National Library of Energy BETA

Sample records for wide bandgap semiconductors

  1. INFOGRAPHIC: Wide Bandgap Semiconductors

    Broader source: Energy.gov [DOE]

    Breakthrough material technology called wide bandgap (WBG) semiconductors can help reduce the amount of wasted heat, boost energy efficiency, improve reliability, reduce cost, and decrease system size in existing and future power electronics.

  2. Wide Bandgap Semiconductors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wide Bandgap Semiconductors Wide Bandgap Semiconductors Addthis Duration 1:55 Topic Energy Sector Jobs Manufacturing Transmission Innovation

  3. Wide Bandgap Semiconductors: Pursuing the Promise | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wide Bandgap Semiconductors: Pursuing the Promise Wide Bandgap Semiconductors: Pursuing the Promise Wide bandgap semiconductor materials are more efficient than their silicon-based counterparts; making it possible to reduce weight, volume, and life-cycle costs in a wide range of power applications. PDF icon Wide Bandgap Semiconductors: Pursuing the Promise More Documents & Publications Vehicle Technologies Office Merit Review 2015: Electric Drive Inverter R&D Wide Bandgap Semiconductors

  4. Wide Bandgap Semiconductors for Clean Energy Workshop | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Wide Bandgap Semiconductors for Clean Energy Workshop Wide Bandgap Semiconductors for Clean Energy Workshop July 25, 2012 A workshop on Wide Bandgap (WBG) Semiconductors for Clean Energy (held July 25, 2012, in Chicago, Illinois) brought together stakeholders from industry and academia to discuss the technical status of WBG semiconductors. The workshop also explored emerging WBG market applications in clean energy and barriers to the development and widespread commercial use of WBG

  5. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrogen and Fuel Cell Applications | Department of Energy Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Below is the text version of the webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications," originally presented on October 21, 2014. In addition to

  6. Wide Bandgap Semiconductors: Essential to Our Technology Future |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Wide Bandgap Semiconductors: Essential to Our Technology Future Wide Bandgap Semiconductors: Essential to Our Technology Future January 15, 2014 - 8:00am Addthis Learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What are the key facts? North Carolina State University will lead the Energy Department's new

  7. Webinar October 21: Opportunities for Wide Bandgap Semiconductor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    from the development of next-generation power electronics based on wide bandgap (WBG) semiconductor materials such as SiC and GaN. Examples include the development of reliable,...

  8. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect (OSTI)

    Ozpineci, B.

    2004-01-02

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  9. Method of depositing wide bandgap amorphous semiconductor materials

    DOE Patents [OSTI]

    Ellis, Jr., Frank B.; Delahoy, Alan E.

    1987-09-29

    A method of depositing wide bandgap p type amorphous semiconductor materials on a substrate without photosensitization by the decomposition of one or more higher order gaseous silanes in the presence of a p-type catalytic dopant at a temperature of about 200.degree. C. and a pressure in the range from about 1-50 Torr.

  10. Wide-Bandgap Compound Semiconductors to Enable Novel Semiconductor Devices

    SciTech Connect (OSTI)

    Crawford, M.H.; Chow, W.W.; Wright, A.F.; Lee, S.R.; Jones, E.D.; Han, J.; Shul, R.J.

    1999-04-01

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program that focused on research and development of GaN-based wide bandgap semiconductor materials (referred to as III-N materials). Our theoretical investigations include the determination of fundamental materials parameters from first-principles calculations, the study of gain properties of III-N heterostructures using a microscopic laser theory and density-functional-theory, charge-state calculations to determine the core structure and energy levels of dislocations in III-N materials. Our experimental investigations include time-resolved photoluminescence and magneto-luminescence studies of GaN epilayers and multiquantum well samples as well as x-ray diffraction studies of AlGaN ternary alloys. In addition, we performed a number of experiments to determine how various materials processing steps affect both the optical and electrical properties of GaN-based materials. These studies include photoluminescence studies of GaN epilayers after post-growth rapid thermal annealing, ion implantation to produce n- and p-type material and electrical and optical studies of plasma-etched structures.

  11. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    Presentation slides from the DOE Fuel Cell Technologies Office webinar, Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications, held on October 21, 2014.

  12. Wide Bandgap Semiconductors for Clean Energy Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Robert Gemmer Advanced Manufacturing Office Advanced Manufacturing Office 9:05am-9:20am Setting the Stage. David Danielson EERE Thrust in Wide Bandgap Assistant Secretary, EERE ...

  13. Photocell utilizing a wide-bandgap semiconductor material

    DOE Patents [OSTI]

    Carlson, David E.; Williams, Brown F.

    1984-06-05

    A photocell comprises a p-i-n amorphous silicon structure having a wide bandgap layer adjacent to either the p-type or n-type layer. This structure reduces the absorption of light entering the photocell and the back-diffusion of minority carriers.

  14. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, at 12:00 p...

  15. Webinar October 21: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, from 12:00 to 1:00 p.m. Eastern Daylight Time. Representatives of Cree Inc., leading innovators in the WBG electronics industry, will be presenting.

  16. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOE Patents [OSTI]

    Hui, Rongqing; Jiang,Hong-Xing; Lin, Jing-Yu

    2008-03-18

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  17. Webinar October 21: Opportunities for Wide Bandgap Semiconductor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Articles DOE Announces Webinars on High Performance Space Conditioning Systems, Davis-Bacon Act Compliance, and More DOE Announces Webinars on Zero Energy Ready Homes, Wide...

  18. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing | Wide Bandgap Semiconductors for Power Electronics Technology Assessment

    Energy Savers [EERE]

    Wide Bandgap Semiconductors for Power Electronics Chapter 6: Technology Assessments NOTE: This technology assessment is available as an appendix to the 2015 Quadrennial Technology Review (QTR). Wide Bandgap Semiconductors for Power Electronics is one of fourteen manufacturing-focused technology assessments prepared in support of Chapter 6: Innovating Clean Energy Technologies in Advanced Manufacturing. For context within the 2015 QTR, key connections between this technology assessment, other QTR

  19. DOE Announces Webinars on Zero Energy Ready Homes, Wide Bandgap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 21: Live Webinar on Opportunities for Wide Bandgap Semiconductor Power Electronics ... "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and ...

  20. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    DOE Patents [OSTI]

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  1. Wide Bandgap Extrinsic Photoconductive Switches

    SciTech Connect (OSTI)

    Sullivan, J S

    2012-01-17

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  2. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) July 20, 2015 -...

  3. AMO's New Institute Focused on Wide Bandgap Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focused on Wide Bandgap Power Electronics Manufacturing AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing January 15, 2014 - 11:34am Addthis The Next ...

  4. Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors

    SciTech Connect (OSTI)

    Shih, Chun-Hsing Dang Chien, Nguyen

    2014-01-28

    Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors.

  5. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electronics) | Department of Energy DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) July 20, 2015 - 1:00pm Addthis DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) The Advanced Manufacturing Office announced up to $10 million is available to establish 5-year graduate-level university-led DOE Traineeship(s) in Power Engineering (leveraging emerging

  6. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  7. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg.sub.1 in the presence of a second semiconductor material of a different composition and direct bandgap Eg.sub.2, wherein Eg.sub.2 >Eg.sub.1, said second semiconductor material substantially not being etched during said method, comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg.sub.1 but less than Eg.sub.2, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  8. AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    | Department of Energy AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing January 15, 2014 - 11:34am Addthis The Next Generation Power Electronics National Manufacturing Institute announced by President Obama today will use $70 million provided by the U.S. Department of Energy's Advanced Manufacturing Office to support and manage its programs over the next five years. This Institute is one of

  9. Wide Bandgap Semiconductors: Pursuing the Promise

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Industrial Motors: WBG materials will enable higher-effciency, variable- speed drives in motors-pumps, fans, compressors, and HVAC systems-used across manufacturing. Motor systems ...

  10. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fuel Cell Technologies Office Presenters: Jeff Casady and John Palmour of Cree Inc. ... for Hydrogen and Fuel Cell Applications Cree Power - Oct 2014 Jeff Casady, John ...

  11. Sandia Wide-Bandgap Semiconductor Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization ... the value, scope, structure, and partnership ...

  12. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vehicle Technologies Office Merit Review 2015: 88 Kilowatt Automotive Inverter with New 900 Volt Silicon Carbide MOSFET Technology Energy Storage & Power Electronics 2008 Peer ...

  13. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOE Patents [OSTI]

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  14. Wide band gap semiconductor templates

    DOE Patents [OSTI]

    Arendt, Paul N.; Stan, Liliana; Jia, Quanxi; DePaula, Raymond F.; Usov, Igor O.

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  15. Enhanced conversion efficiency in wide-bandgap GaNP solar cells...

    Office of Scientific and Technical Information (OSTI)

    Enhanced conversion efficiency in wide-bandgap GaNP solar cells Citation Details In-Document Search This content will become publicly available on October 12, 2016 Title: Enhanced...

  16. Wide Bandgap Semiconductors for Clean Energy Workshop: Summary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... WBG energy-efficient capabilities and enhance beneficial technology infusion and payoff to entire power production chain. o Question: Are we going to talk about air-cooled devices? ...

  17. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... And this is an example of one using our 10 kV MOSFETs where they took a 30 kilowatt DC converter, 3.5 kV input, 8.5 kV output, 98.5 percent efficiency. It was switched to 8 ...

  18. Novel Approaches to Wide Bandgap CuInSe2 Based Absorbers

    SciTech Connect (OSTI)

    William N. Shafarman

    2011-04-28

    This project targeted the development of high performance wide bandgap solar cells based on thin film alloys of CuInSe2 to relax constraints on module design and enable tandem solar cell structures. This addressed goals of the Solar Energy Technologies Program for Next Generation PV to develop technology needed for higher thin film module efficiency as a means to reduce costs. Specific objectives of the research project were: 1) to develop the processes and materials required to improve the performance of wide bandgap thin film solar cells based on alloys of CuInSe2, and 2) to provide the fundamental science and engineering basis for the material, electronic, and device properties required to effectively apply these processes and materials to commercial manufacture. CuInSe2-based photovoltaics have established the highest efficiencies of the thin film materials at both the cell and module scales and are actively being scaled up to commercialization. In the highest efficiency cells and modules, the optical bandgap, a function of the CuInSe2-based alloy composition, is relatively low compared to the optimum match to the solar spectrum. Wider bandgap alloys of CuInSe2 produce higher cell voltages which can improve module performance and enable the development of tandem solar cells to boost the overall efficiency. A focus for the project was alloying with silver to form (AgCu)(InGa)Se2 pentenary thin films deposited by elemental co-evaporation which gives the broadest range of control of composition and material properties. This alloy has a lower melting temperature than Ag-free, Cu-based chalcopyrite compounds, which may enable films to be formed with lower defect densities and the (AgCu)(InGa)Se2 films give improved material properties and better device performance with increasing bandgap. A comprehensive characterization of optical, structural, and electronic properties of (AgCu)(InGa)Se2 was completed over the complete compositional range 0 ≤ Ga/(In+Ga) ≤ 1 and 0 ≤ Ag/(Ag+Cu) ≤ 1. Evidence of improved material quality includes reduced sub-bandgap optical absorption, sharper bandtails, and increased grain size with Ag addition. The Ag alloying was shown to increase the range of bandgaps over which solar cells can be fabricated without any drop-off in performance. With bandgap greater than 1.6 eV, in the range needed for tandem solar cells, (AgCu)(InGa)Se2 gave higher efficiency than other CuInSe2-based alloys. Using a simple single-stage co-evaporation process, a solar cell with 17.6% efficiency using a film with bandgap = 1.3 eV was achieved, demonstrating the viability of (AgCu)(InGa)Se2 for high efficiency devices. With a three-stage co-evaporation process for (AgCu)(InGa)Se2 deposition a device with efficiency = 13.0 % and VOC = 890 mV with JSC = 20.5 mA/cm2, FF = 71.3% was achieved. This surpasses the performance of other wide bandgap CuInSe2-based solar cells. Detailed characterization of the electronic properties of the materials and devices including the application of advanced admittance-based easements was completed.

  19. NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01

    Researchers at the National Renewable Energy Laboratory (NREL) are finding new ways to manufacture thin-film solar cells made from copper, indium, gallium, and selenium - called CIGS cells - that are different than conventional CIGS solar cells. Their use of high-temperature glass, designed by SCHOTT AG, allows higher fabrication temperatures, opening the door to new CIGS solar cells employing light-absorbing materials with wide 'bandgaps.'

  20. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between ?? stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  1. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  2. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    SciTech Connect (OSTI)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between ?? stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  3. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOE Patents [OSTI]

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  4. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore » structural and electrical characterization of SrZrxTi1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  5. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    SciTech Connect (OSTI)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We present structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.

  6. Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hu, Miao; Bi, Cheng; Yuan, Yongbo; Bai, Yang; Huang, Jinsong

    2015-12-07

    In this study, the light instability of CH3NH3PbIxBr3–x has been raised one of the biggest challenges for its application in tandem solar cells. Here we show that an improved crystallinity and grain size of CH3NH3PbIxBr3–x films could stabilize these materials under one sun illumination, improving both the efficiency and stability of the wide-bandgap perovskite solar cells.

  7. Low-temperature fabrication of efficient wide-bandgap organolead trihalide perovskite solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bi, Cheng; Yuan, Yongbo; Fang, Yanjun; Huang, Jinsong

    2014-11-25

    A mixed halide perovskite solar cell with a 1.72 eV bandgap is developed by incorporating Br into perovskite through a low-temperature solution process. A high efficiency of 13.1% is achieved by carefully tuning the thickness, morphology, and surface passivation of the perovskite layers. Furthermore, the fabrication techniques and conditions are compatible with future perovskite/Si tandem cell studies.

  8. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    SciTech Connect (OSTI)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than other solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.

  9. Enhanced conversion efficiency in wide-bandgap GaNP solar cells

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sukrittanon, Supanee; Liu, Ren; Ro, Yun Goo; Pan, Janet L.; Jungjohann, Katherine Leigh; Tu, Charles W.; Dayeh, Shadi A.

    2015-10-12

    In this study, we demonstrate –2.05 eV dilute nitride GaNP solar cells on GaP substrates for potential use as the top junction in dual-junction integrated cells on Si. By adding a small amount of N into indirect-bandgap GaP, GaNP has several extremely important attributes: a direct-bandgap that is also tunable, and easily attained lattice-match with Si. Our best GaNP solar cell ([N] –1.8%, Eg –2.05 eV) achieves an efficiency of 7.9%, even in the absence of a window layer. This GaNP solar cell's efficiency is 3× higher than the most efficient GaP solar cell to date and higher than othermore » solar cells with similar direct bandgap (InGaP, GaAsP). Through a systematic study of the structural, electrical, and optical properties of the device, efficient broadband optical absorption and enhanced solar cell performance are demonstrated.« less

  10. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanoelectronics. This is a narrower bandgap than common semiconductors like silicon or gallium arsenide, and it could enable new kinds of optoelectronic devices for generating,...

  11. Wide Bandgap Power Electronics

    Energy Savers [EERE]

    the Nuclear Stockpile Needs Supercomputers Why the Nuclear Stockpile Needs Supercomputers April 28, 2011 - 5:20pm Addthis NNSA supercomputers are a key part of our ability to keep our nuclear stockpile safe, secure and effective. Joshua McConaha What does this mean for me? The NNSA's Stockpile Stewardship Program performs a critical role in implementing President Obama's nuclear security agenda Through a scientific mixture of hardware, software, codes and data and using some of the world's most

  12. Wide Bandgap Materials

    Broader source: Energy.gov [DOE]

    2011 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation

  13. Wide Bandgap Power Electronics

    Broader source: Energy.gov [DOE]

    2009 DOE Hydrogen Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting, May 18-22, 2009 -- Washington D.C.

  14. Wide Bandgap Materials

    Broader source: Energy.gov [DOE]

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  15. Wide Bandgap Materials

    Broader source: Energy.gov [DOE]

    2010 DOE Vehicle Technologies and Hydrogen Programs Annual Merit Review and Peer Evaluation Meeting, June 7-11, 2010 -- Washington D.C.

  16. Stabilized wide bandgap MAPbBrxI3-x perovskite by enhanced grain size and improved crystallinity

    SciTech Connect (OSTI)

    Hu, Miao; Bi, Cheng; Yuan, Yongbo; Bai, Yang; Huang, Jinsong

    2015-12-07

    In this study, the light instability of CH3NH3PbIxBr3x has been raised one of the biggest challenges for its application in tandem solar cells. Here we show that an improved crystallinity and grain size of CH3NH3PbIxBr3x films could stabilize these materials under one sun illumination, improving both the efficiency and stability of the wide-bandgap perovskite solar cells.

  17. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

  18. DOE Announces Webinars on Zero Energy Ready Homes, Wide Bandgap Semiconductors for Fuel Cell Applications, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies, to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts.

  19. Interview with ARPA-E: The Future of Semiconductors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interview with ARPA-E: The Future of Semiconductors Interview with ARPA-E: The Future of Semiconductors February 4, 2014 - 10:56am Addthis Learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department. Mark D. Mitchell Communications Support Contractor to ARPA-E What are the key facts? ARPA-E's SWITCHES program is focused on making the transmission of electricity more efficient by exploring wide

  20. 2012 DEFECTS IN SEMICONDUCTORS GORDON RESEARCH CONFERENCE, AUGUST 12-17, 2012

    SciTech Connect (OSTI)

    GLASER, EVAN

    2012-08-17

    The meeting shall strive to develop and further the fundamental understanding of defects and their roles in the structural, electronic, optical, and magnetic properties of bulk, thin film, and nanoscale semiconductors and device structures. Point and extended defects will be addressed in a broad range of electronic materials of particular current interest, including wide bandgap semiconductors, metal-oxides, carbon-based semiconductors (e.g., diamond, graphene, etc.), organic semiconductors, photovoltaic/solar cell materials, and others of similar interest. This interest includes novel defect detection/imaging techniques and advanced defect computational methods.

  1. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOE Patents [OSTI]

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  2. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    SciTech Connect (OSTI)

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; Hybertsen, Mark S.

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulk heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.

  3. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; Hybertsen, Mark S.

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulkmore » heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.« less

  4. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest

  5. Properties of Wide-Gap Chalcopyrite Semiconductors for Photovoltaic Applications: Final Report, 8 July 1998 -- 17 October 2001

    SciTech Connect (OSTI)

    Rockett, A.

    2003-07-01

    The objectives of this project were to obtain a fundamental understanding of wide-gap chalcopyrite semiconductors and photovoltaic devices. Information to be gathered included significant new fundamental materials data necessary for accurate modeling of single- and tandem-junction devices, basic materials science of wider-gap chalcopyrite semiconductors to be used in next-generation devices, and practical information on the operation of devices incorporating these materials. Deposition used a hybrid sputtering and evaporation method shown previously to produce high-quality epitaxial layers of Cu(In,Ga)Se2 (CIGS). Materials analysis was also provided to assist members of the National CIS Team, of which, through this contract, we were a member. Solar cells produced from resulting single-crystal epitaxial layers in collaboration with various members of the CIS Team were used to determine the factors limiting performance of the devices based on analysis of the results. Because epitaxial growth allows us to determine the surface orientation of our films specifically by choice of the substrate surface on which the film is grown, a major focus of the project concerned the nature of (110)-oriented CIGS films and the performance of solar cells produced from these films. We begin this summary with a description of the results for growth on (110) GaAs, which formed a basis for much of the work ultimately conducted under the program.

  6. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Bilayer Graphene Gets a Bandgap Print Wednesday, 26 August 2009 00:00 Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric

  7. Microfabricated bulk wave acoustic bandgap device (Patent) |...

    Office of Scientific and Technical Information (OSTI)

    Microfabricated bulk wave acoustic bandgap device Title: Microfabricated bulk wave acoustic bandgap device A microfabricated bulk wave acoustic bandgap device comprises a periodic ...

  8. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Bilayer Graphene Gets a Bandgap Print Wednesday, 26 August 2009 00:00 Graphene is the two-dimensional crystalline form of carbon whose extraordinary...

  9. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a...

  10. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  11. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  12. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  13. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  14. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  15. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  16. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But without a bandgap, graphene's promise can't be realized. As with monolayer graphene, bilayer graphene also has a zero bandgap and thus behaves like a metal. But a bandgap can be introduced if an electric displacement field is applied to the two layers; the material then

  17. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    SciTech Connect (OSTI)

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences ?a, ?b, ?c between theory and experiment were as small as 0.020, 0.051, and 0.022, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z???? and Z???? transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to ?3 ???, ?1 ???, and ?2 ??? transitions, respectively. ?-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2pcarboxyl, C 2pside chain, and C 2pcarboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex dielectric function, with more structured curves for incident light polarized along the 100 and 101 directions.

  18. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  19. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  20. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  1. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  2. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  3. Intermediate Bandgap Solar Cells From Nanostructured Silicon

    SciTech Connect (OSTI)

    Black, Marcie

    2014-10-31

    This report details some of our studies and proposes future methods of exploring Bandgap Activation.

