??õxMgx̳GeO? in an external magnetic field

    E-Print Network [OSTI]

    Christianson, Rebecca J. (Rebecca Jean), 1973-

    2001-01-01T23:59:59.000Z

    This thesis presents results of two scattering studies of low dimensional magnetic materials. The first is a neutron scattering study of Rb2MnF4, a nearly ideal two-dimensional square lattice Heisenberg antiferromagnet ...

  19. GPDs, form factors and Compton scattering

    E-Print Network [OSTI]

    P. Kroll

    2002-07-09T23:59:59.000Z

    The basic theoretical ideas of the handbag factorization and its application to wide-angle scattering reactions are reviewed. With regard to the present experimental program carried out at JLab, wide-angle Compton scattering is discussed in some detail.

  20. Neutron and X-ray experiments at high temperature P. Aldebert (*)

    E-Print Network [OSTI]

    Boyer, Edmond

    neutron scattering have appeared as power- ful tools to get information, mainly structural temperature scattering devices compared to X-rays. At the present time thermal neutron high flux reactors be investigated by neutron scattering.

  1. Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone

    SciTech Connect (OSTI)

    Barth, Holly; Zimmermann, Elizabeth; Schaible, Eric; Tang, Simon; Alliston, Tamara; Ritchie, Robert

    2011-08-19T23:59:59.000Z

    Bone comprises a complex structure of primarily collagen, hydroxyapatite and water, where each hierarchical structural level contributes to its strength, ductility and toughness. These properties, however, are degraded by irradiation, arising from medical therapy or bone-allograft sterilization. We provide here a mechanistic framework for how irradiation affects the nature and properties of human cortical bone over a range of characteristic (nano to macro) length-scales, following x-­ray exposures up to 630 kGy. Macroscopically, bone strength, ductility and fracture resistance are seen to be progressively degraded with increasing irradiation levels. At the micron-­scale, fracture properties, evaluated using in-situ scanning electron microscopy and synchrotron x-ray computed micro-tomography, provide mechanistic information on how cracks interact with the bone-matrix structure. At sub-micron scales, strength properties are evaluated with in-situ tensile tests in the synchrotron using small-/wide-angle x-ray scattering/diffraction, where strains are simultaneously measured in the macroscopic tissue, collagen fibrils and mineral. Compared to healthy bone, results show that the fibrillar strain is decreased by ~40% following 70 kGy exposures, consistent with significant stiffening and degradation of the collagen. We attribute the irradiation-­induced deterioration in mechanical properties to mechanisms at multiple length-scales, including changes in crack paths at micron-­scales, loss of plasticity from suppressed fibrillar sliding at sub-­micron scales, and the loss and damage of collagen at the nano-­scales, the latter being assessed using Raman and Fourier-Transform-Infrared spectroscopy and a fluorometric assay.

  2. Structural characterization of Green River oil-shale at high-pressure using pair distribution function analysis and small angle x-ray scattering.

    SciTech Connect (OSTI)

    Locke, D. R.; Chupas, P. J.; Chapman, K. W.; Pugmire, R. J.; Winans, R. E.; Univ. of Utah

    2008-01-01T23:59:59.000Z

    The compression behavior of a silicate-rich oil shale from the Green River formation in the pressure range 0.0-2.4 GPa was studied using in situ high pressure X-ray pair distribution function (PDF) measurements for the sample contained within a Paris-Edinburgh cell. The real-space local structural information in the PDF, G(r), was used to evaluate the compressibility of the oil shale. Specifically, the pressure-induced reduction in the medium- to long-range atom distances (6-20 {angstrom}) yielded an average sample compressibility corresponding to a bulk modulus of ca. 61-67 GPa. A structural model consisting of a three phase mixture of the principal crystalline oil shale components (quartz, albite and Illite) provided a good fit to the ambient pressure PDF data (R 30.7%). Indeed the features in the PDF beyond 6 {angstrom}, were similarly well fit by a single phase model of the highest symmetry, highly crystalline quartz component.

  3. Wide-angle seismic constraints on the internal structure of Tenerife, Canary Islands

    E-Print Network [OSTI]

    Watts, A. B. "Tony"

    Wide-angle seismic constraints on the internal structure of Tenerife, Canary Islands J.P. Canalesa of Tenerife, Canary Islands. The experiment was designed as a seismic fan pro®le to detect azimuthal rights reserved. Keywords: seismic structure; P-wave velocity anomaly; Tenerife; Canary Islands 1

  4. Soft-x-ray spectroscopy study of nanoscale materials

    SciTech Connect (OSTI)

    Guo, J.-H.

    2005-07-30T23:59:59.000Z

    The ability to control the particle size and morphology of nanoparticles is of crucial importance nowadays both from a fundamental and industrial point of view considering the tremendous amount of high-tech applications. Controlling the crystallographic structure and the arrangement of atoms along the surface of nanostructured material will determine most of its physical properties. In general, electronic structure ultimately determines the properties of matter. Soft X-ray spectroscopy has some basic features that are important to consider. X-ray is originating from an electronic transition between a localized core state and a valence state. As a core state is involved, elemental selectivity is obtained because the core levels of different elements are well separated in energy, meaning that the involvement of the inner level makes this probe localized to one specific atomic site around which the electronic structure is reflected as a partial density-of-states contribution. The participation of valence electrons gives the method chemical state sensitivity and further, the dipole nature of the transitions gives particular symmetry information. The new generation synchrotron radiation sources producing intensive tunable monochromatized soft X-ray beams have opened up new possibilities for soft X-ray spectroscopy. The introduction of selectively excited soft X-ray emission has opened a new field of study by disclosing many new possibilities of soft X-ray resonant inelastic scattering. In this paper, some recent findings regarding soft X-ray absorption and emission studies of various nanostructured systems are presented.

  5. Miniature x-ray source

    DOE Patents [OSTI]

    Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

    2000-01-01T23:59:59.000Z

    A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

  6. Structure of low-density nanoporous dielectrics revealed by low-vacuum electron microscopy and small-angle x-ray scattering

    SciTech Connect (OSTI)

    Kucheyev, S O; Toth, M; Baumann, T F; Hamza, A V; Ilavsky, J; Knowles, W R; Thiel, B L; Tileli, V; van Buuren, T; Wang, Y M; Willey, T M

    2006-06-05T23:59:59.000Z

    We use low-vacuum scanning electron microscopy to image directly the ligament and pore size and shape distributions of representative aerogels over a wide range of length scales ({approx} 10{sup 0}-10{sup 5} nm). The images are used for unambiguous, real-space interpretation of small-angle scattering data for these complex nanoporous systems.

  7. X-Ray Emission from Jupiter, Saturn, and Earth: A Short Review

    E-Print Network [OSTI]

    Anil Bhardwaj

    2006-05-11T23:59:59.000Z

    Jupiter, Saturn, and Earth - the three planets having dense atmosphere and a well developed magnetosphere - are known to emit X-rays. Recently, Chandra X-ray Observatory has observed X-rays from these planets, and XMM-Newton has observed them from Jupiter and Saturn. These observations have provided improved morphological, temporal, and spectral characteristics of X-rays from these planets. Both auroral and non-auroral (low-latitude) 'disk' X-ray emissions have been observed on Earth and Jupiter. X-rays have been detected from Saturn's disk, but no convincing evidence for X-ray aurora on Saturn has been observed. The non-auroral disk X-ray emissions from Jupiter, Saturn, and Earth, are mostly produced due to scattering of solar X-rays. X-ray aurora on Earth is mainly generated via bremsstrahlung from precipitating electrons and on Jupiter via charge exchange of highlyionized energetic heavy ions precipitating into the polar atmosphere. Recent unpublished work suggests that at higher (>2 keV) energies electron bremsstrahlung also plays a role in Jupiter's X-ray aurora. This paper summarizes the recent results of X-ray observations on Jupiter, Saturn, and Earth mainly in the soft energy (~0.1-2.0 keV) band and provides a comparative overview.

  8. Proceedings of ICRC 2001: 860 c Copernicus Gesellschaft 2001 Event reconstruction for the orbiting wide-angle light collectors

    E-Print Network [OSTI]

    for the orbiting wide-angle light collectors (OWL) air-fluorescence detector T. Z. Abu-Zayyad1 and the OWL

  9. In-situ high-energy x-ray diffuse-scattering study of the phase transition in a Ni{sub 2}MnGa ferromagnetic shape-memory crystal.

    SciTech Connect (OSTI)

    Wang, G.; Yan-Dong, W.; Yang, R.; Yan-Dong, L.; Peter, L. K.; X-Ray Science Division; Northeastern Univ.; Univ. of Tennessee

    2008-12-01T23:59:59.000Z

    The full information on the changes in many crystallographic aspects, including the structural and microstructural characterizations, during the phase transformation is essential for understanding the phase transition and 'memory' behavior in the ferromagnetic shape-memory alloys. In the present article, the defects-related microstructural features connected to the premartensitic and martensitic transition of a Ni{sub 2}MnGa single crystal under a uniaxial pressure of 50 MPa applied along the [110] crystallographic direction were studied by the in-situ high-energy X-ray diffuse-scattering experiments. The analysis of the characteristics of diffuse-scattering patterns around different sharp Bragg spots suggests that the influences of some defect clusters on the pressure-induced phase-transition sequences of Ni2MnGa are significant. Our experiments show that an intermediate phase is produced during the premartensitic transition in the Ni{sub 2}MnGa single crystal, which is favorable for the nucleation of a martensitic phase. The compression stress along the [110] direction of the Heusler phase can promote the premartensitic and martensitic transition of the Ni{sub 2}MnGa single crystal.

  10. Chemical and displacement atomic pair correlations in crystalline solid solutions recovered by anomalous x-ray scattering in Fe-Ni alloys

    SciTech Connect (OSTI)

    Ice, G.E.; Sparks, C.J. [Oak Ridge National Lab., TN (United States); Shaffer, L.B. [Anderson Univ., Anderson, IN (United States). Dept. of Physics

    1992-12-31T23:59:59.000Z

    Short-range pair correlations of atoms in crystalline solid solutions consist of both chemical and displacement correlations. Measurement of these pair correlations is fundamental to understanding the properties of solid solutions. We discuss anomalous scattering techniques which have provided an important advance in our ability to recover these pair correlations and to model the local atomic arrangements in crystalline solid solutions of Fe-Ni alloys.

  11. Linear accelerator x-ray sources with high duty cycle

    SciTech Connect (OSTI)

    Condron, Cathie; Brown, Craig; Gozani, Tsahi; Langeveld, Willem G. J. [Rapiscan Laboratories, Inc., 520 Almanor Ave. Sunnyvale, CA 94085 (United States); Hernandez, Michael [XScell corp., 2134 Old Middlefield Way, Mountain View, CA 94043 (United States)

    2013-04-19T23:59:59.000Z

    X-ray cargo inspection systems typically use a several-MV pulsed linear accelerator (linac) to produce a bremsstrahlung spectrum of x rays by bombarding a target with electrons. The x rays traverse the cargo and are detected by a detector array. Spectroscopy of the detected x rays is very desirable: if one can determine the spectrum of the transmitted x rays, one can determine the Z of the material they traversed. Even in relatively low-dose modes of operation, thousands of x rays arrive at each detector element during each pulse, unless the x rays are heavily absorbed or scattered by the cargo. For portal or fixed-site systems, dose rates, and therefore x-ray count rates, are even higher. Because of the high x-ray count rate, spectroscopy is impractical in conventional cargo inspection systems, except in certain special cases. For a mobile system, typical pulse durations are a few microseconds, and the number of pulses is on the order of 100 per second, leading to a duty factor of about 0.04%. Clearly, a linear accelerator x-ray source with much higher duty factor would be useful, since then the same number of x rays could be spread out over time, reducing the x-ray count rate. In this paper, we explore the possibility of designing a linear accelerator system, using more or less Conventional Off the Shelf (COTS) components, capable of duty cycles of 1% or greater. A survey was conducted of available linac RF source options and, given the possibilities, calculations were performed for suitable beam centerline designs. Keeping in mind that the size and cost of the accelerator system should be practical for use in a mobile cargo inspection system, only a few options are shown to be reasonably feasible, both requiring the use of klystrons instead of the magnetrons used in conventional systems. An S-Band design appears clearly possible, and there is also a promising X-Band design.

  12. A short working distance multiple crystal x-ray spectrometer

    SciTech Connect (OSTI)

    Dickinson, B.; Seidler, G. T.; Webb, Z. W.; Bradley, J. A.; Nagle, K. P. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Heald, S. M. [Advanced Photon Source, Argonne National Laboratories, Argonne, Illinois 60439 (United States); Gordon, R. A. [Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6 (Canada); Chou, I. M. [U.S. Geological Survey, Reston, Virginia 20192 (United States)

    2008-12-15T23:59:59.000Z

    For x-ray spot sizes of a few tens of microns or smaller, a millimeter-sized flat analyzer crystal placed {approx}1 cm from the sample will exhibit high energy resolution while subtending a collection solid angle comparable to that of a typical spherically bent crystal analyzer (SBCA) at much larger working distances. Based on this observation and a nonfocusing geometry for the analyzer optic, we have constructed and tested a short working distance (SWD) multicrystal x-ray spectrometer. This prototype instrument has a maximum effective collection solid angle of 0.14 sr, comparable to that of 17 SBCA at 1 m working distance. We find good agreement with prior work for measurements of the Mn K{beta} x-ray emission and resonant inelastic x-ray scattering for MnO, and also for measurements of the x-ray absorption near-edge structure for Dy metal using L{alpha}{sub 2} partial-fluorescence yield detection. We discuss future applications at third- and fourth-generation light sources. For concentrated samples, the extremely large collection angle of SWD spectrometers will permit collection of high-resolution x-ray emission spectra with a single pulse of the Linac Coherent Light Source. The range of applications of SWD spectrometers and traditional multi-SBCA instruments has some overlap, but also is significantly complementary.

  13. Compact x-ray source and panel

    DOE Patents [OSTI]

    Sampayon, Stephen E. (Manteca, CA)

    2008-02-12T23:59:59.000Z

    A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

  14. Structural dynamics and ssDNA binding activity of the three N-terminal domains of the large subunit of Replication Protein A from small angle X-ray scattering

    SciTech Connect (OSTI)

    Pretto, Dalyir I.; Tsutakawa, Susan; Brosey, Chris A.; Castillo, Amalchi; Chagot, Marie-Eve; Smith, Jarrod A.; Tainer, John A.; Chazin, Walter J.

    2010-03-11T23:59:59.000Z

    Replication Protein A (RPA) is the primary eukaryotic ssDNA binding protein utilized in diverse DNA transactions in the cell. RPA is a heterotrimeric protein with seven globular domains connected by flexible linkers, which enable substantial inter-domain motion that is essential to its function. Small angle X-ray scattering (SAXS) experiments on two multi-domain constructs from the N-terminus of the large subunit (RPA70) were used to examine the structural dynamics of these domains and their response to the binding of ssDNA. The SAXS data combined with molecular dynamics simulations reveal substantial interdomain flexibility for both RPA70AB (the tandem high affinity ssDNA binding domains A and B connected by a 10-residue linker) and RPA70NAB (RPA70AB extended by a 70-residue linker to the RPA70N protein interaction domain). Binding of ssDNA to RPA70NAB reduces the interdomain flexibility between the A and B domains, but has no effect on RPA70N. These studies provide the first direct measurements of changes in orientation of these three RPA domains upon binding ssDNA. The results support a model in which RPA70N remains structurally independent of RPA70AB in the DNA bound state and therefore freely available to serve as a protein recruitment module.

  15. A multi-crystal wavelength dispersive x-ray spectrometer

    SciTech Connect (OSTI)

    Alonso-Mori, Roberto; Montanez, Paul; Delor, James; Bergmann, Uwe [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Kern, Jan [LCLS, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States); Sokaras, Dimosthenis; Weng, Tsu-Chien; Nordlund, Dennis [SSRL, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States); Tran, Rosalie; Yachandra, Vittal K.; Yano, Junko [Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8099 (United States)

    2012-07-15T23:59:59.000Z

    A multi-crystal wavelength dispersive hard x-ray spectrometer with high-energy resolution and large solid angle collection is described. The instrument is specifically designed for time-resolved applications of x-ray emission spectroscopy (XES) and x-ray Raman scattering (XRS) at X-ray Free Electron Lasers (XFEL) and synchrotron radiation facilities. It also simplifies resonant inelastic x-ray scattering (RIXS) studies of the whole 2d RIXS plane. The spectrometer is based on the Von Hamos geometry. This dispersive setup enables an XES or XRS spectrum to be measured in a single-shot mode, overcoming the scanning needs of the Rowland circle spectrometers. In conjunction with the XFEL temporal profile and high-flux, it is a powerful tool for studying the dynamics of time-dependent systems. Photo-induced processes and fast catalytic reaction kinetics, ranging from femtoseconds to milliseconds, will be resolvable in a wide array of systems circumventing radiation damage.

  16. Focused X-ray source

    DOE Patents [OSTI]

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

    1990-08-21T23:59:59.000Z

    Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

  17. X-ray characterization of solid small molecule organic materials

    SciTech Connect (OSTI)

    Billinge, Simon; Shankland, Kenneth; Shankland, Norman; Florence, Alastair

    2014-06-10T23:59:59.000Z

    The present invention provides, inter alia, methods of characterizing a small molecule organic material, e.g., a drug or a drug product. This method includes subjecting the solid small molecule organic material to x-ray total scattering analysis at a short wavelength, collecting data generated thereby, and mathematically transforming the data to provide a refined set of data.

  18. Graded index and randomly oriented core-shell silicon nanowires with broadband and wide angle antireflection for photovoltaic cell applications

    E-Print Network [OSTI]

    Pignalosa, P; Qiao, L; Tseng, M; Yi, Yasha

    2011-01-01T23:59:59.000Z

    Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60\\degree) antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si) nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

  19. Accuracy evaluation of a Compton X-ray spectrometer with bremsstrahlung X-rays generated by a 6 MeV electron bunch

    SciTech Connect (OSTI)

    Kojima, Sadaoki, E-mail: kojima-s@ile.osaka-u.ac.jp; Arikawa, Yasunobu; Zhang, Zhe; Ikenouchi, Takahito; Morace, Alessio; Nagai, Takahiro; Abe, Yuki; Sakata, Shouhei; Inoue, Hiroaki; Utsugi, Masaru; Nakai, Mitsuo; Nishimura, Hiroaki; Shiraga, Hiroyuki; Fujioka, Shinsuke; Azechi, Hiroshi [Institute of Laser Engineering, Osaka University, 2-6 Yamada-oka, Suita, Osaka 565-0871 (Japan); Nishimura, Yasuhiko; Togawa, Hiromi [Toyota Technical Development Corporation, 1-21 Imae, Hanamoto-cho, Toyota, Aichi 470-0334 (Japan); Ozaki, Tetsuo [National Institute for Fusion Science, 322-6 Oroshicho, Toki, Gifu 509-5292 (Japan); Kato, Ryukou [The Institute of Science and Industrial Research, Osaka University, 2-6 Yamada-oka, Suita, Osaka (Japan)

    2014-11-15T23:59:59.000Z

    A Compton-scattering-based X-ray spectrometer is developed to obtain the energy distribution of fast electrons produced by intense laser and matter interactions. Bremsstrahlung X-rays generated by fast electrons in a material are used to measure fast electrons’ energy distribution in matter. In the Compton X-ray spectrometer, X-rays are converted into recoil electrons by Compton scattering in a converter made from fused silica glass, and a magnet-based electron energy analyzer is used to measure the energy distribution of the electrons that recoil in the direction of the incident X-rays. The spectrum of the incident X-rays is reconstructed from the energy distribution of the recoil electrons. The accuracy of this spectrometer is evaluated using a quasi-monoenergetic 6 MeV electron bunch that emanates from a linear accelerator. An electron bunch is injected into a 1.5 mm thick tungsten plate to produce bremsstrahlung X-rays. The spectrum of these bremsstrahlung X-rays is obtained in the range from 1 to 9 MeV. The energy of the electrons in the bunch is estimated using a Monte Carlo simulation of particle-matter interactions. The result shows that the spectrometer's energy accuracy is ±0.5 MeV for 6.0 MeV electrons.

  20. Producing X-rays at the APS

    ScienceCinema (OSTI)

    None

    2013-04-19T23:59:59.000Z

    An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

  1. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

  2. APS X-rays Reveal Picasso's Secret

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed APS X-rays Reveal Picasso's Secret OCTOBER 15, 2012 Bookmark and Share X-rays reveal that Picasso's "Old Guitarist," at...

  3. Spectral analysis of X-ray binaries

    E-Print Network [OSTI]

    Fridriksson, Joel Karl

    2011-01-01T23:59:59.000Z

    In this thesis, I present work from three separate research projects associated with observations of X-ray binaries. Two of those revolve around spectral characteristics of neutron star low-mass X-ray binaries (NS-LMXBs), ...

  4. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, C.R.; Bionta, R.M.; Ables, E.

    1994-05-03T23:59:59.000Z

    An x-ray detector is disclosed which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope. 3 figures.

  5. Microgap x-ray detector

    DOE Patents [OSTI]

    Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

    1994-01-01T23:59:59.000Z

    An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

  6. Phase-sensitive X-ray imager

    DOE Patents [OSTI]

    Baker, Kevin Louis

    2013-01-08T23:59:59.000Z

    X-ray phase sensitive wave-front sensor techniques are detailed that are capable of measuring the entire two-dimensional x-ray electric field, both the amplitude and phase, with a single measurement. These Hartmann sensing and 2-D Shear interferometry wave-front sensors do not require a temporally coherent source and are therefore compatible with x-ray tubes and also with laser-produced or x-pinch x-ray sources.

  7. SMB, Small Angle X-Ray Scattering

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome to the

  8. A Robotic Wide-Angle H-Alpha Survey of the Southern Sky

    E-Print Network [OSTI]

    J. E. Gaustad; P. R. McCullough; W. Rosing; D. Van Buren

    2001-08-31T23:59:59.000Z

    We have completed a robotic wide-angle imaging survey of the southern sky (declination less than +15 degrees) at 656.3 nm wavelength, the H-alpha emission line of hydrogen. Each image of the resulting Southern H-Alpha Sky Survey Atlas (SHASSA) covers an area of the sky 13 degrees square at an angular resolution of approximately 0.8 arcminute, and reaches a sensitivity level of 2 rayleigh (1.2 x 10^-17 erg cm^-2 s^-1 arcsec^-2) per pixel, corresponding to an emission measure of 4 cm^-6 pc, and to a brightness temperature for microwave free-free emission of 12 microkelvins at 30 GHz. Smoothing over several pixels allows features as faint as 0.5 rayleigh to be detected.

  9. Spatial resolution of synchrotron x-ray microtomography in high energy range: Effect of x-ray energy and sample-to-detector distance

    SciTech Connect (OSTI)

    Seo, D.; Tomizato, F.; Toda, H.; Kobayashi, M. [Department of Mechanical Engineering, Toyohashi University of Technology, Toyohashi, Aichi 441-8580 (Japan); Uesugi, K.; Takeuchi, A.; Suzuki, Y. [Japan Synchrotron Radiation Research Institute, Mikazuki, Sayo, Hyogo 679-5198 (Japan)

    2012-12-24T23:59:59.000Z

    Spatial resolution of three-dimensional images obtained by synchrotron X-ray microtomography technique is evaluated using cyclic bar patterns machined on a steel wire. Influences of X-ray energy and the sample-to-detector distance on spatial resolution were investigated. High X-ray energies of 33-78 keV are applied due to the high X-ray absorption of transition metals. Best spatial resolution of about 1.2 {mu}m pitch was observed at the sample-to-detector distance range of 20-110 mm and at the energy range of 68-78 keV. Several factors such as X-ray scattering and diffraction phenomena affecting the degradation of spatial resolution are also discussed.

  10. X-ray spectroscopy of low-mass X-ray binaries

    E-Print Network [OSTI]

    Juett, Adrienne Marie, 1976-

    2004-01-01T23:59:59.000Z

    I present high-resolution X-ray grating spectroscopy of neutron stars in low-mass X-ray binaries (LMXBs) using instruments onboard the Chandra X-ray Observatory and the X-ray Multi-Mirror Mission (XMM-Newton). The first ...

  11. Extending The Methodology Of X-ray Crystallography To Allow X-ray

    E-Print Network [OSTI]

    Miao, Jianwei "John"

    , the radiation damage. While the radiation damage problem can be mitigated somewhat by using cryogenic techniques resolution without serious radiation damage to the specimens. Although X-ray crystallography becomesExtending The Methodology Of X-ray Crystallography To Allow X-ray Microscopy Without X-ray Optics

  12. Synchronization of x-ray pulses to the pump laser in an ultrafast x-ray facility

    E-Print Network [OSTI]

    Corlett, J.N.; Barry, W.; Byrd, J.M.; Schoenlein, R.; Zholents, A.

    2002-01-01T23:59:59.000Z

    Accurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

  13. X-ray holography of biological specimens

    SciTech Connect (OSTI)

    Solem, J.C.

