Sample records for wide bandgap semiconductors

  1. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen...

  2. Wide-Bandgap Semiconductors

    SciTech Connect (OSTI)

    Chinthavali, M.S.

    2005-11-22T23:59:59.000Z

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters. With the advent of the use of SiC devices it is imperative that models of these be made available in commercial simulators. This enables power electronic designers to simulate their designs for various test conditions prior to fabrication. To build an accurate transistor-level model of a power electronic system such as an inverter, the first step is to characterize the semiconductor devices that are present in the system. Suitable test beds need to be built for each device to precisely test the devices and obtain relevant data that can be used for modeling. This includes careful characterization of the parasitic elements so as to emulate the test setup as closely as possible in simulations. This report is arranged as follows: Chapter 2--The testing and characterization of several diodes and power switches is presented. Chapter 3--A 55-kW hybrid inverter (Si insulated gate bipolar transistor--SiC Schottky diodes) device models and test results are presented. A detailed description of the various test setups followed by the parameter extraction, modeling, and simulation study of the inverter performance is presented. Chapter 4--A 7.5-kW all-SiC inverter (SiC junction field effect transistors (JFET)--SiC Schottky diodes) was built and tested. The models built in Saber were validated using the test data and the models were used in system applications in the Saber simulator. The simulation results and a comparison of the data from the prototype tests are discussed in this chapter. Chapter 5--The duration test results of devices utilized in buck converters undergoing reliability testing are presented.

  3. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronic...

    Broader source: Energy.gov (indexed) [DOE]

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics...

  4. Wide Bandgap Semiconductors: Pursuing the Promise

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In theWide Bandgap

  5. Comparison of Wide-Bandgap Semiconductors for Power Electronics Applications

    SciTech Connect (OSTI)

    Ozpineci, B.

    2004-01-02T23:59:59.000Z

    Recent developmental advances have allowed silicon (Si) semiconductor technology to approach the theoretical limits of the Si material; however, power device requirements for many applications are at a point that the present Si-based power devices cannot handle. The requirements include higher blocking voltages, switching frequencies, efficiency, and reliability. To overcome these limitations, new semiconductor materials for power device applications are needed. For high power requirements, wide-bandgap semiconductors like silicon carbide (SiC), gallium nitride (GaN), and diamond, with their superior electrical properties, are likely candidates to replace Si in the near future. This report compares wide-bandgap semiconductors with respect to their promise and applicability for power applications and predicts the future of power device semiconductor materials.

  6. Sandia National Laboratories: wide-bandgap semiconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    electroluminescence was first reported by H.J. Round in 1907, and the first light-emitting diode (LED) was reported by O.V. Losev in 1927. Not until the birth of semiconductor...

  7. Wide Bandgap Semiconductors | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is a “Shut-down”Whole AlgaeRateWhy IsWhyWhyWide

  8. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    The Energy Department will present a live webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" on Tuesday, October 21, at 12:00 p...

  9. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Broader source: Energy.gov [DOE]

    Recording and text version of the Fuel Cell Technologies Office webinar titled "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications," originally presented on October 21, 2014.

  10. Photocell utilizing a wide-bandgap semiconductor material

    DOE Patents [OSTI]

    Carlson, David E. (Yardley, PA); Williams, Brown F. (Princeton, NJ)

    1984-06-05T23:59:59.000Z

    A photocell comprises a p-i-n amorphous silicon structure having a wide bandgap layer adjacent to either the p-type or n-type layer. This structure reduces the absorption of light entering the photocell and the back-diffusion of minority carriers.

  11. Sandia Energy - Sandia Wide-Bandgap Semiconductor Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del Sol Home Distribution GridDocuments HomeDatabase on EngineATeachesWide-Bandgap

  12. Method and apparatus for use of III-nitride wide bandgap semiconductors in optical communications

    DOE Patents [OSTI]

    Hui, Rongqing (Lenexa, KS); Jiang,Hong-Xing (Manhattan, KS); Lin, Jing-Yu (Manhattan, KS)

    2008-03-18T23:59:59.000Z

    The present disclosure relates to the use of III-nitride wide bandgap semiconductor materials for optical communications. In one embodiment, an optical device includes an optical waveguide device fabricated using a III-nitride semiconductor material. The III-nitride semiconductor material provides for an electrically controllable refractive index. The optical waveguide device provides for high speed optical communications in an infrared wavelength region. In one embodiment, an optical amplifier is provided using optical coatings at the facet ends of a waveguide formed of erbium-doped III-nitride semiconductor materials.

  13. Wide-bandgap semiconductors for high power, high frequency and high temperature. Materials Research Society symposium proceedings Volume 512

    SciTech Connect (OSTI)

    DenBaars, S.; Palmour, J.; Shur, M.; Spencer, M. [eds.

    1997-07-01T23:59:59.000Z

    Wide-bandgap semiconductors have a long and illustrious history, starting with the first paper on SiC light-emitting diodes published in 1907. In the last few years, however, interest in wide-bandgap semiconductors has skyrocketed. Improved material quality, important breakthroughs both in SiC and GaN technologies, and the emergence of blue GaN-based lasers, have stimulated this progress. To provide a fairly complete and up-to-date picture of this important field, most of the work presented at the conference is included in the volume. In addition, invited papers present an excellent overview of the current state of the art and offer projections for future developments. Topics include: GaN materials and devices; crystal growth; SiC materials and devices; characterization of wide-bandgap semiconductors; and processing characterization and properties of wide-bandgap materials.

  14. System and method of modulating electrical signals using photoconductive wide bandgap semiconductors as variable resistors

    DOE Patents [OSTI]

    Harris, John Richardson; Caporaso, George J; Sampayan, Stephen E

    2013-10-22T23:59:59.000Z

    A system and method for producing modulated electrical signals. The system uses a variable resistor having a photoconductive wide bandgap semiconductor material construction whose conduction response to changes in amplitude of incident radiation is substantially linear throughout a non-saturation region to enable operation in non-avalanche mode. The system also includes a modulated radiation source, such as a modulated laser, for producing amplitude-modulated radiation with which to direct upon the variable resistor and modulate its conduction response. A voltage source and an output port, are both operably connected to the variable resistor so that an electrical signal may be produced at the output port by way of the variable resistor, either generated by activation of the variable resistor or propagating through the variable resistor. In this manner, the electrical signal is modulated by the variable resistor so as to have a waveform substantially similar to the amplitude-modulated radiation.

  15. Wide Bandgap Extrinsic Photoconductive Switches

    SciTech Connect (OSTI)

    Sullivan, J S

    2012-01-17T23:59:59.000Z

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  16. DOE Announces Webinars on Zero Energy Ready Homes, Wide Bandgap...

    Broader source: Energy.gov (indexed) [DOE]

    on Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar Sponsor: Fuel Cell Technologies Office The Energy...

  17. Epitaxial growth of 100-?m thick M-type hexaferrite crystals on wide bandgap semiconductor GaN/Al{sub 2}O{sub 3} substrates

    SciTech Connect (OSTI)

    Hu, Bolin; Su, Zhijuan; Bennett, Steve; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07T23:59:59.000Z

    Thick barium hexaferrite BaFe{sub 12}O{sub 19} (BaM) films having thicknesses of ?100??m were epitaxially grown on GaN/Al{sub 2}O{sub 3} substrates from a molten-salt solution by vaporizing the solvent. X-ray diffraction measurement verified the growth of BaM (001) textured growth of thick films. Saturation magnetization, 4?M{sub s}, was measured for as-grown films to be 4.6 0.2 kG and ferromagnetic resonance measurements revealed a microwave linewidth of ?100?Oe at X-band. Scanning electron microscopy indicated clear hexagonal crystals distributed on the semiconductor substrate. These results demonstrate feasibility of growing M-type hexaferrite crystal films on wide bandgap semiconductor substrates by using a simple powder melting method. It also presents a potential pathway for the integration of ferrite microwave passive devices with active semiconductor circuit elements creating system-on-a-wafer architectures.

  18. Composition/bandgap selective dry photochemical etching of semiconductor materials

    DOE Patents [OSTI]

    Ashby, C.I.H.; Dishman, J.L.

    1985-10-11T23:59:59.000Z

    Disclosed is a method of selectively photochemically dry etching a first semiconductor material of a given composition and direct bandgap Eg/sub 1/ in the presence of a second semiconductor material of a different composition and direct bandgap Eg/sub 2/, wherein Eg/sub 2/ > Eg/sub 1/, said second semiconductor material substantially not being etched during said method. The method comprises subjecting both materials to the same photon flux and to the same gaseous etchant under conditions where said etchant would be ineffective for chemical etching of either material were the photons not present, said photons being of an energy greater than Eg/sub 1/ but less than Eg/sub 2/, whereby said first semiconductor material is photochemically etched and said second material is substantially not etched.