  4. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-03-22

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  5. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2016-01-05

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  6. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  7. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizingmore » the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.« less

  8. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  9. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  10. Luminescence in Conjugated Molecular Materials under Sub-bandgap Excitation

    SciTech Connect (OSTI)

    So, Franky

    2014-05-08

    Light emission in semiconductors occurs when they are under optical and electrical excitation with energy larger than the bandgap energy. In some low-dimensional semiconductor heterostructure systems, this thermodynamic limit can be violated due to radiative Auger recombination (AR), a process in which the sub-bandgap energy released from a recombined electron-hole pair is transferred to a third particle leading to radiative band-to-band recombination.1 Thus far, photoluminescence up-conversion phenomenon has been observed in some low dimensional semiconductor systems, and the effect is very weak and it can only be observed at low temperatures. Recently, we discovered that efficient electroluminescence in poly[2-methoxy-5-(2-ethylhexyloxy)-1, phenylenevinylene] (MEH-PPV) polymer light-emitting devices (PLEDs) at drive voltages below its bandgap voltage could be observed when a ZnO nanoparticles (NPs) electron injection layer was inserted between the polymer and the aluminum electrode. Specifically, emitted photons with energy of 2.13 eV can be detected at operating voltages as low as 1.2 V at room temperature. Based on these data, we propose that the sub-bandgap turn-on in the MEH-PPV device is due to an Auger-assisted energy up-conversion process. The significance of this discovery is three-fold. First, radiative recombination occurs at operating voltages below the thermodynamic bandgap voltage. This process can significantly reduce the device operating voltage. For example, the current density of the device with the ZnO NC layer is almost two orders of magnitude higher than that of the device without the NC layer. Second, a reactive metal is no longer needed for the cathode. Third, this electroluminescence up-conversion process can be applied to inorganic semiconductors systems as well and their operation voltages of inorganic LEDs can be reduced to about half of the bandgap energy. Based on our initial data, we propose that the sub-bandgap turn-on in MEH-PPV devices is due to Auger-assisted energy up-conversion process. Specifically, we propose that the up-conversion process is due to charge accumulation at the polymer/NPs interface. This model requires that holes should be the dominant carriers in the polymer and the polymer/ZnO NCs heterojunction should be a type II alignment. In order to determine the mechanism of the up-conversion process, we will characterize devices fabricated using polymers with different carrier transporting properties to determine whether hole accumulation at the polymer/nanocrystals is required. Likewise, we will also use NPs with different electronic structures to fabricate devices to determine how electron accumulation affects the up-conversion process. Finally, we will measure quantitatively the interface charge accumulation by electroabsorption and correlate the results with the up-conversion photoluminescence efficiency measurements under an applied electric field.

  11. Bandgap Engineering Inc | Open Energy Information

    Open Energy Info (EERE)

    Inc specializes in developing photovoltaic (PV) cells that combine silicon with nanotechnology to create high-efficiency cells at low cost 2. Bandgap Engineering Inc currently...

  12. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    SciTech Connect (OSTI)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 ± 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 ± 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.

  13. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    SciTech Connect (OSTI)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1-xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x < 0.51. Employing 20 nm TiN as a seed layer on MgO substrates, the homogeneity range for stabilizing the rocksalt phase has been extended to x < 0.82 for a 120 nm film. The rocksalt AlxSc1-xN alloys show moderate direct bandgap bowing with a bowing parameter, B = 1.41 0.19 eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70 0.20 eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1-xN alloys enable high quality epitaxial rocksalt metal/AlxSc1-xN superlattices with a wide range of accessible metamaterials properties.

  14. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capability and provide support for curriculum development and trainees, will include ... identify and develop Power Engineering curriculum which most effectively prepares ...

  15. How Bilayer Graphene Got a Bandgap

    ScienceCinema (OSTI)

    Feng Wang

    2010-01-08

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  16. How Bilayer Graphene Got a Bandgap

    ScienceCinema (OSTI)

    Wang, Feng

    2013-05-29

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  17. Pump-probe surface photovoltage spectroscopy measurements on semiconductor epitaxial layers

    SciTech Connect (OSTI)

    Jana, Dipankar Porwal, S.; Sharma, T. K. Oak, S. M.; Kumar, Shailendra

    2014-04-15

    Pump-probe Surface Photovoltage Spectroscopy (SPS) measurements are performed on semiconductor epitaxial layers. Here, an additional sub-bandgap cw pump laser beam is used in a conventional chopped light geometry SPS setup under the pump-probe configuration. The main role of pump laser beam is to saturate the sub-bandgap localized states whose contribution otherwise swamp the information related to the bandgap of material. It also affects the magnitude of Dember voltage in case of semi-insulating (SI) semiconductor substrates. Pump-probe SPS technique enables an accurate determination of the bandgap of semiconductor epitaxial layers even under the strong influence of localized sub-bandgap states. The pump beam is found to be very effective in suppressing the effect of surface/interface and bulk trap states. The overall magnitude of SPV signal is decided by the dependence of charge separation mechanisms on the intensity of the pump beam. On the contrary, an above bandgap cw pump laser can be used to distinguish the signatures of sub-bandgap states by suppressing the band edge related feature. Usefulness of the pump-probe SPS technique is established by unambiguously determining the bandgap of p-GaAs epitaxial layers grown on SI-GaAs substrates, SI-InP wafers, and p-GaN epilayers grown on Sapphire substrates.

  18. Machine learning bandgaps of double perovskites

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pilania, G.; Mannodi-Kanakkithodi, A.; Uberuaga, B. P.; Ramprasad, R.; Gubernatis, J. E.; Lookman, T.

    2016-01-19

    The ability to make rapid and accurate predictions on bandgaps of double perovskites is of much practical interest for a range of applications. While quantum mechanical computations for high-fidelity bandgaps are enormously computation-time intensive and thus impractical in high throughput studies, informatics-based statistical learning approaches can be a promising alternative. Here we demonstrate a systematic feature-engineering approach and a robust learning framework for efficient and accurate predictions of electronic bandgaps of double perovskites. After evaluating a set of more than 1.2 million features, we identify lowest occupied Kohn-Sham levels and elemental electronegativities of the constituent atomic species as the mostmore » crucial and relevant predictors. As a result, the developed models are validated and tested using the best practices of data science and further analyzed to rationalize their prediction performance.« less

  19. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, Carol

    2010-06-08

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  20. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming, legal representative, Carol

    2010-11-23

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  1. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A.; Burger, Arnold; Mandal, Krishna C.

    2009-06-23

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  2. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    SciTech Connect (OSTI)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  3. Wide Area Thermal Processing of Light Emitting Materials

    SciTech Connect (OSTI)

    Duty, Chad E; Joshi, Pooran C; Jellison Jr, Gerald Earle; Angelini, Joseph Attilio; Sabau, Adrian S

    2011-10-01

    Laboratory laser materials synthesis of wide bandgap materials has been successfully used to create white light emitting materials (LEMs). This technology development has progressed to the exploration on design and construction of apparatus for wide area doping and phase transformation of wide bandgap material substrates. The objective of this proposal is to develop concepts for wide area doping and phase transformation based on AppliCote Associates, LLC laser technology and ORNL high density pulsed plasma arc technology.

  4. Freescale Semiconductor Successfully Implements an Energy Management...

    Broader source: Energy.gov (indexed) [DOE]

    This case study describes how Freescale Semiconductor implemented projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 ...

  5. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO); Mascarenhas, Angelo (Lakewood, CO)

    2012-05-08

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  6. Electron gas grid semiconductor radiation detectors

    DOE Patents [OSTI]

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  7. Electrical transport properties of (BN)-rich hexagonal (BN)C semiconductor alloys

    SciTech Connect (OSTI)

    Uddin, M. R.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X.; Ziemer, K. S.

    2014-08-15

    The layer structured hexagonal boron nitride carbon semiconductor alloys, h-(BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ?6.4 eV for h-BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped h-BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys were synthesized by metal-organic chemical vapor deposition (MOCVD) on (0001) sapphire substrates. Hall-effect measurements revealed that homogeneous (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys are naturally n-type. For alloys with x = 0.032, an electron mobility of about 20 cm{sup 2}/Vs at 650?K was measured. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition and analyze chemical bonding states. Both composition and chemical bonding analysis confirm the formation of alloys. XPS results indicate that the carbon concentration in the alloys increases almost linearly with the flow rate of the carbon precursor (propane (C{sub 3}H{sub 8})) employed during the epilayer growth. XPS chemical bonding analysis showed that these MOCVD grown alloys possess more C-N bonds than C-B bonds, which possibly renders the undoped h-(BN){sub 1-x}(C{sub 2}){sub x} alloys n-type and corroborates the Hall-effect measurement results.

  8. Molecular beam epitaxial growth and characterization of Bi{sub 2}Se{sub 3}/II-VI semiconductor heterostructures

    SciTech Connect (OSTI)

    Chen, Zhiyi Zhao, Lukas; Krusin-Elbaum, Lia; Garcia, Thor Axtmann; Tamargo, Maria C.; Hernandez-Mainet, Luis C.; Deng, Haiming

    2014-12-15

    Surfaces of three-dimensional topological insulators (TIs) have been proposed to host quantum phases at the interfaces with other types of materials, provided that the topological properties of interfacial regions remain unperturbed. Here, we report on the molecular beam epitaxy growth of II-VI semiconductorTI heterostructures using c-plane sapphire substrates. Our studies demonstrate that Zn{sub 0.49}Cd{sub 0.51}Se and Zn{sub 0.23}Cd{sub 0.25}Mg{sub 0.52}Se layers have improved quality relative to ZnSe. The structures exhibit a large relative upward shift of the TI bulk quantum levels when the TI layers are very thin (?6nm), consistent with quantum confinement imposed by the wide bandgap II-VI layers. Our transport measurements show that the characteristic topological signatures of the Bi{sub 2}Se{sub 3} layers are preserved.

  9. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called “Shockley-Queisser” limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates “hot” charge carriers that quickly “cool” to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a “phonon bottleneck” wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  10. Light sources based on semiconductor current filaments

    DOE Patents [OSTI]

    Zutavern, Fred J.; Loubriel, Guillermo M.; Buttram, Malcolm T.; Mar, Alan; Helgeson, Wesley D.; O'Malley, Martin W.; Hjalmarson, Harold P.; Baca, Albert G.; Chow, Weng W.; Vawter, G. Allen

    2003-01-01

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  11. Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures

    DOE Patents [OSTI]

    Fischer, Arthur J.; Tsao, Jeffrey Y.; Wierer, Jr., Jonathan J.; Xiao, Xiaoyin; Wang, George T.

    2016-03-01

    Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be QSC-PEC-etched from epitaxial InGaN thin films using narrowband laser photoexcitation, and the QD sizes (and hence bandgaps and photoluminescence wavelengths) are determined by the photoexcitation wavelength.

  12. Stretchable semiconductor elements and stretchable electrical circuits

    DOE Patents [OSTI]

    Rogers, John A.; Khang, Dahl-Young; Menard, Etienne

    2009-07-07

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  13. Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor Revolution - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  14. Spectroscopic determination of the bandgap crossover composition in MBE-grown AlxGa1-xAs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fluegel, Brian; Alberi, Kirstin; Reno, John; Mascarenhas, Angelo

    2015-03-12

    The aluminum concentration dependence of the energies of the direct and indirect bandgaps arising from the Γ and X conduction bands are measured at 1.7 K in the semiconductor alloy AlxGa1-xAs. The composition at which the bands cross is determined from photoluminescence of molecular-beam epitaxy samples grown very close to crossover. The use of resonant laser excitation and the improved sample linewidth allows precise determination of the bound exciton transition energies. Moreover, photoluminescence excitation spectroscopy is used to measure the binding energies of the donor-bound excitons and the Γ free exciton binding energy.

  15. Frederic Laquai Seminar: Photocurrent Generation in Low-Bandgap...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laquai Seminar: Photocurrent Generation in Low-Bandgap Polymer and Small Molecule Organic Solar Cells Apr 18, 2014 | 3:30 PM - 4:30 PM Frederic Laquai Head, Max Planck...

  16. Optical Properties of InGaAsN: A New 1eV Bandgap Material System

    SciTech Connect (OSTI)

    Allerman, A.A.; Fritz, I.J.; Jones, E.D.; Kurtz, S.R.; Modine, N.A.; Tozer, S.T.; Wei, X.; Wright, A.F.

    1999-01-25

    InGaAsN is a new semiconductor alloy system with the remarkable property that the inclusion of only 2% nitrogen reduces the bandgap by more than 30%. In order to help understand the physical origin of this extreme deviation from the typically observed nearly linear dependence of alloy properties on concentration, we have investigated the pressure dependence of the excited state energies using both experimental and theoretical methods. We report measurements of the low temperature photohnninescence energy of the material for pressures between ambient and 110 kbar. We describe a simple, density-functional-theory-based approach to calculating the pressure dependence of low lying excitation energies for low concentration alloys. The theoretically predicted pressure dependence of the bandgap is in excellent agreement with the experimental data. Based on the results of our calculations, we suggest an explanation for the strongly non-linear pressure dependence of the bandgap that, surprisingly, does not involve a nitrogen impurity band. Addhionally, conduction-band mass measurements, measured by three different techniques, will be described and finally, the magnetoluminescence determined pressure coefficient for the conduction-band mass is measured.

  17. Photoelectrochemistry, Electronic Structure, and Bandgap Sizes of Semiconducting Cu(I)-Niobates and Cu(I)-Tantalates

    SciTech Connect (OSTI)

    Maggard, Paul A.

    2013-11-14

    Semiconducting metal-oxides have remained of intense research interest owing to their potential for achieving efficient solar-driven photocatalytic reactions in aqueous solutions that occur as a result of their bandgap excitation. The photocatalytic reduction of water or carbon dioxide to generate hydrogen or hydrocarbon fuels, respectively, can be driven on p-type (photocathodic) electrodes with suitable band energies. However, metal-oxide semiconductors are typically difficult to dope as p-type with a high mobility of carriers. The supported research led to the discovery of new p-type Cu(I)-niobate and Cu(I)-tantalate film electrodes that can be prepared on FTO glass. New high-purity flux syntheses and the full structural determination of several Cu(I)-containing niobates and tantalates have been completed, as well as new investigations of their optical and photoelectrochemical properties and electronic structures via density-functional theory calculations. For example, CuNbO3, Cu5Ta11O30 and CuNb3O8 were prepared in high purity and their structures were characterized by both single-crystal and powder X-ray diffraction techniques. These two classes of Cu(I)-containing compounds exhibit optical bandgap sizes ranging from ~1.3 eV to ~2.6 eV. Photoelectrochemical measurements of these compounds show strong photon-driven cathodic currents that confirm the p-type semiconductor behavior of CuNbO3, CuNb3O8, and Cu5Ta11O30. Incident-photon-to-current efficiencies are measured that approach greater than ~1%. Electronic-structure calculations based on density functional theory reveal the visible-light absorption stems from a nearly-direct bandgap transition involving a copper-to-niobium or tantalum (d10 to d0) charge-transfer excitations.

  18. Wavelength-resonant surface-emitting semiconductor laser

    DOE Patents [OSTI]

    Brueck, Steven R. J.; Schaus, Christian F.; Osinski, Marek A.; McInerney, John G.; Raja, M. Yasin A.; Brennan, Thomas M.; Hammons, Burrell E.

    1989-01-01

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  19. Wafer-fused semiconductor radiation detector

    DOE Patents [OSTI]

    Lee, Edwin Y.; James, Ralph B.

    2002-01-01

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  20. 3D Printed and Semiconductor Technology 'Mash-up'

    Broader source: Energy.gov [DOE]

    What will you get if you put a 3D-printed inverter package with wide bandgap materials, together with the 3D-printed EV version of the Shelby Cobra “plug and play” laboratory-on-wheels? You’ll get...

  1. Photonic bandgap narrowing in conical hollow core Bragg fibers

    SciTech Connect (OSTI)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet; Bayindir, Mehmet

    2014-08-18

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  2. Electron states in semiconductor quantum dots

    SciTech Connect (OSTI)

    Dhayal, Suman S.; Ramaniah, Lavanya M.; Ruda, Harry E.; Nair, Selvakumar V.

    2014-11-28

    In this work, the electronic structures of quantum dots (QDs) of nine direct band gap semiconductor materials belonging to the group II-VI and III-V families are investigated, within the empirical tight-binding framework, in the effective bond orbital model. This methodology is shown to accurately describe these systems, yielding, at the same time, qualitative insights into their electronic properties. Various features of the bulk band structure such as band-gaps, band curvature, and band widths around symmetry points affect the quantum confinement of electrons and holes. These effects are identified and quantified. A comparison with experimental data yields good agreement with the calculations. These theoretical results would help quantify the optical response of QDs of these materials and provide useful input for applications.

  3. Methods of producing free-standing semiconductors using sacrificial buffer layers and recyclable substrates

    DOE Patents [OSTI]

    Ptak, Aaron Joseph; Lin, Yong; Norman, Andrew; Alberi, Kirstin

    2015-05-26

    A method of producing semiconductor materials and devices that incorporate the semiconductor materials are provided. In particular, a method is provided of producing a semiconductor material, such as a III-V semiconductor, on a spinel substrate using a sacrificial buffer layer, and devices such as photovoltaic cells that incorporate the semiconductor materials. The sacrificial buffer material and semiconductor materials may be deposited using lattice-matching epitaxy or coincident site lattice-matching epitaxy, resulting in a close degree of lattice matching between the substrate material and deposited material for a wide variety of material compositions. The sacrificial buffer layer may be dissolved using an epitaxial liftoff technique in order to separate the semiconductor device from the spinel substrate, and the spinel substrate may be reused in the subsequent fabrication of other semiconductor devices. The low-defect density semiconductor materials produced using this method result in the enhanced performance of the semiconductor devices that incorporate the semiconductor materials.

  4. Sandia Energy - Semiconductor Revolution

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revolution Home Energy Research EFRCs Solid-State Lighting Science EFRC Semiconductor Revolution Semiconductor RevolutionTara Camacho-Lopez2015-05-14T14:32:12+00:00 The...

  5. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, 26 March 2008 00:00 Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome...

  6. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome...

  7. Spectroscopic determination of the bandgap crossover composition in MBE-grown AlxGa1-xAs

    SciTech Connect (OSTI)

    Fluegel, Brian; Alberi, Kirstin; Reno, John; Mascarenhas, Angelo

    2015-03-12

    The aluminum concentration dependence of the energies of the direct and indirect bandgaps arising from the Γ and X conduction bands are measured at 1.7 K in the semiconductor alloy AlxGa1-xAs. The composition at which the bands cross is determined from photoluminescence of molecular-beam epitaxy samples grown very close to crossover. The use of resonant laser excitation and the improved sample linewidth allows precise determination of the bound exciton transition energies. Moreover, photoluminescence excitation spectroscopy is used to measure the binding energies of the donor-bound excitons and the Γ free exciton binding energy.

  8. Spectroscopic determination of the bandgap crossover composition in MBE-grown AlxGa1-xAs

    SciTech Connect (OSTI)

    Fluegel, Brian; Alberi, Kirstin; Reno, John; Mascarenhas, Angelo

    2015-03-12

    The aluminum concentration dependence of the energies of the direct and indirect bandgaps arising from the ? and X conduction bands are measured at 1.7 K in the semiconductor alloy AlxGa1-xAs. The composition at which the bands cross is determined from photoluminescence of molecular-beam epitaxy samples grown very close to crossover. The use of resonant laser excitation and the improved sample linewidth allows precise determination of the bound exciton transition energies. Moreover, photoluminescence excitation spectroscopy is used to measure the binding energies of the donor-bound excitons and the ? free exciton binding energy.

  9. 2010 Defects in Semiconductors GRC

    SciTech Connect (OSTI)

    Shengbai Zhang

    2011-01-06

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, as well as an emphasis on the development of novel defect detection methods and first-principles defect theories. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference will deal with point and extended defects in a broad range of electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, oxides, sp{sup 2} carbon based-materials, and photovoltaic/solar cell materials, and in understanding important defect phenomena such as doping bottleneck in nanostructures and the diffusion of defects and impurities. The program consists of about twenty invited talks and a number of contributed poster sessions. The emphasis should be on work which has yet to be published. The large amount of discussion time provides an ideal forum for dealing with topics that are new and/or controversial.

  10. Bimodal wireless sensing with dual-channel wide bandgap heterostructure varactors

    SciTech Connect (OSTI)

    Deen, David A.; Osinsky, Andrei; Miller, Ross

    2014-03-03

    A capacitive wireless sensing scheme is developed that utilizes an AlN/GaN-based dual-channel varactor. The dual-channel heterostructure affords two capacitance plateaus within the capacitance-voltage (CV) characteristic, owing to the two parallel two-dimensional electron gases (2DEGs) located at respective AlN/GaN interfaces. The capacitance plateaus are leveraged for the definition of two resonant states of the sensor when implemented in an inductively-coupled resonant LRC network for wireless readout. The physics-based CV model is compared with published experimental results, which serve as a basis for the sensor embodiment. The bimodal resonant sensor is befitting for a broad application space ranging from gas, electrostatic, and piezoelectric sensors to biological and chemical detection.

  11. Unitary lens semiconductor device

    DOE Patents [OSTI]

    Lear, K.L.

    1997-05-27

    A unitary lens semiconductor device and method are disclosed. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors. 9 figs.

  12. Unitary lens semiconductor device

    DOE Patents [OSTI]

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  13. High Bandgap Phosphide Approaches for LED Applications - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Industrial Technologies Industrial Technologies Building Energy Efficiency Building Energy Efficiency Advanced Materials Advanced Materials Find More Like This Return to Search High Bandgap Phosphide Approaches for LED Applications A new approach to fabricating high-efficiency Amber LEDs National Renewable Energy Laboratory Contact NREL About This Technology Publications: PDF Document Publication AlInP Green LED webinar (2013-09-10) (1,448 KB) PDF Document Publication AIP -

  14. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOE Patents [OSTI]

    Gee, James M.; Lin, Shawn-Yu; Fleming, James G.; Moreno, James B.

    2003-06-24

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  15. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2011-07-19

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  16. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2009-11-24

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  17. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  18. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2013-05-14

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  19. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1990-10-23

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  20. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  1. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W.; Grubelich, Mark C.

    1999-01-01

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  2. Wilkinson Barker Knauer Memo

    Energy Savers [EERE]

    Energy Workshops » Wide Bandgap Semiconductors for Clean Energy Workshop Wide Bandgap Semiconductors for Clean Energy Workshop July 25, 2012 A workshop on Wide Bandgap (WBG) Semiconductors for Clean Energy (held July 25, 2012, in Chicago, Illinois) brought together stakeholders from industry and academia to discuss the technical status of WBG semiconductors. The workshop also explored emerging WBG market applications in clean energy and barriers to the development and widespread commercial

  3. High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters

    DOE Patents [OSTI]

    Wanlass, Mark W

    2014-05-27

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  4. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    DOE Patents [OSTI]

    Wanlass, Mark W.