    1984-01-01T23:59:59.000Z

    The author reviews the reasons for x-ray imaging of biological specimens and the techniques presently being used for x-ray microscopy. The author points out the advantages of x-ray holography and the difficulties of obtaining the requisite coherence with conventional sources. The author discusses the problems of radiation damage and the remarkable fact that short pulse x-ray sources circumvent these problems and obtain high-resolution images of specimens in the living state. Finally, the author reviews some of the efforts underway to develop high-intensity coherent x-ray sources for the laboratory. 14 references, 5 figures, 2 tables.

  14. Soft X-ray techniques to study mesoscale magnetism

    E-Print Network [OSTI]

    Kortright, Jeffrey B.

    2003-01-01T23:59:59.000Z

    X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.X-Ray Techniques to Study Mesoscale Magnetism Jeffrey B.

  15. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

    1990-09-11T23:59:59.000Z

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

  16. Apparatus for generating x-ray holograms

    DOE Patents [OSTI]

    Rhodes, Charles K. (Chicago, IL); Boyer, Keith (Los Alamos, NM); Solem, Johndale C. (Los Alamos, NM); Haddad, Waleed S. (Chicago, IL)

    1990-01-01T23:59:59.000Z

    Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

  17. Techniques for synchronization of X-Ray pulses to the pump laser in an ultrafast X-Ray facility

    E-Print Network [OSTI]

    Corlett, J.N.; Doolittle, L.; Schoenlein, R.; Staples, J.; Wilcox, R.; Zholents, A.

    2003-01-01T23:59:59.000Z

    synchronization of ultrafast x-ray pulses produced in theAccurate timing of ultrafast x-ray probe pulses emitted fromOF X-RAY PULSES TO THE PUMP LASER IN AN ULTRAFAST X-RAY

  18. Controlling X-rays With Light

    SciTech Connect (OSTI)

    Glover, Ernie; Hertlein, Marcus; Southworth, Steve; Allison, Tom; van Tilborg, Jeroen; Kanter, Elliot; Krassig, B.; Varma, H.; Rude, Bruce; Santra, Robin; Belkacem, Ali; Young, Linda

    2010-08-02T23:59:59.000Z

    Ultrafast x-ray science is an exciting frontier that promises the visualization of electronic, atomic and molecular dynamics on atomic time and length scales. A largelyunexplored area of ultrafast x-ray science is the use of light to control how x-rays interact with matter. In order to extend control concepts established for long wavelengthprobes to the x-ray regime, the optical control field must drive a coherent electronic response on a timescale comparable to femtosecond core-hole lifetimes. An intense field is required to achieve this rapid response. Here an intense optical control pulse isobserved to efficiently modulate photoelectric absorption for x-rays and to create an ultrafast transparency window. We demonstrate an application of x-ray transparencyrelevant to ultrafast x-ray sources: an all-photonic temporal cross-correlation measurement of a femtosecond x-ray pulse. The ability to control x-ray/matterinteractions with light will create new opportunities at current and next-generation x-ray light sources.

  19. X-ray Observations of Mrk 231

    E-Print Network [OSTI]

    T. J. Turner

    1998-08-10T23:59:59.000Z

    This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

  20. Substructure in clusters containing wide-angle tailed radio galaxies. I. New redshifts

    E-Print Network [OSTI]

    Pinkney, J C; Ledlow, M J; Gómez, P L; Hill, J M; Pinkney, Jason; Burns, Jack O.; Ledlow, Michael J.; Gomez, Percy L.; Hill, John M.

    2000-01-01T23:59:59.000Z

    We present new redshifts and positions for 635 galaxies in nine rich clusters containing Wide-Angle Tailed (WAT) radio galaxies. Combined with existing data, we now have a sample of 18 WAT-containing clusters with more than 10 redshifts. This sample contains a substantial portion of the WAT clusters in the VLA 20 cm survey of Abell clusters, including 75% of WAT clusters in the complete survey (z0.09. It is a representative sample which should not contain biases other than selection by radio morphology. We graphically present the new data using histograms and sky maps. A semi-automated procedure is used to search for emission lines in the spectra in order to add and verify galaxy redshifts. We find that the average apparent fraction of emission line galaxies is about 9% in both the clusters and the field. We investigate the magnitude completeness of our redshift surveys with CCD data for a test case, Abell 690. This case indicates that our galaxy target lists are deeper than the detection limit of a typical M...

  1. Substructure in clusters containing wide-angle tailed radio galaxies. I. New redshifts

    E-Print Network [OSTI]

    Jason Pinkney; Jack O. Burns; Michael J. Ledlow; Percy L. Gomez; John M. Hill

    2000-11-08T23:59:59.000Z

    We present new redshifts and positions for 635 galaxies in nine rich clusters containing Wide-Angle Tailed (WAT) radio galaxies. Combined with existing data, we now have a sample of 18 WAT-containing clusters with more than 10 redshifts. This sample contains a substantial portion of the WAT clusters in the VLA 20 cm survey of Abell clusters, including 75% of WAT clusters in the complete survey (z0.09. It is a representative sample which should not contain biases other than selection by radio morphology. We graphically present the new data using histograms and sky maps. A semi-automated procedure is used to search for emission lines in the spectra in order to add and verify galaxy redshifts. We find that the average apparent fraction of emission line galaxies is about 9% in both the clusters and the field. We investigate the magnitude completeness of our redshift surveys with CCD data for a test case, Abell 690. This case indicates that our galaxy target lists are deeper than the detection limit of a typical MX exposure, and they are 82% complete down to R=19.0. The importance of the uniformity of the placement of fibers on targets is posited, and we evaluate this in our datasets. We find some cases of non-uniformities which may influence dynamical analyses. A second paper will use this database to look for correlations between the WAT radio morphology and the cluster's dynamical state.

  2. Wide-angle ITER-prototype tangential infrared and visible viewing system for DIII-D

    SciTech Connect (OSTI)

    Lasnier, C. J., E-mail: lasnier@LLNL.gov; Allen, S. L.; Ellis, R. E.; Fenstermacher, M. E.; McLean, A. G.; Meyer, W. H.; Morris, K.; Seppala, L. G. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Crabtree, K. [College of Optics, University of Arizona, Tucson, Arizona 85721 (United States); Van Zeeland, M. A. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States)

    2014-11-15T23:59:59.000Z

    An imaging system with a wide-angle tangential view of the full poloidal cross-section of the tokamak in simultaneous infrared and visible light has been installed on DIII-D. The optical train includes three polished stainless steel mirrors in vacuum, which view the tokamak through an aperture in the first mirror, similar to the design concept proposed for ITER. A dichroic beam splitter outside the vacuum separates visible and infrared (IR) light. Spatial calibration is accomplished by warping a CAD-rendered image to align with landmarks in a data image. The IR camera provides scrape-off layer heat flux profile deposition features in diverted and inner-wall-limited plasmas, such as heat flux reduction in pumped radiative divertor shots. Demonstration of the system to date includes observation of fast-ion losses to the outer wall during neutral beam injection, and shows reduced peak wall heat loading with disruption mitigation by injection of a massive gas puff.

  3. Beyond the plane-parallel and Newtonian approach: wide-angle redshift distortions and convergence in general relativity

    SciTech Connect (OSTI)

    Bertacca, Daniele; Maartens, Roy [Physics Department, University of the Western Cape, Cape Town 7535 (South Africa); Raccanelli, Alvise [Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA 91109 (United States); Clarkson, Chris, E-mail: daniele.bertacca@pd.infn.it, E-mail: Roy.Maartens@port.ac.uk, E-mail: Alvise@caltech.edu, E-mail: Clarkson@maths.uct.ac.za [Centre for Astrophysics, Cosmology and Gravitation and Department of Mathematics and Applied Mathematics, University of Cape Town, Cape Town 7701 (South Africa)

    2012-10-01T23:59:59.000Z

    We extend previous analyses of wide-angle correlations in the galaxy power spectrum in redshift space to include all general relativistic effects. These general relativistic corrections to the standard approach become important on large scales and at high redshifts, and they lead to new terms in the wide-angle correlations. We show that in principle the new terms can produce corrections of nearly 10% on Gpc scales over the usual Newtonian approximation. General relativistic corrections will be important for future large-volume surveys such as SKA and Euclid, although the problem of cosmic variance will present a challenge in observing this.

  4. X-ray transmissive debris shield

    DOE Patents [OSTI]

    Spielman, Rick B. (Albuquerque, NM)

    1994-01-01T23:59:59.000Z

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  5. High speed x-ray beam chopper

    DOE Patents [OSTI]

    McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

    2002-01-01T23:59:59.000Z

    A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

  6. Probing bismuth ferrite nanoparticles by hard x-ray photoemission: Anomalous occurrence of metallic bismuth

    SciTech Connect (OSTI)

    Chaturvedi, Smita; Rajendra, Ranguwar; Ballav, Nirmalya; Kulkarni, Sulabha, E-mail: s.kulkarni@iiserpune.ac.in [Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008 (India); Sarkar, Indranil [DESY Photon Science, Deutsches Elektronen-Synchrotron, 22607 Hamburg (Germany); Shirolkar, Mandar M. [Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China); Jeng, U-Ser; Yeh, Yi-Qi [National Synchrotron Radiation Research Center, 101, Hsin-Ann Road, Science Park, Hsinchu 3007-6, Taiwan (China)

    2014-09-08T23:59:59.000Z

    We have investigated bismuth ferrite nanoparticles (?75?nm and ?155?nm) synthesized by a chemical method, using soft X-ray (1253.6?eV) and hard X-ray (3500, 5500, and 7500?eV) photoelectron spectroscopy. This provided an evidence for the variation of chemical state of bismuth in crystalline, phase pure nanoparticles. X-ray photoelectron spectroscopy analysis using Mg K? (1253.6?eV) source showed that iron and bismuth were present in both Fe{sup 3+} and Bi{sup 3+} valence states as expected for bismuth ferrite. However, hard X-ray photoelectron spectroscopy analysis of the bismuth ferrite nanoparticles using variable photon energies unexpectedly showed the presence of Bi{sup 0} valence state below the surface region, indicating that bismuth ferrite nanoparticles are chemically inhomogeneous in the radial direction. Consistently, small-angle X-ray scattering reveals a core-shell structure for these radial inhomogeneous nanoparticles.

  7. X-ray populations in galaxies

    E-Print Network [OSTI]

    G. Fabbiano

    2005-11-09T23:59:59.000Z

    Today's sensistive, high resolution Chandra X-ray observations allow the study of many populations of X-ray sources. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, and provide the means for classifying the X-ray sources and probing their evolution. While overall stellar mass drives the amount of X-ray binaries in old stellar population, the amount of sources in star-forming galaxies is related to the star formation rate. Shart-lived, luminous, high mass binaries (HNXBs) dominate these young populations.

  8. X-ray laser microscope apparatus

    DOE Patents [OSTI]

    Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

    1990-01-01T23:59:59.000Z

    A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

  9. X-ray spectroscopy of neutron star low-mass X-ray binaries

    E-Print Network [OSTI]

    Krauss, Miriam Ilana

    2007-01-01T23:59:59.000Z

    In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

  10. 962 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 3, MAY 2014 Ultrabroadband and Wide-Angle Hybrid

    E-Print Network [OSTI]

    Bowers, John

    962 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 3, MAY 2014 Ultrabroadband and Wide-Angle Hybrid) are essential to realizing efficiency gains for state-of- the-art multijunction photovoltaic devices approach. Index Terms--Biomimetics, optical films, photovoltaic cells, III­V semiconductor materials. I

  11. Mode-Locked Multichromatic X-Rays in a Seeded Free-Electron Laser for Single-Shot X-Ray Spectroscopy

    SciTech Connect (OSTI)

    Xiang, Dao; Ding, Yuantao; Raubenheimer, Tor; Wu, Juhao; /SLAC

    2012-05-10T23:59:59.000Z

    We present the promise of generating gigawatt mode-locked multichromatic x rays in a seeded free-electron laser (FEL). We show that, by using a laser to imprint periodic modulation in electron beam phase space, a single-frequency coherent seed can be amplified and further translated to a mode-locked multichromatic output in an FEL. With this configuration the FEL output consists of a train of mode-locked ultrashort pulses which span a wide frequency gap with a series of equally spaced sharp lines. These gigawatt multichromatic x rays may potentially allow one to explore the structure and dynamics of a large number of atomic states simultaneously. The feasibility of generating mode-locked x rays ranging from carbon K edge ({approx}284 eV) to copper L{sub 3} edge ({approx}931 eV) is confirmed with numerical simulation using the realistic parameters of the linac coherent light source (LCLS) and LCLS-II. We anticipate that the mode-locked multichromatic x rays in FELs may open up new opportunities in x-ray spectroscopy (i.e. resonant inelastic x-ray scattering, time-resolved scattering and spectroscopy, etc.).

  12. Phased Contrast X-Ray Imaging

    ScienceCinema (OSTI)

    Erin Miller

    2012-12-31T23:59:59.000Z

    The Pacific Northwest National Laboratory is developing a range of technologies to broaden the field of explosives detection. Phased contrast X-ray imaging, which uses silicon gratings to detect distortions in the X-ray wave front, may be applicable to mail or luggage scanning for explosives; it can also be used in detecting other contraband, small-parts inspection, or materials characterization.

  13. X-ray source populations in galaxies

    E-Print Network [OSTI]

    G. Fabbiano

    2005-11-16T23:59:59.000Z

    Today's sensitive, high-resolution X-ray observations allow the study of populations of X-ray sources, in the luminosity range of Galactic X-ray binaries, in galaxies as distant as 20-30 Mpc. The traditional astronomical tools of photometric diagrams and luminosity functions are now applied to these populations, providing a direct probe of the evolved binary component of different stellar populations. The study of the X-ray populations of E and S0 galaxies has revamped the debate on the formation and evolution of low-mass X-ray binaries (LMXBs) and on the role of globular clusters in these processes. While overall stellar mass drives the amount of X-ray binaries in old stellar populations, the amount of sources in star forming galaxies is related to the star formation rate. Short-lived, luminous, high-mass binaries (HMXBs) dominate these young populations. The most luminous sources in these systems are the debated ULXs, which have been suggested to be ~100-1000 Msol black holes, but could alternatively include a number of binaries with stellar mass black holes. Very soft sources have also been discovered in many galaxies and their nature is currently being debated. Observations of the deep X-ray sky, and comparison with deep optical surveys, are providing the first evidence of the X-ray evolution of galaxies.

  14. Anti-contamination device for cryogenic soft X-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Huang, Xiaojing; Miao, Huijie; Nelson, Johanna; Turner, Joshua; Steinbrener, Jan; Shapiro, David; Kirz, Janos; Jacobsen, Chris

    2011-05-01T23:59:59.000Z

    Cryogenic microscopy allows one to view frozen hydrated biological and soft matter specimens with good structural preservation and a high degree of stability against radiation damage. We describe a liquid nitrogen-cooled anti-contamination device for cryogenic X-ray diffraction microscopy. The anti-contaminator greatly reduces the buildup of ice layers on the specimen due to condensation of residual water vapor in the experimental vacuum chamber. We show by coherent X-ray diffraction measurements that this leads to fivefold reduction of background scattering, which is important for far-field X-ray diffraction microscopy of biological specimens.

  15. Nuclear surface studies with antiprotonic atom X-rays

    E-Print Network [OSTI]

    Wycech, S; Jastrzebski, J J; Klos, B; Trzcinska, A; Von Egidy, T

    2007-01-01T23:59:59.000Z

    The recent and older level shifts and widths in pbar atoms are analyzed. The results are fitted by an antiproton-nucleus optical potential with two basic complex strength parameters. These parameters are related to average S and P wave scattering parameters in the subthreshold energy region. A fair consistency of the X-ray data for all Z values, stopping pbar data and the Nbar-N scattering data has been achieved. The determination of neutron density profiles at the nuclear surface is undertaken, and the determination of the neutron R_{rms} radii is attempted. Uncertainties due to the input data and the procedure are discussed.

  16. Neutron Scattering Tutorials | Neutron Science | ORNL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

  17. Fiber fed x-ray/gamma ray imaging apparatus

    DOE Patents [OSTI]

    Hailey, C.J.; Ziock, K.P.

    1992-06-02T23:59:59.000Z

    X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation. 6 figs.

  18. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray ImagingX-Ray

  19. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell Cathode Materials. Hard X-ray Fluorescence Measurements of Heteroepitaxial Solid Oxide Fuel Cell...

  20. Using X-Ray Computed Tomography in Pore Structure Characterization...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...

  1. Manipulating X-rays with Tiny Mirrors | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for controlling X-rays. MEMS, or microelectromechanical systems, allow shrinking the optics to the microscale creating ultrafast devices for reflecting X-rays at precise times...

  2. Fuel Injection and Spray Research Using X-Ray Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    temperature ambient (plastic windows) 5 Radiography - Monochromatic x-rays - Absorption of x-rays by the fuel - Ensemble averaged (flux limited) - Room temperature ambient...

  3. Fuel Injection and Spray Research Using X-Ray Diagnostics

    Broader source: Energy.gov (indexed) [DOE]

    by ECN using several different techniques - Silicone molds (Valencia) - X-ray absorption tomography (CAT) - X-Ray phase contrast imaging (Argonne) - Microscopy (Sandia) ...

  4. X-ray induced optical reflectivity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Durbin, Stephen M.

    2012-01-01T23:59:59.000Z

    The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity.Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor(gallium arsenide,GaAs), and a metal (gold,Au), obtained with ?100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

  5. Columbia University X-Ray Measurements

    E-Print Network [OSTI]

    Columbia University X-Ray Measurements of the Levitated Dipole Experiment J. L. Ellsworth, J. Kesner MIT Plasma Science and Fusion Center D.T. Garnier, A.K. Hansen, M.E. Mauel Columbia University

  6. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field...

  7. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, Clinton M. (Pleasanton, CA)

    1994-01-01T23:59:59.000Z

    An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

  8. X-ray grid-detector apparatus

    DOE Patents [OSTI]

    Boone, John M. (Folsom, CA); Lane, Stephen M. (Oakland, CA)

    1998-01-27T23:59:59.000Z

    A hybrid grid-detector apparatus for x-ray systems wherein a microchannel plate structure has an air-interspaced grid portion and a phosphor/optical fluid-filled grid portion. The grids are defined by multiple adjacent channels separated by lead-glass septa. X-rays entering the air-interspaced grid portion at an angle of impingement upon the septa are attenuated, while non-impinging x-rays pass through to the phosphor/fluid filled portion. X-ray energy is converted to luminescent energy in the phosphor/fluid filled portion and the resultant beams of light are directed out of the phosphor/optical fluid filled portion to an imaging device.

  9. X-ray source for mammography

    DOE Patents [OSTI]

    Logan, C.M.

    1994-12-20T23:59:59.000Z

    An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

  10. Principles of X-ray Navigation

    SciTech Connect (OSTI)

    Hanson, John Eric; /SLAC

    2006-03-17T23:59:59.000Z

    X-ray navigation is a new concept in satellite navigation in which orientation, position and time are measured by observing stellar emissions in x-ray wavelengths. X-ray navigation offers the opportunity for a single instrument to be used to measure these parameters autonomously. Furthermore, this concept is not limited to missions in close proximity to the earth. X-ray navigation can be used on a variety of missions from satellites in low earth orbit to spacecraft on interplanetary missions. In 1997 the Unconventional Stellar Aspect Experiment (USA) will be launched as part of the Advanced Research and Global Observation Satellite (ARGOS). USA will provide the first platform for real-time experimentation in the field of x-ray navigation and also serves as an excellent case study for the design and manufacturing of space qualified systems in small, autonomous groups. Current techniques for determining the orientation of a satellite rely on observations of the earth, sun and stars in infrared, visible or ultraviolet wavelengths. It is possible to use x-ray imaging devices to provide arcsecond level measurement of attitude based on star patterns in the x-ray sky. This technique is explored with a simple simulation. Collimated x-ray detectors can be used on spinning satellites to provide a cheap and reliable measure of orientation. This is demonstrated using observations of the Crab Pulsar taken by the high Energy Astronomy Observatory (HEAO-1) in 1977. A single instrument concept is shown to be effective, but dependent on an a priori estimate of the guide star intensity and thus susceptible to errors in that estimate. A star scanner based on a differential measurement from two x-ray detectors eliminates the need for an a priori estimate of the guide star intensity. A first order model and a second order model of the two star scanner concepts are considered. Many of the stars that emit in the x-ray regime are also x-ray pulsars with frequency stability approaching a part in 10{sup 9}. By observing these pulsations, a satellite can keep accurate time autonomously. They have demonstrated the acquisition and tracking of the Crab nebula pulsar by simulating the operation of a phase-locked loop.

  11. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; et al

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatialmore »resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.« less

  12. High-resolution ab initio Three-dimensional X-ray Diffraction Microscopy

    SciTech Connect (OSTI)

    Chapman, H N; Barty, A; Marchesini, S; Noy, A; Cui, C; Howells, M R; Rosen, R; He, H; Spence, J H; Weierstall, U; Beetz, T; Jacobsen, C; Shapiro, D

    2005-08-19T23:59:59.000Z

    Coherent X-ray diffraction microscopy is a method of imaging non-periodic isolated objects at resolutions only limited, in principle, by the largest scattering angles recorded. We demonstrate X-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the 3D diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a non-periodic object. We also construct 2D images of thick objects with infinite depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution using X-ray undulator radiation, and establishes the techniques to be used in atomic-resolution ultrafast imaging at X-ray free-electron laser sources.

  13. High-resolution ab initio three-dimensional x-ray diffraction microscopy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chapman, Henry N.; Barty, Anton; Marchesini, Stefano; Noy, Aleksandr; Hau-Riege, Stefan P.; Cui, Congwu; Howells, Malcolm R.; Rosen, Rachel; He, Haifeng; Spence, John C.; Weierstall, Uwe; Beetz, Tobias; Jacobsen, Chris; Shapiro, David

    2006-01-01T23:59:59.000Z

    Coherent x-ray diffraction microscopy is a method of imaging nonperiodic isolated objects at resolutions limited, in principle, by only the wavelength and largest scattering angles recorded. We demonstrate x-ray diffraction imaging with high resolution in all three dimensions, as determined by a quantitative analysis of the reconstructed volume images. These images are retrieved from the three-dimensional diffraction data using no a priori knowledge about the shape or composition of the object, which has never before been demonstrated on a nonperiodic object. We also construct two-dimensional images of thick objects with greatly increased depth of focus (without loss of transverse spatial resolution). These methods can be used to image biological and materials science samples at high resolution with x-ray undulator radiation and establishes the techniques to be used in atomic-resolution ultrafast imaging at x-ray free-electron laser sources.

  14. Characteristic x-ray emission from undermines plasmas irradiated by ultra-intense lasers

    SciTech Connect (OSTI)

    Niemann, Christoph

    2012-05-05T23:59:59.000Z

    Between FY09 and FY11 we have conducted more than a dozen three-week experimental campaigns at high-power laser facilities around the world to investigate laser-channeling through x-ray and optical imaging and the conversion from laser-energy to xrays. We have performed simultaneous two-wavelength x-ray imaging (K-alpha and He-alpha) to distinguish the hot-plasma region (hot-spot) from the laser-produced electrons (K-alpha). In addition, we have initiated a new collaboration with SNL and have performed first shots on the 100 TW beamlet chamber to commission a fast x-ray streak camera to be used to investigate the temporal evolution of our K-alpha sources. We also collaborated on campaigns at the Rutherford Appleton Laboratory (UK) and the LANL Trident laser to employ laser produced x-ray sources for Thomson scattering off dense matter.

  15. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds.

    SciTech Connect (OSTI)

    Love, Steven P.; Davis, A. B. (Anthony B.); Rohde, C. A. (Charles A.); Ho, Cheng,

    2001-01-01T23:59:59.000Z

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  16. A theoretical analysis of reflection of X-rays from water at energies relevant for diagnostics

    SciTech Connect (OSTI)

    Arsenovic, Dusan [Institute of Physics, Pregrevica 118, P.O. Box 57, Belgrade (Serbia and Montenegro); Davidovic, Dragomir M.; Vukanic, Jovan [Vinca Institute of Nuclear Sciences, P.O Box 522, Belgrade (Serbia and Montenegro)

    2003-01-24T23:59:59.000Z

    The reflection of X-rays from a semi-infinite water target, for energies used in X-ray diagnostics, is treated by the analog Monte Carlo simulation. In the developed procedure it was possible to calculate separately contributions of photons scattered, before reflection, fixed number of times with target electrons. It turned out that multiple collision type of reflection dominates at all energies investigated, whenever the absorption is small. The same process was also treated analytically as the classical albedo problem for isotropic scattering without energy loss. Very good agreement of results of the two approaches is obtained.