  19. Implications of mercury interactions with band-gap semiconductor oxides

    SciTech Connect (OSTI)

    Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.

    2008-09-01T23:59:59.000Z

    Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygennitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygennitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.

  20. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    - Partial Listing of Copyright 2014, Cree Inc. pg. 14 1200V SiC MOSFET design wins in PV inverters 1200V, 80m SiC MOSFETs have been selected by Japan's Sanix Inc. 9.9kW...

  1. INFOGRAPHIC: Wide Bandgap Semiconductors | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy ChinaofSchaefer To:Department ofOral TestimonyEnergyFinding U.INDIANAPOLISINFOGRAPHIC:

  2. INFOGRAPHIC: Wide Bandgap Semiconductors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND DTechnologiesFindingThe Road to

  3. Materials Technology for Energy Efficiency: Wide Bandgap Nanophotonics Lab

    E-Print Network [OSTI]

    University of Technology, Sydney

    28/3/2013 Materials Technology for Energy Efficiency: Wide Bandgap Nanophotonics Lab Honours such as low power lasers, molecular sensors and high efficiency light emitters. Several projects are currently of Technology Sydney is one of the leading technological universities in Australia and located in the heart

  4. innovati nNREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells

    E-Print Network [OSTI]

    . Low-bandgap cells can lose 25% of their power output and efficiency ratings as solar cell operating energy output than a low-bandgap cell with the same wattage or power rating. NREL is a nationalinnovati nNREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells Researchers

  5. Wide band gap semiconductor templates

    DOE Patents [OSTI]

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)

    2010-12-14T23:59:59.000Z

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  6. Broadly defining lasing wavelengths in single bandgap-graded semiconductor nanowires

    E-Print Network [OSTI]

    Yang, Zongyin; Wang, Delong; Meng, Chao; Wu, Zhemin; Wang, Yong; Ma, Yaoguang; Dai, Lun; Liu, Xiaowei; Hasan, Tawfique; Liu, Xu; Yang, Qing

    2014-05-05T23:59:59.000Z

    -wide wavelength tunable light emitting devices, high-performance field-effect transistors and high-efficiency solar cells in identical NWs.27-30 Very recently, multicolor lasing is realized from a single bandgap-graded CdSSe nanoribbon, by multi... from the left narrow-bandgap end of the NW is centered at 638 nm with a full width at half-maximum (FWHM) of 30 nm (Figure 2e, bottom). With increasing pump density, bright red spots emerged at both ends of the NW (Figure 2d), and the measured...

  7. Webinar October 21: Opportunities for Wide Bandgap Semiconductor...

    Broader source: Energy.gov (indexed) [DOE]

    Fuel Cell Applications" on Tuesday, October 21, from 12:00 p.m. to 1:00 p.m. Eastern Daylight Time. Numerous applications of hydrogen and fuel cell technologies could benefit from...

  8. Wide Bandgap Semiconductors for Power Electronics, Optoelectronics, and Advanced Communications

    E-Print Network [OSTI]

    Li, Mo

    for hybrid and electric vehicles, solar photovoltaic inverters, power supply miniaturization and efficiency reliability and efficiency. Georgia Tech also has leading expertise in the metrology of the temperature and stresses in GaN electronics to verify device performance and yield new insight into device reliability

  9. Wide Bandgap Semiconductors for Clean Energy Workshop | Department of

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In the

  10. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: Since the.pdfBreaking ofOilNEWResponse toOctober 2014Funds forEnergyOperationsEnergyand

  11. Wide Bandgap Semiconductors: Essential to Our Technology Future |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening

  12. Wide Bandgap Semiconductors: Pursuing the Promise | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015ofDepartment of EnergyThe U.S. DepartmentEnergy WASHINGTON,Concept

  13. Wide Bandgap Semiconductors for Clean Energy Workshop Agenda

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy AreWhyPower

  14. Wide Bandgap Semiconductors for Clean Energy Workshop: Summary Report

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy

  15. Webinar October 21: Opportunities for Wide Bandgap Semiconductor Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page onYouTube YouTube Note: SinceDevelopment | Department ofPartnerships ToolkitWaste Heat Wasteof|WebinarElectronics for

  16. Paul Sellin, Centre for Nuclear and Radiation Physics Mobility and lifetime mapping in wide bandgap

    E-Print Network [OSTI]

    Sellin, Paul

    Paul Sellin, Centre for Nuclear and Radiation Physics Mobility and lifetime mapping in wide bandgap1. Centre for Nuclear and Radiation Physics Department of Physics University of Surrey www, Hungary. #12;Paul Sellin, Centre for Nuclear and Radiation Physics Introduction r Development of compound

  17. Improved Energy Conversion Efficiency in Wide Bandgap Cu(In,Ga)Se2 Solar Cells

    SciTech Connect (OSTI)

    Contreras, M. A.; Mansfield, L. M.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.

    2011-01-01T23:59:59.000Z

    This report outlines improvements to the energy conversion efficiency in wide bandgap (E{sub g} > ;1.2 eV) solar cells based on CuIn{sub 1-x}Ga{sub x}Se{sub 2}. Using (a) alkaline containing high temperature glass substrates, (b) elevated substrate temperatures 600 C-650 C and (c) high vacuum evaporation from elemental sources following NREL's three-stage process, we have been able to improve the performance of wider bandgap solar cells with 1.2 < E{sub g} < 1.45 eV. Initial results of this work have led to efficiencies >18% for absorber bandgaps {approx}1.30 eV and efficiencies {approx}16% for bandgaps up to {approx}1.45 eV. In comparing J-V parameters in similar materials, we establish gains in the open-circuit voltage and, to a lesser degree, the fill factor value, as the reason for the improved performance. The higher voltages seen in these wide gap materials grown at high substrate temperatures may be due to reduced recombination at the grain boundary of such absorber films. Solar cell results, absorber materials characterization, and experimental details are reported.

  18. Novel Approaches to Wide Bandgap CuInSe2 Based Absorbers

    SciTech Connect (OSTI)

    William N. Shafarman

    2011-04-28T23:59:59.000Z

    This project targeted the development of high performance wide bandgap solar cells based on thin film alloys of CuInSe2 to relax constraints on module design and enable tandem solar cell structures. This addressed goals of the Solar Energy Technologies Program for Next Generation PV to develop technology needed for higher thin film module efficiency as a means to reduce costs. Specific objectives of the research project were: 1) to develop the processes and materials required to improve the performance of wide bandgap thin film solar cells based on alloys of CuInSe2, and 2) to provide the fundamental science and engineering basis for the material, electronic, and device properties required to effectively apply these processes and materials to commercial manufacture. CuInSe2-based photovoltaics have established the highest efficiencies of the thin film materials at both the cell and module scales and are actively being scaled up to commercialization. In the highest efficiency cells and modules, the optical bandgap, a function of the CuInSe2-based alloy composition, is relatively low compared to the optimum match to the solar spectrum. Wider bandgap alloys of CuInSe2 produce higher cell voltages which can improve module performance and enable the development of tandem solar cells to boost the overall efficiency. A focus for the project was alloying with silver to form (AgCu)(InGa)Se2 pentenary thin films deposited by elemental co-evaporation which gives the broadest range of control of composition and material properties. This alloy has a lower melting temperature than Ag-free, Cu-based chalcopyrite compounds, which may enable films to be formed with lower defect densities and the (AgCu)(InGa)Se2 films give improved material properties and better device performance with increasing bandgap. A comprehensive characterization of optical, structural, and electronic properties of (AgCu)(InGa)Se2 was completed over the complete compositional range 0 ? Ga/(In+Ga) ? 1 and 0 ? Ag/(Ag+Cu) ? 1. Evidence of improved material quality includes reduced sub-bandgap optical absorption, sharper bandtails, and increased grain size with Ag addition. The Ag alloying was shown to increase the range of bandgaps over which solar cells can be fabricated without any drop-off in performance. With bandgap greater than 1.6 eV, in the range needed for tandem solar cells, (AgCu)(InGa)Se2 gave higher efficiency than other CuInSe2-based alloys. Using a simple single-stage co-evaporation process, a solar cell with 17.6% efficiency using a film with bandgap = 1.3 eV was achieved, demonstrating the viability of (AgCu)(InGa)Se2 for high efficiency devices. With a three-stage co-evaporation process for (AgCu)(InGa)Se2 deposition a device with efficiency = 13.0 % and VOC = 890 mV with JSC = 20.5 mA/cm2, FF = 71.3% was achieved. This surpasses the performance of other wide bandgap CuInSe2-based solar cells. Detailed characterization of the electronic properties of the materials and devices including the application of advanced admittance-based easements was completed.