    2011-11-29

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  5. Metal to semiconductor transition in metallic transition metal dichalcogenides

    SciTech Connect (OSTI)

    Li, Yan; Kang, Jun; Li, Jingbo; Tongay, Sefaattin; Wu, Junqiao; Yue, Qu

    2013-11-07

    We report on tuning the electronic and magnetic properties of metallic transition metal dichalcogenides (mTMDCs) by 2D to 1D size confinement. The stability of the mTMDC monolayers and nanoribbons is demonstrated by the larger binding energy compared to the experimentally available semiconducting TMDCs. The 2D MX{sub 2} (M?=?Nb, Ta; X?=?S, Se) monolayers are non-ferromagnetic metals and mechanically softer compared to their semiconducting TMDCs counterparts. Interestingly, mTMDCs undergo metal-to-semiconductor transition when the ribbon width approaches to ?13? and ?7? for zigzag and armchair edge terminations, respectively; then these ribbons convert back to metal when the ribbon widths further decrease. Zigzag terminated nanoribbons are ferromagnetic semiconductors, and their magnetic properties can also be tuned by hydrogen edge passivation, whereas the armchair nanoribbons are non-ferromagnetic semiconductors. Our results display that the mTMDCs offer a broad range of physical properties spanning from metallic to semiconducting and non-ferromagnetic to ferromagnetic that is ideal for applications where stable narrow bandgap semiconductors with different magnetic properties are desired.

  6. 15.09.28 RH Bandgap Tunability - JCAP

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Band Gap Tunability in Sb-Alloyed BiVO4 Quaternary Oxides as Visible-Light Absorbers for Solar Fuel Applications Loiudice, A. et al. Bandgap Tunability in Sb-Alloyed BiVO4 Quaternary Oxides as Visible Light Absorbers for Solar Fuel Applications. Advanced Materials, DOI: 10.1002/adma.201502361 (2015). Scientific Achievement A novel hotoanode material was discovered using a colloidal nanocrystal (NC ) -seeded growth, that is of general applicability for other complex oxides and thus may aid in

  7. Bandgap Engineering of InP QDs Through Shell Thickness and Composition...

    Office of Scientific and Technical Information (OSTI)

    Bandgap Engineering of InP QDs Through Shell Thickness and Composition Citation Details ... Subject: 36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL AND ANALYTICAL CHEMISTRY; ...

  8. Silicon Carbide Semiconductors | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Silicon Carbide Power Semiconductor Devices in the Cleanroom Click to email this to a friend (Opens in new window) Share on Facebook (Opens in new window) Click to share (Opens in new window) Click to share on LinkedIn (Opens in new window) Click to share on Tumblr (Opens in new window) Silicon Carbide Power Semiconductor Devices in the Cleanroom Ron Olson 2012.10.04 I would like to introduce Zach Stum, the Wide Band Gap device engineer who is leading the "Next Generation SiC MOSFET"

  9. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    DOE Patents [OSTI]

    Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.

    2014-07-08

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  10. Zinc oxysulfide ternary alloy nanocrystals: A bandgap modulated photocatalyst

    SciTech Connect (OSTI)

    Pandey, Shiv K.; Nanotechnology Application Centre, University of Allahabad, Allahabad ; Pandey, Shipra; Pandey, Avinash C.; Mehrotra, G. K.

    2013-06-10

    Herein, we report a green economic route for the synthesis of a series of Zinc Oxysulfide (ZOS) (ZnO{sub 1-x}S{sub x}; 0 {<=} x {>=} 1; x = Sulfur) alloys nanoparticles. The crystallographic features of ZnO, ZOS, and ZnS confirmed by X-Ray Diffraction and validated by Transmission Electron Microscopy reveal the variation of lattice spacing in binary and ternary compositions with homogenous elemental distribution. The photocatalytic analysis of ZOS (0.4) is performed and compared with Degussa P25 to ascertain its photocatalytic activity against methyl orange under irradiation of 365 nm UV-Vis light. A bandgap of 2.7 eV for ZOS (0.4) aptly establishes its prospects for sunlight driven photocatalysis.

  11. Systematic approach for simultaneously correcting the band-gap...

    Office of Scientific and Technical Information (OSTI)

    simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X O,S,Se,Te. ...

  12. Effect of Hydrogen Passivation on the Electronic Structure of Ionic Semiconductor Nanostructures

    SciTech Connect (OSTI)

    Deng, H. X.; Li, S. S.; Li, J. B.; Wei, S. H.

    2012-05-15

    In theoretical studies of thin film and nanostructured semiconductors, pseudohydrogen (PH) is widely used to passivate the surface dangling bonds. Based on these calculations, it is often believed that nanostructured semiconductors, due to quantum confinement, have a larger band gap than their bulk counterparts. Using first-principles band structure theory calculation and comparing systematically the differences between PH-passivated and real-hydrogen-passivated (RH-passivated) semiconductor surfaces and nanocrystals, we show that, unlike PH passivation that always increases the band gap with respect to the bulk value, RH passivation of the nanostructured semiconductors can either increase or decrease the band gap, depending on the ionicity of the nanocompounds. The differences between PH and RH passivations decreases when the covalency of the semiconductor increases and can be explained using a band coupling model. This observation greatly increases the tunability of nanostructured semiconductor properties, especially for wide-gap ionic semiconductors.

  13. Method of doping a semiconductor

    DOE Patents [OSTI]

    Yang, Chiang Y.; Rapp, Robert A.

    1983-01-01

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  14. Wildfires may contribute more to global warming than previously predicted

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Department of Energy Wide Bandgap Semiconductors: Essential to Our Technology Future Wide Bandgap Semiconductors: Essential to Our Technology Future January 15, 2014 - 8:00am Addthis Learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department. Dr. Ernest Moniz Dr. Ernest Moniz Secretary of Energy What are the key facts? North Carolina State University will lead the Energy Department's new

  15. President Announces New Public-Private Manufacturing Innovation...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a consortium of leading companies that includes some of the world's leading wide-bandgap semiconductor manufacturers, leading materials providers, and critical end-users such as...

  16. Amorphous semiconductor solar cell

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01

    A solar cell comprising a back electrical contact, amorphous silicon semiconductor base and junction layers and a top electrical contact includes in its manufacture the step of heat treating the physical junction between the base layer and junction layer to diffuse the dopant species at the physical junction into the base layer.

  17. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    Office of Scientific and Technical Information (OSTI)

    (Conference) | SciTech Connect Bandgap Engineering of InP QDs Through Shell Thickness and Composition Citation Details In-Document Search Title: Bandgap Engineering of InP QDs Through Shell Thickness and Composition Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing

  18. Frederic Laquai Seminar: Photocurrent Generation in Low-Bandgap Polymer and

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Small Molecule Organic Solar Cells | Center for Energy Efficient Materials Frederic Laquai Seminar: Photocurrent Generation in Low-Bandgap Polymer and Small Molecule Organic Solar Cells Apr 18, 2014 | 3:30 PM - 4:30 PM Frederic Laquai Head, Max Planck Research Group for Organic Optoelectronics Max Planck Institute for Polymer Research Photocurrent Generation in Low-Bandgap Polymer and Small Molecule Organic Solar Cells April 18, 2014 | 3:30pm | Elings Hall (CNSI) 1605 Faculty host: Quyen

  19. Semiconductor radiation detector

    DOE Patents [OSTI]

    Patt, Bradley E.; Iwanczyk, Jan S.; Tull, Carolyn R.; Vilkelis, Gintas

    2002-01-01

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  20. Use of chemical-mechanical polishing for fabricating photonic bandgap structures

    DOE Patents [OSTI]

    Fleming, James G.; Lin, Shawn-Yu; Hetherington, Dale L.; Smith, Bradley K.

    1999-01-01

    A method is disclosed for fabricating a two- or three-dimensional photonic bandgap structure (also termed a photonic crystal, photonic lattice, or photonic dielectric structure). The method uses microelectronic integrated circuit (IC) processes to fabricate the photonic bandgap structure directly upon a silicon substrate. One or more layers of arrayed elements used to form the structure are deposited and patterned, with chemical-mechanical polishing being used to planarize each layer for uniformity and a precise vertical tolerancing of the layer. The use of chemical-mechanical planarization allows the photonic bandgap structure to be formed over a large area with a layer uniformity of about two-percent. Air-gap photonic bandgap structures can also be formed by removing a spacer material separating the arrayed elements by selective etching. The method is useful for fabricating photonic bandgap structures including Fabry-Perot resonators and optical filters for use at wavelengths in the range of about 0.2-20 .mu.m.

  1. Method of passivating semiconductor surfaces

    DOE Patents [OSTI]

    Wanlass, M.W.

    1990-06-19

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  2. Method of passivating semiconductor surfaces

    DOE Patents [OSTI]

    Wanlass, Mark W.

    1990-01-01

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  3. Intrinsic Semiconductor | Open Energy Information

    Open Energy Info (EERE)

    Intrinsic Semiconductor is a privately held emerging growth company focusing on materials and device technologies based on silicon carbide (SiC) and gallium nitride (GaN)...

  4. Wide-bandgap high-mobility ZnO thin-film transistors produced at room temperature

    SciTech Connect (OSTI)

    Fortunato, Elvira M.C.; Barquinha, Pedro M.C.; Pimentel, Ana C.M.B.G.; Goncalves, Alexandra M.F.; Marques, Antonio J.S.; Martins, Rodrigo F.P.; Pereira, Luis M.N.

    2004-09-27

    We report high-performance ZnO thin-film transistor (ZnO-TFT) fabricated by rf magnetron sputtering at room temperature with a bottom gate configuration. The ZnO-TFT operates in the enhancement mode with a threshold voltage of 19 V, a saturation mobility of 27 cm{sup 2}/V s, a gate voltage swing of 1.39 V/decade and an on/off ratio of 3x10{sup 5}. The ZnO-TFT presents an average optical transmission (including the glass substrate) of 80% in the visible part of the spectrum. The combination of transparency, high mobility, and room-temperature processing makes the ZnO-TFT a very promising low-cost optoelectronic device for the next generation of invisible and flexible electronics.

  5. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  6. Direct Observation of the Transition from Indirect to Direct Bandgap in

    Office of Scientific and Technical Information (OSTI)

    Atomically Thin Epitaxial MoSe2 (Journal Article) | SciTech Connect Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe2 Citation Details In-Document Search Title: Direct Observation of the Transition from Indirect to Direct Bandgap in Atomically Thin Epitaxial MoSe2 Authors: Zhang, Yi ; Chang, Tay-Rong ; Zhou, Bo ; Cui, Yong-Tao ; Yan, Hao ; Liu, Zhongkai ; Schmitt, Felix ; Lee, James ; Moore, Rob ; Chen, Yulin ; Lin, Hsin ; Jeng, Horng-Tay

  7. Semiconductor devices incorporating multilayer interference regions

    DOE Patents [OSTI]

    Biefeld, Robert M.; Drummond, Timothy J.; Gourley, Paul L.; Zipperian, Thomas E.

    1990-01-01

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration.

  8. Semiconductor devices incorporating multilayer interference regions

    DOE Patents [OSTI]

    Biefeld, R.M.; Drummond, T.J.; Gourley, P.L.; Zipperian, T.E.

    1987-08-31

    A semiconductor high reflector comprising a number of thin alternating layers of semiconductor materials is electrically tunable and may be used as a temperature insensitive semiconductor laser in a Fabry-Perot configuration. 8 figs.

  9. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect (OSTI)

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  10. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, Carol I. H.; Dishman, James L.

    1987-01-01

    A method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method, comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p- type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  11. Dopant type and/or concentration selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, C.R.H.; Dishman, J.L.

    1985-10-11

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition in the presence of a second semiconductor material which is of a composition different from said first material, said second material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux of an energy greater than their respective direct bandgaps and to the same gaseous chemical etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said conditions also being such that the resultant electronic structure of the first semiconductor material under said photon flux is sufficient for the first material to undergo substantial photochemical etching under said conditions and being such that the resultant electronic structure of the second semiconductor material under said photon flux is not sufficient for the second material to undergo substantial photochemical etching under said conditions. In a preferred mode, the materials are subjected to a bias voltage which suppresses etching in n- or p-type material but not in p- or n-type material, respectively; or suppresses etching in the more heavily doped of two n-type or two p-type materials.

  12. Freescale Semiconductor Successfully Implements an Energy Management System

    Broader source: Energy.gov [DOE]

    This case study describes how Freescale Semiconductor implemented projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million British thermal units (Btu) of natural gas between 2006 and 2009, saving more than $2 million each year.

  13. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, R.; Chen, Y.W.

    1985-04-30

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  14. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan; Sheldon, Peter

    1998-01-01

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  15. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  16. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, Rommel; Chen, Yih-Wen

    1987-01-01

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  17. EMei Semiconductor Materials Plant Research Institute | Open...

    Open Energy Info (EERE)

    EMei Semiconductor Materials Plant Research Institute Jump to: navigation, search Name: EMei Semiconductor Materials Plant & Research Institute Place: Emei, Sichuan Province, China...

  18. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive ... Strategies for developing spintronic semiconductors have been based on surface doping or ...

  19. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the ...

  20. Topsil Semiconductor Materials AS | Open Energy Information

    Open Energy Info (EERE)

    Topsil Semiconductor Materials AS Jump to: navigation, search Name: Topsil Semiconductor Materials AS Place: Frederikssund, Denmark Zip: 3600 Product: Danish specialist...

  1. Semiconductor radiation detector

    DOE Patents [OSTI]

    Bell, Zane W.; Burger, Arnold

    2010-03-30

    A semiconductor detector for ionizing electromagnetic radiation, neutrons, and energetic charged particles. The detecting element is comprised of a compound having the composition I-III-VI.sub.2 or II-IV-V.sub.2 where the "I" component is from column 1A or 1B of the periodic table, the "II" component is from column 2B, the "III" component is from column 3A, the "IV" component is from column 4A, the "V" component is from column 5A, and the "VI" component is from column 6A. The detecting element detects ionizing radiation by generating a signal proportional to the energy deposited in the element, and detects neutrons by virtue of the ionizing radiation emitted by one or more of the constituent materials subsequent to capture. The detector may contain more than one neutron-sensitive component.

  2. Controlling terahertz waves with meta-materials and photonic bandgap structures

    SciTech Connect (OSTI)

    Shchegolkov, Dmitry; Azad, Abul; O' Hara, John F; Moody, Nathan A; Simakov, Evgenya I

    2010-12-07

    We will describe research conducted at Los Alamos National Laboratory towards developing components for controlling terahertz waves. We employ meta-materials and, particularly, meta-films, as very compact absorbers for controlling quasioptical beams. We believe that dielectric photonic bandgap structures could replace ordinary metal waveguide devices at THz, since metal structures become extremely lossy in this frequency range.

  3. Size Dependence of the Bandgap of Plasma Synthesized Silicon Nanoparticles Through Direct Introduction of Sulfur Hexafluoride

    SciTech Connect (OSTI)

    Theingi, S.; Guan, T. Y.; Kendrick, C.; Klafehn, G.; Gorman, B. P.; Taylor, P. C.; Lusk, M. T.; Stradins, Pauls; Collins, R. T.

    2015-10-19

    Developing silicon nanoparticle (SiNP) synthesis techniques that allow for straightforward control of nanoparticle size and associated optical properties is critical to potential applications of these materials. In addition, it is, in general, hard to probe the absorption threshold in these materials due to silicon's low absorption coefficient. In this study, size is controlled through direct introduction of sulfur hexafluoride (SF6) into the dilute silane precursor of plasma synthesized SiNPs. Size reduction by nearly a factor of two with high crystallinity independent of size is demonstrated. Optical absorption spectra of the SiNPs in the vicinity of the bandgap are measured using photothermal deflection spectroscopy. Bandgap as a function of size is extracted taking into account the polydispersity of the samples. A systematic blue shift inabsorption edge due to quantum confinement in the SiNPs is observed with increasing flow of SF6. Photoluminescence (PL) spectra show a similar blue shift with size. However, a ~300 meV difference in energy between emission and absorption for all sizes suggests that PL emission involves a defect related process. While PL may allow size-induced shifts in the bandgap of SiNPs to be monitored, it cannot be relied on to give an accurate value for the bandgap as a function of size.

  4. Semiconductor Nanocrystals for Biological Imaging

    SciTech Connect (OSTI)

    Fu, Aihua; Gu, Weiwei; Larabell, Carolyn; Alivisatos, A. Paul

    2005-06-28

    Conventional organic fluorophores suffer from poor photo stability, narrow absorption spectra and broad emission feature. Semiconductor nanocrystals, on the other hand, are highly photo-stable with broad absorption spectra and narrow size-tunable emission spectra. Recent advances in the synthesis of these materials have resulted in bright, sensitive, extremely photo-stable and biocompatible semiconductor fluorophores. Commercial availability facilitates their application in a variety of unprecedented biological experiments, including multiplexed cellular imaging, long-term in vitro and in vivo labeling, deep tissue structure mapping and single particle investigation of dynamic cellular processes. Semiconductor nanocrystals are one of the first examples of nanotechnology enabling a new class of biomedical applications.

  5. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    DOE Patents [OSTI]

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  6. Impurity gettering in semiconductors

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  7. Impurity gettering in semiconductors

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  8. Bandgap widening in thermochromic Mg-doped VO{sub 2} thin films: Quantitative data based on optical absorption

    SciTech Connect (OSTI)

    Li, Shu-Yi; Niklasson, Gunnar A.; Granqvist, Claes G.; Mlyuka, Nuru R.; Department of Physics, University of Dar es Salaam, P.O. Box 35063, Dar es Salaam ; Primetzhofer, Daniel; Possnert, Gran; Halln, Anders

    2013-10-14

    Thermochromic Mg-doped VO{sub 2} films were deposited by reactive direct current magnetron sputtering onto heated glass and carbon substrates. Elemental compositions were inferred from Rutherford backscattering. Optical bandgaps were obtained from spectral transmittance and reflectance measurementsfrom both the film side and the back side of the samplesand ensuing determination of absorption coefficients. The bandgap of Mg-doped films was found to increase by 3.9 0.5 eV per unit of atom ratio Mg/(Mg + V) for 0 < Mg/(Mg + V) < 0.21. The presence of ?0.45 at. % Si enhanced the bandgap even more.

  9. Hydrogen local vibrational modes in semiconductors

    SciTech Connect (OSTI)

    McCluskey, M D

    1997-06-01

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  10. Design and Synthesis of Novel Diluted Magnetic Semiconductors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Design and Synthesis of Novel Diluted Magnetic Semiconductors Diluted magnetic semiconductors (DMSs) are semiconductors doped with small amounts of magnetic active transition...

  11. High Bandgap III-V Alloys for High Efficiency Optoelectronics - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovation Portal 221326 Site Map Printable Version Share this resource About Search Categories (15) Advanced Materials Biomass and Biofuels Building Energy Efficiency Electricity Transmission Energy Analysis Energy Storage Geothermal Hydrogen and Fuel Cell Hydropower, Wave and Tidal Industrial Technologies Solar Photovoltaic Solar Thermal Startup America Vehicles and Fuels Wind Energy Partners (27) Visual Patent Search Success Stories Find More Like This Return to Search High Bandgap III-V

  12. Final Report: Bandgap-Engineered Thermophotovoltaic Devices for Hi Efficiency Radioisotope Power, July 9, 1996 - July 8, 1999

    SciTech Connect (OSTI)

    Sundaram, V; Morgan, M.D.; Horne, W.E.

    2000-03-15

    During Phase I the feasibility of fabricating high-performance, low bandgap (0.58ev)PV cells by thermally diffusing p-n junctions in GaSb based quaternary materials was established. During phase II, bandgap engineered thermophotovoltaic (TPV) cells were optimized, development of a low-cost build source material for quaternary devices was investigated, and a diesel-fueled, TPV test-bed was built and tested allowing its performance to be characterized.

  13. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOE Patents [OSTI]

    Rogers, John A.; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G.; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

    2016-04-26

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  14. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOE Patents [OSTI]

    Rogers, John A; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

    2014-05-20

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  15. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOE Patents [OSTI]

    Rogers, John A.; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G.; Lee, Keon Jae; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young; Kan, Seong Jun; Ahn, Jong Hyun; Kim, Hoon-sik

    2012-07-10

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  16. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  17. Method and structure for passivating semiconductor material

    DOE Patents [OSTI]

    Pankove, Jacques I. (Princeton, NJ)

    1981-01-01

    A structure for passivating semiconductor material comprises a substrate of crystalline semiconductor material, a relatively thin film of carbon disposed on a surface of the crystalline material, and a layer of hydrogenated amorphous silicon deposited on the carbon film.

  18. Semiconductor devices having a recessed electrode structure

    DOE Patents [OSTI]

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2015-05-26

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  19. Semiconductor electrode with improved photostability characteristics

    DOE Patents [OSTI]

    Frank, Arthur J.

    1987-01-01

    An electrode is disclosed for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode includes a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  20. Diode having trenches in a semiconductor region

    DOE Patents [OSTI]

    Palacios, Tomas Apostol; Lu, Bin; Matioli, Elison de Nazareth

    2016-03-22

    An electrode structure is described in which conductive regions are recessed into a semiconductor region. Trenches may be formed in a semiconductor region, such that conductive regions can be formed in the trenches. The electrode structure may be used in semiconductor devices such as field effect transistors or diodes. Nitride-based power semiconductor devices are described including such an electrode structure, which can reduce leakage current and otherwise improve performance.