  17. Earth X-ray albedo for cosmic X-ray background radiation in the 1--1000 keV band

    E-Print Network [OSTI]

    E. Churazov; S. Sazonov; R. Sunyaev; M. Revnivtsev

    2008-02-11T23:59:59.000Z

    We present calculations of the reflection of the cosmic X-ray background (CXB) by the Earth's atmosphere in the 1--1000 keV energy range. The calculations include Compton scattering and X-ray fluorescent emission and are based on a realistic chemical composition of the atmosphere. Such calculations are relevant for CXB studies using the Earth as an obscuring screen (as was recently done by INTEGRAL). The Earth's reflectivity is further compared with that of the Sun and the Moon -- the two other objects in the Solar system subtending a large solid angle on the sky, as needed for CXB studies.

  18. Differential phase contrast X-ray imaging system and components

    DOE Patents [OSTI]

    Stutman, Daniel; Finkenthal, Michael

    2014-07-01T23:59:59.000Z

    A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

  19. Reflection soft X-ray microscope and method

    DOE Patents [OSTI]

    Suckewer, S.; Skinner, C.H.; Rosser, R.

    1993-01-05T23:59:59.000Z

    A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

  20. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

    1997-01-01T23:59:59.000Z

    Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

  1. X-ray lithography using holographic images

    DOE Patents [OSTI]

    Howells, M.S.; Jacobsen, C.

    1997-03-18T23:59:59.000Z

    Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

  2. Radiographic X-Ray Pulse Jitter

    SciTech Connect (OSTI)

    Mitton, C. V., Good, D. E., Henderson, D. J., Hogge, K. W.

    2011-01-15T23:59:59.000Z

    The Dual Beam Radiographic Facility consists of two identical radiographic sources. Major components of the machines are: Marx generator, water-filled pulse-forming line (PFL), water-filled coaxial transmission line, three-cell inductive voltage adder, and rod-pinch diode. The diode pulse has the following electrical specifications: 2.25-MV, 60-kA, 60-ns. Each source has the following x-ray parameters: 1-mm-diameter spot size, 4-rad at 1 m, 50-ns full width half max. The x-ray pulse is measured with PIN diode detectors. The sources were developed to produce high resolution images on single-shot, high-value experiments. For this application it is desirable to maintain a high level of reproducibility in source output. X-ray pulse jitter is a key metric for analysis of reproducibility. We will give measurements of x-ray jitter for each machine. It is expected that x-ray pulse jitter is predominantly due to PFL switch jitter, and therefore a correlation of the two will be discussed.

  3. Oscillations During Thermonuclear X-ray Bursts

    E-Print Network [OSTI]

    Tod E. Strohmayer

    2001-01-12T23:59:59.000Z

    High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

  4. X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336342

    E-Print Network [OSTI]

    Limburg, Karin E.

    , Chicago, IL 60637, USA 3 Cornell High Energy Synchrotron Source and School of Applied and EngineeringX-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336­342 Published online in Wiley InterScience (www to establish a breakthrough in high-resolution, simultaneous area mapping of multiple trace elements

  5. In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries

    E-Print Network [OSTI]

    Cui, Yi

    In Operando X-ray Diffraction and Transmission X-ray Microscopy of Lithium Sulfur Batteries Johanna Information ABSTRACT: Rechargeable lithium-sulfur (Li-S) batteries hold great potential for high of these batteries for commercial use. The two primary obstacles are the solubility of long chain lithium

  6. Frontiers in X-Ray Science

    SciTech Connect (OSTI)

    Linda Young

    2011-02-23T23:59:59.000Z

    The year 2010 marked the fiftieth anniversary of the optical laser and the first anniversary of the world's first hard x-ray free-electron laser, the Linac Coherent Light Source (LCLS) at SLAC. This exciting, new accelerator-based source of x-rays provides peak brilliances roughly a billion times greater than currently available from synchrotron sources such as the Advanced Photon Source at Argonne, and thus explores a qualitatively different parameter space. This talk will describe the first experiments at the LCLS aimed at understanding the nature of high intensity x-ray interactions, related applications in ultrafast imaging on the atomic scale and sketch nascent plans for the extension of both linac and storage-ring based photon sources.

  7. The X-ray/submillimetre link

    E-Print Network [OSTI]

    O. Almaini

    2000-01-07T23:59:59.000Z

    It is widely believed that most of the cosmic X-ray background (XRB) is produced by a vast, hitherto undetected population of obscured AGN. Deep X-ray surveys with Chandra and XMM will soon test this hypothesis. Similarly, recent sub-mm surveys with SCUBA have revealed an analogous population of exceptionally luminous, dust-enshrouded {\\em star-forming} galaxies at high redshift. There is now growing evidence for an intimate link between these obscured populations. There are currently large uncertainties in the models, but several independent arguments lead to the conclusion that a significant fraction of the SCUBA sources ($10-30% $) will contain quasars. Recent observational studies of SCUBA survey sources appear to confirm these predictions, although the relative roles of AGN and star-forming activity in heating the dust are unclear. Forthcoming surveys combining X-ray and sub-mm observations will provide a very powerful tool for disentangling these processes.

  8. X-ray atlas of rheumatic diseases

    SciTech Connect (OSTI)

    Dihlmann, W.

    1986-01-01T23:59:59.000Z

    This atlas comprises instructive X-rays of the various inflammatory rheumatic joint diseases in all stages at the extremities and the spinal column. In addition, the complex pattern of the wide range of arthroses, also known as degenerative rheumatic disease is included. Besides the instructive pointers to X-ray diagnosis, the book is also a guide to differential diagnosis. Hence, this book is actually an X-ray atlas of joint diseases in general. Selected Contents: Introduction: What Does ''Rheumatism'' Actually Mean./Radiographic Methodology in Rheumatic Diseases of the Locomotor System/The Mosaic of Arthritis/Adult Rheumatoid Arthritis/Seronegative Spondylarthritis/Classic Collagen Diseases/Enthesiopathies/Gout-Pseudogout

  9. Combined microstructure x-ray optics

    SciTech Connect (OSTI)

    Barbee, T.W. Jr.

    1989-02-01T23:59:59.000Z

    Multilayers are man-made microstructures which vary in depth and are now of sufficient quality to be used as x-ray, soft x-ray and extreme ultraviolet optics. Gratings are man-made in plane microstructures which have been used as optic elements for most of this century. Joining of these two optical microstructures to form combined microstructure optical microstructures to form combined microstructure optical elements has the potential for greatly enhancing both the throughput and the resolution attainable in these spectral ranges. The characteristics of these new optic elements will be presented and compared to experiment with emphasis on the unique properties of these combined microstructures. These results reported are general in nature and not limited to the soft x-ray or extreme ultraviolet spectral domains and also apply to neutrons. 19 refs., 7 figs., 4 tabs.

  10. X-ray reflectivity and surface roughness

    SciTech Connect (OSTI)

    Ocko, B.M.

    1988-01-01T23:59:59.000Z

    Since the advent of high brightness synchrotron radiation sources there has been a phenomenal growth in the use of x-rays as a probe of surface structure. The technique of x-ray reflectivity is particularly relevant to electrochemists since it is capable of probing the structure normal to an electrode surface in situ. In this paper the theoretical framework for x-ray reflectivity is reviewed and the results from previous non-electrochemistry measurements are summarized. These measurements are from the liquid/air interface (CCl/sub 4/), the metal crystal vacuum interface (Au(100)), and from the liquid/solid interface(liquid crystal/silicon). 34 refs., 5 figs.

  11. X-ray-induced electronic structure change in CuIr{sub 2}S{sub 4}

    SciTech Connect (OSTI)

    Gretarsson, H.; Kim, Young-June [Department of Physics, University of Toronto, 60 St. George Street, Toronto, Ontario M5S 1A7 (Canada); Kim, Jungho; Casa, D.; Gog, T. [CMC-XOR, Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Choi, K. R. [l-PEM, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Cheong, S. W. [l-PEM, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); R-CEM and Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854 (United States)

    2011-09-15T23:59:59.000Z

    The electronic structure of CuIr{sub 2}S{sub 4} is investigated using various bulk-sensitive x-ray spectroscopic methods near the Ir L{sub 3} edge: resonant inelastic x-ray scattering (RIXS), x-ray absorption spectroscopy in the partial fluorescence yield mode, and resonant x-ray emission spectroscopy. A strong RIXS signal (0.75 eV) resulting from a charge-density-wave gap opening is observed below the metal-insulator transition temperature of 230 K. The resultant modification of electronic structure is consistent with the density functional theory prediction. In the spin- and charge-dimer disordered phase induced by x-ray irradiation below 50 K, we find that a broad peak around 0.4 eV appears in the RIXS spectrum.

  12. A Lack of Radio Emission from Neutron Star Low Mass X-ray Binaries

    E-Print Network [OSTI]

    Michael P. Muno; Tomaso Belloni; Vivek Dhawan; Edward H. Morgan; Ronald A. Remillard; Michael P. Rupen

    2004-11-11T23:59:59.000Z

    We report strict upper limits to the radio luminosities of three neutron star low-mass X-ray binaries obtained with the Very Large Array while they were in hard X-ray states as observed with the Rossi X-ray Timing Explorer: 1E 1724-307, 4U 1812-12, and SLX 1735-269. We compare these upper limits to the radio luminosities of several black hole binaries in very similar hard states, and find that the neutron star systems are as faint as or fainter than all of the black hole candidates. The differences in luminosities can partly be attributed to the lower masses of the neutron star systems, which on theoretical and observational grounds are expected to decrease the radio luminosities as M^0.8. However, there still remains a factor of 30 scatter in the radio luminosities of black hole and neutron star X-ray binaries, particularly at X-ray luminosities of a few percent Eddington. We find no obvious differences in the X-ray timing and spectral properties that can be correlated with the radio luminosity. We discuss the implications of these results on current models for the relationship between accretion and jets.

  13. Radiobiological studies using gamma and x rays.

    SciTech Connect (OSTI)

    Potter, Charles Augustus; Longley, Susan W.; Scott, Bobby R. [Lovelace Respiratory Research Institute, Albuquerque, NM; Lin, Yong [Lovelace Respiratory Research Institute, Albuquerque, NM; Wilder, Julie [Lovelace Respiratory Research Institute, Albuquerque, NM; Hutt, Julie A. [Lovelace Respiratory Research Institute, Albuquerque, NM; Padilla, Mabel T. [Lovelace Respiratory Research Institute, Albuquerque, NM; Gott, Katherine M. [Lovelace Respiratory Research Institute, Albuquerque, NM

    2013-02-01T23:59:59.000Z

    There are approximately 500 self-shielded research irradiators used in various facilities throughout the U.S. These facilities use radioactive sources containing either 137Cs or 60Co for a variety of biological investigations. A report from the National Academy of Sciences[1] described the issues with security of particular radiation sources and the desire for their replacement. The participants in this effort prepared two peer-reviewed publications to document the results of radiobiological studies performed using photons from 320-kV x rays and 137Cs on cell cultures and mice. The effectiveness of X rays was shown to vary with cell type.

  14. Energy resolved X-ray grating interferometry

    SciTech Connect (OSTI)

    Thuering, T.; Stampanoni, M. [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland) [Swiss Light Source, Paul Scherrer Institut, Villigen PSI (Switzerland); Institute for Biomedical Engineering, Swiss Federal Institute of Technology, Zurich (Switzerland); Barber, W. C.; Iwanczyk, J. S. [DxRay, Inc., Northridge, California 91324 (United States)] [DxRay, Inc., Northridge, California 91324 (United States); Seo, Y.; Alhassen, F. [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)] [UCSF Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of California, San Francisco, California 94143 (United States)

    2013-05-13T23:59:59.000Z

    Although compatible with polychromatic radiation, the sensitivity in X-ray phase contrast imaging with a grating interferometer is strongly dependent on the X-ray spectrum. We used an energy resolving detector to quantitatively investigate the dependency of the noise from the spectral bandwidth and to consequently optimize the system-by selecting the best energy band matching the experimental conditions-with respect to sensitivity maximization and, eventually, dose. Further, since theoretical calculations of the spectrum are usually limited due to non-ideal conditions, an energy resolving detector accurately quantifies the spectral changes induced by the interferometer including flux reduction and beam hardening.

  15. X-Ray Nanoimaging: Instruments and Methods

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-Ray

  16. Bandpass x-ray diode and x-ray multiplier detector

    DOE Patents [OSTI]

    Wang, C.L.

    1982-09-27T23:59:59.000Z

    An absorption-edge of an x-ray absorption filter and a quantum jump of a photocathode determine the bandpass characteristics of an x-ray diode detector. An anode, which collects the photoelectrons emitted by the photocathode, has enhanced amplification provided by photoelectron-multiplying means which include dynodes or a microchannel-plate electron-multiplier. Suppression of undesired high frequency response for a bandpass x-ray diode is provided by subtracting a signal representative of energies above the passband from a signal representative of the overall response of the bandpass diode.

  17. SLAC All Access: X-ray Microscope

    ScienceCinema (OSTI)

    Nelson, Johanna; Liu, Yijin

    2014-06-13T23:59:59.000Z

    SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

  18. Femtosecond X-ray protein nanocrystallography

    SciTech Connect (OSTI)

    Chapman, Henry N.; Fromme, Petra; Barty, Anton; White, Thomas A.; Kirian, Richard A.; Aquila, Andrew; Hunter, Mark S.; Schulz, Joachim; DePonte, Daniel P.; Weierstall, Uwe; Doak, R. Bruce; Maia, Filipe R. N. C.; Martin, Andrew V.; Schlichting, Ilme; Lomb, Lukas; Coppola, Nicola; Shoeman, Robert L.; Epp, Sascha W.; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Holl, Peter; Liang, Mengning; Barthelmess, Miriam; Caleman, Carl; Boutet, Sebastien; Bogan, Michael J.; Krzywinski, Jacek; Bostedt, Christoph; Bajt, Sasa; Gumprecht, Lars; Rudek, Benedikt; Erk, Benjamin; Schmidt, Carlo; Homke, Andre; Reich, Christian; Pietschner, Daniel; Struder, Lothar; Hauser, Gunter; Gorke, Hubert; Ullrich, Joachim; Herrmann, Sven; Schaller, Gerhard; Schopper, Florian; Soltau, Heike; Kuhnel, Kai-Uwe; Messerschmidt, Marc; Bozek, John D.; Hau-Riege, Stefan P.; Frank, Matthias; Hampton, Christina Y.; Sierra, Raymond G.; Starodub, Dmitri; Williams, Garth J.; Hajdu, Janos; Timneanu, Nicusor; Seibert, M. Marvin; Andreasson, Jakob; Rocker, Andrea; Jonsson, Olof; Svenda, Martin; Stern, Stephan; Nass, Karol; Andritschke, Robert; Schroter, Claus-Dieter; Krasniqi, Faton; Bott, Mario; Schmidt, Kevin E.; Wang, Xiaoyu; Grotjohann, Ingo; Holton, James M.; Barends, Thomas R. M.; Neutze, Richard; Marchesini, Stefano; Fromme, Raimund; Schorb, Sebastian; Rupp, Daniela; Adolph, Marcus; Gorkhover, Tais; Andersson, Inger; Hirsemann, Helmut; Potdevin, Guillaume; Graafsma, Heinz; Nilsson, Bjorn; Spence, John C. H.

    2011-01-01T23:59:59.000Z

    X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (~200?nm to 2??m in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.

  19. Catalog of supersoft X-ray sources

    E-Print Network [OSTI]

    J. Greiner

    2000-05-11T23:59:59.000Z

    This catalog comprises an up-to-date (December 1999) list of luminous (>10^36 erg/s), binary supersoft X-ray sources. This electronic version (including the accompannying Web-pages) supersedes the printed version of Greiner (1996).

  20. Transformation of x-ray server from a set of WWW-accessed programs into WWW-based library for remote calls from x-ray data analysis software.

    SciTech Connect (OSTI)

    Stepanov, S.; Biosciences Division

    2007-05-01T23:59:59.000Z

    X-ray Server [x-server.gmca.aps.anl.gov] is a public project providing a collection of online software tools for modeling data in the fields of surface X-ray scattering and grazing-incidence X-ray diffraction from thin solid films and multilayers with account for the effects of crystal lattice strains, magnetization and interface roughness. This paper reports on recent developments that are addressing numerous requests to expand the Server access beyond plain web browser sessions and facilitate batch processing, remote fitting and integration of Server programs into users' data analysis software.

  1. Synchrotron X-ray Studies of Vulcanized Rubbers and Thermoplastic Elastomers

    SciTech Connect (OSTI)

    Toki,S.; Hsiao, B.; Kohjiya, S.; Tosaka, M.; Tosaka, A.; Tsou, A.; Datta, S.

    2006-01-01T23:59:59.000Z

    Synchrotron X-ray diffraction technique has revealed strain-induced crystallization and molecular orientation in vulcanized rubbers and thermoplastic elastomers (TPE) during deformation in real time. The stress-strain curves and wide angle X-ray diffraction (WAXD) patterns in vulcanized rubbers and TPE were measured simultaneously. In-situ WAXD patterns were taken not only at different strains during uniaxial deformation but also at different temperatures at a constant strain. Results lead to several new insights. (i) Strain-induced crystallization is a common phenomenon in vulcanized rubbers, except SBR (styrene-butadiene rubber), and in TPE (with crystalline hard segments). (ii) Strain-induced crystallization decreases the stress and increases the elongation in the strained rubber. (iii) The hybrid structure of chemical networks and strain-induced crystallites is responsible to the tensile strength and elongation at break for both systems. (iiii) Some original crystal fraction (hard segment domain) in TPE is destroyed. During deformation, strain-induced crystallization increases with strain. Upon retraction even to stress zero, the majority of oriented strain-induced crystallites remains in tack with preferred orientation.

  2. Rise time measurement for ultrafast X-ray pulses

    DOE Patents [OSTI]

    Celliers, Peter M. (Berkeley, CA); Weber, Franz A. (Oakland, CA); Moon, Stephen J. (Tracy, CA)

    2005-04-05T23:59:59.000Z

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  3. Rise Time Measurement for Ultrafast X-Ray Pulses

    DOE Patents [OSTI]

    Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

    2005-04-05T23:59:59.000Z

    A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

  4. X-ray microscopy using grazing-incidence reflections optics

    SciTech Connect (OSTI)

    Price, R.H.

    1983-06-30T23:59:59.000Z

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  5. X-ray microscopy using grazing-incidence reflection optics

    SciTech Connect (OSTI)

    Price, R.H.

    1981-08-06T23:59:59.000Z

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

  6. Electronic Properties of Hydrogen Storage Materials with Photon-in/Photon-out Soft-X-Ray Spectroscopy

    SciTech Connect (OSTI)

    Guo, Jinghua

    2008-09-22T23:59:59.000Z

    The applications of resonant soft X-ray emission spectroscopy on a variety of carbon systems have yielded characteristic fingerprints. With high-resolution monochromatized synchrotron radiation excitation, resonant inelastic X-ray scattering has emerged as a new source of information about electronic structure and excitation dynamics. Photon-in/photon-out soft-X-ray spectroscopy is used to study the electronic properties of fundamental materials, nanostructure, and complex hydrides and will offer potential in-depth understanding of chemisorption and/or physisorption mechanisms of hydrogen adsorption/desorption capacity and kinetics.

  7. Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory

    SciTech Connect (OSTI)

    Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

    2012-11-21T23:59:59.000Z

    We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

  8. X-ray imaging crystal spectrometer for extended X-ray sources

    DOE Patents [OSTI]

    Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

    2001-01-01T23:59:59.000Z

    Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

  9. X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION

    SciTech Connect (OSTI)

    Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2013-03-20T23:59:59.000Z

    Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

  10. Fundamental Parameters of Low Mass X-ray Binaries II: X-Ray Persistent Systems

    E-Print Network [OSTI]

    Jorge Casares; Phil Charles

    2005-06-24T23:59:59.000Z

    The determination of fundamental parameters in X-ray luminous (persistent) X-ray binaries has been classically hampered by the large optical luminosity of the accretion disc. New methods, based on irradiation of the donor star and burst oscillations, provide the opportunity to derive dynamical information and mass constraints in many persistent systems for the first time. These techniques are here reviewed and the latest results presented.

  11. Phonon dispersion of graphite by inelastic x-ray scattering * J. Maultzsch,1, E. Dobardzi,2 S. Reich,3 I. Milosevi,2 M. Damnjanovi,2 A. Bosak,4 M. Krisch,4 and

    E-Print Network [OSTI]

    Nabben, Reinhard

    , University of Belgrade, POB 368, 11011 Belgrade, Serbia 3Department of Materials Science and Engineering quality. It has been partly measured by inelastic neutron scattering INS , electron- energy loss, e.g., the crossing between the acoustic and optical bands near the M point or the energy

  12. Logical operations with single x-ray photons via dynamically-controlled nuclear resonances

    E-Print Network [OSTI]

    Jonas Gunst; Christoph H. Keitel; Adriana Pálffy

    2015-06-01T23:59:59.000Z

    The implementation of logical operations on polarization-encoded x-rays via resonant light-nucleus interactions is theoretically investigated. We show that by means of resonant scattering off nuclei and fast rotations of the nuclear hyperfine magnetic field to control the polarization of the output photon, single-qubit logical gates can be simulated. A second control qubit may be employed to trigger the magnetic field rotation, thus allowing several implementation choices for a controlled NOT gate for x-ray photons.

  13. The spectra of accretion discs in low-mass X-ray binaries

    E-Print Network [OSTI]

    R. R. Ross; A. C. Fabian

    1995-11-14T23:59:59.000Z

    We present self-consistent models for the radiative transfer in Shakura-Sunyaev accretion discs in bright low-mass X-ray binaries (LMXB). Our calculations include the full effects of incoherent Compton scattering and the vertical temperature structure within the disc, as well as the effects of Doppler blurring and gravitational redshift. We find that the observed X-ray spectra are well fit by exponentially cutoff power-law models. The difference between the observed total spectrum and our calculated disc spectrum should reveal the spectrum of the disc/neutron star boundary layer and other emitting regions considered to be present in LMXB.

  14. Theoretical standards in x-ray spectroscopies. Annual progress report, 1991--1992

    SciTech Connect (OSTI)

    Not Available

    1992-09-01T23:59:59.000Z

    We propose to extend our state-of-the-art, ab initio XAFS (X-ray absorption fine structure) codes, FEFF. Our current work has been highly successful in achieving accurate, user-friendly XAFS standards, exceeding the performance of both tabulated standards and other codes by a considerable margin. We now propose to add the capability to treat more complex materials. This includes multiple-scattering, polarization dependence, an approximate treatment of XANES (x-ray absorption near edge structure), and other improvements. We also plan to adapt FEFF to other spectroscopies, e.g. photoelectron diffraction (PD) and diffraction anomalous fine structure (DAFS).

  15. Maskelynite formation via solid-state transformation: Evidence of infrared and x-ray anisotropy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jaret, Steven J.; Ehm, Lars; Woerner, William R.; Phillips, Brian L.; Nekvasil, Hanna; Wright, Shawn P.; Glotch, Timothy D.

    2015-03-01T23:59:59.000Z

    We present optical microscopy, micro-Raman spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, high-energy X-ray total scattering experiments, and micro-Fourier transform infrared (micro-FTIR) spectroscopy on shocked labradorite from the Lonar Crater, India. We show that maskelynite of shock class 2 is structurally more similar to fused glass than to crystalline plagioclase. However, there are slight but significant differences – preservation of original pre-impact igneous zoning, anisotropy at Infrared wavelengths, X-ray anisotropy, and preservation of some intermediate range order – which are all consistent with a solid-state transformation formation of maskelynite.

  16. An x-ray setup to investigate the atomic order of confined liquids in slit geometry

    SciTech Connect (OSTI)

    Lippmann, M.; Ehnes, A.; Seeck, O. H. [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany)] [Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg (Germany)

    2014-01-15T23:59:59.000Z

    A setup has been designed to investigate thin films of confined liquids with the use of X-ray scattering methods. The confinement is realized between the flat culets of a pair of diamonds by positioning and orienting the lower diamond with nanometer and micro radian accuracy. We routinely achieve gaps between 5 and 50 nm at culet diameters of 200 ?m. With this setup and a micro focused X-ray beam we have investigated the in-plane and the out-off-plane atomic order of benzene with atomic resolution.

  17. Mapping Local Strain in Thin Film/Substrate Systems using X-ray

    SciTech Connect (OSTI)

    Yan,H.; Murray, C.; Noyan, I.

    2007-01-01T23:59:59.000Z

    The authors report experimental data and modeling results for reflection microbeam x-ray topographs from a Si substrate strained by an overlying pseudomorphic SiGe film edge. The diffracted x-ray intensity from the Si substrate is strongly asymmetric as a function of distance from the film edge. A model of the diffracted intensity based on the classical Ewald-von Laue dynamical diffraction theory for an antisymmetric strain distribution indicates that the asymmetry in the diffracted beam profile is only due to the scattering process; individual intensity maxima in the intensity profile cannot be uniquely ascribed to individual features in the local strain distribution.