  19. NREL Produces Highly Efficient, Wide-Bandgap, Thin-Film Solar Cells (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2012-09-01T23:59:59.000Z

    Researchers at the National Renewable Energy Laboratory (NREL) are finding new ways to manufacture thin-film solar cells made from copper, indium, gallium, and selenium - called CIGS cells - that are different than conventional CIGS solar cells. Their use of high-temperature glass, designed by SCHOTT AG, allows higher fabrication temperatures, opening the door to new CIGS solar cells employing light-absorbing materials with wide 'bandgaps.'

  20. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOE Patents [OSTI]

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25T23:59:59.000Z

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  1. Improved Energy Conversion Efficiency in Wide-Bandgap Cu(In,Ga)Se2 Solar Cells: Preprint

    SciTech Connect (OSTI)

    Contreras, M.; Mansfield, L.; Egaas, B.; Li, J.; Romero, M.; Noufi, R.; Rudiger-Voigt, E.; Mannstadt, W.

    2011-07-01T23:59:59.000Z

    This report outlines improvements to the energy conversion efficiency in wide bandgap (Eg>1.2 eV) solar cells based on CuIn1-xGaxSe2. Using (a) alkaline containing high temperature glass substrates, (b) elevated substrate temperatures 600?C-650?C and (c) high vacuum evaporation from elemental sources following NREL's three-stage process, we have been able to improve the performance of wider bandgap solar cells with 1.218% for absorber bandgaps ~1.30 eV and efficiencies ~16% for bandgaps up to ~1.45 eV. In comparing J-V parameters in similar materials, we establish gains in the open-circuit voltage and, to a lesser degree, the fill factor value, as the reason for the improved performance. The higher voltages seen in these wide gap materials grown at high substrate temperatures may be due to reduced recombination at the grain boundary of such absorber films. Solar cell results, absorber materials characterization, and experimental details are reported.

  2. Realising wide bandgap P-SiC-emitter lateral heterojunction bipolar transistors with low

    E-Print Network [OSTI]

    Kumar, M. Jagadesh

    semiconductors such as InGaP/GaAs or AlGaAs/GaAs are available, HBTs based on SiC/Si are attractive because

  3. Optical Determination of Gate--Tunable Bandgap in Bilayer Graphene

    SciTech Connect (OSTI)

    Zhang, Yuanbo; Tang, Tsung-Ta; Girit, Caglar; Hao, Zhao; Martin, Michael C.; Zettl, Alex; Crommie, Michael F.; Shen, Y. Ron; Wang, Feng

    2009-08-11T23:59:59.000Z

    The electronic bandgap is an intrinsic property of semiconductors and insulators that largely determines their transport and optical properties. As such, it has a central role in modern device physics and technology and governs the operation of semiconductor devices such as p-n junctions, transistors, photodiodes and lasers. A tunable bandgap would be highly desirable because it would allow great flexibility in design and optimization of such devices, in particular if it could be tuned by applying a variable external electric field. However, in conventional materials, the bandgap is fixed by their crystalline structure, preventing such bandgap control. Here we demonstrate the realization of a widely tunable electronic bandgap in electrically gated bilayer graphene. Using a dual-gate bilayer graphene field-effect transistor (FET) and infrared microspectroscopy, we demonstrate a gate-controlled, continuously tunable bandgap of up to 250 meV. Our technique avoids uncontrolled chemical doping and provides direct evidence of a widely tunable bandgap -- spanning a spectral range from zero to mid-infrared -- that has eluded previous attempts. Combined with the remarkable electrical transport properties of such systems, this electrostatic bandgap control suggests novel nanoelectronic and nanophotonic device applications based on graphene.

  4. Goal is to further development and manufacturing of wide bandgap semiconductors

    E-Print Network [OSTI]

    Young, R. Michael

    technology. On Jan. 15, President Barack Obama announced that NC State would lead the Next Generation Power corrections to alumnianddonor_records@ncsu.edu; or call 919.515.7458, toll free: 866.316.4057. NC State

  5. Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn'tOrigin of Contamination in ManyDepartment ofOil'sEnergy 9Industrial Applications -

  6. Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    Raghuwanshi, M., E-mail: mohit.raghuwanshi@etu.univ-rouen.fr; Cadel, E.; Pareige, P.; Duguay, S. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Universit et INSA de Rouen, Avenue de l'Universite BP 12, 76801 Saint Etienne du Rouvray (France); Couzinie-Devy, F.; Arzel, L.; Barreau, N. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, Universit de Nantes, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France)

    2014-07-07T23:59:59.000Z

    The reason why so-called wide-bandgap CuIn{sub 1?x}Ga{sub x}Se{sub 2} (CIGSe with x?>?0.4) based solar cells show hindered performance compared with theoretical expectations is still a matter of debate. In the present Letter, atom probe tomography studies of CuIn{sub 1?x}Ga{sub x}Se{sub 2} polycrystalline thin films with x varying from 0 to 1 are reported. These investigations confirm that the grain boundaries (GBs) of low gallium containing (x??0.8) are Cu-enriched compared with GI. For intermediate gallium contents (0.4?

  7. Sintered molybdenum for a metallized ceramic substrate packaging for the wide-

    E-Print Network [OSTI]

    Boyer, Edmond

    ; molybdenum; Spark Plasma Sintering I. INTRODUCTION Wide-bandgap semiconductors devices, such as silicon nitride (AlN) and molybdenum (Mo) is reported in this paper. This substrate is built using a spark plasmaSintered molybdenum for a metallized ceramic substrate packaging for the wide- bandgap devices

  8. Wide Bandgap Materials

    Broader source: Energy.gov (indexed) [DOE]

    May 10, 2011 Project ID: APE007 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2011 U.S. DOE Hydrogen and Fuel Cells Program...

  9. Wide Bandgap Materials

    Broader source: Energy.gov (indexed) [DOE]

    June 10, 2010 Project ID: APE007 This presentation does not contain any proprietary, confidential, or otherwise restricted information 2 Managed by UT-Battelle for the U.S....

  10. Wide Bandgap Materials

    Broader source: Energy.gov (indexed) [DOE]

    Materials Madhu Chinthavali Oak Ridge National Laboratory May 15, 2012 Project ID: APE007 This presentation does not contain any proprietary, confidential, or otherwise restricted...

  11. Wide Bandgap Power Electronics

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In the MatterWhyofOur

  12. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

  13. SPECTROSCOPIE DE DEFAUTS -LUMINESCENCE I. THE ANALYSIS OF WIDE BAND GAP SEMICONDUCTORS

    E-Print Network [OSTI]

    Boyer, Edmond

    on analysis depend very much on the device. In semiconductors, light emitting diodes (LEDs) are formed from pn

  14. Nonadiabatic electron transfer at the nanoscale tin-oxide semiconductor/aqueous solution interface

    E-Print Network [OSTI]

    published as an Advance Article on the web 28th January 2004 Photo-excitation of chromophoric metal forward and back electron transfer reactions involving molecular dyes and wide bandgap semiconductors words, electro- nic coupling rather than nuclear motion appears to govern the reaction dynamics

  15. 2012 DEFECTS IN SEMICONDUCTORS GORDON RESEARCH CONFERENCE, AUGUST 12-17, 2012

    SciTech Connect (OSTI)

    GLASER, EVAN

    2012-08-17T23:59:59.000Z

    The meeting shall strive to develop and further the fundamental understanding of defects and their roles in the structural, electronic, optical, and magnetic properties of bulk, thin film, and nanoscale semiconductors and device structures. Point and extended defects will be addressed in a broad range of electronic materials of particular current interest, including wide bandgap semiconductors, metal-oxides, carbon-based semiconductors (e.g., diamond, graphene, etc.), organic semiconductors, photovoltaic/solar cell materials, and others of similar interest. This interest includes novel defect detection/imaging techniques and advanced defect computational methods.

  16. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    E-Print Network [OSTI]

    Pereira, LMC; Wahl, U

    Scientic findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last few ...

  17. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOE Patents [OSTI]

    Abraham, Marvin M. (Oak Ridge, TN); Chen, Yok (Oak Ridge, TN); Kernohan, Robert H. (Oak Ridge, TN)

    1981-01-01T23:59:59.000Z

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  18. Point defect engineered Si sub-bandgap light-emitting diode

    E-Print Network [OSTI]

    Bao, Jiming

    Point defect engineered Si sub-bandgap light-emitting diode Jiming Bao1 , Malek Tabbal1,2 , Taegon light emission in Si and demonstrate a sub-bandgap light emitting diode based on the introduction OCIS codes: (230.3670) Light-emitting diodes; (160.6000) Semiconductors; (130-0250) Optoelectronics

  19. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Bilayer Graphene Gets a Bandgap Print Wednesday, 26 August 2009 00:00 Graphene is the two-dimensional crystalline form of carbon whose extraordinary...