  1. Semiconductor nanocrystal-based phagokinetic tracking

    DOE Patents [OSTI]

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  2. Semiconductor assisted metal deposition for nanolithography applications

    DOE Patents [OSTI]

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2001-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  3. Semiconductor assisted metal deposition for nanolithography applications

    DOE Patents [OSTI]

    Rajh, Tijana; Meshkov, Natalia; Nedelijkovic, Jovan M.; Skubal, Laura R.; Tiede, David M.; Thurnauer, Marion

    2002-01-01

    An article of manufacture and method of forming nanoparticle sized material components. A semiconductor oxide substrate includes nanoparticles of semiconductor oxide. A modifier is deposited onto the nanoparticles, and a source of metal ions are deposited in association with the semiconductor and the modifier, the modifier enabling electronic hole scavenging and chelation of the metal ions. The metal ions and modifier are illuminated to cause reduction of the metal ions to metal onto the semiconductor nanoparticles.

  4. Semiconductor Manufacturing International Corp SMIC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing International Corp SMIC Jump to: navigation, search Name: Semiconductor Manufacturing International Corp (SMIC) Place: Shanghai, Shanghai Municipality, China Zip:...

  5. Semiconductor electrode with improved photostability characteristics

    DOE Patents [OSTI]

    Frank, A.J.

    1985-02-19

    An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  6. Semiconductor films on flexible iridium substrates

    DOE Patents [OSTI]

    Goyal, Amit

    2005-03-29

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  7. Semiconductor-based optical refrigerator

    DOE Patents [OSTI]

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  8. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, P.T.

    1985-03-05

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  9. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, Peter T.

    1985-01-01

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  10. Development of high-bandgap AlGaInP solar cells grown by organometallic vapor-phase epitaxy

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Perl, Emmett E.; Simon, John; Geisz, John F.; Olavarria, Waldo; Young, Michelle; Duda, Anna; Friedman, Daniel J.; Steiner, Myles A.

    2016-03-29

    AlGaInP solar cells with bandgaps between 1.9 and 2.2 eV are investigated for use in next-generation multijunction photovoltaic devices. This quaternary alloy is of great importance to the development of III-V solar cells with five or more junctions and for cells optimized for operation at elevated temperatures because of the high bandgaps required in these designs. In this work, we explore the conditions for the organometallic vapor-phase epitaxy growth of AlGaInP and study their effects on cell performance. Initial efforts focused on developing ~2.0-eV AlGaInP solar cells with a nominal aluminum composition of 12%. Under the direct spectrum at 1000more » W/m2 (AM1.5D), the best of these samples had an open-circuit voltage of 1.59 V, a bandgap-voltage offset of 440 mV, a fill factor of 88.0%, and an efficiency of 14.8%. We then varied the aluminum composition of the alloy from 0% to 24% and were able to tune the bandgap of the AlGaInP layers from ~1.9 to ~2.2 eV. Furthermore, while the samples with a higher aluminum composition exhibited a reduced quantum efficiency and increased bandgap-voltage offset, the bandgap-voltage offset remained at 500 mV or less, up to a bandgap of ~2.1 eV.« less

  11. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, Edith D.

    1992-01-01

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  12. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, E.D.

    1992-07-21

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  13. Synthesis of Non-blinking Semiconductor Quantum Dots Emitting...

    Office of Scientific and Technical Information (OSTI)

    ...CdS, which exhibits a Type II bandgap alignment producing near-infrared (NIR) emission. ... Single particle spectroscopy indicates reduced blinking and improved photostability with ...

  14. Back-side readout semiconductor photomultiplier

    DOE Patents [OSTI]

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  15. Compound semiconductor optical waveguide switch

    DOE Patents [OSTI]

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  16. Etching Of Semiconductor Wafer Edges

    DOE Patents [OSTI]

    Kardauskas, Michael J. (Billerica, MA); Piwczyk, Bernhard P. (Dunbarton, NH)

    2003-12-09

    A novel method of etching a plurality of semiconductor wafers is provided which comprises assembling said plurality of wafers in a stack, and subjecting said stack of wafers to dry etching using a relatively high density plasma which is produced at atmospheric pressure. The plasma is focused magnetically and said stack is rotated so as to expose successive edge portions of said wafers to said plasma.

  17. Direct-bandgap electroluminescence from a horizontal Ge p-i-n ridge waveguide on Si(001) substrate

    SciTech Connect (OSTI)

    Liu, Zhi; Li, Yaming; He, Chao; Li, Chuanbo; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen Wang, Qiming

    2014-05-12

    Horizontal injection Ge p-i-n ridge waveguide light emitting diodes (LEDs) were fabricated on n{sup ?}-Si(001) substrates by ultrahigh vacuum chemical vapor deposition. The direct-bandgap electroluminescence (EL) of Ge waveguide LEDs under a continuous/pulse electrical pump was studied. The heating effect from a continuous electrical pump was found to significantly enhance the emission of devices. The top surface EL intensity of the Ge waveguide LEDs significantly depended on the position. Most direct-bandgap radiative recombination of Ge p-i-n waveguide LEDs occurred near the N{sup +} region of the junction. This interesting phenomenon could be explained by the carrier distribution in the junction and the pseudo-direct bandgap of Ge.

  18. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration

    SciTech Connect (OSTI)

    Khurgin, Jacob B.

    2014-06-02

    Laser cooling of semiconductors has been an elusive goal for many years, and while attempts to cool the narrow gap semiconductors such as GaAs are yet to succeed, recently, net cooling has been attained in a wider gap CdS. This raises the question of whether wider gap semiconductors with higher phonon energies and stronger electron-phonon coupling are better suitable for laser cooling. In this work, we develop a straightforward theory of phonon-assisted absorption and photoluminescence of semiconductors that involves more than one phonon and use to examine wide gap materials, such as GaN and CdS and compare them with GaAs. The results indicate that while strong electron-phonon coupling in both GaN and CdS definitely improves the prospects of laser cooling, large phonon energy in GaN may be a limitation, which makes CdS a better prospect for laser cooling.

  19. Semiconductor Quantum Rods as Single Molecule FluorescentBiological Labels

    SciTech Connect (OSTI)

    Fu, Aihua; Gu, Weiwei; Boussert, Benjamine; Koski, Kristie; Gerion, Daniele; Manna, Liberato; Le Gros, Mark; Larabell, Carolyn; Alivisatos, A. Paul

    2006-05-29

    In recent years, semiconductor quantum dots have beenapplied with great advantage in a wide range of biological imagingapplications. The continuing developments in the synthesis of nanoscalematerials and specifically in the area of colloidal semiconductornanocrystals have created an opportunity to generate a next generation ofbiological labels with complementary or in some cases enhanced propertiescompared to colloidal quantum dots. In this paper, we report thedevelopment of rod shaped semiconductor nanocrystals (quantum rods) asnew fluorescent biological labels. We have engineered biocompatiblequantum rods by surface silanization and have applied them fornon-specific cell tracking as well as specific cellular targeting. Theproperties of quantum rods as demonstrated here are enhanced sensitivityand greater resistance for degradation as compared to quantum dots.Quantum rods have many potential applications as biological labels insituations where their properties offer advantages over quantumdots.

  20. Plant-wide Systems

    Broader source: Energy.gov [DOE]

    Improving the energy efficiency of plant-wide systems can lead to significant savings. Use the software tools, training, and publications listed below to improve performance and save energy.

  1. Optical Furnace offers improved semiconductor device processing

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    capabilities - Energy Innovation Portal Optical Furnace offers improved semiconductor device processing capabilities Award winning solar manufacturing process National Renewable Energy Laboratory Contact NREL About This Technology <p> <em>The highly versatile optical furnace provides semiconductor manufacturers with energy efficient methods to process devices in a high throughput capacity. &nbsp;</em></p> The highly versatile optical furnace provides semiconductor

  2. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D.; Cabalu, Jasper S.

    2012-08-07

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  3. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D.; Cabalu, Jasper S.

    2011-10-11

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  4. Density driven structural transformations in amorphous semiconductor

    Office of Scientific and Technical Information (OSTI)

    clathrates (Journal Article) | SciTech Connect Density driven structural transformations in amorphous semiconductor clathrates Citation Details In-Document Search Title: Density driven structural transformations in amorphous semiconductor clathrates The pressure induced crystalline collapse at 14.7 GPa and polyamorphic structures of the semiconductor clathrate Sr8Ga16Ge30 are reported up to 35 GPa. In-situ total scattering measurements under pressure allow the direct microscopic inspection

  5. Reflection technique for thermal mapping of semiconductors

    DOE Patents [OSTI]

    Walter, Martin J.

    1989-06-20

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  6. Earth-abundant semiconductors for photovoltaic applications ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Earth-abundant semiconductors for photovoltaic applications Thin film photovoltaics (solar cells) has the potential to revolutionize our energy landscape by producing clean,...

  7. Semiconductor nanocrystal probes for biological applications...

    Office of Scientific and Technical Information (OSTI)

    being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor...

  8. Sandia National Labs: PCNSC: Research: Compound Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Compound Semiconductor Science and Technology Thrust The Physical, Chemical, and Nano ... We are also responsible for research, development, and application of chemical science to ...

  9. Solar Semiconductor Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: Solar Semiconductor Pvt Ltd Place: Hyderabad, Andhra Pradesh, India Zip: 500034 AP Product: Manufacturer of PV modules in Hyderabad, India. Also has an...

  10. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home ... Contact Information Nuclear Physics U.S. Department of Energy SC-26Germantown Building ...

  11. Semiconductor Equipment and Materials International SEMI | Open...

    Open Energy Info (EERE)

    search Name: Semiconductor Equipment and Materials International (SEMI) Place: San Jose, California Zip: 95134 2127 Product: Global trade association, publisher and conference...

  12. Stangl Semiconductor Equipment AG | Open Energy Information

    Open Energy Info (EERE)

    German manufacturer of wet chemistry systems for processing silicon and thin-film solar cells. References: Stangl Semiconductor Equipment AG1 This article is a stub. You...

  13. Processing of insulators and semiconductors

    DOE Patents [OSTI]

    Quick, Nathaniel R.; Joshi, Pooran C.; Duty, Chad Edward; Jellison, Jr., Gerald Earle; Angelini, Joseph Attilio

    2015-06-16

    A method is disclosed for processing an insulator material or a semiconductor material. The method includes pulsing a plasma lamp onto the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a large area region of the material. The method may further include pulsing a laser onto a selected region of the material to diffuse a doping substance into the material, to activate the doping substance in the material or to metallize a selected region of the material.

  14. Optic probe for semiconductor characterization

    DOE Patents [OSTI]

    Sopori, Bhushan L.; Hambarian, Artak

    2008-09-02

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  15. Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters

    DOE Patents [OSTI]

    Wanlass, Mark W.

    2001-01-01

    A low-bandgap, double-heterostructure PV device is provided, including in optical alignment a first InP.sub.1-y As.sub.y n-layer formed with an n-type dopant, an Ga.sub.x In.sub.1-x As absorber layer, the absorber layer having an n-region formed with an n-type dopant and an p-region formed with a p-type dopant to form a single pn-junction, and a second InP.sub.1-y As.sub.y p-layer formed with a p-type dopant, wherein the first and second layers are used for passivation and minority carrier confinement of the absorber layers.

  16. Band-gap tailoring of ZnO by means of heavy Al doping

    SciTech Connect (OSTI)

    Sernelius, B.E.; Berggren, K.; Jin, Z.; Hamberg, I.; Granqvist, C.G.

    1988-06-15

    Films of ZnO:Al were produced by weakly reactive dual-target magnetron sputtering. Optical band gaps, evaluated from spectrophotometric data, were widened in proportion to the Al doping. The widening could be quantitatively reconciled with an effective-mass model for n-doped semiconductors, provided the polar character of ZnO was accounted for.

  17. Island Wide Management Corporation

    Office of Legacy Management (LM)

    9 1986 Island Wide Management Corporation 3000 Marcus Avenue Lake Success, New York 11042 Dear Sir or Madam: I am sending you this letter and the enclosed information as you have been identified by L. I. Trinin of Glick Construction Company as the representatives of the owners of the property that was formerly the site of the Sylvania-Corning Nuclear Corporation in Bayside, New York. The Department of Energy is evaluating the radiological condition of sites that were utilized under the Manhattan

  18. Stable surface passivation process for compound semiconductors

    DOE Patents [OSTI]

    Ashby, Carol I. H.

    2001-01-01

    A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.

  19. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  20. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin; Schulz, Douglas L.; Curtis, Calvin J.; Ginley, David S.

    1998-01-01

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  1. Hybrid anode for semiconductor radiation detectors

    DOE Patents [OSTI]

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  2. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect (OSTI)

    Dickinson, J. T.

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  3. Semiconductor switch geometry with electric field shaping

    DOE Patents [OSTI]

    Booth, R.; Pocha, M.D.

    1994-08-23

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

  4. Semiconductor switch geometry with electric field shaping

    DOE Patents [OSTI]

    Booth, Rex; Pocha, Michael D.

    1994-01-01

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  5. Bowing of the defect formation energy in semiconductor alloys...

    Office of Scientific and Technical Information (OSTI)

    Bowing of the defect formation energy in semiconductor alloys Prev Next Title: Bowing of the defect formation energy in semiconductor alloys Authors: Ma, Jie ; Wei, Su-Huai ...

  6. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced ...

  7. Semiconductor and Materials Company Inc SAMCO | Open Energy Informatio...

    Open Energy Info (EERE)

    search Name: Semiconductor and Materials Company Inc (SAMCO) Place: Kyoto, Kyoto, Japan Zip: 612-8443 Sector: Solar Product: Japanese manufactruer of semiconductor and solar...

  8. Ados Co Ltd Dong Yang Semiconductor | Open Energy Information

    Open Energy Info (EERE)

    Ados Co Ltd Dong Yang Semiconductor Jump to: navigation, search Name: Ados Co Ltd (Dong Yang Semiconductor) Place: Seoul, Seoul, Korea (Republic) Product: Korean manufacturer of...

  9. Tianjin HuanOu Semiconductor Material Technology Co Ltd | Open...

    Open Energy Info (EERE)

    HuanOu Semiconductor Material Technology Co Ltd Jump to: navigation, search Name: Tianjin HuanOu Semiconductor Material Technology Co Ltd Place: Tianjin, Tianjin Municipality,...

  10. Zhongsheng Semiconductor Silicon Material Co Ltd | Open Energy...

    Open Energy Info (EERE)

    Zhongsheng Semiconductor Silicon Material Co Ltd Jump to: navigation, search Name: Zhongsheng Semiconductor Silicon Material Co Ltd Place: Linzhou, Henan Province, China Product:...

  11. Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor...

    Open Energy Info (EERE)

    formerly Photon Semiconductor Energy Jump to: navigation, search Name: Kyungdong Photovoltaic Energy Corp (KPE) (formerly Photon Semiconductor & Energy) Place: Changwon, South...

  12. Tianjin Zhonghuan Semiconductor Co Ltd | Open Energy Information

    Open Energy Info (EERE)

    Tianjin Municipality, China Zip: 300384 Product: China-based manufacturer of discrete semiconductor devices. References: Tianjin Zhonghuan Semiconductor Co Ltd1 This article...

  13. Varian Semiconductor Equipment Associates Inc VSEA | Open Energy...

    Open Energy Info (EERE)

    Varian Semiconductor Equipment Associates Inc VSEA Jump to: navigation, search Name: Varian Semiconductor Equipment Associates Inc (VSEA) Place: Gloucester, Massachusetts Zip: 1930...

  14. Anomalous spin precession and spin Hall effect in semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Anomalous spin precession and spin Hall effect in semiconductor quantum wells Title: Anomalous spin precession and spin Hall effect in semiconductor quantum wells Authors: Bi, ...

  15. Semiconductor-nanocrystal/conjugated polymer thin films (Patent...

    Office of Scientific and Technical Information (OSTI)

    Semiconductor-nanocrystalconjugated polymer thin films Citation Details In-Document Search Title: Semiconductor-nanocrystalconjugated polymer thin films You are accessing a...

  16. GRINM Semiconductor Materials Co Ltd Gritek | Open Energy Information

    Open Energy Info (EERE)

    GRINM Semiconductor Materials Co Ltd Gritek Jump to: navigation, search Name: GRINM Semiconductor Materials Co Ltd (Gritek) Place: Beijing Municipality, China Zip: 100088 Product:...

  17. Jiangxi Jingde Semiconductor Materials Co Ltd | Open Energy Informatio...

    Open Energy Info (EERE)

    Jingde Semiconductor Materials Co Ltd Jump to: navigation, search Name: Jiangxi Jingde Semiconductor Materials Co Ltd Place: Jingdezhen, Jiangxi Province, China Product: A Chinese...

  18. Phosphorous doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, Gary Don; Reynolds, Jeffrey Scott

    1999-07-20

    A method (10) of phosphorus doping a semiconductor particle using ammonium phosphate. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried (16, 18), with the phosphorus then being diffused (20) into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement.

  19. Phosphorus doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, G.D.; Reynolds, J.S.

    1999-07-20

    A method of phosphorus doping a semiconductor particle using ammonium phosphate is disclosed. A p-doped silicon sphere is mixed with a diluted solution of ammonium phosphate having a predetermined concentration. These spheres are dried with the phosphorus then being diffused into the sphere to create either a shallow or deep p-n junction. A good PSG glass layer is formed on the surface of the sphere during the diffusion process. A subsequent segregation anneal process is utilized to strip metal impurities from near the p-n junction into the glass layer. A subsequent HF strip procedure is then utilized to removed the PSG layer. Ammonium phosphate is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirement. 1 fig.

  20. Boron doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, Gary Don; Reynolds, Jeffrey Scott; Brown, Louanne Kay

    1998-06-09

    A method (10,30) of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried (16), with the boron film then being driven (18) into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out (38) into piles and melted/fused (40) with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements.

  1. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  2. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  3. Boron doping a semiconductor particle

    DOE Patents [OSTI]

    Stevens, G.D.; Reynolds, J.S.; Brown, L.K.

    1998-06-09

    A method of boron doping a semiconductor particle using boric acid to obtain a p-type doped particle. Either silicon spheres or silicon powder is mixed with a diluted solution of boric acid having a predetermined concentration. The spheres are dried, with the boron film then being driven into the sphere. A melt procedure mixes the driven boron uniformly throughout the sphere. In the case of silicon powder, the powder is metered out into piles and melted/fused with an optical furnace. Both processes obtain a p-type doped silicon sphere with desired resistivity. Boric acid is not a restricted chemical, is inexpensive, and does not pose any special shipping, handling, or disposal requirements. 2 figs.

  4. Our Best Energy Videos of 2014 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Stay ahead of the curve and watch these videos on 3D printing, wide bandgap semiconductors and creating a star on earth through fusion energy. You can also catch up on all the ...

  5. fgr3372.tmp

    Office of Scientific and Technical Information (OSTI)

    ... of Science, Office of Basic Energy Science, Division of Materials Sciences of the ... GaN, a wide direct bandgap semiconductor, and its alloys with AIN and InN, have realized, ...

  6. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOE Patents [OSTI]

    Yang, Peidong; Choi, Heonjin; Lee, Sangkwon; He, Rongrui; Zhang, Yanfeng; Kuykendal, Tevye; Pauzauskie, Peter

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  7. Electronegativity estimation of electronic polarizabilities of semiconductors

    SciTech Connect (OSTI)

    Li, Keyan [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)] [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China); Xue, Dongfeng, E-mail: dfxue@chem.dlut.edu.cn [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)] [State Key Laboratory of Fine Chemicals, Department of Materials Science and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116012 (China)

    2010-03-15

    On the basis of the viewpoint of structure-property relationship in solid state matters, we proposed some useful relations to quantitatively calculate the electronic polarizabilities of binary and ternary chalcopyrite semiconductors, by using electronegativity and principal quantum number. The calculated electronic polarizabilities are in good agreement with reported values in the literature. Both electronegativity and principal quantum number can effectively reflect the detailed chemical bonding behaviors of constituent atoms in these semiconductors, which determines the magnitude of their electronic polarizabilities. The present work provides a useful guide to compositionally design novel semiconductor materials, and further explore advanced electro-optic devices.

  8. 3 Ways Our Manufacturing Institutes Are Changing the Clean Energy Game |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Our Manufacturing Institutes Are Changing the Clean Energy Game 3 Ways Our Manufacturing Institutes Are Changing the Clean Energy Game September 24, 2015 - 3:30pm Addthis National Network for Manufacturing Innovation institute Power America focuses on advanced power electronics based on wide bandgap semiconductors. Learn how wide bandgap semiconductors could impact clean energy technology and our daily lives. | Video by Sarah Gerrity and Matty Greene, Energy Department.

  9. Bandgap properties of diamond structure photonic crystal heterostructures with inclined and curved interfaces

    SciTech Connect (OSTI)

    Lei, Haitao; Li, Yong; Wang, Hong, E-mail: hwang@mail.xjtu.edu.cn [Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049 (China)

    2014-06-14

    The 3D (dimensional) diamond structure photonic crystal heterostructures with different lattice constants were prepared using rapid prototyping and gel casting with alumina. In this paper, heterostructures with inclined and curved interfaces were designed and its bandgap properties were studied. The normalized resonant intensity of electromagnetic wave in heterostructure with inclined and curved interface is stronger than that in the ordinary heterostructure without modified interface. The influence of curved interface on transmission properties of electromagnetic wave was investigated with the radius of curvature ranging from 17?mm to 37?mm at 5?mm interval. The results show that two resonant modes appear in the photonic band gap, being similar to the band gap characteristics of the photonic crystals with two defects inside. With the increasing of the radius of curvature, the resonant mode shift to higher frequency. In the structure with a radius of curvature of 32?mm, a guiding band appears in the photonic band gap. Further increase in the radius of curvature, the guiding band will split into two resonant modes again and the two resonant modes shift to lower frequencies.

  10. ZnMgO by APCVD Enabling High-Performance Mid-bandgap CIGS on Polyimide Modules: October 2009--October 2010

    SciTech Connect (OSTI)

    Woods, L.