  18. ASCA Discovery of Diffuse 6.4 keV Emission Near the Sgr C Complex: A New X-ray Reflection Nebula

    E-Print Network [OSTI]

    H. Murakami; K. Koyama; M. Tsujimoto; Y. Maeda; M. Sakano

    2000-12-14T23:59:59.000Z

    We present an ASCA discovery of diffuse hard X-ray emission from the Sgr C complex with its peak in the vicinity of the molecular cloud core. The X-ray spectrum is characterized by a strong 6.4-keV line and large absorption. These properties suggest that Sgr C is a new X-ray reflection nebula which emits fluorescent and scattered X-rays via irradiation from an external X-ray source. We found no adequately bright source in the immediate Sgr C vicinity to fully account for the fluorescence. The irradiating source may be the Galactic nucleus Sgr A*, which was brighter in the past than it is now as is suggested from observations of the first X-ray reflection nebula Sgr B2.

  19. Soft x-ray capabilities for investigating the strongly correlated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray, aiming to understand their sciences for applying a new material. In particular, soft x-ray capabilities have been used to obtain microscopic-level understanding of the...

  20. Dawn of x-ray nonlinear optics | Stanford Synchrotron Radiation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Dawn of x-ray nonlinear optics Wednesday, July 8, 2015 - 3:00pm SLAC, Redtail Hawk Conference Room 108A Speaker: David Reis, PULSE Program Description X-ray free electron lasers...

  1. ALS X-Rays Shine a New Light on Catalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    times science has used high-brilliance x-rays to look so closely at these reactions. Lead author Dr. David Mueller at the ALS using x-rays to characterize working fuel cells....

  2. A World's Top-10 X-ray Crystal Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A World's Top-10 X-ray Crystal Structure October 7, 2014 Bookmark and Share Philip Coppens An x-ray crystal structure solved by Philip Coppens has been chosen as one of the world's...

  3. Nanofabrication of Diffractive X-ray Optics for Synchrotrons...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the soft x-ray range and down to 15 nm in the multi keV range. For use at x-ray free-electron laser (XFEL) sources, diffractive optics must be capable of withstanding extreme...

  4. High resolution x-ray lensless imaging by differential holographic encoding

    SciTech Connect (OSTI)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02T23:59:59.000Z

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  5. Anomalous X-ray Diffraction Studies for Photovoltaic Applications

    SciTech Connect (OSTI)

    Not Available

    2011-06-22T23:59:59.000Z

    Anomalous X-ray Diffraction (AXRD) has become a useful technique in characterizing bulk and nanomaterials as it provides specific information about the crystal structure of materials. In this project we present the results of AXRD applied to materials for photovoltaic applications: ZnO loaded with Ga and ZnCo{sub 2}O{sub 4} spinel. The X-ray diffraction data collected for various energies were plotted in Origin software. The peaks were fitted using different functions including Pseudo Voigt, Gaussian, and Lorentzian. This fitting provided the integrated intensity data (peaks area values), which when plotted as a function of X-ray energies determined the material structure. For the first analyzed sample, Ga was not incorporated into the ZnO crystal structure. For the ZnCo{sub 2}O{sub 4} spinel Co was found in one or both tetrahedral and octahedral sites. The use of anomalous X-ray diffraction (AXRD) provides element and site specific information for the crystal structure of a material. This technique lets us correlate the structure to the electronic properties of the materials as it allows us to probe precise locations of cations in the spinel structure. What makes it possible is that in AXRD the diffraction pattern is measured at a number of energies near an X-ray absorption edge of an element of interest. The atomic scattering strength of an element varies near its absorption edge and hence the total intensity of the diffraction peak changes by changing the X-ray energy. Thus AXRD provides element specific structural information. This method can be applied to both crystalline and liquid materials. One of the advantages of AXRD in crystallography experiments is its sensitivity to neighboring elements in the periodic tables. This method is also sensitive to specific crystallographic phases and to a specific site in a phase. The main use of AXRD in this study is for transparent conductors (TCs) analysis. TCs are considered to be important materials because of their efficiency and low risk of environmental pollution. These materials are important to solar cells as a result of their remarkable combination of optical and electrical properties, including high electrical conductivity and high optical transparency in the spectrum of visible light. TCs provide a transparent window, which allows sunlight to pass through while also allowing electricity to conduct out of the cell. Spinel materials have the chemical form AB{sub 2}O{sub 4}, and are made of a face-centered cubic (FCC) lattice of oxygen anions and cations in specific interstitial sites. A normal spinel has all A cations on tetrahedral sites and B cations on octahedral sites. In contrast; an inverse spinel has the A and half of the B cations on octahedral sites and the other half of the B cations on tetrahedral sites; a mixed spinel lies between. In the spinel structure, 8 of 64 possible tetrahedral sites and 16 of 32 possible octahedral sites are filled. Normal spinels have particularly high conduction as the linear octahedral chains of B cations likely serve as conduction paths. In this paper we present how the data obtained with AXRD is used to analyze TCs properties as they apply to photovoltaic applications. One of the materials used for this analysis is zinc oxide. It has been loaded with 5% and 10% of Ga, which has an absorption edge of 10367 eV. The peak (100) was measured for the zinc oxide loaded with 10% Ga. In the case of 5% Ga, we measured peaks (100) and (101). With the information provided by the AXRD we can identify if Ga is being incorporated in the ZnO crystal structure. The analysis of 311 plane in the ZnCo{sub 2}O{sub 4} spinel shows if Co is in tetrahedral or octahedral site.

  6. Beyond Chandra - the X-ray Surveyor

    E-Print Network [OSTI]

    Weisskopf, Martin C; Tananbaum, Harvey; Vikhlinin, Alexey

    2015-01-01T23:59:59.000Z

    Over the past 16 years, NASA's Chandra X-ray Observatory has provided an unparalleled means for exploring the universe with its half-arcsecond angular resolution. Chandra studies have deepened our understanding of galaxy clusters, active galactic nuclei, galaxies, supernova remnants, planets, and solar system objects addressing almost all areas of current interest in astronomy and astrophysics. As we look beyond Chandra, it is clear that comparable or even better angular resolution with greatly increased photon throughput is essential to address even more demanding science questions, such as the formation and subsequent growth of black hole seeds at very high redshift; the emergence of the first galaxy groups; and details of feedback over a large range of scales from galaxies to galaxy clusters. Recently, NASA Marshall Space Flight Center, together with the Smithsonian Astrophysical Observatory, has initiated a concept study for such a mission named the X-ray Surveyor. This study starts with a baseline payloa...

  7. X-ray radiography for container inspection

    DOE Patents [OSTI]

    Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

    2011-06-07T23:59:59.000Z

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  8. X-ray mammography with synchrotron radiation

    SciTech Connect (OSTI)

    Burattini, E. (CNR and INFN-Laboratori Nazionali di Frascati, Frascati, Rome (Italy)); Gambaccini, M.; Marziani, M.; Rimondi, O. (Dipartimento di Fisica dell'Universita and Sezione INFN di Ferrara, Ferrara (Italy)); Indovina, P.L. (Dipartimento di Scienze Fisiche dell'Universita and Sezione INFN di Napoli, Naples (Italy)); Pocek, M.; Simonetti, G. (Istituto di Radiologia, Ospedale Sant'Eugenio, Universita di Tor Vergata, Rome (Italy)); Benassi, M.; Tirelli, C. (Istituto Nazionale del Cancro, Regina Elena, Rome (Italy)); Passariello, R. (Cattedra di Radiologia, Universita dell'Aquila, L'Aquila (Italy))

    1992-01-01T23:59:59.000Z

    For the first time in the literature, radiographs of breast phantoms were obtained using several monochromatic synchrotron radiation x-ray beams of selected energy in the range from 14 to 26 keV. In addition, after optimization of the photon energy as a function of the phantom thickness, several mammographs were obtained on surgically removed human breast specimens containing cancer nodules. Comparison between radiographs using a conventional x-ray unit and those obtained of the same specimens utilizing synchrotron monochromatic beams clearly shows that higher contrast and better resolution can be achieved with synchrotron radiation. These results demonstrate the possibility of obtaining radiographs of excised human breast tissue containing a greater amount of radiological information using synchrotron radiation.

  9. X-rays from Supernova Remnants

    E-Print Network [OSTI]

    B. Aschenbach

    2002-08-28T23:59:59.000Z

    A summary of X-ray observations of supernova remnants is presented including the explosion fragment A of the Vela SNR, Tycho, N132D, RX J0852-4622, the Crab Nebula and the 'bulls eye', and SN 1987A, high-lighting the progress made with Chandra and XMM-Newton and touching upon the questions which arise from these observations and which might inspire future research.

  10. Accretion Disk Boundary Layers Around Neutron Stars: X-ray Production in Low-Mass X-ray Binaries

    E-Print Network [OSTI]

    Robert Popham; Rashid Sunyaev

    2000-04-03T23:59:59.000Z

    We present solutions for the structure of the boundary layer where the accretion disk meets the neutron star, which is expected to be the dominant source of high-energy radiation in low-mass X-ray binaries which contain weakly magnetized accreting neutron stars. We find that the main portion of the boundary layer gas is hot (> ~10^8 K), low in density, radially and vertically extended, and optically thick to scattering but optically thin to absorption. It will produce large X-ray luminosity by Comptonization. Energy is transported inward by viscosity, concentrating the energy dissipation in the dense, optically thick zone close to the stellar surface. We explore the dependence of the boundary layer structure on the mass accretion rate, the rotation rate of the star, the alpha viscosity parameter and the viscosity prescription. Radiation pressure is the dominant source of pressure in the boundary layer; the flux is close to the Eddington limiting flux even for luminosities well below (~0.01 times) L(Edd). At luminosities near L(Edd), the boundary layer expands radially, and has a radial extent larger than one stellar radius. Based on the temperatures and optical depths which characterize the boundary layer, we expect that Comptonization will produce a power-law spectrum at low source luminosities. At high luminosities, a Planckian spectrum will be produced in the dense region where most of the energy is released, and modified by Comptonization as the radiation propagates outward.

  11. The PG X-ray QSO sample: Links between the UV-X-ray Continuum and Emission Lines

    E-Print Network [OSTI]

    Beverley J. Wills; M. S. Brotherton; A. Laor; D. Wills; B. J. Wilkes; G. J. Ferland; Zhaohui Shang

    1999-05-07T23:59:59.000Z

    The UV to soft X-rays of luminous AGNs dominate their bolometric luminosity, driven by an accretion-powered dynamo at the center. These photons ionize the surrounding gas, thereby providing clues to fueling and exhaust. Two sets of important relationships - neither of them understood - link the continuum and gas properties. (i) Boroson & Green's `eigenvector 1' relationships: Steeper soft X-ray spectra are clearly related to narrower Hbeta emission and stronger optical Fe II emission from the BLR, and weaker [O III] 5007 from the NLR. We show that these relationships extend to UV spectra: narrower C III] 1909, stronger low ionization lines, larger Si III] 1892/C III] 1909 (a density indicator), weaker C IV 1549 but stronger higher-ionization N V 1240. We speculate that high accretion rates are linked to high columns of dense (1e10 - 1e11 cm-3), nitrogen-enhanced, low-ionization gas from nuclear starbursts. Linewidth, inverse Fe II-[O III] and inverse Fe II-C IV relationships hint at the geometrical arrangement of this gas. (ii) The Baldwin effect (inverse equivalent width - luminosity relationships): Our correlation analyses suggest that these are independent of the above eigenvector 1 relationships. The eigenvector 1 relationships can therefore be used in future work, to reduce scatter in the Baldwin relationships, perhaps fulfilling the dream of using the Baldwin effect for cosmological studies.

  12. Bright X-ray galaxies in SDSS filaments

    E-Print Network [OSTI]

    Tugay, A V

    2013-01-01T23:59:59.000Z

    Eighteen bright X-ray emitting galaxies were found in nearby filaments within SDSS region. Basic X-ray spectral parameters were estimated for these galaxies using power law model with photoelectric absorption. A close pair of X-ray galaxies was found.

  13. Femtosecond laser-electron x-ray source

    DOE Patents [OSTI]

    Hartemann, Frederic V.; Baldis, Hector A.; Barty, Chris P.; Gibson, David J.; Rupp, Bernhard

    2004-04-20T23:59:59.000Z

    A femtosecond laser-electron X-ray source. A high-brightness relativistic electron injector produces an electron beam pulse train. A system accelerates the electron beam pulse train. The femtosecond laser-electron X-ray source includes a high intra-cavity power, mode-locked laser and an x-ray optics system.

  14. ASCA Observations of the Sgr B2 Cloud: An X-Ray Reflection Nebula

    E-Print Network [OSTI]

    H. Murakami; K. Koyama; M. Sakano; M. Tsujimoto; Y. Maeda

    1999-08-20T23:59:59.000Z

    We present the ASCA results of imaging spectroscopy of the giant molecular cloud Sgr B2. The X-ray spectrum is found to be very peculiar; it exhibits a strong emission line at 6.4 keV, a low energy cutoff below about 4 keV and a pronounced edge-structure at 7.1 keV. The X-ray image is extended and its peak position is shifted from the core of the molecular cloud toward the Galactic center by about 1--2 arcminute. The X-ray spectrum and the morphology are well reproduced by a scenario that X-rays from an external source located in the Galactic center direction are scattered by the molecular cloud Sgr B2, and come into our line of sight. Thus Sgr B2 may be called an X-ray reflection nebula. Possible implications of the Galactic center activity related to this unique source are presented.

  15. Local structure of Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot}2H{sub 2}O by the modeling of X-ray diffuse scattering - from average-structure to microdomain model

    SciTech Connect (OSTI)

    Komornicka, Dorota [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-420 Wroclaw (Poland); Wolcyrz, Marek, E-mail: m.wolcyrz@int.pan.wroc.pl [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-420 Wroclaw (Poland); Pietraszko, Adam [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, ul. Okolna 2, 50-420 Wroclaw (Poland)

    2012-08-15T23:59:59.000Z

    Local structure of dirubidium tetralithium tris(selenate(VI)) dihydrate - Rb{sub 2}Li{sub 4}(SeO{sub 4}){sub 3}{center_dot} 2H{sub 2}O has been determined basing on the modeling of X-ray diffuse scattering. The origin of observed structured diffuse streaks is SeO{sub 4} tetrahedra switching between two alternative positions in two quasi-planar layers existing in each unit cell and formation of domains with specific SeO{sub 4} tetrahedra configuration locally fulfilling condition for C-centering in the 2a Multiplication-Sign 2b Multiplication-Sign c superstructure cell. The local structure solution is characterized by a uniform distribution of rather large domains (ca. thousand of unit cells) in two layers, but also monodomains can be taken into account. Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming two-string ribbons. Inside the ribbons SeO{sub 4} and LiO{sub 4} tetrahedra share the oxygen corners, whereas ribbons are bound to each other by a net of hydrogen bonds and fastened by corner sharing SeO{sub 4} tetrahedra of the neighboring layers. - Graphical abstract: Experimental sections of the reciprocal space showing diffraction effects observed for RLSO. Bragg spots are visible on sections with integer indices (1 kl section - on the left), streaks - on sections with fractional ones (1.5 kl section - on the right). At the center: resulting local structure of the A package modeled as a microdomain: two-string ribbons of ordered oxygen-corners-sharing SeO{sub 4} and LiO{sub 4} terahedra extended along ab-diagonal are seen; ribbons are bound by hydrogen bonds (shown in pink); the multiplied 2a Multiplication-Sign 2b unit cell is shown. Highlights: Black-Right-Pointing-Pointer X-ray diffuse scattering in RLSO was registered and modeled. Black-Right-Pointing-Pointer The origin of diffuse streaks is SeO{sub 4} tetrahedra switching in two structure layers. Black-Right-Pointing-Pointer The local structure is characterized by a uniform distribution of microdomains. Black-Right-Pointing-Pointer Inside a single domain SeO{sub 4} tetrahedra are ordered along ab-diagonal forming ribbons. Black-Right-Pointing-Pointer The ribbons are bound to each other by a net of hydrogen bonds.

  16. The X-ray Halo of G21.5-0.9

    E-Print Network [OSTI]

    R. Bandiera; F. Bocchino

    2003-05-21T23:59:59.000Z

    The emission of the plerion G21.5-0.9 appears more extended in X rays than in radio. This is an unexpected result because it would imply that short-lived X-ray electrons may reach distances even larger than radio electrons. Applying an empirical relationship between dust scattering optical depth and photoelectric column density, the measured column density leads to a large optical depth at 1 keV, of about 1. Therefore we investigate the hypothesis that the detected halo be an effect of dust scattering, re-analyzing an Cal/PV XMM-Newton observation of G21.5-0.9 and critically examining it in terms of a dust scattering model. We also present a spectral analysis of a prominent extended feature in the northern sector of the halo.

  17. Proceedings of the workshop on X-ray computed microtomography

    SciTech Connect (OSTI)

    NONE

    1998-02-01T23:59:59.000Z

    This report consists of vugraphs from the nine presentations at the conference. Titles of the presentations are: CMT: Applications and Techniques; Computer Microtomography Using X-rays from Third Generation Synchrotron X-ray; Approaches to Soft-X-ray Nanotomography; Diffraction Enhanced Tomography; X-ray Computed Microtomography Applications at the NSLS; XCMT Applications in Forestry and Forest Products; 3DMA: Investigating Three Dimensional Pore Geometry from High Resolution Images; X-ray Computed Microtomography Studies of Volcanic Rock; and 3-D Visualization of Tomographic Volumes.

  18. Calibrating X-ray Imaging Devices for Accurate Intensity Measurement

    SciTech Connect (OSTI)

    Haugh, M. J.

    2011-07-28T23:59:59.000Z

    The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

  19. Apparatus for monitoring X-ray beam alignment

    DOE Patents [OSTI]

    Steinmeyer, P.A.

    1991-10-08T23:59:59.000Z

    A self-contained, hand-held apparatus is provided for monitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency. 2 figures.

  20. Coded Aperture Imaging for Fluorescent X-rays-Biomedical Applications

    SciTech Connect (OSTI)

    Haboub, Abdel; MacDowell, Alastair; Marchesini, Stefano; Parkinson, Dilworth

    2013-06-01T23:59:59.000Z

    Employing a coded aperture pattern in front of a charge couple device pixilated detector (CCD) allows for imaging of fluorescent x-rays (6-25KeV) being emitted from samples irradiated with x-rays. Coded apertures encode the angular direction of x-rays and allow for a large Numerical Aperture x- ray imaging system. The algorithm to develop the self-supported coded aperture pattern of the Non Two Holes Touching (NTHT) pattern was developed. The algorithms to reconstruct the x-ray image from the encoded pattern recorded were developed by means of modeling and confirmed by experiments. Samples were irradiated by monochromatic synchrotron x-ray radiation, and fluorescent x-rays from several different test metal samples were imaged through the newly developed coded aperture imaging system. By choice of the exciting energy the different metals were speciated.

  1. HgMn Stars as apparent X-ray emitters

    E-Print Network [OSTI]

    Hubrig, S; Mathys, G

    1998-01-01T23:59:59.000Z

    In the ROSAT all-sky survey 11 HgMn stars were detected as soft X-ray emitters (Berghoefer, Schmitt & Cassinelli 1996). Prior to ROSAT, X-ray observations with the Einstein Observatory had suggested that stars in the spectral range B5-A7 are devoid of X-ray emission. Since there is no X-ray emitting mechanism available for these stars (also not for HgMn stars), the usual argument in the case of an X-ray detected star of this spectral type is the existence of an unseen low-mass companion which is responsible for the X-ray emission. The purpose of the present work is to use all available data for our sample of X-ray detected HgMn stars and conclude on the nature of possible companions.

  2. Isotropic Detectable X-ray Counterparts to Gravitational Waves from Neutron Star Binary Mergers

    E-Print Network [OSTI]

    Shota Kisaka; Kunihito Ioka; Takashi Nakamura

    2015-06-05T23:59:59.000Z

    Neutron star binary mergers are strong sources of gravitational waves (GWs). Promising electromagnetic counterparts are short gamma-ray bursts (GRBs) but the emission is highly collimated. We propose that the scattering of the long-lasting plateau emission in short GRBs by the merger ejecta produces nearly isotropic emission for $\\sim 10^4$ s with flux $10^{-10}-10^{-13}$ erg cm$^{-2}$ s$^{-1}$ in X-ray. This is detectable by wide field X-ray detectors such as ISS-Lobster, eROSITA and WF-MAXI, which are desired by the infrared and optical follow-ups to localize and measure the distance to the host galaxy. The scattered X-rays obtain linear polarization, which correlates with the jet direction, X-ray luminosity and GW polarizations. The activity of plateau emission is also a natural energy source of a macronova (or kilonova) detected in short GRB 130603B without the $r$-process radioactivity.

  3. Isotropic Detectable X-ray Counterparts to Gravitational Waves from Neutron Star Binary Mergers

    E-Print Network [OSTI]

    Kisaka, Shota; Nakamura, Takashi

    2015-01-01T23:59:59.000Z

    Neutron star binary mergers are strong sources of gravitational waves (GWs). Promising electromagnetic counterparts are short gamma-ray bursts (GRBs) but the emission is highly collimated. We propose that the scattering of the long-lasting plateau emission in short GRBs by the merger ejecta produces nearly isotropic emission for $\\sim 10^4$ s with flux $10^{-10}-10^{-13}$ erg cm$^{-2}$ s$^{-1}$ in X-ray. This is detectable by wide field X-ray detectors such as ISS-Lobster, eROSITA and WF-MAXI, which are desired by the infrared and optical follow-ups to localize and measure the distance to the host galaxy. The scattered X-rays obtain linear polarization, which correlates with the jet direction, X-ray luminosity and GW polarizations. The activity of plateau emission is also a natural energy source of a macronova (or kilonova) detected in short GRB 130603B without the $r$-process radioactivity.

  4. X-ray emission properties of galaxies in Abell 3128

    E-Print Network [OSTI]

    Russell J. Smith

    2003-07-15T23:59:59.000Z

    We use archival Chandra X-ray Observatory data to investigate X-ray emission from early-type galaxies in the rich z=0.06 cluster Abell 3128. By combining the X-ray count-rates from an input list of optically-selected galaxies, we obtain a statistical detection of X-ray flux, unbiased by X-ray selection limits. Using 87 galaxies with reliable Chandra data, X-ray emission is detected for galaxies down to M_B ~ -19.0, with only an upper limit determined for galaxies at M_B ~ -18.3. The ratio of X-ray to optical luminosities is consistent with recent determinations of the low-mass X-ray binary content of nearby elliptical galaxies. Taken individually, in contrast, we detect significant (3sigma) flux for only six galaxies. Of these, one is a foreground galaxy, while two are optically-faint galaxies with X-ray hardness ratios characteristic of active galactic nuclei. The remaining three detected galaxies are amongst the optically-brightest cluster members, and have softer X-ray spectra. Their X-ray flux is higher than that expected from X-ray binaries, by a factor 2-10; the excess suggests these galaxies have retained their hot gaseous haloes. The source with the highest L_X / L_B ratio is of unusual optical morphology with prominent sharp-edged shells. Notwithstanding these few exceptions, the cluster population overall exhibits X-ray properties consistent with their emission being dominated by X-ray binaries. We conclude that in rich cluster environments, interaction with the ambient intra-cluster medium acts to strip most galaxies of their hot halo gas.

  5. 2011 X-Ray Science Gordon Research Conference (August 7-12, 2011, Colby, College. Waterville, ME)

    SciTech Connect (OSTI)

    Gregory Stephenson

    2011-08-12T23:59:59.000Z

    The 2011 Gordon Research Conference on X-ray Science will feature forefront x-ray-based science enabled by the rapid improvements in synchrotron and x-ray laser sources. Across the world, x-ray sources are playing an increasingly important role in physics, materials, chemistry, and biology, expanding into ever broadening areas of science and engineering. With the first hard x-ray free electron laser source beginning operation and with other advanced x-ray sources operational and planned, it is a very exciting and pivotal time for exchange ideas about the future of x-ray science and applications. The Conference will provide the forum for this interaction. An international cast of speakers will illuminate sessions on ultrafast science, coherence, imaging, in situ studies, extreme conditions, new developments in optics, sources, and detectors, inelastic scattering, nanoscience, life science, and energy sciences. The Conference will bring together investigators at the forefront of these areas, and will provide a venue for young scientists entering a career in x-ray research to present their research in poster format, hold discussions in a friendly setting, and exchange ideas with leaders in the field. Some poster presenters will be selected for short talks. The collegial atmosphere of this Conference, with ample time for discussion as well as opportunities for informal gatherings in the afternoons and evenings, will provide an avenue for scientists from different disciplines to exchange ideas about forefront x-ray techniques and will promote cross-fertilization between the various research areas represented.

  6. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    E-Print Network [OSTI]

    Moffet, Ryan C.