  20. Wide Bandgap Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy AreWhy We2

  1. Wide Bandgap Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy AreWhy We21

  2. Wide Bandgap Materials | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy AreWhy We210

  3. Wide Bandgap Power Electronics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your DensityEnergy U.S.-China Electric VehicleCenters | Department ofofto PurchaseApril 16,WhoWhy AreWhyPower

  4. Band anticrossing effects in highly mismatched semiconductor alloys

    SciTech Connect (OSTI)

    Wu, Junqiao

    2002-09-09T23:59:59.000Z

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between localized states and the valence band states. Soft x-ray fluorescence experiments provide direct evidence of the BAC interaction in these systems. In the final chapter of the thesis, I describe and summarize my studies of optical properties of wurtzite InN and related alloys. Early studies performed on InN films grown by sputtering techniques suggested a direct bandgap of {approx}1.9 eV for this semiconductor. Very recently, high-quality InN films with much higher mobility have become available by using the molecular beam epitaxy growth method. Optical experiments carried out on these samples reveal a narrow bandgap for InN of 0.77 eV, much lower than the previously accepted value. Optical properties of InGaN and InAlN ternaries on the In rich side have also been characterized and are found to be consistent with the narrow bandgap of InN. The bandgap bowing parameters in these alloys were determined. In the context of these findings, the bandgap energies of InGaN and InAlN were found to cover a wide spectral range from the infrared for InN to the ultraviolet for GaN and deep ultraviolet for AlN. The significance of this work is rooted in many important applications of nitride semiconductors in optoelectronics and solar energy conversion devices.

  5. Bilayer Graphene Gets a Bandgap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bilayer Graphene Gets a Bandgap Print Graphene is the two-dimensional crystalline form of carbon whose extraordinary electron mobility and other unique features hold great promise...

  6. 2152 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 11, NOVEMBER 1999 One-Dimensional Photonic Bandgap Microcavities

    E-Print Network [OSTI]

    Fan, Shanhui

    Bandgap Microcavities for Strong Optical Confinement in GaAs and GaAs/Al O Semiconductor Waveguides Daniel been designed, fabricated using high-dielectric-contrast GaAs/AlxOy IIIV com- pound semiconductor air-bridge geometries. Resonance states with cavity Q's as high as 360 were measured at wavelengths

  7. Development of epitaxial AlxSc1-xN for artificially structured metal/semiconductor superlattice metamaterials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sands, Timothy D.; Stach, Eric A.; Saha, Bivas; Saber, Sammy; Naik, Gururaj V.; Boltasseva, Alexandra; Kvam, Eric P.

    2015-02-01T23:59:59.000Z

    Epitaxial nitride rocksalt metal/semiconductor superlattices are emerging as a novel class of artificially structured materials that have generated significant interest in recent years for their potential application in plasmonic and thermoelectric devices. Though most nitride metals are rocksalt, nitride semiconductors in general have hexagonal crystal structure. We report rocksalt aluminum scandium nitride (Al,Sc)N alloys as the semiconducting component in epitaxial rocksalt metal/semiconductor superlattices. The AlxSc1?xN alloys when deposited directly on MgO substrates are stabilized in a homogeneous rocksalt (single) phase when x?morehas been extended to x?xSc1?xN alloys show moderate direct bandgap bowing with a bowing parameter, B?=?1.41??0.19?eV. The direct bandgap of metastable rocksalt AlN is extrapolated to be 4.70??0.20?eV. The tunable lattice parameter, bandgap, dielectric permittivity, and electronic properties of rocksalt AlxSc1?xN alloys enable high quality epitaxial rocksalt metal/AlxSc1?xN superlattices with a wide range of accessible metamaterials properties.less

  8. Optical Determination of Gate--Tunable Bandgap in Bilayer Graphene

    E-Print Network [OSTI]

    Zhang, Yuanbo

    2010-01-01T23:59:59.000Z

    Tunable Bandgap in Bilayer Graphene Yuanbo Zhang* 1 , Tsung-gate-tunable bandgap in graphene bilayers with magnitude asbands. In two- dimensional graphene bilayers this bandgap

  9. Electronic Structure of ZnO:GaN Compounds: Asymmetric Bandgap Engineering

    SciTech Connect (OSTI)

    Huda, M. N.; Yan, Y.; Wei, S. H.; Al-Jassim, M. M.

    2008-11-01T23:59:59.000Z

    ZnO and GaN have a type-II band offset. The incorporation of one compound into the other would lead to a reduced bandgap as compared to that of either ZnO or GaN. Our density-functional theory calculation reveals an asymmetric bandgap reduction in this nonisovalent system; i.e., incorporating GaN in a ZnO host results in a much more effective bandgap reduction than incorporating ZnO in a GaN host. We further find that the random-alloy system is more favorable than the superlattice system in terms of light absorption in the longer-wavelength regions. Our results suggest that the wave-function localization at the band edges plays an important role in how to choose the host material and dopant for effective bandgap engineering through semiconductor compound alloying.

  10. Low-bandgap, monolithic, multi-bandgap, optoelectronic devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Carapella, Jeffrey J.

    2014-07-08T23:59:59.000Z

    Low bandgap, monolithic, multi-bandgap, optoelectronic devices (10), including PV converters, photodetectors, and LED's, have lattice-matched (LM), double-heterostructure (DH), low-bandgap GaInAs(P) subcells (22, 24) including those that are lattice-mismatched (LMM) to InP, grown on an InP substrate (26) by use of at least one graded lattice constant transition layer (20) of InAsP positioned somewhere between the InP substrate (26) and the LMM subcell(s) (22, 24). These devices are monofacial (10) or bifacial (80) and include monolithic, integrated, modules (MIMs) (190) with a plurality of voltage-matched subcell circuits (262, 264, 266, 270, 272) as well as other variations and embodiments.

  11. Luminescence in Conjugated Molecular Materials under Sub-bandgap Excitation

    SciTech Connect (OSTI)

    So, Franky [University of Florida] [University of Florida

    2014-05-08T23:59:59.000Z

    Light emission in semiconductors occurs when they are under optical and electrical excitation with energy larger than the bandgap energy. In some low-dimensional semiconductor heterostructure systems, this thermodynamic limit can be violated due to radiative Auger recombination (AR), a process in which the sub-bandgap energy released from a recombined electron-hole pair is transferred to a third particle leading to radiative band-to-band recombination.1 Thus far, photoluminescence up-conversion phenomenon has been observed in some low dimensional semiconductor systems, and the effect is very weak and it can only be observed at low temperatures. Recently, we discovered that efficient electroluminescence in poly[2-methoxy-5-(2-ethylhexyloxy)-1, phenylenevinylene] (MEH-PPV) polymer light-emitting devices (PLEDs) at drive voltages below its bandgap voltage could be observed when a ZnO nanoparticles (NPs) electron injection layer was inserted between the polymer and the aluminum electrode. Specifically, emitted photons with energy of 2.13 eV can be detected at operating voltages as low as 1.2 V at room temperature. Based on these data, we propose that the sub-bandgap turn-on in the MEH-PPV device is due to an Auger-assisted energy up-conversion process. The significance of this discovery is three-fold. First, radiative recombination occurs at operating voltages below the thermodynamic bandgap voltage. This process can significantly reduce the device operating voltage. For example, the current density of the device with the ZnO NC layer is almost two orders of magnitude higher than that of the device without the NC layer. Second, a reactive metal is no longer needed for the cathode. Third, this electroluminescence up-conversion process can be applied to inorganic semiconductors systems as well and their operation voltages of inorganic LEDs can be reduced to about half of the bandgap energy. Based on our initial data, we propose that the sub-bandgap turn-on in MEH-PPV devices is due to Auger-assisted energy up-conversion process. Specifically, we propose that the up-conversion process is due to charge accumulation at the polymer/NPs interface. This model requires that holes should be the dominant carriers in the polymer and the polymer/ZnO NCs heterojunction should be a type II alignment. In order to determine the mechanism of the up-conversion process, we will characterize devices fabricated using polymers with different carrier transporting properties to determine whether hole accumulation at the polymer/nanocrystals is required. Likewise, we will also use NPs with different electronic structures to fabricate devices to determine how electron accumulation affects the up-conversion process. Finally, we will measure quantitatively the interface charge accumulation by electroabsorption and correlate the results with the up-conversion photoluminescence efficiency measurements under an applied electric field.

  12. Vehicle Technologies Office Merit Review 2015: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2015 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about advanced low-cost SiC and GaN wide...

  13. Vehicle Technologies Office Merit Review 2014: Advanced Low-Cost SiC and GaN Wide Bandgap Inverters for Under-the-Hood Electric Vehicle Traction Drives

    Broader source: Energy.gov [DOE]

    Presentation given by APEI Inc. at 2014 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Office Annual Merit Review and Peer Evaluation Meeting about Advanced low-cost SIC and GaN wide...

