Powered by Deep Web Technologies
Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Wide angle x-ray scattering of proteins : effect of beam exposure on protein integrity.  

SciTech Connect

Wide-angle X-ray scattering patterns from proteins in solution contain information relevant to the determination of protein fold. At relevant scattering angles, however, these data are weak, and the degree to which they might be used to categorize the fold of a protein is unknown. Preliminary work has been performed at the BioCAT insertion-device beamline at the Advanced Photon Source which demonstrates that one can collect X-ray scattering data from proteins in solution to spacings of at least 2.2 {angstrom} (q = 2.8 {angstrom}-1). These data are sensitive to protein conformational states, and are in good agreement with the scattering predicted by the program CRYSOL using the known three-dimensional atomic coordinates of the protein. An important issue in the exploitation of this technique as a tool for structural genomics is the extent to which the high intensity of X-rays available at third-generation synchrotron sources chemically or structurally damage proteins. Various data-collection protocols have been investigated demonstrating conditions under which structural degradation of even sensitive proteins can be minimized, making this technique a viable tool for protein fold categorization, the study of protein folding, unfolding, protein-ligand interactions and domain movement.

Fischetti, R. F.; Rodi, D. J.; Mirza, A.; Makowski, L.; Illinois Inst. of Tech.

2003-01-01T23:59:59.000Z

2

Wide angle X-ray scattering study of the layering in three of the Argonne premium coals  

Science Journals Connector (OSTI)

Using wide angle X-ray scattering methods, the phase interference curves and the inter-layer structure curves of thee of the Argonne Premium Coals were measured. These analyses indicate the inter-layer structuring is rank dependent. In the sub-bituminous coal (WyodakAnderson), the number of layers in the average short-range structural domain is ca. 2.3, with the average inter-layer distance being 4.1. For Pittsburgh #8 coal, the average inter-layer distance decreases slightly, to 4.0, while the number of layers in the average short-range structural domain increases to ca. 3. For the more mature Pocahontas #3, a low-volatile bituminous coal, the inter-layer distance decreases to 3.7, and the average short-range structural domain contains 4.55 layers.

D.L. Wertz; J.L. Quin

2000-01-01T23:59:59.000Z

3

Impact of Ferrocene on the Structure of Diesel Exhaust Soot as Probed with Wide-Angle X-ray Scattering and C(1s) NEXAFS Spectroscopy  

SciTech Connect

We report on the structure of a set of diesel exhaust samples that were obtained from reference diesel fuel and diesel fuel mixed with ferrocene. Characterization was carried out with X-ray absorption spectroscopy (C(1s) NEXAFS) and wide-angle X-ray scattering (WAXS). The reference diesel soot shows a pronounced graphite-like microstructure and molecular structure, with a strong (0 0 2) graphite Bragg reflex and a strong aromatic C{double_bond}C resonance at 285 eV. The mineral matter in the reference soot could be identified as Fe{sub 2}O{sub 3} hematite. The soot specimen from the diesel mixed with ferrocene has an entirely different structure and lacks significantly in graphite-like characteristics. NEXAFS spectra of such soot barely show aromatics but pronounced contributions from aliphatic structures. WAXS patterns show almost no intensity at the Bragg (0 0 2) reflection of graphite, but a strong aliphatic {gamma}-side band. The iron from the ferrocene transforms to Fe{sub 2}O{sub 3} maghemite.

Braun,A.; Huggins, F.; Kelly, K.; Mun, B.; Ehrlich, S.; Huffman, G.

2006-01-01T23:59:59.000Z

4

Wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence  

SciTech Connect

The paper describes a new scheme for wide-angle point-to-point x-ray imaging with almost arbitrarily large angles of incidence by a matched pair of spherically bent crystals to eliminate the astigmatism, which is a well-known imaging error of spherical mirrors. In addition to x rays, the scheme should be applicable to a very broad spectrum of the electromagnetic radiation, including microwaves, infrared and visible light, as well as UV and extreme UV radiation, if the crystals are replaced with appropriate spherical reflectors. The scheme may also be applicable to the imaging with ultrasound.

Bitter, M.; Hill, K. W.; Scott, S.; Feder, R. [Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543 (United States); Ko, Jinseok; Ince-Cushman, A.; Rice, J. E. [Plasma Science and Fusion Center, Cambridge, Massachusetts 02139 (United States)

2008-10-15T23:59:59.000Z

5

Beyond simple small-angle X-ray scattering: developments in online complementary techniques and sample environments  

Science Journals Connector (OSTI)

Possibilities in auxiliary technique combinations with small- and wide-angle X ray scattering are described, as well as more complicated sample environments used in X-ray and neutron scattering.

Bras, W.

2014-09-23T23:59:59.000Z

6

HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD simulations  

E-Print Network (OSTI)

HIV-1 Tat membrane interactions probed using X-ray and neutron scattering, CD spectroscopy and MD translocation, were provided by wide-angle X-ray scattering (WAXS) and neutron scattering. CD spectroscopy for Neutron Research, 100 Bureau Drive, Stop 6102, Gaithersburg, MD 20899, United States d CHESS, Cornell

Nagle, John F.

7

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., qmax/qmin approx=lO0.

Hessler, Jan P.

2004-06-15T23:59:59.000Z

8

Nonlinear X-ray Compton Scattering  

E-Print Network (OSTI)

X-ray scattering is a weak linear probe of matter. It is primarily sensitive to the position of electrons and their momentum distribution. Elastic X-ray scattering forms the basis of atomic structural determination while inelastic Compton scattering is often used as a spectroscopic probe of both single-particle excitations and collective modes. X-ray free-electron lasers (XFELs) are unique tools for studying matter on its natural time and length scales due to their bright and coherent ultrashort pulses. However, in the focus of an XFEL the assumption of a weak linear probe breaks down, and nonlinear light-matter interactions can become ubiquitous. The field can be sufficiently high that even non-resonant multiphoton interactions at hard X-rays wavelengths become relevant. Here we report the observation of one of the most fundamental nonlinear X-ray-matter interactions, the simultaneous Compton scattering of two identical photons producing a single photon at nearly twice the photon energy. We measure scattered...

Fuchs, Matthias; Chen, Jian; Ghimire, Shambhu; Shwartz, Sharon; Kozina, Michael; Jiang, Mason; Henighan, Thomas; Bray, Crystal; Ndabashimiye, Georges; Bucksbaum, P H; Feng, Yiping; Herrmann, Sven; Carini, Gabriella; Pines, Jack; Hart, Philip; Kenney, Christopher; Guillet, Serge; Boutet, Sebastien; Williams, Garth; Messerschmidt, Marc; Seibert, Marvin; Moeller, Stefan; Hastings, Jerome B; Reis, David A

2015-01-01T23:59:59.000Z

9

Small Angle X-Ray Scattering Detector  

DOE Patents (OSTI)

A detector for time-resolved small-angle x-ray scattering includes a nearly constant diameter, evacuated linear tube having an end plate detector with a first fluorescent screen and concentric rings of first fiber optic bundles for low angle scattering detection and an annular detector having a second fluorescent screen and second fiber optic bundles concentrically disposed about the tube for higher angle scattering detection. With the scattering source, i.e., the specimen under investigation, located outside of the evacuated tube on the tube's longitudinal axis, scattered x-rays are detected by the fiber optic bundles, to each of which is coupled a respective photodetector, to provide a measurement resolution, i.e., dq/q, where q is the momentum transferred from an incident x-ray to an x-ray scattering specimen, of 2% over two (2) orders of magnitude in reciprocal space, i.e., q.sub.max /q.sub.min.congruent.100.

Hessler, Jan P. (Downers Grove, IL)

2004-06-15T23:59:59.000Z

10

HIGH BRILLIANCE X-RAY SCATTERING FOR  

NLE Websites -- All DOE Office Websites (Extended Search)

BRILLIANCE X-RAY SCATTERING FOR BRILLIANCE X-RAY SCATTERING FOR LIFE SCIENCES (LIX) Group Leader: Lin Yang Proposal Team: O. Bilsel 1 , B. Hsiao 2 , H. Huang 3 , T. Irving 4 , A. Menzel 5 , L. Pollack 6 , C. Riekel 7 , J. Rubert 8 , H. Tsuruta 9 , L. Yang 10 1 University of Massachusetts, 2 Stony Brook University, 3 Rice University, 4 IIT, 5SLS, 6 Cornell University, 7 European Synchrotron Radiation Facility, 8 NEU, 9 Stanford Synchrotron Radiation Lightsource, 10 Brookhaven National Laboratory TECHNIQUES AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Energy range 2-20keV using undulator source. Simultaneous SAXS/WAXS to cover 0.003-3Å -1 at 12keV with 1 micron spot size * Time-resolved solution scattering with resolution of (1) microseconds to milliseconds using continuous-flow mixing (5µm x 10µm spot size) and (2) milliseconds using stopped-

11

13 - X-ray and Neutron Scattering  

Science Journals Connector (OSTI)

Abstract This chapter describes the use of neutrons and X-rays as probes in the study of structural and dynamic properties of metallic materials. Crystalline materials are characterized by their diffraction peaks related to their average crystallographic structure. In real crystals, locally displaced atoms and chemically (or isotopically for neutrons) different species may lead not only to changes of peak shapes and positions, but also to additional (diffuse) scattering between Bragg peak, including scattering around the primary beam (small-angle scattering). All these features can be used to extract information about the state of a sample, its compositional and structural variations on a scale depending on the scattering, in static and time-resolved kinetic studies. Energy-resolved scattering also offers an insight into solid-state dynamics on a microscopic scale. Some of the most important methods will be described and illustrated by instructive examples. The presentation offers a combined view of neutron and X-ray scattering, with the necessary simplifications dictated by space limitations. The special properties of thermal neutrons and of hard X-rays (now widely available at synchrotron radiation sources), their mutual combination, and combinations with other methods, in particular electron microscopy, offer ample opportunity to better understand and control materials properties. After a brief introduction to scattering from real crystals and some general ideas about long-range strains and Bragg peaks, the vicinity of Bragg peaks (displacement scattering at large scattering angles), the scattering far away from Bragg peaks (chemical heterogeneities, short-range order), and, in greater detail, small-angle scattering (which is not sensitive to the extent of crystallinity, but to nanoscale variations of chemical composition and of magnetization, precipitation) will be described, along with classical and more recent applications related to short-range ordering and precipitation in bulk and nanostructured alloys. Some other fields are only briefly addressed (grazing-incidence studies of surfaces, radiography, absorption spectroscopies, coherent X-rays). The final section offers some information on the influence of defects on lattice dynamics and on (slow) diffusive motion in materials.

Gernot Kostorz

2014-01-01T23:59:59.000Z

12

Small Angle X-ray Scattering (SAXS) Laboratory Learning Experiences  

E-Print Network (OSTI)

.A. & Svergun D.I. (1987). Structure Analysis by Small-Angle X-Ray and Neutron Scattering. NY: Plenum PressSmall Angle X-ray Scattering (SAXS) Laboratory Learning Experiences o - Use of small angle X-ray scattering instrumentation o - Programs that you will use SAXS (BRUKER AXS) PRIMUS (Konarev, Volkov, Koch

Meagher, Mary

13

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscop...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Refinement Friday, September 28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray...

14

Neutron and X-ray Scattering Study of Magnetic Manganites  

E-Print Network (OSTI)

Neutron and X-ray Scattering Study of Magnetic Manganites Graeme Eoin Johnstone A Thesis submitted are performed using a variety of neutron scattering and x-ray scattering techniques. The electronic ground for analysing the results of the polarised neutron scattering experiment. There are a large number of people who

Boothroyd, Andrew

15

Introduction to Neutron and X-Ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Studies of Thin Scattering Studies of Thin Polymer Films Introduction to Neutron and X-Ray Scattering Sunil K. Sinha UCSD/LANL Acknowledgements: Prof. R.Pynn( Indiana U.) Prof. M.Tolan (U. Dortmund) Wilhelm Conrad Röntgen 1845-1923 1895: Discovery of X-Rays 1901 W. C. Röntgen in Physics for the discovery of x-rays. 1914 M. von Laue in Physics for x-ray diffraction from crystals. 1915 W. H. Bragg and W. L. Bragg in Physics for crystal structure determination. 1917 C. G. Barkla in Physics for characteristic radiation of elements. 1924 K. M. G. Siegbahn in Physics for x-ray spectroscopy. 1927 A. H. Compton in Physics for scattering of x-rays by electrons. 1936 P. Debye in Chemistry for diffraction of x-rays and electrons in gases.

16

Twelfth National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

Twelfth National School on Neutron and X-ray Scattering June 12 � June 26, 2010 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

Pennycook, Steve

17

National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

National School on Neutron and X-ray Scattering May 30 � June 13, 2009 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

Pennycook, Steve

18

National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

15th National School on Neutron and X-ray Scattering August 10 - 24, 2013 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

19

Fourteenth National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

Fourteenth National School on Neutron and X-ray Scattering August 12 - 25, 2012 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major Ridge National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang

Pennycook, Steve

20

Thirteenth National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

Thirteenth National School on Neutron and X-ray Scattering June 11 ­ June 25, 2011 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Sixteenth National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

Sixteenth National School on Neutron and X-ray Scattering June 14-28, 2014 at Argonne National of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major's Neutron Scattering Science Division. Scientific Directors: Suzanne G.E. te Velthuis, Esen Ercan Alp

Pennycook, Steve

22

Tenth National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

Tenth National School on Neutron and X-ray Scattering September 24 - October 11, 2008 at Argonne of the National School on Neutron and X-ray Scattering is to educate graduate students on the utilization of major National Laboratory's Neutron Scattering Science Division. Scientific Directors: Jonathan C. Lang, Suzanne

Pennycook, Steve

23

Inelastic X-ray and Nuclear Resonant Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

... Search About User Information News & Events Science & Education Beamlines Divisions Argonne Home > Advanced Photon Source > Inelastic X-ray and Nuclear Resonant Scattering...

24

X-ray Diffuse Scattering Measurements of Nucleation Dynamics...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Diffuse Scattering Measurements of Nucleation Dynamics at Femtosecond Resolution Real-time measurement and control of the non-equilibrium properties of materials represents...

25

Incoherent x-ray scattering in single molecule imaging  

E-Print Network (OSTI)

Imaging of the structure of single proteins or other biomolecules with atomic resolution would be enormously beneficial to structural biology. X-ray free-electron lasers generate highly intense and ultrashort x-ray pulses, providing a route towards imaging of single molecules with atomic resolution. The information on molecular structure is encoded in the coherent x-ray scattering signal. In contrast to crystallography there are no Bragg reflections in single molecule imaging, which means the coherent scattering is not enhanced. Consequently, a background signal from incoherent scattering deteriorates the quality of the coherent scattering signal. This background signal cannot be easily eliminated because the spectrum of incoherently scattered photons cannot be resolved by usual scattering detectors. We present an ab initio study of incoherent x-ray scattering from individual carbon atoms, including the electronic radiation damage caused by a highly intense x-ray pulse. We find that the coherent scattering pa...

Slowik, Jan Malte; Dixit, Gopal; Jurek, Zoltan; Santra, Robin

2014-01-01T23:59:59.000Z

26

Photon Sciences | Beamlines | IXS: Inelastic X-ray Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

IXS: Inelastic X-ray Scattering IXS: Inelastic X-ray Scattering Poster | Fact Sheet | Preliminary Design Report Scientific Scope Many hot topics related to the high frequency dynamics of condensed matter require both a narrower and steeper resolution function and access to a broader dynamic range than what are currently available. This represents a sort of "no man's land" that falls right in the dynamic gap lying between the high frequency spectroscopies, such as inelastic x-ray scattering (IXS), and the low frequency ones. New IXS spectrometers with improved energy and momentum resolutions would be required to fill this gap. To achieve this goal, a new x-ray optics concept for both the monochromatization and energy analysis of x-rays will be implemented at the NSLS-II Inelastic X-ray Scattering beamline. This solution exploits the

27

Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Probing Spatial, Electronic Structures with X-ray Scattering, Spectroscopic Techniques Wednesday, September 5, 2012 - 10:45am SLAC, Bldg. 137, Room 226 Gang Chen Seminar: Structures at atomic scales are traditionally determined through X-ray crystallography that amplifies scattering intensities by introducing spatial periodicity. For amorphous materials and many macromolecules, such as viruses, proteins and biofilms, it is hard to determine structures due to their incapability to crystallize or change of configuration during crystallization. In this talk, I will present the application of X-ray reflectivity and a newly developed fluctuation X-ray scattering technique to study the structures of lipid membranes and randomly oriented nanoparticles. Three different types of domain registrations occurring with

28

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Resonant Soft X-Ray Scattering - Combining Structural with Spectroscopic Refinement Friday, September 28, 2012 - 10:00am SLAC, Bldg. 137, Room 322 SSRL Presents Kevin Stone X-ray absorption spectroscopy has become an important tool in understanding the electronic structure of materials. Resonant absorption edges in the soft x-ray regime are especially interesting as they allow the study of the lighter elements, such as in organic or organo-metallic substances, as well as important L-edges of the 3d transition metals important in magnetic and oxide systems. Measurements of soft x-ray absorption spectra are inherently surface sensitive, and are plagued by issues such as extinction (in electron yield measurements) or self absorption (in fluorescence yield

29

E-Print Network 3.0 - angle x-ray scattering Sample Search Results  

NLE Websites -- All DOE Office Websites (Extended Search)

2008Standard Operating Procedure Title: Small Angle X-ray Scattering... approved: December 26 2009 Small Angle X-ray Scattering, Rotating Anode PURPOSE: This Standard...

30

New Directions in X-ray Scattering - SSRL  

NLE Websites -- All DOE Office Websites (Extended Search)

6, 2006 A summary of the workshop on New Directions in X-ray Scattering On Dec 6th, we held a day long workshop to solicit user input on the new directions that the SSRL...

31

Magnetism studies using resonant, coherent, x-ray scattering...  

NLE Websites -- All DOE Office Websites (Extended Search)

Magnetism studies using resonant, coherent, x-ray scattering Monday, September 10, 2012 - 10:00am SLAC, Bldg. 137, Room 226 Keoki Seu Seminar: With the advent of free electron...

32

Generation of first hard X-ray pulse at Tsinghua Thomson Scattering X-ray Source  

SciTech Connect

Tsinghua Thomson Scattering X-ray Source (TTX) is the first-of-its-kind dedicated hard X-ray source in China based on the Thomson scattering between a terawatt ultrashort laser and relativistic electron beams. In this paper, we report the experimental generation and characterization of the first hard X-ray pulses (51.7 keV) via head-on collision of an 800 nm laser and 46.7 MeV electron beams. The measured yield is 1.0 Multiplication-Sign 10{sup 6} per pulse with an electron bunch charge of 200 pC and laser pulse energy of 300 mJ. The angular intensity distribution and energy spectra of the X-ray pulse are measured with an electron-multiplying charge-coupled device using a CsI scintillator and silicon attenuators. These measurements agree well with theoretical and simulation predictions. An imaging test using the X-ray pulse at the TTX is also presented.

Du Yingchao; Yan Lixin; Hua Jianfei; Du Qiang; Zhang Zhen; Li Renkai; Qian Houjun; Huang Wenhui; Chen Huaibi; Tang Chuanxiang [Accelerator Laboratory, Department of Engineering Physics, Tsinghua University, Beijing 100084 (China); Key Laboratory of Particle and Radiation Imaging, Tsinghua University, Ministry of Education, Beijing 100084 (China); Key Laboratory of High Energy Radiation Imaging Fundamental Science for National Defense, Tsinghua University, Beijing 100084 (China)

2013-05-15T23:59:59.000Z

33

X-ray Raman scattering study of aligned polyfluorene  

E-Print Network (OSTI)

We present a non-resonant inelastic x-ray scattering study at the carbon K-edge on aligned poly[9,9-bis(2-ethylhexyl)-fluorene-2,7-diyl] and show that the x-ray Raman scattering technique can be used as a practical alternative to x-ray absorption measurements. We demonstrate that this novel method can be applied to studies on aligned $\\pi$-conjugated polymers complementing diffraction and optical studies. Combining the experimental data and a very recently proposed theoretical scheme we demonstrate a unique property of x-ray Raman scattering by performing the symmetry decomposition on the density of unoccupied electronic states into $s$- and $p$-type symmetry contributions.

S. Galambosi; M. Knaapila; J. A. Soininen; K. Nyg\\aard; S. Huotari; F. Galbrecht; U. Scherf; A. P. Monkman; K. Hmlinen

2006-08-29T23:59:59.000Z

34

High performance x-ray anti-scatter grid  

DOE Patents (OSTI)

Disclosed are an x-ray anti-scatter grid for x-ray imaging, particularly for screening mammography, and method for fabricating same, x-rays incident along a direct path pass through a grid composed of a plurality of parallel or crossed openings, microchannels, grooves, or slots etched in a substrate, such as silicon, having the walls of the microchannels or slots coated with a high opacity material, such as gold, while x-rays incident at angels with respect to the slots of the grid, arising from scatter, are blocked. The thickness of the substrate is dependent on the specific application of the grid, whereby a substrate of the grid for mammography would be thinner than one for chest radiology. Instead of coating the walls of the slots, such could be filed with an appropriate liquid, such as mercury. 4 Figs.

Logan, C.M.

1995-05-23T23:59:59.000Z

35

Dense Plasma X-ray Scattering: Methods and Applications  

SciTech Connect

We have developed accurate x-ray scattering techniques to measure the physical properties of dense plasmas. Temperature and density are inferred from inelastic x-ray scattering data whose interpretation is model-independent for low to moderately coupled systems. Specifically, the spectral shape of the non-collective Compton scattering spectrum directly reflects the electron velocity distribution. In partially Fermi degenerate systems that have been investigated experimentally in laser shock-compressed beryllium, the Compton scattering spectrum provides the Fermi energy and hence the electron density. We show that forward scattering spectra that observe collective plasmon oscillations yield densities in agreement with Compton scattering. In addition, electron temperatures inferred from the dispersion of the plasmon feature are consistent with the ion temperature sensitive elastic scattering feature. Hence, theoretical models of the static ion-ion structure factor and consequently the equation of state of dense matter can be directly tested.

Glenzer, S H; Lee, H J; Davis, P; Doppner, T; Falcone, R W; Fortmann, C; Hammel, B A; Kritcher, A L; Landen, O L; Lee, R W; Munro, D H; Redmer, R; Weber, S

2009-08-19T23:59:59.000Z

36

X-ray Crystallographic Center (XCC) User Registration Form Peter Y. Zavalij X-ray Crystallographi Center 091 Chemistry Bldg. / College Park, MD 20742  

E-Print Network (OSTI)

X-ray Crystallographic Center (XCC) User Registration Form Peter Y. Zavalij X-ray Crystallographi. or advisor confirmation e-mail X-ray Diffractometer that will be used: User Level and Status Smart Apex2X'Pert Pro MRD (Reflectivity & low angles) Xeuss (Small/Wide Angle X-ray Scattering) Submitting user ­ only

Thirumalai, Devarajan

37

Neutron and X-Ray Scattering - Argonne National Laboratories, Materials  

NLE Websites -- All DOE Office Websites (Extended Search)

Home Home Neutron and X-Ray Scattering Neutron and X-ray Scattering Science Recent advances in neutron and x-ray scattering instrumentation at major DOE facilities such as the Spallation Neutron Source and Advanced Photon Source provide unprecedented insights into complex phenomena in bulk and interfacial materials. The vision of our group is to harness the complementarity of neutrons and x-rays to study how materials respond on a range of length and time scales to phase competition, so that we can learn to control emergent behavior and generate functional properties in energy-related materials. We use neutrons and x-rays to investigate the structure and dynamics of bulk and interfacial materials with properties that are useful for energy applications, such as superconductivity, magnetism and thermoelectricity. Phase competition can generate or enhance such properties, but it is extremely challenging to characterize fluctuations in the competing order, whether in bulk disordered materials, or artificial heterostructures. Our goal is to utilize efficient techniques that we have been developing for measuring nanoscale phase fluctuations, both static and dynamic, to enable the rational design of new materials for energy within MSD.

38

X-ray and neutron scattering from nano-mgantic clusters | The...  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray and neutron scattering from nano-mgantic clusters The student will participate in hands on X-ray scattering experiments on bio-inspired inorganic materials (i.e., magnetic...

39

High Resolution X-Ray Scattering at Sector 3, Advanced Photon...  

NLE Websites -- All DOE Office Websites (Extended Search)

Sector 3 Beamlines Staff Publications Conferences IXN group Sector 3 : High Resolution X-ray Scattering Sector 3 is operated by the Inelastic X-ray Nuclear Resonant Scattering...

40

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers...

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Diffuse scattering of hard x rays from rough surfaces  

Science Journals Connector (OSTI)

The diffuse scattering of hard x rays from rough solid surfaces has been measured and described quantitatively in terms of an improved distorted-wave Born approximation. The rough surface is characterized by the rms roughness ?, the height-height correlation length ?, and the roughness exponent h. The value for ? is in excellent agreement with that deduced from reflectivity. The significance of the parameters ?, ?, and h is tested by comparison with the results obtained from scanning force mircoscopy.

Wolfgang Weber and Bruno Lengeler

1992-09-15T23:59:59.000Z

42

National School on Neutron and X-ray Scattering August 10-24, 2013  

E-Print Network (OSTI)

National School on Neutron and X-ray Scattering August 10-24, 2013 Argonne National Laboratory National Laboratory 3:15 ­ 3:30 Break #12;National School on Neutron and X-ray Scattering August 10 Dinner Week 1 wrap-up Picnic #12;National School on Neutron and X-ray Scattering August 10-24, 2012 Oak

Kemner, Ken

43

CHEMICAL APPLICATIONS OF INELASTIC X-RAY SCATTERING  

SciTech Connect

Inelastic x-ray scattering (IXS), complementary to other more established inelastic scattering probes, such as light scattering, electron scattering, and neutron scattering, is becoming an important experimental technique in the study of elementary excitations in condensed matters. Over the past decade, IXS with total energy resolution of few meV has been achieved, and is being used routinely in the study of phonon dispersions in solids and liquids as well as dynamics in disordered and biological systems. In the study of electronic excitations, IXS with total energy resolution on the order of 100 meV to 1 eV is gaining wider applications also. For example, IXS has been used to study collective excitations of valence electrons, single electron excitations of valence electrons, as well as core electron excitations. In comparison with the alternative scattering techniques mentioned above, IXS has several advantages. First, IXS probes the full momentum transfer range of the dielectric response of the sample, whereas light scattering is limited to very small momentum transfers, and electron scattering suffers the effects of multiple scattering at large momentum transfers. Second, since IXS measures the bulk properties of the sample it is not surface sensitive, therefore it does not require special preparation of the sample. The greater flexibility in sample conditions and environments makes IXS an ideal probe in the study of liquids and samples under extreme temperature, pressure, and magnetic field. Third, the tunability of synchrotron radiation sources enables IXS to exploit element specificity and resonant enhancement of scattering cross sections. Fourth, IXS is unique in the study of dynamics of liquids and amorphous solids because it can probe the particular region of energy-momentum transfer phase space, which is inaccessible to inelastic neutron scattering. On the other hand, the main disadvantages of IXS are the small cross sections and the strong absorption of x-rays in high Z elements.

HAYASHI,H.; UDAGAWA,Y.; GILLET,J.M.; CALIEBE,W.A.; KAO,C.C.

2001-08-01T23:59:59.000Z

44

Small-angle neutron scattering and neutron reflectometry  

Science Journals Connector (OSTI)

Diffraction methods, interpreted loosely, could be applied to the techniques of wide-angle X-ray scattering, small-angle X-ray scattering, electron diffraction, small-angle neutron scattering, small-angle light s...

R. W. Richards

1993-01-01T23:59:59.000Z

45

National School on Neutron and X-ray Scattering June 14-28, 2014  

E-Print Network (OSTI)

National School on Neutron and X-ray Scattering June 14-28, 2014 Argonne National Laboratory:00 Dinner Dinner Dinner Dinner Week 1 wrap-up Picnic #12;National School on Neutron and X-ray Scattering Restaurant 9:45 - 10:45 Lecture Interaction of X-rays and Neutrons with Matter Roger Pynn University

Kemner, Ken

46

Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems  

E-Print Network (OSTI)

Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems Russell A. Ewings 2008 #12;Abstract Neutron and X-ray Scattering Studies of Strongly Correlated Electron Systems Russell-ray scattering and neutron scattering experiments on several strongly correlated transition metal oxides

Boothroyd, Andrew

47

Air-core grid for scattered x-ray rejection  

DOE Patents (OSTI)

The invention is directed to a grid used in x-ray imaging applications to block scattered radiation while allowing the desired imaging radiation to pass through, and to process for making the grid. The grid is composed of glass containing lead oxide, and eliminates the spacer material used in prior known grids, and is therefore, an air-core grid. The glass is arranged in a pattern so that a large fraction of the area is open allowing the imaging radiation to pass through. A small pore size is used and the grid has a thickness chosen to provide high scatter rejection. For example, the grid may be produced with a 200 {micro}m pore size, 80% open area, and 4 mm thickness. 2 figs.

Logan, C.M.; Lane, S.M.

1995-10-03T23:59:59.000Z

48

Micellar structure from comparison of X-ray and neutron small-angle scattering  

E-Print Network (OSTI)

249 Micellar structure from comparison of X-ray and neutron small-angle scattering T. Zemb and P according to the method developed by Hayter and Penfold. Both X-ray and neutron scattering signals, or by a combination of both. It has been shown recent- ly [1, 2] that it is possible in neutron scattering studies

Boyer, Edmond

49

Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering Data  

E-Print Network (OSTI)

Lipid Bilayer Structure Determined by the Simultaneous Analysis of Neutron and X-Ray Scattering) and dipalmitoylphosphatidylcholine (DPPC) bilayers by simultaneously analyzing x-ray and neutron scattering data. The neutron data electron and neutron scattering density profiles. A key result of the analysis is the molecular surface

Nagle, John F.

50

Resonant soft x-ray scattering: elemental/chemical specific probe...  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant soft x-ray scattering: elementalchemical specific probe of reciprocal space and ordered structure Wednesday, October 15, 2014 - 3:00pm SLAC, Redtail Hawk Conference Room...

51

X-ray and neutron scattering studies on some nanoscale structures in molecular biology.  

E-Print Network (OSTI)

??Scattering of X-rays and neutrons has been applied to the study of nanostructures with interesting biological functions. The systems studied were the protein calmodulin and (more)

Ikonen, Teemu

2007-01-01T23:59:59.000Z

52

Determination of interfacial roughness using X-ray scattering  

SciTech Connect

Crystal truncation rod (CTR) scattering is shown to be a powerful technique for determining interfacial roughness non-destructively. By measuring the decay of scattering away from a Bragg reflection in the surface direction an rms roughness of the surface or interface can be extracted. The authors obtain rms roughness values with an accuracy of {+-} 0.1 {angstrom}. Sensitivity to lateral length scale roughness ranges from the wavelength of the x-rays to between 1,000--10,000 {angstrom} depending on the instrument function and the specific truncation rod. The influence of different cleans, as well as the thermal oxidation process, on the Si-SiO{sub 2} interface is investigated. A hot water treatment prior to the thermal oxidation is shown to roughen the Si-SiO{sub 2} interface. CTR scattering results also show a smoothing of the interface as a result of the oxidation process even for as little as 60 {angstrom} of thermal oxidation. Comparison between AFM and CTR scattering gives a consistent picture of the relative roughness of the wafers, although the absolute numbers do not agree. The differences in the absolute values can be explained by the lateral roughness scale that the two techniques measure, indicating that it is at periodicities below {approx} 100 {angstrom} that the increased roughness observed by the x-ray is found. Crystal truncation rods are shown to be perpendicular to the surface and not along the crystallographic axes of a miscut crystal. It is shown that for a crystal terminated by a regular step array both an atomistic and a continuum description of CTR scattering give identical results. Furthermore, the atomistic approach is used to show that a diamond cubic surface with a miscut is inherently rough. Even for a small miscut the tilt of the CTR with respect to the crystallographic axes results in complications for measuring the rod intensity. The authors present schemes for determining the exact position of the CTR in reciprocal space and for measuring the miscut of a single crystal. These methods were applied to the measurement of CTR intensities of silicon(001) wafers with miscuts of 0.1 and 4 degrees.

Munkholm, A.

1997-05-01T23:59:59.000Z

53

Materials Small-angle X-ray Scattering (SAXS) | Stanford Synchrotron  

NLE Websites -- All DOE Office Websites (Extended Search)

Materials Small-angle X-ray Scattering (SAXS) Materials Small-angle X-ray Scattering (SAXS) Small Angle X-ray Scattering for Materials Science Small-angle X-ray scattering (SAXS) is a well-established characterization method for microstructure investigations in various materials. It probes electron density differences to give information about structural inhomogeneities from the near atomic scale (1 nm) to the micron scale (1 000 nm). The method involves measuring the scattered X-ray intensity as a function of (typically small) scattering angles and is generally performed in transmission. SAXS is used to characterize the size scale of inhomogeneities (e.g. pores, inclusions, second phase regions) in polymer blends, micro-emulsions, geological materials, bones, cements and ceramics. Instrumentation

54

The Role of Surface X-ray Scattering in Electrocatalysis  

NLE Websites -- All DOE Office Websites (Extended Search)

3 3 N. M. Markovi , LBNL and C. A. Lucas, University of Liverpool Ecological and political realities have moved discussions of, and advances in, fuel cell technology into mainstream public awareness. Electrocatalysis, the science of modifying the overall rates of electrochemical reactions so that selectivity, yield and efficiency are maximized, is the work from which those advances spring. Studies in electrocatalysis have resulted in highly selective multicomponent gas mixture sensors, human blood component sensors, new electrocatalysts for oxidation/reduction of inorganic and organic pollutants in air and water, as well as better electrocatalysts for the fuel cell conversion of renewable and fossil fuels to electrical work. Studies of the mechanisms by which these catalysts operate have been advanced through development of in-situ surface x-ray scattering (SXS) techniques. SXS capabilities at SSRL were recently used to investigate the interface structure of an ultrathin COad (adsorbed carbon monoxide) overlayer on platinum. This work has elevated the macroscopic description of the COad state at the solid-liquid interface to a microscopic level and enabled the relation between the reactivity and the interfacial structure of COad/Pt to be understood.

55

Doppler effects in resonant x-ray Raman scattering  

Science Journals Connector (OSTI)

Theory for Doppler effects in resonant x-ray Raman scattering (RXS) is presented. It is shown that the electron Doppler effect is important in nonradiative RXS for decay transitions between continuum nuclear states lying above the dissociation threshold, and that the averaging of the RXS cross section over molecular orientations can lead to strong non-Lorentzian broadenings of the atomiclike resonances. The Doppler effect is found to give a unique possibility to distinguish dissociating identical atoms, because different peaks correspond to atoms with opposite Doppler shifts. Spectral features of the atomiclike profile are predicted and analyzed. Strong oscillations of the RXS cross section will occur as a consequence of the interference of the Auger electrons. Due to the Doppler effect and the interference, the atomiclike profile can be associated with supernarrow spectral features, the width of which goes below the lifetime broadening and is practically independent of the spectral distribution of the incident radiation. As another consequence of the oscillations and strong anisotropy caused by the interference, we predict parity selection rules for Auger decay transitions in both bound and dissociative systems. The corresponding experiments can be realized by measurements of resonant Auger of surface adsorbed molecules and for molecules by the electron-ion coincidence technique.

Faris Gelmukhanov; Hans gren; Pawe? Sa?ek

1998-04-01T23:59:59.000Z

56

Accepted Manuscript Using Small Angle Solution Scattering Data in Xplor-NIH Structure Calcula-  

E-Print Network (OSTI)

and wide angle X-ray and small angle neutron scattering for biomolecular structure calculation using and wide angle X-ray scattering (SAXS/WAXS) and small angle neutron scattering (SANS) data, on the otherAccepted Manuscript Using Small Angle Solution Scattering Data in Xplor-NIH Structure Calcula

Clore, G. Marius

57

Acquisition of an In-House X-ray Scattering Facility for Nanostructure Characterization and Student Training  

SciTech Connect

This equipment grant was specifically dedicated to the development of a "state of the art" x-ray scattering facility...

Schuller, Ivan K [UC San Diego

2013-08-02T23:59:59.000Z

58

Photon Sciences | Beamlines | CSX: Coherent Soft X-ray Scattering and  

NLE Websites -- All DOE Office Websites (Extended Search)

CSX: Coherent Soft X-ray Scattering and polarization CSX: Coherent Soft X-ray Scattering and polarization X-Ray 1 Poster | X-Ray 2 Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Coherent Soft X-ray Scattering and Polarization (CSX) beamline design (source and optics) has been optimized to the NSLS-II parameters to provide the highest possible flux for experiments requiring either high coherence or full control of the polarization. Beamline Description The CSX beamline will be served by two identical EPU49 sources. Both EPUs are planned to operate in a canted geometry with opposite circular polarization for fast polarization switching experiments at the full polarization control (PC) branch. The EPUs will also be able to operate "phased" as a single device for high coherent flux experiments at the

59

16th National School on Neutron and X-ray Scattering  

ScienceCinema (OSTI)

Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

2014-07-23T23:59:59.000Z

60

16th National School on Neutron and X-ray Scattering  

SciTech Connect

Students talk about their experience at the 16th National School on Neutron and X-ray Scattering, or NXS 2014. Jointly conducted by Oak Ridge and Argonne national laboratories, NXS immerses graduate students in national user facilities to learn in a hands-on environment how to use neutrons and X-rays in their research.

Chakoumakos, Bryan; Achilles, Cherie; Cybulskis, Viktor; Gilbert, Ian

2014-07-02T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Search for Photon-Photon Elastic Scattering in the X-ray Region  

E-Print Network (OSTI)

We report the first results of a search for real photon-photon scattering using X rays. A novel system is developed to split and collide X-ray pulses by applying interferometric techniques. A total of $6.5\\times10^{5}$ pulses (each containing about $10^{11}$ photons) from an X-ray Free-Electron Laser are injected into the system. No scattered events are observed, and an upper limit of $1.7\\times 10^{-24}$ ${\\rm m^{2}}$ (95% C.L.) is obtained on the photon-photon elastic scattering cross section at 6.5 keV.

T. Inada; T. Yamaji; S. Adachi; T. Namba; S. Asai; T. Kobayashi; K. Tamasaku; Y. Tanaka; Y. Inubushi; K. Sawada; M. Yabashi; T. Ishikawa

2014-04-18T23:59:59.000Z

62

Small angle neutron scattering and small angle X-ray scattering studies of platinum-loaded carbon foams  

Science Journals Connector (OSTI)

The morphology of carbon nanofoam samples comprising platinum nanoparticles dispersed in the matrix was characterized by small angle neutron scattering (SANS) and small angle X-ray scattering (SAXS) techniques. R...

P. U. Sastry; V. K. Aswal; A. G. Wagh

2008-11-01T23:59:59.000Z

63

X Ray Scattering | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

X Ray Scattering X Ray Scattering Materials Sciences and Engineering (MSE) Division MSE Home About Research Areas Energy Frontier Research Centers (EFRCs) DOE Energy Innovation Hubs BES Funding Opportunities The Computational Materials and Chemical Sciences Network (CMCSN) Theoretical Condensed Matter Physics Scientific Highlights Reports and Activities Principal Investigators' Meetings BES Home Research Areas X Ray Scattering Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports basic research on the fundamental interactions of photons with matter to achieve an understanding of atomic, electronic, and magnetic structures and excitations and their relationships to materials properties. The main emphasis is on x-ray scattering, spectroscopy, and imaging research, primarily at major BES-supported user facilities.

64

The Step Roughening of the Cu(113) Surface: A Grazing Incidence X-Ray Scattering Study  

Science Journals Connector (OSTI)

In conjunction with the development of high brilliance synchrotron sources, the grazing incidence x-ray scattering (GIXS) technique is emerging as an important structural probe for surface and interface studies [...

K. S. Liang; E. B. Sirota; K. L. DAmico; G. J. Hughes

1988-01-01T23:59:59.000Z

65

National School on Neutron and X-Ray Scattering Held at APS&IPNS  

NLE Websites -- All DOE Office Websites (Extended Search)

August 14th, 2000 National School on Neutron and X-Ray Scattering Held at APS & IPNS During the two-week period of August 14-26, 2000 Argonne National Laboratory once again hosted...

66

Safety & Security Guidelines Annual U.S. National School on Neutron and X-ray Scattering  

E-Print Network (OSTI)

Safety & Security Guidelines 15th Annual U.S. National School on Neutron and X-ray Scattering-574-4600. Neutron Sciences User Programs and Outreach Office Oak Ridge National Laboratory #12;

67

National School on Neutron and X-ray Scattering | Argonne National...  

NLE Websites -- All DOE Office Websites (Extended Search)

Questions Program Details NX School Partners Contact education@anl.gov National School on Neutron & X-ray Scattering June 14-28, 2014 About the School The main purpose of the...

68

Analysis of Intrinsically Disordered Proteins by Small-Angle X-ray Scattering  

Science Journals Connector (OSTI)

Small-angle scattering of X-rays (SAXS) is a method for the low-resolution structural characterization of biological macromolecules in solution. The technique is highly complementary to the high-resolution method...

Pau Bernad; Dmitri I. Svergun

2012-01-01T23:59:59.000Z

69

Inelastic X-Ray Scattering at Sector 30, Advanced Photon Source  

NLE Websites -- All DOE Office Websites (Extended Search)

synchrotron radiation produced at the APS to study a wide variety of complex materials with inelastic x-ray scattering. Please feel free to explore our site and learn more...

70

Observation of correlated X-ray scattering at atomic resolution  

Science Journals Connector (OSTI)

...order, such as proteins in solution...to study such disordered matter. The...X-rays from an ensemble of identical...signal from an ensemble in three dimensions...experiments on disordered ensembles-such as proteins in solution-may...

2014-01-01T23:59:59.000Z

71

Structured x-ray beams from twisted electrons by inverse Compton scattering of laser light  

E-Print Network (OSTI)

The inverse Compton scattering of laser light on high-energetic twisted electrons is investigated with the aim to construct spatially structured x-ray beams. In particular, we analyze how the properties of the twisted electrons, such as the topological charge and aperture angle of the electron Bessel beam, affects the energy and angular distribution of scattered x-rays. We show that with suitably chosen initial twisted electron states one can synthesize tailor-made x-ray beam profiles with a well-defined spatial structure, in a way not possible with ordinary plane-wave electron beams.

Seipt, D; Fritzsche, S

2014-01-01T23:59:59.000Z

72

X-ray resonant magnetic scattering from structurally and magnetically rough interfaces in multilayered systems. I. Specular reflectivity  

E-Print Network (OSTI)

X-ray resonant magnetic scattering from structurally and magnetically rough interfaces formulation of x-ray resonant magnetic scattering from rough surfaces and interfaces is given for specular/Fe multilayer. DOI: 10.1103/PhysRevB.68.224409 PACS number s : 75.70.Cn, 61.10.Kw I. INTRODUCTION X-ray

Haskel, Daniel

73

International Conference on Surface X-ray and Neutron Scattering (SXNS-11)  

SciTech Connect

The 11th International Surface X-ray and Neutron Scattering (SXNS) Conference was held on July 13-17, 2010, on the Northwestern University (NU) campus, in Evanston Illinois and hosted by the NU Materials Research Science and Engineering Center. This biennial conference brought together a community of 164 attendees from 16 countries. The field now makes use of a broad range of new experimental capabilities that have been made possible through the development of increasingly brilliant X-ray and neutron sources around the world, including third generation synchrotron sources, neutron reactor and spallation sources, as well as the recent development of X-ray lasers.

Michael J. Bedzyk

2011-06-17T23:59:59.000Z

74

Measurements of Ionic Structure in Shock Compressed Lithium Hydride from Ultrafast X-Ray Thomson Scattering  

SciTech Connect

We present the first ultrafast temporally, spectrally, and angularly resolved x-ray scattering measurements from shock-compressed matter. The experimental spectra yield the absolute elastic and inelastic scattering intensities from the measured density of free electrons. Laser-compressed lithium-hydride samples are well characterized by inelastic Compton and plasmon scattering of a K-alpha x-ray probe providing independent measurements of temperature and density. The data show excellent agreement with the total intensity and structure when using the two-species form factor and accounting for the screening of ion-ion interactions.