    2011-01-01T23:59:59.000Z

    2-ID-B intermediate-energy scanning X-ray microscope at theW. D. , Morrison, G. R. et al. Scanning transmission X-rayX-ray spectromicroscopy with the scanning transmission X-ray

  7. LCLS-scheduling-run_V_Ver9c.xlsx

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wide Angle X-ray Scattering and Nano- Crystallography Diffraction Studies of Ultrafast Membrane Protein DynamicsMerged with L433 L401 CXI ABBEY, BRIAN...

  8. X-ray generation using carbon nanotubes

    E-Print Network [OSTI]

    Parmee, Richard J.; Collins, Clare M.; Milne, William I.; Cole, Matthew T.

    2015-01-06T23:59:59.000Z

    of these sys- tems are illustrated in Figure 2(b) also outlines the principle mode of operation. Here, sealed in an inexpensive and eas- ily fabricated evacuated glass or ceramic envelope, the elec- trons are liberated from a metallic filament, often made... - ment of CNT-based FE sources is provided in [152]. Here we provide a condensed review of the progress, as it pertains to X-ray sources, since then. CNTs have some of the highest attainable aspect ratios, high thermal conductivity, low chemical...

  9. The BMW X-ray Cluster Survey

    E-Print Network [OSTI]

    Alberto Moretti; Luigi Guzzo; Sergio Campana; Stefano Covino; Davide Lazzati; Marcella Longhetti; Emilio Molinari; Maria Rosa Panzera; Gianpiero Tagliaferri; Ian Dell'Antonio

    2001-03-21T23:59:59.000Z

    We describe the main features of the BMW survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. The sky coverage, surface density and first deep optical CCD images of the candidates indicate that this sample can represent an excellent complement to the existing PSPC deep cluster surveys and will provide us with a fully independent probe of the evolution of the cluster abundance, in addition to significantly increasing the number of clusters known at z>0.6.

  10. The BMW X-ray Cluster Survey

    E-Print Network [OSTI]

    Moretti, A; Campana, S; Covino, S; Lazzati, D; Longhetti, M; Molinari, E; Panzera, M R; Tagliaferri, G; Dell'Antonio, I P; Moretti, Alberto; Guzzo, Luigi; Campana, Sergio; Covino, Stefano; Lazzati, Davide; Longhetti, Marcella; Molinari, Emilio; Panzera, Maria Rosa; Tagliaferri, Gianpiero; Antonio, Ian Dell'

    2001-01-01T23:59:59.000Z

    We describe the main features of the BMW survey of serendipitous X-ray clusters, based on the still unexploited ROSAT-HRI archival observations. The sky coverage, surface density and first deep optical CCD images of the candidates indicate that this sample can represent an excellent complement to the existing PSPC deep cluster surveys and will provide us with a fully independent probe of the evolution of the cluster abundance, in addition to significantly increasing the number of clusters known at z>0.6.

  11. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray Imaging in

  12. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray Imaging

  13. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |Is Your HomeLatest News ReleasesDepartmentLendingX-Ray

  14. Lensless X-Ray Imaging in Reflection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHigh SchoolIn12electron 9 5 -ofLearningLensless ImagingLensless X-Ray

  15. SMB, X-ray Absorption Spectroscopy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection245C Unlimited ReleaseWelcome to theAbsorption Spectroscopy X-ray

  16. Dose, exposure time, and resolution in Serial X-ray Crystallography

    SciTech Connect (OSTI)

    Starodub, D; Rez, P; Hembree, G; Howells, M; Shapiro, D; Chapman, H N; Fromme, P; Schmidt, K; Weierstall, U; Doak, R B; Spence, J C

    2007-03-22T23:59:59.000Z

    Using detailed simulation and analytical models, the exposure time is estimated for serial crystallography, where hydrated laser-aligned proteins are sprayed across a continuous synchrotron beam. The resolution of X-ray diffraction microscopy is limited by the maximum dose that can be delivered prior to sample damage. In the proposed Serial Crystallography method, the damage problem is addressed by distributing the total dose over many identical hydrated macromolecules running continuously in a single-file train across a continuous X-ray beam, and resolution is then limited only by the available fluxes of molecules and X-rays. Orientation of the diffracting molecules is achieved by laser alignment. We evaluate the incident X-ray fluence (energy/area) required to obtain a given resolution from (1) an analytical model, giving the count rate at the maximum scattering angle for a model protein, (2) explicit simulation of diffraction patterns for a GroEL-GroES protein complex, and (3) the frequency cut off of the transfer function following iterative solution of the phase problem, and reconstruction of a density map in the projection approximation. These calculations include counting shot noise and multiple starts of the phasing algorithm. The results indicate the number of proteins needed within the beam at any instant for a given resolution and X-ray flux. We confirm an inverse fourth power dependence of exposure time on resolution, with important implications for all coherent X-ray imaging. We find that multiple single-file protein beams will be needed for sub-nanometer resolution on current third generation synchrotrons, but not on fourth generation designs, where reconstruction of secondary protein structure at a resolution of 7 {angstrom} should be possible with short (below 100 s) exposures.

  17. Atomic holography with electrons and x-rays: Theoretical and experimental studies

    SciTech Connect (OSTI)

    Len, P M [Univ. of California, Davis, CA (United States). Dept. of Physics

    1997-06-01T23:59:59.000Z

    Gabor first proposed holography in 1948 as a means to experimentally record the amplitude and phase of scattered wavefronts, relative to a direct unscattered wave, and to use such a {open_quotes}hologram{close_quotes} to directly image atomic structure. But imaging at atomic resolution has not yet been possible in the way he proposed. Much more recently, Szoeke in 1986 noted that photoexcited atoms can emit photoelectron of fluorescent x-ray wavefronts that are scattered by neighboring atoms, thus yielding the direct and scattered wavefronts as detected in the far field that can then be interpreted as holographic in nature. By now, several algorithms for directly reconstructing three-dimensional atomic images from electron holograms have been proposed (e.g. by Barton) and successfully tested against experiment and theory. Very recently, Tegze and Faigel, and Grog et al. have recorded experimental x-ray fluorescence holograms, and these are found to yield atomic images that are more free of the kinds of aberrations caused by the non-ideal emission or scattering of electrons. The basic principles of these holographic atomic imaging methods are reviewed, including illustrative applications of the reconstruction algorithms to both theoretical and experimental electron and x-ray holograms. The author also discusses the prospects and limitations of these newly emerging atomic structural probes.

  18. X-ray emission from Saturn

    E-Print Network [OSTI]

    Ness, J U; Wolk, S J; Dennerl, K; Burwitz, V

    2004-01-01T23:59:59.000Z

    We report the first unambiguous detection of X-ray emission originating from Saturn with a Chandra observation, duration 65.5 ksec with ACIS-S3. Beyond the pure detection we analyze the spatial distribution of X-rays on the planetary surface, the light curve, and some spectral properties. The detection is based on 162 cts extracted from the ACIS-S3 chip within the optical disk of Saturn. We found no evidence for smaller or larger angular extent. The expected background level is 56 cts, i.e., the count rate is (1.6 +- 0.2) 10^-3 cts/s. The extracted photons are rather concentrated towards the equator of the apparent disk, while both polar caps have a relative photon deficit. The inclination angle of Saturn during the observation was -27 degrees, so that the northern hemisphere was not visible during the complete observation. In addition, it was occulted by the ring system. We found a small but significant photon excess at one edge of the ring system. The light curve shows a small dip twice at identical phases,...

  19. The variability properties of X-ray steep and X-ray flat quasars

    E-Print Network [OSTI]

    Fabrizio Fiore; Ari Laor; Martin Elvis; Fabrizio Nicastro; Emanuele Giallongo

    1998-03-20T23:59:59.000Z

    We have studied the variability of 6 low redshift, radio quiet `PG' quasars on three timescales (days, weeks, and months) using the ROSAT HRI. The quasars were chosen to lie at the two extreme ends of the ROSAT PSPC spectral index distribution and hence of the H$\\beta$ FWHM distribution. The observation strategy has been carefully designed to provide even sampling on these three basic timescales and to provide a uniform sampling among the quasars We have found clear evidence that the X-ray steep, narrow H_beta, quasars systematically show larger amplitude variations than the X-ray flat broad H_beta quasars on timescales from 2 days to 20 days. On longer timescales we do not find significant differences between steep and flat quasars, although the statistics are poorer. We suggest that the above correlation between variability properties and spectral steepness can be explained in a scenario in which the X-ray steep, narrow line objects are in a higher L/L_Edd state with respect to the X-ray flat, broad line objects. We evaluated the power spectrum of PG1440+356 (the brigthest quasar in our sample) between 2E-7 and 1E-3 Hz, where it goes into the noise. The power spectrum is roughly consistent with a 1/f law between 1E-3 and 2E-6 Hz. Below this frequency it flattens significantly.

  20. Time-, frequency-, and wavevector-resolved x-ray diffraction from single molecules

    SciTech Connect (OSTI)

    Bennett, Kochise, E-mail: kcbennet@uci.edu; Biggs, Jason D.; Zhang, Yu; Dorfman, Konstantin E.; Mukamel, Shaul, E-mail: smukamel@uci.edu [University of California, Irvine, California 92697-2025 (United States)

    2014-05-28T23:59:59.000Z

    Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broadband X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and proteins.

  1. Software for reflectivity calculations of x-ray mirrors. Revision 1

    SciTech Connect (OSTI)

    Auerbach, J.M.; Tirsell, K.G.

    1984-11-28T23:59:59.000Z

    With VAX software and the data libraries of Henke and Biggs-Lighthill, we have created a library of atomic scattering factors f/sub 1/ and f/sub 2/ in the energy range 0.1 keV to 10.0 keV. Scattering factor values for the elements Z = 1 to Z = 94 and in the above energy range are stored in a keyed access library (key = element symbol). This library allows one to calculate reflectivity rapidly and fold it with other components in an x-ray detector channel. Additional software allows the library data to be easily extended to higher energies. Applications have so far included KB x-ray microscopes and low energy spectrometers with mirror channels.

  2. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, Andrew M. (2708 Rembrandt Pl., Modesto, CA 95356); Seppala, Lynn G. (7911 Mines Rd., Livermore, CA 94550)

    1991-01-01T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm.sup.2. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics.

  3. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, Richard M. (Livermore, CA); Makowiecki, Daniel M. (Livermore, CA); Skulina, Kenneth M. (Livermore, CA)

    1995-01-01T23:59:59.000Z

    A process for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments m the soft x-ray region.

  4. Fabrication process for a gradient index x-ray lens

    DOE Patents [OSTI]

    Bionta, R.M.; Makowiecki, D.M.; Skulina, K.M.

    1995-01-17T23:59:59.000Z

    A process is disclosed for fabricating high efficiency x-ray lenses that operate in the 0.5-4.0 keV region suitable for use in biological imaging, surface science, and x-ray lithography of integrated circuits. The gradient index x-ray optics fabrication process broadly involves co-sputtering multi-layers of film on a wire, followed by slicing and mounting on block, and then ion beam thinning to a thickness determined by periodic testing for efficiency. The process enables the fabrication of transmissive gradient index x-ray optics for the 0.5-4.0 keV energy range. This process allows the fabrication of optical elements for the next generation of imaging and x-ray lithography instruments in the soft x-ray region. 13 figures.

  5. Density gradient free electron collisionally excited X-ray laser

    DOE Patents [OSTI]

    Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

    1989-01-01T23:59:59.000Z

    An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

  6. Soft x-ray reduction camera for submicron lithography

    DOE Patents [OSTI]

    Hawryluk, A.M.; Seppala, L.G.

    1991-03-26T23:59:59.000Z

    Soft x-ray projection lithography can be performed using x-ray optical components and spherical imaging lenses (mirrors), which form an x-ray reduction camera. The x-ray reduction is capable of projecting a 5x demagnified image of a mask onto a resist coated wafer using 4.5 nm radiation. The diffraction limited resolution of this design is about 135 nm with a depth of field of about 2.8 microns and a field of view of 0.2 cm[sup 2]. X-ray reflecting masks (patterned x-ray multilayer mirrors) which are fabricated on thick substrates and can be made relatively distortion free are used, with a laser produced plasma for the source. Higher resolution and/or larger areas are possible by varying the optic figures of the components and source characteristics. 9 figures.

  7. Density gradient free electron collisionally excited x-ray laser

    DOE Patents [OSTI]

    Campbell, E.M.; Rosen, M.D.

    1984-11-29T23:59:59.000Z

    An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

  8. Cone beam x-ray luminescence computed tomography: A feasibility study

    SciTech Connect (OSTI)

    Chen Dongmei; Zhu Shouping; Yi Huangjian; Zhang Xianghan; Chen Duofang; Liang Jimin [School of Life Sciences and Technology, Xidian University, Xi'an 710071 (China); Tian Jie [School of Life Sciences and Technology, Xidian University, Xi'an 710071 (China); Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-03-15T23:59:59.000Z

    Purpose: The appearance of x-ray luminescence computed tomography (XLCT) opens new possibilities to perform molecular imaging by x ray. In the previous XLCT system, the sample was irradiated by a sequence of narrow x-ray beams and the x-ray luminescence was measured by a highly sensitive charge coupled device (CCD) camera. This resulted in a relatively long sampling time and relatively low utilization of the x-ray beam. In this paper, a novel cone beam x-ray luminescence computed tomography strategy is proposed, which can fully utilize the x-ray dose and shorten the scanning time. The imaging model and reconstruction method are described. The validity of the imaging strategy has been studied in this paper. Methods: In the cone beam XLCT system, the cone beam x ray was adopted to illuminate the sample and a highly sensitive CCD camera was utilized to acquire luminescent photons emitted from the sample. Photons scattering in biological tissues makes it an ill-posed problem to reconstruct the 3D distribution of the x-ray luminescent sample in the cone beam XLCT. In order to overcome this issue, the authors used the diffusion approximation model to describe the photon propagation in tissues, and employed the sparse regularization method for reconstruction. An incomplete variables truncated conjugate gradient method and permissible region strategy were used for reconstruction. Meanwhile, traditional x-ray CT imaging could also be performed in this system. The x-ray attenuation effect has been considered in their imaging model, which is helpful in improving the reconstruction accuracy. Results: First, simulation experiments with cylinder phantoms were carried out to illustrate the validity of the proposed compensated method. The experimental results showed that the location error of the compensated algorithm was smaller than that of the uncompensated method. The permissible region strategy was applied and reduced the reconstruction error to less than 2 mm. The robustness and stability were then evaluated from different view numbers, different regularization parameters, different measurement noise levels, and optical parameters mismatch. The reconstruction results showed that the settings had a small effect on the reconstruction. The nonhomogeneous phantom simulation was also carried out to simulate a more complex experimental situation and evaluated their proposed method. Second, the physical cylinder phantom experiments further showed similar results in their prototype XLCT system. With the discussion of the above experiments, it was shown that the proposed method is feasible to the general case and actual experiments. Conclusions: Utilizing numerical simulation and physical experiments, the authors demonstrated the validity of the new cone beam XLCT method. Furthermore, compared with the previous narrow beam XLCT, the cone beam XLCT could more fully utilize the x-ray dose and the scanning time would be shortened greatly. The study of both simulation experiments and physical phantom experiments indicated that the proposed method was feasible to the general case and actual experiments.

  9. Ultra-short wavelength x-ray system

    DOE Patents [OSTI]

    Umstadter, Donald (Ann Arbor, MI); He, Fei (Ann Arbor, MI); Lau, Yue-Ying (Potomac, MD)

    2008-01-22T23:59:59.000Z

    A method and apparatus to generate a beam of coherent light including x-rays or XUV by colliding a high-intensity laser pulse with an electron beam that is accelerated by a synchronized laser pulse. Applications include x-ray and EUV lithography, protein structural analysis, plasma diagnostics, x-ray diffraction, crack analysis, non-destructive testing, surface science and ultrafast science.

  10. Legacy of the X-Ray Laser Program

    SciTech Connect (OSTI)

    Nilsen, J.

    1993-08-06T23:59:59.000Z

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  11. Sum rules for polarization-dependent x-ray absorption

    SciTech Connect (OSTI)

    Ankudinov, A.; Rehr, J.J. (Department of Physics, FM-15, University of Washington, Seattle, Washington 98195 (United States))

    1995-01-01T23:59:59.000Z

    A complete set of sum rules is obtained for polarization-dependent x-ray-absorption fine structure and x-ray circular magnetic dichroism (CMD), analogous to those for CMD derived by Thole [ital et] [ital al]. These sum rules relate x-ray-absorption coefficients to the ground-state expectation values of various operators. Problems with applying these sum rules are discussed.

  12. X-RAY ECLIPSE DIAGNOSIS OF THE EVOLVING MASS LOSS IN THE RECURRENT NOVA U SCORPII 2010

    SciTech Connect (OSTI)

    Takei, D.; Drake, J. J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Tsujimoto, M. [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Ness, J.-U. [European Space Agency, XMM-Newton Observatory SOC, SRE-OAX, Apartado 78, E-28691 Villanueva de la Canada, Madrid (Spain); Osborne, J. P. [Department of Physics and Astronomy, University of Leicester, Leicester LE1 7RH (United Kingdom); Starrfield, S. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404 (United States); Kitamoto, S., E-mail: dtakei@head.cfa.harvard.edu [Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501 (Japan)

    2013-05-20T23:59:59.000Z

    We report the Suzaku detection of the earliest X-ray eclipse seen in the recurrent nova U Scorpii 2010. A target-of-opportunity observation 15 days after the outburst found a 27% {+-} 5% dimming in the 0.2-1.0 keV energy band at the predicted center of an eclipse. In comparison with the X-ray eclipse depths seen at two later epochs by XMM-Newton, the source region shrank by about 10%-20% between days 15 and 35 after the outburst. The X-ray eclipses appear to be deeper than or similar to contemporaneous optical eclipses, suggesting the X-ray and optical source region extents are comparable on day 15. We raise the possibility of the energy dependency in the photon escape regions, and that this would be a result of the supersoft X-ray opacity being higher than the Thomson scattering opacity at the photosphere due to bound-free transitions in abundant metals that are not fully ionized. Assuming a spherically symmetric model, we constrain the mass-loss rate as a function of time. For a ratio of actual to Thomson opacity of 10-100 in supersoft X-rays, we find an ejecta mass of about 10{sup -7}-10{sup -6} M{sub Sun }.

  13. A laser triggered vacuum spark x-ray lithography source

    E-Print Network [OSTI]

    Keating, Richard Allen

    1987-01-01T23:59:59.000Z

    ionized state or the physical processes occurring 15 in a high temperature plasma. There are many advantages to the use of the vacuum spark as an x-ray source; the simplicity of the machine is one. The x-ray output is within the range usable for x-ray... spark apparatus ha- been studied here to determine its applicability to x-ray lithography. A capacitor which stored approximately 3 KJ supplied most of the energy for the plasma. A Nd-YAG laser was used to supply electrons and metallic atoms...

  14. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, Luiz B. (Danville, CA); Matthews, Dennis L. (Moss Beach, CA); Fitch, Joseph P. (Livermore, CA); Everett, Matthew J. (Pleasanton, CA); Colston, Billy W. (Livermore, CA); Stone, Gary F. (Livermore, CA)

    1999-01-01T23:59:59.000Z

    An apparatus and method for determining the orientation of a device with respect to an x-ray source. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source.

  15. X-ray compass for determining device orientation

    DOE Patents [OSTI]

    Da Silva, L.B.; Matthews, D.L.; Fitch, J.P.; Everett, M.J.; Colston, B.W.; Stone, G.F.

    1999-06-15T23:59:59.000Z

    An apparatus and method for determining the orientation of a device with respect to an x-ray source are disclosed. In one embodiment, the present invention is coupled to a medical device in order to determine the rotational orientation of the medical device with respect to the x-ray source. In such an embodiment, the present invention is comprised of a scintillator portion which is adapted to emit photons upon the absorption of x-rays emitted from the x-ray source. An x-ray blocking portion is coupled to the scintillator portion. The x-ray blocking portion is disposed so as to vary the quantity of x-rays which penetrate the scintillator portion based upon the particular rotational orientation of the medical device with respect to the x-ray source. A photon transport mechanism is also coupled to the scintillator portion. The photon transport mechanism is adapted to pass the photons emitted from the scintillator portion to an electronics portion. By analyzing the quantity of the photons, the electronics portion determines the rotational orientation of the medical device with respect to the x-ray source. 25 figs.

  16. Unexpected Angular Dependence of X-Ray Magnetic Linear Dichroism

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    axes must be taken into account for accurate interpretation of XMLD data. Magnetism and X Rays The ancient Greeks and also the Chinese knew about strange and rare...

  17. Generation of Coherent X-Ray Radiation Through Modulation Compression

    E-Print Network [OSTI]

    Qiang, Ji

    2011-01-01T23:59:59.000Z

    ultra-short coherent X-ray radiation by controlling the fraction of the beam that can be properly unchirped using a few-cycle laser

  18. The Daguerreotype and the X-ray: A Deep Look

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - likely will play a crucial role in future scientific breakthroughs. Last week, hers was the first daguerreotype to undergo powerful x-ray analysis in a collaboration...

  19. Statistics of gravitational potential perturbations: A novel approach to deriving the X-ray temperature function

    E-Print Network [OSTI]

    Christian Angrick; Matthias Bartelmann

    2009-01-26T23:59:59.000Z

    Context. While the halo mass function is theoretically a very sensitive measure of cosmological models, masses of dark-matter halos are poorly defined, global, and unobservable quantities. Aims. We argue that local, observable quantities such as the X-ray temperatures of galaxy clusters can be directly compared to theoretical predictions without invoking masses. We derive the X-ray temperature function directly from the statistics of Gaussian random fluctuations in the gravitational potential. Methods. We derive the abundance of potential minima constrained by the requirement that they belong to linearly collapsed structures. We then use the spherical-collapse model to relate linear to non-linear perturbations, and the virial theorem to convert potential depths to temperatures. No reference is made to mass or other global quantities in the derivation. Results. Applying a proper high-pass filter that removes large enough modes from the gravitational potential, we derive an X-ray temperature function that agrees very well with the classical Press-Schechter approach on relevant temperature scales, but avoids the necessity of measuring masses. Conclusions. TThis first study shows that and how an X-ray temperature function of galaxy clusters can be analytically derived, avoiding the introduction of poorly defined global quantities such as halo masses. This approach will be useful for reducing scatter in observed cluster distributions and thus in cosmological conclusions drawn from them.

  20. Protein crystallography: From X-ray diffraction spots to a three dimensional image

    SciTech Connect (OSTI)

    Terwilliger, T.C.; Berendzen, J.

    1998-02-25T23:59:59.000Z

    Proteins are remarkable molecular machines that are essential for life. They can do many things ranging from the precise control of blood clotting to synthesizing complex organic compounds. Pictures of protein molecules are in high demand in biotechnology because they are important for applications such as drug discovery and for engineering enzymes for commercial use. X-ray crystallography is the most common method for determining the three-dimensional structures of protein molecules. When a crystal of a protein is placed in an X-ray beam, scattering of X-rays off the ordered molecules produces a diffraction pattern that can be measured on a position-sensitive CCD or image-plate detector. Protein crystals typically contain thousands of atoms and the diffraction data are generally measured to relatively low resolution. Consequently the direct methods approaches generally cannot be applied. Instead, if the crystal is modified by adding metal atoms at specific sites or by tuning the wavelength of the X-rays to cross an absorption edge of a metal atom in the crystal, then the information from these additional measurements is sufficient to first identify the /locations of the metal atoms. This information is then used along with the diffraction data to make a three-dimensional picture of electron densities. This picture can be used to determine the position of most or all of the atoms in the protein.

  1. Testing the connection between the X-ray and submillimetre backgrounds using Chandra

    E-Print Network [OSTI]

    Fabian, A C; Iwasawa, K; Allen, S W; Blain, A W; Crawford, C S; Ettori, S; Ivison, R J; Johnstone, R M; Kneib, J P; Wilman, R J

    2000-01-01T23:59:59.000Z

    The powerful combination of the Chandra X-ray telescope, the SCUBAsubmillimetre-wave camera and the gravitational lensing effect of the massivegalaxy clusters A2390 and A1835 has been used to place stringent X-ray fluxlimits on six faint submillimetre SCUBA sources and deep submillimetre limitson three Chandra sources which lie in fields common to both instruments. Onefurther source is marginally detected in both the X-ray and submillimetrebands. For the SCUBA sources our results are consistent withstarburst-dominated emission. The objects for which the strongest constraintscan be placed, including SMMJ14011+0252 at z=2.55, can only host powerfulactive galactic nuclei if they are both Compton-thick and any scattered X-rayflux is weak or itself absorbed. The lensing amplification for the sources arein the range 1.5-7, assuming that they lie at z>1. The brightest detected X-raysource has a faint extended optical counterpart (I~22) with colours consistentwith a galaxy at z~1. The X-ray spectrum of this object is...