  14. Wide bandgap n-type and p-type semiconductor porous junction devices as photovoltaic cells This article has been downloaded from IOPscience. Please scroll down to see the full text article.

    E-Print Network [OSTI]

    solar cells because of their low production cost. Significant breakthroughs in solar cell performances. Introduction Solar cells incorporating organic materials are interesting alternatives to conventional silicon artificial photovoltaic device. In a dye-sensitized solar cell the absorbing dye molecules lie at the large

  15. Band-Gap Engineering of Zinc Oxide Colloids via Lattice Substitution with Sulfur Leading to Materials with Advanced Properties for

    E-Print Network [OSTI]

    Nabben, Reinhard

    gap semiconductors like III/V compounds, for instance, gallium nitride (GaN),2 or II/VI compounds bandgap of 3.37 eV at room temperature.7 Thus, one of its most elemental functions is the absorption

  16. Development of Spintronic Bandgap Materials

    SciTech Connect (OSTI)

    Levy, Jeremy; Awschalom, David; Floro, Jerrold

    2014-02-16T23:59:59.000Z

    The development of Ge/Si quantum dots with high spatial precision has been pursued, with the goal of developing a platform for spintronics bandgap materials. Quantum dots assemblies were grown by molecular beam epitaxy on carbon-templated silicon substrates. These structures were characterized by atomic force microscopy. Vertically gated structures were created on systems with up to six well-defined quantum dots with a controlled geometric arrangement, and low-temperature (mK) transport experiments were performed. These experiments showed evidence for a crossover from diamagnetic to Zeeman energy shifts in resonant tunneling of electrons through electronic states in the quantum dots.

  17. Nanocomposites of Semimetallic ErAs Nanoparticles Epitaxially Embedded within InGaAlAs-based Semiconductors for Thermoelectric Materials

    E-Print Network [OSTI]

    GaAlAs-based Semiconductors for Thermoelectric Materials J.M.O. Zide', G. Zeng2, J.H. Bahk2, W. Kim3, S. L. Singer3, DAs nanoparticles which are epitaxially embedded within InGaAlAs-based semiconductors. The properties. In one geometry, barriers of InGaAlAs, a wider bandgap semiconductor, are introduced into an Er

  18. Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Abstract: Structure and electronic properties of...

  19. Carrier Generation in Multicomponent Wide-Bandgap Oxides: Altynbek Murat,

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    of the metal-oxygen bond strengths of the oxide constituents. Moreover, a layered structure and/or a distinct sensitivity of the electrical properties to the oxygen partial pressure, pO2, during pulsed laser deposition

  20. AMO's New Institute Focused on Wide Bandgap Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    The Next Generation Power Electronics National Manufacturing Institute announced by President Obama today will use 70 million provided by the U.S. Department of Energy's Advanced...

  1. Simulation and Experiment of Wide Bandgap Material Based Nonvolatile Memory

    E-Print Network [OSTI]

    LI, ZONGLIN

    2012-01-01T23:59:59.000Z

    than SiC, GaN, GaAs, sapphire substrate; (3) The size ofA. Dadgar, GaN-based opoelectronics on silicon substrates,

  2. DOE Announces Webinars on Zero Energy Ready Homes, Wide Bandgap

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative FuelsNovember 13, 2014Contributing DataDepartmentGuideandand MoreRe-tuning

  3. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy, OAPM |TRUJuly 29, 2013Savannah RiverDOETapsDOE TemplateTour

  4. AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Delicious Rank EERE: Alternative Fuels DataEnergyDepartment of EnergyEnergyProposed -Systems |AMERINDAMOAMOAMO|

  5. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742Energy China 2015 Business42.1 DEPARTMENT OF ENERGYEnergyMeeting -2014Barrels

  6. How Bilayer Graphene Got a Bandgap

    ScienceCinema (OSTI)

    Feng Wang

    2010-01-08T23:59:59.000Z

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  7. How Bilayer Graphene Got a Bandgap

    ScienceCinema (OSTI)

    Wang, Feng

    2013-05-29T23:59:59.000Z

    Graphene is the two-dimensional crystalline form of carbon, whose extraordinary electron mobility and other unique features hold great promise for nanoscale electronics and photonics. But theres a catch: graphene has no bandgap. Now Feng Wang and his colleagues at Berkeley Lab and UC Berkeley have engineered a bandgap in bilayer graphene that can be precisely controlled from 0 to 250 milli-electron volts, which is the energy of infrared radiation.

  8. Narrow Bandgap in beta-BaZn2As2 and Its Chemical Origins

    E-Print Network [OSTI]

    Xiao, Zewen; Ueda, Shigenori; Toda, Yoshitake; Ran, Fan-Yong; Guo, Jiangang; Lei, Hechang; Matsuishi, Satoru; Hosono, Hideo; Kamiya, Toshio

    2015-01-01T23:59:59.000Z

    Beta-BaZn2As2 is known to be a p-type semiconductor with the layered crystal structure similar to that of LaZnAsO, leading to the expectation that beta-BaZn2As2 and LaZnAsO have similar bandgaps; however, the bandgap of beta-BaZn2As2 (previously-reported value ~0.2 eV) is one order of magnitude smaller than that of LaZnAsO (1.5 eV). In this paper, the reliable bandgap value of beta-BaZn2As2 is determined to be 0.23 eV from the intrinsic region of the tem-perature dependence of electrical conductivity. The origins of this narrow bandgap are discussed based on the chemi-cal bonding nature probed by 6 keV hard X-ray photoemission spectroscopy, hybrid density functional calculations, and the ligand theory. One origin is the direct As-As hybridization between adjacent [ZnAs] layers, which leads to a secondary splitting of As 4p levels and raises the valence band maximum. The other is that the non-bonding Ba 5dx2-y2 orbitals form unexpectedly deep conduction band minimum (CBM) in beta-BaZn2As2 although the CBM of L...

  9. GaTe semiconductor for radiation detection

    DOE Patents [OSTI]

    Payne, Stephen A. (Castro Valley, CA); Burger, Arnold (Nashville, TN); Mandal, Krishna C. (Ashland, MA)

    2009-06-23T23:59:59.000Z

    GaTe semiconductor is used as a room-temperature radiation detector. GaTe has useful properties for radiation detectors: ideal bandgap, favorable mobilities, low melting point (no evaporation), non-hygroscopic nature, and availability of high-purity starting materials. The detector can be used, e.g., for detection of illicit nuclear weapons and radiological dispersed devices at ports of entry, in cities, and off shore and for determination of medical isotopes present in a patient.

  10. Bandgap Engineering in Disordered Graphene Two-dimensional atomic crystals attract attention due to their unique low-dimensional electron transport

    E-Print Network [OSTI]

    Weston, Ken

    Bandgap Engineering in Disordered Graphene Two-dimensional atomic crystals attract attention due-gap semiconductor graphene. The relativistic Dirac dispersion of electrons in graphene leads to an anomalous four large compared to electron Fermi wavelength. In high magnetic fields, the cleanest graphene samples

  11. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H.; El-Kady, Ihab F.; McCormick, Frederick; Fleming, James G.; Fleming leg, Carol

    2010-06-08T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  12. Microfabricated bulk wave acoustic bandgap device

    DOE Patents [OSTI]

    Olsson, Roy H. (Albuquerque, NM); El-Kady, Ihab F. (Albuquerque, NM); McCormick, Frederick (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Fleming, legal representative, Carol (Albuquerque, NM)

    2010-11-23T23:59:59.000Z

    A microfabricated bulk wave acoustic bandgap device comprises a periodic two-dimensional array of scatterers embedded within the matrix material membrane, wherein the scatterer material has a density and/or elastic constant that is different than the matrix material and wherein the periodicity of the array causes destructive interference of the acoustic wave within an acoustic bandgap. The membrane can be suspended above a substrate by an air or vacuum gap to provide acoustic isolation from the substrate. The device can be fabricated using microelectromechanical systems (MEMS) technologies. Such microfabricated bulk wave phononic bandgap devices are useful for acoustic isolation in the ultrasonic, VHF, or UHF regime (i.e., frequencies of order 1 MHz to 10 GHz and higher, and lattice constants of order 100 .mu.m or less).

  13. Bandgap Engineering in High-Efficiency Multijunction Concentrator Cells

    SciTech Connect (OSTI)

    King, R. R.; Sherif, R. A.; Kinsey, G. S.; Kurtz, S.; Fetzer, C. M.; Edmondson, K. M.; Law, D. C.; Cotal, H. L.; Krut, D. D.; Ermer, J. H.; Karam, N. H.