    2011-04-01

    This Pre-Incubator project was designed to increase the 'real world' CIGS based photovoltaic module performance and decrease the Levelized Cost of Energy (LCOE) of systems utilizing those modules compared to our traditional CIGS based photovoltaic modules. This was enabled by a) increasing the CIGS bandgap and b) developing better matched device finishing layers to the mid-bandgap CIGS based photovoltaics; including window and buffer layers (and eventually the TCO). Incremental progress in the novel device performance was demonstrated throughout the program, and ultimately achieved performance results that exceeded the milestones ahead of schedule. Metal-oxide buffer layer devices with mid-bandgap CIGS alloys on polyimide substrates were produced with efficiencies of over 12%. Corresponding mid-bandgap devices with CdS buffers produced over 13% efficient devices. Furthermore, no obvious degradation in the device performance has been observed to date, after proper storage ambient of the different types of unencapsulated devices were identified.

  11. Library Analog Semiconductor Devices SPICE Simulators

    Energy Science and Technology Software Center (OSTI)

    1996-07-23

    SPICE-SANDIA.LIB is a library of parameter sets and macromodels of semiconductor devices. They are used with Spice-based (SPICE is a program for electronic circuit analysis) simulators to simulate electronic circuits.

  12. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F.

    1999-01-01

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  13. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    spin-up and spin-down states as well as both positive and negative charge carriers. Strategies for developing spintronic semiconductors have been based on surface doping or...

  14. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  15. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  16. Anomalous Charge Transport in Disordered Organic Semiconductors

    SciTech Connect (OSTI)

    Muniandy, S. V.; Woon, K. L.; Choo, K. Y.

    2011-03-30

    Anomalous charge carrier transport in disordered organic semiconductors is studied using fractional differential equations. The connection between index of fractional derivative and dispersion exponent is examined from the perspective of fractional Fokker-Planck equation and its link to the continuous time random walk formalism. The fractional model is used to describe the bi-scaling power-laws observed in the time-of flight photo-current transient data for two different types of organic semiconductors.

  17. Gaining creative control over semiconductor nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gaining creative control over semiconductor nanowires Gaining creative control over semiconductor nanowires Using a microfluidic reactor, Los Alamos researchers transformed the SLS process into a flow-based technique. September 26, 2013 Growth of nanowire precursors in a flowing carrier solvent Growth of nanowire precursors in a flowing carrier solvent The new "flow" solution-liquid-solid method allows scientists to slow down growth and thereby capture mechanistic details as the

  18. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  19. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W.

    1996-01-01

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  20. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  1. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W.

    1996-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  2. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1996-08-20

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  3. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W.

    1998-01-01

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  4. Density driven structural transformations in amorphous semiconductor

    Office of Scientific and Technical Information (OSTI)

    clathrates (Journal Article) | SciTech Connect Density driven structural transformations in amorphous semiconductor clathrates Citation Details In-Document Search Title: Density driven structural transformations in amorphous semiconductor clathrates Authors: Tulk, C.A. ; dos Santos, A.M. ; Neuefeind, J.C. ; Molaison, J.J. ; Sales, B.C. ; Honkimäki, V. [1] ; ESRF) [2] + Show Author Affiliations (ORNL) ( Publication Date: 2015-09-22 OSTI Identifier: 1221429 Resource Type: Journal Article

  5. Optical devices featuring nonpolar textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  6. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers A Spintronic Semiconductor with Selectable Charge Carriers Print Wednesday, 28 August 2013 00:00 Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of

  7. Gaining creative control over semiconductor nanowires

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Gaining creative control over semiconductor nanowires Gaining creative control over semiconductor nanowires Using a microfluidic reactor, Los Alamos researchers transformed the SLS process into a flow-based technique. September 26, 2013 Growth of nanowire precursors in a flowing carrier solvent Growth of nanowire precursors in a flowing carrier solvent The new "flow" solution-liquid-solid method allows scientists to slow down growth and thereby capture mechanistic details as the

  8. Spin Transport in Semiconductor heterostructures

    SciTech Connect (OSTI)

    Domnita Catalina Marinescu

    2011-02-22

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  9. Photoelectrochemistry of Semiconductor Nanowire Arrays

    SciTech Connect (OSTI)

    Mallouk, Thomas E; Redwing, Joan M

    2009-11-10

    This project supported research on the growth and photoelectrochemical characterization of semiconductor nanowire arrays, and on the development of catalytic materials for visible light water splitting to produce hydrogen and oxygen. Silicon nanowires were grown in the pores of anodic aluminum oxide films by the vapor-liquid-solid technique and were characterized electrochemically. Because adventitious doping from the membrane led to high dark currents, silicon nanowire arrays were then grown on silicon substrates. The dependence of the dark current and photovoltage on preparation techniques, wire diameter, and defect density was studied for both p-silicon and p-indium phosphide nanowire arrays. The open circuit photovoltage of liquid junction cells increased with increasing wire diameter, reaching 350 mV for micron-diameter silicon wires. Liquid junction and radial p-n junction solar cells were fabricated from silicon nano- and microwire arrays and tested. Iridium oxide cluster catalysts stabilized by bidentate malonate and succinate ligands were also made and studied for the water oxidation reaction. Highlights of this project included the first papers on silicon and indium phosphide nanowire solar cells, and a new procedure for making ligand-stabilized water oxidation catalysts that can be covalently linked to molecular photosensitizers or electrode surfaces.

  10. Analyzes Data from Semiconductor Wafers

    Energy Science and Technology Software Center (OSTI)

    2002-07-23

    This program analyzes reflectance data from semiconductor wafers taken during the deposition or evolution of a thin film, typically via chemical vapor deposition (CVD) or molecular beam epitaxy (MBE). It is used to determine the growth rate and optical constants of the deposited thin films using a virtual interface concept. Growth rates and optical constants of multiple-layer structures is possible by selecting appropriate sections in the reflectance vs time waveform. No prior information or estimatesmore » of growth rates and materials properties is required if an absolute reflectance waveform is used. If the optical constants of a thin film are known, then the growth rate may be extracted from a relative reflectance data set. The analysis is valid for either s or p polarized light at any incidence angle and wavelength. The analysis package is contained within an easy-to-use graphical user interface. The program is based on the algorighm described in the following two publications: W.G. Breiland and K.P. Killen, J. Appl. Phys. 78 (1995) 6726, and W. G. Breiland, H.Q. Hou, B.E. Hammons, and J.F. Klem, Proc. XXVIII SOTAPOCS Symp. Electrochem. Soc. San Diego, May 3-8, 1998. It relies on the fact that any multiple-layer system has a reflectance spectrum that is mathematically equivalent to a single-layer thin film on a virtual substrate. The program fits the thin film reflectance with five adjustable parameters: 1) growth rate, 2) real part of complex refractive index, 3) imaginary part of refractive index, 4) amplitude of virtual interface reflectance, 5) phase of virtual interface reflectance.« less

  11. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J.; Cowher, Melvyn E.

    1985-08-27

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  12. Support apparatus for semiconductor wafer processing

    DOE Patents [OSTI]

    Griffiths, Stewart K.; Nilson, Robert H.; Torres, Kenneth J.

    2003-06-10

    A support apparatus for minimizing gravitational stress in semiconductor wafers, and particularly silicon wafers, during thermal processing. The support apparatus comprises two concentric circular support structures disposed on a common support fixture. The two concentric circular support structures, located generally at between 10 and 70% and 70 and 100% and preferably at 35 and 82.3% of the semiconductor wafer radius, can be either solid rings or a plurality of spaced support points spaced apart from each other in a substantially uniform manner. Further, the support structures can have segments removed to facilitate wafer loading and unloading. In order to withstand the elevated temperatures encountered during semiconductor wafer processing, the support apparatus, including the concentric circular support structures and support fixture can be fabricated from refractory materials, such as silicon carbide, quartz and graphite. The claimed wafer support apparatus can be readily adapted for use in either batch or single-wafer processors.

  13. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen Edward; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  14. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  15. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1989-05-09

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  16. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1987-10-23

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.

  17. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, Timothy J.; Ginley, David S.; Zipperian, Thomas E.

    1989-01-01

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  18. Semimetal/Semiconductor Nanocomposites for Thermoelectrics

    SciTech Connect (OSTI)

    Lu, Hong; Burke, Peter G.; Gossard, Arthur C.; Zeng, Gehong; Ramu, Ashok T.; Bahk, Je-Hyeong; Bowers, John E.

    2011-04-15

    In this work, we present research on semimetal-semiconductor nanocomposites grown by molecular beam epitaxy (MBE) for thermoelectric applications. We study several different III-V semiconductors embedded with semimetallic rare earth-group V (RE-V) compounds, but focus is given here to ErSb:InxGa1-xSb as a promising p-type thermoelectric material. Nanostructures of RE-V compounds are formed and embedded within the III-V semiconductor matrix. By codoping the nanocomposites with the appropriate dopants, both n-type and p-type materials have been made for thermoelectric applications. The thermoelectric properties have been engineered for enhanced thermoelectric device performance. Segmented thermoelectric power generator modules using 50 ?m thick Er-containing nanocomposites have been fabricated and measured. Research on different rare earth elements for thermoelectrics is discussed.

  19. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    SciTech Connect (OSTI)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  20. Conductance matrix of multiterminal semiconductor devices with edge channels

    SciTech Connect (OSTI)

    Danilovskii, E. Yu. Bagraev, N. T.

    2014-12-15

    A method for determining the conductance matrix of multiterminal semiconductor structures with edge channels is proposed. The method is based on the solution of a system of linear algebraic equations based on Kirchhoff equations, made up of potential differences U{sub ij} measured at stabilized currents I{sub kl}, where i, j, k, l are terminal numbers. The matrix obtained by solving the system of equations completely describes the structure under study, reflecting its configuration and homogeneity. This method can find wide application when using the known Landauer-Buttiker formalism to analyze carrier transport in the quantum Hall effect and quantum spin Hall effect modes. Within the proposed method, the contribution of the contact area resistances R{sub c} to the formation of conductance matrix elements is taken into account. The possibilities of practical application of the results obtained in developing analog cryptographic devices are considered.

  1. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, R.J.; Constantine, C.

    1997-04-29

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  2. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, Randy J.; Constantine, Christopher

    1997-01-01

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  3. Bandgap and optical absorption edge of GaAs{sub 1?x}Bi{sub x} alloys with 0?

    SciTech Connect (OSTI)

    Masnadi-Shirazi, M.; Lewis, R. B.; Bahrami-Yekta, V.; Tiedje, T.; Chicoine, M.; Servati, P.

    2014-12-14

    The compositional dependence of the fundamental bandgap of pseudomorphic GaAs{sub 1?x}Bi{sub x} layers on GaAs substrates is studied at room temperature by optical transmission and photoluminescence spectroscopies. All GaAs{sub 1?x}Bi{sub x} films (0???x???17.8%) show direct optical bandgaps, which decrease with increasing Bi content, closely following density functional theory predictions. The smallest measured bandgap is 0.52?eV (?2.4??m) at 17.8% Bi. Extrapolating a fit to the data, the GaAs{sub 1?x}Bi{sub x} bandgap is predicted to reach 0?eV at 35% Bi. Below the GaAs{sub 1?x}Bi{sub x} bandgap, exponential absorption band tails are observed with Urbach energies 36 times larger than that of bulk GaAs. The Urbach parameter increases with Bi content up to 5.5% Bi, and remains constant at higher concentrations. The lattice constant and Bi content of GaAs{sub 1?x}Bi{sub x} layers (0?

  4. Surface passivation process of compound semiconductor material using UV photosulfidation

    DOE Patents [OSTI]

    Ashby, Carol I. H.

    1995-01-01

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  5. Alloy Engineering of Defect Properties in Semiconductors: Suppression...

    Office of Scientific and Technical Information (OSTI)

    Energy (EERE) Country of Publication: United States Language: English Subject: 14 SOLAR ENERGY; 77 NANOSCIENCE AND NANOTECHNOLOGY defects; semiconductors; electronic...

  6. Sandia National Labs: PCNSC: Departments: Semiconductor and Optical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sciences Semiconductor & Optical Sciences > Semiconductor Material & Device Sciences > Advanced Materials Sciences > Lasers, Optics & Remote Sensing Energy Sciences Small Science Cluster Business Office News Partnering Research Jeff Nelson Jerry A. Simmons Sr. Manager Idabelle Idabelle Courtney Admin. Asst. Departments Semiconductor and Optical Sciences The Semiconductor and Optical Sciences Department oversees the operations of the following departments providing new

  7. Visible light surface emitting semiconductor laser

    DOE Patents [OSTI]

    Olbright, Gregory R.; Jewell, Jack L.

    1993-01-01

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  8. Semiconductor liquid crystal composition and methods for making the same

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  9. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P.

    2001-01-01

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  10. Semiconductor laser with multiple lasing wavelengths

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  11. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, A.J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  12. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-01-01

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  13. High resolution scintillation detector with semiconductor readout

    DOE Patents [OSTI]

    Levin, Craig S.; Hoffman, Edward J.

    2000-01-01

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  14. Preparation of III-V semiconductor nanocrystals

    DOE Patents [OSTI]

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  15. Preparation of III-V semiconductor nanocrystals

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Olshavsky, Michael A.

    1996-01-01

    Nanometer-scale crystals of III-V semiconductors are disclosed, They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline.

  16. Semiconductor diode with external field modulation

    DOE Patents [OSTI]

    Nasby, Robert D.

    2000-01-01

    A non-destructive-readout nonvolatile semiconductor diode switching device that may be used as a memory element is disclosed. The diode switching device is formed with a ferroelectric material disposed above a rectifying junction to control the conduction characteristics therein by means of a remanent polarization. The invention may be used for the formation of integrated circuit memories for the storage of information.

  17. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, Arthur J.

    1984-01-01

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor overcoated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  18. Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals

    SciTech Connect (OSTI)

    Kumar, D.; Barman, A.; K?os, J. W.; Krawczyk, M.

    2014-01-28

    We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain isofrequency contours of spin waves. Isofrequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable.

  19. In-line Mach-Zehnder interferometer composed of microtaper and long-period grating in all-solid photonic bandgap fiber

    SciTech Connect (OSTI)

    Wu Zhifang; Liu Yange; Wang Zhi; Han Tingting; Li Shuo; Jiang Meng; Ping Shum, Perry

    2012-10-01

    We report a compact in-line Mach-Zehnder interferometer combining a microtaper with a long-period grating (LPG) in a section of all-solid photonic bandgap fiber. Theoretical and experimental investigations reveal that the interferometer works from the interference between the fundamental core mode and the LP{sub 01} cladding supermodes. The mechanism underlying the mode coupling caused by the microtaper can be attributed to a bandgap-shifting as the fiber diameter is abruptly scaled down. In addition, the interferometer designed to strengthen the coupling ratio of the long-period grating has a promising practical application in the simultaneous measurement of curvature and temperature.

  20. Ab initio quasi-particle approximation bandgaps of silicon nanowires calculated at density functional theory/local density approximation computational effort

    SciTech Connect (OSTI)

    Ribeiro, M.

    2015-06-21

    Ab initio calculations of hydrogen-passivated Si nanowires were performed using density functional theory within LDA-1/2, to account for the excited states properties. A range of diameters was calculated to draw conclusions about the ability of the method to correctly describe the main trends of bandgap, quantum confinement, and self-energy corrections versus the diameter of the nanowire. Bandgaps are predicted with excellent accuracy if compared with other theoretical results like GW, and with the experiment as well, but with a low computational cost.

  1. Bi-Se doped with Cu, p-type semiconductor

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  2. Lattice matched semiconductor growth on crystalline metallic substrates

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  3. Semiconductor Laser Diode Pumps for Inertial Fusion Energy Lasers

    SciTech Connect (OSTI)

    Deri, R J

    2011-01-03

    Solid-state lasers have been demonstrated as attractive drivers for inertial confinement fusion on the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) and at the Omega Facility at the Laboratory for Laser Energetics (LLE) in Rochester, NY. For power plant applications, these lasers must be pumped by semiconductor diode lasers to achieve the required laser system efficiency, repetition rate, and lifetime. Inertial fusion energy (IFE) power plants will require approximately 40-to-80 GW of peak pump power, and must operate efficiently and with high system availability for decades. These considerations lead to requirements on the efficiency, price, and production capacity of the semiconductor pump sources. This document provides a brief summary of these requirements, and how they can be met by a natural evolution of the current semiconductor laser industry. The detailed technical requirements described in this document flow down from a laser ampl9ifier design described elsewhere. In brief, laser amplifiers comprising multiple Nd:glass gain slabs are face-pumped by two planar diode arrays, each delivering 30 to 40 MW of peak power at 872 nm during a {approx} 200 {micro}s quasi-CW (QCW) pulse with a repetition rate in the range of 10 to 20 Hz. The baseline design of the diode array employs a 2D mosaic of submodules to facilitate manufacturing. As a baseline, they envision that each submodule is an array of vertically stacked, 1 cm wide, edge-emitting diode bars, an industry standard form factor. These stacks are mounted on a common backplane providing cooling and current drive. Stacks are conductively cooled to the backplane, to minimize both diode package cost and the number of fluid interconnects for improved reliability. While the baseline assessment in this document is based on edge-emitting devices, the amplifier design does not preclude future use of surface emitting diodes, which may offer appreciable future cost reductions and increased reliability. The high-level requirements on the semiconductor lasers involve reliability, price points on a price-per-Watt basis, and a set of technical requirements. The technical requirements for the amplifier design in reference 1 are discussed in detail and are summarized in Table 1. These values are still subject to changes as the overall laser system continues to be optimized. Since pump costs can be a significant fraction of the overall laser system cost, it is important to achieve sufficiently low price points for these components. At this time, the price target for tenth-of-akind IFE plant is $0.007/Watt for packaged devices. At this target level, the pumps account for approximately one third of the laser cost. The pump lasers should last for the life of the power plant, leading to a target component lifetime requirement of roughly 14 Ghosts, corresponding to a 30 year plant life and 15 Hz repetition rate. An attractive path forward involes pump operation at high output power levels, on a Watts-per-bar (Watts/chip) basis. This reduces the cost of pump power (price-per-Watt), since to first order the unit price does not increase with power/bar. The industry has seen a continual improvement in power output, with current 1 cm-wide bars emitting up to 500 W QCW (quasi-continuous wave). Increased power/bar also facilitates achieving high irradiance in the array plane. On the other hand, increased power implies greater heat loads and (possibly) higher current drive, which will require increased attention to thermal management and parasitic series resistance. Diode chips containing multiple p-n junctions and quantum wells (also called nanostack structures) may provide an additional approach to reduce the peak current.

  4. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  5. Method of transferring strained semiconductor structure

    DOE Patents [OSTI]

    Nastasi, Michael A. (Santa Fe, NM); Shao, Lin (College Station, TX)

    2009-12-29

    The transfer of strained semiconductor layers from one substrate to another substrate involves depositing a multilayer structure on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the deposited multilayer structure is bonded to a second substrate and is separated away at the interface, which results in transferring a multilayer structure from one substrate to the other substrate. The multilayer structure includes at least one strained semiconductor layer and at least one strain-induced seed layer. The strain-induced seed layer can be optionally etched away after the layer transfer.

  6. Semiconductor P-I-N detector

    DOE Patents [OSTI]

    Sudharsanan, Rengarajan; Karam, Nasser H.

    2001-01-01

    A semiconductor P-I-N detector including an intrinsic wafer, a P-doped layer, an N-doped layer, and a boundary layer for reducing the diffusion of dopants into the intrinsic wafer. The boundary layer is positioned between one of the doped regions and the intrinsic wafer. The intrinsic wafer can be composed of CdZnTe or CdTe, the P-doped layer can be composed of ZnTe doped with copper, and the N-doped layer can be composed of CdS doped with indium. The boundary layers is formed of an undoped semiconductor material. The boundary layer can be deposited onto the underlying intrinsic wafer. The doped regions are then typically formed by a deposition process or by doping a section of the deposited boundary layer.

  7. Proximity charge sensing for semiconductor detectors

    DOE Patents [OSTI]

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  8. Photoelectrochemical Semiconductor Surface Fortification via Ion

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implantation - Energy Innovation Portal Vehicles and Fuels Vehicles and Fuels Solar Photovoltaic Solar Photovoltaic Hydrogen and Fuel Cell Hydrogen and Fuel Cell Find More Like This Return to Search Photoelectrochemical Semiconductor Surface Fortification via Ion Implantation National Renewable Energy Laboratory National Energy Technology Laboratory Contact NREL About This Technology Technology Marketing Summary Producing hydrogen from clean sources of energy has been one of the major

  9. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  10. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  11. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  12. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  13. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  14. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  15. A Spintronic Semiconductor with Selectable Charge Carriers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A Spintronic Semiconductor with Selectable Charge Carriers Print Accentuating the Positive (or the Negative) Spintronics-a type of electronics that makes use of electron spin as well as charge-is already here to a certain extent. The discovery of giant magnetoresistance, a spin-based effect, has revolutionized the information storage industry. Beyond this, however, scientists envision the possibility of combining storage and processing functions in one integrated system. In electronics,

  16. Semiconductor junction formation by directed heat

    DOE Patents [OSTI]

    Campbell, Robert B.

    1988-03-24

    The process of the invention includes applying precursors 6 with N- and P-type dopants therein to a silicon web 2, with the web 2 then being baked in an oven 10 to drive off excessive solvents, and the web 2 is then heated using a pulsed high intensity light in a mechanism 12 at 1100.degree.-1150.degree. C. for about 10 seconds to simultaneously form semiconductor junctions in both faces of the web.

  17. Visible-wavelength semiconductor lasers and arrays

    DOE Patents [OSTI]

    Schneider, Jr., Richard P.; Crawford, Mary H.

    1996-01-01

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  18. Demonstration of long minority carrier lifetimes in very narrow bandgap ternary InAs/GaInSb superlattices

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Olson, Benjamin Varberg; Kim, Jin K.; Kadlec, Emil Andrew; Shaner, Eric A.; Haugan, Heather J.; Brown, Gail J.