Kritcher, A. L. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Neumayer, P.; Doeppner, T.; Landen, O. L.; Glenzer, S. H. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Brown, C. R. D. [Department of Physics, Imperial College, London SW7 2AZ (United Kingdom); AWE plc., Aldermaston, Reading, RG7 4PR (United Kingdom); Davis, P. [L-399, Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States); Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Falcone, R. W.; Lee, H. J. [Department of Physics, University of California Berkeley, Berkeley, California 94709 (United States); Gericke, D. O.; Vorberger, J.; Wuensch, K. [CFSA, Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Gregori, G. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Holst, B.; Redmer, R. [Universitaet Rostock, Institut fuer Physik, D-18051 Rostock (Germany); Morse, E. C. [Department of Nuclear Engineering, University of California Berkeley, Berkeley, California 94709 (United States); Pelka, A.; Roth, M. [Institut fuer Kernphysik, Technische Universitaet Darmstadt, Darmstadt (Germany)

2009-12-11T23:59:59.000Z

75

Demonstration of Successful X-ray Thomson Scattering Using Picosecond K-(alpha) X-ray Sources for the Characterization of Dense Heated Matter  

SciTech Connect

We discuss the first successful K-{alpha} x-ray Thomson scattering experiment from solid density plasmas for use as a diagnostic in determining the temperature, density, and ionization state of warm dense matter with picosecond resolution. The development of this source as a diagnostic and stringent requirements for successful K-{alpha} x-ray Thomson scattering are addressed. Data for the experimental techniques described in this paper [1] suggest the capability of single shot characterization of warm dense matter and the ability to use this scattering source at future Free Electron Lasers (FEL) where comparable scattering signal levels are predicted.

Kritcher, A; Neumayer, P; Lee, H J; Doeppner, T; Falcone, R; Glenzer, S; Morse, E C

2008-05-05T23:59:59.000Z

76

THE HARD X-RAY SPECTRUM OF NGC 1365: SCATTERED LIGHT, NOT BLACK HOLE SPIN  

SciTech Connect

Active galactic nuclei (AGNs) show excess X-ray emission above 10 keV compared with extrapolation of spectra from lower energies. Risaliti et al. have recently attempted to model the hard X-ray excess in the type 1.8 AGN NGC 1365, concluding that the hard excess most likely arises from Compton-scattered reflection of X-rays from an inner accretion disk close to the black hole. Their analysis disfavored a model in which the hard excess arises from a high column density of circumnuclear gas partially covering a primary X-ray source, despite such components being required in the NGC 1365 data below 10 keV. Using a Monte Carlo radiative transfer approach, we demonstrate that this conclusion is invalidated by (1) use of slab absorption models, which have unrealistic transmission spectra for partial covering gas, (2) neglect of the effect of Compton scattering on transmitted spectra, and (3) inadequate modeling of the spectrum of scattered X-rays. The scattered spectrum is geometry-dependent and, for high global covering factors, may dominate above 10 keV. We further show that, in models of circumnuclear gas, the suppression of the observed hard X-ray flux by reprocessing may be no larger than required by the ''light bending'' model invoked for inner disk reflection, and the expected emission line strengths lie within the observed range. We conclude that the time-invariant ''red wing'' in AGN X-ray spectra is probably caused by continuum transmitted through and scattered from circumnuclear gas, not by highly redshifted line emission, and that measurement of black hole spin is not possible.

Miller, L. [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Turner, T. J. [Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250 (United States)

2013-08-10T23:59:59.000Z

77

X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic Electrons in a Helium Plasma  

E-Print Network (OSTI)

X-Ray Radiation from Nonlinear Thomson Scattering of an Intense Femtosecond Laser on Relativistic laser beam on plasma electrons. A collimated x-ray radiation with a broad continuous spectrum peaked by the ultraintense laser fields. The results show the existence of several physical mecha- nisms for the x-ray

Umstadter, Donald

78

SSRL School 2007 on Hard X-ray Scattering Techniques in MES  

NLE Websites -- All DOE Office Websites (Extended Search)

May 15-17, 2007 SSRL School on Hard X-ray Scattering Techniques in Materials and Environmental Sciences Group photo taken at the SSRL School on Hard X-ray Scattering Techniques in Materials and Environmental Sciences. A large, printable version of this group image is available via clicking on the image. Overview: Modern synchrotron-based X-ray scattering (SR-XRS) techniques offer the ability to probe nano- and atomic-scale structures and order/disorder relationships that critically govern the properties of advanced technological and environmental materials. The high collimation, intensity, and tunability of SR allow the investigation of a wide range of materials, including thin films and interfaces, nanoparticles, amorphous materials, solutions, hydrated and disordered bacteriogenic minerals,

79

SOFT INELASTIC X-RAY SCATTERING (SIX) Group Leader: Ignace Jarrige  

NLE Websites -- All DOE Office Websites (Extended Search)

INELASTIC X-RAY SCATTERING (SIX) INELASTIC X-RAY SCATTERING (SIX) Group Leader: Ignace Jarrige 1 Proposal Team: D. Arena 1 , A. Baron 2 , Y. Cai 1 , Y.-D. Chuang 3 , F. de Groot 4 , J. Guo 3 , J.P. Hill 1 , S. Hulbert 1 , C. McGuinness 5 , R. Reininger 9 , J.E. Rubenson 6 , C. Sanchez-Hanke 1 , T. Schmitt 7 , K. Smith 8 1 Brookhaven National Laboratory, 2 SPring-8, 3 Lawrence Berkeley Laboratory, 4 Utrecht University, 5 Trinity College Dublin, 6 Uppsala University, 7 Paul Scherrer Institute, 8 Boston University, 9 Argonne National Laboratory TECHNIQUE AND CAPABILITIES APPLICATIONS ADDITIONAL INFORMATION * Resonant inelastic x-ray scattering (RIXS) at unprecedented resolution (10 meV @ 1000 eV) to revolutionize study of low energy excitations in many important materials. * Continuously tunable momentum transfer (q) to study the

80

MeV-Energy X Rays from Inverse Compton Scattering with Laser-Wakefield Accelerated Electrons  

Science Journals Connector (OSTI)

We report the generation of MeV x rays using an undulator and accelerator that are both driven by the same 100-terawatt laser system. The laser pulse driving the accelerator and the scattering laser pulse are independently optimized to generate a high energy electron beam (>200??MeV) and maximize the output x-ray brightness. The total x-ray photon number was measured to be ?1107, the source size was 5???m, and the beam divergence angle was ?10??mrad. The x-ray photon energy, peaked at 1MeV (reaching up to 4MeV), exceeds the thresholds of fundamental nuclear processes (e.g., pair production and photodisintegration).

S. Chen; N. D. Powers; I. Ghebregziabher; C. M. Maharjan; C. Liu; G. Golovin; S. Banerjee; J. Zhang; N. Cunningham; A. Moorti; S. Clarke; S. Pozzi; D. P. Umstadter

2013-04-10T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Elasticity of single-crystalline graphite: Inelastic x-ray scattering study Alexey Bosak and Michael Krisch  

E-Print Network (OSTI)

. IXS overcomes the intrinsic difficulties of inelastic neutron scattering INS -- namely, sample sizeElasticity of single-crystalline graphite: Inelastic x-ray scattering study Alexey Bosak of the five independent elastic moduli of single-crystalline graphite, using inelastic x-ray scattering IXS

Nabben, Reinhard

82

Structural and dynamical studies of superacids and superacidic solutions using neutron and high energy X-ray scattering.  

E-Print Network (OSTI)

?? The diffusive motions of the Brnsted superacid, hydrogen fluoride, have been studied using quasielastic neutron scattering. Neutron and high energy X-ray diffraction measurements on (more)

Molaison, Jamie John

2006-01-01T23:59:59.000Z

83

High-quality quartz single crystals for high-energy-resolution inelastic X-ray scattering analyzers  

Science Journals Connector (OSTI)

High-quality quartz (-SiO2) crystals are characterized, and their use for inelastic X-ray scattering analyzers is presented and discussed.

H?nnicke, M.G.

2013-06-07T23:59:59.000Z

84

Exact limiting relation between the structure factors in neutron and x-ray scattering  

E-Print Network (OSTI)

The ratio of the static matter structure factor measured in experiments on coherent X-ray scattering to the static structure factor measured in experiments on neutron scattering is considered. It is shown theoretically that this ratio in the long-wavelength limit is equal to the nucleus charge at arbitrary thermodynamic parameters of a pure substance (the system of nuclei and electrons, where interaction between particles is pure Coulomb) in a disordered equilibrium state. This result is the exact relation of the quantum statistical mechanics. The experimental verification of this relation can be done in the long wavelength X-ray and neutron experiments.

V. B. Bobrov; S. A. Trigger; S. N. Skovorod'ko

2010-07-11T23:59:59.000Z

85

High energy resolution inelastic x-ray scattering at the SRI-CAT  

SciTech Connect

This report is a combination of vugraphs and two papers. The vugraphs give information on the beamline at the APS for IXS and the science addressable by IXS. They also cover the 10 milli-eV resolution spectrometer and the 200 milli-eV resolution spectrometer. The first paper covers the performance of the focusing Ge(444) backscattering analyzers for the inelastic x-ray scattering. The second paper discusses inelastic x-ray scattering from TiC and Ti single crystals.

Macrander, A.T.

1996-08-01T23:59:59.000Z

86

X-ray Scattering Reveals Unusual Growth of Lead on Silicon  

NLE Websites -- All DOE Office Websites (Extended Search)

X-ray Scattering Reveals Unusual Growth of Lead on Silicon X-ray Scattering Reveals Unusual Growth of Lead on Silicon Most thin films grow on substrates in only three ways: layer by layer, formation of atomic islands, or layers followed by islands. The particular growth mode that a given material will follow crucially depends on the relative magnitudes of the surface energy of the film versus the interfacial energy of the film on the substrate. Recently, a team of researchers from the University of Illinois, Academica Sinica in Taiwan, Georgia Tech, and the City University of Hong Kong has discovered a remarkable anomaly. By means of real-time x-ray scattering measurements, the researchers found that lead films grown on silicon adopt a completely novel pattern of growth. X-ray diffraction images taken with a CCD camera during growth of Pb films on Si(111). The interference fringes yield information about island height and layer thickness. Fig. 1. X-ray diffraction images taken with a CCD camera during growth of Pb films on Si(111). The interference fringes yield information about island height and layer thickness.

87

2011 U.S. National School on Neutron and X-ray Scattering  

SciTech Connect

The 13th annual U.S. National School on Neutron and X-ray Scattering was held June 11 to 25, 2011, at both Oak Ridge and Argonne National Laboratories. This school brought together 65 early career graduate students from 56 different universities in the US and provided them with a broad introduction to the techniques available at the major large-scale neutron and synchrotron x-ray facilities. This school is focused primarily on techniques relevant to the physical sciences, but also touches on cross-disciplinary bio-related scattering measurements. During the school, students received lectures by over 30 researchers from academia, industry, and national laboratories and participated in a number of short demonstration experiments at Argonne's Advanced Photon Source (APS) and Oak Ridge's Spallation neutron Source (SNS) and High Flux Isotope Reactor (HFIR) facilities to get hands-on experience in using neutron and synchrotron sources. The first week of this year's school was held at Oak Ridge National Lab, where Lab director Thom Mason welcomed the students and provided a shitorical perspective of the neutron and x-ray facilities both at Oak Ridge and Argonne. The first few days of the school were dedicated to lectures laying out the basics of scattering theory and the differences and complementarity between the neutron and x-ray probes given by Sunil Sinha. Jack Carpenter provided an introduction into how neutrons are generated and detected. After this basic introduction, the students received lectures each morning on specific techniques and conducted demonstration experiments each afternoon on one of 15 different instruments at either the SNS or HFIR. Some of the topics covered during this week of the school included inelastic neutron scattering by Bruce Gaulin, x-ray and neutron reflectivity by Chuck Majkrazak, small-angle scattering by Volker Urban, powder diffraction by Ashfia Huq and diffuse scattering by Gene Ice.

Lang, Jonathan [Argonne National Laboratory (ANL); te Vethuis, Suzanne [Argonne National Laboratory (ANL); Ekkebus, Allen E [ORNL; Chakoumakos, Bryan C [ORNL; Budai, John D [ORNL

2012-01-01T23:59:59.000Z

88

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering Resonant Soft X-Ray Scattering of Tri-Block Copolymers Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Wednesday, 30 May 2012 00:00 In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

89

Investigating increasingly complex macromolecular systems with small-angle X-ray scattering  

Science Journals Connector (OSTI)

A review of recent and ongoing development and results within the field of biological solution small-angle X-ray scattering (BioSAXS), with a focus on the increasing complexity of biological samples, data collection and data evaluation strategies.

Vestergaard, B.

2014-10-21T23:59:59.000Z

90

Kevin Yager on the Nanoscience of Studying Scattered X-Rays  

SciTech Connect

Kevin Yager, a scientist at Brookhaven Lab's Center for Functional Nanomaterials, discusses his research on materials spanning just billionths of a meter. Yager specializes in making new materials through meticulously guided self-assembly and probing nanoscale structures with a technique called x-ray scattering.

Yager; Kevin

2014-03-31T23:59:59.000Z

91

Small-Angle X-ray Scattering Using Coherent Undulator Radiation at the ESRF  

Science Journals Connector (OSTI)

A high-coherent-flux X-ray beam for small-angle-scattering studies has been produced and analyzed at the Tro?ka beamline of the European Synchrotron Radiation Facility. The statistics of a static speckle pattern are used to characterize the coherence properties.

Abernathy, D.L.

1998-01-01T23:59:59.000Z

92

X-ray scattering study of the average polycyclic aromatic unit in Ledo coal  

Science Journals Connector (OSTI)

Through an X-ray scattering analysis, the short-range structural features, the relationship(s) between the aryl/alkyl carbon ratio, and the size of the average polycyclic aromatic unit in Ledo coal from Makum coalfield, Assam, India, are elucidated.

Boruah, R.K.

2008-01-16T23:59:59.000Z

93

THE SCATTERED X-RAY HALO AROUND NOVA CYGNI 1992: TESTING A MODEL FOR INTERSTELLAR DUST  

E-Print Network (OSTI)

and Jonathan C. Tan Princeton University Observatory, Peyton Hall, Princeton, NJ 08544; draine@astro.princeton.edu, jt@astro.princeton.edu Received 2002 August 15; accepted 2003 May 13 ABSTRACT We use published ROSAT of emission from an O-Ne white dwarf plus a thermal plasma, and X-ray scattering is calculated for a dust

Draine, Bruce T.

94

Alamethicin in lipid bilayers: Combined use of X-ray scattering and MD simulations Jianjun Pan a  

E-Print Network (OSTI)

Alamethicin in lipid bilayers: Combined use of X-ray scattering and MD simulations Jianjun Pan of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA d Canadian Neutron Beam Centre:1PC with varying amounts of alamethicin (Alm). We combine the use of X-ray diffuse scattering

Nagle, John F.

95

Simbol-X Mirror Module Thermal Shields: II-Small Angle X-Ray Scattering Measurements  

SciTech Connect

The formation flight configuration of the Simbol-X mission implies that the X-ray mirror module will be open to Space on both ends. In order to reduce the power required to maintain the thermal stability and, therefore, the high angular resolution of the shell optics, a thin foil thermal shield will cover the mirror module. Different options are presently being studied for the foil material of these shields. We report results of an experimental investigation conducted to verify that the scattering of X-rays, by interaction with the thin foil material of the thermal shield, will not significantly affect the performances of the telescope.

Barbera, M. [Universita degli Studi di Palermo, Dip. di Scienze Fisiche ed Astronomiche, Palermo (Italy); Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Palermo G.S. Vaiana, Palermo (Italy); Ayers, T. [Luxel Corporation, Friday Harbor (WA) (United States); Collura, A. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Palermo G.S. Vaiana, Palermo (Italy); Nasillo, G. [Universita degli Studi di Palermo, Centro Grandi Apparecchiature, Palermo (Italy); Pareschi, G.; Tagliaferri, G. [Istituto Nazionale di Astrofisica-Osservatorio Astronomico di Brera, Merate (Italy)

2009-05-11T23:59:59.000Z

96

HipGISAXS: a high-performance computing code for simulating grazing-incidence X-ray scattering data  

Science Journals Connector (OSTI)

A new massively parallel code for simulation of a grazing-incidence X-ray scattering experiment has been developed. The sample modeling flexibility enables users to simulate scattering patterns for a wide variety of nanostructures and morphologies.

Chourou, S.T.

2013-11-07T23:59:59.000Z

97

Large-scale Nanostructure Simulations from X-ray Scattering Data On Graphics Processor Clusters  

SciTech Connect

X-ray scattering is a valuable tool for measuring the structural properties of materialsused in the design and fabrication of energy-relevant nanodevices (e.g., photovoltaic, energy storage, battery, fuel, and carbon capture andsequestration devices) that are key to the reduction of carbon emissions. Although today's ultra-fast X-ray scattering detectors can provide tremendousinformation on the structural properties of materials, a primary challenge remains in the analyses of the resulting data. We are developing novelhigh-performance computing algorithms, codes, and software tools for the analyses of X-ray scattering data. In this paper we describe two such HPCalgorithm advances. Firstly, we have implemented a flexible and highly efficient Grazing Incidence Small Angle Scattering (GISAXS) simulation code based on theDistorted Wave Born Approximation (DWBA) theory with C++/CUDA/MPI on a cluster of GPUs. Our code can compute the scattered light intensity from any givensample in all directions of space; thus allowing full construction of the GISAXS pattern. Preliminary tests on a single GPU show speedups over 125x compared tothe sequential code, and almost linear speedup when executing across a GPU cluster with 42 nodes, resulting in an additional 40x speedup compared to usingone GPU node. Secondly, for the structural fitting problems in inverse modeling, we have implemented a Reverse Monte Carlo simulation algorithm with C++/CUDAusing one GPU. Since there are large numbers of parameters for fitting in the in X-ray scattering simulation model, the earlier single CPU code required weeks ofruntime. Deploying the AccelerEyes Jacket/Matlab wrapper to use GPU gave around 100x speedup over the pure CPU code. Our further C++/CUDA optimization deliveredan additional 9x speedup.

Sarje, Abhinav; Pien, Jack; Li, Xiaoye; Chan, Elaine; Chourou, Slim; Hexemer, Alexander; Scholz, Arthur; Kramer, Edward

2012-01-15T23:59:59.000Z

98

Magnetic x-ray scattering at the M{sub 5} absorption edge of Ho  

SciTech Connect

Magnetic x-ray scattering from thin Ho-metal films at M{sub 5} resonance reveals atomic scattering lengths up to 200r{sub 0}--i.e., of the same order of magnitude as predicted theoretically by Hannon et al. [Phys. Rev. Lett. 61, 1245 (1988)]. The photon-energy dependence of first- and second-order magnetic satellites allows a straightforward identification of circular and linear dichroic contributions. A direct comparison to magnetic neutron scattering demonstrates the potential of the method for studies of complex magnetic structures in ultrathin films and highly diluted materials.

Ott, H.; Schierle, E.; Grigoriev, A. Yu.; Kaindl, G.; Weschke, E. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Schuessler-Langeheine, C. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); II. Physikalisches Institut, Universitaet zu Koeln, Zuelpicher Str. 77, D-50937 Koeln (Germany); Leiner, V. [Institut fuer Experimentalphysik/Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Institut fuer Werkstoffforschung, WFN, GKSS Forschungszentrum, D-21502 Geesthacht (Germany); Zabel, H. [Institut fuer Experimentalphysik/Festkoerperphysik, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)

2006-09-01T23:59:59.000Z

99

An In-vacuum Diffractometer for Resonant elastic Soft X-ray Scattering  

SciTech Connect

We describe the design, construction, and performance of a 4-circle in-vacuum diffractometer for resonant elastic soft x-ray scattering. The diffractometer, installed on the resonant elastic and inelastic x-ray scattering beamline at the Canadian Light Source, includes 9 in-vacuum motions driven by in-vacuum stepper motors and operates in ultra-high vacuum at base pressure of 2 x 10{sup -10} Torr. Cooling to a base temperature of 18 K is provided with a closed-cycle cryostat. The diffractometer includes a choice of 3 photon detectors: a photodiode, a channeltron, and a 2D sensitive channelplate detector. Along with variable slit and filter options, these detectors are suitable for studying a wide range of phenomena having both weak and strong diffraction signals. Example measurements of diffraction and reflectivity in Nd-doped (La,Sr){sub 2}CuO{sub 4} and thin film (Ga,Mn)As are shown.

D Hawthorn; F He; L Venema; H Davis; A Achkar; J Zhang; R Sutarto; H Wadati; A Radi; et al.

2011-12-31T23:59:59.000Z

100

Structure and dynamics of cadmium telluride studied by x-ray and inelastic neutron scattering  

SciTech Connect

We present a combined study of density functional theory, x-ray diffraction, and inelastic neutron scattering examining the temperature dependent structure and lattice dynamics of commercially available cadmium telluride. A subtle change in the structure is evinced near 80~K, which manifests also in the measured phonon density of states. There is no change to the long-range ordered structure. The implications of the change in relation to structural defects are discussed.

Niedziela, Jennifer L [ORNL; Stone, Matthew B [ORNL

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Chirality-induced `forbidden' reflections in X-ray resonant scattering  

Science Journals Connector (OSTI)

It is shown that additional Bragg reflections can appear in resonant near-edge X-ray diffraction exclusively owing to the local chirality associated with the left-right asymmetric environment of scattering atoms. This effect occurs even in centrosymmetric crystals, which are not gyrotropic in optics, and some realistic examples are considered in detail (-Fe2O3, LiNbO3 etc.).

Dmitrienko, V.E.

2001-10-26T23:59:59.000Z

102

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

103

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

104

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

105

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

106

Resonant Soft X-Ray Scattering of Tri-Block Copolymers  

NLE Websites -- All DOE Office Websites (Extended Search)

Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print Resonant Soft X-Ray Scattering of Tri-Block Copolymers Print In principle, tri-block copolymers (tri-BCPs), consisting of three chemically distinct polymers covalently joined together at the ends of each polymer chain, can serve as scaffolds and templates for fabricating a vast number of nanostructures. While quantitatively understanding the details of the morphology and the manner in which the different blocks interact with surfaces and interfaces is critical to success, previous experiments have been few. Now, an international team from the United States, Korea, and Japan has succeeded in combining resonant soft x-ray scattering (RSoXS) at ALS Beamline 11.0.1 with transmission electron microscopy tomography (TEMT) and other techniques to unambiguously determine morphologies comprising two nested hexagonally packed arrays of nanoscopic, cylindrical microdomains in the bulk and a core-shell nanostructure in a thin film. Not only has this work revealed a new phase of ABC tri-block copolymer with complicated morphology, it has illustrated the importance of RSoXS as a unique, powerful tool for examining complex, multi-component systems that could not be characterized with conventional methods.

107

Scattering Theory When an x-ray beam (or neutron or light) passes through a material with  

E-Print Network (OSTI)

Scattering Theory When an x-ray beam (or neutron or light) passes through a material radiation is scattered in directions that differ from that of the incident beam. Scattering arises since x of scattered radiation resulting from this process bears a direct relationship to the structure (the pattern

Beaucage, Gregory

108

Probing Ag nanoparticle surface oxidation in contact with (in)organics: an X-ray scattering and fluorescence yield approach  

Science Journals Connector (OSTI)

An advanced characterization approach to spatially resolve the reactions occurring at the interface between silver nanoparticles and a simple aqueous system is presented. Both phase and chemical distributions were obtained from X-ray scattering and fluorescence yield techniques.

Levard, C.

2011-10-06T23:59:59.000Z

109

Compact x-ray source based on burst-mode inverse Compton scattering at 100kHz  

E-Print Network (OSTI)

A design for a compact x-ray light source (CXLS) with flux and brilliance orders of magnitude beyond existing laboratory scale sources is presented. The source is based on inverse Compton scattering of a high brightness ...

Bessuille, J.

110

Raman scattering and X-ray diffraction study of the thermal decomposition of an ettringite-group crystal  

Science Journals Connector (OSTI)

...?A Raman scattering and X-ray diffraction study of the thermal decomposition of a naturally occurring, ettringite-group crystal is presented. Raman spectra, ... previous studies that reported higher temperatur...

S. K. Deb; M. H. Manghnani; K. Ross; R. A. Livingston

2003-02-01T23:59:59.000Z

111

Eur. J. Biochem. 85, 529-534 (1978) X-Ray and Neutron Small-Angle Scattering Studies  

E-Print Network (OSTI)

Eur. J. Biochem. 85, 529-534 (1978) X-Ray and Neutron Small-Angle Scattering Studies of the Complex-ray and neutron scattering techniques. In this work, we concentrated mainly on radius of gyration analyses and a neutron scattering experiment is performed in 21-Iz0 solvent. This decrease simply reflects the fact

112

Z .Reviews in Molecular Biotechnology 74 2000 207 231 X-ray and neutron surface scattering for studying  

E-Print Network (OSTI)

Z .Reviews in Molecular Biotechnology 74 2000 207 231 X-ray and neutron surface scattering,U , Tonya L. Kuhlb , Joyce Y. Wongc , Gregory S. Smitha,1 a Manuel Lujan Jr. Neutron Scattering Center is defined as the Zratio of the number of particles neutrons or .photons elastically and specularly scattered

Kuhl, Tonya L.

113

Protein folding and protein metallocluster studies using synchrotron small angler X-ray scattering  

SciTech Connect

Proteins, biological macromolecules composed of amino-acid building blocks, possess unique three dimensional shapes or conformations which are intimately related to their biological function. All of the information necessary to determine this conformation is stored in a protein`s amino acid sequence. The problem of understanding the process by which nature maps protein amino-acid sequences to three-dimensional conformations is known as the protein folding problem, and is one of the central unsolved problems in biophysics today. The possible applications of a solution are broad, ranging from the elucidation of thousands of protein structures to the rational modification and design of protein-based drugs. The scattering of X-rays by matter has long been useful as a tool for the characterization of physical properties of materials, including biological samples. The high photon flux available at synchrotron X-ray sources allows for the measurement of scattering cross-sections of dilute and/or disordered samples. Such measurements do not yield the detailed geometrical information available from crystalline samples, but do allow for lower resolution studies of dynamical processes not observable in the crystalline state. The main focus of the work described here has been the study of the protein folding process using time-resolved small-angle x-ray scattering measurements. The original intention was to observe the decrease in overall size which must accompany the folding of a protein from an extended conformation to its compact native state. Although this process proved too fast for the current time-resolution of the technique, upper bounds were set on the probable compaction times of several small proteins. In addition, an interesting and unexpected process was detected, in which the folding protein passes through an intermediate state which shows a tendency to associate. This state is proposed to be a kinetic molten globule folding intermediate.

Eliezer, D.

1994-06-01T23:59:59.000Z

114

New X-ray Scattering Facility at Ris National Laboratory Jens Wenzel Andreasen, Dag Werner Breiby, Martin Drews, Martin Meedom Nielsen  

E-Print Network (OSTI)

New X-ray Scattering Facility at Risø National Laboratory Jens Wenzel Andreasen, Dag Werner Breiby, DK-4000 Roskilde, Denmark The new X-ray facility at the Danish Polymer Centre, Risø National

115

Inelastic X-ray scattering experiments on B[subscript 4]C under high static pressures  

SciTech Connect

Boron K-edge inelastic X-ray scattering experiments were performed on clean B{sub 4}C and shock impact recovered boron carbide up to 30 GPa and at ambient temperature to understand the pressure induced bonding changes. The spectral features corresponding to the boron site in the interlinking chain remained unchanged up to 30 GPa. The results of our experiments indicate that pressure induces less distortion to the boron sites and the local amorphization observed in the previous reports are due to the rearrangement of carbon atoms under extreme conditions without affecting the boron environment.

Kumar, Ravhi S.; Dandekar, Dattatraya; Leithe-Jasper, Andres; Tanaka, Takaho; Xiao, Yuming; Chow, Paul; Nicol, Malcolm F.; Cornelius, Andrew L. (UNLV); (MXPL-M); (CIW); (USARL)

2010-05-04T23:59:59.000Z

116

Solution-Phase Structure of an Artificial Foldamer:? X-ray Scattering Study  

Science Journals Connector (OSTI)

Foldamers provide important insights into the fundamentals of noncovalent folding, which is of primary importance for understanding biological systems and developing novel self-assembling materials. ... This work was supported by the National Science Foundation under Grant CHE 03-45254 (J.S.M.) and by the Division of Chemical Sciences, Office of Basic Energy Sciences, DOE under Grant DE-FG02-99ER14999 (M.R.W.). ... Small-angle scattering (SAS) of x-rays and neutrons is a fundamental tool in the study of biol. ...

Richard F. Kelley; Boris Rybtchinski; Matthew T. Stone; Jeffrey S. Moore; Michael R. Wasielewski

2007-03-17T23:59:59.000Z

117

Time Resolved Collapse of a Folding Protein Observed with Small Angle X-Ray Scattering  

SciTech Connect

High-intensity, ''pink'' beam from an undulator was used in conjunction with microfabricated rapid-fluid mixing devices to monitor the early events in protein folding with time resolved small angle x-ray scattering. This Letter describes recent work on the protein bovine {beta} -lactoglobulin where collapse from an expanded to a compact set of states was directly observed on the millisecond time scale. The role of chain collapse, one of the initial stages of protein folding, is not currently understood. The characterization of transient, compact states is vital in assessing the validity of theories and models of the folding process.

Pollack, L.; Tate, M. W.; Finnefrock, A. C.; Kalidas, C.; Trotter, S.; Darnton, N. C.; Lurio, L.; Austin, R. H.; Batt, C. A.; Gruner, S. M. (and others)

2001-05-21T23:59:59.000Z

118

Soft x-ray coherent scattering: Instrument and methods at ESRF ID08  

SciTech Connect

An experimental setup has been developed to perform soft x-ray coherent scattering at beamline ID08 of the European Synchrotron Radiation Facility. An intense coherent beam was obtained by filtering the primary beam with the monochromator and a circular pinhole. A pinhole holder with motorized translations was installed inside the UHV chamber of the diffractometer. The scattered intensity was recorded in reflection geometry with a back-illuminated charge coupled device camera. As a demonstration we report experimental results of resonant magnetic scattering using coherent beam. The degree of coherence is evaluated, and it is shown that, while the vertical coherence is much higher than the horizontal one at the source, the situation is reversed at the diffractometer. The intensity of the coherent beam is also discussed.

Beutier, Guillaume; Marty, Alain; Livet, Frederic; Laan, Gerrit van der; Stanescu, Stefan; Bencok, Peter [DRFMC, SP2M, CEA Grenoble, 17 avenue des Martyrs, 38054 Grenoble Cedex (France); LTPCM, INPG-UJF-CNRS, BP 75, 38402 St. Martin d'Heres (France); Magnetic Spectroscopy Group, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); ESRF, 6 rue Jules Horowitz, BP 220, 38043 Grenoble Cedex (France)

2007-09-15T23:59:59.000Z

119

Characterization of porous materials using combined small-angle X-ray and neutron scattering techniques  

SciTech Connect

A combination of ultra small angle X-ray scattering (USAXS) and ultra small angle neutron scattering (USANS) is used to characterize porous materials. The analysis methods yield quantitative information, including the mean skeletal chord length, mean pore chord length, skeletal density, and composition. A mixed cellulose ester (MCE) membrane with a manufacturer-labeled pore size of 0.1 {mu}m was used as a model to elucidate the specifics of the method. Four approaches describing four specific scenarios (different known parameters and form of the scattering data) are compared. Pore chords determined using all four approaches are in good agreement with the scanning electron microscopy estimates but are larger than the manufacturer's nominal pore size. Our approach also gives the average chord of the skeletal solid (struts) of the membrane, which is also consistent for all four approaches. Combined data from USAXS and USANS gives the skeletal density and the strut composition.

Hu, Naiping; Borkar, Neha; Kohls, Doug; Schaefer, Dale W. (UCIN)

2014-09-24T23:59:59.000Z

120

Time-Resolved Small-Angle X-ray Scattering Studies Revealed Three Kinetic  

NLE Websites -- All DOE Office Websites (Extended Search)

June 2010 June 2010 Time-Resolved Small-Angle X-ray Scattering Studies Revealed Three Kinetic Stages of a T=4 Virus Maturation Most eukaryotic viruses, including HIV, influenza and herpes viruses, undergo maturation when transitioning from the noninfectious provirion to the infectious virion. Maturation processes involve reorganization of viral quaternary structure to defend viral gene from the cellular defense mechanism and lead to effective transfection. Nudaurelia capensis omega virus, NwV, is a T=4, non-enveloped, icosahedral, single strand RNA virus, where T is the triangulation number defining an icosahedral lattice of the virus capsid structure. Virus like particles (VLPs) of NwV exhibit large pH-dependent conformational changes (LCC) when the procapsid, purified at pH=7.6, (~480 Å) is exposed to pH=5.0, resulting in ~400 Å particles (Figure 1). In response to the LCC, an auto-proteolysis occurs in which each of 240 subunits is cleaved at Asn570-Phe571 (1). We investigated this pH-induced maturation by equilibrium and time-resolved small angle X-ray scattering (SAXS) at SSRL beam line 4-2.

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Characterization of the Binding of Gallium, Platinum, and Uranium to Pseudomonas fluorescens by Small-Angle X-Ray Scattering and Transmission Electron Microscopy  

Science Journals Connector (OSTI)

...that combined small-angle neutron scattering and small-angle X-ray scattering...by small-angle X-ray and neutron scattering. Plenum Press, New York...of biological structures by neutron scattering from solution. Rep. Prog...

Susan Krueger; Gregory J. Olson; David Johnsonbaugh; T. J. Beveridge

1993-12-01T23:59:59.000Z

122

X-ray resonant exchange scattering of rare-earth nickel borocarbides  

SciTech Connect

The purpose of this thesis is to investigate the systematics of the microscopic magnetic order within a series of isostructural compounds and, at the same, to develop the relatively young experimental method of x-ray resonant exchange scattering (XRES). In this thesis, the author presents XRES studies of several rare-earth nickel borocarbides, RNi{sub 2}B{sub 2}C. He shows that XRES, similar to the neutron techniques, allows the determination of the orientation of the magnetic moment by measuring the Q-dependence of the scattered intensity of magnetic Bragg reflections. As samples in this study, he chose the recently discovered family of rare-earth nickel borocarbides, RNi{sub 2}B{sub 2}C, which display a wide variety of magnetic structures. Furthermore, in several of these materials, long range magnetic order coexists with superconductivity over some temperature range.

Detlefs, C.

1997-10-08T23:59:59.000Z

123

Ostwald ripening of cobalt precipitates in silica aerogels? An ultra-small-angle X-ray scattering study  

Science Journals Connector (OSTI)

Silica aerogels were doped with cobalt, reduced, and studied with ultra-small-angle X-ray scattering. A scattering pattern rich in structure extends over nearly four orders of magnitude in q space, covering real space from 5 to 3000 ?, exposing micropores, mesopores and macropores for all aerogels.

Braun, A.

2005-01-19T23:59:59.000Z

124

Supplementary data for HIV-1 Tat membrane interaction probed using X-ray and neutron scattering, CD, and MD simulations  

E-Print Network (OSTI)

1 Supplementary data for HIV-1 Tat membrane interaction probed using X-ray and neutron scattering- spacing are linearly related. Figure S3. Neutron scattering from stacks of DOPC:DOPE (3:1)/Tat, x=0 of Physics, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, NY 12180, 3 NIST Center for Neutron

Nagle, John F.

125

Flat panel X-ray detector with reduced internal scattering for improved attenuation accuracy and dynamic range  

DOE Patents (OSTI)

An x-ray detector is disclosed that has had all unnecessary material removed from the x-ray beam path, and all of the remaining material in the beam path made as light and as low in atomic number as possible. The resulting detector is essentially transparent to x-rays and, thus, has greatly reduced internal scatter. The result of this is that x-ray attenuation data measured for the object under examination are much more accurate and have an increased dynamic range. The benefits of this improvement are that beam hardening corrections can be made accurately, that computed tomography reconstructions can be used for quantitative determination of material properties including density and atomic number, and that lower exposures may be possible as a result of the increased dynamic range.

Smith, Peter D. (Santa Fe, NM); Claytor, Thomas N. (White Rock, NM); Berry, Phillip C. (Albuquerque, NM); Hills, Charles R. (Los Alamos, NM)

2010-10-12T23:59:59.000Z

126

E-Print Network 3.0 - accurate x-ray scattering Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

RMS. Figure 8. Example x-ray images taken with a 2 scanning... X-ray imaging tests of Constellation-X SXT mirror segment pairs ... Source: Christian, Eric - Laboratory for High...

127

National School on Neutron and X-ray Scattering Building 223 Auditorium, Room B002 September 24 -October 11, 2008 Argonne National Laboratory  

E-Print Network (OSTI)

National School on Neutron and X-ray Scattering Building 223 Auditorium, Room B002 September 24 (HFIR) Neutron Scattering Science Division Oak Ridge Laboratory 10:15 - 10:30 Break 9:30 - 9:45 Break 10 School on Neutron and X-ray Scattering Building 8600, Main Lobby September 24 - October 11, 2008 Oak

Pennycook, Steve

128

Small angle neutron and X-ray scattering studies of carbons prepared using inorganic templates  

SciTech Connect

Small angle neutron (SANS) and X-ray (SAXS) scattering analyses of carbons derived from organic-loaded inorganic template materials, used as anodes in lithium ion cells, have been performed. Two clays were used as templates to load the organic precursors, pillared montmorrillonite (PILC), a layered silicate clay whose sheets have been permanently propped open by sets of thermally stable molecular props, and sepiolite, a natural channeled clay. Five different organic precursors were used to load the PILC: pyrene, styrene, pyrene/trioxane copolymer, ethylene and propylene, whereas only propylene and ethylene were used to load sepiolite. Pyrolysis took place at 700{degrees}C under nitrogen. Values such as hole radius, fractal dimension, cutoff length and density of the final carbons will be compared as a function of the clay and carbon precursors.

Sandi, G.; Thiyagarajan, P.; Winans, R.E.; Carrado, K.A.

1997-09-01T23:59:59.000Z

129

Changes in the Atomic Structure through Glass Transition Observed by X-Ray Scattering  

SciTech Connect

The glass transition involves a minor change in the internal energy, and yet the physical and mechanical properties of a glass change dramatically. In order to determine the evolution of the atomic structure through the glass transition, we employed in-situ synchrotron X-ray scattering measurements as a function of temperature on a model material: Zr-Cu-Al metallic glass. We found that the thermal expansion at the atomic level is smaller than the macroscopic thermal expansion, and significantly increases above the glass transition temperature. The observed changes in the pair-distribution function (PDF) are explained in terms of the fluctuations in the local atomic volume and their change through the glass transition.

Egami, Takeshi [ORNL

2012-01-01T23:59:59.000Z

130

Spatially-resolved small-angle x-ray scattering studies of soot inception and growth.  

SciTech Connect

The high spectral brilliance of x-rays produced at the Basic Energy Sciences Synchrotron Radiation Center of Argonne's Advanced Photon Source allows us to perform small-angle x-ray scattering (SAXS) measurements of the distributions of soot particles in flames. SAXS provides an in situ probe of the size and distribution of particles in the region between 1 and 100 nm. Detailed measurements on a propylene/air diffusion flame allow us to extract a spatially dependent background, which occurs in gas-phase combustion systems, and to perform Abel inversions, which provide the radial dependence of the scattering intensity. A bimodal distribution of soot particles is needed to describe our results. The radial behavior of the two modes of this distribution implies that the chemistry and fluid dynamics are strongly coupled in this simple diffusion flame. The larger particles of this distribution correspond to the previously observed primary particles, which have a relatively complex radial dependence. Midway between the fuel source and the widest part of the flame the primary particles have a mean radius of 6 nm or less and their concentration is symmetrically distributed about the flame front. At the widest part of the flame, two distinct distributions of primary particles are observed. Near the center of the flame the particles have a mean radius of 10 nm and a polydispersity of 0.3 and beyond a transition region they have a mean radius of 21 nm and a polydispersity of 0.2. The smaller particles, which require additional experiments before they can be identified, correspond either to soot nuclei, PAH species such as naphthalene, and/or disordered carbons with graphitic basal planes.

Hessler, J. P.; Seifert, S.; Winans, R. E.

2002-07-17T23:59:59.000Z

131

Spatial frequency spectrum of the x-ray scatter distribution in CBCT projections  

SciTech Connect

Purpose: X-ray scatter is a source of significant image quality loss in cone-beam computed tomography (CBCT). The use of Monte Carlo (MC) simulations separating primary and scattered photons has allowed the structure and nature of the scatter distribution in CBCT to become better elucidated. This work seeks to quantify the structure and determine a suitable basis function for the scatter distribution by examining its spectral components using Fourier analysis.Methods: The scatter distribution projection data were simulated using a CBCT MC model based on the EGSnrc code. CBCT projection data, with separated primary and scatter signal, were generated for a 30.6 cm diameter water cylinder [single angle projection with varying axis-to-detector distance (ADD) and bowtie filters] and two anthropomorphic phantoms (head and pelvis, 360 projections sampled every 1, with and without a compensator). The Fourier transform of the resulting scatter distributions was computed and analyzed both qualitatively and quantitatively. A novel metric called the scatter frequency width (SFW) is introduced to determine the scatter distribution's frequency content. The frequency content results are used to determine a set basis functions, consisting of low-frequency sine and cosine functions, to fit and denoise the scatter distribution generated from MC simulations using a reduced number of photons and projections. The signal recovery is implemented using Fourier filtering (low-pass Butterworth filter) and interpolation. Estimates of the scatter distribution are used to correct and reconstruct simulated projections.Results: The spatial and angular frequencies are contained within a maximum frequency of 0.1 cm{sup ?1} and 7/(2?) rad{sup ?1} for the imaging scenarios examined, with these values varying depending on the object and imaging setup (e.g., ADD and compensator). These data indicate spatial and angular sampling every 5 cm and ?/7 rad (?25) can be used to properly capture the scatter distribution, with reduced sampling possible depending on the imaging scenario. Using a low-pass Butterworth filter, tuned with the SFW values, to denoise the scatter projection data generated from MC simulations using 10{sup 6} photons resulted in an error reduction of greater than 85% for the estimating scatter in single and multiple projections. Analysis showed that the use of a compensator helped reduce the error in estimating the scatter distribution from limited photon simulations by more than 37% when compared to the case without a compensator for the head and pelvis phantoms. Reconstructions of simulated head phantom projections corrected by the filtered and interpolated scatter estimates showed improvements in overall image quality.Conclusions: The spatial frequency content of the scatter distribution in CBCT is found to be contained within the low frequency domain. The frequency content is modulated both by object and imaging parameters (ADD and compensator). The low-frequency nature of the scatter distribution allows for a limited set of sine and cosine basis functions to be used to accurately represent the scatter signal in the presence of noise and reduced data sampling decreasing MC based scatter estimation time. Compensator induced modulation of the scatter distribution reduces the frequency content and improves the fitting results.

Bootsma, G. J. [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada)] [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9, Canada and Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Verhaegen, F. [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands) [Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht 6201 BN (Netherlands); Department of Oncology, Medical Physics Unit, McGill University, Montreal, Quebec H3G 1A4 (Canada); Jaffray, D. A. [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9 (Canada) [Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5G 2M9 (Canada); Radiation Medicine Program, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Ontario Cancer Institute, Princess Margaret Hospital, Toronto, Ontario M5G 2M9 (Canada); Department of Radiation Oncology, University of Toronto, Toronto, Ontario M5G 2M9 (Canada)

2013-11-15T23:59:59.000Z

132

Comment on X-Ray Inelastic Scattering of Li Metal in the Region of Intermediate Momentum Transfer  

Science Journals Connector (OSTI)

The observation of a peak near the Fermi energy in the x-ray inelastic scattering spectrum of lithium has been variously explained as resulting from optical transitions in lithium, and as being attributable to an "oil-Mylar" protective cover. A new experiment sensitive to the surface impurities of the scattering sample and insensitive to instrumental distortion demonstrates that the observed feature is not due to oil or Mylar but rather arises from the lithium scattering process.