  2. A method of measuring gold nanoparticle concentrations by x-ray fluorescence for biomedical applications

    SciTech Connect (OSTI)

    Wu Di; Li Yuhua; Wong, Molly D.; Liu Hong [Center for Bioengineering and School of Electrical and Computer Engineering, University of Oklahoma, Norman, Oklahoma 73019 (United States)

    2013-05-15T23:59:59.000Z

    Purpose: This paper reports a technique that enables the quantitative determination of the concentration of gold nanoparticles (GNPs) through the accurate detection of their fluorescence radiation in the diagnostic x-ray spectrum. Methods: Experimentally, x-ray fluorescence spectra of 1.9 and 15 nm GNP solutions are measured using an x-ray spectrometer, individually and within chicken breast tissue samples. An optimal combination of excitation and emission filters is determined to segregate the fluorescence spectra at 66.99 and 68.80 keV from the background scattering. A roadmap method is developed that subtracts the scattered radiation (acquired before the insertion of GNP solutions) from the signal radiation acquired after the GNP solutions are inserted. Results: The methods effectively minimize the background scattering in the spectrum measurements, showing linear relationships between GNP solutions from 0.1% to 10% weight concentration and from 0.1% to 1.0% weight concentration inside a chicken breast tissue sample. Conclusions: The investigation demonstrated the potential of imaging gold nanoparticles quantitatively in vivo for in-tissue studies, but future studies will be needed to investigate the ability to apply this method to clinical applications.

  3. X-ray laser system, x-ray laser and method

    DOE Patents [OSTI]

    London, Richard A. (Oakland, CA); Rosen, Mordecai D. (Berkeley, CA); Strauss, Moshe (Omer, IL)

    1992-01-01T23:59:59.000Z

    Disclosed is an x-ray laser system comprising a laser containing generating means for emitting short wave length radiation, and means external to said laser for energizing said generating means, wherein when the laser is in an operative mode emitting radiation, the radiation has a transverse coherence length to width ratio of from about 0.05 to 1. Also disclosed is a method of adjusting the parameters of the laser to achieve the desired coherence length to laser width ratio.

  4. What Does a Scattering Pattern Tell US?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Reciprocal Space Apurva Mehta 7 th X-ray Scattering School Scattering Physics Sample Space Scattering Space sample light image Image Space lens Can we create the image without a...

  5. Neutron and X-ray Scattering School 2012 Student List

    E-Print Network [OSTI]

    Pennycook, Steve

    Chemistry Bai Peter peter.bai@berkeley.edu U. Cal Berkeley Materials Science & Engineering Materials Science & Engineering Barrie Fatmata fbarrie@ufl.edu Univ. Florida Materials Science & Engineering Materials Science.walley@gmail.com Ohio State Univ. Materials Science & Engineering Materials Science & Engineering DeGeorge Vincent

  6. Time-resolved x-ray scattering instrumentation

    DOE Patents [OSTI]

    Borso, C.S.

    1985-11-21T23:59:59.000Z

    An apparatus and method for increased speed and efficiency of data compilation and analysis in real time is presented in this disclosure. Data is sensed and grouped in combinations in accordance with predetermined logic. The combinations are grouped so that a simplified reduced signal results, such as pairwise summing of data values having offsetting algebraic signs, thereby reducing the magnitude of the net pair sum. Bit storage requirements are reduced and speed of data compilation and analysis is increased by manipulation of shorter bit length data values, making real time evaluation possible.

  7. Advancing Renewable Materials by Light and X-ray Scattering

    SciTech Connect (OSTI)

    Akpalu, Yvonne A

    2014-03-26T23:59:59.000Z

    With the ultimate goal to design PHA polymer nanocomposites with tailored properties, we have completed systematic study of the influence of cooling rate [Xie et al, J. Appl. Poly. Sci., 2008] and nanofiller [Xie et al, Polymer 2009] characteristics on model bionanocomposites. Structure-property relationships for a model bionanocomposites system were investigated. These results yielded new fundamental knowledge that supports the discovery of cost-effective manufacturing technologies for a family of promising polyhydroxyalkanoates (PHAs) polyesters, with the potential to replace polyethylene and polypropylene (see Noda letter). Our results show that simple two-phase composite models do not account for the data. Although improvement of the mechanical properties (stiffness/modulus and toughness) must be due to alteration of the matrix by the nanoparticle filler, the observed improvement was not caused by the change of crystallinity or spherulitic morphology. Instead, improvement depends on the molecular weight of the polymer matrix and unknown filler-matrix interactions.

  8. Probing warm dense lithium by inelastic X-ray scattering

    E-Print Network [OSTI]

    Loss, Daniel

    of warm dense matter states has practical applications for controlled thermonuclear fusion, where, Rutherford Appleton Laboratory, Chilton, Didcot, OX11 0QX, UK 4 Centre for Fusion, Space and Astrophysics

  9. New Directions in X-ray Scattering - SSRL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337, 2011R - 445 CU - 2 3NewNew Diabetes Testing

  10. Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)IntegratedSpeedingTechnical News, informationPriority Firm Exchange .Techniques |

  11. Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Scienceand Requirements RecentlyElectronic PublicAdministration5,propane priceBacteria -Refinement

  12. Magnetism studies using resonant, coherent, x-ray scattering | Stanford

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes |IsLove Your Home and It'll Love YouTokamak|MagneticSynchrotron

  13. The Role of Surface X-ray Scattering in Electrocatalysis

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron Spin Transition in the Earth's LowerFacilityThe ResearchDepartment3 N.

  14. Constraints on jet X-ray emission in low/hard state X-ray binaries

    E-Print Network [OSTI]

    Thomas J. Maccarone

    2005-03-31T23:59:59.000Z

    We show that the combination of the similarities between the X-ray properties of low luminosity accreting black holes and accreting neutron stars, combined with the differences in their radio properties argues that the X-rays from these systems are unlikely to be formed in the relativistic jets. Specifically, the spectra of extreme island state neutron stars and low/hard state black holes are known to be indistinguishable, while the power spectra from these systems are known to show only minor differences beyond what would be expected from scaling the characteristic variability frequencies by the mass of the compact object. The spectral and temporal similarities thus imply a common emission mechanism that has only minor deviations from having all key parameters scaling linearly with the mass of the compact object, while we show that this is inconsistent with the observations that the radio powers of neutron stars are typically about 30 times lower than those of black holes at the same X-ray luminosity. We also show that an abrupt luminosity change would be expected when a system makes a spectral state transition from a radiatively inefficient jet dominated accretion flow to a thin disk dominated flow, but that such a change is not seen.

  15. Isotropic star in low-mass X-ray binaries and X-ray pulsars

    E-Print Network [OSTI]

    Mehedi Kalam; Sk. Monowar Hossein; Sajahan Molla

    2014-10-01T23:59:59.000Z

    We present a model for compact stars in the low mass X-ray binaries(LMXBs) and X-ray pulsars using a metric given by John J. Matese and Patrick G. Whitman \\citep{Matese and Whitman1980}. Here the field equations are reduced to a system of two algebraic equations considering the isotropic pressure. Compact star candidates 4U 1820-30(radius=10km) in LMXBs, and Her X-1(radius=7.7km), SAX J 1808.4-3658(SS1)(radius=7.07km) and SAX J 1808.4-3658(SS2)(radius=6.35km) in X-ray pulsars satisfy all the energy conditions, TOV-equation and stability condition. From our model, we have derived mass($M$), central density($\\rho_{0}$), suface density($\\rho_{b}$), central pressure($p_{0}$), surface pressure($p_{b}$) and surface red-shift($Z_{s}$) of the above mentioned stars, which are very much consistant with the observed/reported datas\\citep{N. K. Glendenning1997,Gondek2000}. We have also observe the adiabatic index($\\gamma$>4/3) of the above steller objects.

  16. Residual stress measurement using X-ray diffraction 

    E-Print Network [OSTI]

    Anderoglu, Osman

    2005-02-17T23:59:59.000Z

    .3.6.2. Synchrotron Diffraction.........................................................................9 II. FUNDAMENTAL CONCEPTS IN X-RAY DIFFRACTION.....................................12 2.1. X-ray Source... radiations ...................................................................16 Table 2.2 Structure factors and reflection conditions ...................................................20 Table 4.1 Chemical composition of SS316...

  17. Ultrafast x-rays: radiographing magnetism Project overview

    E-Print Network [OSTI]

    Haviland, David

    , head of the ultrafast magnetism group. Stanford PULSE is a worldwide renowned centre for ultrafast1 Ultrafast x-rays: radiographing magnetism Project overview The main purpose of the proposed, it is now possible to achieve x-ray pulses that are a few femtoseconds long and that are focused within

  18. High resolution energy-sensitive digital X-ray

    DOE Patents [OSTI]

    Nygren, David R. (Berkeley, CA)

    1995-01-01T23:59:59.000Z

    An apparatus and method for detecting an x-ray and for determining the depth of penetration of an x-ray into a semiconductor strip detector. In one embodiment, a semiconductor strip detector formed of semiconductor material is disposed in an edge-on orientation towards an x-ray source such that x-rays From the x-ray source are incident upon and substantially perpendicular to the front edge of the semiconductor strip detector. The semiconductor strip detector is formed of a plurality of segments. The segments are coupled together in a collinear arrangement such that the semiconductor strip detector has a length great enough such that substantially all of the x-rays incident on the front edge of the semiconductor strip detector interact with the semiconductor material which forms the semiconductor strip detector. A plurality of electrodes are connected to the semiconductor strip detect or such that each one of the of semiconductor strip detector segments has at least one of the of electrodes coupled thereto. A signal processor is also coupled to each one of the electrodes. The present detector detects an interaction within the semiconductor strip detector, between an x-ray and the semiconductor material, and also indicates the depth of penetration of the x-ray into the semiconductor strip detector at the time of the interaction.

  19. Shad-o-Snap X-Ray Camera Hardware Manual

    E-Print Network [OSTI]

    -o-Snap x-ray camera is a complete, stand-alone x-ray imaging device featuring "smart" microprocessor-controlled camera electronics and a convenient USB interface. The plug- and-play interface allows easy control by the silicon photodiodes. The Shad-o-Snap camera also includes electronics to digitize the video signal

  20. Measurement and characterization of x-ray spot size

    SciTech Connect (OSTI)

    Mueller, K.H.

    1989-01-01T23:59:59.000Z

    In planning an x-ray imaging experiment one must have an accurate model of the imaging system to obtain optimum results. The blurring caused by the finite size of the x-ray source is often the least understood element in the system. We have developed experimental and analytical methods permitting accurate measurement and modeling of the x-ray source. The model offers a simple and accurate way to optimize the radiographic geometry for any given experimental requirement (i.e., resolution and dose at detector). Any text on radiography will mention the effects of the finite size of the x-ray source on image quality and how one can minimize this influence by the choice of a small radiographic magnification. The film blur (independent of the source blur) is often treated as a single number and combined with an effective blur dimension for the x-ray source to give a total blur on the film. In this paper, we will develop a treatment of x-ray sources based on the modulation transfer function (MTF). This approach allows us to infer the spatial distribution function of the electron beam that produces the bremsstrahlung x-rays and to predict the performance of an x-ray imaging system if we know the MTF of the detector. This treatment is much more accurate than a single number characterization. 4 refs., 7 figs.

  1. Electromagnetic Application: X-RAY Alawi H. Ba-Surrah

    E-Print Network [OSTI]

    Masoudi, Husain M.

    , Pulyui published high-quality x-ray images in journals in Paris and London. · Nikola Tesla In April 1887, Nikola Tesla began to investigate X-rays using high voltages and tubes of his own design, as well. The principle behind Tesla's device is called the Bremsstrahlung process, in which a high-energy secondary X

  2. Chandra X-ray Analysis of Galaxy Cluster A168

    E-Print Network [OSTI]

    Yanbin Yang; Zhiying Huo; Xu Zhou; Suijian Xue; Shude Mao; Jun Ma; Jiansheng Chen

    2004-06-29T23:59:59.000Z

    We present Chandra X-ray observations of galaxy cluster A168 (z=0.045). Two X-ray peaks with a projected distance of 676 kpc are found to be located close to two dominant galaxies, respectively. Both peaks are significantly offset from the peak of the number density distribution of galaxies. This suggests that A168 consists of two subclusters, a northern subcluster (A168N) and a southern subcluster (A168S). Further X-ray imaging analysis reveals that (1) the X-ray isophotes surrounding the two X-ray peaks are heavily distorted, (2) an elongated and ontinuous filament connects the two X-ray peaks. These suggest that strong interactions have occurred between the two subclusters. Spectral analysis shows that A168 has a mean temperature of 2.53 +/- 0.09 keV and a mean metallicity of 0.31 +/- 0.04 Z_{solar}. The metallicity is roughly a constant across the cluster but the temperature shows some systematic variations. Most X-ray, optical and radio properties of A168 are consistent with it being an off-axis merger several Gyrs after a core passage, although detailed numerical simulations are required to see whether the observed properties, in particular the significant offset between the optical and X-ray centers, can be reproduced in such a scenario.

  3. Millisecond oscillations during thermonuclear X-ray bursts

    E-Print Network [OSTI]

    Muno, Michael Patrick, 1975-

    2002-01-01T23:59:59.000Z

    I analyze 68 oscillation trains detected in a search of 159 thermonuclear bursts from eight neutron star X-ray binaries observed with the Rossi X-ray Timing Explorer. I use all data that were public as of September 2001. ...

  4. NSLS Endstations | Center for Functional Nanomaterials

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    beamline performs simultaneous small- and wide-angle X-ray scattering experiments for nano-scale structural characterization of a variety of materials. The Ambient Pressure X-ray...

  5. Green's functions for transmission of X-rays and gamma-rays through cold media

    E-Print Network [OSTI]

    P. Magdziarz; A. A. Zdziarski

    1996-07-03T23:59:59.000Z

    Using a Monte Carlo method, we study Compton scattering and absorption of X-rays and gamma-rays in cold media. We consider transmission of X/gamma-rays through a shell of an arbitrary optical depth, for which we derive energy-dependent Green's functions. Fitting the Green functions with simple analytical formulae is in progress. We also present a simple treatment of the effect of absorption on Green's functions for Compton scattering, which allow to treat media with an arbitrary ionization state and chemical composition. Our transmission Green's functions allow to treat Thomson-thick absorbers, e.g. molecular tori of Seyfert 2s.

  6. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, E.H.; Legros, M.; Madden, N.W.; Goulding, F.; Landis, D.

    1998-07-07T23:59:59.000Z

    A broad bandwidth high resolution X-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces X-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available X-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for X-ray microanalysis or in research applications such as laboratory and astrophysical X-ray and particle spectroscopy. 6 figs.

  7. Broadband high resolution X-ray spectral analyzer

    DOE Patents [OSTI]

    Silver, Eric H. (Berkeley, CA); Legros, Mark (Berkeley, CA); Madden, Norm W. (Livermore, CA); Goulding, Fred (Lafayette, CA); Landis, Don (Pinole, CA)

    1998-01-01T23:59:59.000Z

    A broad bandwidth high resolution x-ray fluorescence spectrometer has a performance that is superior in many ways to those currently available. It consists of an array of 4 large area microcalorimeters with 95% quantum efficiency at 6 keV and it produces x-ray spectra between 0.2 keV and 7 keV with an energy resolution of 7 to 10 eV. The resolution is obtained at input count rates per array element of 10 to 50 Hz in real-time, with analog pulse processing and thermal pile-up rejection. This performance cannot be matched by currently available x-ray spectrometers. The detectors are incorporated into a compact and portable cryogenic refrigerator system that is ready for use in many analytical spectroscopy applications as a tool for x-ray microanalysis or in research applications such as laboratory and astrophysical x-ray and particle spectroscopy.

  8. X-Ray Observations of Gamma-Ray Burst Afterglows

    E-Print Network [OSTI]

    Filippo Frontera

    2004-06-25T23:59:59.000Z

    The discovery by the BeppoSAX satellite of X-ray afterglow emission from the gamma-ray burst which occurred on 28 February 1997 produced a revolution in our knowledge of the gamma-ray burst phenomenon. Along with the discovery of X-ray afterglows, the optical afterglows of gamma-ray bursts were discovered and the distance issue was settled, at least for long $\\gamma$-ray bursts. The 30 year mystery of the gamma-ray burst phenomenon is now on the way to solution. Here I rewiew the observational status of the X-ray afterglow emission, its mean properties (detection rate, continuum spectra, line features, and light curves), and the X-ray constraints on theoretical models of gamma-ray bursters and their progenitors. I also discuss the early onset afterglow emission, the remaining questions, and the role of future X-ray afterglow observations.

  9. Crosscheck of different techniques for two dimensional power spectral density measurements of x-ray optics

    SciTech Connect (OSTI)

    Yashchuk, Valeriy V.; Irick, Steve C.; Gullikson, Eric M.; Howells, Malcolm R.; MacDowell, Alastair A.; McKinney, Wayne R.; Salmassi, Farhad; Warwick, Tony

    2005-07-12T23:59:59.000Z

    The consistency of different instruments and methods for measuring two-dimensional (2D) power spectral density (PSD) distributions are investigated. The instruments are an interferometric microscope, an atomic force microscope (AFM) and the X-ray Reflectivity and Scattering experimental facility, all available at Lawrence Berkeley National Laboratory. The measurements were performed with a gold-coated mirror with a highly polished stainless steel substrate. It was shown that these three techniques provide essentially consistent results. For the stainless steel mirror, an envelope over all measured PSD distributions can be described with an inverse power-law PSD function. It is also shown that the measurements can be corrected for the specific spatial frequency dependent systematic errors of the instruments. The AFM and the X-ray scattering measurements were used to determine the modulation transfer function of the interferometric microscope. The corresponding correction procedure is discussed in detail. Lower frequency investigation of the 2D PSD distribution was also performed with a long trace profiler and a ZYGO GPI interferometer. These measurements are in some contradiction, suggesting that the reliability of the measurements has to be confirmed with additional investigation. Based on the crosscheck of the performance of all used methods, we discuss the ways for improving the 2D PSD characterization of X-ray optics.

  10. Deep x-ray lithography for micromechanics

    SciTech Connect (OSTI)

    Christenson, T.R. [Sandia National Labs., Albuquerque, NM (United States); Guckel, H. [Wisconsin Univ., Madison, WI (United States). Dept. of Electrical and Computer Engineering

    1995-08-01T23:59:59.000Z

    Extensions of the German LIGA process have brought about fabrication capability suitable for cost effective production of precision engineered components. The process attributes allow fabrication of mechanical components which are not capable of being made via conventional subtractive machining methods. Two process improvements have been responsible for this extended capability which involve the areas of thick photoresist application and planarization via precision lapping. Application of low-stress x-ray photoresist has been achieved using room temperature solvent bonding of a preformed photoresist sheet. Precision diamond lapping and polishing has provided a flexible process for the planarization of a wide variety of electroplated metals in the presence of photoresist. Exposure results from the 2.5 GeV National Synchrotron Light Source storage ring at Brookhaven National Laboratory have shown that structural heights of several millimeter and above are possible. The process capabilities are also well suited for microactuator fabrication. Linear and rotational magnetic microactuators have been constructed which use coil winding technology with LIGA fabricated coil forms. Actuator output forces of 1 milliNewton have been obtained with power dissipation on the order of milliWatts. A rotational microdynamometer system which is capable of measuring torque-speed data is also discussed.

  11. X-ray Emission from Massive StarsX-ray Emission from Massive Stars David CohenDavid Cohen

    E-Print Network [OSTI]

    Cohen, David

    X-ray Emission from Massive StarsX-ray Emission from Massive Stars David CohenDavid Cohen/s)Velocity (km/s) #12;absorption emission emission occulted emission emission UV telescope side side front back #12;absorption emission emission occulted emission emission UV telescope side side front back #12;The

  12. AugEX: AUGER ELECTRON AND X-RAY SPECTROMETER ON CHANDRAYAAN-2 ROVER

    E-Print Network [OSTI]

    Bapat, Bhas

    for determining elemental composition which have a space heritage X-Ray Fluorescence (XRF) Particle-induced X-ray fluorescence (XRF) Expected Advantage: cover low Z elements with higher sensitivity than XRF or PIXE. ACHARYA-ray absorption or charged particle bombardment X-ray emission induced by X-ray absorption: XRF X-ray emission

  13. X-ray Perspective of the Twisted Magnetospheres of Magnetars

    E-Print Network [OSTI]

    Weng, Shan-Shan; Guver, Tolga; Lin, Lin

    2015-01-01T23:59:59.000Z

    Anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are recognized as the most promising magnetar candidates as indicated by their energetic bursts and rapid spin-downs. It is expected that the strong magnetic field leaves distinctive imprints on the emergent radiation both by affecting the radiative processes in atmospheres of magnetars and by scattering in the upper magnetospheres. We construct a self-consistent physical model that incorporates emission from the magnetar surface and its reprocessing in the three-dimensional (3D) twisted magnetosphere using a Monte Carlo technique. The synthetic spectra are characterized by four parameters: surface temperature $kT$, surface magnetic field strength $B$, magnetospheric twist angle $\\Delta\\phi$, and the normalized electron velocity $\\beta$. We also create a tabular model (STEMS3D) and apply it to a large sample of XMM-Newton spectra of magnetars. The model successfully fits nearly all spectra, and the obtained magnetic field for the 7 out of 11 s...

  14. X-Ray spectra from protons illuminating a neutron star

    E-Print Network [OSTI]

    B. Deufel; C. P. Dullemond; H. C. Spruit

    2001-08-28T23:59:59.000Z

    We consider the interaction of a slowly rotating unmagnetized neutron star with a hot (ion supported, ADAF) accretion flow. The virialized protons of the ADAF penetrate into the neutron star atmosphere, heating a surface layer. Detailed calculations are presented of the equilibrium between heating by the protons, electron thermal conduction, bremsstrahlung and multiple Compton scattering in this layer. Its temperature is of the order 40-70 keV. Its optical depth increases with the incident proton energy flux, and is of the order unity for accretion at $10^{-2}$--$10^{-1}$ of the Eddington rate. At these rates, the X-ray spectrum produced by the layer has a hard tail extending to 100 keV, and is similar to the observed spectra of accreting neutron stars in their hard states. The steep gradient at the base of the heated layer gives rise to an excess of photons at the soft end of the spectrum (compared to a blackbody) through an `inverse photosphere effect'. The differences with respect to previous studies of similar problems are discussed, they are due mostly to a more accurate treatment of the proton penetration process and the vertical structure of the heated layer.

  15. Low-Energy X-ray Emission from Young Isolated Neutron Stars

    E-Print Network [OSTI]

    M. Ruderman

    2003-10-28T23:59:59.000Z

    A young neutron star with large spin-down power is expected to be closely surrounded by an e+/- pair plasma maintained by the conversion of gamma-rays associated with the star's polar-cap and/or outer-gap accelerators. Cyclotron-resonance scattering by the e- and e+ within several radii of such neutron stars prevents direct observations of thermal X-rays from the stellar surface. Estimates are presented for the parameters of the Planck-like X-radiation which ultimately diffuses out through this region. Comparisons with observations, especially of apparent blackbody emission areas as a function of neutron star age, support the proposition that we are learning about a neutron star's magnetosphere rather than about its surface from observations of young neutron star thermal X-rays.

  16. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    SciTech Connect (OSTI)

    Westre, T.E.

    1996-01-01T23:59:59.000Z

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s{yields}3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  17. Ultrafast myoglobin structural dynamics observed with an X-ray free-electron laser

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Levantino, Matteo; Schirò, Giorgio; Lemke, Henrik Till; Cottone, Grazia; Glownia, James Michael; Zhu, Diling; Chollet, Mathieu; Ihee, Hyotcherl; Cupane, Antonio; Cammarata, Marco

    2015-04-02T23:59:59.000Z

    Light absorption can trigger biologically relevant protein conformational changes. The light induced structural rearrangement at the level of a photoexcited chromophore is known to occur in the femtosecond timescale and is expected to propagate through the protein as a quake-like intramolecular motion. Here we report direct experimental evidence of such ‘proteinquake’ observed in myoglobin through femtosecond X-ray solution scattering measurements performed at the Linac Coherent Light Source X-ray free-electron laser. An ultrafast increase of myoglobin radius of gyration occurs within 1 picosecond and is followed by a delayed protein expansion. As the system approaches equilibrium it undergoes damped oscillations withmore »a ~3.6-picosecond time period. Our results unambiguously show how initially localized chemical changes can propagate at the level of the global protein conformation in the picosecond timescale.« less

  18. Lujan Neutron Scattering Center (Lujan Center) | U.S. DOE Office...

    Office of Science (SC) Website

    Lujan Neutron Scattering Center (Lujan Center) Scientific User Facilities (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering...

  19. Neutron Scattering Facilities | U.S. DOE Office of Science (SC...

    Office of Science (SC) Website

    Neutron Scattering Facilities Scientific User Facilities (SUF) Division SUF Home About User Facilities User Facilities Dev X-Ray Light Sources Neutron Scattering Facilities High...