    2015-09-28

    Minority carrier lifetimes in very long wavelength infrared (VLWIR) InAs/GaInSb superlattices (SLs) are reported using time-resolved microwave reflectance measurements. A strain-balanced ternary SL absorber layer of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, corresponding to a bandgap of ~50 meV, is found to have a minority carrier lifetime of 140 ± 20 ns at ~18 K. This lifetime is extraordinarily long, when compared to lifetime values previously reported for other VLWIR SL detector materials. As a result, this enhancement is attributed to the strain-engineered ternary design, which offers a variety of epitaxial advantages and ultimately leads to a reduction of defect-mediated recombinationmore » centers.« less

  19. Demonstration of long minority carrier lifetimes in very narrow bandgap ternary InAs/GaInSb superlattices

    SciTech Connect (OSTI)

    Olson, Benjamin Varberg; Kim, Jin K.; Kadlec, Emil Andrew; Shaner, Eric A.; Haugan, Heather J.; Brown, Gail J.

    2015-09-28

    Minority carrier lifetimes in very long wavelength infrared (VLWIR) InAs/GaInSb superlattices (SLs) are reported using time-resolved microwave reflectance measurements. A strain-balanced ternary SL absorber layer of 47.0 Å InAs/21.5 Å Ga0.75In0.25Sb, corresponding to a bandgap of ~50 meV, is found to have a minority carrier lifetime of 140 ± 20 ns at ~18 K. This lifetime is extraordinarily long, when compared to lifetime values previously reported for other VLWIR SL detector materials. As a result, this enhancement is attributed to the strain-engineered ternary design, which offers a variety of epitaxial advantages and ultimately leads to a reduction of defect-mediated recombination centers.

  20. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    SciTech Connect (OSTI)

    Zaytsev, Kirill I. Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O.; Gorelik, Vladimir S.

    2014-06-07

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  1. Wide field of view telescope

    DOE Patents [OSTI]

    Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  2. Photovoltaic healing of non-uniformities in semiconductor devices

    DOE Patents [OSTI]

    Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.

    2006-08-29

    A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.

  3. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  4. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2009-05-19

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  5. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C.; Rohatgi, Naresh K.

    1987-01-01

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  6. Method and system for powering and cooling semiconductor lasers

    DOE Patents [OSTI]

    Telford, Steven J; Ladran, Anthony S

    2014-02-25

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  7. Organic Semiconductor Chemistry | MIT-Harvard Center for Excitonics

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Semiconductor Chemistry December 13, 2012 at 3pm/36-428 Seth Marder Department of Chemistry/Biochemistry, Director, Center for Organic Photonics and Electronics, Georgia Tech marder_000 Abstract: Organic semiconductors have attracted interest for electronic applications due to their potential for use in low-cost, large-area, flexible electronic devices. While many examples of organic semiconductors for p-channel and n-channel organic field-effect transistors (OFETs) and organic photovoltaic

  8. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR

    Office of Scientific and Technical Information (OSTI)

    NANOSTRUCTURES (Journal Article) | SciTech Connect OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES Citation Details In-Document Search Title: OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk

  9. Quantum-size-controlled photoelectrochemical etching of semiconductor

    Office of Scientific and Technical Information (OSTI)

    nanostructures (Patent) | SciTech Connect Patent: Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures Citation Details In-Document Search Title: Quantum-size-controlled photoelectrochemical etching of semiconductor nanostructures Quantum-size-controlled photoelectrochemical (QSC-PEC) etching provides a new route to the precision fabrication of epitaxial semiconductor nanostructures in the sub-10-nm size regime. For example, quantum dots (QDs) can be

  10. Hot Electron Transfer from Semiconductor Nanocrystals | MIT-Harvard Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Excitonics Hot Electron Transfer from Semiconductor Nanocrystals March 30, 2010 at 3pm/36-428 William A. Tisdale Department of Chemical Engineering and Materials Science University of Minnesota tisdale_002 abstract: In conventional semiconductor solar cells, absorption of photons with energies greater than the semiconductor band gap generate "hot" charge carriers that quickly "cool" before all of their energy can be captured - a process that limits device efficiency.

  11. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2010-12-14

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  12. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  13. Tuning and synthesis of semiconductor nanostructures by mechanical compression

    DOE Patents [OSTI]

    Fan, Hongyou; Li, Binsong

    2015-11-17

    A mechanical compression method can be used to tune semiconductor nanoparticle lattice structure and synthesize new semiconductor nanostructures including nanorods, nanowires, nanosheets, and other three-dimensional interconnected structures. II-VI or IV-VI compound semiconductor nanoparticle assemblies can be used as starting materials, including CdSe, CdTe, ZnSe, ZnS, PbSe, and PbS.

  14. Profiling the local carrier concentration across a semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search This content will become publicly available on May 11, 2016 Title: Profiling the local carrier concentration across a semiconductor quantum...

  15. Method for fabricating an interconnected array of semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P.; Paulson, Kenneth R.; Gilbert, James R.

    1989-10-10

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  16. July 28, 2010, Guiding semiconductor research through collaborative...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    For creating the concept and methodology that evolved into the International Technology Roadmap for Semiconductors." 3 Key Attributes of SRC Research Entities 1. Accepted IP model. ...

  17. Resonator for Coherent Addition of Semiconductor Laser Arrays...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Return to Search Resonator for Coherent Addition of Semiconductor Laser Arrays and Applications for a Solar Pumped Laser Array Oak Ridge National Laboratory Contact ORNL About This ...

  18. Method for depositing high-quality microcrystalline semiconductor materials

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.; Yan, Baojie

    2011-03-08

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  19. Method of transferring a thin crystalline semiconductor layer

    DOE Patents [OSTI]

    Nastasi, Michael A.; Shao, Lin; Theodore, N. David

    2006-12-26

    A method for transferring a thin semiconductor layer from one substrate to another substrate involves depositing a thin epitaxial monocrystalline semiconductor layer on a substrate having surface contaminants. An interface that includes the contaminants is formed in between the deposited layer and the substrate. Hydrogen atoms are introduced into the structure and allowed to diffuse to the interface. Afterward, the thin semiconductor layer is bonded to a second substrate and the thin layer is separated away at the interface, which results in transferring the thin epitaxial semiconductor layer from one substrate to the other substrate.

  20. Moderate Doping Leads to High Performance of Semiconductor/Insulator...

    Office of Scientific and Technical Information (OSTI)

    Title: Moderate Doping Leads to High Performance of SemiconductorInsulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, ...

  1. Ramgraber Semiconductor Equipment GmbH | Open Energy Information

    Open Energy Info (EERE)

    Zip: 85649 Sector: Solar Product: Makes semiconductor processing equipment, including solar cell manufacturing lines. Coordinates: 48.006898, 11.684687 Show Map Loading...

  2. Yangzhou Zhongke Semiconductor Lighting Center Co Ltd | Open...

    Open Energy Info (EERE)

    Center Co. Ltd. Place: Yangzhou, Jiangsu Province, China Zip: 2250000 Product: LED packaging startup backed by the Institute of Semiconductors at Chinese Academy of Sciences...

  3. Taiwan Semiconductor Manufacturing Co Ltd TSMC | Open Energy...

    Open Energy Info (EERE)

    Manufacturing Co Ltd TSMC Jump to: navigation, search Name: Taiwan Semiconductor Manufacturing Co Ltd (TSMC) Place: Hsinchu, Taiwan Zip: 300 Sector: Solar Product: Taiwan-based...

  4. Interfacial Chemistry of III-V Semiconductors for Photoelectrochemical...

    Office of Scientific and Technical Information (OSTI)

    Photoelectrochemical Water Splitting Citation Details In-Document Search Title: Interfacial Chemistry of III-V Semiconductors for Photoelectrochemical Water Splitting You are ...

  5. Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Hydrogen Evolution at Si-based Metal-Insulator-Semiconductor Photoelectrodes Enhanced by Inversion Channel Charge Collection and Hydrogen Spillover Citation Details In-Document...

  6. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  7. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1995-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  8. Silicon metal-semiconductor-metal photodetector

    DOE Patents [OSTI]

    Brueck, Steven R. J.; Myers, David R.; Sharma, Ashwani K.

    1997-01-01

    Silicon MSM photodiodes sensitive to radiation in the visible to near infrared spectral range are produced by altering the absorption characteristics of crystalline Si by ion implantation. The implantation produces a defected region below the surface of the silicon with the highest concentration of defects at its base which acts to reduce the contribution of charge carriers formed below the defected layer. The charge carriers generated by the radiation in the upper regions of the defected layer are very quickly collected between biased Schottky barrier electrodes which form a metal-semiconductor-metal structure for the photodiode.

  9. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, Guillermo M. (Sandia Park, NM); Baca, Albert G. (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

    1998-01-01

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  10. Transient Rayleigh scattering from single semiconductor nanowires

    SciTech Connect (OSTI)

    Montazeri, Mohammad; Jackson, Howard E.; Smith, Leigh M.; Yarrison-Rice, Jan M.; Kang, Jung-Hyun; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati

    2013-12-04

    Transient Rayleigh scattering spectroscopy is a new pump-probe technique to study the dynamics and cooling of photo-excited carriers in single semiconductor nanowires. By studying the evolution of the transient Rayleigh spectrum in time after excitation, one can measure the time evolution of the density and temperature of photo-excited electron-hole plasma (EHP) as they equilibrate with lattice. This provides detailed information of dynamics and cooling of carriers including linear and bimolecular recombination properties, carrier transport characteristics, and the energy-loss rate of hot electron-hole plasma through the emission of LO and acoustic phonons.

  11. A versatile optical junction using photonic band-gap guidance and self collimation

    SciTech Connect (OSTI)

    Gupta, Man Mohan; Medhekar, Sarang

    2014-09-29

    We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.

  12. Coated semiconductor devices for neutron detection

    SciTech Connect (OSTI)

    Klann, Raymond T.; McGregor, Douglas S.

    2002-01-01

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  13. Visible-wavelength semiconductor lasers and arrays

    DOE Patents [OSTI]

    Schneider, R.P. Jr.; Crawford, M.H.

    1996-09-17

    The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1{lambda}) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%. 5 figs.

  14. Nanophase Engineering of Organic Semiconductor-based Solar Cells

    SciTech Connect (OSTI)

    Yang, Bin; Shao, Ming; Keum, Jong Kahk; Geohegan, David B; Xiao, Kai

    2015-01-01

    Organic photovoltaics are promising low-cost, easily-processable energy sources of the future, and are the subject of current academic and industrial interest. In order to achieve the envisioned device efficiencies to surpass commercialization target values, several challenges must be met: (1) to design and synthesize conjugated molecules with low optical bandgaps and optimized electronic energy levels, (2) optimization the morphology of donor/acceptor interpenetrating networks by controlling nanoscale phase separation and self-assembly, and (3) precise tuning of the active layer/electrode interfaces and donor/acceptor interfaces for optimized charge transfer. Here, we focus on recent advances in: (i) synthetic strategies for low-bandgap conjugated polymers and novel fullerene acceptors, (ii) processing to tune film morphologies by solvent annealing, thermal annealing, and the use of solvent additives and compatibilizers, and (iii) engineering of active layer/electrode interfaces and donor/acceptor interfaces with self-assembled monolayer dipoles.

  15. Wide-range voltage modulation

    SciTech Connect (OSTI)

    Rust, K.R.; Wilson, J.M.

    1992-06-01

    The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

  16. Electrical contacts for a thin-film semiconductor device

    DOE Patents [OSTI]

    Carlson, David E.; Dickson, Charles R.; D'Aiello, Robert V.

    1989-08-08

    A method of fabricating spaced-apart back contacts on a thin film of semiconductor material by forming strips of buffer material on top of the semiconductor material in locations corresponding to the desired dividing lines between back contacts, forming a film of metal substantially covering the semiconductor material and buffer strips, and scribing portions of the metal film overlying the buffer strips with a laser without contacting the underlying semiconductor material to separate the metal layer into a plurality of back contacts. The buffer material serves to protect the underlying semiconductor material from being damaged during the laser scribing. Back contacts and multi-cell photovoltaic modules incorporating such back contacts also are disclosed.

  17. Method of producing strained-layer semiconductor devices via subsurface-patterning

    DOE Patents [OSTI]

    Dodson, Brian W.

    1993-01-01

    A method is described for patterning subsurface features in a semiconductor device, wherein the semiconductor device includes an internal strained layer. The method comprises creating a pattern of semiconductor material over the semiconductor device, the semiconductor material having a predetermined thickness which stabilizes areas of the strained semiconductor layer that lie beneath the pattern. Subsequently, a heating step is applied to the semiconductor device to cause a relaxation in areas of the strained layer which do not lie beneath the semiconductor material pattern, whereby dislocations result in the relaxed areas and impair electrical transport therethrough.

  18. Microbially-mediated method for synthesis of non-oxide semiconductor...

    Office of Scientific and Technical Information (OSTI)

    Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles Title: Microbially-mediated method for synthesis of non-oxide semiconductor nanoparticles The ...

  19. Tuning the electronic coupling in a low-bandgap donor-acceptor copolymer via the placement of side-chains

    SciTech Connect (OSTI)

    Oberhumer, Philipp M.; Huang, Ya-Shih; Massip, Sylvain; Albert-Seifried, Sebastian; Greenham, Neil C.; Hodgkiss, Justin M.; Friend, Richard H. [Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); James, David T.; Kim, Ji-Seon [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Tu Guoli; Huck, Wilhelm T. S. [Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Beljonne, David; Cornil, Jerome [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons (Belgium)

    2011-03-21

    We present a spectroscopic and theoretical investigation of the effect of the presence and position of hexyl side-chains in the novel low-bandgap alternating donor-acceptor copolymer poly[bis-N,N-(4-octylphenyl)-bis-N,N-phenyl-1, 4-phenylenediamine-alt-5,5'-4',7',-di-2-thienyl-2',1',3'-benzothiadiazole] (T8TBT). We use electronic absorption and Raman spectroscopic measurements supported by calculations of chain conformation, electronic transitions, and Raman modes. Using these tools, we find that sterically demanding side-chain configurations induce twisting in the electronic acceptor unit and reduce the electronic interaction with the donor. This leads to a blue-shifted and weakened (partial) charge-transfer absorption band together with a higher photoluminescence efficiency. On the other hand, sterically relaxed side-chain configurations promote coupling between donor and acceptor units and exhibit enhanced absorption at the expense of luminescence efficiency. The possibility of tuning the donor-acceptor character of conjugated polymers by varying the placement of side-chains has very important ramifications for light emitting diode, Laser, display, and photovoltaic device optimization.

  20. The Role of Fullerene Mixing Behavior in the Performance of Organic Rhotovoltaics: PCBM in Low-Bandgap Polymers.

    SciTech Connect (OSTI)

    Chen, Huipeng; Peet, Jeff; Hu, Sheng; Azoulay, Jason; Bazan, Guillermo; Dadmun, Mark D

    2014-01-01

    This manuscript reports the mixing behavior, interdiffusion, and depth profile of 1-[3-(methoxycarbonyl)propyl]-1-phenyl-[6,6]C 61 (PCBM):low-bandgap (LBG) polymer thin fi lms that are formed by thermally annealing initial bilayers. The extent of mixing of PCBM is higher in polymers that include the 2,1,3-benzothiadiazole (BT) unit than in polymers that incorporate the 2,1,3-benzooxadiazole (BO) unit. This difference is ascribed to the enhanced mixing behavior of PCBM with the benzothiadiazole functionality than with benzooxadiazole functionality, which is attributed to preferred intermolecular interactions. The increased polymer/fullerene mixing is found to be crucial for optimal device performance. A decrease of polymer/fullerene mixing reduces the donor/acceptor interface, which lowers the probability of exciton dissociation and charge generation. Moreover, low PCBM mixing provides limited pathways for electron transport out of a miscible region, due to long distances between adjacent PCBM in such a miscible phase. This inhibits electron transport and increases the recombination of free charge carriers, resulting in a decrease in short circuit current and device performance. These results further exemplify the importance of the thermodynamic mixing behavior of the polymer:fullerene pair in designing next-generation conjugated polymers for organic photovoltaic (OPV) applications, as this controls the fi nal morphology of the OPV active layer.

  1. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-24

    Complex doping schemes in R3Al5O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-bandmore » maximum (VBM). We consider two sets of compositions based on Lu3B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5O12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  2. Semiconductor Device Analysis on Personal Computers

    Energy Science and Technology Software Center (OSTI)

    1993-02-08

    PC-1D models the internal operation of bipolar semiconductor devices by solving for the concentrations and quasi-one-dimensional flow of electrons and holes resulting from either electrical or optical excitation. PC-1D uses the same detailed physical models incorporated in mainframe computer programs, yet runs efficiently on personal computers. PC-1D was originally developed with DOE funding to analyze solar cells. That continues to be its primary mode of usage, with registered copies in regular use at more thanmore » 100 locations worldwide. The program has been successfully applied to the analysis of silicon, gallium-arsenide, and indium-phosphide solar cells. The program is also suitable for modeling bipolar transistors and diodes, including heterojunction devices. Its easy-to-use graphical interface makes it useful as a teaching tool as well.« less

  3. Exciton binding energy in semiconductor quantum dots

    SciTech Connect (OSTI)

    Pokutnii, S. I.

    2010-04-15

    In the adiabatic approximation in the context of the modified effective mass approach, in which the reduced exciton effective mass {mu} = {mu}(a) is a function of the radius a of the semiconductor quantum dot, an expression for the exciton binding energy E{sub ex}(a) in the quantum dot is derived. It is found that, in the CdSe and CdS quantum dots with the radii a comparable to the Bohr exciton radii a{sub ex}, the exciton binding energy E{sub ex}(a) is substantially (respectively, 7.4 and 4.5 times) higher than the exciton binding energy in the CdSe and CdS single crystals.

  4. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew; Chui, Chi On

    2014-08-07

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  5. Interconnection-Wide Transmission Planning Initiative - Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Click on the links below to ...

  6. Hanford Site Wide Programs - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page | Print Print Page |Text Increase Font Size Decrease Font Size Hanford Site-Wide Programs Hanford Safety and Health Hanford Site Wide Programs Hanford Fire Department...

  7. Fabrication of optically reflecting ohmic contacts for semiconductor devices

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    1995-01-01

    A method is provided to produce a low-resistivity ohmic contact having high optical reflectivity on one side of a semiconductor device. The contact is formed by coating the semiconductor substrate with a thin metal film on the back reflecting side and then optically processing the wafer by illuminating it with electromagnetic radiation of a predetermined wavelength and energy level through the front side of the wafer for a predetermined period of time. This method produces a thin epitaxial alloy layer between the semiconductor substrate and the metal layer when a crystalline substrate is used. The alloy layer provides both a low-resistivity ohmic contact and high optical reflectance.

  8. Simulation of neutron radiation damage in silicon semiconductor devices.

    SciTech Connect (OSTI)

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  9. Separating semiconductor devices from substrate by etching graded composition release layer disposed between semiconductor devices and substrate including forming protuberances that reduce stiction

    DOE Patents [OSTI]

    Tauke-Pedretti, Anna; Nielson, Gregory N; Cederberg, Jeffrey G; Cruz-Campa, Jose Luis

    2015-05-12

    A method includes etching a release layer that is coupled between a plurality of semiconductor devices and a substrate with an etch. The etching includes etching the release layer between the semiconductor devices and the substrate until the semiconductor devices are at least substantially released from the substrate. The etching also includes etching a protuberance in the release layer between each of the semiconductor devices and the substrate. The etch is stopped while the protuberances remain between each of the semiconductor devices and the substrate. The method also includes separating the semiconductor devices from the substrate. Other methods and apparatus are also disclosed.

  10. Controlling Graphene's Electronic Structure

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    as bandgap engineering. While bandgap engineering is the basis of semiconductor technology, it is only now being applied to graphene. Using angle-resolved photoemission...

  11. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    SciTech Connect (OSTI)

    Chan, Emory Ming-Yue

    2006-12-19

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.

  12. Impact of Fixed Change on Metal-Insulator-Semiconductor Barrier...

    Office of Scientific and Technical Information (OSTI)

    Title: Impact of Fixed Change on Metal-Insulator-Semiconductor Barrier Height Reduction Authors: Hu, J. ; Nainani, A. ; Sun, Y. ; Saraswat, K.C. ; Wong, H.-S.P. Publication Date: ...

  13. Conductive layer for biaxially oriented semiconductor film growth

    DOE Patents [OSTI]

    Findikoglu, Alp T.; Matias, Vladimir

    2007-10-30

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  14. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2011-10-18

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  15. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2010-09-21

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  16. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  17. Global electronic structure of semiconductor alloys through direct...

    Office of Scientific and Technical Information (OSTI)

    Title: Global electronic structure of semiconductor alloys through direct large-scale computations for III-V alloys Ga x In 1 - x P Authors: Zhang, Yong ; Wang, Lin-Wang ...