N. G. Alexandropoulos and G. G. Cohen

1975-10-27T23:59:59.000Z

133

New reactor dedicated to in operando studies of model catalysts by means of surface x-ray diffraction and grazing incidence small angle x-ray scattering  

SciTech Connect

A new experimental setup has been developed to enable in situ studies of catalyst surfaces during chemical reactions by means of surface x-ray diffraction (SXRD) and grazing incidence small angle x-ray scattering. The x-ray reactor chamber was designed for both ultrahigh-vacuum (UHV) and reactive gas environments. A laser beam heating of the sample was implemented; the sample temperature reaches 1100 K in UHV and 600 K in the presence of reactive gases. The reactor equipment allows dynamical observations of the surface with various, perfectly mixed gases at controlled partial pressures. It can run in two modes: as a bath reactor in the pressure range of 1-1000 mbars and as a continuous flow cell for pressure lower than 10{sup -3} mbar. The reactor is connected to an UHV preparation chamber also equipped with low energy electron diffraction and Auger spectroscopy. This setup is thus perfectly well suited to extend in situ studies to more complex surfaces, such as epitaxial films or supported nanoparticles. It offers the possibility to follow the chemically induced changes of the morphology, the structure, the composition, and growth processes of the model catalyst surface during exposure to reactive gases. As an example the Pd{sub 8}Ni{sub 92}(110) surface structure was followed by SXRD under a few millibars of hydrogen and during butadiene hydrogenation while the reaction was monitored by quadrupole mass spectrometry. This experiment evidenced the great sensitivity of the diffracted intensity to the subtle interaction between the surface atoms and the gas molecules.

Saint-Lager, M.-C.; Bailly, A.; Dolle, P.; Baudoing-Savois, R.; Taunier, P.; Garaudee, S.; Cuccaro, S.; Douillet, S.; Geaymond, O.; Perroux, G.; Tissot, O.; Micha, J.-S.; Ulrich, O.; Rieutord, F. [Institut Neel, CNRS and Universite Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France); CEA/DRFMC, 17 rue des Martyrs, 38054 Grenoble Cedex 9 (France)

2007-08-15T23:59:59.000Z

134

Small-angle x-ray scattering studies on nonionic microemulsions  

Science Journals Connector (OSTI)

The microstructure in a [n-dodecyltetraoxyethylene glycol monoether (C12E4)]-water-hexadecane system was investigated by the small-angle x-ray scattering (SAXS) technique for various surfactant concentrations and solution temperatures at a constant ratio of water and hexadecane (1:1 by weight). At 25 C, a sharp distinct peak was observed in the SAXS curves. On the basis of the analysis of the surfactant concentration dependence of the peak position, it was concluded that a lamella structure had been formed. At 45 C, the scattering curves showed a single, broad peak. With increasing C12E4 concentration, the peak position shifted toward higher angles. An analysis of the peak position suggested that oil-in-water (O-W) -type microemulsion droplets had been formed. At lower surfactant concentrations, the possibilities, that W-O droplets had been formed and that a bicontinuous structure had been constructed at the intermediate concentrations, were pointed out. The scattering profiles were not in contradiction with the theoretical ones for spheres if the polydispersity was considered. From a consideration of the peak position, which is related to the interparticle distance through the Bragg equation, it was suggested that the (spherical) droplets were distributed in a more or less ordered manner, probably in fcc or bcc symmetry, and not in simple-cubic symmetry. The radius and the aggregation number of the droplet were estimated to be about 1317 A? and 351400, respectively, depending on the surfactant concentration.

Tsuyoshi Shimobouji; Hideki Matsuoka; Norio Ise; Hideo Oikawa

1989-04-15T23:59:59.000Z

135

Structural investigation of liquid acetic acid by neutron scattering, DFT calculations and molecular dynamics simulations. Complementarity to x-ray scattering results  

Science Journals Connector (OSTI)

Abstract Neutron scattering experiments have been performed on fully deuterated liquid acetic acid (AA) at room temperature and atmospheric pressure. The scattering data are analyzed to yield the structure factor SM(Q), the molecular form factor F1(Q) and the pair correlation function g(r). To describe the intermolecular arrangement of the liquid, we have considered two dimers and two trimers, involving the isomer cis, already described in our x-ray scattering study. Neutron scattering data show that the local order of the liquid is well described by linear and ring cis trimers. Complementarity with recent x-ray results is then highlighted. Using four force fields, MD simulations show that x-ray and neutron scattering data are better reproduced by both OPLS-AA1 and OPLS-AA2 potentials.

Sonia Fathi; Salah Bouazizi; Sahbi Trabelsi; Miguel Angel Gonzalez; Mohamed Bahri; Salah Nasr; Marie-Claire Bellissent-Funel

2014-01-01T23:59:59.000Z

136

Cost-effective upgrade of a focusing system for inelastic X-ray scattering experiments under high pressure  

Science Journals Connector (OSTI)

This paper describes a scheme utilizing a set of low-cost and compact Kirkpatrick-Baez mirrors for upgrading the optical system of the Taiwan Inelastic X-ray Scattering beamline at SPring-8 for high-pressure experiments using diamond-anvil cells. The scheme as implemented improves the focus to 13 m 16 m with transmission of up to 72%.

Huang, C.-Y.

2007-12-18T23:59:59.000Z

137

Sound velocities of compressed Fe3C from simultaneous synchrotron X-ray diffraction and nuclear resonant scattering measurements  

Science Journals Connector (OSTI)

A recently installed X-ray diffraction facility that is integrated with existing nuclear resonant scattering set-ups at Sector 3 of the Advanced Photon Source at Argonne National Laboratory is introduced. Its applications for measuring the sound velocities of compressed Fe3C are reported.

Gao, L.

2009-09-16T23:59:59.000Z

138

Molecular structures of fluid phase phosphatidylglycerol bilayers as determined by small angle neutron and X-ray scattering  

E-Print Network (OSTI)

neutron and X-ray scattering Jianjun Pan a, , Frederick A. Heberle a , Stephanie Tristram-Nagle b Matter Division, Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN 378316100 Institute for Neutron Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 378316453, USA e Canadian

Nagle, John F.

139

Studies of protein structure in solution and protein folding using synchrotron small-angle x-ray scattering  

SciTech Connect

Synchrotron small angle x-ray scattering (SAXS) has been applied to the structural study of several biological systems, including the nitrogenase complex, the heat shock cognate protein (hsc70), and lysozyme folding. The structural information revealed from the SAXS experiments is complementary to information obtained by other physical and biochemical methods, and adds to our knowledge and understanding of these systems.

Chen, Lingling

1996-04-01T23:59:59.000Z

140

Contribution of synchrotron radiation to small-angle X-ray scattering studies in hard condensed matter  

Science Journals Connector (OSTI)

Synchrotron radiation, by virtue of its special beam characteristics, has revived interest in small-angle X-ray scattering for hard condensed matter and materials science. New techniques have been developed and new scientific themes tackled, ranging from metallurgy to nanotechnology.

Simon, J.-P.

2007-01-20T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Neutron and X-ray Scattering Techniques have proved so successful in condensed matter studies that a wide variety of sample environments have been developed in consquence. Many  

E-Print Network (OSTI)

Foreword Neutron and X-ray Scattering Techniques have proved so successful in condensed matter whose function is to develop and optimise the techniques appropriate to neutron scattering. Since other neutron and X-ray research centres have similar technical support groups, it was felt timely to unité

Boyer, Edmond

142

Combining Single-Molecule Optical Trapping and Small-Angle X-Ray Scattering Measurements to Compute the Persistence Length of a Protein  

E-Print Network (OSTI)

and purification For small-angle x-ray scattering and circular dichroism ER/K a-helix sequences from the myosin VICombining Single-Molecule Optical Trapping and Small-Angle X-Ray Scattering Measurements to Compute. In this study, we quantify this flexibility in terms of persistence length, namely the length scale over which

Spudich, James A.

143

A Miniature Maxthal Furnace for X-ray Spectroscopy and Scattering Experiments up to 1200 degrees C  

SciTech Connect

We have built a new small furnace to perform high temperature studies up to 1200 deg. C in vacuum or in oxygen atmosphere. This furnace was originally used as a catalytic reactor optimized for the in situ X-ray Absorption Spectroscopy experiments on beamline ID24. It has now been redesigned for use on the ESRF beamline ID01 for in situ Grazing Incidence Small Angle X-ray Scattering experiments. For these experiments high mechanical stability of the sample holder is necessary to keep the alignment of the sample during heating.

Gorges, Bernard; Vitoux, Hugo; Redondo, Pablo; Carbone, Gerardina [ESRF, BP220 38043 Grenoble CEDEX (France); Mocouta, Cristian [SOLEIL -BP48 91192 Gif-sur-Yvette CEDEX (France); Guilera, Gemma [ALBA CELLS 08290 Cerdanoyla Del Valles Barcelona (Spain)

2010-06-23T23:59:59.000Z

144

Spectrum bandwidth narrowing of Thomson scattering X-rays with energy chirped electron beams from laser wakefield acceleration  

SciTech Connect

We study incoherent Thomson scattering between an ultrashort laser pulse and an electron beam accelerated from a laser wakefield. The energy chirp effects of the accelerated electron beam on the final radiation spectrum bandwidth are investigated. It is found that the scattered X-ray radiation has the minimum spectrum width and highest intensity as electrons are accelerated up to around the dephasing point. Furthermore, it is proposed that the electron acceleration process inside the wakefield can be studied by use of 90 Thomson scattering. The dephasing position and beam energy chirp can be deduced from the intensity and bandwidth of the scattered radiation.

Xu, Tong; Chen, Min, E-mail: minchen@sjtu.edu.cn; Li, Fei-Yu; Yu, Lu-Le [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China)] [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Sheng, Zheng-Ming, E-mail: zmsheng@sjtu.edu.cn [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, Jie [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China) [Key Laboratory for Laser Plasmas (Ministry of Education), Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100190 (China)

2014-01-06T23:59:59.000Z

145

Sodium Humate Solution Studied with Small-Angle X-Ray Scattering  

Science Journals Connector (OSTI)

...Survey, Denver, Colorado 80225 Denver Research Center, Marathon Oil Company, Littleton, Colorado 80120 Small-angle x-ray...L. SUTULA B. J. WIGINTON Denver Research Center, Marathon Oil Company, Littleton, Colorado 80120 The possibility...

R. L. Wershaw; P. J. Burcar; C. L. Sutula; B. J. Wiginton

1967-09-22T23:59:59.000Z

146

X-ray and Neutron Scattering Studies of Methyl Iodide and Hydrogen Confined in Porous Media.  

E-Print Network (OSTI)

??X-ray diffraction was used to study the liquid - solid phase transition and structure of methyl iodide confined in porous GelTech glass, with 25, 50 (more)

Glanville, Yvonne

2005-01-01T23:59:59.000Z

147

Local structure of amorphous \\{MO50Ni50\\} determined by anomalous x-ray scattering using synchroton radiation  

Science Journals Connector (OSTI)

Anomalous (resonance) x-ray scattering technique using synchrotron radiation was applied to determine the compositionally resolved local structure of sputter deposited amorphous Mo50Ni50. The local environments of Mo atoms and Ni atoms were found to be significantly different from each other, but similar to the corresponding local environments in crystalline MoNi. The results compare favorably with those of the EXAFS measurement.

S. Aur; D. Kofalt; Y. Waseda; T. Egami; R. Wang; H.S. Chen; Boon-Keng Teo

1983-01-01T23:59:59.000Z

148

Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering  

Science Journals Connector (OSTI)

High-energy X-ray scattering data from turbostratic phyllomanganate nanosheets are analyzed in real-space by pair distribution function analysis and in reciprocal space by the Bragg-rod method and the Debye equation. The elastic deformation of the two-dimensional nanocrystals is modeled with (1) a new empirical strain function in Bragg-rod calculations and (2) explicit spherical and cylindrical mandrels implemented in the Debye equation.

Manceau, A.

2013-01-17T23:59:59.000Z

149

Ion distributions at charged aqueous surfaces: Synchrotron X-ray scattering studies  

SciTech Connect

Surface sensitive synchrotron X-ray scattering studies were performed to obtain the distribution of monovalent ions next to a highly charged interface at room temperature. To control surface charge density, lipids, dihexadecyl hydrogen-phosphate (DHDP) and dimysteroyl phosphatidic acid (DMPA), were spread as monolayer materials at the air/water interface, containing CsI at various concentrations. Five decades in bulk concentrations (CsI) are investigated, demonstrating that the interfacial distribution is strongly dependent on bulk concentration. We show that this is due to the strong binding constant of hydronium H3O+ to the phosphate group, leading to proton-transfer back to the phosphate group and to a reduced surface charge. Using anomalous reflectivity off and at the L3 Cs+ resonance, we provide spatial counterion (Cs+) distributions next to the negatively charged interfaces. The experimental ion distributions are in excellent agreement with a renormalized surface charge Poisson-Boltzmann theory for monovalent ions without fitting parameters or additional assumptions. Energy Scans at four fixed momentum transfers under specular reflectivity conditions near the Cs+ L3 resonance were conducted on 10-3 M CsI with DHDP monolayer materials on the surface. The energy scans exhibit a periodic dependence on photon momentum transfer. The ion distributions obtained from the analysis are in excellent agreement with those obtained from anomalous reflectivity measurements, providing further confirmation to the validity of the renormalized surface charge Poisson-Boltzmann theory for monovalent ions. Moreover, the dispersion corrections f0 and f00 for Cs+ around L3 resonance, revealing the local environment of a Cs+ ion in the solution at the interface, were extracted simultaneously with output of ion distributions.

Bu, Wei

2009-08-15T23:59:59.000Z

150

Neutron and x-ray scattering studies of the metallurgical condition and residual stresses in Weldalite welds  

SciTech Connect

Weldalite is a lithium-containing aluminum alloy which is being considered for aerospace applications because its favorable strength-to-weight ratio. Successful welding of this alloy depends on the control of the metallurgical condition and residual stresses in the heat affected zone. Neutron and x-ray scattering methods of residual stress measurement were applied to plasma arc welds made in aluminum-lithium alloy test panels as part of an evaluation of materials for use in welded structures. In the course of these studies discrepancies between x-ray and neutron results from the heat affected zone (HAZ) of the weld were found. Texture changes and recovery from the cold work, indicated in peak widths, were found in the HAZ as well. The consideration of x-ray and neutron results leads to the conclusion that there is a change in solute composition which modifies the d-spacings in the HAZ which affects the neutron diffraction determination of residual stresses. The composition changes give the appearance of significant compressive strains in the HAZ. This effect and sharp gradients in the texture give severe anomalies in the neutron measurement of residual stress. The use of combined x-ray and neutron techniques and the solution to the minimizing of the neutron diffraction anomalies are discussed.

Spooner, S. [Oak Ridge National Lab., TN (United States); Pardue, E.B.S. [Technology for Energy Corp., Knoxville, TN (United States)

1995-12-31T23:59:59.000Z

151

Simulating x-ray Thomson scattering signals from high-density, millimetre-scale plasmas at the National Ignition Facility  

SciTech Connect

We have developed a model for analysing x-ray Thomson scattering data from high-density, millimetre-scale inhomogeneous plasmas created during ultra-high pressure implosions at the National Ignition Facility in a spherically convergent geometry. The density weighting of the scattered signal and attenuation of the incident and scattered x-rays throughout the target are included using radial profiles of the density, opacity, ionization state, and temperature provided by radiation-hydrodynamics simulations. These simulations show that the scattered signal is strongly weighted toward the bulk of the shocked plasma and the Fermi degenerate material near the ablation front. We show that the scattered signal provides a good representation of the temperature of this highly nonuniform bulk plasma and can be determined to an accuracy of ca. 15% using typical data analysis techniques with simple 0D calculations. On the other hand, the mean ionization of the carbon in the bulk is underestimated. We suggest that this discrepancy is due to the convolution of scattering profiles from different regions of the target. Subsequently, we discuss modifications to the current platform to minimise the impact of inhomogeneities, as well as opacity, and also to enable probing of conditions more strongly weighted toward the compressed core.

Chapman, D. A., E-mail: david.chapman@awe.co.uk [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Kraus, D.; Falcone, R. W. [Department of Physics, University of California, Berkeley, California 94720 (United States); Kritcher, A. L.; Bachmann, B.; Collins, G. W.; Gaffney, J. A.; Hawreliak, J. A.; Landen, O. L.; Le Pape, S.; Ma, T.; Nilsen, J.; Pak, A.; Swift, D. C.; Dppner, T. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Gericke, D. O. [Centre for Fusion, Space and Astrophysics, University of Warwick, Coventry CV4 7AL (United Kingdom); Glenzer, S. H. [SLAC National Accelerator Laboratory, Menlo Park, California 94309 (United States); Guymer, T. M. [Plasma Physics Group, Radiation Physics Department, AWE plc, Reading RG7 4PR (United Kingdom); Neumayer, P. [Gesellschaft fr Schwerionenforschung, 64291 Darmstadt (Germany); Redmer, R. [Institut fr Physik, Universitt Rostock, 18051 Rostock (Germany); and others

2014-08-15T23:59:59.000Z

152

Performance of a high-resolution, synchrotron-based, small-angle x-ray scattering instrument  

SciTech Connect

We describe the construction and performance of a small-angle x-ray scattering (SAXS) instrument which we have used on several beam lines at the National Synchrotron Light Source. The analyzer crystal was a channel cut Si(1,1,1) designed for use at {lambda}=1.54 A with a measured efficiency of 60{percent} and an angular resolution full width at half maximum of 0.001{degree}. In the case of strongly scattering samples (i.e., powders), momentum transfer {ital q} between 1{times}10{sup {minus}4} A{lt}{ital q}{lt}0.1 A{sup {minus}1} could be studied with over eight decades of dynamic intensity range. We demonstrate the versatility of this instrument by performing scattering experiments on a variety of spherical latex samples spanning the size range from 50 to 800 nm, liquid crystal samples with sharp, asymmetrical Bragg peaks, and metal clusters with sizes less than 10 nm. Small-angle x-ray scattering data for the larger polystyrene samples is compared with light scattering data and theoretical structure factors, and the relative roles of instrument smearing, sample polydispersity, and interparticle interference are elucidated. In the case of the liquid crystal samples, the high resolution of the instrument allows structural features to be observed that were previously obscured by the instrumental resolution in other small-angle neutron and synchroton-based Kratky camera data taken on the same samples. {copyright} {ital 1996 American Institute of Physics.}

Wilcoxon, J.P.; Craft, S.A. [Nanostructured Materials Division, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Nanostructured Materials Division, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Thurston, T.R. [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)] [Physics Department, Brookhaven National Laboratory, Upton, New York 11973 (United States)

1996-09-01T23:59:59.000Z

153

Evidence for the Importance of Resonance Scattering in X-Ray Emission Line Profiles of the O Star Zeta Puppis  

SciTech Connect

We fit the Doppler profiles of the He-like triplet complexes of O VII and N VI in the X-ray spectrum of the O star {zeta} Pup, using XMM-Newton RGS data collected over {approx} 400 ks of exposure. We find that they cannot be well fit if the resonance and intercombination lines are constrained to have the same profile shape. However, a significantly better fit is achieved with a model incorporating the effects of resonance scattering, which causes the resonance line to become more symmetric than the intercombination line for a given characteristic continuum optical depth {tau}{sub *}. We discuss the plausibility of this hypothesis, as well as its significance for our understanding of Doppler profiles of X-ray emission lines in O stars.

Leutenegger, M.A.; /Columbia U.; Owocki, S.P.; /Bartol Research Inst.; Kahn, S.M.; /KIPAC, Menlo Park; Paerels, F.B.S.; /Columbia U.

2006-10-10T23:59:59.000Z

154

Tunable X-ray source  

DOE Patents (OSTI)

A method for the production of X-ray bunches tunable in both time and energy level by generating multiple photon, X-ray, beams through the use of Thomson scattering. The method of the present invention simultaneously produces two X-ray pulses that are tunable in energy and/or time.

Boyce, James R. (Williamsburg, VA)

2011-02-08T23:59:59.000Z

155

Week 2 AGENDA: National School on Neutron and X-ray Scattering page 1 of 5 Oak Ridge National Laboratory [9/30/08  

E-Print Network (OSTI)

Week 2 AGENDA: National School on Neutron and X-ray Scattering page 1 of 5 Oak Ridge National Ridge National Laboratory Dean Myles, Director ORNL Neutron Scattering Science Division 1 GROUPS [A,B,C,D,E,F,G,H,I] Iran Thomas Auditorium Lecture Inelastic Neutron Scattering R. Osborn, ANL ALL

Pennycook, Steve

156

X-Ray Scattering from Sodium-Doped Polyacetylene: Incommensurate-Commensurate and Order-Disorder Transformations  

Science Journals Connector (OSTI)

X-ray scattering carried out in situ during electrochemical doping indicates an unusual sequence of structural transitions. On doping to ?6-7 mole%, lightly doped regions coexist with a discommensurate-domain channel structure. As the Na concentration increases, the density of domain walls decreases. When the discommensuration density falls to zero, the Na channels form a commensurate 33 superlattice with respect to the (average) triangular lattice of (CH)x chains. At still higher concentrations, the Na lattice becomes unstable and transforms into a disordered "fluid" phase within the ordered polyacetylene structure.

M. Winokur; Y. B. Moon; A. J. Heeger; J. Barker; D. C. Bott; H. Shirakawa

1987-06-01T23:59:59.000Z

157

E-Print Network 3.0 - anomalous x-ray scattering Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

structure based on anomalous scattering andor isomorphous... of the handedness of the constellation of anomalous scatterers will never lead to correctly interpretable...

158

Center for X-Ray Optics, 1992  

SciTech Connect

This report discusses the following topics: Center for X-Ray Optics; Soft X-Ray Imaging wit Zone Plate Lenses; Biological X-Ray microscopy; Extreme Ultraviolet Lithography for Nanoelectronic Pattern Transfer; Multilayer Reflective Optics; EUV/Soft X-ray Reflectometer; Photoemission Microscopy with Reflective Optics; Spectroscopy with Soft X-Rays; Hard X-Ray Microprobe; Coronary Angiography; and Atomic Scattering Factors.

Not Available

1993-08-01T23:59:59.000Z

159

High energy x-ray scattering studies of the local order in liquid Al  

SciTech Connect

The x-ray structure factors and densities for liquid aluminum from 1123 K to 1273 K have been measured using the beamline electrostatic levitator. Atomic structures as a function of temperature have been constructed from the diffraction data with reverse Monte Carlo simulations. An analysis of the local atomic structures in terms of the Honeycutt-Andersen indices indicates a high degree of icosahedral and distorted icosahedral order, a modest amount of body-centered cubic order, and marginal amounts of face-centered cubic and hexagonal close-packed order.

Mauro, N.A.; Bendert, J.C.; Vogt, A.J.; Gewin, J.M.; Kelton, K.F. (WU)

2012-10-23T23:59:59.000Z

160

Magnetic X-Ray Scattering Study of GdCo2Ge2 and NdCo2Ge2  

SciTech Connect

The results of magnetic x-ray resonant exchange scattering (XRES) experiments are important to the development of an understanding of magnetic interactions in materials. The advantages of high Q resolution, polarization analysis, and the ability to study many different types of materials make it a vital tool in the field of condensed matter physics. Though the concept of XRES was put forth by Platzman and Tzoar in 1970, the technique did not gain much attention until the work of Gibbs and McWhan et al. in 1988. Since then, the technique of XRES has grown immensely in use and applicability. Researchers continue to improve upon the procedure and detection capabilities in order to study magnetic materials of all kinds. The XRES technique is particularly well suited to studying the rare earth metals because of the energy range involved. The resonant L edges of these elements fall between 5-10 KeV. Resonant and nonresonant x-ray scattering experiments were performed in order to develop an understanding of the magnetic ordering in GdCo{sub 2}Ge{sub 2} and NdCo{sub 2}Ge{sub 2}.

William Good

2002-08-27T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

A time-resolved x-ray scattering experiment for the study of phase transitions and crystallization processes in metallic alloys  

SciTech Connect

An experimental setup to perform high-resolution time-resolved X-ray scattering has been commissioned on the side station of beamline 8-ID at the Advanced Photon Source. A Peltier-cooled diode detector array covering an angle range of 20 degrees is mounted on a 4-circle goniometer and is used to temporally resolve X-ray scattering patterns with a resolution up to 10 ms. Metallic ribbon samples can be quickly heated and cooled from temperatures up to 500 C inside a furnace with controllable atmosphere and equipped with a beryllium window. A description of the setup is presented along with actual results showing time-resolved phase transitions and crystallization processes in AlYNi metallic alloys. These results demonstrate the power of this technique to investigate complex crystallization processes as well as the versatility of this time-resolved X-ray scattering spectrometer.

Pelletier, J. F.; Sutton, M.; Altounian, Z.; Saini, S.; Luriom L. B.; Sandy, A. R.; Lumma, D.; Borthwick, M. A.; Falus, P.; Mochrie, S. G. J.; Stephenson, G. B.

1999-10-29T23:59:59.000Z

162

The Fourier transform in X-ray and electron scattering of hydrogenlike atoms  

Science Journals Connector (OSTI)

The author shows the mathematical aspects of the Fourier transform (FT) that make possible the conversion of scattering data into chemically important functions.

Jeffrey A. Foley

1991-01-01T23:59:59.000Z

163

Peculiarities of the correlation functions, X-ray and neutron scattering in BaTiO{sub 3}  

SciTech Connect

Based on molecular-dynamics (MD) simulations, we have calculated the static and dynamic correlation functions in a BaTiO{sub 3} crystal. The static correlation functions have been used to study the peculiarities of diffuse scattering in barium titanate showing the experimentally observed anomalous planes. Based on time-dependent pair correlation functions, we have calculated the phonon spectra of BaTiO{sub 3} and studied the central peak of inelastic scattering. The phonon frequencies calculated by the MD method agree well with those obtained previously in the quasi-harmonic approximation. We show that the central peak of inelastic scattering is associated mainly with the soft optic mode and has the same symmetry. The large anisotropy in the displacements of atoms in the soft mode allows the presence of peculiarities in both X-ray scattering and EXAFS spectroscopy to be explained. The characteristic shape of the EXAFS spectra is shown to be explained by the quasi-one-dimensional motion of the oxygen ions in the cubic lattice of BaTiO{sub 3}. Our calculation of triple correlation functions shows that the titanium atom in the described model oscillates around the cubic cell center. Explaining the experimental data that have caused disagreement about the nature of the phase transition in BaTiO{sub 3} using the developed model gives grounds to treat the phase transition in barium titanate as a displacive one.

Matsko, N. L., E-mail: matsko@lpi.ru; Maksimov, E. G.; Lepeshkin, S. V. [Russian Academy of Sciences, Lebedev Physical Institute (Russian Federation)

2012-08-15T23:59:59.000Z

164

Phonon dispersion of graphite by inelastic x-ray scattering * J. Maultzsch,1, E. Dobardzi,2 S. Reich,3 I. Milosevi,2 M. Damnjanovi,2 A. Bosak,4 M. Krisch,4 and  

E-Print Network (OSTI)

quality. It has been partly measured by inelastic neutron scattering INS , electron- energy lossPhonon dispersion of graphite by inelastic x-ray scattering M. Mohr,1, * J. Maultzsch,1, E-plane phonon dispersion of graphite obtained from inelastic x-ray scattering, including the optical

Nabben, Reinhard

165

Combined sampler robot and high-performance liquid chromatography: a fully automated system for biological small-angle X-ray scattering experiments at the Synchrotron SOLEIL SWING beamline  

Science Journals Connector (OSTI)

A prototype was developed to perform online purification and automatic loading of protein solutions at a small-angle X-ray scattering beamline.

David, G.

2009-09-08T23:59:59.000Z

166

In-situ small-angle X-ray scattering study of the precipitation behavior in a Fe-25 at.%Co-9 at.%Mo alloy  

SciTech Connect

Fe-Co-Mo alloys show extraordinary mechanical properties which make them potential candidates for various high-performance applications. In the present study, for the first time, the precipitation behavior in a Fe-25 at.%Co-9 at.%Mo alloy was studied by small-angle X-ray scattering using high-energy synchrotron radiation. The specimens were isothermally aged in an in-situ furnace. The small-angle X-ray scattering patterns showed scaling behavior and were evaluated by employing a model function from the literature. This approach provides information about the characteristic length scale and the volume fraction of the precipitates in the alloy.

Zickler, Gerald A. [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Christian Doppler Laboratory for Early Stages of Precipitation, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria)], E-mail: gerald.zickler@mu-leoben.at; Eidenberger, Elisabeth [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Leitner, Harald [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Christian Doppler Laboratory for Early Stages of Precipitation, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Stergar, Erich; Clemens, Helmut [Department of Physical Metallurgy and Materials Testing, Montanuniversitaet Leoben, Franz-Josef-Strasse 18, A-8700 Leoben (Austria); Staron, Peter; Lippmann, Thomas; Schreyer, Andreas [GKSS Research Center Geesthacht, Max-Planck-Strasse 1, D-21502 Geesthacht (Germany)

2008-12-15T23:59:59.000Z

167

Narrowband inverse Compton scattering x-ray sources at high laser intensities  

E-Print Network (OSTI)

Narrowband x- and gamma-ray sources based on the inverse Compton scattering of laser pulses suffer from a limitation of the allowed laser intensity due to the onset of nonlinear effects that increase their bandwidth. It has been suggested that laser pulses with a suitable frequency modulation could compensate this ponderomotive broadening and reduce the bandwidth of the spectral lines, which would allow to operate narrowband Compton sources in the high-intensity regime. In this paper we, therefore, present the theory of nonlinear Compton scattering in a frequency modulated intense laser pulse. We systematically derive the optimal frequency modulation of the laser pulse from the scattering matrix element of nonlinear Compton scattering, taking into account the electron spin and recoil. We show that, for some particular scattering angle, an optimized frequency modulation completely cancels the ponderomotive broadening for all harmonics of the backscattered light. We also explore how sensitive this compensation ...

Seipt, D; Surzhykov, A; Fritzsche, S

2014-01-01T23:59:59.000Z

168

Synchrotron x-ray scattering investigations of oxygen-induced nucleation in a Zr-based glass-forming alloy.  

SciTech Connect

The metallic glass-forming alloy VIT-105 (Zr{sub 52.5}Cu{sub 17.9}Ni{sub 14.6}Al{sub 10}Ti{sub 5}) was used to study the effect of oxygen on nucleation. Ex situ synchrotron X-ray scattering experiments performed on as-cast samples showed that oxygen leads to the formation of tetragonal and/or cubic phases, depending on oxygen content. The samples crystallized into either a primitive tetragonal phase or the so-called fcc 'big cube' phase in a glassy matrix. A subsequent discussion on the role of oxygen in heterogeneous nucleation in Zr-based bulk metallic glasses is presented.

Wall, J. J.; Almer, J. D.; Vogel, S. C.; Liaw, P. K.; Choo, H.; Liu, C. T.; LANL; Univ. of Tennessee; ORNL

2009-01-01T23:59:59.000Z

169

Beam Measurement of 11.424 GHz X-Band Linac for Compton Scattering X-ray Source  

SciTech Connect

An inverse Compton scattering X-ray source for medical applications, consisting of an X-band (11.424 GHz) linac and Q-switched Nd:YAG laser, is currently being developed at the University of Tokyo. This system uses an X-band 3.5-cell thermionic cathode RF gun for electron beam generation. We can obtain a multi-bunch electron beam with this gun. The beam is accelerated to 30 MeV by a traveling-wave accelerating tube. So far, we have verified stable beam generation (around 2.3 MeV) by using the newly designed RF gun and we have succeeded in beam transportation to a beam dump.

Natsui, Takuya; Mori, Azusa; Masuda, Hirotoshi; Uesaka, Mitsuru [Nuclear Professional School, School of Engineering, University of Tokyo, 22-2 Shirane-shirakata, Tokai, Naka, Ibaraki 319-1188 (Japan); Sakamoto, Fumito [Akita National College of Technology, 1-1 Iijima-bunkyo, Akita city, Akita 011-8511 (Japan)

2010-11-04T23:59:59.000Z

170

Small angle x-ray scattering study of fluctuations in 1-propanol-water and 2-propanol-water systems  

SciTech Connect

Small-angle x-ray scattering (SAXS) measurements have been carried out on the 1-propanol (NPA)-water system and on the 2-propanol (IPA)-water system at 20{degree}C. In the NPA-water system, the zero angle intensity, the concentration fluctuation, the Kirkwood-Buff parameters, and Debye's correlation lengths have been determined at various concentrations. In the IPA-water system, the zero angle intensity and Debye's correlation lengths have also been determined. In both the NPA-water and IPA-water systems, all obtained parameters have maxima at about 0.2 of the mole fraction of alcohol. In terms of these parameters, the mixing state of the NPA-water and IPA-water systems is discussed and compared with that of the TBA-water system.

Hayashi, Hisashi; Nishikawa, Keiko; Iijima, Takao (Gakushuin Univ., Tokyo (Japan))

1990-10-18T23:59:59.000Z

171

Acoustic plasmons and doping evolution of Mott physics in resonant inelastic x-ray scattering from cuprate superconductors  

SciTech Connect

By incorporating a long-range Coulomb interaction into the framework of the one-band Hubbard model, they delineate how the low-energy plasmon around 1 eV, which is a universal feature of the charge dynamics of the cuprates, manifests itself in the resonant inelastic x-ray scattering (RIXS) spectra. The long-range Coulomb interaction in the doped system control sthe form of the intraband RIXS dispersion near the Brillouin zone center around the {Gamma} point. The out-of-plane momentum transfer component q{sub z} is found to play a key role in determining whether or not the RIXS spectrum shows a plasmon-related gap at {Gamma}.

Markiewicz, R.S.; Hasan, M.Z.; Bansil, A.; (NEU); (Princeton)

2010-01-28T23:59:59.000Z

172

From ultra-high vacuum to the electrochemical interface : x-ray scattering studies of model electrocatalysts.  

SciTech Connect

In-situ surface X-ray scattering (SXS) has become a powerful probe of the atomic structure at the metal-electrolyte interface. In this paper we describe an experiment in which a Pt(111) sample is prepared under ultra-high vacuum (UHV) conditions to have a p(2 x 2) oxygen layer adsorbed on the surface. The surface is then studied using SXS under UHV conditions before successive transfer to a bulk water environment and then to the electrochemical environment (0.1 M KOH solution) under an applied electrode potential. The Pt surface structure is examined in detail using crystal truncation rod (CTR) measurements under these different conditions. Finally, some suggestions for future experiments on alloy materials, using the same methodology, are proposed and discussed in relation to previous results.

Lucas, C. A.; Cormack, M.; Gallagher, M. E.; Brownrigg, A.; Thompson, P.; Fowler, B.; Grunder, Y.; Roy, J.; Stamenkovic, V.; Markovic, N. M.; Materials Science Division; Univ. of Liverpool; European Synchrotron Radiation Facility

2008-08-01T23:59:59.000Z

173

Prototype grooved and spherically bent Si backscattering crystal analyzer for meV resolution inelastic x-ray scattering  

SciTech Connect

The high-order backscattering reflections from single crystals of silicon have mrad rocking curve widths that can be exploited to produce meV energy-resolution focusing analyzer crystals for use in inelastic x-ray scattering experiments at third-generation synchrotron sources. The first generation of these analyzers has been limited in efficiency principally by slope and/or figure errors. We calculate the effect of slope errors on the theoretical energy resolution and focus spot size of a typical analyzer design using a ray-tracing code to ensure that there are no unforeseen contributions to the energy resolution and efficiency. We also present measurements of the slope errors of the atomic planes for a prototype, spherically bent, strain-relief grooved analyzer as proof that it is in principle possible to obtain the slope and figure error limits required for a high efficiency meV resolution backscattering crystal.

Blasdell, R.C.; Macrander, A.T. (Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439-4814 (United States))

1995-02-01T23:59:59.000Z

174

Optimization of a coherent soft x-ray beamline for coherent scattering experiments at NSLS-II  

SciTech Connect

The coherent soft x-ray and full polarization control (CSX) beamline at the National Synchrotron Light Source - II (NSLS-II) will deliver 1013 coherent photons per second in the energy range of 0.2-2 keV with a resolving power of 2000. The source, a dual elliptically polarizing undulator (EPU), and beamline optics should be optimized to deliver the highest possible coherent flux in a 10-30 {micro}m spot for use in coherent scattering experiments. Using the computer code Synchrotron Radiation Workshop (SRW), we simulate the photon source and focusing optics in order to investigate the conditions which provide the highest usable coherent intensity on the sample. In particular, we find that an intermediate phasing magnet is needed to correct for the relative phase between the two EPUs and that the optimum phase setting produces a spectrum in which the desired wavelength is slightly red-shifted thus requiring a larger aperture than originally anticipated. This setting is distinct from that which produces an on-axis spectrum similar to a single long undulator. Furthermore, partial coherence calculations, utilizing a multiple electron approach, indicate that a high degree of spatial coherence is still obtained at the sample location when such an aperture is used. The aperture size which maximizes the signal-to-noise ratio of a double-slit experiment is explored. This combination of high coherence and intensity is ideally suited for x-ray ptychography experiments which reconstruct the scattering density from micro-diffraction patterns. This technique is briefly reviewed and the effects on the image quality of proximity to the beamline focus are explored.

Shapiro D.; Chubar, O.; Kaznatcheev, K.; Reininger, R.; Sanchez-Hanke, C.; Wang, S.

2011-08-21T23:59:59.000Z

175

AN EFFICIENT PARALLEL GPU EVALUATION OF SMALL ANGLE X-RAY SCATTERING PROFILES  

E-Print Network (OSTI)

the scat- tering curve from a condensation of a gas of "dummy beads" to an experi-ray Scattering (SAXS) provides information on the excess electron density of the sample versus the surrounding of the experiment. For this procedure to be successful, an efficient procedure for both sampling protein structures

Hamelryck, Thomas

176

National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak Ridge, Tennessee  

E-Print Network (OSTI)

National School on Neutron and X-ray Scattering Oak Ridge National Laboratory June 12-26, 2010 Oak ------------------------------------------------------------------------------- SCHEDULE FOR SATURDAY, JUNE 19, 2010 School participants arrive in Oak Ridge, TN and check in at the Comfort Inn. Dinner hosted by Oak Ridge National Laboratory

Pennycook, Steve

177

Critical opalescence points to thermodynamic instability: relevance to small-angle X-ray scattering of resorcinol-formaldehyde gel formation at low pH  

Science Journals Connector (OSTI)

In situ small-angle X-ray scattering exhibits a non-monotonic evolution during the formation of resorcinol-formaldehyde gels. The data can be analyzed in terms of critical fluctuations, which points to a reaction-induced phase separation process.

Gommes, C.J.

2008-06-06T23:59:59.000Z

178

Design and characterization of an undulator beamline optimized for small-angle coherent X-ray scattering at the Advanced Photon Source  

Science Journals Connector (OSTI)

The design of an undulator beamline at the Advanced Photon Source optimized for performing coherent small-angle X-ray scattering is described. The beamline has been characterized by measuring and analysing static speckle patterns from isotropically disordered samples. The measured speckle widths and amplitudes are compared with a theory described herein and found to be in good agreement with its predictions.

Sandy, A.R.

1999-11-01T23:59:59.000Z

179

Local density profiles in thin films and multilayers from diffuse x-ray and neutron scattering  

SciTech Connect

We develop a technique to determine local density profiles in conformally rough thin films and multilayers for which conventional reflectometry does not work. The main idea is to integrate the total scattered intensity for a given vertical momentum transfer over the parallel momentum transfer. Probing Fourier space globally results in a local probe in real space and the integrated intensity is proportional to the local reflectivity of the surface. We also discuss the influence of a finite range of integration as well as sample inhomogeneities, such as nonconformity of the roughness. This technique is limited to situations where the kinematic Born approximation is sufficient to describe the scattering process. However, in certain cases, the technique can be used in the vicinity of the critical angle of total external reflection as well.

Rauscher, M.; Reichert, H.; Engemann, S.; Dosch, H. [Max-Planck-Institut fuer Metallforschung, Heisenbergstrasse 3, 70569 Stuttgart (Germany); and Institut fuer Theoretische und Angewandte Physik, Universitaet Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

2005-11-15T23:59:59.000Z

180

Temporal synchronization of GHz repetition rate electron and laser pulses for the optimization of a compact inverse-Compton scattering x-ray source  

E-Print Network (OSTI)

The operation of an inverse-Compton scattering source of x-rays or gamma-rays requires the precision alignment and synchronization of highly focused electron bunches and laser pulses at the collision point. The arrival times of electron and laser pulses must be synchronized with picosecond precision. We have developed an RF synchronization technique that reduces the initial timing uncertainty from 350 ps to less than 2 ps, greatly reducing the parameter space to be optimized while commissioning the x-ray source. We describe the technique and present measurements of its performance.

Hadmack, Michael R; Madey, John M J; Kowalczyk, Jeremy M D

2014-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

WAND: Wide-Angle Neutron Diffractometer at HFIR | ORNL Neutron Sciences  

NLE Websites -- All DOE Office Websites (Extended Search)

US/Japan Wide-Angle Neutron Diffractometer US/Japan Wide-Angle Neutron Diffractometer WAND Instrument scientist Jaime Fernandez-Baca (left) with a visiting researcher at WAND. The Wide-Angle Neutron Diffractometer (WAND) at the HFIR HB-2C beam tube was designed to provide two specialized data-collection capabilities: (1) fast measurements of medium-resolution powder-diffraction patterns and (2) measurements of diffuse scattering in single crystals using flat-cone geometry. For these purposes, this instrument is equipped with a curved, one-dimensional 3He position-sensitive detector covering 125º of the scattering angle with the focal distance of 71 cm. The sample and detector can be tilted in the flat-cone geometry mode. These features enable measurement of single-crystal diffraction patterns in a short time over a

182

Performance of spherically focusing Ge(444) backscattering analyzers for inelastic x-ray scattering  

SciTech Connect

A spectrometer designed to use an undulator source and having targeted resolutions of 0.01 eV in one mode of use and 0.2 eV in another will operate at the APS. We report here on analyzers that we have, constructed for use on this spectrometer for 0.2-eV resolution. We have tested them at NSLS beamline X21 using focused wiggler radiation and at CHESS using radiation from the CHESS-ANL undulator. Analyzers were constructed by gluing and pressing 90-mm-diameter, (111) oriented Ge wafers into concave glass forms having a radius near 1 m. An overall inelastic scattering resolution of 0.3 eV using the (444) reflection was demonstrated at CHESS. Recent results at X21 revealed a useful diameter of 74 mm at an 870 Bragg angle.

Macrander, A.T.; Kushnir, V.I.; Blasdell, R.C.

1994-08-01T23:59:59.000Z

183

Dissolution dynamics of the calcite-water interface observed in situ by glancing-incidence X-ray scattering  

SciTech Connect

Glancing-incidence X-ray scattering measurements made at the National Synchrotron Light Source were used to investigate dissolution dynamics in situ at the calcite-water interface. The relation between calcite saturation state and roughness of the calcite (1014) cleavage surface as a function of time was examined during pH titrations of an initially calcite-saturated solution. Systematic variations in roughness were observed as a function of saturation state as pH was titrated to values below that of calcite saturation. Different steady-state values of roughness were evident at fixed values of {Delta}G{sub r}, and these were correlated with the extent of undersaturation. A significant increase in roughness begins to occur with increasing undersaturation at a {Delta}G{sub r} value of approximately {minus}2.0 kcal/mol. The dissolution rate corresponding to this increase is about 1.5 x 10{sup 7} mmol/cm {center_dot} sec. This increase in roughness is attributed to a transition in the principal rate-determining dissolution mechanism, and is consistent with both powder-reaction studies of dissolution kinetics and single-crystal dissolution studies by atomic force microscopy. These data indicate some important potential applications of GIXS in the study of mineral-water interface geochemistry.

Sturchio, N.C.; Chiarello, R.P.

1995-06-02T23:59:59.000Z

184

Sub-second Morphological Changes in Nafion during Water Uptake Detected by Small-Angle X-Ray Scattering  

SciTech Connect

The ability of Nafion membrane to absorb water rapidly and create a network of hydrated interconnected water domains provides this material with an unmatched ability to conduct ions through a chemically and mechanically robust membrane. The morphology and composition of these hydrated membranes significantly affects their transport properties and performance. This work demonstrates that differences in interfacial interactions between the membranes exposed to vapor or liquid water can cause significant changes in kinetics of water uptake. In-situ small-angle X-ray scattering (SAXS) experiments captured the rapid swelling of the membrane in liquid water with nanostructure rearrangement on the order of seconds. For membranes in contact with water vapor, morphological changes are four-orders-of-magnitude slower than in liquid water, suggesting that interfacial resistance limits the penetration of water into the membrane. Also, upon water absorption from liquid water, a structural rearrangement from a distribution of spherical and cylindrical domains to exclusively cylindrical-like domains is suggested. These differences in water-uptake kinetics and morphology provide a new perspective into Schroeders Paradox, which dictates different water contents for vaporand liquid-equilibrated ionomers at unit activity. The findings of this work provide critical insights into the fast kinetics of water absorption of Nafion membrane, which can aid in the design of energy conversion devices that operate under frequent changes in environmental conditions.