  20. GeV-TeV and X-ray flares from gamma-ray bursts

    E-Print Network [OSTI]

    Xiang-Yu Wang; Zhuo Li; Peter Meszaros

    2006-03-13T23:59:59.000Z

    The recent detection of delayed X-ray flares during the afterglow phase of gamma-ray bursts (GRBs) suggests an inner-engine origin, at radii inside the deceleration radius characterizing the beginning of the forward shock afterglow emission. Given the observed temporal overlapping between the flares and afterglows, there must be inverse Compton (IC) emission arising from such flare photons scattered by forward shock afterglow electrons. We find that this IC emission produces GeV-TeV flares, which may be detected by GLAST and ground-based TeV telescopes. We speculate that this kind of emission may already have been detected by EGRET from a very strong burst--GRB940217. The enhanced cooling of the forward shock electrons by the X-ray flare photons may suppress the synchrotron emission of the afterglows during the flare period. The detection of GeV-TeV flares combined with low energy observations may help to constrain the poorly known magnetic field in afterglow shocks. We also consider the self-IC emission in the context of internal-shock and external-shock models for X-ray flares. The emission above GeV from internal shocks is low, while the external shock model can also produce GeV-TeV flares, but with a different temporal behavior from that caused by IC scattering of flare photons by afterglow electrons. This suggests a useful approach for distinguishing whether X-ray flares originate from late central engine activity or from external shocks.

  1. The Soft X-Ray Properties of a Complete Sample of Optically Selected Quasars II. Final Results

    E-Print Network [OSTI]

    Ari Laor; Fabrizio Fiore; Martin Elvis; Belinda J. Wilkes; Jonathan C. McDowell

    1996-09-24T23:59:59.000Z

    We present the final results of a ROSAT PSPC program to study the soft X-ray emission properties of a complete sample of low $z$ quasars. The main results are: 1. There is no evidence for significant soft excess emission or excess foreground absorption by cold gas in 22 of the 23 quasars. 2. The mean 0.2-2 keV continuum of quasars agrees remarkably well with an extrapolation of the mean 1050-350A continuum recently determined by Zheng et al. (1996), indicating that there is no steep soft component below 0.2 keV. 3. The occurrence of warm absorbers in quasars is rather rare, in sharp contrast to lower luminosity AGN. 4. The strongest correlation found is between the spectral slope, alpha_x, and the Hb FWHM. This remarkably strong correlation may result from a dependence of alpha_x on L/L_Edd, as seen in Galactic black hole candidates. 5. There appears to exist a distinct class of ``X-ray weak'' quasars. These may be quasars where the direct X-ray source is obscured, and only scattered X-rays are observed. 6. Thin accretion disk models cannot reproduce the observed optical to soft X-ray spectral shape. An as yet unknown physical mechanism maintains a strong correlation between the optical and soft X-ray emission. 7. The well known difference in alpha_x between radio-loud and radio-quiet quasars may be due only to their different Hb FWHM. 8. The agreement of the 21 cm and X-ray columns implies that He in the diffuse H II component of the Galactic ISM is ionized to He II or He III (shortened abstract).

  2. Integrated X-ray testing of the electro-optical breadboard model for the XMM reflection grating spectrometer

    SciTech Connect (OSTI)

    Bixler, J.V.; Craig, W.; Decker, T. [Lawrence Livermore National Lab., CA (United States); Aarts, H.; Boggende, T. den; Brinkman, A.C. [Space Research Organization Netherlands, Utrecht (Netherlands); Burkert, W.; Brauninger, H. [Max-Planck Institute fur Extraterrestische Physik, Testanlage (Germany); Branduardi-Raymont, G. [Univ. College London (United Kingdom); Dubbeldam, L. [Space Research Organization Netherlands, Leiden (Netherlands)] [and others

    1994-07-12T23:59:59.000Z

    X-ray calibration of the Electro-Optical Breadboard Model (EOBB) of the XXM Reflection Grating Spectrometer has been carried out at the Panter test facility in Germany. The EOBB prototype optics consisted of a four-shell grazing incidence mirror module followed by an array of eight reflection gratings. The dispersed x-rays were detected by an array of three CCDs. Line profile and efficiency measurements where made at several energies, orders, and geometric configurations for individual gratings and for the grating array as a whole. The x-ray measurements verified that the grating mounting method would meet the stringent tolerances necessary for the flight instrument. Post EOBB metrology of the individual gratings and their mountings confirmed the precision of the grating boxes fabrication. Examination of the individual grating surface`s at micron resolution revealed the cause of anomalously wide line profiles to be scattering due to the crazing of the replica`s surface.

  3. Spatiotemporal focusing dynamics in plasmas at X-ray wavelength

    SciTech Connect (OSTI)

    Sharma, A., E-mail: a-physics2001@yahoo.com; Tibai, Z. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary)] [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Hebling, J. [Institute of Physics, University of Pecs, Pecs–7624 (Hungary) [Institute of Physics, University of Pecs, Pecs–7624 (Hungary); Szentagothai Research Centre, University of Pecs, Pecs-7624 (Hungary); Mishra, S. K. [Institute for Plasma Research, Gandhinagar (India)] [Institute for Plasma Research, Gandhinagar (India)

    2014-03-15T23:59:59.000Z

    Using a finite curvature beam, we investigate here the spatiotemporal focusing dynamics of a laser pulse in plasmas at X-ray wavelength. We trace the dependence of curvature parameter on the focusing of laser pulse and recognize that the self-focusing in plasma is more intense for the X-ray laser pulse with curved wavefront than with flat wavefront. The simulation results demonstrate that spatiotemporal focusing dynamics in plasmas can be controlled with the appropriate choice of beam-plasma parameters to explore the high intensity effects in X-ray regime.

  4. X-ray backscatter imaging of nuclear materials

    DOE Patents [OSTI]

    Chapman, Jeffrey Allen; Gunning, John E; Hollenbach, Daniel F; Ott, Larry J; Shedlock, Daniel

    2014-09-30T23:59:59.000Z

    The energy of an X-ray beam and critical depth are selected to detect structural discontinuities in a material having an atomic number Z of 57 or greater. The critical depth is selected by adjusting the geometry of a collimator that blocks backscattered radiation so that backscattered X-ray originating from a depth less than the critical depth is not detected. Structures of Lanthanides and Actinides, including nuclear fuel rod materials, can be inspected for structural discontinuities such as gaps, cracks, and chipping employing the backscattered X-ray.

  5. Gated x-ray detector for the National Ignition Facility

    SciTech Connect (OSTI)

    Oertel, John A.; Aragonez, Robert; Archuleta, Tom; Barnes, Cris; Casper, Larry; Fatherley, Valerie; Heinrichs, Todd; King, Robert; Landers, Doug; Lopez, Frank; Sanchez, Phillip; Sandoval, George; Schrank, Lou; Walsh, Peter; Bell, Perry; Brown, Matt; Costa, Robert; Holder, Joe; Montelongo, Sam; Pederson, Neal [Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (United States); Lawrence Livermore National Laboratory, Livermore, California 94551-0808 (United States); VI Control Systems Ltd., Los Alamos, New Mexico 87544 (United States)

    2006-10-15T23:59:59.000Z

    Two new gated x-ray imaging cameras have recently been designed, constructed, and delivered to the National Ignition Facility in Livermore, CA. These gated x-Ray detectors are each designed to fit within an aluminum airbox with a large capacity cooling plane and are fitted with an array of environmental housekeeping sensors. These instruments are significantly different from earlier generations of gated x-ray images due, in part, to an innovative impedance matching scheme, advanced phosphor screens, pulsed phosphor circuits, precision assembly fixturing, unique system monitoring, and complete remote computer control. Preliminary characterization has shown repeatable uniformity between imaging strips, improved spatial resolution, and no detectable impedance reflections.

  6. X-ray afterglows from gamma-ray bursts

    E-Print Network [OSTI]

    M. Tavani

    1997-03-24T23:59:59.000Z

    We consider possible interpretations of the recently detected X- ray afterglow from the gamma-ray burst source GRB 970228. Cosmological and Galactic models of gamma-ray bursts predict different flux and spectral evolution of X-ray afterglows. We show that models based on adiabatic expansion of relativistic forward shocks require very efficient particle energization or post-burst re-acceleration during the expansion. Cooling neutron star models predict a very distinctive spectral and flux evolution that can be tested in current X-ray data.

  7. Characterization of X-ray generator beam profiles.

    SciTech Connect (OSTI)

    Mitchell, Dean J; Harding, Lee T.; Thoreson, Gregory G.; Theisen, Lisa Anne; Parmeter, John Ethan; Thompson, Kyle Richard

    2013-07-01T23:59:59.000Z

    T to compute the radiography properties of various materials, the flux profiles of X-ray sources must be characterized. This report describes the characterization of X-ray beam profiles from a Kimtron industrial 450 kVp radiography system with a Comet MXC-45 HP/11 bipolar oil-cooled X-ray tube. The empirical method described here uses a detector response function to derive photon flux profiles based on data collected with a small cadmium telluride detector. The flux profiles are then reduced to a simple parametric form that enables computation of beam profiles for arbitrary accelerator energies.

  8. X-ray Diffraction from Membrane Protein Nanocrystals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengtheningWildfires may contribute more toConsensusX-RayX-RayX-ray

  9. Automated suppression of errors in LTP-II slope measurements with x-ray optics

    E-Print Network [OSTI]

    Ali, Zulfiqar

    2011-01-01T23:59:59.000Z

    slope measurements with x-ray optics Zulfiqar Ali, Curtis L.with state-of-the-art x-ray optics. Significant suppressionscanning, metrology of x-ray optics, deflectometry Abstract

  10. X-ray optics metrology limited by random noise, instrumental drifts, and systematic errors

    E-Print Network [OSTI]

    Yashchuk, Valeriy V.

    2010-01-01T23:59:59.000Z

    X-ray optics metrology limited by random noise, instrumentalUSA Center for X-ray Optics, Lawrence Berkeley Nationaland reflecting x-ray optics suitable for micro- and nano-

  11. atf compton x-ray: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    D; Fritzsche, S 2014-01-01 14 Photospheres, Comptonization and X-ray Lines in Gamma Ray Bursts Astrophysics (arXiv) Summary: Steep X-ray spectral slopes, X-ray excesses and...

  12. adc x-ray binary: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    systems. Sudip Bhattacharyya 2010-02-24 17 X-ray Transients from X-ray Binaries to Gamma Ray Bursts CERN Preprints Summary: We discuss three classes of x-ray transients to...

  13. Radiation exposure in X-ray-based imaging techniques used in osteoporosis

    E-Print Network [OSTI]

    Damilakis, John; Adams, Judith E.; Guglielmi, Giuseppe; Link, Thomas M.

    2010-01-01T23:59:59.000Z

    and nonradiologists in dual-energy X-ray absorptiometrymorphometry studies using dual-energy X-ray absorptiometry.dose measurements in dual energy X-ray absorptiometry (DXA).

  14. Lensless Imaging of Whole Biological Cells with Soft X-Rays

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cells with Soft X-Rays Lensless Imaging of Whole Biological Cells with Soft X-Rays Print Wednesday, 26 May 2010 00:00 A team of scientists has used x-ray diffraction...

  15. Beyond 3-D X-ray Imaging: Methodology Development and Applications...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to the availability of the new generation of X-ray sources and the advanced X-ray optics. The advanced X-ray Optics along with novel methodology has made it possible to...

  16. X-ray Eclipse Diagnosis of the Evolving Mass Loss in the Recurrent Nova U Scorpii 2010

    E-Print Network [OSTI]

    Takei, D; Tsujimoto, M; Ness, J -U; Osborne, J P; Starrfield, S; Kitamoto, S

    2013-01-01T23:59:59.000Z

    We report the Suzaku detection of the earliest X-ray eclipse seen in the recurrent nova U Scorpii 2010. A target-of-opportunity observation 15 days after the outburst found a 27+/-5% dimming in the 0.2-1.0 keV energy band at the predicted center of an eclipse. In comparison with the X-ray eclipse depths seen at two later epochs by XMM-Newton, the source region shrank by about 10-20% between days 15 and 35 after the outburst. The X-ray eclipses appear to be deeper than or similar to contemporaneous optical eclipses, suggesting the X-ray and optical source region extents are comparable on day 15. We raise the possibility of the energy dependency in the photon escape regions, and that this would be a result of the supersoft X-ray opacity being higher than the Thomson scattering optical opacity at the photosphere due to bound-free transitions in abundant metals that are not fully ionized. Assuming a spherically symmetric explosion model, we constrain the mass-loss rate as a function of time. For a ratio of actual...

  17. Reactive sputter magnetron reactor for preparation of thin films and simultaneous in situ structural study by X-ray diffraction

    SciTech Connect (OSTI)

    Buergi, J.; Molleja, J. Garcia; Feugeas, J. [Instituto de Fisica Rosario (CONICET-UNR), Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Neuenschwander, R. [Laboratorio Nacional Luz Sincrotron (LNLS), Caixa Postal 6192, CEP13083-970 Campinas (Brazil); Kellermann, G. [Departamento de Fisica (Universidade Federal do Parana), Caixa Postal 19044, CEP81531-990 Curitiba (Brazil); Craievich, A. F. [Instituto de Fisica (Universidade de Sao Paulo), Rua do Matao Travessa R 187, CEP05508-090 Sao Paulo (Brazil)

    2013-01-15T23:59:59.000Z

    The purpose of the designed reactor is (i) to obtain polycrystalline and/or amorphous thin films by controlled deposition induced by a reactive sputtering magnetron and (ii) to perform a parallel in situ structural study of the deposited thin films by X-ray diffraction, in real time, during the whole growth process. The designed reactor allows for the control and precise variation of the relevant processing parameters, namely, magnetron target-to-sample distance, dc magnetron voltage, and nature of the gas mixture, gas pressure and temperature of the substrate. On the other hand, the chamber can be used in different X-ray diffraction scanning modes, namely, {theta}-2{theta} scanning, fixed {alpha}-2{theta} scanning, and also low angle techniques such as grazing incidence small angle X-ray scattering and X-ray reflectivity. The chamber was mounted on a standard four-circle diffractometer located in a synchrotron beam line and first used for a preliminary X-ray diffraction analysis of AlN thin films during their growth on the surface of a (100) silicon wafer.

  18. A wavelet analysis for the X-ray absorption spectra of molecules

    SciTech Connect (OSTI)

    Penfold, T. J. [Ecole polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland); Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne (Switzerland); SwissFEL, Paul Scherrer Inst, CH-5232 Villigen (Switzerland); Tavernelli, I.; Rothlisberger, U. [Ecole polytechnique Federale de Lausanne, Laboratoire de chimie et biochimie computationnelles, ISIC, FSB-BCH, CH-1015 Lausanne (Switzerland); Milne, C. J.; Abela, R. [SwissFEL, Paul Scherrer Inst, CH-5232 Villigen (Switzerland); Reinhard, M.; Nahhas, A. El; Chergui, M. [Ecole polytechnique Federale de Lausanne, Laboratoire de spectroscopie ultrarapide, ISIC, FSB-BSP, CH-1015 Lausanne (Switzerland)

    2013-01-07T23:59:59.000Z

    We present a Wavelet transform analysis for the X-ray absorption spectra of molecules. In contrast to the traditionally used Fourier transform approach, this analysis yields a 2D correlation plot in both R- and k-space. As a consequence, it is possible to distinguish between different scattering pathways at the same distance from the absorbing atom and between the contributions of single and multiple scattering events, making an unambiguous assignment of the fine structure oscillations for complex systems possible. We apply this to two previously studied transition metal complexes, namely iron hexacyanide in both its ferric and ferrous form, and a rhenium diimine complex, [ReX(CO){sub 3}(bpy)], where X = Br, Cl, or ethyl pyridine (Etpy). Our results demonstrate the potential advantages of using this approach and they highlight the importance of multiple scattering, and specifically the focusing phenomenon to the extended X-ray absorption fine structure (EXAFS) spectra of these complexes. We also shed light on the low sensitivity of the EXAFS spectrum to the Re-X scattering pathway.

  19. How Can X-ray Transient Absorption Spectroscopy Aide Solar Energy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are from optimized on structural, energetic and dynamic parameters. Intense X-ray pulses from synchrotrons and X-ray free electrons lasers coupled with ultrafast lasers...

  20. X-rays only when you want them: Report on Pseudo-single-bunch...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Speaker: David Robin, Lawrence Berkeley National Laboratory Program Description Laser pump - x-ray probe experiments require control over the x-ray pulse pattern and timing. Such...

  1. Scanning X-ray Microscopy Investigations into the Electron Beam Exposure Mechanism of Hydrogen Silsesquioxane Resists

    E-Print Network [OSTI]

    Olynick, Deirdre L.; Tivanski, Alexei V.; Gilles, Mary K.; Tyliszczak, Tolek; Salmassi, Farhad; Liddle, J. Alexander

    2006-01-01T23:59:59.000Z

    Scanning X-ray Microscopy Investigations into the Electronchemistry is investigated by Scanning Transmission X-raythe area exposed. 15 Recently, scanning transmission x-ray

  2. Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Soft X-Ray Microscopy and Spectroscopy at the Molecular Environmental Science Beamline at the Advanced Light Source. Soft X-Ray Microscopy and Spectroscopy at the Molecular...

  3. X-Ray Fluorescence (XRF) Analysis of Obsidian Artifacts from Shoofly Ruin, Central Arizona

    E-Print Network [OSTI]

    Shackley, M. Steven

    1986-01-01T23:59:59.000Z

    X-RAY FLUORESCENCE (XRF) ANALYSIS OF OBSIDIAN ARTIFACTS FROM62:426-437. SOUTHWEST XRF PAPER Table 1. X-ray fluorescence

  4. Using Light to Control How X Rays Interact with Matter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Light to Control How X Rays Interact with Matter Print Schemes that use one light pulse to manipulate interactions of another with matter are well developed in the...

  5. In situ X-ray Characterization of Energy Storage Materials |...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    X-ray Characterization of Energy Storage Materials Tuesday, July 9, 2013 - 11:00am SLAC, Conference Room 137-322 Presented by Johanna Nelson, Stanford Postdoctoral Scholar, SSRL...

  6. Streaked x-ray microscopy of laser-fusion targets

    SciTech Connect (OSTI)

    Price, R.H.; Campbell, E.M.; Rosen, M.D.; Auerbach, J.M.; Phillion, D.W.; Whitlock, R.R.; Obenshain, S.P.; McLean, E.A.; Ripin, B.H.

    1982-08-01T23:59:59.000Z

    An ultrafast soft x-ray streak camera has been coupled to a Wolter axisymmetric x-ray microscope. This system was used to observe the dynamics of laser fusion targets both in self emission and backlit by laser produced x-ray sources. Spatial resolution was 7 ..mu..m and temporal resolution was 20 ps. Data is presented showing the ablative acceleration of foils to velocities near 10/sup 7/ cm/sec and the collision of an accelerated foil with a second foil, observed using 3 keV streaked x-ray backlighting. Good agreement was found between hydrocode simulations, simple models of the ablative acceleration and the observed velocities of the carbon foils.

  7. The Identification Problem for the attenuated X-ray transform

    E-Print Network [OSTI]

    2013-11-16T23:59:59.000Z

    X-ray transform has been solved in [27], see also [15]. The main result in .... For any compact set K ? T2, we define Hs(K) to be the closed subspace of Hs(T2) of

  8. Systems and methods for detecting x-rays

    DOE Patents [OSTI]

    Bross, Alan D.; Mellott, Kerry L.; Pla-Dalmau, Anna

    2006-05-02T23:59:59.000Z

    Systems and methods for detecting x-rays are disclosed herein. One or more x-ray-sensitive scintillators can be configured from a plurality of heavy element nano-sized particles and a plastic material, such as polystyrene. As will be explained in greater detail herein, the heavy element nano-sized particles (e.g., PbWO4) can be compounded into the plastic material with at least one dopant that permits the plastic material to scintillate. X-rays interact with the heavy element nano-sized particles to produce electrons that can deposit energy in the x-ray sensitive scintillator, which in turn can produce light.

  9. Epoxy replication for Wolter x-ray microscope fabrication

    SciTech Connect (OSTI)

    Priedhorsky, W.

    1981-01-01T23:59:59.000Z

    An epoxy replica of a test piece designed to simulate a Wolter x-ray microscope geometry showed no loss of x-ray reflectivity or resolution, compared to the original. The test piece was a diamond-turned cone with 1.5/sup 0/ half angle. A flat was fly-cut on one side, then super- and conventionally polished. The replica was separated at the 1.5/sup 0/-draft angle, simulating a shallow angle Wolter microscope geometry. A test with 8.34 A x rays at 0.9/sup 0/ grazing angle showed a reflectivity of 67% for the replica flat surface, and 70% for the original. No spread of the reflected beam was observed with a 20-arc second wide test beam. This test verifies the epoxy replication technique for production of Wolter x-ray microscopes.

  10. X-ray ptychography, fluorescence microscopy combo sheds new light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    advance required the high brightness of the APS as an X-ray source and points the way to advances that can be expected as it is planned to be increased a hundredfold in the...

  11. Vitreous carbon mask substrate for X-ray lithography

    DOE Patents [OSTI]

    Aigeldinger, Georg (Livermore, CA); Skala, Dawn M. (Fremont, CA); Griffiths, Stewart K. (Livermore, CA); Talin, Albert Alec (Livermore, CA); Losey, Matthew W. (Livermore, CA); Yang, Chu-Yeu Peter (Dublin, CA)

    2009-10-27T23:59:59.000Z

    The present invention is directed to the use of vitreous carbon as a substrate material for providing masks for X-ray lithography. The new substrate also enables a small thickness of the mask absorber used to pattern the resist, and this enables improved mask accuracy. An alternative embodiment comprised the use of vitreous carbon as a LIGA substrate wherein the VC wafer blank is etched in a reactive ion plasma after which an X-ray resist is bonded. This surface treatment provides a surface enabling good adhesion of the X-ray photoresist and subsequent nucleation and adhesion of the electrodeposited metal for LIGA mold-making while the VC substrate practically eliminates secondary radiation effects that lead to delamination of the X-ray resist form the substrate, the loss of isolated resist features, and the formation of a resist layer adjacent to the substrate that is insoluble in the developer.

  12. Performance enhancement approaches for a dual energy x-ray

    E-Print Network [OSTI]

    Fu, Kenneth

    2010-01-01T23:59:59.000Z

    Evans, J.P.O. , “Stereoscopic dual energy imaging for targetCrawford, C.R. , “Dual Energy Volumetric X-ray Tomographicimages in 4–10 MeV Dual- energy customs system for material

  13. X-Ray Diffraction Microscopy of Magnetic Structures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    12.0.2.2 Citation: J.J. Turner et al., "X-Ray Diffraction Microscopy of Magnetic Structures," Phys. Rev. Lett. 107, 033904 (2011). Web: http:prl.aps.orgpdfPRLv107i3e033904...

  14. Towards attosecond X-ray pulses from the FEL

    E-Print Network [OSTI]

    Zholents, Alexander A.; Fawley, William M.

    2004-01-01T23:59:59.000Z

    can be used instead of HC FEL. In the following illustra-UM is now tuned for resonant FEL interaction with the 32-nmAttosecond X-Ray Pulses from the FEL Alexander A. Zholents,

  15. X-ray micromodulated luminescence tomography in dual-cone ...

    E-Print Network [OSTI]

    2014-07-01T23:59:59.000Z

    Jul 16, 2014 ... ing the intensity of x-ray energy at the vertex point of a double- cone beam. ... such focusing element, but it is of low efficiency and restricted.

  16. X-ray mask and method for making

    DOE Patents [OSTI]

    Morales, Alfredo M.

    2004-10-26T23:59:59.000Z

    The present invention describes a method for fabricating an x-ray mask tool which is a contact lithographic mask which can provide an x-ray exposure dose which is adjustable from point-to-point. The tool is useful in the preparation of LIGA plating molds made from PMMA, or similar materials. In particular the tool is useful for providing an ability to apply a graded, or "stepped" x-ray exposure dose across a photosensitive substrate. By controlling the x-ray radiation dose from point-to-point, it is possible to control the development process for removing exposed portions of the substrate; adjusting it such that each of these portions develops at a more or less uniformly rate regardless of feature size or feature density distribution.