  18. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells Citation Details In-Document Search Title: Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells According to Noether's theorem, for every symmetry in nature there is a corresponding conservation law. For example, invariance with respect to spatial translation corresponds to conservation of momentum. In another well-known example, invariance with respect to rotation of

  19. Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells Citation Details In-Document Search Title: Emergence of the Persistent Spin Helix in Semiconductor Quantum Wells × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  20. Interface design principles for high-performance organic semiconductor

    Office of Scientific and Technical Information (OSTI)

    devices (Journal Article) | SciTech Connect Interface design principles for high-performance organic semiconductor devices Citation Details In-Document Search Title: Interface design principles for high-performance organic semiconductor devices Organic solar cells (OSCs) are a promising cost-effective candidate in next generation photovoltaic technology. However, a critical bottleneck for OSCs is the electron/hole recombination loss through charge transfer state at the interface, which

  1. Interface design principles for high-performance organic semiconductor

    Office of Scientific and Technical Information (OSTI)

    devices (Journal Article) | SciTech Connect Interface design principles for high-performance organic semiconductor devices Citation Details In-Document Search Title: Interface design principles for high-performance organic semiconductor devices × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional

  2. Interfacial Chemistry of III-V Semiconductors for Photoelectrochemical

    Office of Scientific and Technical Information (OSTI)

    Water Splitting (Journal Article) | SciTech Connect Interfacial Chemistry of III-V Semiconductors for Photoelectrochemical Water Splitting Citation Details In-Document Search Title: Interfacial Chemistry of III-V Semiconductors for Photoelectrochemical Water Splitting Authors: Wood, B C ; Schwegler, E ; Choi, W I ; Ogitsu, T Publication Date: 2013-04-15 OSTI Identifier: 1129977 Report Number(s): LLNL-JRNL-635637 DOE Contract Number: W-7405-ENG-48 Resource Type: Journal Article Resource

  3. Moderate Doping Leads to High Performance of Semiconductor/Insulator

    Office of Scientific and Technical Information (OSTI)

    Polymer Blend Transistors (Journal Article) | SciTech Connect Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Citation Details In-Document Search Title: Moderate Doping Leads to High Performance of Semiconductor/Insulator Polymer Blend Transistors Authors: Lu, Guanghao ; Blakesley, James ; Himmelberger, Scott ; Pingel, Patrick ; Frisch, Johannes ; Lieberwirth, Ingo ; Salzmann, Ingo ; Oehzelt, Martin ; Pietro, Riccardo Di ; Salleo, Alberto ;

  4. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  5. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  6. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  7. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  8. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print Wednesday, 29 November 2006 00:00 The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted

  9. PROJECT PROFILE: Sunfield Semiconductor (Incubator 10) | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Sunfield Semiconductor (Incubator 10) PROJECT PROFILE: Sunfield Semiconductor (Incubator 10) Sunfield logo.png Project Title: Magnetic Communication Network for Smart Photovoltaic Solar Power Modules Funding Opportunity: SunShot Technology to Market (Incubator 10) SunShot Subprogram: Technology to Market Location: Calabasas, CA Amount Awarded: $144,000 Awardee Cost Share: $36,000 Project Investigator: Jacob Herbold This project develops a new communication system for smart

  10. Dynamics of excitons and charges in organic materials and semiconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    nanocrystals for optoelectronics | MIT-Harvard Center for Excitonics excitons and charges in organic materials and semiconductor nanocrystals for optoelectronics December 5, 2014 at 3pm/RLE Haus 36-428 Laurens D.A. Siebbeles Department of Chemical Engineering, Delft University of Technology Siebbeles01 Abstract: The seminar will report studies on excitons and charge carriers in conjugated polymers, covalent organic frameworks and semiconductor nanocrystals. These materials have fascinating

  11. Electronic Structure and Magnetism in Diluted Magnetic Semiconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electronic Structure and Magnetism in Diluted Magnetic Semiconductors Print The possibility of using electrons' spins in addition to their charge in information technology has created much enthusiasm for a new field of electronics popularly known as "spintronics." An intensely studied approach to obtaining spin-polarized carriers for data-storage devices is the use of diluted magnetic semiconductors created by doping ions like Mn, Fe, or Co having a net spin into a semiconducting host

  12. Exploring Electron Transfer in Organic Semiconductors | MIT-Harvard Center

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Excitonics Electron Transfer in Organic Semiconductors January 28, 2009 at 3pm/36-428 Troy Van Voorhis Department of Chemistry, Massachusetts Institute of Technology vanvoorhis2_000 abstract: Electron transfer reactions are the centerpiece of artificial photosynthetic complexes, organic LEDs and essentially all of redox chemistry. In particular, electron transfer rates govern the efficiency of exciton formation and dissociation in organic semiconductors. This talk will highlight ongoing

  13. Atomic Scale Characterization of Compound Semiconductors using Atom Probe

    Office of Scientific and Technical Information (OSTI)

    Tomography: Preprint (Conference) | SciTech Connect Conference: Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint Citation Details In-Document Search Title: Atomic Scale Characterization of Compound Semiconductors using Atom Probe Tomography: Preprint Internal interfaces are critical in determining the performance of III-V multijunction solar cells. Studying these interfaces with atomic resolution using a combination of transmission electron

  14. Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovations | Argonne National Laboratory Metal Oxide Semiconductor Nanoparticles Open the Door to New Medical Innovations Technology available for licensing: novel nanometer-sized metal oxide semiconductors that allow targeting, initiating and control of in vitro and in vivo chemical reactions in biological molecules, such as DNA, proteins, and antibodies. Allows for targeting, initiation and control of in vitro and in vivo chemical reactions in biological molecules Commercial applications

  15. Harnessing Spin, Delocalisation and Coherence in Molecular Semiconductors |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Harnessing Spin, Delocalisation and Coherence in Molecular Semiconductors November 4, 2014 at 4:30pm / 6-120 Akshay Rao Optoelectronics Group, Cavendish Laboratory, University of Cambridge a_rao_01 Abstract: For more than three decades the electronic properties of molecular semiconductors have been described as 'limited by disorder'. Thus, attempts to improve their performance have mainly focused on materials properties such as improving crystallinity and

  16. SISGR-MuSR Investigations of Magnetic Semiconductors for Spintronics

    Office of Scientific and Technical Information (OSTI)

    Applications (Technical Report) | SciTech Connect Technical Report: SISGR-MuSR Investigations of Magnetic Semiconductors for Spintronics Applications Citation Details In-Document Search Title: SISGR-MuSR Investigations of Magnetic Semiconductors for Spintronics Applications Authors: Lichti, Roger Publication Date: 2014-03-27 OSTI Identifier: 1148701 Report Number(s): Final Report DOE Contract Number: SC0001769 Resource Type: Technical Report Research Org: Texas Tech University Sponsoring

  17. The origins of growth stresses in amorphous semiconductor thin films.

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Journal Article: The origins of growth stresses in amorphous semiconductor thin films. Citation Details In-Document Search Title: The origins of growth stresses in amorphous semiconductor thin films. No abstract prepared. Authors: Kotula, Paul Gabriel ; Srolovitz, David J. [1] ; Floro, Jerrold Anthony ; Seel, Steven Craig + Show Author Affiliations (Princeton University, Princeton, NJ) Publication Date: 2003-03-01 OSTI Identifier: 917484 Report Number(s):

  18. Reconditioning of semiconductor substrates to remove photoresist during semiconductor device fabrication

    DOE Patents [OSTI]

    Farino, Anthony J.

    2004-01-27

    A method for reconditioning the surface of a semiconductor substrate to remove an unwanted (i.e. defective) layer of photoresist is disclosed. The method adapts a conventional automated spinner which is used to rotate the substrate at high speed while a stream of a first solvent (e.g. acetone) is used to dissolve the photoresist. A stream of a second solvent (e.g. methanol) is then used to clean the substrate at a lower speed, with the substrate being allowed to dry with continued rotation. The method of the present invention can be used within a photolithography track so that the substrates need never leave the track for reconditioning.

  19. Characterization and electrical modeling of semiconductors bridges

    SciTech Connect (OSTI)

    Marx, K.D.; Bickes, R.W. Jr.; Wackerbarth, D.E.

    1997-03-01

    Semiconductor bridges (SCBs) are finding increased use as initiators for explosive and pyrotechnic devices. They offer advantages in reduced voltage and energy requirements, coupled with excellent safety features. The design of explosive systems which implement either SCBs or metal bridgewires can be facilitated through the use of electrical simulation software such as the PSpice{reg_sign} computer code. A key component in the electrical simulation of such systems is an electrical model of the bridge. This report has two objectives: (1) to present and characterize electrical data taken in tests of detonators which employ SCBs with BNCP as the explosive powder; and (2) to derive appropriate electrical models for such detonators. The basis of such models is a description of the resistance as a function of energy deposited in the SCB. However, two important features which must be added to this are (1) the inclusion of energy loss through such mechanisms as ohmic heating of the aluminum lands and heat transfer from the bridge to the surrounding media; and (2) accounting for energy deposited in the SCB through heat transfer to the bridge from the explosive powder after the powder ignites. The modeling procedure is entirely empirical; i.e., models for the SCB resistance and the energy gain and loss have been estimated from experimental data taken over a range of firing conditions. We present results obtained by applying the model to the simulation of SCB operation in representative tests.

  20. Excitonic exchange splitting in bulk semiconductors

    SciTech Connect (OSTI)

    Fu, H.; Wang, L.; Zunger, A.

    1999-02-01

    We present an approach to calculate the excitonic fine-structure splittings due to electron-hole short-range exchange interactions using the local-density approximation pseudopotential method, and apply it to bulk semiconductors CdSe, InP, GaAs, and InAs. Comparing with previous theoretical results, the current calculated splittings agree well with experiments. Furthermore, we provide an approximate relationship between the short-range exchange splitting and the exciton Bohr radius, which can be used to estimate the exchange splitting for other materials. The current calculation indicates that a commonly used formula for exchange splitting in quantum dot is not valid. Finally, we find a very large pressure dependence of the exchange splitting: a factor of 4.5 increase as the lattice constant changes by 3.5{percent}. This increase is mainly due to the decrease of the Bohr radius via the change of electron effective mass. {copyright} {ital 1999} {ital The American Physical Society}

  1. Competing interactions in semiconductor quantum dots

    SciTech Connect (OSTI)

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-01

    We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

  2. Competing interactions in semiconductor quantum dots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-14

    In this study, we introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions atmore » longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.« less

  3. Electron circuits: semiconductor laser multiple use installation

    SciTech Connect (OSTI)

    Zhou, F.; Fan, J.; Weng, D.

    1983-04-01

    A light source for a multiple use installation using a same matter junction or different matter junction GaAlAs/GaAs semiconductor laser, which has the advantages of high interference resistance, long transmission distance (tens to hundreds of meters), good security, and low power consumption in addition, the controller of the light source has multiple usages of alarming, switching and counting is presented. The multiple use installation can be used in control of breaking warps and counting on roving waste machines, warping machines and silk weaving machines in the textile industry long distance speed measurement, alarming and counting in machinery, electricity and chemical industries and alarming and control of water levels in reservoirs, rivers and water towers, as well as blockade alarming and control of important divisions. This multiple use installation is composed of two parts a laser emitter and a receiving device. The former component is used to produce the laser after the receiver receives the laser, the installation completes operations of alarming, switching and counting.

  4. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  5. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Peng, Xiaogang; Manna, Liberato

    2001-01-01

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  6. Thermally robust semiconductor optical amplifiers and laser diodes

    DOE Patents [OSTI]

    Dijaili, Sol P.; Patterson, Frank G.; Walker, Jeffrey D.; Deri, Robert J.; Petersen, Holly; Goward, William

    2002-01-01

    A highly heat conductive layer is combined with or placed in the vicinity of the optical waveguide region of active semiconductor components. The thermally conductive layer enhances the conduction of heat away from the active region, which is where the heat is generated in active semiconductor components. This layer is placed so close to the optical region that it must also function as a waveguide and causes the active region to be nearly the same temperature as the ambient or heat sink. However, the semiconductor material itself should be as temperature insensitive as possible and therefore the invention combines a highly thermally conductive dielectric layer with improved semiconductor materials to achieve an overall package that offers improved thermal performance. The highly thermally conductive layer serves two basic functions. First, it provides a lower index material than the semiconductor device so that certain kinds of optical waveguides may be formed, e.g., a ridge waveguide. The second and most important function, as it relates to this invention, is that it provides a significantly higher thermal conductivity than the semiconductor material, which is the principal material in the fabrication of various optoelectronic devices.

  7. Inverse Design of Mn-based ternary p-type wide-gap oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnO is an important prototypical wide-gap oxide semiconductor. The discrepancy between band- structure theory and ARPES is removed by a correction for the Zn-d band energy in GW calculations. Significance and Impact The present approach improves the capability for property prediction and design of energy materials. Benchmarking Band-Structure Calculations Against Angular-Resolved Photoemission Spectroscopy (ARPES) for ZnO L.Y. Lim, S. Lany, Y.J. Chang, E. Rotenberg, A. Zunger, M.F. Toney,

  8. InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

    1998-11-24

    The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

  9. Enterprise-Wide Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprise-Wide Agreements Enterprise-Wide Agreements hand-819279_960_720.jpg Enterprise-Wide Agreements The IT Acquisition: Enterprise-Wide Agreement (EWA) Program develops policies and procedures that support the identification, acquisition, oversight and compliance of enterprise licenses. The EWA Program's core objectives are to: Maximize IT buying power Reduce the total cost of ownership Streamline the IT total acquisition lifecycle The EWA Program employs a centralized, cross-functional,

  10. Site-wide Environmental Impact Statement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWEIS Site-wide Environmental Impact Statement We analyze the potential environmental impacts associated with Laboratory operations and facilities. Contact Environmental Communication & Public Involvement P.O. Box 1663 MS M996 Los Alamos, NM 87545 (505) 667-0216 Email The Site-wide Environmental Impact Statement forms the backbone of the National Environmental Policy Act documentation for LANL's continued facility operations. Site-wide Environmental Impact Statement The Site-wide

  11. A Wide Temperature, Radiation Tolerant, CMOS-compatible Precision Voltage Reference for Extreme Environment Instrumentation Systems

    SciTech Connect (OSTI)

    McCue, Mr. Benjamin; Blalock, Benjamin; Potts, J.; Kemerling, Mr. James; Isihara, Mr. Kyoshi; Leines, Capt. Matt; Britton Jr, Charles L

    2013-01-01

    Many design techniques have been incorporated into modern CMOS design practices to improve radiation tolerance of integrated circuits. Annular-gate NMOS structures have been proven to be significantly more radiation tolerant than the standard straight-gate variety. Many circuits can be designed using the annular-gate NMOS and the inherently radiation tolerant PMOS. Band-gap reference circuits, however, typically require p-n junction diodes. These p-n junction diodes are the dominating factor in radiation degradation in band-gap reference circuits. This paper proposes a different approach to band-gap reference design to alleviate the radiation susceptibility presented by the p-n junction diodes.

  12. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2008-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  13. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Wei, Su -Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmoreof atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.less

  14. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    SciTech Connect (OSTI)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Wei, Su -Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Furthermore, our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.

  15. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Wei, Su -Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglementmore » of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.« less

  16. Self-regulation of charged defect compensation and formation energy pinning in semiconductors

    SciTech Connect (OSTI)

    Yang, Ji -Hui; Yin, Wan -Jian; Park, Ji -Sang; Wei, Su -Huai

    2015-11-20

    Current theoretical analyses of defect properties without solving the detailed balance equations often estimate Fermi-level pinning position by omitting free carriers and assume defect concentrations can be always tuned by atomic chemical potentials. This could be misleading in some circumstance. Here we clarify that: (1) Because the Fermi-level pinning is determined not only by defect states but also by free carriers from band-edge states, band-edge states should be treated explicitly in the same footing as the defect states in practice; (2) defect formation energy, thus defect density, could be pinned and independent on atomic chemical potentials due to the entanglement of atomic chemical potentials and Fermi energy, in contrast to the usual expectation that defect formation energy can always be tuned by varying the atomic chemical potentials; and (3) the charged defect compensation behavior, i.e., most of donors are compensated by acceptors or vice versa, is self-regulated when defect formation energies are pinned. The last two phenomena are more dominant in wide-gap semiconductors or when the defect formation energies are small. Using NaCl and CH3NH3PbI3 as examples, we illustrate these unexpected behaviors. Our analysis thus provides new insights that enrich the understanding of the defect physics in semiconductors and insulators.

  17. Anisotropy-based crystalline oxide-on-semiconductor material

    DOE Patents [OSTI]

    McKee, Rodney Allen; Walker, Frederick Joseph

    2000-01-01

    A semiconductor structure and device for use in a semiconductor application utilizes a substrate of semiconductor-based material, such as silicon, and a thin film of a crystalline oxide whose unit cells are capable of exhibiting anisotropic behavior overlying the substrate surface. Within the structure, the unit cells of the crystalline oxide are exposed to an in-plane stain which influences the geometric shape of the unit cells and thereby arranges a directional-dependent quality of the unit cells in a predisposed orientation relative to the substrate. This predisposition of the directional-dependent quality of the unit cells enables the device to take beneficial advantage of characteristics of the structure during operation. For example, in the instance in which the crystalline oxide of the structure is a perovskite, a spinel or an oxide of similarly-related cubic structure, the structure can, within an appropriate semiconductor device, exhibit ferroelectric, piezoelectric, pyroelectric, electro-optic, ferromagnetic, antiferromagnetic, magneto-optic or large dielectric properties that synergistically couple to the underlying semiconductor substrate.

  18. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper; Reedy, Robert

    2008-02-12

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  19. Tapered rib fiber coupler for semiconductor optical devices

    DOE Patents [OSTI]

    Vawter, Gregory A.; Smith, Robert Edward

    2001-01-01

    A monolithic tapered rib waveguide for transformation of the spot size of light between a semiconductor optical device and an optical fiber or from the fiber into the optical device. The tapered rib waveguide is integrated into the guiding rib atop a cutoff mesa type semiconductor device such as an expanded mode optical modulator or and expanded mode laser. The tapered rib acts to force the guided light down into the mesa structure of the semiconductor optical device instead of being bound to the interface between the bottom of the guiding rib and the top of the cutoff mesa. The single mode light leaving or entering the output face of the mesa structure then can couple to the optical fiber at coupling losses of 1.0 dB or less.

  20. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  1. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  2. Screenable contact structure and method for semiconductor devices

    DOE Patents [OSTI]

    Ross, Bernd

    1980-08-26

    An ink composition for deposition upon the surface of a semiconductor device to provide a contact area for connection to external circuitry is disclosed, the composition comprising an ink system containing a metal powder, a binder and vehicle, and a metal frit. The ink is screened onto the semiconductor surface in the desired pattern and is heated to a temperature sufficient to cause the metal frit to become liquid. The metal frit dissolves some of the metal powder and densifies the structure by transporting the dissolved metal powder in a liquid sintering process. The sintering process typically may be carried out in any type of atmosphere. A small amount of dopant or semiconductor material may be added to the ink systems to achieve particular results if desired.

  3. Semiconductor Nanotechnology: Novel Materials and Devices for Electronics, Photonics, and Renewable Energy Applications

    SciTech Connect (OSTI)

    Goodnick, Stephen; Korkin, Anatoli; Krstic, Predrag S; Mascher, Peter; Preston, John; Zaslavsky, Alex

    2010-03-01

    Electronic and photonic information technology and renewable energy alternatives, such as solar energy, fuel cells and batteries, have now reached an advanced stage in their development. Cost-effective improvements to current technological approaches have made great progress, but certain challenges remain. As feature sizes of the latest generations of electronic devices are approaching atomic dimensions, circuit speeds are now being limited by interconnect bottlenecks. This has prompted innovations such as the introduction of new materials into microelectronics manufacturing at an unprecedented rate and alternative technologies to silicon CMOS architectures. Despite the environmental impact of conventional fossil fuel consumption, the low cost of these energy sources has been a long-standing economic barrier to the development of alternative and more efficient renewable energy sources, fuel cells and batteries. In the face of mounting environmental concerns, interest in such alternative energy sources has grown. It is now widely accepted that nanotechnology offers potential solutions for securing future progress in information and energy technologies. The Canadian Semiconductor Technology Conference (CSTC) forum was established 25 years ago in Ottawa as an important symbol of the intrinsic strength of the Canadian semiconductor research and development community, and the Canadian semiconductor industry as a whole. In 2007, the 13th CSTC was held in Montreal, moving for the first time outside the national capital region. The first three meetings in the series of Nano and Giga Challenges in Electronics and Photonics NGCM2002 in Moscow, NGCM2004 in Krakow, and NGC2007 in Phoenix were focused on interdisciplinary research from the fundamentals of materials science to the development of new system architectures. In 2009 NGC2009 and the 14th Canadian Semiconductor Technology Conference (CSTC2009) were held as a joint event, hosted by McMaster University (10 14 August, Hamilton, Ontario, Canada) and the scope was expanded to include renewable energy research and development. This special issue of Nanotechnology is devoted to a better understanding of the function and design of semiconductor devices that are relevant to information technology (both electronics and photonics based) and renewable energy applications. The papers contained in this special issue are selected from the NGC/CSTC2009 symposium. Among them is a report by Ray LaPierre from McMaster University and colleagues at the University of Waterloo in Canada on the ability to manipulate single spins in nanowire quantum bits. The paper also reports the development of a testbed of a few qubits for general quantum information processing tasks [1]. Lower cost and greater energy conversion efficiency compared with thin film devices have led to a high level of activity in nanowire research related to photovoltaic applications. This special issue also contains results from an impedance spectroscopy study of core shell GaAs nanowires to throw light on the transport and recombination mechanisms relevant to solar cell research [2]. Information technology research and renewable energy sources are research areas of enormous public interest. This special issue addresses both theoretical and experimental achievements and provides a stimulating outlook for technological developments in these highly topical fields of research. References [1] Caram J, Sandoval C, Tirado M, Comedi D, Czaban J, Thompson D A and LaPierre R R 2010 Electrical characteristics of core shell p-n GaAs nanowire structures with Te as the n-dopant Nanotechnology 21 134007 [2] Baugh J, Fung J S and LaPierre R R 2010 Building a spin quantum bit register using semiconductor nanowires Nanotechnology 21 134018

  4. Site-wide Environmental Impact Statement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWEIS Site-wide Environmental Impact Statement We analyze the potential environmental impacts associated with Laboratory operations and facilities. Contact Environmental...

  5. DFAS Wide-Area Workflow Issues

    Broader source: Energy.gov [DOE]

    Presentation covers the DFAS wide-area workflow issues and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  6. Interconnection-Wide Transmission Planning Initiative: Topic...

    Energy Savers [EERE]

    the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency Input Regarding Electric Resource and Transmission Planning in the Texas ...

  7. Radioactive Waste Management Complex Wide Review

    Office of Environmental Management (EM)

    This page intentionally blank i Complex-Wide Review of DOE's Radioactive Waste Management ... 1.8 Demonstrated Progress in Radioactive Waste Management ......

  8. West Wide Programmatic Environmental Impact Statement Record...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: West Wide Programmatic Environmental Impact Statement Record of Decision (BLM)Legal...