Kusoglu, Ahmet; Modestino, Miguel A.; Hexemer, Alexander; Segalman, Rachel A.; Weber, Adam Z.

2011-09-30T23:59:59.000Z

185

Protein Folding Dynamics Detected By Time-Resolved Synchrotron X-ray Small-Angle Scattering Technique  

SciTech Connect

The polypeptide collapse is an essential dynamics in protein folding. To understand the mechanism of the collapse, in situ observation of folding by various probes is necessary. The changes in secondary and tertiary structures in the folding process of globular proteins, whose chain lengths are less than 300 polypeptides, were observed by circular dichrosim and intrinsic fluorescence spectroscopies, respectively. On the other hand, those in protein compactness could be only detected by using time-resolved synchrotron x-ray small-angle scattering technique. The observed dynamics for several proteins with different topologies suggested a common folding mechanism termed 'collapse and search' dynamics, in which the polypeptide collapse precedes the formation of the native contact formation. In 'collapse and search' dynamics, the most outstanding feature lied in the compactness of the initial intermediates. The collapsed intermediates demonstrated the scaling relationship between radius of gyration (Rg) and chain length with a scaling exponent of 0.35 {+-} 0.11, which is close to the value (1/3) predicted by mechano-statistical theory for the collapsed globules of polymers in poor solvent. Thus, it was suggested that the initial collapse is caused by the coil-globule transition of polymers. Since the collapse is essential to the folding of larger proteins, further investigations on the collapse likely lead to an important insight into the protein folding phenomena.

Fujisawa, Tetsuro; Takahashi, Satoshi [RIKEN Harima Institute, SPring-8 Center, Laboratory for Biometal Science, Hyogo 679-5148 (Japan); Institute for Protein Research, Osaka University Suita Osaka 565-0871/CREST, JST (Japan)

2007-03-30T23:59:59.000Z

186

X-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND  

E-Print Network (OSTI)

with the occurrence of solar X-ray flare, when light travel time delay is accounted, suggesting that X-rays fromX-RAY EMISSION FROM PLANETS AND COMETS: RELATIONSHIP WITH SOLAR X-RAYS AND SOLAR WIND ANIL BHARDWAJ Flight center, Greenbelt, MD 20771, USA Scattering of solar X-ray radiation mainly produces the non

?stgaard, Nikolai

187

Influence of the multiple scattering of relativistic electrons on the line width of backward Parametric X-ray Radiation in the absence of photo absorption  

E-Print Network (OSTI)

The multiple scattering effect on the line width of backward Parametric X-ray Radiation (PXR) in the extremely Bragg geometry, produced by low energy relativistic electrons traversing a single crystal, is discussed. It is shown that there exist conditions, when the influence of photo absorption on the line width can be neglected, and the only multiple scattering process of relativistic electrons in crystal leads to the broadening of backward PXR lines. Based on the obtained theoretical results, the line width broadening of backward PXR, caused by the multiple scattering of 30 MeV and 50 MeV relativistic electrons in a Si crystal of varying thicknesses, is numerically obtained.

Tabrizi, Mehdi

2015-01-01T23:59:59.000Z

188

EXPRESSION, PURIFICATION, AND SMALL ANGLE X-RAY SCATTERING OF DNA REPLICATION AND REPAIR PROTEINS FROM THE HYPERTHERMOPHILE SULFOLOBUS SOLFATARICUS  

SciTech Connect

Vital molecular processes such as DNA replication, transcription, translation, and maintenance occur through transient protein interactions. Elucidating the mechanisms by which these protein complexes and interactions function could lead to treatments for diseases related to DNA damage and cell division control. In the recent decades since its introduction as a third domain, Archaea have shown to be simpler models for complicated eukaryotic processes such as DNA replication, repair, transcription, and translation. Sulfolobus solfataricus is one such model organism. A hyperthermophile with an optimal growth temperature of 80C, Sulfolobus protein-protein complexes and transient protein interactions should be more stable at moderate temperatures, providing a means to isolate and study their structure and function. Here we provide the initial steps towards characterizing three DNA-related Sulfolobus proteins with small angle X-ray scattering (SAXS): Sso0257, a cell division control and origin recognition complex homolog, Sso0768, the small subunit of the replication factor C, and Sso3167, a Mut-T like protein. SAXS analysis was performed at multiple concentrations for both short and long exposure times. The Sso0257 sample was determined to be either a mixture of monomeric and dimeric states or a population of dynamic monomers in various conformational states in solution, consistent with a fl exible winged helix domain. Sso0768 was found to be a complex mixture of multimeric states in solution. Finally, molecular envelope reconstruction from SAXS data for Sso3167 revealed a novel structural component which may function as a disordered to ordered region in the presence of its substrates and/or protein partners.

Patterson, S.M.; Hatherill, J.R.; Hammel, M.; Hura, G.L.; Tainer, J.A.; Yannone, S.M.

2008-01-01T23:59:59.000Z

189

Structural and magnetic properties of transition metal substituted BaFe{sub 2}As{sub 2} compounds studied by x-ray and neutron scattering  

SciTech Connect

The purpose of my dissertation is to understand the structural and magnetic properties of the newly discovered FeAs-based superconductors and the interconnection between superconductivity, antiferromagnetism, and structure. X-ray and neutron scattering techniques are powerful tools to directly observe the structure and magnetism in this system. I used both xray and neutron scattering techniques on di#11;erent transition substituted BaFe2As2 compounds in order to investigate the substitution dependence of structural and magnetic transitions and try to understand the connections between them.

Kim, Min Gyu [Ames Laboratory

2012-08-28T23:59:59.000Z

190

Theoretical treatments of the bound-free contribution and experimental best practice in X-ray Thomson scattering from warm dense matter  

SciTech Connect

By comparison with high-resolution synchrotron x-ray experimental results, we assess several theoretical treatments for the bound-free (core-electron) contribution to x-ray Thomson scattering (i.e., also known as nonresonant inelastic x-ray scattering). We identify an often overlooked source of systematic error in the plane-wave form factor approximation (PWFFA) used in the inference of temperature, ionization state, and free electron density in some laser-driven compression studies of warm dense matter. This error is due to a direct violation of energy conservation in the PWFFA. We propose an improved practice for the bound-free term that will be particularly relevant for XRTS experiments performed with somewhat improved energy resolution at the National Ignition Facility or the Linac Coherent Light Source. Our results raise important questions about the accuracy of state variable determination in XRTS studies, given that the limited information content in low-resolution XRTS spectra does not strongly constrain the models of electronic structure being used to fit the spectra.

Mattern, Brian A.; Seidler, Gerald T. [Department of Physics, University of Washington, Seattle, Washington 98195-1560 (United States)

2013-02-15T23:59:59.000Z

191

E-Print Network 3.0 - anomalous small-angle x-ray Sample Search...  

NLE Websites -- All DOE Office Websites (Extended Search)

2008Standard Operating Procedure Title: Small Angle X-ray Scattering... approved: December 26 2009 Small Angle X-ray Scattering, Rotating Anode PURPOSE: This Standard...

192

In Situ Synchrotron Based X-ray Fluorescence and Scattering Measurements During Atomic Layer Deposition: Initial Growth of HfO2 on Si and Ge Substrates  

SciTech Connect

The initial growth of HfO{sub 2} was studied by means of synchrotron based in situ x-ray fluorescence (XRF) and grazing incidence small angle x-ray scattering (GISAXS). HfO{sub 2} was deposited by atomic layer deposition (ALD) using tetrakis(ethylmethylamino)hafnium and H{sub 2}O on both oxidized and H-terminated Si and Ge surfaces. XRF quantifies the amount of deposited material during each ALD cycle and shows an inhibition period on H-terminated substrates. No inhibition period is observed on oxidized substrates. The evolution of film roughness was monitored using GISAXS. A correlation is found between the inhibition period and the onset of surface roughness.

K Devloo-Casier; J Dendooven; K Ludwig; G Lekens; J DHaen; C Detavernier

2011-12-31T23:59:59.000Z

193

Structural Model of the 50 S Subunit of Escherichia coli Ribosomes from Solution Scattering: I. X-ray Synchroton Radiation Study  

Science Journals Connector (OSTI)

The application of new methods of small-angle scattering data interpretation to a contrast variation study of the 50 S ribosomal subunit of Escherichia coli in solution is described. The experimental X-ray data from contrast variation with sucrose are analysed in terms of the basic functions in real and the scattering curves from the volume inaccessible to sucrose and from the regions inside this volume occupied mainly by RNA and by proteins are obtained. From these curves models of the shape of the 50 S subunit and its RNA-rich core are evaluated. These two shapes are positioned so that their difference, which approximates the volume occupied by the proteins, produces a scattering curve which is in good agreement with the scattering from the protein moiety.

D.I. Svergun; M.H.J. Koch; I.N. Serdyuk

1994-01-01T23:59:59.000Z

194

Insights into Montmorillonite Nanoclay Based ex Situ Nanocomposites from SEBS and Modified SEBS by Small-Angle X-ray Scattering and Modulated DSC Studies  

Science Journals Connector (OSTI)

Insights into Montmorillonite Nanoclay Based ex Situ Nanocomposites from SEBS and Modified SEBS by Small-Angle X-ray Scattering and Modulated DSC Studies ... (1-3) These polymer?clay nanocomposites possess superior properties to conventional microcomposites due to maximized interfacial adhesion and finely dispersed nanoclays distributed all through the polymer matrix. ... TEM image of AA6SEBS-MT4 nanocomposite (Figure 6l) indicates that MT nanoclays are dispersed well with lamellar microphase separated morphology which is regained on addition of the MT nanoclay. ...

Anirban Ganguly; Anil K. Bhowmick; Yongjin Li

2008-07-22T23:59:59.000Z

195

Sure, a textbook can tell you about Bragg's Law and the x-ray absorption energies for any element in the periodic table, but it can't tell you how to plan and carry out an x-ray scattering experiment at one of the 50 or so synchrotron radiation facilitie  

NLE Websites -- All DOE Office Websites (Extended Search)

Report Report SSRL 6 th Annual School on Synchrotron X-ray Scattering Techniques in Materials and Environmental Sciences: Theory and Application SSRL SR-XRS participants. Synchrotron-based X-ray scattering (SR-XRS) techniques offer the ability to probe nano- and atomic-scale structure that dictates the properties of advanced technological and environmental materials. Important materials studied at the Stanford Synchrotron Radiation Lightsource (SSRL) include organic and inorganic thin films and interfaces, nanoparticles, complex oxides, solutions, polymers, minerals and poorly crystalline materials. Good planning and a good working knowledge of beam lines and techniques are required to successfully conduct SR-XRS measurements. This sixth annual School at SSRL on Synchrotron X-ray

196

A combined fit of total scattering and extended x-ray absorption fine structure data for local-structure determination in crystalline materials  

SciTech Connect

Reverse Monte Carlo (RMC) refinements of local structure using a simultaneous fit of X-ray/neutron total scattering and extended X-ray absorption fine structure (EXAFS) data were developed to incorporate an explicit treatment of both single- and multiple-scattering contributions to EXAFS. The refinement algorithm, implemented as an extension to the public domain computer software RMCProfile, enables accurate modeling of EXAFS over distances encompassing several coordination shells around the absorbing species. The approach was first tested on Ni, which exhibits extensive multiple scattering in EXAFS, and then applied to perovskite-like SrAl{sub 1/2}Nb{sub 1/2}O{sub 3}. This compound crystal1izes with a cubic double-perovskite structure but presents a challenge for local-structure determination using a total pair-distribution function (PDF) alone because of overlapping peaks of the constituent partial PDFs (e.g. Al-O and Nb-O or Sr-O and O-O). The results obtained here suggest that the combined use of the total scattering and EXAFS data provides sufficient constraints for RMC refinements to recover fine details of local structure in complex perovskites. Among other results, it was found that the probability density distribution for Sr in SrAl{sub 1/2}Nb{sub 1/2}O{sub 3} adopts T{sub d} point-group symmetry for the Sr sites, determined by the ordered arrangement of Al and Nb, as opposed to a spherical distribution commonly assumed in traditional Rietveld refinements.

Proffen, Thomas E [Los Alamos National Laboratory; Krayzman, Victor [NIST; Levin, Igor [NIST; Tucker, Matt [ISIS, UK

2009-01-01T23:59:59.000Z

197

Place-exchange mechanism of Pt (111) oxidation/reduction as observed by synchrotron X-ray scattering  

SciTech Connect

Structural changes in the Pt(111) single crystal surface associated with incipient electrochemical oxidation/reduction were studied by {ital in}{ital situ} synchrotron x-ray reflectivity. It was shown that lifting of Pt atoms of the surface layer occurs, substantiating the long-standing hypothesis of a place-exchange mechanism for solution/metal interface oxidation. It was also shown that, for a charge transfer of {approx_lt}1.7 e{sup -}/Pt atom, the initially flat surface structure could be recovered by electrochemical reduction. In constrast, the surface was irreversibly roughened for amounts of charge transfer exceeding {approx}1.7 e{sup -}/Pt, but the roughening involved only the atoms in the top layer of the original flat surface. A detailed mechanism is proposed for the place-exchange mechanism and the subsequent roughening of the electrode surface.

You, H.; Nagy, Z.; Zurawski, D.J.; Chiarello, R.P.

1996-07-01T23:59:59.000Z

198

Structure and photoinduced structural changes in a-As2S3 films: A study by differential anomalous x-ray scattering  

Science Journals Connector (OSTI)

Differential anomalous x-ray-scattering experiments were carried out on two samples, annealed and photodarkened a-As2S3 films of 4 ?m in thickness. Two x-ray energies were chosen. One is 11 859 eV, just below the arsenic K edge; the other is 11 700 eV, below the edge by 167 eV. The study of the structure and photoinduced reversible structural changes in the a-As2S3 films show that the first sharp diffraction peak (FSDP) is related to intermediate-range correlations. These correlations extend as far as 7.0 . Beyond 7.0 , however, the structure in radial distribution function tends to the average atomic density. The FSDP is dominated by the arsenic-related atomic correlations, especially As-As atomic correlation. After photodarkening, the structure overall in both the short and intermediate ranges moves to a more disordered state. The photoinduced structural changes involve changes of the As-As atomic pair correlation in the intermediate range as illustrated by the comparisons of the changes between the annealed and photodarkened a-As2S3 films in the FSDPs and the differential structure factors.

Weiqing Zhou; D. E. Sayers; M. A. Paesler; B. Bouchet-Fabre; Q. Ma; D. Raoux

1993-01-01T23:59:59.000Z

199

The scanning soft X-ray microscope at Hasylab: imaging and spectroscopy of photoelectrons, photoluminescence, desorbed ions, reflected, scattered and transmitted light  

Science Journals Connector (OSTI)

The scanning soft X-ray microscope operating at Hasylab/Desy has been developed to combine lateral and temporal resolution, tunability and various conventional spectroscopy techniques. Different mirror optics are used to form a microprobe in the energy range 151500 eV. A grazing incidence ellipsoidal mirror provides a resolution of 1 ?m over the entire energy range, and in the vacuum ultraviolet region below 30 eV, 0.15 ?m can be achieved with a Pt-coated Schwarzschild objective. Due to the large working distance of the optics used, the detection and analysis of several surface signals are comparatively simple. Detectors and spectrometers for photoelectrons, luminescence, fluorescence, desorbed ions, reflected, scattered and transmitted light are built in permanently into the microscope. Furthermore, some combinations of the different methods can be used for simultaneous measurements. In this paper the technical developments of recent years are described. A short representation of some exemplary applications will give an insight into the work of our group and illustrate the characteristics of the microscope. The following topics are discussed: cross-luminescence of barium fluoride, visible luminescence and degradation of porous silicon, photoluminescence of ceramics, chemical contrast in photoemission spectroscopy, and Bragg reflection as a contrast mechanism in X-ray microscopy.

J Voss

1997-01-01T23:59:59.000Z

200

Agglomeration and sintering in annealed FePt nanoparticle assemblies studied by small angle neutron scattering and x-ray diffraction  

Science Journals Connector (OSTI)

In this work we give a detailed account of complementary small angle neutron scattering and x-ray diffraction studies of polymer mediated, self-assembled FePt nanoparticle arrays as a function of annealing temperature. The combination of these two techniques provides significantly greater physical insight than is available using either individually. Since both methods integrate over a large number of particles statistically meaningful data can be obtained in contrast to imaging techniques where typically only small areas are analyzed. The data show that the median particle size increases with annealing at temperatures of 580C and above. The data also demonstrate that the distribution of particle diameters is significant and increases with annealing temperature. These results allow a comprehensive structural model of the annealed assemblies to be developed in terms of particle sintering and agglomeration. This enhanced understanding will allow new strategies to be pursued in realizing the potential of nanoparticle assemblies as a monodispersed data storage medium.

T. Thomson; S. L. Lee; M. F. Toney; C. D. Dewhurst; F. Y. Ogrin; C. J. Oates; S. Sun

2005-08-19T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Crystal Structures and Small-angle X-ray Scattering Analysis of UDP-galactopyranose Mutase from the Pathogenic Fungus Aspergillus fumigatus  

SciTech Connect

UDP-galactopyranose mutase (UGM) is a flavoenzyme that catalyzes the conversion of UDP-galactopyranose to UDP-galactofuranose, which is a central reaction in galactofuranose biosynthesis. Galactofuranose has never been found in humans but is an essential building block of the cell wall and extracellular matrix of many bacteria, fungi, and protozoa. The importance of UGM for the viability of many pathogens and its absence in humans make UGM a potential drug target. Here we report the first crystal structures and small-angle x-ray scattering data for UGM from the fungus Aspergillus fumigatus, the causative agent of aspergillosis. The structures reveal that Aspergillus UGM has several extra secondary and tertiary structural elements that are not found in bacterial UGMs yet are important for substrate recognition and oligomerization. Small-angle x-ray scattering data show that Aspergillus UGM forms a tetramer in solution, which is unprecedented for UGMs. The binding of UDP or the substrate induces profound conformational changes in the enzyme. Two loops on opposite sides of the active site move toward each other by over 10 {angstrom} to cover the substrate and create a closed active site. The degree of substrate-induced conformational change exceeds that of bacterial UGMs and is a direct consequence of the unique quaternary structure of Aspergillus UGM. Galactopyranose binds at the re face of the FAD isoalloxazine with the anomeric carbon atom poised for nucleophilic attack by the FAD N5 atom. The structural data provide new insight into substrate recognition and the catalytic mechanism and thus will aid inhibitor design.

Dhatwalia, Richa; Singh, Harkewal; Oppenheimer, Michelle; Karr, Dale B.; Nix, Jay C.; Sobrado, Pablo; Tanner, John J. (Missouri); (LBNL); (VPI-SU)

2012-05-14T23:59:59.000Z

202

X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate  

E-Print Network (OSTI)

X-ray-induced phase transformation in congruent and vapor-transport-equilibrated lithium tantalate an effect of a partially reversible x-ray-induced increase of diffuse x-ray scattering in both congruent been attributed to x-ray-induced decay of the ferroelectric phase at room temperature. The x-ray

Byer, Robert L.

203

Multiple-scattering calculations of the uranium {ital L}{sub 3}-edge x-ray-absorption near-edge structure  

SciTech Connect

A theoretical study of the uranium {ital L}{sub 3}-edge x-ray absorption near-edge structure (XANES) is presented for several uranium compounds, including oxides, intermetallics, uranyl fluoride, and {alpha}-uranium. Calculations were performed using FEFF6, an {ital ab} {ital initio} multiple-scattering (MS) code that includes the most important features of current theories. The results, which account for both the fine structure {chi} and the atomiclike background {mu}{sub 0} of the absorption coefficient {mu}, are compared to new and previously measured experimental spectra, reavealing very good agreement for most systems. For several compounds, a more detailed theoretical analysis determined the influence of cluster size and scattering order upon the calculated spectra. Results indicate that MS paths and scattering paths that include rather distant atoms make significant contributions for UO{sub 2}, whereas XANES for crystals with lower symmetry and density can be modeled using only shorter single-scattering paths. In most cases, assumption of a screened final state in the calculation gives better agreement with experiment than use of an unscreened final state. The successful modeling of spectra for a variety of different uranium compounds, with differing spectral features, indicates that the semirelativistic treatment of XANES used here is adequate even for heavy elements. The well-known resonance, observed experimentally for uranyl (UO{sub 2}{sup 2+}) compounds {approx}15 eV above the white line, is successfully modeled here for the first time, using multiple-scattering paths within the O-U-O axial bonds. Overlapping muffin-tin spheres were required in the calculation, probably as a result of the short uranyl axial bonds.

Hudson, E.A. [Glenn T. Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, University of California, Livermore, California 94551 (United States)] [Glenn T. Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, University of California, Livermore, California 94551 (United States); Rehr, J.J. [Department of Physics, University of Washington, Seattle, Washington 98195 (United States)] [Department of Physics, University of Washington, Seattle, Washington 98195 (United States); Bucher, J.J. [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)] [Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

1995-11-15T23:59:59.000Z

204

Simulation of the shape of chaperonins using the small-angle x-ray scattering curves and torus form factor  

SciTech Connect

The inverse scattering problem has been solved for protein complexes whose surfaces can be described by a set of the simplest doubly connected surfaces in the uniform approximation (a scattering potential inside the molecule is a constant). Solutions of two proteins-well-known GroEL bacterial chaperonin and poor-studied bacteriophage chaperonin, which is a product of 146 gene (gp146)-were taken for the experiment. The shapes of protein complexes have been efficiently reconstructed from the experimental scattering curves. The shell method, the method of the rotation of amino acid sequences with the use of the form factor of an amino acid, and the method of seeking the model parameters of a protein complex with the preliminarily obtained form factor of the model have been used to reconstruct the shape of these particles.

Amarantov, S. V., E-mail: amarantov_s@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Naletova, I. N. [Moscow State University, Belozerskii Institute of Molecular Biology and Bioorganic Chemistry (Russian Federation); Kurochkina, L. P. [Russian Academy of Sciences, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation)

2011-08-15T23:59:59.000Z

205

Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray  

SciTech Connect

Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 1020 keV (?E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

Ichiyanagi, Kouhei; Sasaki, Yuji C. [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan) [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)] [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan)] [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Nishijima, Masaki; Inoue, Yoshihisa [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)] [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yagi, Naoto [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan) [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

2013-10-15T23:59:59.000Z

206

Two wide-angle imaging neutral-atom spectrometers (TWINS)  

SciTech Connect

Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) is a revolutionary new mission designed to stereoscopically image the magnetosphere in charge exchange neutral atoms for the first time. The authors propose to fly two identical TWINS instruments as a mission of opportunity on two widely-spaced high-altitude, high-inclination US Government spacecraft. Because the spacecraft are funded independently, TWINS can provide a vast quantity of high priority science observations (as identified in an ongoing new missions concept study and the Sun-Earth Connections Roadmap) at a small fraction of the cost of a dedicated mission. Because stereo observations of the near-Earth space environs will provide a particularly graphic means for visualizing the magnetosphere in action, and because of the dedication and commitment of the investigator team to the principles of carrying space science to the broader audience, TWINS will also be an outstanding tool for public education and outreach.

McComas, D.J. [Los Alamos National Lab., NM (United States)] [Los Alamos National Lab., NM (United States); Blake, B. [Aerospace Corp., CA (United States)] [Aerospace Corp., CA (United States); Burch, J. [Southwest Research Inst., San Antonio, TX (United States)] [and others] [Southwest Research Inst., San Antonio, TX (United States); and others

1998-11-01T23:59:59.000Z

207

Two wide-angle imaging neutral-atom spectrometers  

SciTech Connect

The Two Wide-angle Imaging Neutral-atom Spectrometers (TWINS) mission provides a new capability for stereoscopically imaging the magnetosphere. By imaging the charge exchange neutral atoms over a broad energy range (1 < E , {approximately} 100 keV) using two identical instruments on two widely-spaced high-altitude, high-inclination spacecraft, TWINS will enable the 3-dimensional visualization and the resolution of large scale structures and dynamics within the magnetosphere for the first time. These observations will provide a leap ahead in the understanding of the global aspects of the terrestrial magnetosphere and directly address a number of critical issues in the ``Sun-Earth Connections`` science theme of the NASA Office of Space Science.

McComas, D.J.

1997-12-31T23:59:59.000Z

208

Total reflection inelastic x-ray scattering from a 10 nm thick La{sub 0.6}Sr{sub 0.2}CoO{sub 3} thin film.  

SciTech Connect

To study equilibrium changes in composition, valence, and electronic structure near the surface and into the bulk, we demonstrate the use of a new approach, total-reflection inelastic x-ray scattering, as a sub-keV spectroscopy capable of depth profiling chemical changes in thin films with nanometer resolution. By comparing data acquired under total x-ray reflection and penetrating conditions, we are able to separate the O K-edge spectra from a 10 nm La{sub 0.6}Sr{sub 0.4}CoO{sub 3} thin film from that of the underlying SrTiO{sub 3} substrate. With a smaller wavelength probe than comparable soft x-ray absorption measurements, we also describe the ability to easily access dipole-forbidden final states, using the dramatic evolution of the La N{sub 4,5} edge with momentum transfer as an example.

Fister, T. T.; Fong, D. D.; Eastman, J. A.; Iddir, H.; Zapol, P.; Fuoss, P. H.; Balasubramanian, M.; Gordon, R. A.; Balasubramaniam, K. R.; Salvador, P. A.; Simon Fraser Univ.; Carnegie Mellon Univ.

2011-01-18T23:59:59.000Z

209

Investigations of anisotropy of the electronic density in KC8 by synchroton X-ray Compton scattering  

Science Journals Connector (OSTI)

Extensive experiments have been performed to determine the electronic behavior of the outer alkali electron in the stage one heavy alkali metal GIC to test both available band structure calculations (1,2). The discrepancy in the experimental results is very large, leading to prediction of large (3,5) or small (4) charge transfer. Within impulse approximation, the Compton profiles are used to determine the electron momentum distribution of the solid along selected directions. As it works in momentum space, the inelastic scattering is a very sensitive test of the ground-state calculated wave-functions. Compton profiles have been measured, using the high resolution spectrometer from the LURE synchroton source, with intercalated HOPG samples. The special features of the conduction band of KC8 are discussed in comparison with theoretical band structure calculations (1,2). For more accurate check, we need the theoretical Compton profiles based on calculated wave-functions.

G. Loupias; J. Chomilier; J. Tarbes; D. Guerard

1988-01-01T23:59:59.000Z

210

Quasi-zero dimensional CuB2O4: a resonant inelastic X-ray scattering case study  

SciTech Connect

We explore the general phenomenology of resonant inelastic scattering (RIXS) using CuB{sub 2}O{sub 4}, a network of CuO{sub 4} plaquettes electronically isolated by B{sup +3} ions. Spectra show a small number of well-separated features, and we exploit the simple electronic structure to explore RIXS phenomenology by developing a calculation which allows for intermediate-state effects ignored in standard approaches. These effects are found to be non-negligible and good correspondence between our model and experiment leads to a simple picture of such phenomenology as the genesis of d {yields} d excitations at the K edge and intermediate-state interference effects.

Hancock, J.N.

2010-04-29T23:59:59.000Z

211

Chest x-Rays  

Energy.gov (U.S. Department of Energy (DOE))

The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica.

212

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5--50 pairs of alternate Mo/Si layers with a period of 20--250 A. The support membrane is 10--200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window. 6 figs.

Ceglio, N.M.; Stearns, D.G.; Hawryluk, A.M.; Barbee, T.W. Jr.

1987-08-07T23:59:59.000Z

213

X-ray beamsplitter  

DOE Patents (OSTI)

An x-ray beamsplitter which splits an x-ray beam into two coherent parts by reflecting and transmitting some fraction of an incident beam has applications for x-ray interferometry, x-ray holography, x-ray beam manipulation, and x-ray laser cavity output couplers. The beamsplitter is formed of a wavelength selective multilayer thin film supported by a very thin x-ray transparent membrane. The beamsplitter resonantly transmits and reflects x-rays through thin film interference effects. A thin film is formed of 5-50 pairs of alternate Mo/Si layers with a period of 20-250 A. The support membrane is 10-200 nm of silicon nitride or boron nitride. The multilayer/support membrane structure is formed across a window in a substrate by first forming the structure on a solid substrate and then forming a window in the substrate to leave a free-standing structure over the window.

Ceglio, Natale M. (Livermore, CA); Stearns, Daniel S. (Mountain View, CA); Hawryluk, Andrew M. (Modesto, CA); Barbee, Jr., Troy W. (Palo Alto, CA)

1989-01-01T23:59:59.000Z

214

X-ray binaries  

E-Print Network (OSTI)

We review the nuclear astrophysics aspects of accreting neutron stars in X-ray binaries. We summarize open astrophysical questions in light of recent observations and their relation to the underlying nuclear physics. Recent progress in the understanding of the nuclear physics, especially of X-ray bursts, is also discussed.

H. Schatz; K. E. Rehm

2006-08-01T23:59:59.000Z

215

Theory of low energy excitations in resonant inelastic x-ray scattering for rare-earth systems: Yb compounds as typical examples  

Science Journals Connector (OSTI)

Theoretical predictions are given for low energy excitations, such as crystal field excitations and Kondo resonance excitations, to be detected by high-resolution measurements of resonant inelastic x-ray scattering (RIXS) of rare-earth materials with Yb compounds as typical examples. Crystal field excitations in the Yb 3d RIXS of a Yb3+ ion in the cubic crystal field are formulated, and the calculation of RIXS spectra for YbN is done. Kondo resonance excitations revealed in the Yb 3d RIXS spectra are calculated for mixed-valence Yb compounds, Yb1-xLuxAl3, in the leading term approximation of the 1/Nf expansion method with a single impurity Anderson model. It is emphasized that the high-resolution RIXS with polarization dependence is a powerful tool to study the crystal field levels together with their symmetry and also the Kondo bound state in rare-earth compounds. Some in-depth discussions are given on the polarization effects of RIXS, including 4d and 2p RIXS spectra, the coherence effect of the Kondo bound states, and the importance of the high-resolution RIXS spectra for condensed matter physics under extreme conditions.

A. Kotani

2011-04-25T23:59:59.000Z

216

Probing of bonding changes in B[subscript 2]O[subscript 3] glasses at high pressure with inelastic X-ray scattering  

SciTech Connect

Full understanding of atomic arrangement in amorphous oxides both at ambient and high pressure is an ongoing fundamental puzzle. Whereas the structures of archetypal oxide glasses such as v-B{sub 2}O{sub 3} at high pressure are essential to elucidate origins of anomalous macroscopic properties of more complex melts, knowledge of the high-pressure structure and pressure-induced coordination changes of these glasses has remained elusive due to lack of suitable in situ experimental probes. Here, we report synchrotron inelastic X-ray scattering results for v-{sub 2}O{sub 3} at pressures up to 22.5 GPa, revealing the nature of pressure-induced bonding changes and the structure. Direct in situ measurements show a continuous transformation from tri-coordinated to tetra-coordinated boron beginning at 4-7 GPa with most of the boron tetra-coordinated above 20 GPa, forming dense tetrahedral v-B{sub 2}O{sub 3}. After decompression from high pressure the bonding reverts back to tri-coordinated boron but with the data suggesting a permanent densification.

Lee, Sung Kuen; Eng, Peter J.; Mao, Ho-Kwang; Meng, Yue; Newville, Matthew; Hu, Michael Y.; Shu, Jinfu (Seoul); (CIW); (UC)

2010-07-19T23:59:59.000Z

217

Characterization of the Decaheme c-type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-ray Scattering and Neutron Reflectometry  

SciTech Connect

The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate electron shuttling, generated by the bacteria s metabolism, to extracellular acceptors that include solid metal oxides such as hematite ( -Fe2O3). To investigate the mechanism by which OmcA interacts with hematite, we purified OmcA and characterized its solution structure by small angle X-ray scattering (SAXS) and its interaction with hematite by neutron reflectometry (NR). SAXS results showed that OmcA is a monomer that adopts a flat ellipsoidal shape with a dimension of 3.4 9.0 6.5 nm3. Changes in redox state affect OmcA conformation. In addition, OmcA interacts with small organic ligands known to act as electron shuttle molecules, such as flavin mononucleotide (FMN), resulting in the formation of high molecular weight assemblies. A model system, developed using NR to study the interaction of OmcA with hematite, shows that OmcA forms a well-defined monomolecular layer on hematite surfaces. This allows OmcA to preferentially interact with hematite in a conformation that maximizes its contact area with the mineral surface. Overall, these results provide experimental and quantitative evidence for OmcA reduction of solid metal oxides involving both direct and indirect mechanisms.

Johs, Alexander [ORNL; Shi, Liang [ORNL; Droubay, Timothy [Pacific Northwest National Laboratory (PNNL); Ankner, John Francis [ORNL; Liang, Liyuan [ORNL

2010-01-01T23:59:59.000Z

218

X-Ray Interactions with Matter from the Center for X-Ray Optics (CXRO)  

DOE Data Explorer (OSTI)

The primary interactions of low-energy x-rays within condensed matter, viz. photoabsorption and coherent scattering, are described for photon energies outside the absorption threshold regions by using atomic scattering factors. The atomic scattering factors may be accurately determined from the atomic photoabsorption cross sections using modified Kramers-Kronig dispersion relations. From a synthesis of the currently available experimental data and recent theoretical calculations for photoabsorption, the angle-independent, forward-scattering components of the atomic scattering factors have been thus semiempirically determined and tabulated here for 92 elements and for the region 50-30,000 eV. Atomic scattering factors for all angles of coherent scattering and at the higher photon energies are obtained from these tabulated forward-scattering values by adding a simple angle-dependent form-factor correction. The incoherent scattering contributions that become significant for the light elements at the higher photon energies are similarly determined. The basic x-ray interaction relations that are used in applied x-ray physics are presented here in terms of the atomic scattering factors. The bulk optical constants are also related to the atomic scattering factors. These atomic and optical relations are applied to the detailed calculation of the reflectivity characteristics of a series of practical x-ray mirror, multilayer, and crystal monochromators. Comparisons of the results of this semiempirical,"atom-like", description of x-ray interactions for the low-energy region with those of experiment and ab initio theory are presented.

Henke, B.L.; Gullikson, E.M.; Davis, J.C.

219

Investigations of the R5(SixGe1-x)4 Intermetallic Compounds by X-Ray Resonant Magnetic Scattering  

SciTech Connect

The XRMS experiment on the Gd{sub 5}Ge{sub 4} system has shown that, below the Neel temperature, T{sub N} = 127 K, the magnetic unit cells is the same as the chemical unit cell. From azimuth scans and the Q dependence of the magnetic scattering, all three Gd sites in the structure were determined to be in the same magnetic space group Pnma. The magnetic moments are aligned along the c-axis and the c-components of the magnetic moments at the three different sites are equal. The ferromagnetic slabs are stacked antiferromagnetically along the b-direction. They found an unusual order parameter curve in Gd{sub 5}Ge{sub 4}. A spin-reorientation transition is a possibility in Gd{sub 5}Ge{sub 4}, which is similar to the Tb{sub 5}Ge{sub 4} case. Tb{sub 5}Ge{sub 4} possesses the same Sm{sub 5}Ge{sub 4}-type crystallographic structure and the same magnetic space group as Gd{sub 5}Ge{sub 4} does. The difference in magnetic structure is that Tb{sub 5}Ge{sub 4} has a canted one but Gd{sub 5}Ge{sub 4} has nearly a collinear one in the low temperature antiferromagnetic phase. The competition between the magneto-crystalline anisotropy and the nearest-neighbor magnetic exchange interactions may allow a 3-dimensional canted antiferromagnetic structure in Tb{sub 5}Ge{sub 4}. The spin-reorientation transition in both Gd{sub 5}Ge{sub 4} and Tb{sub 5}Ge{sub 4} may arise from the competition between the magnetic anisotropy from the spin-orbit coupling of the conduction electrons and the dipolar interactions anisotropy.

Lizhi Tan

2008-08-18T23:59:59.000Z

220

X-ray laser  

DOE Patents (OSTI)

An X-ray laser (10) that lases between the K edges of carbon and oxygen, i.e. between 44 and 23 Angstroms, is provided. The laser comprises a silicon (12) and dysprosium (14) foil combination (16) that is driven by two beams (18, 20) of intense line focused (22, 24) optical laser radiation. Ground state nickel-like dysprosium ions (34) are resonantly photo-pumped to their upper X-ray laser state by line emission from hydrogen-like silicon ions (32). The novel X-ray laser should prove especially useful for the microscopy of biological specimens.

Nilsen, Joseph (Livermore, CA)

1991-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

X-ray absorption spectroscopy  

E-Print Network (OSTI)

009-9473-8 REVIEW X-ray absorption spectroscopy Junko Yano and application of X-ray absorption spectroscopy, bothX-ray absorption near-edge structure (XANES) and extended X-

Yano, Junko; Yachandra, Vittal K.

2009-01-01T23:59:59.000Z

222

X-ray Absorption Spectroscopy  

E-Print Network (OSTI)

type: Review X-ray Absorption Spectroscopy Junko Yano andPhotosystem II; XAS, X-ray absorption spectroscopy; EXAFS,X-ray absorption fine structure; EPR, electron paramagnetic

Yano, Junko

2010-01-01T23:59:59.000Z

223

X-Ray Generators  

Science Journals Connector (OSTI)

There are many types of X-ray generators sold commercially. The following are some of ... that should be considered when selecting a particular generator for a particular purpose. All the companies listed below s...

Reuben Rudman

1972-01-01T23:59:59.000Z

224

Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Print Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results from x-ray and neutron diffraction. From advanced ceramics to catalysts, from semiconductor technology to the frontiers of medicine, and from new magnetic materials and devices to framework compounds used to sequester radioactive waste, crystallography using hard x-ray diffraction techniques at synchrotron radiation facilities plays a crucial role in our ability to understand and control the world in which we live.

225

Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Scattering Print Scattering Print When a crystalline sample is illuminated with x-rays, the x-rays are scattered (diffracted) into very specific directions with various intensities. Detectors are used to measure this "diffraction pattern," which is then processed by computers to deduce the arrangement of atoms within the crystal. Hard x-rays have wavelengths comparable to the distance between atoms. Essentially everything we know about the atomic structure of materials is based on results from x-ray and neutron diffraction. From advanced ceramics to catalysts, from semiconductor technology to the frontiers of medicine, and from new magnetic materials and devices to framework compounds used to sequester radioactive waste, crystallography using hard x-ray diffraction techniques at synchrotron radiation facilities plays a crucial role in our ability to understand and control the world in which we live.

226

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

227

Characterization of the Decaheme c-Type Cytochrome OmcA in Solution and on Hematite Surfaces by Small Angle X-Ray Scattering and Neutron Reflectometry  

SciTech Connect

The outer membrane protein OmcA is an 85 kDa decaheme c-type cytochrome located on the surface of the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1. It is assumed to mediate shuttling of electrons to extracellular acceptors that include solid metal oxides such as hematite (a-Fe2O3). No information is yet available concerning OmcA structure in physiologically relevant conditions such as aqueous environments. We purified OmcA and characterized its solution structure by small angle x-ray scattering (SAXS), and its interaction at the hematite-water interface by neutron reflectometry. SAXS showed that OmcA is a monomer that adopts a flat ellipsoidal shape with an overall dimension of 34 x 90 x 65A? 3. To our knowledge, we obtained the first direct evidence that OmcA undergoes a redox state-dependent conformational change in solution whereby reduction decreases the overall length of OmcA by ~7 A? (the maximum dimension was 96 A? for oxidized OmcA, and 89 A? for NADH and dithionite-reduced OmcA). OmcA was also found to physically interact with electron shuttle molecules such as flavin mononucleotide, resulting in the formation of high-molecular-weight assemblies. Neutron reflectometry showed that OmcA forms a well-defined monomolecular layer on hematite surfaces, where it assumes an orientation that maximizes its contact area with the mineral surface. These novel insights into the molecular structure of OmcA in solution, and its interaction with insoluble hematite and small organic ligands, demonstrate the fundamental structural bases underlying OmcAs role in mediating redox processes.

Johs, Alexander; Shi, Liang; Droubay, Timothy C.; Ankner, John F.; Liang, L.

2010-06-16T23:59:59.000Z

228

X-ray dark-field imaging modeling * F. Pfeiffer,2  

E-Print Network (OSTI)

X-ray dark-field imaging modeling W. Cong,1, * F. Pfeiffer,2 M. Bech,2 and G. Wang1 1 Biomedical-field images are formed from x-ray small-angle scattering signals. The small-angle scattering signals to describe the relationship between x-ray small-angle scattering coefficients of an object and dark

Wang, Ge

229

Hydrogen absorption in epitaxial W/Nb(001) and polycrystalline Fe/Nb(110) multilayers studied in-situ by X-ray/neutron scattering techniques and X-ray absorption spectroscopy  

SciTech Connect

Hydrogen can be absorbed in large quantities by 100 {angstrom} thin Nb layers embedded in epitaxial W/Nb and polycrystalline Fe/Nb multilayers. The solubility and the hydrogen-induced structural changes of the host lattice are explored in-situ by small-angle neutron/X-ray reflectometry and high-angle diffraction. These measurements reveal for both systems that the relative out-of-plane expansion of the Nb layers is considerably larger than the relative increase of the Nb interplanar spacing indicating two distinctly different mechanisms of hydrogen absorption. In Fe/Nb multilayers, hydrogen expands the Nb interplanar spacing in a continuous way as function of the external pressure. In contrast, the Nb lattice expansion is discontinuous in epitaxial W/Nb multilayers: A jump in the Nb(002) Bragg reflection position occurs at a critical hydrogen pressure of 1 mbar. In-situ EXAFS spectroscopy also exhibits an irreversible expansion of the Nb lattice in the film plane for p{sub H{sub 2}}> 1 mbar. This can be regarded as a structural phase transition from an exclusively out-of-plane to a three-dimensionally expanded state at low and high hydrogen pressures, respectively.

Klose, F.; Rehm, C.; Fieber-Erdmann, M.; Holub-Krappe, E.; Bleif, H. J.; Sowers, H.; Goyette, R.; Troger, L.; Maletta, H.

1999-11-02T23:59:59.000Z

230

X-ray Diffraction / MSE 603 Spring 2002 Qun Shen / CHESS qs11@cornell.edu  

E-Print Network (OSTI)

X-ray Diffraction / MSE 603 Spring 2002 Qun Shen / CHESS qs11@cornell.edu 1. X-ray production & basic properties ­ common sources for diffraction experiments ­ synchrotron radiation ­ response to x-rays by an electron ­ refraction index ­ total external reflection & evanescent wave, TXRF 2. X-ray scattering basics

Shen, Qun

231

Portable X-Ray, K-Edge Heavy Metal Detector  

SciTech Connect

The X-Ray, K-Edge Heavy Metal Detection System was designed and built by Ames Laboratory and the Center for Nondestructive Evaluation at Iowa State University. The system uses a C-frame inspection head with an X-ray tube mounted on one side of the frame and an imaging unit and a high purity germanium detector on the other side. the inspection head is portable and can be easily positioned around ventilation ducts and pipes up to 36 inches in diameter. Wide angle and narrow beam X-ray shots are used to identify the type of holdup material and the amount of the contaminant. Precise assay data can be obtained within minutes of the interrogation. A profile of the containerized holdup material and a permanent record of the measurement are immediately available.

Fricke, V.

1999-10-25T23:59:59.000Z

232

X-ray beam finder  

DOE Patents (OSTI)

An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

Gilbert, H.W.

1983-06-16T23:59:59.000Z

233

Nanostructure of a-Si:H and related alloys by small-angle scattering of neutrons and X-rays: Annual technical progress report: May 22, 1998 -- May 21, 1999  

SciTech Connect

This report describes work being performed to provide details of the microstructure in high-quality hydrogenated amorphous silicon and related alloys on the nanometer scale. The materials under study are being prepared by state-of-the-art deposition methods, as well as by new and emerging deposition techniques. The purpose is to establish the role of nanostructural features in controlling opto-electronic and photovoltaic properties. The approach centers around the use of the uncommon technique of small-angle scattering of both X-rays (SAXS) and neutrons (SANS). SAXS has already been established as highly sensitive to microvoids and columnar-like microstructure. A major goal of this research is to establish the sensitivity of SANS to the hydrogen nanostructure. Conventional X-ray diffraction techniques are being used to examine medium-range order and microcrystallinity, particularly near the boundary between amorphous and microcrystalline material.

Williamson, D. L.