  17. Recent Flash X-Ray Injector Modeling

    SciTech Connect (OSTI)

    Houck, T; Blackfield, D; Burke, J; Chen, Y; Javedani, J; Paul, A C

    2004-11-10T23:59:59.000Z

    The injector of the Flash X-Ray (FXR) accelerator has a significantly larger than expected beam emittance. A computer modeling effort involving three different injector design codes was undertaken to characterize the FXR injector and determine the cause of the large emittance. There were some variations between the codes, but in general the simulations were consistent and pointed towards a much smaller normalized, rms emittance (36 cm-mr) than what was measured (193 cm-mr) at the exit of the injector using a pepperpot technique. The simulations also indicated that the present diode design was robust with respect to perturbations to the nominal design. Easily detected mechanical alignment/position errors and magnet errors did not lead to appreciable increase in the simulated emittance. The physics of electron emission was not modeled by any of the codes and could be the source of increased emittance. The nominal simulation assumed uniform Child-Langmuir Law emission from the velvet cathode and no shroud emission. Simulations that looked at extreme non-uniform cathode and shroud emission scenarios resulted in doubling of the emittance. An alternative approach was to question the pepperpot measurement. Simulations of the measurement showed that the pepperpot aperture foil could double the emittance with respect to the non-disturbed beam. This leads to a diplomatic explanation of the discrepancy between predicted and measured emittance where the fault is shared. The measured value is too high due to the effect of the diagnostic on the beam and the simulations are too low because of unaccounted cathode and/or shroud emission physics. Fortunately there is a relatively simple experiment that can resolve the emittance discrepancy. If the large measured emittance value is correct, the beam envelope is emittance dominated at modest values of focusing field and beam radius. Measurements of the beam envelope on an imaging foil at the exit of the injector would lead to an accurate value of the emittance. If the emittance was approximately half of the measured value, the beam envelope is slightly space charge dominated, but envelope measurements would set reasonable bounds on the emittance value. For an emittance much less than 100 cm-mr, the envelope measurements would be insensitive to emittance. The outcome of this envelope experiment determines if a redesigned diode is needed or if more sophisticated emittance measurements should be pursued.

  18. X-ray tube with magnetic electron steering

    DOE Patents [OSTI]

    Reed, Kim W. (Albuquerque, NM); Turman, Bobby N. (Albuquerque, NM); Kaye, Ronald J. (Albuquerque, NM); Schneider, Larry X. (Albuquerque, NM)

    2000-01-01T23:59:59.000Z

    An X-ray tube uses a magnetic field to steer electrons. The magnetic field urges electrons toward the anode, increasing the proportion of electrons emitted from the cathode that reach desired portions of the anode and consequently contribute to X-ray production. The magnetic field also urges electrons reflected from the anode back to the anode, further increasing the efficiency of the tube.

  19. Quantum coherence phenomena in x-ray optics

    E-Print Network [OSTI]

    Anisimov, Petr Mikhailovich

    2009-05-15T23:59:59.000Z

    QUANTUM COHERENCE PHENOMENA IN X-RAY OPTICS A Dissertation by PETR MIKHAILOVICH ANISIMOV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY December... 2008 Major Subject: Physics QUANTUM COHERENCE PHENOMENA IN X-RAY OPTICS A Dissertation by PETR MIKHAILOVICH ANISIMOV Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of DOCTOR...

  20. New Directions in X-Ray Light Sources

    ScienceCinema (OSTI)

    Roger Falcone

    2010-01-08T23:59:59.000Z

    July 15, 2008 Berkeley Lab lecture: Molecular movies of chemical reactions and material phase transformations need a strobe of x-rays, the penetrating light that reveals how atoms and molecules assemble in chemical and biological systems and complex materials. Roger Falcone, Director of the Advanced Light Source,will discuss a new generation of x ray sources that will enable a new science of atomic dynamics on ultrafast timescales.

  1. Enhanced betatron X-rays from axially modulated plasma wakefields

    E-Print Network [OSTI]

    Palastro, J P; Gordon, D

    2015-01-01T23:59:59.000Z

    In the cavitation regime of plasma-based accelerators, a population of high-energy electrons tailing the driver can undergo betatron motion. The motion results in X-ray emission, but the brilliance and photon energy are limited by the electrons' initial transverse coordinate. To overcome this, we exploit parametrically unstable betatron motion in a cavitated, axially modulated plasma. Theory and simulations are presented showing that the unstable oscillations increase both the total X-ray energy and average photon energy.

  2. Quiet Sun X-rays as Signature for New Particles

    E-Print Network [OSTI]

    K. Zioutas; K. Dennerl; L. DiLella; D. H. H. Hoffmann; J. Jacoby; Th. Papaevangelou

    2004-03-08T23:59:59.000Z

    We have studied published data from the Yohkoh solar X-ray mission, with the purpose of searching for signals from radiative decays of new, as yet undiscovered massive neutral particles. This search is based on the prediction that solar axions of the Kaluza-Klein type should result in the emission of X-rays from the Sun direction beyond the limb with a characteristic radial distribution. These X-rays should be observed more easily during periods of quiet Sun. An additional signature is the observed emission of hard X-rays by SMM, NEAR and RHESSI. The recent observation made by RHESSI of a continuous emission from the non-flaring Sun of X-rays in the 3 to ~15 keV range fits the generic axion scenario. This work also suggests new analyses of existing data, in order to exclude instrumental effects; it provides the rationale for targeted observations with present and upcoming (solar) X-ray telescopes, which can provide the final answer on the nature of the signals considered here. Such measurements become more promising during the forthcoming solar cycle minimum with an increased number of quiet Sun periods.

  3. Spectral Formation in X-Ray Pulsar Accretion Columns

    E-Print Network [OSTI]

    Peter A. Becker; Michael T. Wolff

    2005-03-03T23:59:59.000Z

    We present the first self-consistent model for the dynamics and the radiative transfer occurring in bright X-ray pulsar accretion columns, with a special focus on the role of the shock in energizing the emerging X-rays. The pressure inside the accretion column of a luminous X-ray pulsar is dominated by the photons, and consequently the equations describing the coupled radiative-dynamical structure must be solved simultaneously. Spectral formation in these sources is therefore a complex, nonlinear phenomenon. We obtain the analytical solution for the Green's function describing the upscattering of monochromatic radiation injected into the column from the thermal mound located near the base of the flow. The Green's function is convolved with a Planck distribution to model the X-ray spectrum resulting from the reprocessing of blackbody photons produced in the thermal mound. These photons diffuse through the infalling gas and eventually escape out the walls of the column, forming the observed X-ray spectrum. We show that the resulting column-integrated, phase-averaged spectrum has a power-law shape at high energies and a blackbody shape at low energies, in agreement with the observational data for many X-ray pulsars.

  4. Reciprocal space mapping of epitaxial materials using position-sensitive x-ray detection

    SciTech Connect (OSTI)

    Lee, S.R.; Doyle, B.L.; Drummond, T.J.; Medernach, J.W.; Schneider, R.P. Jr.

    1994-10-01T23:59:59.000Z

    Reciprocal space mapping can be efficiently carried out using a position-sensitive x-ray detector (PSD) coupled to a traditional double-axis diffractometer. The PSD offers parallel measurement of the total scattering angle of all diffracted x-rays during a single rocking-curve scan. As a result, a two-dimensional reciprocal space map can be made in a very short time similar to that of a one-dimensional rocking-curve scan. Fast, efficient reciprocal space mapping offers numerous routine advantages to the x-ray diffraction analyst. Some of these advantages are the explicit differentiation of lattice strain from crystal orientation effects in strain-relaxed heteroepitaxial layers; the nondestructive characterization of the size, shape and orientation of nanocrystalline domains in ordered-alloy epilayers; and the ability to measure the average size and shape of voids in porous epilayers. Here, the PSD-based diffractometer is described, and specific examples clearly illustrating the advantages of complete reciprocal space analysis are presented.

  5. Unveiling the origin of X-ray flares in Gamma-Ray Bursts

    E-Print Network [OSTI]

    Chincarini, G; Margutti, R; Bernardini, M G; Guidorzi, C; Pasotti, F; Giannios, D; Della Valle, M; Moretti, A; Romano, P; D'Avanzo, P; Cusumano, G; Giommi, P

    2010-01-01T23:59:59.000Z

    We present an updated catalog of 113 X-ray flares detected by Swift in the ~33% of the X-ray afterglows of Gamma-Ray Bursts (GRB). 43 flares have a measured redshift. For the first time the analysis is performed in 4 different X-ray energy bands, allowing us to constrain the evolution of the flare temporal properties with energy. We find that flares are narrower at higher energies: their width follows a power-law relation w~E^{-0.5} reminiscent of the prompt emission. Flares are asymmetric structures, with a decay time which is twice the rise time on average. Both time scales linearly evolve with time, giving rise to a constant rise-to-decay ratio: this implies that both time scales are stretched by the same factor. As a consequence, the flare width linearly evolves with time to larger values: this is a key point that clearly distinguishes the flare from the GRB prompt emission. The flare 0.3-10 keV peak luminosity decreases with time, following a power-law behaviour with large scatter: L_{pk}~ t_{pk}^{-2.7}....

  6. Hard x-ray emission spectroscopy: a powerful tool for the characterization of magnetic semiconductors

    E-Print Network [OSTI]

    Rovezzi, Mauro

    2014-01-01T23:59:59.000Z

    This review aims to introduce the x-ray emission spectroscopy (XES) and resonant inelastic x-ray scattering (RIXS) techniques to the materials scientist working with magnetic semiconductors (e.g. semiconductors doped with 3d transition metals) for applications in the field of spin-electronics. We focus our attention on the hard part of the x-ray spectrum (above 3 keV) in order to demonstrate a powerful element- and orbital-selective characterization tool in the study of bulk electronic structure. XES and RIXS are photon-in/photon-out second order optical processes described by the Kramers-Heisenberg formula. Nowadays, the availability of third generation synchrotron radiation sources permits to apply such techniques also to dilute materials, opening the way for a detailed atomic characterization of impurity-driven materials. We present the K{\\ss} XES as a tool to study the occupied valence states (directly, via valence-to-core transitions) and to probe the local spin angular momentum (indirectly, via intra-at...

  7. X-ray reflectivity studies of the metal/solution interphase

    SciTech Connect (OSTI)

    You, H.; Nagy, Z.; Melendres, C.A.; Zurawski, D.J.; Chiarello, R.P.; Yonco, R.M.; Kim, H.K.; Maroni, V.A.

    1991-09-01T23:59:59.000Z

    We have designed an electrochemical cell that permits x-ray scattering studies in a transmission geometry under in-situ electrochemical control and have performed x-ray specular reflectivity studies of several metal/solution interphases as a function of electrochemical potential. For the copper/solution interphase, we found that the reflectivity changes upon oxidation and reduction, indicating a phase transition between copper and copper oxide at the interphase. We also found that the thickness of the pure copper and the roughness of the interfaces exhibited electrochemical irreversibility that is consistent with the potentials for the oxidation waves in the anodic sweep and the reduction waves in the cathodic sweep of the voltammogram. A standard Fresnel expression for the x-ray specular reflectivity was applied in the data analysis, and a smoothly varying Lorentzian interface profile was used for the individual rough interfaces. Furthermore, an incoherent average was used to include the effect of correlated roughness between a pair of interfaces. Preliminary results are also presented for the silver/solution and platinum/solution interphases. 14 refs., 9 figs., 2 tabs.

  8. Quantitative electron density characterization of soft tissue substitute plastic materials using grating-based x-ray phase-contrast imaging

    SciTech Connect (OSTI)

    Sarapata, A.; Chabior, M.; Zanette, I.; Pfeiffer, F. [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); Cozzini, C.; Sperl, J. I.; Bequé, D. [GE Global Research, 85748 Garching (Germany); Langner, O.; Coman, J. [QRM GmbH, Möhrendorf (Germany); Ruiz-Yaniz, M. [Lehrstuhl für Biomedizinische Physik, Physik-Department and Institut für Medizintechnik, Technische Universität München, 85748 Garching (Germany); European Synchrotron Radiation Facility, Grenoble (France)

    2014-10-15T23:59:59.000Z

    Many scientific research areas rely on accurate electron density characterization of various materials. For instance in X-ray optics and radiation therapy, there is a need for a fast and reliable technique to quantitatively characterize samples for electron density. We present how a precise measurement of electron density can be performed using an X-ray phase-contrast grating interferometer in a radiographic mode of a homogenous sample in a controlled geometry. A batch of various plastic materials was characterized quantitatively and compared with calculated results. We found that the measured electron densities closely match theoretical values. The technique yields comparable results between a monochromatic and a polychromatic X-ray source. Measured electron densities can be further used to design dedicated X-ray phase contrast phantoms and the additional information on small angle scattering should be taken into account in order to exclude unsuitable materials.

  9. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    E-Print Network [OSTI]

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  10. 54X-rays from Hot Gases Near the SN1979C Black Hole The Chandra X-Ray Observatory

    E-Print Network [OSTI]

    is in solar mass units, and R is in kilometers. Problem 1 - Combining these equations using the method-Newton and the German ROSAT observatory revealed a bright source of X-rays that has remained steady for the 12 years, or distribution of X-rays with energy, support the idea that the object in SN 1979C is a black hole being fed

  11. A High Efficiency Grazing Incidence Pumped X-ray Laser

    SciTech Connect (OSTI)

    Dunn, J; Keenan, R; Price, D F; Patel, P K; Smith, R F; Shlyaptsev, V N

    2006-08-31T23:59:59.000Z

    The main objective of the project is to demonstrate a proof-of-principle, new type of high efficiency, short wavelength x-ray laser source that will operate at unprecedented high repetition rates (10Hz) that could be scaled to 1kHz or higher. The development of a high average power, tabletop x-ray laser would serve to complement the wavelength range of 3rd and future 4th generation light sources, e.g. the LCLS, being developed by DOE-Basic Energy Sciences. The latter are large, expensive, central, synchrotron-based facilities while the tabletop x-ray laser is compact, high-power laser-driven, and relatively inexpensive. The demonstration of such a unique, ultra-fast source would allow us to attract funding from DOE-BES, NSF and other agencies to pursue probing of diverse materials undergoing ultrafast changes. Secondly, this capability would have a profound impact on the semiconductor industry since a coherent x-ray laser source would be ideal for ''at wavelength'' {approx}13 nm metrology and microscopy of optics and masks used in EUV lithography. The project has major technical challenges. We will perform grazing-incidence pumped laser-plasma experiments in flat or groove targets which are required to improve the pumping efficiency by ten times. Plasma density characterization using our existing unique picosecond x-ray laser interferometry of laser-irradiated targets is necessary. Simulations of optical laser propagation as well as x-ray laser production and propagation through freely expanding and confined plasma geometries are essential. The research would be conducted using the Physics Directorate Callisto and COMET high power lasers. At the end of the project, we expect to have a high-efficiency x-ray laser scheme operating below 20 nm at 10Hz with a pulse duration of {approx}2 ps. This will represent the state-of-the-art in x-ray lasers and would be a major step forward from our present picosecond laser-driven x-ray lasers. There is an added bonus of creating the shortest wavelength laboratory x-ray laser, below 4.5 nm and operating in the water window, by using the high-energy capability of the Titan laser.

  12. HIgh Rate X-ray Fluorescence Detector

    SciTech Connect (OSTI)

    Grudberg, Peter Matthew [XIA LLC

    2013-04-30T23:59:59.000Z

    The purpose of this project was to develop a compact, modular multi-channel x-ray detector with integrated electronics. This detector, based upon emerging silicon drift detector (SDD) technology, will be capable of high data rate operation superior to the current state of the art offered by high purity germanium (HPGe) detectors, without the need for liquid nitrogen. In addition, by integrating the processing electronics inside the detector housing, the detector performance will be much less affected by the typically noisy electrical environment of a synchrotron hutch, and will also be much more compact than current systems, which can include a detector involving a large LN2 dewar and multiple racks of electronics. The combined detector/processor system is designed to match or exceed the performance and features of currently available detector systems, at a lower cost and with more ease of use due to the small size of the detector. In addition, the detector system is designed to be modular, so a small system might just have one detector module, while a larger system can have many â?? you can start with one detector module, and add more as needs grow and budget allows. The modular nature also serves to simplify repair. In large part, we were successful in achieving our goals. We did develop a very high performance, large area multi-channel SDD detector, packaged with all associated electronics, which is easy to use and requires minimal external support (a simple power supply module and a closed-loop water cooling system). However, we did fall short of some of our stated goals. We had intended to base the detector on modular, large-area detectors from Ketek GmbH in Munich, Germany; however, these were not available in a suitable time frame for this project, so we worked instead with pnDetector GmbH (also located in Munich). They were able to provide a front-end detector module with six 100 m^2 SDD detectors (two monolithic arrays of three elements each) along with associated preamplifiers; these detectors surpassed the performance we expected to get from the Ketek detectors, however they are housed in a sealed module, which does not offer the ease of repair and expandability weâ??d hoped to achieve with the Ketek SDDâ??s. Our packaging efforts were quite successful, as we came up with a very compact way to mount the detector and to house the associated electronics, as well as a very effective way to reliably take out the heat (from the electronics as well as the detectorâ??s Peltier coolers) without risk of condensation and without external airflow or vibration, which could create problems for the target applications. While we were able to design compact processing electronics that fit into the detector assembly, they are still at the prototype stage, and would require a significant redesign to achieve product status. We have not yet tested this detector at a synchrotron facility; we do still plan on working with some close contacts at the nearby Stanford Synchrotron Radiation Laboratory (SSRL) to get some testing with the beam (using existing commercial electronics for readout, as the integrated processor is not ready for use).

  13. Gain dynamics in a soft X-ray laser ampli er perturbed by a strong injected X-ray eld

    SciTech Connect (OSTI)

    Wang, Yong [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Wang, Shoujun [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Oliva, E [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Lu, L [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Berrill, Mark A [ORNL] [ORNL; Yin, Liang [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Nejdl, J [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Luther, Brad [Colorado State University, Fort Collins] [Colorado State University, Fort Collins; Proux, C [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique] [Laboratoire d’Optique Applique´e, ENSTA, CNRS, Ecole Polytechnique; Le, T. T. [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Dunn, James [Lawrence Livermore National Laboratory (LLNL)] [Lawrence Livermore National Laboratory (LLNL); Ros, D [Laboratoire de Physique des Gaz et des Gaz et des Plasmas] [Laboratoire de Physique des Gaz et des Gaz et des Plasmas; Zeitoun, Philippe [École Polytechnique] [École Polytechnique; Rocca, Jorge [Colorado State University, Fort Collins] [Colorado State University, Fort Collins

    2014-01-01T23:59:59.000Z

    Seeding soft X-ray plasma ampli ers with high harmonics has been demonstrated to generate high-brightness soft X-ray laser pulses with full spatial and temporal coherence. The interaction between the injected coherent eld and the swept-gain medium has been modelled. However, no exper- iment has been conducted to probe the gain dynamics when perturbed by a strong external seed eld. Here, we report the rst X-ray pump X-ray probe measurement of the nonlinear response of a plasma ampli er perturbed by a strong soft X-ray ultra-short pulse. We injected a sequence of two time-delayed high-harmonic pulses (l518.9 nm) into a collisionally excited nickel-like molybdenum plasma to measure with femto-second resolution the gain depletion induced by the saturated ampli cation of the high-harmonic pump and its subsequent recovery. The measured fast gain recovery in 1.5 1.75 ps con rms the possibility to generate ultra-intense, fully phase-coherent soft X-ray lasers by chirped pulse ampli cation in plasma ampli ers.

  14. A dosimetry study for a K-fluorescent x-ray system

    E-Print Network [OSTI]

    Beard, Travis Newton

    1975-01-01T23:59:59.000Z

    spectra from a Si(Li) semi-conductor radiation detector. The spectrum for the copper target indicated a considerable amount of scattered radiation from thc target, as compared to that produced by the other targets. Lip thcrmoluminesccnt dosimeters (TLD... of ionizing radiation detectors. The photon response of many detectors varies with the incident photon energy, especially in the 10-100 keV energy region. The proper choice of K-fluorescent X-ray radiators enables one to make very accurate energy...

  15. Water destruction by X-rays in young stellar objects

    E-Print Network [OSTI]

    P. Stauber; J. K. Jorgensen; E. F. van Dishoeck; S. D. Doty; A. O. Benz

    2006-02-06T23:59:59.000Z

    We study the H2O chemistry in star-forming environments under the influence of a central X-ray source and a central far ultraviolet (FUV) radiation field. The gas-phase water chemistry is modeled as a function of time, hydrogen density and X-ray flux. To cover a wide range of physical environments, densities between n_H = 10^4-10^9 cm^-3 and temperatures between T = 10-1000 K are studied. Three different regimes are found: For T water abundance is of order 10^-7-10^-6 and can be somewhat enhanced or reduced due to X-rays, depending on time and density. For 100 K 10^-3 ergs s-1 cm^-2 (t = 10^4 yrs) and for F_X > 10^-4 ergs s^-1 cm^-2 (t = 10^5 yrs). At higher temperatures (T > 250 K) and hydrogen densities, water can persist with x(H2O) ~ 10^-4 even for high X-ray fluxes. The X-ray and FUV models are applied to envelopes around low-mass Class 0 and I young stellar objects (YSOs). Water is destroyed in both Class 0 and I envelopes on relatively short timescales (t ~ 5000 yrs) for realistic X-ray fluxes, although the effect is less prominent in Class 0 envelopes due to the higher X-ray absorbing densities there. FUV photons from the central source are not effective in destroying water. The average water abundance in Class I sources for L_X > 10^27 ergs s^-1 is predicted to be x(H2O) < 10^-6.

  16. Chandra Multiwavelength Project X-ray Point Source Catalog

    E-Print Network [OSTI]

    Minsun Kim; Dong-Woo Kim; Belinda J. Wilkes; Paul J. Green; Eunhyeuk Kim; Craig S. Anderson; Wayne A. Barkhouse; Nancy R. Evans; Zeljko Ivezic; Margarita Karovska; Vinay L. Kashyap; Myung Gyoon Lee; Peter Maksym; Amy E. Mossman; John D. Silverman; Harvey D. Tananbaum

    2006-11-28T23:59:59.000Z

    We present the Chandra Multiwavelength Project (ChaMP) X-ray point source catalog with ~6,800 X-ray sources detected in 149 Chandra observations covering \\~10 deg^2. The full ChaMP catalog sample is seven times larger than the initial published ChaMP catalog. The exposure time of the fields in our sample ranges from 0.9 to 124 ksec, corresponding to a deepest X-ray flux limit of f_{0.5-8.0} = 9 x 10^{-16} erg/cm2/sec. The ChaMP X-ray data have been uniformly reduced and analyzed with ChaMP-specific pipelines, and then carefully validated by visual inspection. The ChaMP catalog includes X-ray photometric data in 8 different energy bands as well as X-ray spectral hardness ratios and colors. To best utilize the ChaMP catalog, we also present the source reliability, detection probability and positional uncertainty. To quantitatively assess those parameters, we performed extensive simulations. In particular, we present a set of empirical equations: the flux limit as a function of effective exposure time, and the positional uncertainty as a function of source counts and off axis angle. The false source detection rate is ~1% of all detected ChaMP sources, while the detection probability is better than ~95% for sources with counts >30 and off axis angle <5 arcmin. The typical positional offset between ChaMP X-ray source and their SDSS optical counterparts is 0.7+-0.4 arcsec, derived from ~900 matched sources.

  17. Tools for a Theoretical X-ray Beamline J. J. Rehr*

    E-Print Network [OSTI]

    Botti, Silvana

    Tools for a Theoretical X-ray Beamline J. J. Rehr* Department of Physics University of Washington, France 22 October 2010 #12;X-ray Spectroscopy Beamline #12;Tools for a Theoretical X-ray Beamline · GOAL Theoretical X-ray Beamline: 2. Tools for EXAFS and XANES, EELS, XMCD, ... 3. DFT/MD-TOOLS 4. Next generation

  18. Fourier analysis of X-ray micro-diffraction profiles to characterize laser shock peened metals

    E-Print Network [OSTI]

    Yao, Y. Lawrence

    .L., 1950. The effect of cold-work distortion on X-ray pat- terns. Journal of Applied Physics 21, 595LSP need to be further studied from the measured X-ray micro-diffraction profile. Broadening of X-rayFourier analysis of X-ray micro-diffraction profiles to characterize laser shock peened metals

  19. Quantification of rapid environmental redox processes with quick-scanning x-ray absorption

    E-Print Network [OSTI]

    Sparks, Donald L.

    Quantification of rapid environmental redox processes with quick-scanning x-ray absorption. Here we apply quick-scanning x-ray absorption spectroscopy (Q-XAS), at sub-second time that can be measured using x-ray absorption spectroscopy. arsenic extended x-ray absorption fine structure

  20. New Insights into the Relationship Between Network Structure and Strain Induced Crystallization in Unvolcanized Natural Rubber by Synchrotron X-ray Diffraction

    SciTech Connect (OSTI)

    Toki, S.; Hsiao, B; Amnuaypornsri, S; Sakdapipanich, J

    2009-01-01T23:59:59.000Z

    The relationship between the network structure and strain-induced crystallization in un-vulcanized as well as vulcanized natural rubbers (NR) and synthetic poly-isoprene rubbers (IR) was investigated via synchrotron wide-angle X-ray diffraction (WAXD) technique. It was found that the presence of a naturally occurring network structure formed by natural components in un-vulcanized NR significantly facilitates strain-induced crystallization and enhances modulus and tensile strength. The stress-strain relation in vulcanized NR is due to the combined effect of chemical and naturally occurring networks. The weakness of naturally occurring network against stress and temperature suggests that vulcanized NR has additional relaxation mechanism due to naturally occurring network. The superior mechanical properties in NR compared with IR are mainly due to the existence of naturally occurring network structure.