    2005-08-01T23:59:59.000Z

    This paper discusses semiconductor device research paths under investigation with the aim of reaching the milestone efficiency of 40%. A cost analysis shows that achieving very high cell efficiencies is crucial for the realization of cost-effective photovoltaics, because of the strongly leveraging effect of efficiency on module packaging and balance-of systems costs. Lattice-matched (LM) GaInP/ GaInAs/ Ge 3-junction cells have achieved the highest independently confirmed efficiency at 175 suns, 25?C, of 37.3% under the standard AM1.5D, low-AOD terrestrial spectrum. Lattice-mismatched, or metamorphic (MM), materials offer still higher potential efficiencies, if the crystal quality can be maintained. Theoretical efficiencies well over 50% are possible for a MM GaInP/ 1.17-eV GaInAs/ Ge 3-junction cell limited by radiative recombination at 500 suns. The bandgap - open circuit voltage offset, (Eg/q) - Voc, is used as a valuable theoretical and experimental tool to characterize multijunction cells with subcell bandgaps ranging from 0.7 to 2.1 eV. Experimental results are presented for prototype 6-junction cells employing an active {approx}1.1-eV dilute nitride GaInNAs subcell, with active-area efficiency greater than 23% and over 5.3 V open-circuit voltage under the 1-sun AM0 space spectrum. Such cell designs have theoretical efficiencies under the terrestrial spectrum at 500 suns concentration exceeding 55% efficiency, even for lattice-matched designs.

  14. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to...

  15. Isotopically controlled semiconductors

    E-Print Network [OSTI]

    Haller, Eugene E.

    2006-01-01T23:59:59.000Z

    16 Isotopically Controlled Semiconductors Eugene E. Hallerof isotopically engineered semiconductors; for outstandingisotopically controlled semiconductor crystals. This article

  16. Monolithic, multi-bandgap, tandem, ultra-thin, strain-counterbalanced, photovoltaic energy converters with optimal subcell bandgaps

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO); Mascarenhas, Angelo (Lakewood, CO)

    2012-05-08T23:59:59.000Z

    Modeling a monolithic, multi-bandgap, tandem, solar photovoltaic converter or thermophotovoltaic converter by constraining the bandgap value for the bottom subcell to no less than a particular value produces an optimum combination of subcell bandgaps that provide theoretical energy conversion efficiencies nearly as good as unconstrained maximum theoretical conversion efficiency models, but which are more conducive to actual fabrication to achieve such conversion efficiencies than unconstrained model optimum bandgap combinations. Achieving such constrained or unconstrained optimum bandgap combinations includes growth of a graded layer transition from larger lattice constant on the parent substrate to a smaller lattice constant to accommodate higher bandgap upper subcells and at least one graded layer that transitions back to a larger lattice constant to accommodate lower bandgap lower subcells and to counter-strain the epistructure to mitigate epistructure bowing.

  17. Ferromagnetic semiconductors based upon AlGaP M. E. Overberg,a)

    E-Print Network [OSTI]

    Hebard, Arthur F.

    band-gap ternary InGaP, which is lattice matched to GaAs. An immediate application of the DMS, with its wide band-gap binary GaP, AlP and ternary InGaP, AlGaP, AlInP components, is used for devices

  18. Electrical transport properties of (BN)-rich hexagonal (BN)C semiconductor alloys

    SciTech Connect (OSTI)

    Uddin, M. R.; Doan, T. C.; Li, J.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX 79409 (United States); Ziemer, K. S. [Department of Chemical Engineering, Northeastern University, Boston, MA 02115 (United States)

    2014-08-15T23:59:59.000Z

    The layer structured hexagonal boron nitride carbon semiconductor alloys, h-(BN)C, offer the unique abilities of bandgap engineering (from 0 for graphite to ?6.4 eV for h-BN) and electrical conductivity control (from semi-metal for graphite to insulator for undoped h-BN) through alloying and have the potential to complement III-nitride wide bandgap semiconductors and carbon based nanostructured materials. Epilayers of (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys were synthesized by metal-organic chemical vapor deposition (MOCVD) on (0001) sapphire substrates. Hall-effect measurements revealed that homogeneous (BN)-rich h-(BN){sub 1-x}(C{sub 2}){sub x} alloys are naturally n-type. For alloys with x = 0.032, an electron mobility of about 20 cm{sup 2}/Vs at 650?K was measured. X-ray photoelectron spectroscopy (XPS) was used to determine the chemical composition and analyze chemical bonding states. Both composition and chemical bonding analysis confirm the formation of alloys. XPS results indicate that the carbon concentration in the alloys increases almost linearly with the flow rate of the carbon precursor (propane (C{sub 3}H{sub 8})) employed during the epilayer growth. XPS chemical bonding analysis showed that these MOCVD grown alloys possess more C-N bonds than C-B bonds, which possibly renders the undoped h-(BN){sub 1-x}(C{sub 2}){sub x} alloys n-type and corroborates the Hall-effect measurement results.

  19. Electron gas grid semiconductor radiation detectors

    DOE Patents [OSTI]

    Lee, Edwin Y. (Livermore, CA); James, Ralph B. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    An electron gas grid semiconductor radiation detector (EGGSRAD) useful for gamma-ray and x-ray spectrometers and imaging systems is described. The radiation detector employs doping of the semiconductor and variation of the semiconductor detector material to form a two-dimensional electron gas, and to allow transistor action within the detector. This radiation detector provides superior energy resolution and radiation detection sensitivity over the conventional semiconductor radiation detector and the "electron-only" semiconductor radiation detectors which utilize a grid electrode near the anode. In a first embodiment, the EGGSRAD incorporates delta-doped layers adjacent the anode which produce an internal free electron grid well to which an external grid electrode can be attached. In a second embodiment, a quantum well is formed between two of the delta-doped layers, and the quantum well forms the internal free electron gas grid to which an external grid electrode can be attached. Two other embodiments which are similar to the first and second embodiment involve a graded bandgap formed by changing the composition of the semiconductor material near the first and last of the delta-doped layers to increase or decrease the conduction band energy adjacent to the delta-doped layers.

  20. INSTITUTE OF PHYSICS PUBLISHING SEMICONDUCTOR SCIENCE AND TECHNOLOGY Semicond. Sci. Technol. 22 (2007) 2934 doi:10.1088/0268-1242/22/2/006

    E-Print Network [OSTI]

    2007-01-01T23:59:59.000Z

    INSTITUTE OF PHYSICS PUBLISHING SEMICONDUCTOR SCIENCE AND TECHNOLOGY Semicond. Sci. Technol. 22 mismatch between Si and direct bandgap IIIV compound semiconductors such as GaAs makes the direct growth of compositionally graded Si1-xGex buffer layers to bridge the gap between Si and GaAs lattice constants (i

  1. SEMICONDUCTOR DETECTORS - AN INTRODUCTION

    E-Print Network [OSTI]

    Goulding, F.S.

    2011-01-01T23:59:59.000Z

    infrinfc primely owned dtfiw. SEMICONDUCTOR DETECTORS - ANi) LBL-7282 I. History Semiconductor detectors appeared onof alpha particles by semiconductor diodes several years

  2. Isotopically controlled semiconductors

    E-Print Network [OSTI]

    Haller, E.E.

    2004-01-01T23:59:59.000Z

    and phonons in semiconductors, J. Non-Cryst. Solids 141 (LVM) Spectroscopy of Semiconductors, Mat. Res. Soc. Symp.Isotopically Engineered Semiconductors New Media for the

  3. Isotopically controlled semiconductors

    E-Print Network [OSTI]

    Haller, Eugene E.

    2001-01-01T23:59:59.000Z

    Transmutation Doping of Semiconductor Materials, NationalTransmutation Doping of Semiconductor Materials, NationalProperties of Doped Semiconductors , Solid State Series,

  4. Semiconductor Nanowires: What's Next?

    E-Print Network [OSTI]

    Yang, Peidong

    2011-01-01T23:59:59.000Z

    Semiconductor nanowires, whats next? Peidong Yang, Ruoxuelater research into semiconductor whiskers with nanoscalewere popularized as semiconductor nanowires in the following

  5. Photoacoustic measurement of bandgaps of thermoelectric materials

    E-Print Network [OSTI]

    Ni, George (George Wei)

    2014-01-01T23:59:59.000Z

    Thermoelectric materials are a promising class of direct energy conversion materials, usually consisting of highly doped semiconductors. The key to maximizing their thermal to electrical energy conversion lies in optimizing ...