1999-12-21T23:59:59.000Z

234

Electronic Structure of the Mn(4)Ca Cluster in the Oxygen-Evolving Complex of Photosystem Ii Studied By Resonant Inelastic X-Ray Scattering  

SciTech Connect

Oxygen-evolving complex (Mn{sub 4}Ca cluster) of Photosystem II cycles through five intermediate states (S{sub i}-states, i=0--4) before a molecule of dioxygen is released. During the S-state transitions, electrons are extracted from the OEC, either from Mn or alternatively from a Mn ligand. The oxidation state of Mn is widely accepted as Mn{sub 4}(III{sub 2},IV{sub 2}) and Mn{sub 4}(III,IV{sub 3}) for S{sub 1} and S{sub 2} states, while it is still controversial for the S{sub 0} and S{sub 3} states. We used resonant inelastic X-ray scattering (RIXS) to study the electronic structure of Mn{sub 4}Ca complex in the OEC. The RIXS data yield two-dimensional plots that provide a significant advantage by obtaining both K-edge pre-edge and L-edge-like spectra simultaneously. The second energy dimension separates the pre-edge (1s to 3d) transitions from the main K-edge (1s to 4p), and thus more precise analysis is possible. The 1s2p RIXS final state electron configuration along the energy transfer axis is identical to conventional L-edge absorption spectroscopy and the RIXS spectra are therefore sensitive to the metal spin state. We have collected data from PS II samples in the each of the S-states and compared them with data from various inorganic Mn complexes. The spectral changes in the Mn 1s2p{sub 3/2} RIXS spectra between the S-states are small compared to those of the oxides of Mn and coordination complexes. The results indicate strong covalency for the electronic configuration in the OEC, and we conclude that the electron is transferred from a strongly delocalized orbital, compared to those in Mn oxides or coordination complexes. The magnitude for the S{sub 0} to S{sub 1}, and S{sub 1} to S{sub 2} transitions is twice as large as that during the S{sub 2} to S{sub 3} transition, indicating that the electron for this transition is extracted from a highly delocalized orbital with little change in charge density at the Mn atoms. The RIXS spectra of S{sub 0} and S{sub 3} states also showed characteristic features which were not clear from the K-edge spectroscopy.

Yano, J.; Pushkar, Y.; Messinger, J.; Bergmann, U.; Glatzel, P.; Yachandra, V.K.

2009-06-04T23:59:59.000Z

235

Edible oil structures at low and intermediate concentrations. II. Ultra-small angle X-ray scattering of in situ tristearin solids in triolein  

SciTech Connect

Ultra-small angle X-ray scattering has been used for the first time to elucidate, in situ, the aggregation structure of a model edible oil system. The three-dimensional nano- to micro-structure of tristearin solid particles in triolein solvent was investigated using 5, 10, 15, and 20% solids. Three different sample preparation procedures were investigated: two slow cooling rates of 0.5/min, case 1 (22 days of storage at room temperature) and case 2 (no storage), and one fast cooling of 30/min, case 3 (no storage). The length scale investigated, by using the Bonse-Hart camera at beamline ID-15D at the Advanced Photon Source, Argonne National Laboratory, covered the range from 300? to 10??m. The unified fit and the Guinier-Porod models in the Irena software were used to fit the data. The former was used to fit 3 structural levels. Level 1 structures showed that the primary scatterers were essentially 2-dimensional objects for the three cases. The scatterers possessed lateral dimensions between 1000 and 4300?. This is consistent with the sizes of crystalline nanoplatelets present which were observed using cryo-TEM. Level 2 structures were aggregates possessing radii of gyration, R{sub g2} between 1800? and 12000? and fractal dimensions of either D{sub 2}=1 for case 3 or 1.8?D{sub 2}?2.1 for case 1 and case 2. D{sub 2}?=?1 is consistent with unaggregated 1-dimensional objects. 1.8???D{sub 2}???2.1 is consistent with these 1-dimensional objects (below) forming structures characteristic of diffusion or reaction limited cluster-cluster aggregation. Level 3 structures showed that the spatial distribution of the level 2 structures was uniform, on the average, for case 1, with fractal dimension D{sub 3}?3 while for case 2 and case 3 the fractal dimension was D{sub 3}?2.2, which suggested that the large-scale distribution had not come to equilibrium. The Guinier-Porod model showed that the structures giving rise to the aggregates with a fractal dimension given by D{sub 2} in the unified fit level 2 model were cylinders described by the parameter s?1 in the Guinier-Porod model. The size of the base of these cylinders was in agreement with the cryo-TEM observations as well as with the results of the level 1 unified fit model. By estimating the size of the nanoplatelets and understanding the structures formed via their aggregation, it will be possible to engineer novel lipids systems that embody desired functional characteristics.

Peyronel, Fernanda; Marangoni, Alejandro G. [Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Ilavsky, Jan [Advanced Photon Source, Argonne National Laboratory, 9700S Cass Ave., Bldg. 434D, Argonne, Illinois 60439 (United States); Mazzanti, Gianfranco [Department of Process Engineering and Applied Science, Dalhousie University, Halifax, Nova Scotia B3H 4R2 (Canada); Pink, David A. [Food Science Department, University of Guelph, Guelph, Ontario N1G 2W1 (Canada); Physics Department, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5 (Canada)

2013-12-21T23:59:59.000Z

236

APS 7-BM Beamline: X-Ray Resources  

NLE Websites -- All DOE Office Websites (Extended Search)

Useful Websites Useful Websites X-Ray Interactions with Matter from CRXO at LBNL. Intuitive interface for x-ray transmission and reflectivity for a wide range of materials. X-Ray Data Booklet from LBNL. Slightly outdated in places, but many useful tables of edge energies, fluorescence lines, and crystal lattice spacings. NIST XCOM Database. Powerful database of photoelectric absorption, elastic scattering, and Compton scattering cross-sections for a wide range of materials. X-Ray Server. Maintained by Sergey Stepanov at GMCA at the APS, this website has several powerful calculators for simulating x-ray reflection and diffraction. Software X-Ray Oriented Programs (XOP). This program, written by scientists at the ESRF and APS, is widely used in the synchrotron research community.

237

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

238

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

239

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

240

Compton backscattered collimated x-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source is disclosed for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications. 4 figs.

Ruth, R.D.; Huang, Z.

1998-10-20T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Compton backscattered collmated X-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

2000-01-01T23:59:59.000Z

242

Compton backscattered collimated x-ray source  

DOE Patents (OSTI)

A high-intensity, inexpensive and collimated x-ray source for applications such as x-ray lithography is disclosed. An intense pulse from a high power laser, stored in a high-finesse resonator, repetitively collides nearly head-on with and Compton backscatters off a bunched electron beam, having relatively low energy and circulating in a compact storage ring. Both the laser and the electron beams are tightly focused and matched at the interaction region inside the optical resonator. The laser-electron interaction not only gives rise to x-rays at the desired wavelength, but also cools and stabilizes the electrons against intrabeam scattering and Coulomb repulsion with each other in the storage ring. This cooling provides a compact, intense bunch of electrons suitable for many applications. In particular, a sufficient amount of x-rays can be generated by this device to make it an excellent and flexible Compton backscattered x-ray (CBX) source for high throughput x-ray lithography and many other applications.

Ruth, Ronald D. (Woodside, CA); Huang, Zhirong (Stanford, CA)

1998-01-01T23:59:59.000Z

243

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Print Lensless X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs combine the advantages of sychrotron light sources (high brightness and x-ray wavelengths relevant to atomic and molecular phenomena) with the advantages of visible-light lasers (highly coherent beams). All of these characteristics are important for coherent x-ray diffraction imaging-lensless imaging techniques that are proving to be integral to single-shot, high-resolution imaging of both complex materials and biological samples. Existing techniques are typically designed for transmission geometry, however, and use isolated objects, requiring special sample fabrication and restricting the type of samples under investigation. Recently, researchers from the ALS and the University of Oregon have shown at ALS Beamline 12.0.2 that it is possible to form x-ray holograms in reflection geometry by using the light scattered from a sample, opening the door to lensless imaging of a wealth of new material samples.

244

X-ray Spectrometry  

Science Journals Connector (OSTI)

These provide excellent energy resolution for a wide range of X-ray energies, from the optical range up to several kiloelectronvolts. ... The Astro-E2 launched in 2005 was the first mission that contained a low-temperature microcalorimeter-based observatory, and three more low-temperature detector-based observatories are being developed (NeXT, Constellation-X, ZEUS). ...

Imre Szalki; Jnos Osn; Ren E. Van Grieken

2006-05-10T23:59:59.000Z

245

X-ray Science Division: Groups  

NLE Websites -- All DOE Office Websites (Extended Search)

Division: Groups Division: Groups Atomic, Molecular and Optical Physics (AMO) Primary Contact: Stephen Southworth Work focuses on understanding how strong optical and x-ray fields interact with matter, with an emphasis on photonic control of electronic, atomic and molecular motion. Chemical and Materials Science (CMS) Primary Contact: Randy Winans Research Disciplines: Chemistry, Materials Science Detectors (DET) Primary Contact: Antonino Miceli GMCA Structural Biology Facility (MX) Primary Contact: Robert Fischetti Research Disciplines: Biology, Life Sciences Imaging (IMG) Primary Contact: Francesco DeCarlo Research Disciplines: Materials Science, Biology, Physics, Life Sciences Inelastic X-ray & Nuclear Resonant Scattering (IXN) Primary Contact: Thomas Gog Research Disciplines: Condensed Matter Physics, Geophysics, Materials

246

X-ray spectra transmitted through Compton-thick absorbers  

E-Print Network (OSTI)

X-ray spectra transmitted through matter which is optically thick to Compton scattering are computed by means of Monte Carlo simulations. Applications to the BeppoSAX data of the Seyfert 2 galaxy in Circinus, and to the spectral modeling of the Cosmic X-ray Background, are discussed.

Giorgio Matt; Fulvio Pompilio; Fabio La Franca

1999-04-24T23:59:59.000Z

247

Synchrotron x-ray reflectivity study of oxidation/passivation of copper and silicon.  

SciTech Connect

Synchrotron x-ray-scattering technique studies of copper and silicon electrochemical interfaces are reported. These two examples illustrate the application of synchrotron x-ray techniques for oxidation, passivation, and dissolution of metals and semiconductors.

Chu, Y.; Nagy, Z.; Parkhutik, V.; You, H.

1999-07-21T23:59:59.000Z

248

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

249

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

250

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing short-exposure nanoscale images of the magnetic structure of materials. The new method combines aspects of coherent x-ray diffraction, which can determine 3-D charge distributions, and resonant magnetic scattering, which is sensitive to magnetic structures. Physicists have used coherent x-ray diffraction to measure the electron density of complicated molecules. The formula used to make these calculations contains terms that relate to the electron spin of magnetic atoms, but these terms are traditionally ignored since coherent x-ray diffraction has not been used to retrieve magnetic information. Using the full formula allows for the determination of not only the electron density, but also the magnetic spin distribution and its orientation.

251

X-ray Spectrometry  

Science Journals Connector (OSTI)

The segmented STJ operated at total count rates of above 105 counts/s, and the best-achieved energy resolution of their single STJ was found to be 10 eV for X-ray energies below 1 keV. ... The Mo?Au TES, with an operating temperature of 230 mK, was developed for the Constellation-X mission and the energy resolution of the spectrometer is ?28 eV at 3.3 keV. ...

Imre Szalki; Szabina B. Trk; Jasna Injuk; Ren E. Van Grieken

2002-05-18T23:59:59.000Z

252

X-Ray Source Based on the Parametric X-Rays  

E-Print Network (OSTI)

Prospects of parametric x-rays (PXR) application for the development of a tuneable quasi-monochromatic x-ray source for medical imaging are discussed. Analysis of basic requirements for electron accelerator shows that it must be relatively low-energy and high-current linac. In comparison with known ultra-relativistic cases, at low energies PXR properties will be modified to a great extent by multiple scattering of the electrons. PXR intensity dependence on target thickness and beam energy are calculated taking multiple scattering into account. It is concluded that PXR source based on real medical accelerators is feasible and can provide x-ray flux needful for obtaining high quality medical images.

Alexander Lobko; Olga Lugovskaya

2005-09-02T23:59:59.000Z

253

X-ray and neutron scattering studies of the Rb?MnF? and Cu???xMgx̳GeO? in an external magnetic field  

E-Print Network (OSTI)

This thesis presents results of two scattering studies of low dimensional magnetic materials. The first is a neutron scattering study of Rb2MnF4, a nearly ideal two-dimensional square lattice Heisenberg antiferromagnet ...

Christianson, Rebecca J. (Rebecca Jean), 1973-

2001-01-01T23:59:59.000Z

254

Directional fine structure in absorption of white x rays: A tomographic interpretation P. Korecki,1,  

E-Print Network (OSTI)

structure in absorption of white x rays can be interpreted as real-space projections of atomic structure from neigh- boring atoms.1 A straightforward analysis of the extended x-ray absorption fine structure of the absorbing atoms. Thus, the absorption cross section is effectively modulated by the x-ray scattering

Korecki, Pawe³

255

X-Ray Diamond Anvil Cell Facility at NSLS: 2010 Progress Report  

E-Print Network (OSTI)

X-Ray Diamond Anvil Cell Facility at NSLS: 2010 Progress Report Zhiqiang ChenZhiqiang Chen Stony) Powder X-ray Diffraction, Total Scattering Pair-Distributiony , g Function (PDF) under high P and high, yield strength, amorphization, texturing, compressibility Hydrothermal DAC (Bassett) Angle Dispersive X-ray

Duffy, Thomas S.

256

High-Energy X-ray Studies of Real Materials Under Real Conditions and in Real Time  

SciTech Connect

High-energy x-rays from 3rd generation synchrotron sources, including the APS, possess a unique combination of high penetration power and high spatial, reciprocal space, and temporal resolution. These characteristics can be exploited to non-destructively measure phase, texture and strain distributions under extreme environments including thermo-mechanical loading, high-pressure, irradiation and supercritical environments. Over the past several years, the 1-ID beamline has developed a number of programs for these purposes, namely (i) high-energy diffraction microscopy, in which grain and sub-grain volumes are mapped in polycrystalline aggregates, and (ii) combined small-and wide-angle x-ray scattering which permits information over a broad range of length scales to be collected from the same (micron-level) volume. These programs have been increasingly used to test and extend predictive simulations of materials behavior over size scales ranging from nm to mm. Select studies will be presented including nucleation and growth of nanomaterials, void and structural evolution in complex composites under thermo-mechanical and irradiated environments, and microstructural changes in layered systems including thermal-barrier coatings, batteries and fuel cells. Finally, extension of these programs, through the planned APS upgrade, to higher spatio-temporal resolution will be described.

Almer, Jonathan (ANL) [ANL

2011-05-11T23:59:59.000Z

257

X-ray Absorption Spectroscopy  

SciTech Connect

This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

Yano, Junko; Yachandra, Vittal K.

2009-07-09T23:59:59.000Z

258

X-ray fluorescence mapping  

NLE Websites -- All DOE Office Websites (Extended Search)

biololgical cells, over the measurement of impurities in solar cells, to the rare earth content of geological materials. A somewhat 'typical' layout for a X-ray fluorescence...

259

Diffraction with a coherent X-ray beam: dynamics and imaging  

Science Journals Connector (OSTI)

Techniques for coherent X-ray scattering measurements are detailed. Applications in the study of the dynamics of fluctuations and in lensless high-resolution imaging are described.

Livet, F.

2007-02-15T23:59:59.000Z

260

Your access to the Oak Ridge National Laboratory (ORNL) is approved beginning Sunday, June 20, 2010, for the second week of the Neutron X-ray Scattering School.  

E-Print Network (OSTI)

Your access to the Oak Ridge National Laboratory (ORNL) is approved beginning Sunday, June 20, 2010, Neutron Scattering Science User Office Oak Ridge National Laboratory ORNL Neutron Scattering School June 20-25, 2010 Oak Ridge National Laboratory Oak Ridge, Tennessee #12;

Pennycook, Steve

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Reverse Monte Carlo analysis of the local order in liquid Ge{sub 0.15}Te{sub 0.85} alloys combining neutron scattering and x-ray absorption spectroscopy  

SciTech Connect

The structure of liquid Ge{sub 0.15}Te{sub 0.85} alloys that exhibit a density anomaly between 633 K and 733 K at ambient pressure was investigated using x-ray absorption spectroscopy at the Ge K edge. Using a reverse Monte Carlo method to combine the present results with neutron scattering data, we show that the volume contraction is associated with an increase of the first neighbor coordination number around both Ge and Te by about one atom. The coordination number of Ge increases from 3{+-}0.3 to 4.1{+-}0.3. These results support an interpretation of the density anomaly in terms of the same Peierls-like distortion mechanism acting in the liquid state and in the neighboring (pure Te and GeTe compound) phases.

Coulet, Marie-Vanessa; Testemale, Denis; Hazemann, Jean-Louis; Gaspard, Jean-Pierre; Bichara, Christophe [Laboratoire TECSEN, UMR 6122, CNRS-Universite Paul Cezanne, Campus de St Jerome, 13397 Marseille Cedex 20 (France); SNBL/ESRF, 6 rue Jules Horowitz, Boite Postale 220, 38043, Grenoble (France); Laboratoire de Cristallographie, 25 Avenue des Martyrs, Boite Postale 166, 38043 Grenoble (France) and European Synchroton Radiation Facility, 6 rue Jules Horowitz, Boite Postale 220, 38043 Grenoble (France); Physique de la Matiere Condensee, B5, Universite de Liege, B4000 Sart-Tilman (Belgium); Centre de Recherches en Matiere Condensee et Nanosciences-CNRS, Campus de Luminy, Case 913, F13288 Marseille (France)

2005-11-01T23:59:59.000Z

262

A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy x-ray scattering studies of equilibrium and supercooled liquids  

SciTech Connect

High-energy x-ray diffraction studies of metallic liquids provide valuable information about structural evolution on the atomic length scale, leading to insights into the origin of the nucleation barrier and the processes of supercooling and glass formation. The containerless processing of the beamline electrostatic levitation (BESL) facility allows coordinated thermophysical and structural studies of equilibrium and supercooled liquids to be made in a contamination-free, high-vacuum ({approx}10{sup -8} Torr) environment. To date, the incorporation of electrostatic levitation facilities into synchrotron beamlines has been difficult due to the large footprint of the apparatus and the difficulties associated with its transportation and implementation. Here, we describe a modular levitation facility that is optimized for diffraction studies of high-temperature liquids at high-energy synchrotron beamlines. The modular approach used in the apparatus design allows it to be easily transported and quickly setup. Unlike most previous electrostatic levitation facilities, BESL can be operated by a single user instead of a user team.

Mauro, N.A.; Kelton, K.F. (WU)

2011-10-27T23:59:59.000Z

263

Structural characterization of Green River oil-shale at high-pressure using pair distribution function analysis and small angle x-ray scattering.  

SciTech Connect

The compression behavior of a silicate-rich oil shale from the Green River formation in the pressure range 0.0-2.4 GPa was studied using in situ high pressure X-ray pair distribution function (PDF) measurements for the sample contained within a Paris-Edinburgh cell. The real-space local structural information in the PDF, G(r), was used to evaluate the compressibility of the oil shale. Specifically, the pressure-induced reduction in the medium- to long-range atom distances (6-20 {angstrom}) yielded an average sample compressibility corresponding to a bulk modulus of ca. 61-67 GPa. A structural model consisting of a three phase mixture of the principal crystalline oil shale components (quartz, albite and Illite) provided a good fit to the ambient pressure PDF data (R 30.7%). Indeed the features in the PDF beyond 6 {angstrom}, were similarly well fit by a single phase model of the highest symmetry, highly crystalline quartz component.

Locke, D. R.; Chupas, P. J.; Chapman, K. W.; Pugmire, R. J.; Winans, R. E.; Univ. of Utah

2008-01-01T23:59:59.000Z

264

X-ray shearing interferometer  

DOE Patents (OSTI)

An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

Koch, Jeffrey A. (Livermore, CA)

2003-07-08T23:59:59.000Z

265

Towards Wide-angle Micro Vision Sensors Sanjeev J. Koppal* Ioannis Gkioulekas* Travis Young+ Hyunsung Park*  

E-Print Network (OSTI)

, including micro- robots and other small machines [16], and nodes of far- flung sensor networks [46]. Power1 Towards Wide-angle Micro Vision Sensors Sanjeev J. Koppal* Ioannis Gkioulekas* Travis Young on micro-scale devices is a challenge. On these platforms, the power and mass constraints are severe enough

266

J. Astrophys. Astr. (0000) 00, 000000 ATLAS, and Wide-Angle Tail Galaxies in ATLAS  

E-Print Network (OSTI)

J. Astrophys. Astr. (0000) 00, 000­000 ATLAS, and Wide-Angle Tail Galaxies in ATLAS Minnie Y. Mao1 Telescope Compact Array (ATCA), ATLAS (Australia Telescope Large Area Survey) is imaging two fields large extent of 12 Mpc, with a velocity range of 4500 km s-1. Here we present the WATs in ATLAS

Norris, Ray

267

Dynamic model of anisotropic x-ray refraction  

Science Journals Connector (OSTI)

General mechanisms of anisotropic x-ray refraction at the resonance energy are investigated on the basis of dynamic-scattering theory. The deductions show that x rays within the crystals that have anisotropic susceptibility are completely polarized and have two elliptical polarization states. Analytical expressions of the elliptical axes, refractive indices, and absorption coefficients for these two types of polarized waves are obtained in terms of the anisotropic components of the susceptibility tensor. Anisotropic birefringence and dichroism effects associated with the polarization properties of the x-ray waves are also illustrated theoretically.

X. R. Huang, Yong Li, W. J. Liu, and S. S. Jiang

1997-11-01T23:59:59.000Z

268

The X-ray background and the evolution of AGN  

E-Print Network (OSTI)

We discuss the constraints on the AGN evolution from the cosmic X-ray background and source counts. A synthesis model to fit the X-ray background is presented. In the model, the spectrum of type 2 AGN has been modeled including Compton down--scattering within the absorbing material. Besides, we introduced a dependence on redshift of the relative number of obscured sources and found a decrease of the fraction of type 2 AGN at redshifts larger than 2.

Fulvio Pompilio; Fabio La Franca; Giorgio Matt

1999-09-23T23:59:59.000Z

269

Sapphire analyzers for high-resolution x-ray spectroscopy.  

SciTech Connect

We present a sapphire (Al{sub 2}O{sub 3}) analyzer for high-resolution X-ray spectroscopy with 31-meV energy resolution. The analyzer is designed for resonant inelastic X-ray scattering (RIXS) measurements at the CuK{sub a} absorption edge near 8990 eV. The performance of the analyzer is demonstrated by measuring phonon excitations in beryllium because of its known dynamical structure and high counting rates.

Yavas, H.; Alp, E.; Sinn, H.; Alatas, A.; Said, A.; Shvydko, Y.; Toellner, T.; Khachatryan, R.; Billinge, S.; Hasan, Z.; Sturhahn, W.; Michigan State Univ.; Princeton Univ.; DESY

2007-11-11T23:59:59.000Z

270

Optics for X-Ray Laser and Laser Plasma Soft X-Ray Radiation  

Science Journals Connector (OSTI)

Focusing X-ray grazing incidence optics for X-ray laser and laser plasma soft X-ray radiation has been studied. ... computer code. Parabolic axisymmetric mirror for focusing Princeton X-ray laser beam and ellipso...

L. Pina; A. Inneman; R. Hudec

1996-01-01T23:59:59.000Z

271

X-ray Studies of Regenerated Cellulose Fibers Wet Spun from Cotton Linter Pulp in NaOH/Thiourea Aqueous Solutions  

SciTech Connect

Regenerated cellulose fibers were fabricated by dissolution of cotton linter pulp in NaOH (9.5 wt%) and thiourea (4.5 wt%) aqueous solution followed by wet-spinning and multi-roller drawing. The multi-roller drawing process involved three stages: coagulation (I), coagulation (II) and post-treatment (III). The crystalline structure and morphology of regenerated cellulose fiber was investigated by synchrotron wide-angle X-ray diffraction (WAXD) and small-angle X-ray scattering (SAXS) techniques. Results indicated that only the cellulose II crystal structure was found in regenerated cellulose fibers, proving that the cellulose crystals were completely transformed from cellulose I to II structure during spinning from NaOH/thiourea aqueous solution. The crystallinity, orientation and crystal size at each stage were determined from the WAXD analysis. Drawing of cellulose fibers in the coagulation (II) bath (H{sub 2}SO{sub 4}/H{sub 2}O) was found to generate higher orientation and crystallinity than drawing in the post-treatment (III). Although the post-treatment process also increased crystal orientation, it led to a decrease in crystallinity with notable reduction in the anisotropic fraction. Compared with commercial rayon fibers fabricated by the viscose process, the regenerated cellulose fibers exhibited higher crystallinity but lower crystal orientation. SAXS results revealed a clear scattering maximum along the meridian direction in all regenerated cellulose fibers, indicating the formation of lamellar structure during spinning.

Chen,X.; Burger, C.; Fang, D.; Ruan, D.; Zhang, L.; Hsiao, B.; Chu, B.

2006-01-01T23:59:59.000Z

272

SMB, X-Ray Spectroscopy & Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Home X-Ray Spectroscopy & Imaging X-Ray Spectroscopy & Imaging SSRL has five hard X-ray Spectroscopy beamlines and three Microfocus Imaging beamlines dedicated to Biological and...

273

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

Lensless X-Ray Imaging in Reflection Lensless X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has...

274

X-ray Imaging Workshop  

NLE Websites -- All DOE Office Websites (Extended Search)

Imaging and Spectro-microscopy: Imaging and Spectro-microscopy: the Present and the Future Stanford Synchrotron Radiation Laboratory October 8-9, 2002 Organizers: John Miao & Keith Hodgson A workshop on "X-ray Imaging and Spectro-microscopy: the Present and the Future" was held on October 8-9, 2002. This workshop, organized by John Miao (SSRL) and Keith Hodgson (SSRL) provided a forum to discuss the scientific applications of a variety of imaging and spectro-microscopic techniques, including photoemission electron microscopy (PEEM), angle resolved photoemission spectroscopy (ARPES), coherent diffraction imaging, x-ray microscopy, micro-tomography, holographic imaging, and x-ray micro-probe. Twelve invited speakers discussed the important scientific applications of these techniques, and also predicted the future scientific directions with the advance of instrumentation and x-ray sources. The workshop was well attended with over fifty registered attendees.

275

Miniature x-ray source  

DOE Patents (OSTI)

A miniature x-ray source utilizing a hot filament cathode. The source has a millimeter scale size and is capable of producing broad spectrum x-ray emission over a wide range of x-ray energies. The miniature source consists of a compact vacuum tube assembly containing the hot filament cathode, an anode, a high voltage feedthru for delivering high voltage to the cathode, a getter for maintaining high vacuum, a connector for initial vacuum pump down and crimp-off, and a high voltage connection for attaching a compact high voltage cable to the high voltage feedthru. At least a portion of the vacuum tube wall is fabricated from highly x-ray transparent materials, such as sapphire, diamond, or boron nitride.

Trebes, James E. (Livermore, CA); Bell, Perry M. (Tracy, CA); Robinson, Ronald B. (Modesto, CA)

2000-01-01T23:59:59.000Z

276

X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking  

E-Print Network (OSTI)

X-ray Stacking 2008-Apr-22 Astrostats X-ray Stacking Tom Aldcroft SAO/CXC #12;X-ray Stacking 2008 analysis for a sample Stacking ­ mean properties of sample Chandra X-ray data (faint point sources) are photon-limited with low background => stacking in X-rays is very effective #12;X-ray Stacking 2008-Apr-22

Wolfe, Patrick J.

277

Refinement of the crystal structure of the high-temperature phase G0 in (NH4)2WO2F4 (powder, x-ray, and neutron scattering)  

SciTech Connect

The (NH4)2WO2F4 compound undergoes a series of phase transitions: G0 -> 201 K -> G1 -> 160 K -> G2, with a significant change in entropy ( S1 ~ Rln10 at the G0 -> G1 transition), which indicates significant orientational disordering in the G0 phase and the order disorder type of the phase transition. X-ray diffraction is used to identify the crystal structure of the G0 phase as rhombohedral (sp. gr. Cmcm, Z = 4), determine the lattice parameters and the positions of all atoms (except hydrogen), and show that [WO2F4]2 ions can form a superposition of dynamic and static orientational disorders in the anionic sublattice. A determination of the orientational position of [NH4]+ ions calls for the combined method of elastic and inelastic neutron scattering. Inelastic neutron scattering is used to determine the state of hindered rotation for ammonium ions in the G0 phase. Powder neutron diffraction shows that the orientational disorder of NH4 ions can adequately be described within the free rotation approximation.

Novak, D. M. [Joint Institute for Nuclear Research, Dubna, Russia; Smirnov, Lev S [Alikhanov Institute for Theoretical and Experimental Physics, Moscow, Russia; Kolesnikov, Alexander I [ORNL; Voronin, Vladimir [Institute of Metal Physics, Russia; Berger, I. F. [Institute of Metal Physics, Russia; Laptash, N. M. [Institute of Chemistry, Vladivostok, Russia; Vasil'ev, N. M. [Kirensky Institute of Physics, Krasnoyarsk, Russia; Flerov, I. N. [Kirensky Institute of Physics, Krasnoyarsk, Russia

2013-01-01T23:59:59.000Z

278

Refinement of the crystal structure of the high-temperature phase G{sub 0} in (NH{sub 4}){sub 2}WO{sub 2}F{sub 4} (powder, X-ray, and neutron scattering)  

SciTech Connect

The (NH{sub 4}){sub 2}WO{sub 2}F{sub 4} compound undergoes a series of phase transitions: G{sub 0} {yields} 201, K {yields} G{sub 1} {yields} 160, and K {yields} G{sub 2}, with a significant change in entropy ({Delta}S{sub 1} {approx} Rln10 at the G{sub 0} {yields} G{sub 1} transition), which indicates significant orientational disordering in the G{sub 0} phase and the order-disorder type of the phase transition. X-ray diffraction is used to identify the crystal structure of the G{sub 0} phase as rhombohedral (sp. gr. Cmcm, Z = 4), determine the lattice parameters and the positions of all atoms (except hydrogen), and show that [WO{sub 2}F{sub 4}]{sup 2-} ions can form a superposition of dynamic and static orientational disorders in the anionic sublattice. A determination of the orientational position of [NH{sub 4}]{sup +} ions calls for the combined method of elastic and inelastic neutron scattering. Inelastic neutron scattering is used to determine the state of hindered rotation for ammonium ions in the G{sub 0} phase. Powder neutron diffraction shows that the orientational disorder of NH{sub 4} ions can adequately be described within the free-rotation approximation.

Novak, D. M., E-mail: dmn@nf.jinr.ru; Smirnov, L. S. [Joint Institute for Nuclear Research, Frank Neutron Physics Laboratory (Russian Federation)] [Joint Institute for Nuclear Research, Frank Neutron Physics Laboratory (Russian Federation); Kolesnikov, A. I. [Oak Ridge National Laboratory, Neutron Scattering Sciences Division (United States)] [Oak Ridge National Laboratory, Neutron Scattering Sciences Division (United States); Voronin, V. I.; Berger, I. F. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)] [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation); Laptash, N. M. [Russian Academy of Sciences, Institute of Chemistry, Far Eastern Branch (Russian Federation)] [Russian Academy of Sciences, Institute of Chemistry, Far Eastern Branch (Russian Federation); Vasil'ev, A. D.; Flerov, I. N. [Russian Academy of Sciences, Kirensky Institute of Physics, Siberian Branch (Russian Federation)] [Russian Academy of Sciences, Kirensky Institute of Physics, Siberian Branch (Russian Federation)

2013-01-15T23:59:59.000Z

279

Design of wide-angle selective absorbers/emitters with dielectric filled metallic photonic crystals for energy applications  

Science Journals Connector (OSTI)

The design and simulation of a wide angle, spectrally selective absorber/emitter metallic photonic crystal (MPhC) is presented. By using dielectric filled cavities, the angular,...

Chou, Jeffrey B; Yeng, Yi Xiang; Lenert, Andrej; Rinnerbauer, Veronika; Celanovic, Ivan; Solja?i?, Marin; Wang, Evelyn N; Kim, Sang-Gook

2014-01-01T23:59:59.000Z

280

Resonant inelastic soft-x-ray scattering spectra at the N1s and C1s edges of poly(pyridine-2,5-diyl)  

E-Print Network (OSTI)

Resonant inelastic scattering measurements of poly(pyridine-2,5-diyl) have been performed at the N1s and C1s edges using synchrotron radiation. For comparison, molecular orbital calculations of the spectra have been carried out with the repeat unit as a model molecule of the polymer chain. The resonant emission spectra show depletion of the p electron bands which is consistent with symmetry selection and momentum conservation rules. The depletion is most obvious in the resonant inelastic scattering spectra of carbon while the nitrogen spectra are dominated by lone pair n orbital emission of s symmetry and are less excitation energy dependent. By comparing the measurements to calculations an isomeric dependence of the resonant spectra is found giving preference to two of the four possible isomers in the polymer.

Magnuson, M; Guo, J - H; Sthe, C; Agui, A; Nordgren, J; Luo, Y; gren, H; Johansson, N; Salaneck, W R; Horsburgh, L E; Monkman, A P; 10.1016/S0368-2048(98)00354-5

2012-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

Femtosecond Time-Delay X-ray Holography  

NLE Websites -- All DOE Office Websites (Extended Search)

Time-Delay X-ray Holography Time-Delay X-ray Holography X-ray free-electron lasers (XFELs) will produce photon pulses with a unique and desirable combination of properties. Their short X-ray wavelengths allow penetration into materials and the ability to probe structure at and below the nanometer scale. Their ultra-short duration gives information about this structure at the fundamental time-scales of atoms and molecules. The extreme intensity of the pulses will allow this information to be acquired in a single shot, so that these studies can be carried out on non-repeatable processes or on weakly-scattering objects that will be modified by the pulse. A fourth property of XFEL pulses is their high transverse coherence, which brings the promise of decades of innovation in visible optics to the X-ray regime, such as holography, interferometry, and laser-based imaging. Making an effective use of XFEL pulses, however, will benefit from innovations that are new to both X-ray science and coherent optics. One such innovation is the new method of time-delay X-ray holography [i], recently demonstrated at the FLASH FEL at DESY in Hamburg, to measure the evolution of objects irradiated by intense pulses.

282

Center for X-Ray Optics, 1991  

SciTech Connect

This report discusses: Soft-X-Ray imaging with zone-plate lenses; multilayer reflective optics; and spectroscopy with x-rays.

Not Available

1992-03-01T23:59:59.000Z

283

SMB, X-ray Absorption Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Absorption Spectroscopy X-ray Absorption Spectroscopy X-ray absorption spectroscopy (XAS) is a well-established technique for simultaneous local geometric and electronic structure...

284

Tokamak x ray diagnostic instrumentation  

SciTech Connect

Three classes of x-ray diagnostic instruments enable measurement of a variety of tokamak physics parameters from different features of the x-ray emission spectrum. (1) The soft x-ray (1 to 50 keV) pulse-height-analysis (PHA) diagnostic measures impurity concentrations from characteristic line intensities and the continuum enhancement, and measures the electron temperature from the continuum slope. (2) The Bragg x-ray crystal spectrometer (XCS) measures the ion temperature and neutral-beam-induced toroidal rotation velocity from the Doppler broadening and wavelength shift, respectively, of spectral lines of medium-Z impurity ions. Impurity charge state distributions, precise wavelengths, and inner-shell excitation and recombination rates can also be studied. X rays are diffracted and focused by a bent crystal onto a position-sensitive detector. The spectral resolving power E/..delta..E is greater than 10/sup 4/ and time resolution is 10 ms. (3) The x-ray imaging system (XIS) measures the spatial structure of rapid fluctuations (0.1 to 100 kHZ) providing information on MHD phenomena, impurity transport rates, toroidal rotation velocity, plasma position, and the electron temperature profile. It uses an array of silicon surface-barrier diodes which view different chords of the plasma through a common slot aperture and operate in current (as opposed to counting) mode. The effectiveness of shields to protect detectors from fusion-neutron radiation effects has been studied both theoretically and experimentally.

Hill, K.W.; Beiersdorfer, P.; Bitter, M.; Fredrickson, E.; Von Goeler, S.; Hsuan, H.; Johnson, L.C.; Liew, S.L.; McGuire, K.; Pare, V.

1987-01-01T23:59:59.000Z

285

Self-similarity during growth of the Au/TiO{sub 2}(110) model catalyst as seen by the scattering of x-rays at grazing-angle incidence  

SciTech Connect

The growth of gold nanoparticles on TiO{sub 2}(110) was investigated in situ by grazing incidence x-ray scattering techniques. The in-plane diffraction showed complex epitaxial relationships with a preferential alignment of dense gold direction along the bridging oxygen rows of TiO{sub 2}(110) ([110]{sub Au} parallel [001]{sub TiO{sub 2}}) with a low lattice mismatch. Whatever the growth temperature (T=300,600 K), two nearly equiproportional epitaxial planes, i.e., (111){sub Au} parallel (110){sub TiO{sub 2}} and (112){sub Au} parallel (110){sub TiO{sub 2}}, were observed. The small angle scattering from the nanoparticles was analyzed using a truncated sphere shape with models [R. Lazzari, F. Leroy, and G. Renaud, Phys. Rev. B 76, 125411 (2007)] that account for (i) multiple scattering effects due to the graded profile of refraction index in the normal direction and (ii) the correlation between the particle spacing and sizes. At the beginning of the growth, gold particles are pinned on defects and grow through a diffusion-limited mechanism. However, coalescence does not occur via a static mechanism. It rather involves surface diffusion of clusters. It proceeds through a self-similar mechanism, not only on the size distribution but also on the spatial ordering. Particle locations, which are no longer controlled by the randomness of nucleation centers, become dominated by the correlation between the particle size and its influence area. A strong link between island height and radius indicates that particles are close to equilibrium. Indeed, the value derived for contact angle (adhesion energy) compares well with tabulated data. In addition, the cluster size before the onset of coalescence compares with that of the gold particles at the maximum of catalytic activity for the oxidation of CO.

Lazzari, Remi; Jupille, Jacques [Institut des NanoSciences de Paris, Universites Pierre et Marie Curie (Paris 6) et Denis Diderot (Paris 7), CNRS UMR 7588 Campus Boucicaut, 140 Rue de Lourmel, 75015 Paris (France); Renaud, Gilles [Nanostructures et Rayonnement Synchrotron, Service de Physique des Materiaux et Microstructures, Departement de Recherche Fondamentale sur la Matiere Condensee, Commissariat a l'Energie Atomique, 17 Avenue des Martyrs, F-38054 Grenoble, Cedex 9 (France); Leroy, Frederic [Centre de Recherche en Matiere Condensee et NanoSciences, CNRS-UPR 7281, Campus de Luminy Case 913, 13288 Marseille Cedex 09 (France)

2007-09-15T23:59:59.000Z

286

X-ray Emission from Massive Stars  

E-Print Network (OSTI)

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore be related to the production of X-rays on massive stars. If so, massive stars' X-rays are much different than those found our own Sun and other cooler stars like the Sun that produce X-rays via magnetic activity

Cohen, David

287

X-ray Emission from Massive Stars  

E-Print Network (OSTI)

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore #12;What is the mechanism by which massive stars produce x-rays? New results from the Chandra X-ray Observatory ­ high-resolution x-ray spectroscopy: measuring Doppler broadening in emission lines Testing

Cohen, David

288

Concept development for the ITER equatorial port visible/infrared wide angle viewing system  

SciTech Connect

The ITER equatorial port visible/infrared wide angle viewing system concept is developed from the measurement requirements. The proposed solution situates 4 viewing systems in the equatorial ports 3, 9, 12, and 17 with 4 views each (looking at the upper target, the inner divertor, and tangentially left and right). This gives sufficient coverage. The spatial resolution of the divertor system is 2 times higher than the other views. For compensation of vacuum-vessel movements, an optical hinge concept is proposed. Compactness and low neutron streaming is achieved by orienting port plug doglegs horizontally. Calibration methods, risks, and R and D topics are outlined.

Reichle, R.; Beaumont, B.; Boilson, D.; Bouhamou, R.; Direz, M.-F.; Encheva, A.; Henderson, M.; Kazarian, F.; Lamalle, Ph.; Lisgo, S.; Mitteau, R.; Patel, K. M.; Pitcher, C. S.; Pitts, R. A.; Prakash, A.; Raffray, R.; Schunke, B.; Snipes, J.; Diaz, A. Suarez; Udintsev, V. S. [ITER Organization, Route de Vinon-sur-Verdon, 13115 St Paul-lez-Durance (France); and others

2012-10-15T23:59:59.000Z

289

Compact x-ray source and panel  

DOE Patents (OSTI)

A compact, self-contained x-ray source, and a compact x-ray source panel having a plurality of such x-ray sources arranged in a preferably broad-area pixelized array. Each x-ray source includes an electron source for producing an electron beam, an x-ray conversion target, and a multilayer insulator separating the electron source and the x-ray conversion target from each other. The multi-layer insulator preferably has a cylindrical configuration with a plurality of alternating insulator and conductor layers surrounding an acceleration channel leading from the electron source to the x-ray conversion target. A power source is connected to each x-ray source of the array to produce an accelerating gradient between the electron source and x-ray conversion target in any one or more of the x-ray sources independent of other x-ray sources in the array, so as to accelerate an electron beam towards the x-ray conversion target. The multilayer insulator enables relatively short separation distances between the electron source and the x-ray conversion target so that a thin panel is possible for compactness. This is due to the ability of the plurality of alternating insulator and conductor layers of the multilayer insulators to resist surface flashover when sufficiently high acceleration energies necessary for x-ray generation are supplied by the power source to the x-ray sources.

Sampayon, Stephen E. (Manteca, CA)

2008-02-12T23:59:59.000Z

290

Theory of angular dispersive imaging hard x-ray spectrographs  

E-Print Network (OSTI)

A spectrograph is an optical instrument that disperses photons of different energies into distinct directions and space locations, and images photon spectra on a position-sensitive detector. Spectrographs consist of collimating, angular dispersive, and focusing optical elements. Bragg reflecting crystals arranged in an asymmetric scattering geometry are used as the dispersing elements. A ray-transfer matrix technique is applied to propagate x-rays through the optical elements. Several optical designs of hard x-ray spectrographs are proposed and their performance is analyzed. Spectrographs with an energy resolution of 0.1 meV and a spectral window of imaging up to a few tens of meVs are shown to be feasible for inelastic x-ray scattering (IXS) spectroscopy applications. In another example, a spectrograph with a 1-meV spectral resolution and 85-meV spectral window of imaging is considered for Cu K-edge resonant IXS (RIXS).

Shvyd'ko, Yuri

2015-01-01T23:59:59.000Z

291

Ultrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS)  

E-Print Network (OSTI)

: ultrafast x-rays, x-ray absorption spectroscopy, terawatt lasers, ultrafast reaction dynamics, atomic motion atomic motion by scrutinizing the changes in x- ray absorption spectra during reactions. FirstUltrafast X-ray Absorption Spectroscopy using Laser-Driven Electron X-ray Sources (LEXS) Guangjun

Guo, Ting

292

Focused X-ray source  

DOE Patents (OSTI)

Disclosed is an intense, relatively inexpensive X-ray source (as compared to a synchrotron emitter) for technological, scientific, and spectroscopic purposes. A conical radiation pattern produced by a single foil or stack of foils is focused by optics to increase the intensity of the radiation at a distance from the conical radiator. 8 figs.

Piestrup, M.A.; Boyers, D.G.; Pincus, C.I.; Maccagno, P.

1990-08-21T23:59:59.000Z

293

Short-Range Order and Collective Dynamics of DMPC Bilayers: A Comparison between Molecular Dynamics Simulations, X-Ray,  

E-Print Network (OSTI)

Simulations, X-Ray, and Neutron Scattering Experiments Jochen S. Hub,* Tim Salditt,y Maikel C. Rheinsta derived by molecular dynamics simulations, elastic x-ray, and inelastic neutron scattering experiments dynamics obtained from the simulations and from inelastic neutron scattering are analyzed and compared

de Groot, Bert

294

Graded index and randomly oriented core-shell silicon nanowires with broadband and wide angle antireflection for photovoltaic cell applications  

E-Print Network (OSTI)

Antireflection with broadband and wide angle properties is important for a wide range of applications on photovoltaic cells and display. The SiOx shell layer provides a natural antireflection from air to the Si core absorption layer. In this work, we have demonstrated the random core-shell silicon nanowires with both broadband (from 400nm to 900nm) and wide angle (from normal incidence to 60\\degree) antireflection characteristics within AM1.5 solar spectrum. The graded index structure from the randomly oriented core-shell (Air/SiOx/Si) nanowires may provide a potential avenue to realize a broadband and wide angle antireflection layer.