  9. WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER

    DOE Patents [OSTI]

    Laine, E.F.

    1959-11-17

    A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.

  10. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Western ...

  11. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eastern Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern ...

  12. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A, Interconnection-Level Analysis and Planning Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning A description of the ...

  13. Method for depositing layers of high quality semiconductor material

    DOE Patents [OSTI]

    Guha, Subhendu; Yang, Chi C.

    2001-08-14

    Plasma deposition of substantially amorphous semiconductor materials is carried out under a set of deposition parameters which are selected so that the process operates near the amorphous/microcrystalline threshold. This threshold varies as a function of the thickness of the depositing semiconductor layer; and, deposition parameters, such as diluent gas concentrations, must be adjusted as a function of layer thickness. Also, this threshold varies as a function of the composition of the depositing layer, and in those instances where the layer composition is profiled throughout its thickness, deposition parameters must be adjusted accordingly so as to maintain the amorphous/microcrystalline threshold.

  14. Low temperature production of large-grain polycrystalline semiconductors

    DOE Patents [OSTI]

    Naseem, Hameed A.; Albarghouti, Marwan

    2007-04-10

    An oxide or nitride layer is provided on an amorphous semiconductor layer prior to performing metal-induced crystallization of the semiconductor layer. The oxide or nitride layer facilitates conversion of the amorphous material into large grain polycrystalline material. Hence, a native silicon dioxide layer provided on hydrogenated amorphous silicon (a-Si:H), followed by deposited Al permits induced crystallization at temperatures far below the solid phase crystallization temperature of a-Si. Solar cells and thin film transistors can be prepared using this method.

  15. A proposal for Coulomb assisted laser cooling of piezoelectric semiconductors

    SciTech Connect (OSTI)

    Nia, Iman Hassani; Mohseni, Hooman

    2014-07-28

    Anti-Stokes laser cooling of semiconductors as a compact and vibration-free method is very attractive. While it has achieved significant milestones, increasing its efficiency is highly desirable. The main limitation is the lack of the pristine material quality with high luminescence efficiency. Here, we theoretically demonstrate that the Coulomb interaction among electrons and holes in piezoelectric heterostructures could lead to coherent damping of acoustic phonons; rendering a significantly higher efficiency that leads to the possibility of cooling a broad range of semiconductors.

  16. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    DOE Patents [OSTI]

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.

  17. Origin of Novel Diffusions of Cu and Ag in Semiconductors: The...

    Office of Scientific and Technical Information (OSTI)

    Origin of Novel Diffusions of Cu and Ag in Semiconductors: The Case of CdTe Prev Next Title: Origin of Novel Diffusions of Cu and Ag in Semiconductors: The Case of CdTe ...

  18. Reactive codoping of GaAlInP compound semiconductors (Patent...

    Office of Scientific and Technical Information (OSTI)

    Patent: Reactive codoping of GaAlInP compound semiconductors Citation Details In-Document Search Title: Reactive codoping of GaAlInP compound semiconductors A GaAlInP compound ...

  19. Sandia National Laboratories: DOE Complex Wide Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Complex Wide Agreements Sandia National Laboratories utilizes complex wide agreements to leverage the annual spending, to yield lower prices, and to provide cost savings to the complex. The Complex agreements utilized by Sandia National Laboratories include: Supply Chain Management Center (SCMC) agreements Integrated Contractor Purchasing TEAM (ICPT) General Services Administration (GSA)

  20. Media Advisory: Site-wide Safety Standards

    Broader source: Energy.gov [DOE]

    Department of Energy to announce two additions to the Hanford Site-wide Safety Standards – a set of 14 areas where Hanford contractors have collaborated to establish one uniform standard to guide safe operations. The latest additions to the Site-wide Safety Standards are Fall Protection and Electrical Safety.

  1. Contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication

    DOE Patents [OSTI]

    Sopori, Bhushan

    2014-05-27

    Methods for contact formation and gettering of precipitated impurities by multiple firing during semiconductor device fabrication are provided. In one embodiment, a method for fabricating an electrical semiconductor device comprises: a first step that includes gettering of impurities from a semiconductor wafer and forming a backsurface field; and a second step that includes forming a front contact for the semiconductor wafer, wherein the second step is performed after completion of the first step.

  2. New ALS Technique Guides IBM in Next-Generation Semiconductor Development

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015 09:37 A new measurement technique developed at the ALS is helping guide the semiconductor industry in next-generation nanopatterning techniques. Directed self assembly (DSA) of block copolymers is an extremely promising strategy for high-volume, cost-effective semiconductor manufacturing at the nanoscale. Materials

  3. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion, chargemore » density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  4. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOE Patents [OSTI]

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2011-09-27

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  5. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOE Patents [OSTI]

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2005-03-08

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  6. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOE Patents [OSTI]

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2010-04-13

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  7. Method for altering the luminescence of a semiconductor

    DOE Patents [OSTI]

    Barbour, J.C.; Dimos, D.B.

    1999-01-12

    A method is described for altering the luminescence of a light emitting semiconductor (LES) device. In particular, a method is described whereby a silicon LES device can be selectively irradiated with a radiation source effective for altering the intensity of luminescence of the irradiated region. 4 figs.

  8. Patterned Arrays of Lateral Heterojunctions within Monolayer 2D Semiconductors

    SciTech Connect (OSTI)

    Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R; Lee, Jaekwang; Basile Carrasco, Leonardo A; Rouleau, Christopher M; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Ivanov, Ilia N; Xiao, Kai; Yoon, Mina; Geohegan, David B

    2015-01-01

    The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.

  9. Advanced Stress, Strain And Geometrical Analysis In Semiconductor Devices

    SciTech Connect (OSTI)

    Neels, Antonia; Dommann, Alex; Niedermann, Philippe; Farub, Claudiu; Kaenel, Hans von

    2010-11-24

    High stresses and defect densities increases the risk of semiconductor device failure. Reliability studies on potential failure sources have an impact on design and are essential to assure the long term functioning of the device. Related to the dramatically smaller volume of semiconductor devices and new bonding techniques on such devices, new methods in testing and qualification are needed. Reliability studies on potential failure sources have an impact on design and are essential to assure the long term functioning of the device. In this paper, the applications of advanced High Resolution X-ray Diffraction (HRXRD) methods in strain, defect and deformation analysis on semiconductor devices are discussed. HRXRD with Rocking Curves (RC's) and Reciprocal Space Maps (RSM's) is used as accurate, non-destructive experimental method to evaluate the crystalline quality, and more precisely for the given samples, the in-situ strain, defects and geometrical parameters such as tilt and bending of device. The combination with advanced FEM simulations gives the possibility to support efficiently semiconductor devices design.

  10. Method for altering the luminescence of a semiconductor

    DOE Patents [OSTI]

    Barbour, J. Charles (Albuquerque, NM); Dimos, Duane B. (Albuquerque, NM)

    1999-01-01

    A method is described for altering the luminescence of a light emitting semiconductor (LES) device. In particular, a method is described whereby a silicon LES device can be selectively irradiated with a radiation source effective for altering the intensity of luminescence of the irradiated region.

  11. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOE Patents [OSTI]

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, A. Paul

    2015-06-23

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  12. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOE Patents [OSTI]

    Weiss, Shimon; Schlamp, Michael C; Alivisatos, A. Paul

    2014-02-11

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit light of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  13. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOE Patents [OSTI]

    Weiss, Shimon; Schlamp, Michael C.; Alivisatos, Paul A.

    2015-11-10

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  14. Electronic displays using optically pumped luminescent semiconductor nanocrystals

    DOE Patents [OSTI]

    Weiss, Shimon; Schlam, Michael C; Alivisatos, A. Paul

    2014-03-25

    A multicolor electronic display is based on an array of luminescent semiconductor nanocrystals. Nanocrystals which emit tight of different colors are grouped into pixels. The nanocrystals are optically pumped to produce a multicolor display. Different sized nanocrystals are used to produce the different colors. A variety of pixel addressing systems can be used.

  15. Metal-doped semiconductor nanoparticles and methods of synthesis thereof

    DOE Patents [OSTI]

    Ren, Zhifeng; Chen, Gang; Poudel, Bed; Kumar, Shankar; Wang, Wenzhong; Dresselhaus, Mildred

    2009-09-08

    The present invention generally relates to binary or higher order semiconductor nanoparticles doped with a metallic element, and thermoelectric compositions incorporating such nanoparticles. In one aspect, the present invention provides a thermoelectric composition comprising a plurality of nanoparticles each of which includes an alloy matrix formed of a Group IV element and Group VI element and a metallic dopant distributed within the matrix.

  16. Graphene-on-semiconductor substrates for analog electronics

    DOE Patents [OSTI]

    Lagally, Max G.; Cavallo, Francesca; Rojas-Delgado, Richard

    2016-04-26

    Electrically conductive material structures, analog electronic devices incorporating the structures and methods for making the structures are provided. The structures include a layer of graphene on a semiconductor substrate. The graphene layer and the substrate are separated by an interfacial region that promotes transfer of charge carriers from the surface of the substrate to the graphene.

  17. Patterned Arrays of Lateral Heterojunctions within Monolayer 2D Semiconductors

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mahjouri-Samani, Masoud; Lin, Ming-Wei; Wang, Kai; Lupini, Andrew R; Lee, Jaekwang; Basile Carrasco, Leonardo A; Rouleau, Christopher M; Boulesbaa, Abdelaziz; Puretzky, Alexander A; Ivanov, Ilia N; et al

    2015-01-01

    The formation of semiconductor heterojunctions and their high density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional (2D) crystalline semiconductors as building blocks in next generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate a process strategy for the formation of lithographically-patterned lateral semiconducting heterojunctions within a single 2D crystal. E-beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser deposition (PLD) of sulfur in order to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversionmoreprocess are characterized by atomically resolved scanning transmission electron microscopy, photoluminescence, and Raman spectroscopy. This demonstration of lateral semiconductor heterojunction arrays within a single 2D crystal is an essential step for the lateral integration of 2D semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin circuitry.less

  18. Impact of Lattice Mismatch and Stoichiometry on the Structure and Bandgap of (Fe,Cr)2O3 Epitaxial Thin Films

    SciTech Connect (OSTI)

    Kaspar, Tiffany C.; Chamberlin, Sara E.; Bowden, Mark E.; Colby, Robert J.; Shutthanandan, V.; Manandhar, Sandeep; Wang, Yong; Sushko, Petr; Chambers, Scott A.

    2014-03-13

    The structural properties of high-quality epitaxial (Fe1-xCrx)2O3 thin films are investigated across the composition range. Epitaxial films are deposited on a-Al2O3(0001) substrates by oxygen-plasma-assisted molecular beam epitaxy. Corundum (Fe1-xCrx)2O3 supercells relaxed by density functional theory confirm that the non-linear behavior of the bulk lattice parameters originates in the magnetic structure of the alloy films. High-resolution x-ray diffraction reveals the degree of epitaxial strain relaxation in the films, with Cr-rich films remaining partially strained to the Al2O3 substrate. For intermediate compositions, a lattice expansion and non-Poisson-like tetragonal distortion are found. Scanning transmission electron microscopy and electron energy loss spectroscopy reveal a columnar grain structure in the films, with uniform mixing of cations on the nanometer scale. Oxygen non-stoichiometry is quantified by non-Rutherford resonant elastic scattering measurements utilizing 3.04 MeV He+. Intermediate-composition films are found to be slightly over-stoichiometric, resulting in the observed lattice expansion. Cr-rich films, in contrast, appear to be slightly oxygen deficient. A model is proposed to explain these results based on the energetics of oxygen defect formation and rate of oxygen diffusion in the corundum lattice. Compressive biaxial strain is found to reduce the bandgap of epitaxial Cr2O3 relative to the bulk value. The relationships which are elucidated between epitaxial film structure and optical properties can be applied to bandgap optimization in the (Fe,Cr)2O3 system.

  19. DOE-wide NEPA Contracting Update

    Broader source: Energy.gov [DOE]

    A DOE team is evaluating the offers received in response to a Request for Quotations to provide NEPA support services. The scope of the solicitation is similar to that of the DOE-wide NEPA support...

  20. Radioactive Waste Management Complex Wide Review

    Broader source: Energy.gov [DOE]

    The main goal of this complex‐wide review was to obtain feedback from DOE sites and Headquarters Program Offices on the effectiveness and workability of DOE Order 435.1 and its associated Manual...

  1. Transversely-illuminated high current photoconductive switches with geometry-constrained conductivity path

    DOE Patents [OSTI]

    Nelson, Scott D.

    2016-05-10

    A photoconductive switch having a wide bandgap semiconductor material substrate between opposing electrodes, with one of the electrodes having an aperture or apertures at an electrode-substrate interface for transversely directing radiation therethrough from a radiation source into a triple junction region of the substrate, so as to geometrically constrain the conductivity path to within the triple junction region.

  2. Compact optical transconductance varistor

    DOE Patents [OSTI]

    Sampayan, Stephen

    2015-09-22

    A compact radiation-modulated transconductance varistor device having both a radiation source and a photoconductive wide bandgap semiconductor material (PWBSM) integrally formed on a substrate so that a single interface is formed between the radiation source and PWBSM for transmitting PWBSM activation radiation directly from the radiation source to the PWBSM.

  3. Chapter 6: Innovating Clean Energy Technologies in Advanced Manufactur...

    Energy Savers [EERE]

    Bandgap Semiconductors: low-cost, commercial- scale ... materials for high temperature, highly corrosive ... designs to enable treatment of larger scale ...

  4. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2005-08-09

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  5. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2006-09-05

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  6. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2004-03-02

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affinity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in the probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  7. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2011-12-06

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  8. Methods of use of semiconductor nanocrystal probes for treating a material

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2007-04-27

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  9. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2014-01-28

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  10. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2012-10-16

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  11. Semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Marcel; Alivisatos, Paul

    2011-12-20

    A semiconductor nanocrystal compound and probe are described. The compound is capable of linking to one or more affinity molecules. The compound comprises (1) one or more semiconductor nanocrystals capable of, in response to exposure to a first energy, providing a second energy, and (2) one or more linking agents, having a first portion linked to the one or more semiconductor nanocrystals and a second portion capable of linking to one or more affinity molecules. One or more semiconductor nanocrystal compounds are linked to one or more affinity molecules to form a semiconductor nanocrystal probe capable of bonding with one or more detectable substances in a material being analyzed, and capable of, in response to exposure to a first energy, providing a second energy. Also described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and treating materials with the probe.

  12. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon; Bruchez, Jr., Marcel; Alivisatos, Paul

    2002-01-01

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) at least one linking agent, having a first portion linked to the semiconductor nanocrystal and a second portion capable of linking to an affity molecule. The compound is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Subsequent exposure to excitation energy will excite the semiconductor nanocrystal in he probe, causing the emission of electromagnetic radiation. Further described are processes for respectively: making the semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  13. Assembling semiconductor nanocomposites using DNA replication technologies.

    SciTech Connect (OSTI)

    Heimer, Brandon W.; Crown, Kevin K.; Bachand, George David

    2005-11-01

    Deoxyribonucleic acid (DNA) molecules represent Nature's genetic database, encoding the information necessary for all cellular processes. From a materials engineering perspective, DNA represents a nanoscale scaffold with highly refined structure, stability across a wide range of environmental conditions, and the ability to interact with a range of biomolecules. The ability to mass-manufacture functionalized DNA strands with Angstrom-level resolution through DNA replication technology, however, has not been explored. The long-term goal of the work presented in this report is focused on exploiting DNA and in vitro DNA replication processes to mass-manufacture nanocomposite materials. The specific objectives of this project were to: (1) develop methods for replicating DNA strands that incorporate nucleotides with ''chemical handles'', and (2) demonstrate attachment of nanocrystal quantum dots (nQDs) to functionalized DNA strands. Polymerase chain reaction (PCR) and primer extension methodologies were used to successfully synthesize amine-, thiol-, and biotin-functionalized DNA molecules. Significant variability in the efficiency of modified nucleotide incorporation was observed, and attributed to the intrinsic properties of the modified nucleotides. Noncovalent attachment of streptavidin-coated nQDs to biotin-modified DNA synthesized using the primer extension method was observed by epifluorescence microscopy. Data regarding covalent attachment of nQDs to amine- and thiol-functionalized DNA was generally inconclusive; alternative characterization tools are necessary to fully evaluate these attachment methods. Full realization of this technology may facilitate new approaches to manufacturing materials at the nanoscale. In addition, composite nQD-DNA materials may serve as novel recognition elements in sensor devices, or be used as diagnostic tools for forensic analyses. This report summarizes the results obtained over the course of this 1-year project.

  14. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Flipping the switch on magnetism in strontium titanate March 27, 2014 Semiconductor material can be magnetized with light, suggesting new technology opportunities LOS ALAMOS, N.M., March 27, 2014-Interest in oxide-based semiconductor electronics has exploded in recent years, fueled largely by the ability to grow atomically precise layers of various oxide materials. One of the most important materials in this burgeoning field is strontium titanate (SrTiO 3 ), a nominally nonmagnetic wide-bandgap

  15. Extension of spatiotemporal chaos in glow discharge-semiconductor systems

    SciTech Connect (OSTI)

    Akhmet, Marat Fen, Mehmet Onur; Rafatov, Ismail

    2014-12-15

    Generation of chaos in response systems is discovered numerically through specially designed unidirectional coupling of two glow discharge-semiconductor systems. By utilizing the auxiliary system approach, [H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 45284535 (1996)] it is verified that the phenomenon is not a chaos synchronization. Simulations demonstrate various aspects of the chaos appearance in both drive and response systems. Chaotic control is through the external circuit equation and governs the electrical potential on the boundary. The expandability of the theory to collectives of glow discharge systems is discussed, and this increases the potential of applications of the results. Moreover, the research completes the previous discussion of the chaos appearance in a glow discharge-semiconductor system [D. D. ija?i? U. Ebert, and I. Rafatov, Phys. Rev. E 70, 056220 (2004).].

  16. Method of plasma etching GA-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2013-01-01

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent thereto. The chamber contains a Ga-based compound semiconductor sample in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. SiCl.sub.4 and Ar gases are flowed into the chamber. RF power is supplied to the platen at a first power level, and RF power is supplied to the source electrode. A plasma is generated. Then, RF power is supplied to the platen at a second power level lower than the first power level and no greater than about 30 W. Regions of a surface of the sample adjacent to one or more masked portions of the surface are etched at a rate of no more than about 25 nm/min to create a substantially smooth etched surface.

  17. Method of plasma etching Ga-based compound semiconductors

    DOE Patents [OSTI]

    Qiu, Weibin; Goddard, Lynford L.

    2012-12-25

    A method of plasma etching Ga-based compound semiconductors includes providing a process chamber and a source electrode adjacent to the process chamber. The process chamber contains a sample comprising a Ga-based compound semiconductor. The sample is in contact with a platen which is electrically connected to a first power supply, and the source electrode is electrically connected to a second power supply. The method includes flowing SiCl.sub.4 gas into the chamber, flowing Ar gas into the chamber, and flowing H.sub.2 gas into the chamber. RF power is supplied independently to the source electrode and the platen. A plasma is generated based on the gases in the process chamber, and regions of a surface of the sample adjacent to one or more masked portions of the surface are etched to create a substantially smooth etched surface including features having substantially vertical walls beneath the masked portions.

  18. Semiconductor light source with electrically tunable emission wavelength

    DOE Patents [OSTI]

    Belenky, Gregory; Bruno, John D.; Kisin, Mikhail V.; Luryi, Serge; Shterengas, Leon; Suchalkin, Sergey; Tober, Richard L.

    2011-01-25

    A semiconductor light source comprises a substrate, lower and upper claddings, a waveguide region with imbedded active area, and electrical contacts to provide voltage necessary for the wavelength tuning. The active region includes single or several heterojunction periods sandwiched between charge accumulation layers. Each of the active region periods comprises higher and lower affinity semiconductor layers with type-II band alignment. The charge carrier accumulation in the charge accumulation layers results in electric field build-up and leads to the formation of generally triangular electron and hole potential wells in the higher and lower affinity layers. Nonequillibrium carriers can be created in the active region by means of electrical injection or optical pumping. The ground state energy in the triangular wells and the radiation wavelength can be tuned by changing the voltage drop across the active region.

  19. New non-linear photovoltaic effect in uniform bipolar semiconductor

    SciTech Connect (OSTI)

    Volovichev, I.

    2014-11-21

    A linear theory of the new non-linear photovoltaic effect in the closed circuit consisting of a non-uniformly illuminated uniform bipolar semiconductor with neutral impurities is developed. The non-uniform photo-excitation of impurities results in the position-dependant current carrier mobility that breaks the semiconductor homogeneity and induces the photo-electromotive force (emf). As both the electron (or hole) mobility gradient and the current carrier generation rate depend on the light intensity, the photo-emf and the short-circuit current prove to be non-linear functions of the incident light intensity at an arbitrarily low illumination. The influence of the sample size on the photovoltaic effect magnitude is studied. Physical relations and distinctions between the considered effect and the Dember and bulk photovoltaic effects are also discussed.

  20. Semiconductor laser devices having lateral refractive index tailoring

    DOE Patents [OSTI]

    Ashby, Carol I. H.; Hadley, G. Ronald; Hohimer, John P.; Owyoung, Adelbert

    1990-01-01

    A broad-area semiconductor laser diode includes an active lasing region interposed between an upper and a lower cladding layer, the laser diode further comprising structure for controllably varying a lateral refractive index profile of the diode to substantially compensate for an effect of junction heating during operation. In embodiments disclosed the controlling structure comprises resistive heating strips or non-radiative linear junctions disposed parallel to the active region. Another embodiment discloses a multi-layered upper cladding region selectively disordered by implanted or diffused dopant impurities. Still another embodiment discloses an upper cladding layer of variable thickness that is convex in shape and symmetrically disposed about a central axis of the active region. The teaching of the invention is also shown to be applicable to arrays of semiconductor laser diodes.