  6. Extracting hot carriers from photoexcited semiconductor nanocrystals

    SciTech Connect (OSTI)

    Zhu, Xiaoyang

    2014-12-10T23:59:59.000Z

    This research program addresses a fundamental question related to the use of nanomaterials in solar energy -- namely, whether semiconductor nanocrystals (NCs) can help surpass the efficiency limits, the so-called Shockley-Queisser limit, in conventional solar cells. In these cells, absorption of photons with energies above the semiconductor bandgap generates hot charge carriers that quickly cool to the band edges before they can be utilized to do work; this sets the solar cell efficiency at a limit of ~31%. If instead, all of the energy of the hot carriers could be captured, solar-to-electric power conversion efficiencies could be increased, theoretically, to as high as 66%. A potential route to capture this energy is to utilize semiconductor nanocrystals. In these materials, the quasi-continuous conduction and valence bands of the bulk semiconductor become discretized due to confinement of the charge carriers. Consequently, the energy spacing between the electronic levels can be much larger than the highest phonon frequency of the lattice, creating a phonon bottleneck wherein hot-carrier relaxation is possible via slower multiphonon emission. For example, hot-electron lifetimes as long as ~1 ns have been observed in NCs grown by molecular beam epitaxy. In colloidal NCs, long lifetimes have been demonstrated through careful design of the nanocrystal interfaces. Due to their ability to slow electronic relaxation, semiconductor NCs can in principle enable extraction of hot carriers before they cool to the band edges, leading to more efficient solar cells.

  7. Light sources based on semiconductor current filaments

    DOE Patents [OSTI]

    Zutavern, Fred J. (Albuquerque, NM); Loubriel, Guillermo M. (Albuquerque, NM); Buttram, Malcolm T. (Sandia Park, NM); Mar, Alan (Albuquerque, NM); Helgeson, Wesley D. (Albuquerque, NM); O'Malley, Martin W. (Edgewood, NM); Hjalmarson, Harold P. (Albuquerque, NM); Baca, Albert G. (Albuquerque, NM); Chow, Weng W. (Cedar Crest, NM); Vawter, G. Allen (Albuquerque, NM)

    2003-01-01T23:59:59.000Z

    The present invention provides a new type of semiconductor light source that can produce a high peak power output and is not injection, e-beam, or optically pumped. The present invention is capable of producing high quality coherent or incoherent optical emission. The present invention is based on current filaments, unlike conventional semiconductor lasers that are based on p-n junctions. The present invention provides a light source formed by an electron-hole plasma inside a current filament. The electron-hole plasma can be several hundred microns in diameter and several centimeters long. A current filament can be initiated optically or with an e-beam, but can be pumped electrically across a large insulating region. A current filament can be produced in high gain photoconductive semiconductor switches. The light source provided by the present invention has a potentially large volume and therefore a potentially large energy per pulse or peak power available from a single (coherent) semiconductor laser. Like other semiconductor lasers, these light sources will emit radiation at the wavelength near the bandgap energy (for GaAs 875 nm or near infra red). Immediate potential applications of the present invention include high energy, short pulse, compact, low cost lasers and other incoherent light sources.

  8. Stretchable semiconductor elements and stretchable electrical circuits

    DOE Patents [OSTI]

    Rogers, John A. (Champaign, IL); Khang, Dahl-Young (Seoul, KR); Menard, Etienne (Durham, NC)

    2009-07-07T23:59:59.000Z

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  9. Electrically dependent bandgaps in graphene on hexagonal boron nitride

    SciTech Connect (OSTI)

    Kaplan, D., E-mail: daniel.b.kaplan.civ@mail.mil; Swaminathan, V. [U.S. Army RDECOM-ARDEC, Fuze Precision Armaments and Technology Directorate, Picatinny Arsenal, New Jersey 07806 (United States); Recine, G. [Department of Applied Physics, Polytechnic Institute of New York University, Brooklyn, New York 11201 (United States); Department of Physics and Engineering Physics, Fordham University, Bronx, New York 10458 (United States)

    2014-03-31T23:59:59.000Z

    We present first-principles calculations on the bandgap of graphene on a layer of hexagonal boron nitride in three different stacking configurations. Relative stability of the configurations is identified and bandgap tunability is demonstrated through the application of an external, perpendicularly applied electric field. We carefully examine the bandgap's sensitivity to both magnitude of the applied field as well as separation between the graphene and hexagonal boron nitride layers. Features of the band structure are examined and configuration-dependent relationships between the field and bandgap are revealed and elucidated through the atom-projected density of states. These findings suggest the potential for opening and modulating a bandgap in graphene as high as several hundred meV.

  10. Semiconductor Ion Implanters

    SciTech Connect (OSTI)

    MacKinnon, Barry A. [Isys, 2727 Walsh Ave., Suite 103, Santa Clara, CA 95051 (United States); Ruffell, John P. [Group 3, LLC, Sunnyvale, CA 94086 (United States)

    2011-06-01T23:59:59.000Z

    In 1953 the Raytheon CK722 transistor was priced at $7.60. Based upon this, an Intel Xeon Quad Core processor containing 820,000,000 transistors should list at $6.2 billion. Particle accelerator technology plays an important part in the remarkable story of why that Intel product can be purchased today for a few hundred dollars. Most people of the mid twentieth century would be astonished at the ubiquity of semiconductors in the products we now buy and use every day. Though relatively expensive in the nineteen fifties they now exist in a wide range of items from high-end multicore microprocessors like the Intel product to disposable items containing 'only' hundreds or thousands like RFID chips and talking greeting cards. This historical development has been fueled by continuous advancement of the several individual technologies involved in the production of semiconductor devices including Ion Implantation and the charged particle beamlines at the heart of implant machines. In the course of its 40 year development, the worldwide implanter industry has reached annual sales levels around $2B, installed thousands of dedicated machines and directly employs thousands of workers. It represents in all these measures, as much and possibly more than any other industrial application of particle accelerator technology. This presentation discusses the history of implanter development. It touches on some of the people involved and on some of the developmental changes and challenges imposed as the requirements of the semiconductor industry evolved.

  11. Photoelectrochemistry, Electronic Structure, and Bandgap Sizes of Semiconducting Cu(I)-Niobates and Cu(I)-Tantalates

    SciTech Connect (OSTI)

    Maggard, Paul A.

    2013-11-14T23:59:59.000Z

    Semiconducting metal-oxides have remained of intense research interest owing to their potential for achieving efficient solar-driven photocatalytic reactions in aqueous solutions that occur as a result of their bandgap excitation. The photocatalytic reduction of water or carbon dioxide to generate hydrogen or hydrocarbon fuels, respectively, can be driven on p-type (photocathodic) electrodes with suitable band energies. However, metal-oxide semiconductors are typically difficult to dope as p-type with a high mobility of carriers. The supported research led to the discovery of new p-type Cu(I)-niobate and Cu(I)-tantalate film electrodes that can be prepared on FTO glass. New high-purity flux syntheses and the full structural determination of several Cu(I)-containing niobates and tantalates have been completed, as well as new investigations of their optical and photoelectrochemical properties and electronic structures via density-functional theory calculations. For example, CuNbO3, Cu5Ta11O30 and CuNb3O8 were prepared in high purity and their structures were characterized by both single-crystal and powder X-ray diffraction techniques. These two classes of Cu(I)-containing compounds exhibit optical bandgap sizes ranging from ~1.3 eV to ~2.6 eV. Photoelectrochemical measurements of these compounds show strong photon-driven cathodic currents that confirm the p-type semiconductor behavior of CuNbO3, CuNb3O8, and Cu5Ta11O30. Incident-photon-to-current efficiencies are measured that approach greater than ~1%. Electronic-structure calculations based on density functional theory reveal the visible-light absorption stems from a nearly-direct bandgap transition involving a copper-to-niobium or tantalum (d10 to d0) charge-transfer excitations.

  12. Wavelength-resonant surface-emitting semiconductor laser

    DOE Patents [OSTI]

    Brueck, Steven R. J. (Albuquerque, NM); Schaus, Christian F. (Albuquerque, NM); Osinski, Marek A. (Albuquerque, NM); McInerney, John G. (Cedar Crest, NM); Raja, M. Yasin A. (Albuquerque, NM); Brennan, Thomas M. (Albuquerque, NM); Hammons, Burrell E. (Tijeras, NM)

    1989-01-01T23:59:59.000Z

    A wavelength resonant semiconductor gain medium is disclosed. The essential feature of this medium is a multiplicity of quantum-well gain regions separated by semiconductor spacer regions of higher bandgap. Each period of this medium consisting of one quantum-well region and the adjacent spacer region is chosen such that the total width is equal to an integral multiple of 1/2 the wavelength in the medium of the radiation with which the medium is interacting. Optical, electron-beam and electrical injection pumping of the medium is disclosed. This medium may be used as a laser medium for single devices or arrays either with or without reflectors, which may be either semiconductor or external.