Pignalosa, P; Qiao, L; Tseng, M; Yi, Yasha

2011-01-01T23:59:59.000Z

295

RYLLA. [X-ray transport code  

SciTech Connect

This paper describes a computer code, RYLLA, which models the deposition of x-rays into thin metal slabs, and transports the resulting photoelectrons, finding the distribution of electrons leaving the slab from both the front and back surfaces. The slab must be homogeneous, but can contain a mixture of up to 5 different elements. Due to the short electron mean free path at low electron energies, RYLLA should be used only for studying thin slabs, roughly < 100 mg/cm/sup 2/ for low Z metals, and < 10 mg/cm/sup 2/ for high Z metals. X-ray energies should be in the range of 1 to 150 keV, as they are deposited only via photoionization and Compton scattering processes. Following photoionization, a hole exists in the electron cloud of the absorbing atom. This fills either by Auger or fluoresence, resulting in lower energy holes which are also filled. Fluoresence photons are transported and absorbed in the same manner as the primary photons, except that they are isotropically produced. Once all photons have been transported and absorbed, and all holes have been filled, a space- and energy-dependent electron source spectrum has been obtained. This is used in a discrete ordinate expansion solution of the 1-D transport equation, which gives the output electron spectra at the two slab surfaces. This paper discusses both the physics and coding of RYLLA. Examples of user input are given, as are some comparisons with other codes.

Hyde, R.A.

1983-06-08T23:59:59.000Z

296

In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode  

Science Journals Connector (OSTI)

In Situ X-ray Study of the Solid Electrolyte Interphase (SEI) Formation on Graphene as a Model Li-ion Battery Anode ... Li-ion batteries; solid electrolyte interphase; graphene; graphite; X-ray scattering ...

Sudeshna Chattopadhyay; Albert L. Lipson; Hunter J. Karmel; Jonathan D. Emery; Timothy T. Fister; Paul A. Fenter; Mark C. Hersam; Michael J. Bedzyk

2012-07-23T23:59:59.000Z

297

Microgap x-ray detector  

DOE Patents (OSTI)

An x-ray detector which provides for the conversion of x-ray photons into photoelectrons and subsequent amplification of these photoelectrons through the generation of electron avalanches in a thin gas-filled region subject to a high electric potential. The detector comprises a cathode (photocathode) and an anode separated by the thin, gas-filled region. The cathode may comprise a substrate, such a beryllium, coated with a layer of high atomic number material, such as gold, while the anode can be a single conducting plane of material, such as gold, or a plane of resistive material, such as chromium/silicon monoxide, or multiple areas of conductive or resistive material, mounted on a substrate composed of glass, plastic or ceramic. The charge collected from each electron avalanche by the anode is passed through processing electronics to a point of use, such as an oscilloscope.

Wuest, Craig R. (Danville, CA); Bionta, Richard M. (Livermore, CA); Ables, Elden (Livermore, CA)

1994-01-01T23:59:59.000Z

298

Progress of the ITER equatorial vis/IR wide angle viewing system optical design  

SciTech Connect

The equatorial vis/IR wide angle viewing system is present in four ITER diagnostic equatorial ports. This instrument will cover a large field of view with high spatial and temporal resolutions, to provide real time temperature measurements of plasma facing components, spectral data in the visible range, information on runaway electrons, and pellet tracking. This diagnostic needs to be reliable, precise, and long lasting. Its design is driven by both the tokamak severe environment and the high performances required for machine protection. The preliminary design phase is ongoing. Paramount issues are being tackled, relative to wide spectral band optical design, material choice, and optomechanical difficulties due to the limited space available for this instrument in the ports, since many other diagnostics and services are also present. Recent progress of the diagnostic optical design and status of associated R and D are presented.

Davi, M.; Corre, Y.; Guilhem, D.; Jullien, F.; Reichle, R.; Salasca, S.; Travere, J. M. [Association Euratom CEA, CEA/DSM/IRFM, Cadarache, 13108 Saint-Paul-lez-Durance (France); Cal, E. de la; Manzanares, A.; Pablos, J. L. de [Association Euratom CIEMAT, Av. Complutense 22, 28040 Madrid (Spain); Migozzi, J. B. [JBM Optique, 11 Av. de la division Leclerc, 92310 Sevres (France)

2008-10-15T23:59:59.000Z

299

Chest x-Rays | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Chest x-Rays Chest x-Rays Chest x-Rays Chest X-ray B-Reading The B-reading is a special reading of a standard chest x-ray film performed by a physician certified by the National Institute for Occupational Safety and Health (NIOSH). The reading looks for changes on the chest x-ray that may indicate exposure and disease caused by agents such as asbestos or silica. The B-reading is considered a special reading because doctors who are certified by NIOSH to perform B-readings use a specific protocol to read and record the findings as developed by the International Labour Organization (ILO). The ILO's protocol provides rules for systematically examining the x-ray in a step-by-step method and recording certain abnormalities or changes on the chest x-ray that can be attributable to

300

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities in the field of lensless imaging. XFELs...

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Lensless X-Ray Imaging in Reflection  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Imaging in Reflection Print Wednesday, 26 October 2011 00:00 The advent of x-ray free-electron laser (XFEL) light sources has led to an outburst of research activities...

302

Producing X-rays at the APS  

ScienceCinema (OSTI)

An introduction and overview of the Advanced Photon Source at Argonne National Laboratory, the technology that produces the brightest X-ray beams in the Western Hemisphere, and the research carried out by scientists using those X-rays.

None

2013-04-19T23:59:59.000Z

303

SMB, X-ray Fluorescence Imaging  

NLE Websites -- All DOE Office Websites (Extended Search)

Fluorescence Imaging X-ray Fluorescence Imaging X-ray fluorescence imaging utilizes the high brightness of SPEAR3 and focused beam generated by the uses of K-B optics, capillaries...

304

Runaway electron energy measurement using hard x-ray spectroscopy in 'Damavand' tokamak  

SciTech Connect

Set of experiments has been developed to study existing runaway electrons in ''Damavand'' tokamak plasma upon characteristics of hard x-ray emissions produced by collision of the runaway electrons with the plasma particles and limiters. As a first step, spatial distribution of hard x-ray emissions on the equatorial plane of the torus was considered. Obtained spectra of hard x-ray emissions for different alignments of shielded detector indicate isotropic emissivity in the equatorial plane. This is in agreement with wide angle cone of bremsstrahlung radiations, deduced from the mean value of energy of the runaway electrons. The mean energy was calculated from the slope of the energy spectrum of hard x-ray photons. In the second stage in order to investigate time evolution of energy of the runaway electrons, similar technique were applied to obtain hard x-ray energy in every 3 ms intervals, from the beginning to the end of plasma. The mean energy of the runaway electrons increases during the ramp up phase and reaches its maximum between 3 and 9 ms after plasma formation. Also considering the time dependence of the counted photons in each energy range shows that energetic photons are emitted during the ramp up phase of the plasma current in Damavand tokamak.

Rasouli, C.; Farahbod, A. H.; Rasouli, H.; Lamehi, M. [School of Plasma Physics and Nuclear Fusion, Institute of Nuclear Science and Technology, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of); Iraji, D. [Centre de Recherches en Physique des Plasmas, Association EURATOM-Confederation Suisse, Ecole Polytechnique Federale de Lausanne, CH-1015 (Switzerland); Akhtari, K. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9161, Tehran (Iran, Islamic Republic of); Modarresi, H. [Department of Mechanical Engineering, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of)

2009-01-15T23:59:59.000Z

305

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St in hot gas about 250 million light years from Earth. (Credit: X-ray: NASA/CXC/SAO/E.Bulbul, et al-Newton has revealed a mysterious X-ray signal in the data. This signal is represented in the circled data

306

X-Ray Absorption Spectroscopy of Metallobiomolecules  

E-Print Network (OSTI)

2/9/07 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 9, 07] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

Scott, Robert A.

307

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St million light years from Earth. (Credit: X-ray: NASA/CXC/Wesleyan Univ./R.Kilgard, et al; Optical: NASA with optical data from the Hubble Space Telescope (red, green, and blue). The X-ray data reveal hundreds

308

X-ray Spectroscopy of Cool Stars  

E-Print Network (OSTI)

High-resolution X-ray spectroscopy has addressed not only various topics in coronal physics of stars, but has also uncovered important features relevant for our understanding of stellar evolution and the stellar environment. I summarize recent progress in coronal X-ray spectroscopy and in particular also discuss new results from studies of X-rays from pre-main sequence stars.

M. Guedel

2006-09-11T23:59:59.000Z

309

X-Ray Physics Evan Berkowitz  

E-Print Network (OSTI)

X-Ray Physics Evan Berkowitz Junior, MIT Department of Physics (Dated: October 25, 2006) We measure a variety of phenomena related to X-Ray absorption and production. We present data which conforms within, as are 22 Na electron-positron annhilation lines. The importance of understanding x-rays is demonstrated

310

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St 200 million light years from Earth. (Credit: X-ray: NASA/CXC/UAH/M.Sun et al; Optical: NASA, ESA, & the Hubble Heritage Team (STScI/AURA) Caption: This composite image from the Chandra X-ray Observatory (blue

311

X-Ray Absorption Spectroscopy of Metallobiomolecules  

E-Print Network (OSTI)

9/6/09 1 X-Ray Absorption Spectroscopy of Metallobiomolecules The Outskirts of Structural Biology 6, 09] This is a tutorial about the use of X-ray Absorption Spectroscopy (XAS) in biology, RG; Eisenberger, P; Kincaid, BM "X-ray Absorption Spectroscopy of Biological Molecules" Annu. Rev

Scott, Robert A.

312

Chandra X-ray Observatory Center  

E-Print Network (OSTI)

Chandra X-ray Observatory Center Harvard-Smithsonian Center for Astrophysics 60 Garden St. Cambridge, MA 02138 USA http://chandra.harvard.edu Four Supernova Remnants: NASA's Chandra X-ray Observatory's Chandra X-ray Observatory, four newly processed images of supernova remnants dramatically illustrate

313

Using Light to Control How X Rays Interact with Matter  

NLE Websites -- All DOE Office Websites (Extended Search)

ultrafast x-ray spectroscopy. ALS femtosecond spectroscopy beamline layout. Femtosecond x-ray and laser pulses derive from a single 800-nm laser oscillator. Femtosecond x rays...

314

X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336342  

E-Print Network (OSTI)

X-RAY SPECTROMETRY X-Ray Spectrom. 2007; 36: 336­342 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/xrs.980 Fish otolith trace element maps: new approaches with synchrotron microbeam x-ray of elements as they accrete through a fish's life. We apply synchrotron microbeam x-ray fluorescence methods

Limburg, Karin E.

315

X-ray Pulsations in the Supersoft X-ray Binary CAL 83  

E-Print Network (OSTI)

X-ray data reveal that the supersoft X-ray binary CAL 83 exhibits 38.4 minute pulsations at some epochs. These X-ray variations are similar to those found in some novae and are likely to be caused by nonradial pulsations the white dwarf. This is the first detection of pulsations in a classical supersoft X-ray binary.

P. C. Schmidtke; A. P. Cowley

2005-09-28T23:59:59.000Z

316

X-ray Spectroscopy of Cooling Cluster  

SciTech Connect

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

Peterson, J.R.; /SLAC; Fabian, A.C.; /Cambridge U., Inst. of Astron.

2006-01-17T23:59:59.000Z

317

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, R.B.

1996-05-21T23:59:59.000Z

318

X-ray Spectroscopy of Cooling Clusters  

E-Print Network (OSTI)

We review the X-ray spectra of the cores of clusters of galaxies. Recent high resolution X-ray spectroscopic observations have demonstrated a severe deficit of emission at the lowest X-ray temperatures as compared to that expected from simple radiative cooling models. The same observations have provided compelling evidence that the gas in the cores is cooling below half the maximum temperature. We review these results, discuss physical models of cooling clusters, and describe the X-ray instrumentation and analysis techniques used to make these observations. We discuss several viable mechanisms designed to cancel or distort the expected process of X-ray cluster cooling.

J. R. Peterson; A. C. Fabian

2005-12-21T23:59:59.000Z

319

X-ray transmissive debris shield  

DOE Patents (OSTI)

An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

Spielman, Rick B. (Albuquerque, NM)

1996-01-01T23:59:59.000Z

320

X-ray lithography using holographic images  

DOE Patents (OSTI)

A non-contact X-ray projection lithography method for producing a desired X-ray image on a selected surface of an X-ray-sensitive material, such as photoresist material on a wafer, the desired X-ray image having image minimum linewidths as small as 0.063 .mu.m, or even smaller. A hologram and its position are determined that will produce the desired image on the selected surface when the hologram is irradiated with X-rays from a suitably monochromatic X-ray source of a selected wavelength .lambda.. On-axis X-ray transmission through, or off-axis X-ray reflection from, a hologram may be used here, with very different requirements for monochromaticity, flux and brightness of the X-ray source. For reasonable penetration of photoresist materials by X-rays produced by the X-ray source, the wavelength X, is preferably chosen to be no more than 13.5 nm in one embodiment and more preferably is chosen in the range 1-5 nm in the other embodiment. A lower limit on linewidth is set by the linewidth of available microstructure writing devices, such as an electron beam.

Howells, Malcolm R. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1995-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

X-ray Diffraction Laboratory: Department of Chemistry Texas A & M University  

E-Print Network (OSTI)

, Rotating Anode Page: 1 of 5 Approved: JHR 1/8/2009 SOP: SOPSAXSLA Last date revised: December 26 2009 Date approved: December 26 2009 Small Angle X-ray Scattering, Rotating Anode PURPOSE: This Standard Operating

Meagher, Mary

322

Apparatus for generating x-ray holograms  

DOE Patents (OSTI)

Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced.

Rhodes, Charles K. (Chicago, IL); Boyer, Keith (Los Alamos, NM); Solem, Johndale C. (Los Alamos, NM); Haddad, Waleed S. (Chicago, IL)

1990-01-01T23:59:59.000Z

323

Apparatus for generating x-ray holograms  

DOE Patents (OSTI)

Apparatus for x-ray microholography of living biological materials. A Fourier transform holographic configuration is described as being most suitable for the 3-dimensional recording of the physical characteristics of biological specimens. The use of a spherical scatterer as a reference and a charge-coupled device two-dimensional detector array placed in the forward direction relative to the incident x-radiation for viewing electromagnetic radiation simultaneously scattered from both the specimen and the reference scatterer permits the ready reconstruction of the details of the specimen from the fringe pattern detected by the charge-coupled device. For example, by using a nickel reference scatter at 4.5 nm, sufficient reference illumination is provided over a wide enough angle to allow similar resolution in both transverse and longitudinal directions. Both laser and synchrotron radiation sources are feasible for generating microholographs. Operation in the water window (2.4 to 4.5 nm) should provide maximum contrast for features of the specimen and spatial resolution on the order of the wavelength of x-radiation should be possible in all three dimensions, which is sufficient for the visualization of many biological features. It is anticipated that the present apparatus will find utility in other areas as well where microscopic physical details of a specimen are important. A computational procedure which enables the holographic data collected by the detector to be used to correct for misalignments introduced by inexact knowledge of the relative positions of the spherical reference scatterer and the sample under investigation has been developed. If the correction is performed prior to reconstruction, full compensation can be achieved and a faithfully reconstructed image produced. 7 figs.

Rhodes, C.K.; Boyer, K.; Solem, J.C.; Haddad, W.S.

1990-09-11T23:59:59.000Z

324

Resonant Soft X-Ray Contrast Variation Methods as Composition-Specific Probes of Thin Polymer Film Structure  

SciTech Connect

We have developed complementary soft x-ray scattering and reflectometry techniques that allow for the morphological analysis of thin polymer films without resorting to chemical modification or isotopic 2 labeling. With these techniques, we achieve significant, x-ray energy-dependent contrast between carbon atoms in different chemical environments using soft x-ray resonance at the carbon edge. Because carbon-containing samples absorb strongly in this region, the scattering length density depends on both the real and imaginary parts of the atomic scattering factors. Using a model polymer film of poly(styrene-b-methyl methacrylate), we show that the soft x-ray reflectivity data is much more sensitive to these atomic scattering factors than the soft x-ray scattering data. Nevertheless, fits to both types of data yield useful morphological details on the polymer?slamellar structure that are consistent with each other and with literature values.

Welch, Cynthia; Welch, Cynthia F.; Hjelm, Rex P.; Mang, Joseph T.; Hawley, Marilyn E.; Wrobleski, Debra A.; Orler, E. Bruce; Kortright, Jeffrey B

2008-04-04T23:59:59.000Z

325

X-ray Observations of Mrk 231  

E-Print Network (OSTI)

This paper presents new X-ray observations of Mrk 231, an active galaxy of particular interest due to its large infrared luminosity and the presence of several blueshifted broad absorption line (BAL) systems, a phenomenon observed in a small fraction of QSOs. A ROSAT HRI image of Mrk 231 is presented, this shows an extended region of soft X-ray emission, covering several tens of kpc, consistent with the extent of the host galaxy. An ASCA observation of Mrk 231 is also presented. Hard X-rays are detected but the data show no significant variability in X-ray flux. The hard X-ray continuum is heavily attenuated and X-ray column estimates range from ~ 2 x 10^{22} - 10^{23} cm^{-2} depending on whether the material is assumed to be neutral or ionized, and on the model assumed for the extended X-ray component. These ASCA data provide only the second hard X-ray spectrum of a BAL AGN presented to date. The broad-band spectral-energy-distribution of the source is discussed. While Mrk 231 is X-ray weak compared to Seyfert 1 galaxies, it has an optical-to-X-ray spectrum typical of a QSO.

T. J. Turner

1998-08-10T23:59:59.000Z

326

Diffuse Scattering  

NLE Websites -- All DOE Office Websites (Extended Search)

Diffuse Scattering Diffuse Scattering * Anticipatory (trick) question: If you have an x-ray or neutron detector looking at a small sample volume, which will scatter more x- rays or neutrons into the detector 1 atom 100 atoms or 1000 atoms? X-ray or neutron beam Answer: Depends! Diffuse Scattering Gene E. Ice Materials Science and Technology Division Oak Ridge National Laboratory, USA National School on Neutron and X-ray Scattering ORNL/SNS June 2011 Presentation concentrates year graduate-level course into 1 hour * Skip mathematical complexities * Expose to range of applications * Develop intuition for length scales * Talk like x-ray/neutron scattering guru - Reciprocal space - Debye Temperature - Laue monotonic - Krivoglaz defects of 1st/2nd kinds! Great for cocktail parties or impressing attractive strangers-

327

Hard x-ray imaging from explorer  

SciTech Connect

Coded aperture X-ray detectors were applied to obtain large increases in sensitivity as well as angular resolution. A hard X-ray coded aperture detector concept is described which enables very high sensitivity studies persistent hard X-ray sources and gamma ray bursts. Coded aperture imaging is employed so that approx. 2 min source locations can be derived within a 3 deg field of view. Gamma bursts were located initially to within approx. 2 deg and X-ray/hard X-ray spectra and timing, as well as precise locations, derived for possible burst afterglow emission. It is suggested that hard X-ray imaging should be conducted from an Explorer mission where long exposure times are possible.

Grindlay, J.E.; Murray, S.S.

1981-11-01T23:59:59.000Z

328

Development of x-ray photoelectron microscope with an x-ray laser source  

Science Journals Connector (OSTI)

We have constructed an x-ray photoelectron microscopic system with an x-ray laser as an x-ray source. The lasing line is the Li-like Al 3d-4f transition at 15.47 nm where the recombining Al plasma is used as the x-ray laser medium. The beam from the x-ray laser cavity was then focused by using a Schwarzschild mirror coated with Mo/Si multilayers. The x-ray beam size with a diameter less than 0.5 ?m and the estimated photon number of about 210 6 ? photons/shot into the spot were achieved.

Tadayuki Ohchi; Naohiro Yamaguchi; Chiemi Fujikawa; Tamio Hara; Katsumi Watanabe; Ibuki Tanaka; Masami Taguchi

2000-01-01T23:59:59.000Z

329

Xray and neutron diffraction studies and MD simulation of atomic configurations in polyamorphic Y2O3-Al2O3 systems  

Science Journals Connector (OSTI)

...McMillan and David C. Clary X-ray and neutron diffraction studies and MD simulation...new results of structural studies using neutron and high-energy X-ray diffraction...pair-correlation functions obtained from X-ray and neutron scattering data. Unexpectedly large density...

2005-01-01T23:59:59.000Z

330

Applications of soft x-ray lasers  

SciTech Connect

The high brightness and short pulse duration of soft x-ray lasers provide unique advantages for novel applications. Imaging of biological specimens using x-ray lasers has been demonstrated by several groups. Other applications to fields such as chemistry, material science, plasma diagnostics, and lithography are beginning to emerge. We review the current status of soft x-ray lasers from the perspective of applications, and present an overview of the applications currently being developed.

Skinner, C.H.

1993-08-01T23:59:59.000Z

331

High speed x-ray beam chopper  

DOE Patents (OSTI)

A fast, economical, and compact x-ray beam chopper with a small mass and a small moment of inertia whose rotation can be synchronized and phase locked to an electronic signal from an x-ray source and be monitored by a light beam is disclosed. X-ray bursts shorter than 2.5 microseconds have been produced with a jitter time of less than 3 ns.

McPherson, Armon (Oswego, IL); Mills, Dennis M. (Naperville, IL)

2002-01-01T23:59:59.000Z

332

X-ray laser frequency near-doubling and generation of tunable coherent x rays in plasma  

E-Print Network (OSTI)

X-ray laser frequency near-doubling and generation of tunable coherent x rays in plasma P. L plasmas in which efficient x-ray laser frequency near-doubling is expected for a number of available x-ray of coherent x rays and tunable optical radiation may result in tunable coherent x-ray radiation powerful

Kaplan, Alexander

333

Ris-R-747(EN) Neutron and X-Ray Diffraction  

E-Print Network (OSTI)

describes X-ray and neutron scattering experiments per- formed on two examples of modulated structures is divided in three parts. A single crystal elastic neutron scattering experiment between 4.2 and 115 K has shift across the layers. A small-angle neutron scattering experiment has been performed on the mag

334

Colloid Coalescence with Focused X Rays  

SciTech Connect

We show direct evidence that focused x rays enable us to merge polymer colloidal particles at room temperature. This phenomenon is ascribed to the photochemical scission of colloids with x rays, reducing the molecular weight, glass transition temperature, surface tension, and viscosity of colloids. The observation of the neck bridge growth with time shows that the x-ray-induced colloid coalescence is analogous to viscoelastic coalescence. This finding suggests a feasible protocol of photonic nanofabrication by sintering or welding of polymers, without thermal damage, using x-ray photonics.

Weon, B. M.; Kim, J. T.; Je, J. H. [X-ray Imaging Center, Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang, 790-784 (Korea, Republic of); Yi, J. M. [Samsung Advanced Institute of Technology, Yongin, Gyeonggi, 446-712 (Korea, Republic of); Wang, S.; Lee, W.-K. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

2011-07-01T23:59:59.000Z

335

X-RAY MICROBEAM SPEECH PRODUCTION DATABASE  

E-Print Network (OSTI)

X-RAY MICROBEAM SPEECH PRODUCTION DATABASE USER'S HANDBOOK Version 1.0 (June 1994) prepared by John . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Chapter Two: XRMB History

336

X-ray laser microscope apparatus  

DOE Patents (OSTI)

A microscope consisting of an x-ray contact microscope and an optical microscope. The optical, phase contrast, microscope is used to align a target with respect to a source of soft x-rays. The source of soft x-rays preferably comprises an x-ray laser but could comprise a synchrotron or other pulse source of x-rays. Transparent resist material is used to support the target. The optical microscope is located on the opposite side of the transparent resist material from the target and is employed to align the target with respect to the anticipated soft x-ray laser beam. After alignment with the use of the optical microscope, the target is exposed to the soft x-ray laser beam. The x-ray sensitive transparent resist material whose chemical bonds are altered by the x-ray beam passing through the target mater GOVERNMENT LICENSE RIGHTS This invention was made with government support under Contract No. De-FG02-86ER13609 awarded by the Department of Energy. The Government has certain rights in this invention.

Suckewer, Szymon (Princeton, NJ); DiCicco, Darrell S. (Plainsboro, NJ); Hirschberg, Joseph G. (Coral Gables, FL); Meixler, Lewis D. (East Windsor, NJ); Sathre, Robert (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ)

1990-01-01T23:59:59.000Z

337

Automation in X-Ray Crystallography  

Science Journals Connector (OSTI)

Automation in X-Ray Crystallography ... But in the past few years, automation procedures have been applied to intrinsically superior experimental methods. ...

S.C. ABRAHAMS

1963-06-03T23:59:59.000Z

338

X-Ray Laser Sources for Microscopy  

Science Journals Connector (OSTI)

Progress and prospects in soft X-ray laser development at Princeton are presented. A comparison to plasma and synchrotron sources is made with a...

C. H. Skinner; D. E. Kim; A. Wouters; D. Voorhees; S. Suckewer

1988-01-01T23:59:59.000Z

339

Compound refractive X-ray lens  

DOE Patents (OSTI)

An apparatus and method for focusing X-rays. In one embodiment, his invention is a commercial-grade compound refractive X-ray lens. The commercial-grade compound refractive X-ray lens includes a volume of low-Z material. The volume of low-Z material has a first surface which is adapted to receive X-rays of commercially-applicable power emitted from a commercial-grade X-ray source. The volume of low-Z material also has a second surface from which emerge the X-rays of commercially-applicable power which were received at the first surface. Additionally, the commercial-grade compound refractive X-ray lens includes a plurality of openings which are disposed between the first surface and the second surface. The plurality of openings are oriented such that the X-rays of commercially-applicable power which are received at the first surface, pass through the volume of low-Z material and through the plurality openings. In so doing, the X-rays which emerge from the second surface are refracted to a focal point.

Nygren, David R. (Berkeley, CA); Cahn, Robert (Walnut Creek, CA); Cederstrom, Bjorn (Traellborg, SE); Danielsson, Mats (Stocksund, SE); Vestlund, Jonas (Stockholm, SE)

2000-01-01T23:59:59.000Z

340

X-Ray Science Division (XSD)  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Science Division (XSD) Search Button About Welcome Overview Visiting the APS Mission & Goals Find People Organization Charts Committees Job Openings User Information...

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

X-ray photon correlation spectroscopy under flow  

E-Print Network (OSTI)

X-ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X-ray techniques with microfluidics is an experimental strategy that reduces the risk of x-ray induced beam damage and also allows time-resolved studies of processes taking place in flowcells. The experimental results and theoretical predictions presented here, show that in the low shear limit, for a ``transverse flow'' scattering geometry (scattering wave vector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and in particular, for a ``longitudinal flow'' (q || flow) scattering geometry, the relaxation times are strongly affected by the flow-induced motion of the particles. Our results show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.

Andrei Fluerasu; Abdellatif Moussaid; Henri Gleyzolle; Peter Falus; Anders Madsen

2008-03-10T23:59:59.000Z

342

962 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 3, MAY 2014 Ultrabroadband and Wide-Angle Hybrid  

E-Print Network (OSTI)

962 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 3, MAY 2014 Ultrabroadband and Wide-Angle Hybrid) are essential to realizing efficiency gains for state-of- the-art multijunction photovoltaic devices approach. Index Terms--Biomimetics, optical films, photovoltaic cells, III­V semiconductor materials. I

Bowers, John

343

X-ray spectroscopy of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

In this thesis, I present work spanning a variety of topics relating to neutron star lowmass X-ray binaries (LMXBs) and utilize spectral information from X-ray observations to further our understanding of these sources. ...

Krauss, Miriam Ilana

2007-01-01T23:59:59.000Z

344

Ultraluminous X-ray Sources: The most extreme X-ray binaries  

E-Print Network (OSTI)

1 Ultraluminous X-ray Sources: The most extreme X-ray binaries Luca Zampieri INAF ULXs ­ Lubiana ­ May 11, 2012- LZ #12;6 · X-ray observations of nearby galaxies show a population of pointlike, off-nuclear sources with L >> Ledd for 1 Msun (L>1.0e39 erg/s) UltraLuminous X-ray Sources (e

?umer, Slobodan

345

X-ray Diffraction (XRD) 1.0 What is X-ray Diffraction  

E-Print Network (OSTI)

X-ray Diffraction (XRD) · 1.0 What is X-ray Diffraction · 2.0 Basics of Crystallography · 3.0 Production of X-rays · 4.0 Applications of XRD · 5.0 Instrumental Sources of Error · 6.0 Conclusions #12 why the cleavage faces of crystals appear to reflect X-ray beams at certain angles of incidence (theta

Moeck, Peter

346

Aneta Siemiginowska Chandra X-ray Center  

E-Print Network (OSTI)

-ray and gamma-ray · High Energy Sky · Chandra X-ray Observatory · examples of typical X-ray data, · an example of a data analysis process · statistical challenges · what do we learn from the data? #12;What is Astronomy and phenomena do we study and how? Solar System: Sun and sollar wind, planets, moons, asteroids, comets Our

Wolfe, Patrick J.

347

Watershed in X-ray Astronomy  

Science Journals Connector (OSTI)

... extent the article on page 96 of this issue of Nature from the X-ray astronomy group at the Massachusetts Institute of Technology is a record of disappointments. That is ... near the galactic centre. Now that the first satellite to be devoted to X-ray astronomy has been launched, and is apparently working successfully, the MIT article and another from ...

1971-01-08T23:59:59.000Z

348

X-Ray Identification of Element 104  

Science Journals Connector (OSTI)

The daughter x-ray identification technique has been applied to the identification of element 104. The characteristic K-series x rays from the ?-decay daughter isotope, nobelium (Z=102), have been observed in coincidence with ? particles from the decay of 4.5-sec 104257, thus providing an unequivocal determination of the parent atomic number, Z=104.

C. E. Bemis; Jr.; R. J. Silva; D. C. Hensley; O. L. Keller; Jr.; J. R. Tarrant; L. D. Hunt; P. F. Dittner; R. L. Hahn; C. D. Goodman

1973-09-03T23:59:59.000Z

349

Quantitative Measurements of X-ray Intensity  

SciTech Connect

This chapter describes the characterization of several X-ray sources and their use in calibrating different types of X-ray cameras at National Security Technologies, LLC (NSTec). The cameras are employed in experimental plasma studies at Lawrence Livermore National Laboratory (LLNL), including the National Ignition Facility (NIF). The sources provide X-rays in the energy range from several hundred eV to 110 keV. The key to this effort is measuring the X-ray beam intensity accurately and traceable to international standards. This is accomplished using photodiodes of several types that are calibrated using radioactive sources and a synchrotron source using methods and materials that are traceable to the U.S. National Institute of Standards and Technology (NIST). The accreditation procedures are described. The chapter begins with an introduction to the fundamental concepts of X-ray physics. The types of X-ray sources that are used for device calibration are described. The next section describes the photodiode types that are used for measuring X-ray intensity: power measuring photodiodes, energy dispersive photodiodes, and cameras comprising photodiodes as pixel elements. Following their description, the methods used to calibrate the primary detectors, the power measuring photodiodes and the energy dispersive photodiodes, as well as the method used to get traceability to international standards are described. The X-ray source beams can then be measured using the primary detectors. The final section then describes the use of the calibrated X-ray beams to calibrate X-ray cameras. Many of the references are web sites that provide databases, explanations of the data and how it was generated, and data calculations for specific cases. Several general reference books related to the major topics are included. Papers expanding some subjects are cited.

Haugh, M. J., Schneider, M.

2011-09-01T23:59:59.000Z

350

Neutron Scattering Tutorials | Neutron Science | ORNL  

NLE Websites -- All DOE Office Websites (Extended Search)

Neutron Scattering Tutorials SHARE Neutron Scattering Tutorials The following lectures were presented at the 2011 and 2010 National School on Neutron & X-Ray Scattering. This...

351

X-ray Practicals Series 1 Advanced Data Reduction  

E-Print Network (OSTI)

X-ray Practicals Series 1 Advanced Data Reduction Instructor J. Reibenspies, Ph. D. Nattamai Bhuvanesh, Ph.D. Version 1.0.0 #12;X-ray Practicals Series 2 #12;X-ray Practicals Series 3 #12;X-ray is good. The y direction is shifting the most, but the shift is ok #12;X-ray Practicals Series 5 Other

Meagher, Mary

352

Fiber fed x-ray/gamma ray imaging apparatus  

DOE Patents (OSTI)

X-ray/gamma ray imaging apparatus is disclosed for detecting the position, energy, and intensity of x-ray/gamma ray radiation comprising scintillation means disposed in the path of such radiation and capable of generating photons in response to such radiation; first photodetection means optically bonded to the scintillation means and capable of generating an electrical signal indicative of the intensity, and energy of the radiation detected by the scintillation means; second photodetection means capable of generating an electrical signal indicative of the position of the radiation in the radiation pattern; and means for optically coupling the scintillation means to the second photodetection means. The photodetection means are electrically connected to control and storage means which may also be used to screen out noise by rejecting a signal from one photodetection means not synchronized to a signal from the other photodetection means; and also to screen out signals from scattered radiation.

Hailey, Charles J. (San Francisco, CA); Ziock, Klaus-Peter (Livermore, CA)

1992-01-01T23:59:59.000Z

353

X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide B. Gilbert,1,  

E-Print Network (OSTI)

X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide B. Gilbert,1 Received 18 June 2002; published 26 December 2002 We investigate the sensitivity of x-ray absorption. Experimental spectra and multiple-scattering calculations are reported at the major absorption edges

Haskel, Daniel

354

X-ray sources in globular clusters  

E-Print Network (OSTI)

The twelve bright (Lx>10(36) erg/s) X-ray sources in the globular clusters have lower luminosities than the brightest sources in the bulge of our galaxy. The dim (Lx<10(35) erg/s) X-ray sources in globular clusters reach higher luminosities than the cataclysmic variables in the disk of our galaxy. The first difference is a statistical fluke, as comparison with M31 indicates. The second difference is explained because the brightest of the dim sources are not cataclysmic variables, but soft X-ray transients in quiescence. This article describes the BeppoSAX, ROSAT and first Chandra observations leading to these conclusions.

Frank Verbunt

2001-11-22T23:59:59.000Z

355

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art  

E-Print Network (OSTI)

X-Ray Diffraction The X-Ray Diffraction facility is equipped with state-of-the-art diffractometers offering both single crystal and powder X-Ray diffraction. Powder X-Ray Diffraction High resolution data For more details on powder X-Ray analysis contact Dr J Hriljac on 0121 414 4458 or email: j

Birmingham, University of

356

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray Source  

E-Print Network (OSTI)

Novel X-Ray Imaging Opportunities for the RPI Linear Accelerator's Tunable, Quasi-monochromatic X-ray of an intense, tunable, polarized, and quasi-monochromatic X-ray source has been ongoing at Rensselaer Polytechnic Institute since 2001 [1, 2, 3, 4, 5, 6]. This X-ray source, known as Parametric X-rays (PXR

Danon, Yaron

357

X-Ray Data Booklet X-RAY DATA BOOKLET  

E-Print Network (OSTI)

Electromagnetic Relations Radioactivity and Radiation Protection Useful Formulas CXRO Home | ALS Home | LBL Home Radiation Arthur L. Robinson 2-17 2.3 Operating and Planned Facilities Herman Winick 2-24 #12;3. Scattering of the Elements 5-4 5.3 Electromagnetic Relations 5-11 5.4 Radioactivity and Radiation Protection 5-14 5.5 Useful

Meagher, Mary

358

X-ray Absorption Spectroscopy of Biologically Relevant Systems  

E-Print Network (OSTI)

308, Messer, B. M. X-ray Absorption Spectroscopy of AqueousSarcosine via X-ray Absorption Spectroscopy 5.1 Introductionwith Carboxylate by X-Ray Absorption Spectroscopy of Liquid

Uejio, Janel Sunayo

2010-01-01T23:59:59.000Z

359

Compact X-Ray Light Source Workshop | EMSL  

NLE Websites -- All DOE Office Websites (Extended Search)

Compact X-Ray Light Source Workshop Compact X-Ray Light Source Workshop Teller R, Terminello L, Thevuthasan T, Moncton D. 2012. "Compact X-Ray Light Source Workshop Report."...

360

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Biological Imaging by Soft X-Ray Diffraction Microscopy Print Wednesday, 30 November 2005 00:00 Electron and x-ray...

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

APS Bending Magnet X-rays and  

NLE Websites -- All DOE Office Websites (Extended Search)

Irradiation of Nd-Fe-B Permanent Magnets with Irradiation of Nd-Fe-B Permanent Magnets with APS Bending Magnet X-rays and 60 Co γ-rays J. Alderman and P.K. Job APS Operations Division Advanced Photon Source J. Puhl Ionizing Radiation Division National Institute of Standards and Technology June 2000 Table of Contents Introduction Radiation-Induced Demagnetization of Permanent Magnets Resources Required γ-ray Irradiation Results and Analysis of γ-ray Irradiation X-ray Irradiation Results and Analysis of X-ray Irradiation Summary and Conclusions Acknowledgements References Tables and Figures Introduction The Advanced Photon Source (APS), as well as other third-generation synchrotron light sources, uses permanent magnets in the insertion devices to produce x-rays for scientific

362

X-ray source for mammography  

DOE Patents (OSTI)

An x-ray source utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms.

Logan, Clinton M. (Pleasanton, CA)

1994-01-01T23:59:59.000Z

363

Ultrafast X-Ray Sources and Science  

Science Journals Connector (OSTI)

X-ray science is entering the ultrafast and ultraintense era - spurred by developments in coherent, short-wavelength sources that range from tabletop to accelerator-based. These...

Young, Linda

364

X-ray induced optical reflectivity  

The change in optical reflectivity induced by intense x-ray pulses can now be used to study ultrafast many body responses in solids in the femtosecond time domain. X-ray absorption creates photoelectrons and core level holes subsequently filled by Auger or fluorescence processes, and these excitations ultimately add conduction and valence band carriers that perturb optical reflectivity.Optical absorption associated with band filling and band gap narrowing is shown to explain the basic features found in recent measurements on an insulator (silicon nitride, Si3N4), a semiconductor(gallium arsenide,GaAs), and a metal (gold,Au), obtained with ?100 fs x-ray pulses at 500-2000 eV and probed with 800 nm laser pulses. In particular GaAs exhibits an abrupt drop in reflectivity, persisting only for a time comparable to the x-ray excitation pulse duration, consistent with prompt band gap narrowing.

Durbin, Stephen M.

2012-01-01T23:59:59.000Z

365

SMB, X-ray Emission Spectroscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Emission Spectroscopy Beam Line 6-2b X-ray Emission Spectroscopy Beam Line 6-2b is an advanced spectroscopy experimental station on the multidisciplinary general user wiggler Beam...

366

X-raying galaxies: A Chandra legacy  

Science Journals Connector (OSTI)

...Astronomy, University of Massachusetts, Amherst, MA 01003 This presentation...stellar x-ray sources in the solar neighborhood (8). The...elementsMeteoritic and solar . Geochim Cosmochim Acta 53...Astronomy, University of Massachusetts, Amherst, MA 01003, USA...

Q. Daniel Wang

2010-01-01T23:59:59.000Z

367

X-Ray Nanoimaging: Instruments and Methods  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Nanoimaging: Instruments and Methods To be held as part of SPIE. http:spie.orgOP318 August 28-29, 2013; San Diego, California, USA...

368

Femtosecond X-ray protein nanocrystallography  

NLE Websites -- All DOE Office Websites (Extended Search)

Femtosecond X-ray protein nanocrystallography Authors: Chapman, H.N., Fromme, P., Barty, A., White, T.A., Kirian, R.A., Aquila, A., Hunter, M.S., Schulz, J., DePonte, D.P.,...

369

X-ray source for mammography  

DOE Patents (OSTI)

An x-ray source is described utilizing anode material which shifts the output spectrum to higher energy and thereby obtains higher penetrating ability for screening mammography application, than the currently utilized anode material. The currently used anode material (molybdenum) produces an energy x-ray spectrum of 17.5/19.6 keV, which using the anode material of this invention (e.g. silver, rhodium, and tungsten) the x-ray spectrum would be in the 20-35 keV region. Thus, the anode material of this invention provides for imaging of breasts with higher than average x-ray opacity without increase of the radiation dose, and thus reduces the risk of induced breast cancer due to the radiation dose administered for mammograms. 6 figures.

Logan, C.M.

1994-12-20T23:59:59.000Z

370

The Determination of Absolute Concentrations of Elements in Thin (0.1 m) Sections of Biological Tissue by X-ray Microanalysis in the Scanning Electron Microscope and Calibration with Monoenergetic Alpha Particle Scattering Techniques  

Science Journals Connector (OSTI)

......tandem Van de Graaff accelerator. By analysis of elastic...section was prepared by vacuum evaporating onto self-supporting...Tandem Van de Graaff accelerator. The particles scattered...sis produced by the nuclear scattering, since the...on the square of the nuclear charge of the scattering......

J. H. BROADHURST; M. BACANER; M. FUHR; J. S. LILLEY; M. MACRES

1980-01-01T23:59:59.000Z

371

Using X-Ray Computed Tomography in Pore Structure Characterization...  

NLE Websites -- All DOE Office Websites (Extended Search)

Using X-Ray Computed Tomography in Pore Structure Characterization for a Berea Sandstone: Resolution Effect. Using X-Ray Computed Tomography in Pore Structure Characterization for...

372

Argonne CNM: X-Ray Microscopy Capabilities  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Microscopy Facilities X-Ray Microscopy Facilities The Hard X-Ray Nanoprobe (HXN) facility provides scanning fluorescence, scanning diffraction, and full-field transmission and tomographic imaging capabilities with a spatial resolution of 30 nm over a spectral range of 6-12 keV. Modes of Operation Full-Field Transmission Imaging and Nanotomography X-ray transmission imaging uses both the absorption and phase shift of the X-ray beam by the sample as contrast mechanisms. Absorption contrast is used to map the sample density. Elemental constituents can be located by using differential edge contrast in this mode. Phase contrast can be highly sensitive to edges and interfaces even when the X-ray absorption is weak. These contrast mechanisms are exploited to image samples rapidly in full-field transmission mode under various environmental conditions, or combined with nanotomography methods to study the three-dimensional structure of complex and amorphous nanomaterials with the HXN.

373

The Constellation X-ray mission  

Science Journals Connector (OSTI)

The Constellation-X mission is a large collecting area X-ray facility, emphasizing observations at high spectral resolution (E/?E?3003000) while covering a broad energy band (0.2540 keV). By increasing the telescope aperture and utilizing efficient spectrometers the mission will achieve a factor of 100 increased sensitivity over current high-resolution X-ray spectroscopy missions. The use of focussing optics across the 1040 keV band will provide a similar factor of 100 increased sensitivity in this band. Key technologies under development for the mission include lightweight high throughput X-ray optics, multilayer coatings to enhance the hard X-ray performance of X-ray optics, micro-calorimeter spectrometer arrays with 2 eV resolution, low-power and low-weight CCD arrays, lightweight gratings and hard X-ray detectors. When observations commence towards the end of the next decade, Constellation-X will address many pressing questions concerning the extremes of gravity and the evolution of the Universe.

N.E White; H Tananbaum

1999-01-01T23:59:59.000Z

374

X-Ray Observations of Radio Galaxies  

E-Print Network (OSTI)

We review some of the ways that X-ray observations provide unique information on radio galaxies. Thermal bremsstrahlung X-ray emission provides detailed data on ambient densities and temperatures. These parameters in turn can be used for pressure balance calculations and can demonstrate how the ambient gas affects radio source structure. Additionally, many signatures of the interaction of radio jets and lobes with the hot gas are found in high resolution X-ray maps. Non-thermal X-ray emission from knots and hotspots of radio jets can give us constraints on the relativistic electron population for energies greater that that normally sampled in the radio (in the case of synchrotron emission) or can give us an independent estimate of the average magnetic field strength (if inverse Compton emission is the origin of the X-rays). From recent ROSAT HRI observations of 3C 390.3 and 3C 120, we show evidence that X-ray emission from knots and hotspots appears to be associated with regions of large gradients in the radio surface brightness; i.e. at the location of powerful shocks.

D. E. Harris

1998-04-20T23:59:59.000Z

375

Development of x-ray laminography under an x-ray microscopic condition  

SciTech Connect

An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto [Japan Synchrotron Radiation Research Institute JASRI/SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

2011-07-15T23:59:59.000Z

376

X-ray views of neutron star low-mass X-ray binaries  

E-Print Network (OSTI)

A neutron star low-mass X-ray binary is a binary stellar system with a neutron star and a low-mass companion star rotating around each other. In this system the neutron star accretes mass from the companion, and as this matter falls into the deep potential well of the neutron star, the gravitational potential energy is released primarily in the X-ray wavelengths. Such a source was first discovered in X-rays in 1962, and this discovery formally gave birth to the "X-ray astronomy". In the subsequent decades, our knowledge of these sources has increased enormously by the observations with several X-ray space missions. Here we give a brief overview of our current understanding of the X-ray observational aspects of these systems.

Sudip Bhattacharyya

2010-02-24T23:59:59.000Z

377

X-ray Emission Processes in Radio Jets  

E-Print Network (OSTI)

The emission processes responsible for the observed X-rays from radio jets are commonly believed to be non-thermal, but in any particular case, it is unclear if synchrotron emission or one or more varieties of inverse Compton emission predominates. We present a formulation of inverse Compton emission from a relativistically moving jet (``IC/beaming'') which relies on radio emitting synchrotron sources for which the energy densities in particles and fields are comparable. We include the non-isotropic nature of inverse Compton scattering of the relativistic electrons on photons of the cosmic microwave background (CMB) and provide beaming parameters for a number of jets. A list of X-ray emitting jets is given and the jets are classified on the basis of their morphology and spectral energy distribution to determine their likely emission process. We conclude that these jets have significant bulk relativistic velocities on kpc scales; that higher redshift sources require less beaming because the energy density of the CMB is significantly greater than locally; and that for some nearby sources, synchrotron X-ray emission predominates because the jet makes a large angle to the line of sight.

D. E. Harris; H. Krawczynski

2001-09-27T23:59:59.000Z

378

Is linear response to x-rays suitable for digital dental x-ray imaging systems? Theoretical and experimental considerations  

Science Journals Connector (OSTI)

The purpose of this study was to consider theoretically and experimentally the suitability of linear response to x-rays for digital dental x-ray imaging systems.

Keiichi Nishikawa PhD; Mamoru Wakoh DDS; PhD; Kinya Kuroyanagi DDS; PhD

2003-06-01T23:59:59.000Z

379

X-Ray Light Sources | U.S. DOE Office of Science (SC)  

Office of Science (SC) Website

X-Ray Light Sources X-Ray Light Sources Scientific User Facilities (SUF) Division SUF Home About User Facilities X-Ray Light Sources Neutron Scattering Facilities Nanoscale Science Research Centers Electron-Beam Microcharacterization Centers Accelerator & Detector Research & Development Principal Investigators' Meetings Scientific Highlights Construction Projects BES Home User Facilities X-Ray Light Sources Print Text Size: A A A RSS Feeds FeedbackShare Page This activity supports the operation of five DOE light sources. The unique properties of synchrotron radiation include its continuous spectrum, high flux and brightness, and in the case of the Linac Coherent Light Source, high coherence, which makes it an indispensable tool in the exploration of matter. The wavelengths of the emitted photons span a range of dimensions

380

Optics for x-ray microfluorescence to be used at the European Synchroton Radiation Facility  

SciTech Connect

Micro-SRXRF (Synchrotron Radiation induced X-ray Fluorescence) is a microanalytical technique which utilizes an intense, polarized X-ray micro beam originating from the storage ring to induce X-ray fluorescence in a microscopic volume of the sample under investigation. The emerging fluorescent and scattered radiation is normally detected by an energy-dispersive Si(Li) detector. The recorded fluorescent spectra provide qualitative and quantitative information on the examined material yielding minimum detection limits in the ppm and in favourable cases in the sub-ppm range at current SRXRF-facilities. Possible applications of synchrotron X-ray microprobes are the mapping of chemical elements in biological tissues, investigation of element migration and partitioning in geological systems, the analysis of individual microscopic particles and a variety of topics in applied research. 16 refs., 6 figs., 2 tabs.

Vincze, L.; Janssens, K.; Adams, F. [Univ. of Antwerp (Belgium)

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Electrodynamics of Magnetars: Implications for the Persistent X-ray Emission and Spindown of the Soft Gamma Repeaters and Anomalous X-ray Pulsars  

E-Print Network (OSTI)

(ABBREVIATED) We consider the structure of neutron star magnetospheres threaded by large-scale electrical currents, and the effect of resonant Compton scattering by the charge carriers (both electrons and ions) on the emergent X-ray spectra and pulse profiles. In the magnetar model for the SGRs and AXPs, these currents are maintained by magnetic stresses acting deep inside the star. We construct self-similar, force-free equilibria of the current-carrying magnetosphere with a power-law dependence of magnetic field on radius, B ~ r^(-2-p), and show that a large-scale twist softens the radial dependence to p cyclotron scattering, independent of frequency (radius), surface magnetic field strength, or charge/mass ratio of the scattering charge. When electrons and ions supply the current, the stellar surface is also heated by the impacting charges at a rate comparable to the observed X-ray output of the SGR and AXP sources, if B_{dipole} ~ 10^{14} G. Redistribution of the emerging X-ray flux at the ion and electron cyclotron resonances will significantly modify the emerging pulse profile and, through the Doppler effect, generate a non-thermal tail to the X-ray spectrum. The sudden change in the pulse profile of SGR 1900+14 after the 27 August 1998 giant flare is related to an enhanced optical depth to electron cyclotron scattering, resulting from a sudden twist imparted to the external magnetic field.

C. Thompson; M. Lyutikov; S. R. Kulkarni

2001-10-31T23:59:59.000Z

382

X-ray Pinhole Camera Measurements  

SciTech Connect

The development of the rod pinch diode [1] has led to high-resolution radiography for dynamic events such as explosive tests. Rod pinch diodes use a small diameter anode rod, which extends through the aperture of a cathode plate. Electrons borne off the aperture surface can self-insulate and pinch onto the tip of the rod, creating an intense, small x-ray source (Primary Pinch). This source has been utilized as the main diagnostic on numerous experiments that include high-value, single-shot events. In such applications there is an emphasis on machine reliability, x-ray reproducibility, and x-ray quality [2]. In tests with the baseline rod pinch diode, we have observed that an additional pinch (Secondary Pinch) occurs at the interface near the anode rod and the rod holder. This suggests that stray electrons exist that are not associated with the Primary Pinch. In this paper we present measurements on both pinches using an x-ray pinhole camera. The camera is placed downstream of the Primary Pinch at an angle of 60 with respect to the diode centerline. This diagnostic will be employed to diagnose x-ray reproducibility and quality. In addition, we will investigate the performance of hybrid diodes relating to the formation of the Primary and Secondary Pinches.

Nelson, D. S. [NSTec; Berninger, M. J. [NSTec; Flores, P. A. [NSTec; Good, D. E. [NSTec; Henderson, D. J. [NSTec; Hogge, K. W. [NSTec; Huber, S. R. [NSTec; Lutz, S. S. [NSTec; Mitchell, S. E. [NSTec; Howe, R. A. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Bozman, D. R. [SNL; Cordova, S. R. [SNL; Mitchell, D. R. [SNL; Oliver, B. V. [SNL; Ormond, E. C. [SNL

2013-07-01T23:59:59.000Z

383

X-ray lithography using holographic images  

DOE Patents (OSTI)

Methods for forming X-ray images having 0.25 {micro}m minimum line widths on X-ray sensitive material are presented. A holographic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required. 15 figs.

Howells, M.S.; Jacobsen, C.

1997-03-18T23:59:59.000Z

384

Oscillations During Thermonuclear X-ray Bursts  

E-Print Network (OSTI)

High amplitude, nearly coherent X-ray brightness oscillations during thermonuclear X-ray bursts were discovered with the Rossi X-ray Timing Explorer (RXTE) in early 1996. Spectral and timing evidence strongly supports the conclusion that these oscillations are caused by rotational modulation of the burst emission and that they reveal the spin frequency of neutron stars in low mass X-ray binaries, a long sought goal of X-ray astronomy. Studies carried out over the past year have led to the discovery of burst oscillations in four new sources, bringing to ten the number with confirmed burst oscillations. I review the status of our knowledge of these oscillations and indicate how they can be used to probe the physics of neutron stars. For a few burst oscillation sources it has been proposed that the strongest and most ubiquitous frequency is actually the first overtone of the spin frequency and hence that two nearly antipodal hot spots are present on the neutron star. This inference has important implications for both the physics of thermonuclear burning as well as the mass - radius relation for neutron stars, so its confirmation is crucial. I discuss recent attempts to confirm this hypothesis for 4U 1636-53, the source for which a signal at the putative fundamental (290 Hz) has been claimed.

Tod E. Strohmayer

2001-01-12T23:59:59.000Z

385

X-ray lithography using holographic images  

DOE Patents (OSTI)

Methods for forming X-ray images having 0.25 .mu.m minimum line widths on X-ray sensitive material are presented. A holgraphic image of a desired circuit pattern is projected onto a wafer or other image-receiving substrate to allow recording of the desired image in photoresist material. In one embodiment, the method uses on-axis transmission and provides a high flux X-ray source having modest monochromaticity and coherence requirements. A layer of light-sensitive photoresist material on a wafer with a selected surface is provided to receive the image(s). The hologram has variable optical thickness and variable associated optical phase angle and amplitude attenuation for transmission of the X-rays. A second embodiment uses off-axis holography. The wafer receives the holographic image by grazing incidence reflection from a hologram printed on a flat metal or other highly reflecting surface or substrate. In this second embodiment, an X-ray beam with a high degree of monochromaticity and spatial coherence is required.

Howells, Malcolm S. (Berkeley, CA); Jacobsen, Chris (Sound Beach, NY)

1997-01-01T23:59:59.000Z

386

Earth X-ray albedo for cosmic X-ray background radiation in the 1--1000 keV band  

E-Print Network (OSTI)

We present calculations of the reflection of the cosmic X-ray background (CXB) by the Earth's atmosphere in the 1--1000 keV energy range. The calculations include Compton scattering and X-ray fluorescent emission and are based on a realistic chemical composition of the atmosphere. Such calculations are relevant for CXB studies using the Earth as an obscuring screen (as was recently done by INTEGRAL). The Earth's reflectivity is further compared with that of the Sun and the Moon -- the two other objects in the Solar system subtending a large solid angle on the sky, as needed for CXB studies.

E. Churazov; S. Sazonov; R. Sunyaev; M. Revnivtsev

2008-02-11T23:59:59.000Z

387

Predicted X-ray backgrounds for the International X-ray Observatory  

E-Print Network (OSTI)

The background that will be observed by IXO's X-ray detectors naturally separates into two components: (1) a Cosmic X-ray Background (CXB), primarily due to unresolved point sources at high energies (E>2 keV), along with ...

Bautz, Marshall W.

388

Reflection soft X-ray microscope and method  

DOE Patents (OSTI)

A reflection soft X-ray microscope is provided by generating soft X-ray beams, condensing the X-ray beams to strike a surface of an object at a predetermined angle, and focusing the X-ray beams reflected from the surface onto a detector, for recording an image of the surface or near surface features of the object under observation.

Suckewer, Szymon (Princeton, NJ); Skinner, Charles H. (Lawrenceville, NJ); Rosser, Roy (Princeton, NJ)

1993-01-01T23:59:59.000Z

389

Differential phase contrast X-ray imaging system and components  

DOE Patents (OSTI)

A differential phase contrast X-ray imaging system includes an X-ray illumination system, a beam splitter arranged in an optical path of the X-ray illumination system, and a detection system arranged in an optical path to detect X-rays after passing through the beam splitter.

Stutman, Daniel; Finkenthal, Michael

2014-07-01T23:59:59.000Z

390

Origin of the wide-angle hot H2 in DG Tauri: New insight from SINFONI spectro-imaging  

E-Print Network (OSTI)

We wish to test the origins proposed for the extended hot H2 at 2000K around the atomic jet from the T Tauri star DGTau, in order to constrain the wide-angle wind structure and the possible presence of an MHD disk wind. We present flux calibrated IFS observations in H2 1-0 S(1) obtained with SINFONI/VLT. Thanks to spatial deconvolution by the PSF and to accurate correction for uneven slit illumination, we performed a thorough analysis and modeled the morphology, kinematics, and surface brightness. We also compared our results with studies in [FeII], [OI], and FUV-pumped H2. The limb-brightened H2 emission in the blue lobe is strikingly similar to FUV-pumped H2 imaged 6yr later, confirming that they trace the same hot gas and setting an upper limit of 12km/s on any expansion proper motion. The wide-angle H2 rims are at lower blueshifts than probed by narrow long-slit spectra. We confirm that they extend to larger angle and to lower speed the onion-like velocity structure observed in optical atomic lines. The l...

Agra-Amboage, Vanessa; Dougados, C; Kristensen, L E; Ibgui, L; Reunanen, J

2014-01-01T23:59:59.000Z

391

Development of high-speed and wide-angle visible observation diagnostics on Experimental Advanced Superconducting Tokamak using catadioptric optics  

SciTech Connect

A new wide-angle endoscope for visible light observation on the Experimental Advanced Superconducting Tokamak (EAST) has been recently developed. The head section of the optical system is based on a mirror reflection design that is similar to the International Thermonuclear Experimental Reactor-like wide-angle observation diagnostic on the Joint European Torus. However, the optical system design has been simplified and improved. As a result, the global transmittance of the system is as high as 79.6% in the wavelength range from 380 to 780 nm, and the spatial resolution is <5 mm for the full depth of field (4000 mm). The optical system also has a large relative aperture (1:2.4) and can be applied in high-speed camera diagnostics. As an important diagnostic tool, the optical system has been installed on the HT-7 (Hefei Tokamak-7) for its final experimental campaign, and the experiments confirmed that it can be applied to the investigation of transient processes in plasma, such as ELMy eruptions in H-mode, on EAST.

Yang, J. H.; Hu, L. Q.; Zang, Q.; Han, X. F.; Shao, C. Q.; Sun, T. F.; Chen, H.; Wang, T. F.; Li, F. J.; Hu, A. L. [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China)] [Institute of Plasma Physics, Chinese Academy of Sciences, P.O. Box 1126, Hefei, Anhui 230031 (China); Yang, X. F. [Jiangsu Province Key Laboratory of Modern Optical Technology, Soochow University, Suzhou, Jiangsu 215006 (China)] [Jiangsu Province Key Laboratory of Modern Optical Technology, Soochow University, Suzhou, Jiangsu 215006 (China)

2013-08-15T23:59:59.000Z

392

X-ray variability in M87  

E-Print Network (OSTI)

We present the evidence for X-ray variability from the core and from knot A in the M87 jet based on data from two observations with the Einstein Observatory High Resolution Imager (HRI) and three observations with the ROSAT HRI. The core intensity showed a 16% increase in 17 months ('79-'80); a 12% increase in the 3 years '92 to '95; and a 17% drop in the last half of 1995. The intensity of knot A appears to have decreased by 16% between 92Jun and 95Dec. Although the core variability is consistent with general expectations for AGN nuclei, the changes in knot A provide constraints on the x-ray emission process and geometry. Thus we predict that the x-ray morphology of knot A will differ significantly from the radio and optical structure.

D. E. Harris; J. A. Biretta; W. Junor

1996-12-05T23:59:59.000Z

393

Displaced Vertices from X-ray Lines  

E-Print Network (OSTI)

We present a simple model of weak-scale thermal dark matter that gives rise to X-ray lines. Dark matter consists of two nearly degenerate states near the weak scale, which are populated thermally in the early universe via co-annihilation with slightly heavier states that are charged under the Standard Model. The X-ray line arises from the decay of the heavier dark matter component into the lighter one via a radiative dipole transition, at a rate that is slow compared to the age of the universe. The model predicts observable signatures at the LHC in the form of exotic events with missing energy and displaced leptons and jets. As an application, we show how this model can explain the recently observed 3.55 keV X-ray line.

Adam Falkowski; Yonit Hochberg; Joshua T. Ruderman

2014-09-09T23:59:59.000Z

394

X-ray focal spot locating apparatus and method  

DOE Patents (OSTI)

An X-ray beam finder for locating a focal spot of an X-ray tube includes a mass of X-ray opaque material having first and second axially-aligned, parallel-opposed faces connected by a plurality of substantially identical parallel holes perpendicular to the faces and a film holder for holding X-ray sensitive film tightly against one face while the other face is placed in contact with the window of an X-ray head.

Gilbert, Hubert W. (Cedar Crest, NM)

1985-07-30T23:59:59.000Z

395

Cosmology with X-ray Cluster Baryons  

SciTech Connect

X-ray cluster measurements interpreted with a universal baryon/gas mass fraction can theoretically serve as a cosmological distance probe. We examine issues of cosmological sensitivity for current (e.g., Chandra X-ray Observatory, XMM-Newton) and next generation (e.g., Con-X, XEUS) observations, along with systematic uncertainties and biases. To give competitive next generation constraints on dark energy, we find that systematics will need to be controlled to better than 1percent and any evolution in f_gas (and other cluster gas properties) must be calibrated so the residual uncertainty is weaker than (1+z)0.03.

Linder, Eric V.

2007-04-10T23:59:59.000Z

396

Phase recovery for x-ray crystallography  

Science Journals Connector (OSTI)

For many years people have believed that in conventional x-ray crystallography one can only record the diffraction intensities but not the phases. In order to obtain the atomic arrangements, one usually has to guess a structure and then fit the intensity data by refining its parameters. Here, we show that the phases are in fact hidden in the intensity data, and can be directly recovered from the peak profiles. This method is demonstrated by the normal two-beam x-ray diffraction of a noncentrosymmetric crystal, and nontrivial phases are recovered from the intensity data alone.

G. Xu, G. E. Zhou, and X. Y. Zhang

1999-04-01T23:59:59.000Z

397

Time-resolved x-ray diagnostics  

SciTech Connect

Techniques for time-resolved x-ray diagnostics will be reviewed with emphasis on systems utilizing x-ray diodes or scintillators. System design concerns for high-bandwidth (> 1 GHz) diagnostics will be emphasized. The limitations of a coaxial cable system and a technique for equalizing to improve bandwidth of such a system will be reviewed. Characteristics of new multi-GHz amplifiers will be presented. An example of a complete operational system on the Los Alamos Helios laser will be presented which has a bandwidth near 3 GHz over 38 m of coax. The system includes the cable, an amplifier, an oscilloscope, and a digital camera readout.

Lyons, P.B.

1981-01-01T23:59:59.000Z

398

New Chandra observations of the jet in 3C273. 1. Softer X-ray than radio spectra and the X-ray emission mechanism  

SciTech Connect

The jet in 3C273 is a high-power quasar jet with radio, optical and X-ray emission whose size and brightness allow a detailed study of the emission processes acting in it. We present deep Chandra observations of this jet and analyze the spectral properties of the jet emission from radio through X-rays. We find that the X-ray spectra are significantly softer than the radio spectra in all regions of the bright part of the jet except for the first bright ''knot A'', ruling out a model in which the X-ray emission from the entire jet arises from beamed inverse-Compton scattering of cosmic microwave background photons in a single-zone jet flow. Within two-zone jet models, we find that a synchrotron origin for the jet's X-rays requires fewer additional assumptions than an inverse-Compton model, especially if velocity shear leads to efficient particle acceleration in jet flows.

Jester, Sebastian; /Fermilab; Harris, D.E.; /Smithsonian Astrophys. Observ.; Marshall, H.L.; /MIT, MKI; Meisenheimer, K.; /Heidelberg, Max Planck Inst. Astron.

2006-05-01T23:59:59.000Z

399

Non-Invasive Early Detection and Molecular Analysis of Low X-ray Dose  

NLE Websites -- All DOE Office Websites (Extended Search)

Invasive Early Detection & Molecular Analysis of Low X-ray Dose Effects Invasive Early Detection & Molecular Analysis of Low X-ray Dose Effects in the Lens Lee Goldstein Boston University School of Medicine Abstract Purpose: The lens is a highly-ordered tissue with unique optical properties and exquisite radiosensitivity. The focus of this project is to evaluate radiation cataract dose response and mechanisms associated with low-linear energy transfer (LET) X-rays. We aim to investigate the natural history of Rayleigh light scattering changes in pre-cataractous lenses of mice exposed to radiations using a fully-validated, performance-tested quasi-elastic light scattering (QLS) instrument developed by Dr. Goldstein and colleagues at Boston University. This innovative laser-based technology quantitatively assays pre-cataractous molecular pathology in the lenses of living mice

400

Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation  

Science Journals Connector (OSTI)

We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ?10??m-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

Enju Lima; Yuriy Chushkin; Peter van der Linden; Chae Un Kim; Federico Zontone; Philippe Carpentier; Sol M. Gruner; Petra Pernot

2014-10-15T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

What can we learn about extragalactic radio jets from X-ray data?  

E-Print Network (OSTI)

We review the current status of resolved X-ray emission associated with extragalactic radio jets and hotspots. The primary question for any particular jet is to decide if the X-rays come from the synchrotron process or from inverse Compton scattering. There is considerable evidence supporting synchrotron emission for knots in the jets of FRI galaxies. For FRII terminal hotspots detected in the X-ray band, synchrotron self-Compton emission continues to provide viable models with one possible exception (so far). Inverse Compton scattering on photons of the cosmic microwave background is indicated for a few powerful jets, and is expected to be an important contributor if not the dominating mechanism for higher redshift objects. The application of a model generally yields physical parameters and in many cases, these include the Doppler boosting factor.

D. E. Harris

2003-02-05T23:59:59.000Z

402

A high-resolution large-acceptance analyzer for X-ray fluorescence and Raman spectroscopy  

SciTech Connect

A newly designed multi-crystal X-ray spectrometer and its applications in the fields of X-ray fluorescence and X-ray Raman spectroscopy are described. The instrument is based on 8 spherically curved Si crystals, each with a 3.5 inch diameter form bent to a radius of 86 cm. The crystals are individually aligned in the Rowland geometry capturing a total solid angle of 0.07 sr. The array is arranged in a way that energy scans can be performed by moving the whole instrument, rather than scanning each crystal by itself. At angles close to back scattering the energy resolution is between 0.3 and 1 eV depending on the beam dimensions at the sample. The instrument is mainly designed for X-ray absorption and fluorescence spectroscopy of transition metals in dilute systems such as metalloproteins. First results of the Mn K{beta} (3p -> 1s) emission in photosystem II are shown. An independent application of the instrument is the technique of X-ray Raman spectroscopy which can address problems similar to those in traditional soft X-ray absorption spectroscopies, and initial results are presented.

Bergmann, Uwe; Cramer, Stephen P.

2001-08-02T23:59:59.000Z

403

Sharper Focusing of Hard X-rays  

NLE Websites -- All DOE Office Websites (Extended Search)

Sharper Focusing of Hard X-rays FROM: Physics News Update Number 773 #1, April 12, 2006, by Phil Schewe and Ben Stein Note: This text has been slightly modified from the original. Sharper focusing of hard x-rays has been achieved with a device developed at Argonne National Lab. Because of their high energy, x-rays are hard to focus: they can be reflected from a surface but only at a glancing angle (less than a tenth of a degree); they can be refracted but the index of refraction is very close to 1, so that making efficient lenses becomes a problem; and they can be diffracted, but the relatively thick, variable pitch grating required for focusing is tricky to achieve. The Argonne device is of the diffraction type, and it consists of a stack of alternating layers of metal and silicon, made by depositing progressively thicker layers. When the x-rays fall on such a structure, nearly edge-on, what they see is a grating (called a linear zone plate) consisting of a sort of bar-code pattern.

404

Radioactive Thulium for X-Rays  

Science Journals Connector (OSTI)

Radioactive power from thulium makes Argonne x-ray unit a potential for medical and industrial use ... Active component of the instrument is a tiny particle (one-fifth gram) of thulium-170 which has been made radioactive in a heavy water nuclear reactor at Arco, Idaho. ...

1954-05-03T23:59:59.000Z

405

X-ray spectroscopy of manganese clusters  

SciTech Connect

Much of this thesis represents the groundwork necessary in order to probe Mn clusters more productively than with conventional Mn K-edge XAS and is presented in Part 1. Part 2 contains the application of x-ray techniques to Mn metalloproteins and includes a prognosis at the end of each chapter. Individual Mn oxidation states are more readily distinguishable in Mn L-edge spectra. An empirical mixed valence simulation routine for determining the average Mn oxidation state has been developed. The first Mn L-edge spectra of a metalloprotein were measured and interpreted. The energy of Mn K{beta} emission is strongly correlated with average Mn oxidation state. K{beta} results support oxidation states of Mn(III){sub 2}(IV){sub 2} for the S{sub 1} state of Photosystem II chemical chemically reduced preparations contain predominantly Mn(II). A strength and limitation of XAS is that it probes all of the species of a particular element in a sample. It would often be advantageous to selectively probe different forms of the same element. The first demonstration that chemical shifts in x-ray fluorescence energies can be used to obtain oxidation state-selective x-ray absorption spectra is presented. Spin-dependent spectra can also be used to obtain a more simplified picture of local structure. The first spin-polarized extended x-ray absorption fine structure using Mn K{beta} fluorescence detection is shown.

Grush, M.M. [Univ. of California, Davis, CA (United States). Dept. of Applied Science; [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.

1996-06-01T23:59:59.000Z

406

Multiple wavelength X-ray monochromators  

DOE Patents (OSTI)

An improved apparatus and method is provided for separating input x-ray radiation containing first and second x-ray wavelengths into spatially separate first and second output radiation which contain the first and second x-ray wavelengths, respectively. The apparatus includes a crystalline diffractor which includes a first set of parallel crystal planes, where each of the planes is spaced a predetermined first distance from one another. The crystalline diffractor also includes a second set of parallel crystal planes inclined at an angle with respect to the first set of crystal planes where each of the planes of the second set of parallel crystal planes is spaced a predetermined second distance from one another. In one embodiment, the crystalline diffractor is comprised of a single crystal. In a second embodiment, the crystalline diffractor is comprised of a stack of two crystals. In a third embodiment, the crystalline diffractor includes a single crystal that is bent for focusing the separate first and second output x-ray radiation wavelengths into separate focal points. 3 figs.

Steinmeyer, P.A.

1992-11-17T23:59:59.000Z

407

Soft x-ray laser microscope  

SciTech Connect

The program consisted of two phases (Phase I and Phase II). The goal of the Phase I (first year program) was to design and construct the Soft X-ray Laser Contact Microscope. Such microscope was constructed and adapted to PPL's 18.2nm soft X-ray Laser (SXL), which in turn was modified and prepared for microscopy experiments. Investigation of the photoresist response to 18.2nm laser radiation and transmissivity of 0.1m thick silicion-nitride (Si[sub 3]N[sub 4]) windows were important initial works. The goal of the first year of Phase II was to construct X-ray contact microscope in combination with existing optical phase microscope, already used by biologists. In the second year of Phase II study of dehydrated Horeseshoe Crab and Hela cancer cells were performed with COXRALM. Also during Phase II, the Imaging X-Ray Laser Microscope (IXRALM) was designed and constructed. This paper describes the development of each of the microscopes and their application for research.

Suckewer, P.I.

1990-10-01T23:59:59.000Z

408

SLAC All Access: X-ray Microscope  

ScienceCinema (OSTI)

SLAC physicists Johanna Nelson and Yijin Liu give a brief overview of the X-ray microscope at the Stanford Synchrotron Radiation Lightsource (SSRL) that is helping improve rechargeable-battery technology by letting researchers peek into the inner workings of batteries as they operate.

Nelson, Johanna; Liu, Yijin

2014-06-13T23:59:59.000Z

409

11th LANSCE School on Neutron Scattering | Lecturers  

NLE Websites -- All DOE Office Websites (Extended Search)

they lead to new knowledge of existing materials or novel materials concepts. Examples of Neutron scattering, X-ray scattering and neutron or X-ray tomography will be shown which...

410

An EXAFS spectroscopic study of solvates of copper(I) and copper(II) in acetonitrile, dimethyl sulfoxide, pyridine, and tetrahydrothiophene solutions and a large-angle X-ray scattering study of the copper(II) acetonitrile solvate in solution  

SciTech Connect

X-ray absorption edge and EXAFS spectra of the acetonitrile, dimethyl sulfoxide, pyridine and tetrahydrothiophene solvated copper(I) ions and the acetonitrile and dimethyl sulfoxide solvated copper(II) ions have been measured in solution. Analysis reveals that the copper(I) solvates are most probably tetrahedral, and the following Cu-solvate bond distances have been found: Cu-N = 1.99(2) [angstrom] in acetonitrile, Cu-O = 2.09(4) [angstrom] in dimethyl sulfoxide, Cu-N = 2.06(1) [angstrom] in pyridine, and Cu-S = 2.30(1) [angstrom] in tetrahydrothiophene. The copper(II) solvates are most probably Jahn-Teller distorted octahedrons, and the following equatorial Cu-solvate bond distances have been found: Cu-N = 1.99(1) [angstrom] in acetonitrile, and Cu-O = 1.98(1) [angstrom] in dimethyl sulfoxide. An 1.0 M solution of copper(II) trifluoromethanesulfonate in acetonitrile has been studied by means of the large-angle X-ray scattering technique, and the following Cu-N and Cu-C distances have been found for the Cu(CH[sub 3]CN)[sub 4][sup 2][sup +] complex: 1.99(1) and 3.12(1) [angstrom], respectively. No solvate molecules in the axial positions could however be seen by any of the technique used. The structure of the tetraaquacopper(I) ion has been assumed to be tetrahedral, and from a correlation between the difference in bond length between the copper(I) and copper(II) solvates and the disproportionation constants of copper(I) in the solvent, the Cu-O bond distance is predicted to be approximately 0.14 [angstrom] longer than the equatorial Cu-O distances in the Jahn-Teller distorted hexaaquacopper(II) complex, thus about 2.13 [angstrom].

Persson, I. (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)); Penner-Hahn, J.E. (Univ. of Michigan, Ann Arbor (United States) Stanford Univ., CA (United States)); Hodgson, K.O. (Univ. of Michigan, Ann Arbor (United States))

1993-05-26T23:59:59.000Z

411

Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis  

SciTech Connect

The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures.

Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

1984-01-01T23:59:59.000Z

412

X-ray imaging crystal spectrometer for extended X-ray sources  

DOE Patents (OSTI)

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokomak fusion experiment to provide spatially and temporally resolved data on plasma parameters using the imaging properties for Bragg angles near 45. For a Bragg angle of 45.degree., the spherical crystal focuses a bundle of near parallel X-rays (the cross section of which is determined by the cross section of the crystal) from the plasma to a point on a detector, with parallel rays inclined to the main plain of diffraction focused to different points on the detector. Thus, it is possible to radially image the plasma X-ray emission in different wavelengths simultaneously with a single crystal.

Bitter, Manfred L. (Princeton, NJ); Fraenkel, Ben (Jerusalem, IL); Gorman, James L. (Bordentown, NJ); Hill, Kenneth W. (Lawrenceville, NJ); Roquemore, A. Lane (Cranbury, NJ); Stodiek, Wolfgang (Princeton, NJ); von Goeler, Schweickhard E. (Princeton, NJ)

2001-01-01T23:59:59.000Z

413

Rise Time Measurement for Ultrafast X-Ray Pulses  

DOE Patents (OSTI)

A pump-probe scheme measures the rise time of ultrafast x-ray pulses. Conventional high speed x-ray diagnostics (x-ray streak cameras, PIN diodes, diamond PCD devices) do not provide sufficient time resolution to resolve rise times of x-ray pulses on the order of 50 fs or less as they are being produced by modern fast x-ray sources. Here, we are describing a pump-probe technique that can be employed to measure events where detector resolution is insufficient to resolve the event. The scheme utilizes a diamond plate as an x-ray transducer and a p-polarized probe beam.

Celliers, Peter M.; Weber, Franz A.; Moon, Stephen J.

2005-04-05T23:59:59.000Z

414

X-ray microscopy using grazing-incidence reflection optics  

SciTech Connect

The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics.

Price, R.H.

1981-08-06T23:59:59.000Z

415

X-RAY POINT-SOURCE POPULATIONS CONSTITUTING THE GALACTIC RIDGE X-RAY EMISSION  

SciTech Connect

Apparently diffuse X-ray emission has been known to exist along the central quarter of the Galactic Plane since the beginning of X-ray astronomy; this is referred to as the Galactic Ridge X-ray emission (GRXE). Recent deep X-ray observations have shown that numerous X-ray point sources account for a large fraction of the GRXE in the hard band (2-8 keV). However, the nature of these sources is poorly understood. Using the deepest X-ray observations made in the Chandra bulge field, we present the result of a coherent photometric and spectroscopic analysis of individual X-ray point sources for the purpose of constraining their nature and deriving their fractional contributions to the hard-band continuum and Fe K line emission of the GRXE. Based on the X-ray color-color diagram, we divided the point sources into three groups: A (hard), B (soft and broad spectrum), and C (soft and peaked spectrum). The group A sources are further decomposed spectrally into thermal and non-thermal sources with different fractions in different flux ranges. From their X-ray properties, we speculate that the group A non-thermal sources are mostly active galactic nuclei and the thermal sources are mostly white dwarf (WD) binaries such as magnetic and non-magnetic cataclysmic variables (CVs), pre-CVs, and symbiotic stars, whereas the group B and C sources are X-ray active stars in flares and quiescence, respectively. In the log N-log S curve of the 2-8 keV band, the group A non-thermal sources are dominant above Almost-Equal-To 10{sup -14} erg cm{sup -2} s{sup -1}, which is gradually taken over by Galactic sources in the fainter flux ranges. The Fe K{alpha} emission is mostly from the group A thermal (WD binaries) and the group B (X-ray active stars) sources.

Morihana, Kumiko [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)] [Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Tsujimoto, Masahiro; Ebisawa, Ken [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)] [Japan Aerospace Exploration Agency, Institute of Space and Astronautical Science, 3-1-1 Yoshino-dai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Yoshida, Tessei, E-mail: morihana@crab.riken.jp [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)] [National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo 181-8588 (Japan)

2013-03-20T23:59:59.000Z

416

Beyond hard x-ray photoelectron spectroscopy: Simultaneous combination with x-ray diffraction  

SciTech Connect

Hard x-ray photoelectron spectroscopy (HAXPES) is a powerful and novel emerging technique for the nondestructive determination of electronic properties and chemical composition of bulk, buried interfaces and surfaces. It benefits from the exceptionally large escape depth of high kinetic energy photoelectrons, increasing the information depth up to several tens of nanometers. Complementing HAXPES with an atomic structure sensitive technique (such as x-ray diffraction) opens a new research field with major applications for materials science. At SpLine, the Spanish CRG beamline at the European Synchrotron Radiation Facility, we have developed a novel experimental set-up that combines HAXPES and x-ray diffraction (x-ray reflectivity, surface x-ray diffraction, grazing incidence x-ray diffraction, and reciprocal space maps). Both techniques can be operated simultaneously on the same sample and using the same excitation source. The set-up includes a robust 2S + 3D diffractometer hosting a ultrahigh vacuum chamber equipped with a unique photoelectron spectrometer (few eV < electron kinetic energy < 15 keV), x-ray tube (Mg/Ti), 15 keV electron gun, and auxiliary standard surface facilities (molecular beam epitaxy evaporator, ion gun, low energy electron diffraction, sample heating/cooling system, leak valves, load-lock sample transfer, etc.). This end-station offers the unique possibility of performing simultaneous HAXPES + x-ray diffraction studies. In the present work, we describe the experimental set-up together with two experimental examples that emphasize its outstanding capabilities: (i) nondestructive characterization of the Si/Ge and HfO{sub 2}/SiO{sub 2} interfaces on Ge-based CMOS devices, and (ii) strain study on La{sub 0.7}Ca{sub 0.3}MnO{sub 3} ultrathin films grown on SrTiO{sub 3}(001) substrate.

Rubio-Zuazo, Juan; Castro, German R. [SpLine, Spanish CRG beamline at the European Synchrotron Radiation Facility, B.P. 220, F-38043 Grenoble (France) and ICMM-CSIC Cantoblanco, E-28049 Madrid (Spain)

2013-05-15T23:59:59.000Z

417

Resolving Conflicting Crystallographic and NMR Models for Solution-State DNA with Solution X-ray Diffraction  

Science Journals Connector (OSTI)

We report on synchrotron-based high-angle X-ray solution scattering measured to 2 resolution for two synthetic DNA sequences for which there are conflicting X-ray crystal and solution NMR models. ... Herein, we report on synchrotron-based high-angle X-ray solution scattering measured to 2 resolution for two synthetic DNA sequences for which there are numerous conflicting X-ray crystal and solution NMR models. ... The crystal structure of the synthetic DNA dodecamer d(CpGpCpGpApApTpTpCpGpCpG) was refined to a residual error of R = 17.8% at 1.9- resoln. ...

Xiaobing Zuo; David M. Tiede

2004-12-10T23:59:59.000Z

418

Core and Valence Excitations in Resonant X-ray Spectroscopy using Restricted Excitation Window Time-dependent Density Functional Theory  

SciTech Connect

We report simulations of X-ray absorption near edge structure (XANES), resonant inelastic X-ray scattering (RIXS) and 1D stimulated X-ray Raman spectroscopy (SXRS) signals of cysteine at the oxygen, nitrogen and sulfur K and L2,3 edges. The simulated XANES signals from the restricted window time-dependent density functional theory (REW-TDDFT) and the static exchange (STEX) method are compared with experiments, showing that REW-TDDFT is more accurate and computationally less expensive than STEX. Simulated RIXS and 1D SXRS signals from REW-TDDFT give some insights on the correlation of different excitations in the molecule.

Zhang, Yu; Biggs, Jason D.; Healion, Daniel; Govind, Niranjan; Mukamel, Shaul

2012-11-21T23:59:59.000Z

419

The hard X-ray spectrum of Compton-thick Seyfert 2 galaxies and the synthesis of the XRB  

E-Print Network (OSTI)

A synthesis model for the cosmic X-ray Background (XRB) is presented, which includes a proper treatment of Compton scattering in the absorbing matter for type 2 AGN. Evidence for a decrease of the relative importance of type 2 AGN at high redshift is found, which may be due either to a decrease of the relative number of obscured sources, or (more plausibly) to an increase of the fraction of Compton-thick absorbed sources. The XRB spectrum, soft X-rays and hard X-rays source counts can be simultaneously fitted only if the XRB normalization as derived from BeppoSAX/MECS measurements is adopted.

Giorgio Matt; Fulvio Pompilio; Fabio La Franca

1999-12-16T23:59:59.000Z

420

Phase imaging of magnetic nanostructures using resonant soft x-ray holography  

Science Journals Connector (OSTI)

We demonstrate phase imaging by means of resonant soft x-ray holography. Our holographic phase-contrast method utilizes the strong energy-dependence of the refractive index at a characteristic x-ray absorption resonance. The general concept is shown by using a Co?Pd multilayer sample which exhibits random nanosized magnetic domains. By tuning below the Co L-edge resonance, our quantitative and spectroscopic phase method allows high-contrast imaging of nanoscale electronic and magnetic order while increasing the probing depth and decreasing the radiation dose by an order of magnitude. The complex refractive index is quantitatively obtained through the interference between resonant and nonresonant scattering.

A. Scherz; W. F. Schlotter; K. Chen; R. Rick; J. Sthr; J. Lning; I. McNulty; Ch. Gnther; F. Radu; W. Eberhardt; O. Hellwig; S. Eisebitt

2007-12-17T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

X-rays Illuminate Ancient Archimedes Text  

NLE Websites -- All DOE Office Websites (Extended Search)

Related Links: Related Links: May 2005 Headlines TIP Article Press Release Walters Art Museum SSRL Home Page SLAC Home Page Stanford Home Page Tuesday, 31 May 2005 X-rays Illuminate Ancient Archimedes Text (contact: Uwe Bergmann, bergmann@slac.stanford.edu) Archimedes Figure Image provided by Will Noel, The Walters Art Museum An early transcription of Archimedes' mathematical theories has been brought to light through the probing of high-intensity x-rays at SSRL's BL6-2. The text contains part of the Method of Mechanical Theorems, one of Archimedes' most important works, which was probably copied out by a scribe in the tenth century. The parchment on which it was written was later scraped down and reused as pages in a twelfth century prayer book, producing a document known as a palimpsest (which comes from the Greek,

422

Element 104 identified by characteristic x rays  

Science Journals Connector (OSTI)

A research team at the Oak Ridge National Laboratory has recently announced that they have conclusively identified the 257 isotope of element 104. This new work shows promise of shedding light on the controversy between Albert Ghiorso and Georgi N. Flerov the leaders respectively of the groups at Lawrence Berkeley Laboratory and the Joint Institute for Nuclear Research Dubna. The isotope 104 X 257 decays by alpha emission to 102 No 253 with a half?life of 4.3 seconds. The Oak Ridge group observed the K?series x rays from nobelium in coincidence with the alpha particles from 104 X 257 ; the observation of x?ray spectra has never been reported previously by the Berkeley or Dubna workers according to Curtis E. Bemis Jr spokesman for the group.

Ronald J. Cohn

1973-01-01T23:59:59.000Z

423

X-ray radiography for container inspection  

DOE Patents (OSTI)

Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

Katz, Jonathan I. (Clayton, MO); Morris, Christopher L. (Los Alamos, NM)

2011-06-07T23:59:59.000Z

424

Sample holder for X-ray diffractometry  

DOE Patents (OSTI)

A sample holder for use with X-ray diffractometers with the capability to rotate the sample, as well as to adjust the position of the sample in the x, y, and z directions. Adjustment in the x direction is accomplished through loosening set screws, moving a platform, and retightening the set screws. Motion translators are used for adjustment in the y and z directions. An electric motor rotates the sample, and receives power from the diffractometer.

Hesch, Victor L. (Los Alamos, NM)

1992-01-01T23:59:59.000Z

425

Columbia University X-Ray Measurements  

E-Print Network (OSTI)

V-720 keV · NaI 2x2x2" detector views an energy range of 1 keV-3 MeV Store signal in the tree. computer configuration. Plasmas were created using multi-frequency ECRH, and we find that most of the plasma energy is stored in the fast electrons. The energy spectrum of the x-ray emission below 740 keV is measured

426

Silicon Absolute X-Ray Detectors  

SciTech Connect

The responsivity of silicon photodiodes having no loss in the entrance window, measured using synchrotron radiation in the 1.75 to 60 keV range, was compared to the responsivity calculated using the silicon thickness measured using near-infrared light. The measured and calculated responsivities agree with an average difference of 1.3%. This enables their use as absolute x-ray detectors.

Seely, John F. [Naval Research Laboratory, Washington, D.C. 20375 (United States); Korde, Raj; Sprunck, Jacob [International Radiation Detectors, Inc., Torrance, CA 90505-5243 (United States); Medjoubi, Kadda; Hustache, Stephanie [Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192 Gif-sur-Yvette CEDEX (France)

2010-06-23T23:59:59.000Z

427

Ultrashort x-ray backlighters and applications  

SciTech Connect

Previously, using ultrashort laser pulses focused onto solid targets, we have experimentally studied a controllable ultrafast broadband radiation source in the extreme ultraviolet for time-resolved dynamical studies in ultrafast science [J. Workman, A. Maksimchuk, X. Llu, U. Ellenberger, J. S. Coe, C.-Y. Chien, and D. Umstadter, ``Control of Bright Picosecond X-Ray Emission from Intense Sub- Picosecond Laser-Plasma Interactions,`` Phys. Rev. Lett. 75, 2324 (1995)]. Once armed with a bright ultrafast broadband continuum x-ray source and appropriate detectors, we used the source as a backlighter to study a remotely produced plasma. The application of the source to a problem relevant to high-density matter completes the triad: creating and controlling, efficiently detecting, and applying the source. This work represented the first use of an ultrafast laser- produced x-ray source as a time-resolving probe in an application relevant to atomic, plasma and high-energy-density matter physics. Using the x-ray source as a backlighter, we adopted a pump-probe geometry to investigate the dynamic changes in electronic structure of a thin metallic film as it is perturbed by an ultrashort laser pulse. Because the laser deposits its energy in a skin depth of about 100 {Angstrom} before expansion occurs, up to gigabar pressure shock waves lasting picosecond in duration have been predicted to form in these novel plasmas. This raises the possibility of studying high- energy-density matter relevant to inertial confinement fusion (ICF) and astrophysics in small-scale laboratory experiments. In the past, time-resolved measurements of K-edge shifts in plasmas driven by nanosecond pulses have been used to infer conditions in highly compressed materials. In this study, we used 100-fs laser pulses to impulsively drive shocks into a sample (an untamped 1000 {Angstrom} aluminum film on 2000 {Angstrom} of parylene-n), measuring L-edge shifts.

Umstadter, D., University of Michigan

1997-08-01T23:59:59.000Z

428

X-ray holography at Lawrence Livermore National Laboratory  

SciTech Connect

The x-ray holography program at the Lawrence Livermore National Laboratory has two principal goals: (1) the development of x-ray diffraction techniques for DNA sequence analysis and (2) the development of x-ray laser holography for structural analysis of intact biological cells and organelles. DNA sequence analysis will be accomplished by applying x-ray diffraction techniques to determine the ensemble average of the sequence of labels along the individual elements of crystalline DNA. X-ray laser holographic imaging will be accomplished by applying three dimensional x-ray holography to elucidate the structure of few hundred angstrom objects such as 300 {Angstrom} chromatin fibers, nuclear pores and nucleic acid replication complexes in living cells. Existing laboratory x-ray lasers will be utilized to produce flash x-ray holograms of the biological structures.

Trebes, J.; Annese, C.; Birdsall, D.; Brase, J.; Gray, J.; Lane, S.; London, R.; Matthews, D.; Peters, D.; Pinkel, D.; Stone, G.; Rapp, D.; Rosen, M.; Weier, U.; Yorkey, T.

1990-10-11T23:59:59.000Z

429

X-Ray Diffraction Microscopy of Magnetic Structures  

NLE Websites -- All DOE Office Websites (Extended Search)

X-Ray Diffraction Microscopy of Magnetic Structures Print science brief icon Scientists working at ALS Beamline 12.0.2.2 have demonstrated a new x-ray technique for producing...

430

X-ray diffraction study of zirconia pillared clays  

Science Journals Connector (OSTI)

X-ray powder diffraction (XRPD) and X-ray radial electronic distribution density (RED) of initial and zirconia-pillared interlayered clays (Zr-PILC) were studied. After pillaring, the basal ... under air to 17.7 ...

D.A. Zyuzin; E.M. Moroz; T.G. Kuznetsova

2004-01-01T23:59:59.000Z

431

Development of a Schwarzschild-type x-ray microscope  

Science Journals Connector (OSTI)

A Schwarzschild-type x-ray microscope has been designed, constructed, and tested. Ni/C multilayers were used as the x-ray mirrors, with a thickness (2d) of 7 nm and 30 layer pairs. The...

Kado, M; Yamashita, K; Ohtani, M; Tanaka, K A; Kodama, R; Kitamoto, S; Yamanaka, T; Nakai, S

1991-01-01T23:59:59.000Z

432

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in...

433

A Record Run for the APS X-ray Source  

NLE Websites -- All DOE Office Websites (Extended Search)

2004 | 2003 | 2002 | 2001 2000 Subscribe to APS News rss feed A Record Run for the APS X-ray Source FEBRUARY 23, 2012 Bookmark and Share The APS storage ring. X-ray beams and...

434

TENDER ENERGY X-RAY ABSORPTION  

NLE Websites -- All DOE Office Websites (Extended Search)

TENDER ENERGY X-RAY ABSORPTION TENDER ENERGY X-RAY ABSORPTION SPECTROSCOPY (TES) Project Team: S. Bare 1,2 , J. Brandes 3 , T. Buonassisi 4 , J. Chen 5,2 , M. Croft 6 , E. DiMasi 7 , A. Frenkel 8,2 , D. Hesterberg 9 , S. Hulbert 7,2 , S. Khalid 7 , S. Myneni 10 , P. Northrup 7,11 , E.T. Rasbury 11 , B. Ravel 12 , R. Reeder 11 , J. Rodriguez 7,2 , D. Sparks 5,13 , V. Stojanoff 7 , G. Waychunas 14 1 UOP LLC, 2 Synchrotron Catalysis Consortium, 3 Skidaway Inst. of Oceanography, 4 MIT Laboratory for Photovoltaics Research, 5 Univ. of Delaware, 6 Rutgers Univ., 7 Brookhaven National Lab, 8 Yeshiva Univ., 9 North Carolina State Univ., 10 Princeton Univ., 11 Stony Brook Univ., 12 NIST, 13 Delaware Environmental Inst., 14 Lawrence Berkeley National Lab TECHNIQUES: High performance and in-situ X-ray absorption spectroscopy and spatially-resolved XAS of

435

The X-ray Telescope of CAST  

E-Print Network (OSTI)

The Cern Axion Solar Telescope (CAST) is in operation and taking data since 2003. The main objective of the CAST experiment is to search for a hypothetical pseudoscalar boson, the axion, which might be produced in the core of the sun. The basic physics process CAST is based on is the time inverted Primakoff effect, by which an axion can be converted into a detectable photon in an external electromagnetic field. The resulting X-ray photons are expected to be thermally distributed between 1 and 7 keV. The most sensitive detector system of CAST is a pn-CCD detector combined with a Wolter I type X-ray mirror system. With the X-ray telescope of CAST a background reduction of more than 2 orders off magnitude is achieved, such that for the first time the axion photon coupling constant g_agg can be probed beyond the best astrophysical constraints g_agg < 1 x 10^-10 GeV^-1.

M. Kuster; H. Bruninger; S. Cbrian; M. Davenport; C. Elefteriadis; J. Englhauser; H. Fischer; J. Franz; P. Friedrich; R. Hartmann; F. H. Heinsius; D. H. H. Hoffmann; G. Hoffmeister; J. N. Joux; D. Kang; K. Knigsmann; R. Kotthaus; T. Papaevangelou; C. Lasseur; A. Lippitsch; G. Lutz; J. Morales; A. Rodrguez; L. Strder; J. Vogel; K. Zioutas

2007-05-10T23:59:59.000Z

436

Neutron and X-Ray Studies of Advanced Materials V: CENTENNIAL  

SciTech Connect

In 2012 the diffraction community will celebrate 100 years since the prediction of X-ray diffraction by M. Laue, and following his suggestion the first beautiful diffraction experiment by W. Friedrich and P. Knipping. The significance of techniques based on the analysis of the diffraction of X-rays, neutrons, electrons and Mossbauer photons discovered later, has continued to increase in the past 100 years. The aim of this symposium is to provide a forum for discussion of using state-of-the-art neutron and X-ray scattering techniques for probing advanced materials. These techniques have been widely used to characterize materials structures across all length scales, from atomic to nano, meso, and macroscopic scales. With the development of sample environments, in-situ experiments, e.g., at temperatures and applied mechanical load, are becoming routine. The development of ultra-brilliant third-generation synchrotron X-ray sources, together with advances in X-ray optics, has created intense X-ray microbeams, which provide the best opportunities for in-depth understanding of mechanical behavior in a broad spectrum of materials. Important applications include ultra-sensitive elemental detection by X-ray fluorescence/absorption and microdiffraction to identify phase and strain with submicrometer spatial resolution. X-ray microdiffraction is a particularly exciting application compared with alternative probes of crystalline structure, orientation and strain. X-ray microdiffraction is non-destructive with good strain resolution, competitive or superior spatial resolution in thick samples, and with the ability to probe below the sample surface. Advances in neutron sources and instrumentation also bring new opportunities in neutron scattering research. In addition to characterizing the structures, neutrons are also a great tool for elucidating the dynamics of materials. Because neutrons are highly penetrating, neutrons have been used to map stress in engineering systems. Neutrons have also played a vital role in our understanding of the magnetism and magnetic properties. Specialized instruments have been built to gain physical insights of the fundamental mechanisms governing phase transformation and mechanical behaviors of materials. The application of those techniques, in combination with theoretical simulations and numerical modeling, will lead to major breakthroughs in materials science in the foreseeable future that will contribute to the development of materials technology and industrial innovation.

Spanos, George

2012-05-01T23:59:59.000Z

437

Applications of holography to x-ray imaging  

SciTech Connect

In this paper we consider various applications of holographic techniques to the problem of soft x-ray imaging. We give special attention to imaging biological material using x-rays in the wavelength range 24 to 45A. We describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

1985-03-01T23:59:59.000Z

438

Applications of holography to X-ray imaging  

SciTech Connect

In this paper the authors consider various applications of holographic techniques to the problem of soft x-ray imaging. Special attention is given to imaging biological material using x-rays in the wavelength range 24-45A. The authors describe some experiments on formation and reconstruction of x-ray holograms and propose some ways in which holographic techniques might contribute to the difficult problem of fabricating optical elements for use in the soft x-ray region.

Howells, M.; Iarocci, M.; Kenney, J.; Rarback, H.; Rosser, R.; Yun, W.

1985-01-01T23:59:59.000Z

439

X-ray MicroCT Training Presentation  

E-Print Network (OSTI)

X-ray MicroCT Training Presentation T. Fettah Kosar, PhD Center for Nanoscale Systems Harvard) Model: HMXST225 (max. 225 kV) #12;Overview 3 Introduction to X-ray imaging and Computed Tomography (CT) · What are X-rays and how do we generate and image them? · How do we magnify X-ray images and keep them

440

In Situ X-Ray Probing Reveals Fingerprints of Surface Platinum Oxide  

SciTech Connect

In situ x-ray absorption spectroscopy (XAS) at the Pt L{sub 3} edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard x-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF8 code and complementary extended x-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

Friebel, Daniel

2011-08-24T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Quantitative x-ray imager (abstract)  

SciTech Connect

We report on development of a quantitative x-ray imager (QXI) for the national Inertial Confinement Fusion Program. Included in this development is a study of photocathode response as a function of photon energy, 2--17.5 keV, which is related to diagnostic development on the National Ignition Facility (NIF). The QXI is defined as being a quantative imager due to the repeated characterization. This instrument is systematically checked out, electronically as well as its photocathode x-ray response, both on a direct current and pulsed x-ray sources, before and after its use on a shot campaign. The QXI is a gated x-ray imager1 used for a variety of experiments conducted in the Inertial Confinement Fusion and Radiation Physics Program. The camera was assembled in Los Alamos and has been under development since 1997 and has now become the workhorse framing camera by the program. The electronics were built by Grant Applied Physics of San Fransisco, CA.2 The QXI has been used at the LANL Trident, LLNL Nova, and University of Rochester Laboratory OMEGA laser facilities. The camera consists of a grated microchannel plate (MCP), a phosphor coated fiberoptic faceplate coupled to film for data readout, along with high speed electronic pulsers to drive the x-ray detector. The QXI has both a two-strip and a four-strip detection head and has the ability to individually bias the gain of each of the strips. The timing of the QXI was done at the Trident short pulse laboratory, using 211 nm light. Single strip jitter was looked at as well and determined to be <25 ps. Flatfielding of the photocathode across the MCP was done with the Trident main laser with 150 J on a gold disk with a 1 ns. Spatial resolution was determined to be <5 {mu}m by using the same laser conditions as before and a backlit 1000 lp/in. grid. The QXI has been used on cylindrical implosion work at the Nova Laser Facility, and on direct-drive cylinder mix and indirect-drive high convergence implosion experiments at OMEGA. Its two-strip module has provided the capability to look at point backlighters, as part of technique development for experiments on the NIF. Its next use will be in March 2000 with its off axis viewer nose at Omega, providing a perpendicular view of Rayleigh--Taylor spike dissipation.

Evans, Scott C.; Archuleta, Tom N.; Oertel, John A.; Walsh, Peter J.

2001-01-01T23:59:59.000Z

442

X-ray Microscopy and Imaging: 2-BM  

NLE Websites -- All DOE Office Websites (Extended Search)

BM BM Introduction The 2-BM beamline offers measurement capabilities for x-ray microtomography, x-ray topography and x-ray microdiffraction. X-ray microtomography and x-ray diffraction instruments are installed on separate optical tables for independent operation with fast switch over time. Optically-coupled high-resolution CCD system is used for microtomography and topography with up to 1 micron spatial resolution. X-ray microdiffraction setup consists of KB microfocussing mirrors (~3 micron minimum spot), four-circle Huber diffractometer, high-precision translation sample stage, two orthogonally-mounted video cameras for viewing sample, fluorescence detector (Si-drift diode) and diffraction detector (a scintillation detector or a CCD). Three different levels of monochromaticity are available. Conventional monochromatic x-rays from a double-bounced Si (111) crystal monochromator (DCM, D E/E=1E-4), wide band-pass monochromatic x-rays from a double multilayer monochromator (DMM, D E/E=1~4E-2) and pink beam. The available x-ray range is from 5 keV to 30 keV. The lower limit is due to the x-ray windows and the upper limit is due to the critical angle of the x-ray mirror. Two different coatings (Cr and Pt) for the x-ray mirror allow either 20 keV or 30 keV energy cutoff.

443

Improvement of YOHKOH Hard X-Ray Imaging  

Science Journals Connector (OSTI)

......Figure la shows the X-ray penetration rate through a single, 0.5 mm...index Fig. 1. (a) X-ray penetration rate through a single tung- sten...the K-escape. (b) X-ray penetration rates averaged over the HXT M2 and......

Jun Sato; Takeo Kosugi; Kazuo Makishima

1999-02-01T23:59:59.000Z

444

X-ray Diffraction Laboratory Department of Chemistry  

E-Print Network (OSTI)

X-ray Diffraction Laboratory Department of Chemistry Texas A & M University College Station, Texas Phone : 979-845-9125 www.chem.tamu.edu/xray xray@tamu.edu X-rayDiffractionLaboratory DepartmentofChemistry 3255TAMU CollegeStation,TX77843-3255 Mission The purpose of our laboratory is to provide X-ray

Meagher, Mary

445

X-ray Diffraction Practicals 1 Graphics Programs  

E-Print Network (OSTI)

X-ray Diffraction Practicals 1 Graphics Programs that will read SHELX or CIF files J. Reibenspies, N. Bhuvanesh ver 1.0.0 #12;X-ray Diffraction Practicals 2 Free software. Gretep : Reads SHELX files shelx files or output thermal ellipsoid plots. http://www.umass.edu/microbio/rasmol/ #12;X-ray

Meagher, Mary

446

X-ray Emission from Massive Stars David Cohen  

E-Print Network (OSTI)

X-ray Emission from Massive Stars David Cohen Department of Physics and Astronomy Swarthmore University, Oct. 13, 2005 astro.swarthmore.edu/~cohen/ #12;Outline 1. What you need to know: a. X-rays from the Sun - magnetic activity, x-ray spectra b. Hot stars c. Radiation-driven winds and the Doppler shift d

Cohen, David

447

X-Ray Photoelectron Spectroscopy XPS Mark Engelhard  

E-Print Network (OSTI)

X-Ray Photoelectron Spectroscopy XPS Mark Engelhard 1 #12;EMSL XPS Instrumentation 2 Physical Electronics Quantera XPS High Energy Resolution Focused X-ray Beam Capability Catalysis reaction and processing chamber with inert atmosphere glove box connected to a PHI Quantera Scanning X-ray Microprobe

448

Single molecule imaging with longer x-ray laser pulses  

E-Print Network (OSTI)

In serial femtosecond crystallography, x-ray laser pulses do not need to outrun all radiation damage processes because Bragg diffraction exceeds the damage-induced background scattering for longer pulses ($\\sim$ 50--100 fs). This is due to a "self-gating pulse" effect whereby damage terminates Bragg diffraction prior to the pulse completing its passage through the sample, as if that diffraction were produced by a shorter pulse of equal fluence. We show here that a similar gating effect applies to single molecule diffraction with respect to spatially uncorrelated damage processes like ionization and ion diffusion. The effect is clearly seen in calculations of the diffraction contrast, by calculating the diffraction of average structure separately to the diffraction from statistical fluctuations of the structure due to damage ("damage noise"). Our results suggest that sub-nanometer single molecule imaging with longer pulses, like those produced at currently operating facilities, should not yet be ruled out. The...

Martin, Andrew V; Caleman, Carl; Quiney, Harry M

2015-01-01T23:59:59.000Z

449

Variation of Q with energy in mosaic analyzers for inelastic x-ray measurements  

SciTech Connect

Curved mosaic graphite analyzers have been used for many years for inelastic scattering measurements with both conventional x-ray sources as well as synchrotron sources (1). The trend in recent years has been to use spherically bent perfect crystal analyzers to collect large solid angles with high energy resolution. Although, these spherical analyzers achieve excellent energy resolution, the large solid angle limits the Q resolution. For cylindrically bent mosaic graphite, it is possible to obtain good energy and Q resolution simultaneously, while maintaining a large solid angle by collecting a range of energies dispersed along a linear position detector. However, if the mosaic spread of the crystal is less than the acceptance angle subtended in the scattering plane, the energy spectrum from a mosaic analyzer as collected in a linear detector will have Q varying with energy. The resolution and the variation in Q with energy along a linear detector are discussed in relation to inelastic x-ray scattering measurements.

Tischler, J. Z.; Larson, B. C. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6030 (United States); Zschack, Paul [Univ. of Illinois, UNICAT, Bldg. 438D, Argonne National Lab., Argonne, Illinois 60439-4863 (United States)

1997-07-01T23:59:59.000Z

450

Calibrating X-ray Imaging Devices for Accurate Intensity Measurement  

SciTech Connect

The purpose of the project presented is to develop methods to accurately calibrate X-ray imaging devices. The approach was to develop X-ray source systems suitable for this endeavor and to develop methods to calibrate solid state detectors to measure source intensity. NSTec X-ray sources used for the absolute calibration of cameras are described, as well as the method of calibrating the source by calibrating the detectors. The work resulted in calibration measurements for several types of X-ray cameras. X-ray camera calibration measured efficiency and efficiency variation over the CCD. Camera types calibrated include: CCD, CID, back thinned (back illuminated), front illuminated.

Haugh, M. J.

2011-07-28T23:59:59.000Z

451

X-Ray Imaging Crystal Spectrometer for Extended X-Ray Sources  

SciTech Connect

Spherically or toroidally curved, double focusing crystals are used in a spectrometer for X-ray diagnostics of an extended X-ray source such as a hot plasma produced in a tokamak fusion experiment to provide spatially and temporally resolved data on plasma parameters such as ion temperature, toroidal and poloidal rotation, electron temperature, impurity ion charge-state distributions, and impurity transport. The imaging properties of these spherically or toroidally curved crystals provide both spectrally and spatially resolved X-ray data from the plasma using only one small spherically or toroidally curved crystal, thus eliminating the requirement for a large array of crystal spectrometers and the need to cross-calibrate the various crystals.

Bitter, Manfred L.; Fraekel, Benjamin; Gorman, James L.; Hill, Kenneth W.; Roquemore, Lane A.; Stodiek, Wolfgang; Goeler, Schweickhard von

1999-05-01T23:59:59.000Z

452

Apparatus for monitoring X-ray beam alignment  

DOE Patents (OSTI)

A self-contained, hand-held apparatus is provided for minitoring alignment of an X-ray beam in an instrument employing an X-ray source. The apparatus includes a transducer assembly containing a photoresistor for providing a range of electrical signals responsive to a range of X-ray beam intensities from the X-ray beam being aligned. A circuit, powered by a 7.5 VDC power supply and containing an audio frequency pulse generator whose frequency varies with the resistance of the photoresistor, is provided for generating a range of audible sounds. A portion of the audible range corresponds to low X-ray beam intensity. Another portion of the audible range corresponds to high X-ray beam intensity. The transducer assembly may include an a photoresistor, a thin layer of X-ray fluorescent material, and a filter layer transparent to X-rays but opaque to visible light. X-rays from the beam undergoing alignment penetrate the filter layer and excite the layer of fluorescent material. The light emitted from the fluorescent material alters the resistance of the photoresistor which is in the electrical circuit including the audio pulse generator and a speaker. In employing the apparatus, the X-ray beam is aligned to a complete alignment by adjusting the X-ray beam to produce an audible sound of the maximum frequency.

Steinmeyer, Peter A. (Arvada, CO)

1991-10-08T23:59:59.000Z

453

Photon Sciences | Beamlines | HXN: Hard X-ray Nanoprobe  

NLE Websites -- All DOE Office Websites (Extended Search)

HXN: Hard X-ray Nanoprobe HXN: Hard X-ray Nanoprobe Poster | Fact Sheet | Preliminary Design Report Scientific Scope The Hard X-ray Nanoprobe beamline and endstation instruments (HXN) will be designed and constructed to explore new frontiers of hard x-ray microscopy applications with the highest achievable spatial resolution. Currently the available spatial resolution for scientific applications, provided by scanning x-ray microscopes in the hard x-ray regime, is limited to ~50nm, which is still insufficient for probing the nanoscale interfacial structures critical in determining properties and functionalities of material and biological systems. The HXN beamline aims to enable x-ray experiments at spatial resolutions ranging from 10 to 30 nm with an ultimate goal of ~1 nm. Beamline Description

454

Hard X-ray tails and cyclotron features in X-ray pulsars  

E-Print Network (OSTI)

We review the physical processes occurring in the magnetosphere of accreting X-ray pulsars, with emphasis on those processes that give rise to observable effects in their high (E>10 keV) energy spectra. In the second part we compare the empirical spectral laws used to fit the observed spectra with theoretical models, at the light of the BeppoSAX results on the broad-band characterization of the X-ray pulsar continuum, and the discovery of new (multiple) cyclotron resonance features.

Mauro Orlandini; Daniele Dal Fiume

2001-07-27T23:59:59.000Z

455

The constellation X-ray mission  

Science Journals Connector (OSTI)

The Constellation-X mission is a large collecting area X-ray facility emphasizing observations at high spectral resolution (E/?E?3003000) while covering a broad energy band (0.2540 keV). This mission will achieve a factor of 100 increased sensitivity over current capabilities and is optimized to observe the effects of extreme gravity close to black holes and test models for the formation of large scale structure in the Universe. It is apart of NASAs strategic plan for launch towards the end of the first decade of the 21st century.

N. E. White; H. Tananbaum

2001-01-01T23:59:59.000Z

456

X-ray imaging performance of scintillator-filled silicon pore arrays  

SciTech Connect

The need for fine detail visibility in various applications such as dental imaging, mammography, but also neurology and cardiology, is the driver for intensive efforts in the development of new x-ray detectors. The spatial resolution of current scintillator layers is limited by optical diffusion. This limitation can be overcome by a pixelation, which prevents optical photons from crossing the interface between two neighboring pixels. In this work, an array of pores was etched in a silicon wafer with a pixel pitch of 50 {mu}m. A very high aspect ratio was achieved with wall thicknesses of 4-7 {mu}m and pore depths of about 400 {mu}m. Subsequently, the pores were filled with Tl-doped cesium iodide (CsI:Tl) as a scintillator in a special process, which includes powder melting and solidification of the CsI. From the sample geometry and x-ray absorption measurement the pore fill grade was determined to be 75%. The scintillator-filled samples have a circular active area of 16 mm diameter. They are coupled with an optical sensor binned to the same pixel pitch in order to measure the x-ray imaging performance. The x-ray sensitivity, i.e., the light output per absorbed x-ray dose, is found to be only 2.5%-4.5% of a commercial CsI-layer of similar thickness, thus very low. The efficiency of the pores to transport the generated light to the photodiode is estimated to be in the best case 6.5%. The modulation transfer function is 40% at 4 lp/mm and 10%-20% at 8 lp/mm. It is limited most likely by the optical gap between scintillator and sensor and by K-escape quanta. The detective quantum efficiency (DQE) is determined at different beam qualities and dose settings. The maximum DQE(0) is 0.28, while the x-ray absorption with the given thickness and fill factor is 0.57. High Swank noise is suspected to be the reason, mainly caused by optical scatter inside the CsI-filled pores. The results are compared to Monte Carlo simulations of the photon transport inside the pore array structure. In addition, some x-ray images of technical and anatomical phantoms are shown. This work shows that scintillator-filled pore arrays can provide x-ray imaging with high spatial resolution, but are not suitable in their current state for most of the applications in medical imaging, where increasing the x-ray doses cannot be tolerated.

Simon, Matthias; Engel, Klaus Juergen; Menser, Bernd; Badel, Xavier; Linnros, Jan [Philips Research Europe, Weisshausstr. 2, 52080 Aachen (Germany); Royal Institute of Technology, Electrum 229, 16440 Kista (Sweden)

2008-03-15T23:59:59.000Z

457

THREE-DIMENSIONAL IMAGING OF NANOSCALE MATERIALS BY UISNG COHERENT X-RAYS  

SciTech Connect

X-ray crystallography is currently the primary methodology used to determine the 3D structure of materials and macromolecules. However, many nanostructures, disordered materials, biomaterials, hybrid materials and biological specimens are noncrystalline and, hence, their structures are not accessible by X-ray crystallography. Probing these structures therefore requires the employment of different approaches. A very promising technique currently under rapid development is X-ray diffraction microscopy (or lensless imaging), in which the coherent X-ray diffraction pattern of a noncrystalline specimen is measured and then directly phased to obtain a high-resolution image. Through the DOE support over the past three years, we have applied X-ray diffraction microscopy to quantitative imaging of GaN quantum dot particles, and revealed the internal GaN-Ga2O3 core shell structure in three dimensions. By exploiting the abrupt change in the scattering cross-section near electronic resonances, we carried out the first experimental demonstration of resonant X-ray diffraction microscopy for element specific imaging. We performed nondestructive and quantitative imaging of buried Bi structures inside a Si crystal by directly phasing coherent X-ray diffraction patterns acquired below and above the Bi M5 edge. We have also applied X-ray diffraction microscopy to nondestructive imaging of mineral crystals inside biological composite materials - intramuscular fish bone - at the nanometer scale resolution. We identified mineral crystals in collagen fibrils at different stages of mineralization and proposed a dynamic mechanism to account for the nucleation and growth of mineral crystals in the collagen matrix. In addition, we have also discovered a novel 3D imaging modality, denoted ankylography, which allows for complete 3D structure determination without the necessity of sample titling or scanning. We showed that when the diffraction pattern of a finite object is sampled at a sufficiently fine scale on the Ewald sphere, the 3D structure of the object is determined by the 2D spherical pattern. We confirmed the theoretical analysis by performing 3D numerical reconstructions of a sodium silicate glass structure at 2 ? resolution from a 2D spherical diffraction pattern alone. As X-ray free electron lasers are under rapid development worldwide, ankylography may open up a new horizon to obtain the 3D structure of a non-crystalline specimen from a single pulse and allow time-resolved 3D structure determination of disordered materials.

Jianwei Miao

2011-04-18T23:59:59.000Z

458

Dynamical Studies Using Coherent X-rays: A Short Review and Prospects for the Future  

SciTech Connect

The use of coherent x-ray beams for studying the structure and dynamics of both surfaces and bulk materials is rapidly increasing due to the advent of new high-brilliance x-ray sources. The field of x-ray photon correlation spectroscopy (XPCS) has steadily grown from demonstration experiments carried out some 15 years ago, to studies addressing real problems at the forefront of condensed matter and has attracted increasing numbers of users. the principal applications have been in the fields of soft condensed matter and nanoscience, but extension to the study of slow fluctuations in magnetic systems will undoubtedly grow. This talk will attempt to survey some of the recent applications at the limits of currently existing instruments, and present a wish list for XPCS-capable beamlines of the future for attacking certain important problems in condensed matter and materials science. This talk will also present a new formulation of the scattering of partially coherent radiation by condensed matter, which will enable us to go beyond the simple, kinematic approximation that is usually made, but which breaks down for grazing incidence small-angle x-ray scattering geometry.

Sinha, Sunil K. [University of California, San Diego

2010-07-07T23:59:59.000Z

459

Method and apparatus for enhanced sensitivity filmless medical x-ray imaging, including three-dimensional imaging  

DOE Patents (OSTI)

A filmless X-ray imaging system includes at least one X-ray source, upper and lower collimators, and a solid-state detector array, and can provide three-dimensional imaging capability. The X-ray source plane is distance z{sub 1} above upper collimator plane, distance z{sub 2} above the lower collimator plane, and distance z{sub 3} above the plane of the detector array. The object to be X-rayed is located between the upper and lower collimator planes. The upper and lower collimators and the detector array are moved horizontally with scanning velocities v{sub 1}, v{sub 2}, v{sub 3} proportional to z{sub 1}, z{sub 2} and z{sub 3}, respectively. The pattern and size of openings in the collimators, and between detector positions is proportional such that similar triangles are always defined relative to the location of the X-ray source. X-rays that pass through openings in the upper collimator will always pass through corresponding and similar openings in the lower collimator, and thence to a corresponding detector in the underlying detector array. Substantially 100% of the X-rays irradiating the object (and neither absorbed nor scattered) pass through the lower collimator openings and are detected, which promotes enhanced sensitivity. A computer system coordinates repositioning of the collimators and detector array, and X-ray source locations. The computer system can store detector array output, and can associate a known X-ray source location with detector array output data, to provide three-dimensional imaging. Detector output may be viewed instantly, stored digitally, and/or transmitted electronically for image viewing at a remote site. 5 figs.

Parker, S.

1995-10-24T23:59:59.000Z

460

X-Ray Diffraction on NIF  

SciTech Connect

The National Ignition Facility (NIF) is currently a 192 beam, 1.6 MJ laser. NIF Ramp-Compression Experiments have already made the relevant exo-planet pressure range from 1 to 50 Mbar accessible. We Proposed to Study Carbon Phases by X-Ray Diffraction on NIF. Just a few years ago, ultra-high pressure phase diagrams for materials were very 'simple'. New experiments and theories point out surprising and decidedly complex behavior at the highest pressures considered. High pressures phases of aluminum are also predicted to be complex. Recent metadynamics survey of carbon proposed a dynamic pathway among multiple phases. We need to develop diagnostics and techniques to explore this new regime of highly compressed matter science. X-Ray Diffraction - Understand the phase diagram/EOS/strength/texture of materials to 10's of Mbar. Strategy and physics goals: (1) Powder diffraction; (2) Begin with diamond; (3) Continue with metals etc.; (4) Explore phase diagrams; (5) Develop liquid diffraction; and (6) Reduce background/improve resolution.

Eggert, J H; Wark, J

2012-02-15T23:59:59.000Z

Note: This page contains sample records for the topic "wide-angle x-ray scattering" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Development of procedures for refurbishing x-ray optics at the Advanced Light Source  

E-Print Network (OSTI)

Development of procedures for refurbishing x-ray optics atpractical and robust procedures for refurbishing x-ray

Yashchuk, Valeriy V.

2013-01-01T23:59:59.000Z

462

Searching for Dark Matter with X-Ray Observations of Local Dwarf Galaxies  

Science Journals Connector (OSTI)

A generic feature of weakly interacting massive particle (WIMP) dark matter models is the emission of photons over a broad energy band resulting from the stable yields of dark matter pair annihilation. Inverse Compton scattering off cosmic microwave background photons of energetic electrons and positrons produced in dark matter annihilation is expected to produce significant diffuse X-ray emission. Dwarf galaxies are ideal targets for this type of dark matter search technique, being nearby, dark matter dominated systems free of any astrophysical diffuse X-ray background. In this paper, we present the first systematic study of X-ray observations of local dwarf galaxies aimed at the search for WIMP dark matter. We outline the optimal energy and angular ranges for current telescopes and analyze the systematic uncertainties connected to electron/positron diffusion. We do not observe any significant X-ray excess, and we translate this null result into limits on the mass and pair annihilation cross section for particle dark matter. Our results indicate that X-ray observations of dwarf galaxies currently constrain dark matter models at the same level as or even more strongly than gamma-ray observations of the same systems, although at the expenses of introducing additional assumptions and related uncertainties in the modeling of diffusion and energy loss processes. The limits we find constrain portions of the supersymmetric parameter space, particularly if the effect of dark matter substructures is included. Finally, we comment on the role of future X-ray satellites (e.g., Constellation-X, XEUS) and on their complementarity with GLAST and other gamma-ray telescopes in the quest for particle dark matter.

T. E. Jeltema; S. Profumo

2008-01-01T23:59:59.000Z

463

Results from the NSTX X-ray Crystal Spectrometer  

SciTech Connect

A high-resolution X-ray crystal spectrometer has recently been installed at the National Spherical Torus Experiment to record the satellite spectra of helium-like argon, ArXVII, in the wavelength range from 3.94 to 4.00 {angstrom} for measurements of ion and electron temperatures, and measurements of the ionization equilibrium of argon, which is of interest for studies of ion transport. The instrument presently consists of a spherically bent quartz crystal and a conventional one-dimensional position-sensitive multi-wire proportional counter, but it will soon be upgraded to a new type of X-ray imaging crystal spectrometer by the installation of a large size (10 cm x 30 cm) two-dimensional position-sensitive detector that will allow us to obtain temporally and spatially resolved spectra from an 80 cm high cross-section of the plasma. In its present configuration, the spectrometer has been optimized for high throughput so that it is possible to record spectra with small statistical errors with a time resolution of 10 ms by adding only small, nonperturbing amounts of argon to the plasma. The spectrometer is most valuable for measurements of the ion temperature in the absence of a neutral beam in ohmically heated and radio-frequency heated discharges, when charge exchange recombination spectroscopy does not function. Electron temperature measurements from the satellite-to-resonance line ratios have been important for a quantitative comparison with (and verification of) the Thomson scattering data. The paper will describe the instrumental details of the present and future spectrometer configurations, and present recent experimental results.

M. Bitter; K. Hill; L. Roquemore; P. Beiersdorfer; D. Thorn; Ming Feng Gu

2003-01-14T23:59:59.000Z

464

Time-, Frequency-, and Wavevector-Resolved X-Ray Diffraction from Single Molecules  

E-Print Network (OSTI)

Using a quantum electrodynamic framework, we calculate the off-resonant scattering of a broad-band X-ray pulse from a sample initially prepared in an arbitrary superposition of electronic states. The signal consists of single-particle (incoherent) and two-particle (coherent) contributions that carry different particle form factors that involve different material transitions. Single-molecule experiments involving incoherent scattering are more influenced by inelastic processes compared to bulk measurements. The conditions under which the technique directly measures charge densities (and can be considered as diffraction) as opposed to correlation functions of the charge-density are specified. The results are illustrated with time- and wavevector-resolved signals from a single amino acid molecule (cysteine) following an impulsive excitation by a stimulated X-ray Raman process resonant with the sulfur K-edge. Our theory and simulations can guide future experimental studies on the structures of nano-particles and ...

Bennett, Kochise; Zhang, Yu; Dorfman, Konstantin E; Mukamel, Shaul

2014-01-01T23:59:59.000Z

465

X-Ray Fluorescence (XRF) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Fluorescence (XRF) X-Ray Fluorescence (XRF) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Fluorescence (XRF) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Bulk and trace element analysis of rocks, minerals, and sediments. Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Fluorescence (XRF): X-Ray Fluorescence is a lab-based technique used for bulk chemical analysis of rock, mineral, sediment, and fluid samples. The technique depends on the fundamental principles of x-ray interactions with solid materials, similar

466

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

467

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

468

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

469

Definition: X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search Dictionary.png X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to obtain specific information about the crystalline material under investigation. X-ray powder diffraction is widely used in geology, environmental science, material science, and engineering to rapidly identify unknown crystalline substances (typically in less than 20 minutes). A pure, finely ground, and homogenized sample is required for determination of the bulk composition. Additional uses include detailed

470

X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

X-Ray Diffraction (XRD) X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Lab Analysis Techniques Exploration Sub Group: Rock Lab Analysis Parent Exploration Technique: Rock Lab Analysis Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png X-Ray Diffraction (XRD): X-Ray Diffraction (XRD) is a laboratory-based technique commonly used for identification of crystalline materials and analysis of unit cell dimensions. One of two primary types of XRD analysis (X-ray powder diffraction and single-crystal XRD) is commonly applied to samples to

471

Density gradient free electron collisionally excited X-ray laser  

DOE Patents (OSTI)

An operational X-ray laser (30) is provided that amplifies 3p-3s transition X-ray radiation along an approximately linear path. The X-ray laser (30) is driven by a high power optical laser. The driving line focused optical laser beam (32) illuminates a free-standing thin foil (34) that may be associated with a substrate (36) for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the X-ray laser gain medium. The X-ray laser (30) may be driven by more than one optical laser beam (32, 44). The X-ray laser (30) has been successfully demonstrated to function in a series of experimental tests.

Campbell, Edward M. (Pleasanton, CA); Rosen, Mordecai D. (Berkeley, CA)

1989-01-01T23:59:59.000Z

472

Density gradient free electron collisionally excited x-ray laser  

DOE Patents (OSTI)

An operational x-ray laser is provided that amplifies 3p-3s transition x-ray radiation along an approximately linear path. The x-ray laser is driven by a high power optical laser. The driving line focused optical laser beam illuminates a free-standing thin foil that may be associated with a substrate for improved structural integrity. This illumination produces a generally cylindrically shaped plasma having an essentially uniform electron density and temperature, that exists over a long period of time, and provides the x-ray laser gain medium. The x-ray laser may be driven by more than one optical laser beam. The x-ray laser has been successfully demonstrated to function in a series of experimental tests.

Campbell, E.M.; Rosen, M.D.

1984-11-29T23:59:59.000Z

473

Formation of microbeam using tabletop soft X-ray laser  

Science Journals Connector (OSTI)

An X-ray microprobe with a sub-micron size beam and high intensity can provide X-ray analyses with a remarkable spatial resolution. We have performed focusing of an X-ray laser output into a sub-micron beam for the first time. In our experiment, an X-ray laser of Li-like Al 3d4f transition at 15.47 nm was delivered from an unstable cavity consisting of a concave mirror and a flat mirror with a square orifice of 100100 ?m in size. The beam from the orifice was then focused by using a Schwarzschild mirror coated with a Mo/Si multilayer. An X-ray beam size with a diameter of about 0.45 ?m and an estimated photon number of about 2106 photons per shot was achieved. Such sources could be well suited for the realization of X-ray microprobes.

Tadayuki Ohchi; Naohiro Yamaguchi; Chiemi Fujikawa; Tamio Hara

1999-01-01T23:59:59.000Z

474

Portable X-Ray Diffraction (XRD) | Open Energy Information  

Open Energy Info (EERE)

Portable X-Ray Diffraction (XRD) Portable X-Ray Diffraction (XRD) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Technique: Portable X-Ray Diffraction (XRD) Details Activities (0) Areas (0) Regions (0) NEPA(0) Exploration Technique Information Exploration Group: Field Techniques Exploration Sub Group: Data Collection and Mapping Parent Exploration Technique: Data Collection and Mapping Information Provided by Technique Lithology: Rapid and unambiguous identification of unknown minerals.[1] Stratigraphic/Structural: Hydrological: Thermal: Dictionary.png Portable X-Ray Diffraction (XRD): Portable X-Ray Diffraction (XRD) is a field-based technique that can be used for identification of crystalline materials and analysis of unit cell dimensions. Portable XRD analysis is similar to X-ray powder diffraction,

475

Biological Imaging by Soft X-Ray Diffraction Microscopy  

NLE Websites -- All DOE Office Websites (Extended Search)

Biological Imaging by Soft X-Ray Diffraction Microscopy Print Biological Imaging by Soft X-Ray Diffraction Microscopy Print Electron and x-ray microscopes are a valuable tool for both the life and materials sciences, but they are limited in their ability to image with nanometer-scale resolution in three dimensions nonperiodic objects that are several microns in size. To fill this gap, the technique of coherent x-ray diffraction imaging now under development takes advantage of the penetrating power of x rays while simultaneously removing the limitations imposed by lens-based optical systems. Researchers from Stony Brook University, in collaboration with scientists at the ALS and Cornell University, have taken a large step in this direction by using a lensless x-ray diffraction microscope to image a freeze-dried yeast cell to better than 30-nm resolution. Images were made at several angular orientations of the cell.

476

Polarized x-ray-absorption spectroscopy of the uranyl ion: Comparison of experiment and theory  

SciTech Connect

The x-ray linear dichroism of the uranyl ion (UO{sub 2}{sup 2+}) in uranium {ital L}{sub 3}-edge extended x-ray-absorption fine structure (EXAFS), and {ital L}{sub 1}- and {ital L}{sub 3}-edge x-ray-absorption near-edge structure (XANES), has been investigated both by experiment and theory. A striking polarization dependence is observed in the experimental XANES and EXAFS for an oriented single crystal of uranyl acetate dihydrate [UO{sub 2}(CH{sub 3}CO{sub 2}){sub 2}{center_dot}2H{sub 2}O], with the x-ray polarization vector aligned either parallel or perpendicular to the bond axis of the linear uranyl cation (O-U-O). Single-crystal results are compared to experimental spectra for a polycrystalline uranyl acetate sample and to calculations using the {ital ab} {ital initio} multiple-scattering (MS) code FEFF 6. Theoretical XANES spectra for uranyl fluoride (UO{sub 2}F{sub 2}) reproduce all the features of the measured uranyl acetate spectra. By identifying scattering paths which contribute to individual features in the calculated spectrum, a detailed understanding of the {ital L}{sub 1}-edge XANES is obtained. MS paths within the uranyl cation have a notable influence upon the XANES. The measured {ital L}{sub 3}-edge EXAFS is also influenced by MS, especially when the x-ray polarization is parallel to the uranyl species. These MS contributions are extracted from the total EXAFS and compared to calculations. The best agreement with the isolated MS signal is obtained by using nonoverlapped muffin-tin spheres in the FEFF 6 calculation. This contrasts the {ital L}{sub 1}-edge XANES calculations, in which overlapping was required for the best agreement with experiment. {copyright} {ital 1996 The American Physical Society.}

Hudson, E.A.; Allen, P.G.; Terminello, L.J. [Glenn T. Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, University of California, Livermore, California 94551 (United States)] [Glenn T. Seaborg Institute for Transactinium Science, Lawrence Livermore National Laboratory, University of California, Livermore, California 94551 (United States); Denecke, M.A.; Reich, T. [Institut fuer Radiochemie, Forschungszentrum Rossendorf, Postfach 510119, D-01314 Dresden (Germany)] [Institut fuer Radiochemie, Forschungszentrum Rossendorf, Postfach 510119, D-01314 Dresden (Germany)

1996-07-01T23:59:59.000Z

477

X-ray Pinhole Camera Measurements  

SciTech Connect

The rod pinch diode is made up of a cathode plate and a small diameter anode rod that extends through the cathode hole. The anode is charged positively. The rod tip is made of a high-z material which is chosen for its bremsstrahlung efficiency. When the diode is pulsed it produces an intense x-ray source used for pulsed radiography. The baseline or reference diode consists of a 0.75 mm diameter Tungsten (W) tapered anode rod which extends 10 mm through a 9 mm diameter 3 mm thick aluminum (Al) aperture. The majority of the current in the electron beam is created on the edges of the cathode aperture and when properly configured, the electrons will self insulate, travel down the extension of the rod, and pinch onto the tip of the rod. In this presentation, performance of hybrid diodes will be compared with the baseline diode.

Nelson, D. S. [NSTec; Berninger, M. J. [NSTec; Flores, P. A. [NSTec; Good, D. E. [NSTec; Henderson, D. J. [NSTec; Hogge, K. W. [NSTec; Huber, S. R. [NSTec; Lutz, S. S. [NSTec; Mitchell, S. E. [NSTec; Howe, R. A. [NSTec; Mitton, C. V. [NSTec; Molina, I. [NSTec; Bozman, D. R. [SNL; Cordova, S. R. [SNL; Mitchell, D. R. [SNL; Oliver, B. V. [SNL; Ormond, E. C. [SNL

2013-06-20T23:59:59.000Z

478

Gray scale x-ray mask  

DOE Patents (OSTI)

The present invention describes a method for fabricating an embossing tool or an x-ray mask tool, providing microstructures that smoothly vary in height from point-to-point in etched substrates, i.e., structure which can vary in all three dimensions. The process uses a lithographic technique to transfer an image pattern in the surface of a silicon wafer by exposing and developing the resist and then etching the silicon substrate. Importantly, the photoresist is variably exposed so that when developed some of the resist layer remains. The remaining undeveloped resist acts as an etchant barrier to the reactive plasma used to etch the silicon substrate and therefore provides the ability etch structures of variable depths.

Morales, Alfredo M. (Livermore, CA); Gonzales, Marcela (Seattle, WA)

2006-03-07T23:59:59.000Z

479

Nonlinear optics with focused x-ray lasers  

SciTech Connect

We have investigated the possibility of focusing x-ray lasers with the use of multilayered mirrors or zone plates. The results indicate that x-ray intensities as high as 10{sup 14} W/cm{sup 2} can be achieved by focusing saturated Ne-like x-ray lasers. These intensities should be adequate for studying nonlinear optical phenomena. 9 refs., 2 figs.

DaSilva, L.B.; Muendel, M.H.; Falcone, R.W.; Fields, D.J.; Kortright, J.B.; MacGowan, B.J.; Matthews, D.L.; Mrowka, S.; Shimkaveg, G.M.; Trebes, J.E.

1990-12-12T23:59:59.000Z