  13. Wafer-fused semiconductor radiation detector

    DOE Patents [OSTI]

    Lee, Edwin Y. (Livermore, CA); James, Ralph B. (Livermore, CA)

    2002-01-01T23:59:59.000Z

    Wafer-fused semiconductor radiation detector useful for gamma-ray and x-ray spectrometers and imaging systems. The detector is fabricated using wafer fusion to insert an electrically conductive grid, typically comprising a metal, between two solid semiconductor pieces, one having a cathode (negative electrode) and the other having an anode (positive electrode). The wafer fused semiconductor radiation detector functions like the commonly used Frisch grid radiation detector, in which an electrically conductive grid is inserted in high vacuum between the cathode and the anode. The wafer-fused semiconductor radiation detector can be fabricated using the same or two different semiconductor materials of different sizes and of the same or different thicknesses; and it may utilize a wide range of metals, or other electrically conducting materials, to form the grid, to optimize the detector performance, without being constrained by structural dissimilarity of the individual parts. The wafer-fused detector is basically formed, for example, by etching spaced grooves across one end of one of two pieces of semiconductor materials, partially filling the grooves with a selected electrical conductor which forms a grid electrode, and then fusing the grooved end of the one semiconductor piece to an end of the other semiconductor piece with a cathode and an anode being formed on opposite ends of the semiconductor pieces.

  14. Life-cycle Assessment of Semiconductors

    E-Print Network [OSTI]

    Boyd, Sarah B.

    2009-01-01T23:59:59.000Z

    SemiconductorThe Semiconductor Industry: Size, Growth andSemiconductor Life-cycle Environmental Impacts . . . . . . .

  15. Hydrogen in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, Chris G.

    2007-01-01T23:59:59.000Z

    level in two different semiconductors, illustrating the06-01999R1 Hydrogen in semiconductors and insulators SpecialA. oxide materials; A. semiconductors; C. electronic

  16. Infrared spectroscopy of novel semiconductors /

    E-Print Network [OSTI]

    Chapler, Brian Caleb

    2014-01-01T23:59:59.000Z

    dilute magnetic semiconductor . . . . . . . . 1 1.1.1in the topological semiconductors Bi2Te3 and MndopedM. Fundamentals of semiconductors. Springer-Verlag, Berlin,

  17. Novel room temperature ferromagnetic semiconductors

    E-Print Network [OSTI]

    Gupta, Amita

    2004-01-01T23:59:59.000Z

    Spin Related Phenomena in Semiconductors, (27-28 Jan 1997,FERROMAGNETIC SEMICONDUCTORS Amita Gupta Stockholm, Junedata are processed by semiconductor chips, and stored in the

  18. Investigation of sub-bandgap absorption in iron pyrite : optical and electrical measurements

    E-Print Network [OSTI]

    Chakraborty, Rupak

    2014-01-01T23:59:59.000Z

    We investigate sub-bandgap absorption in pyrite FeS? single-crystals, using both natural and synthetic crystals. Both types of crystals show non-negligible magnitudes of sub-bandgap absorption. To test whether the origin ...

  19. On-nanowire spatial bandgap design for white light emission

    E-Print Network [OSTI]

    Yang, Zongyin; Xu, Jinyou; Wang, Pan; Zhuang, Xiujuan; Pan, Anlian; Tong, Limin

    2011-10-19T23:59:59.000Z

    processes for full-composition (b) and tri-color (c) bandgap graded ZnCdSSe nanowires, respectively. Figure 1a shows the schematic setup for the growth of full-color bandgap graded ZnCdSSe alloy nanowires. A horizontal quartz tube (inner diameter 45 mm... in the untunable PL photometric properties of nanowires. The strategy in this experiment is to cool tube with a flow of air and fill the gap between substrate and tube with high ther- mal conductivity material. Low working temperature of CdSe source causes dilute...

  20. Nonlinear nano Optics and its Application: Bond Model for Semiconductor Characterization

    E-Print Network [OSTI]

    Hardhienata, Hendradi

    2015-01-01T23:59:59.000Z

    This paper begins with a brief history of nonlinear optics and how the bond model emerges as a need to obtain a better physical picture of nonlinearity. A description about the possible application of the bond model is presented afterward followed by a theoretical explanation of its fundamentals. The possibility to develop this model for future application such as surface reconstruction characterization, real time surface biosensor monitoring, and semiconductor surface bandgap determination is also presented at the end.

  1. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Savoy, IL); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Urbana, IL)

    2009-11-24T23:59:59.000Z

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  2. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2014-03-04T23:59:59.000Z

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  3. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G; Rogers, John A; Menard, Etienne; Lee, Keon Jae; Khang, Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao

    2013-05-14T23:59:59.000Z

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  4. Methods and devices for fabricating and assembling printable semiconductor elements

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Daejeon, KR); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Champaign, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Urbana, IL)

    2011-07-19T23:59:59.000Z

    The invention provides methods and devices for fabricating printable semiconductor elements and assembling printable semiconductor elements onto substrate surfaces. Methods, devices and device components of the present invention are capable of generating a wide range of flexible electronic and optoelectronic devices and arrays of devices on substrates comprising polymeric materials. The present invention also provides stretchable semiconductor structures and stretchable electronic devices capable of good performance in stretched configurations.

  5. Photonic bandgap narrowing in conical hollow core Bragg fibers

    SciTech Connect (OSTI)

    Ozturk, Fahri Emre; Yildirim, Adem; Kanik, Mehmet [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Bayindir, Mehmet, E-mail: bayindir@nano.org.tr [UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara (Turkey); Institute of Materials Science and Nanotechnology, Bilkent University, 06800 Ankara (Turkey); Department of Physics, Bilkent University, 06800 Ankara (Turkey)

    2014-08-18T23:59:59.000Z

    We report the photonic bandgap engineering of Bragg fibers by controlling the thickness profile of the fiber during the thermal drawing. Conical hollow core Bragg fibers were produced by thermal drawing under a rapidly alternating load, which was applied by introducing steep changes to the fiber drawing speed. In conventional cylindrical Bragg fibers, light is guided by omnidirectional reflections from interior dielectric mirrors with a single quarter wave stack period. In conical fibers, the diameter reduction introduced a gradient of the quarter wave stack period along the length of the fiber. Therefore, the light guided within the fiber encountered slightly smaller dielectric layer thicknesses at each reflection, resulting in a progressive blueshift of the reflectance spectrum. As the reflectance spectrum shifts, longer wavelengths of the initial bandgap cease to be omnidirectionally reflected and exit through the cladding, which narrows the photonic bandgap. A narrow transmission bandwidth is particularly desirable in hollow waveguide mid-infrared sensing schemes, where broadband light is coupled to the fiber and the analyte vapor is introduced into the hollow core to measure infrared absorption. We carried out sensing simulations using the absorption spectrum of isopropyl alcohol vapor to demonstrate the importance of narrow bandgap fibers in chemical sensing applications.

  6. Unitary lens semiconductor device

    DOE Patents [OSTI]

    Lear, Kevin L. (Albuquerque, NM)

    1997-01-01T23:59:59.000Z

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  7. Mismatched semiconductor nanowires: growth and characterization

    E-Print Network [OSTI]

    Yim, Joanne Wing Lan

    2011-01-01T23:59:59.000Z

    SemiconductorFundamentals of Semiconductors: Physics and MaterialsDilute III-V Nitride Semiconductors and Material Systems (

  8. Beam excited acoustic instability in semiconductor quantum plasmas

    SciTech Connect (OSTI)

    Rasheed, A.; Siddique, M.; Huda, F. [Department of Physics, Government College University, Faisalabad 38000 (Pakistan); Jamil, M. [Department of Physics, COMSATS Institute of Information Technology, Lahore 54000 (Pakistan); Jung, Y.-D. [Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)

    2014-06-15T23:59:59.000Z

    The instability of hole-Acoustic waves due to electron beam in semiconductor quantum plasmas is examined using the quantum hydrodynamic model. The quantum effects are considered including Bohm potential, Fermi degenerate pressure, and exchange potential of the semiconductor quantum plasma species. Our model is applied to nano-sized GaAs semiconductor plasmas. The variation of the growth rate of the unstable mode is obtained over a wide range of system parameters. It is found that the thermal effects of semiconductor species have significance over the hole-Acoustic waves.

  9. Acoustical transparency induced by local resonance in Bragg bandgaps

    SciTech Connect (OSTI)

    Yu, Gaokun; Wang, Xinlong, E-mail: xlwang@nju.edu.cn [Key Laboratory of Modern Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093 (China)

    2014-01-28T23:59:59.000Z

    We show that sound waves can resonantly transmit through Bragg bandgaps in an acoustical duct periodically attached with an array of Helmholtz resonators, forming within the normally forbidden band a transparency window with group velocity smaller than the normal speed of sound. The transparency occurs for the locally resonant frequency so much close to the Bragg one that both the local-resonance-induced bandgap and the Bragg one heavily overlap with each other. The phenomenon seems an acoustical analog of the well-known electromagnetically induced transparency by quantum interference. Different from the Fano-like interference explanation, we also provide a mechanism for the transparency window phenomenon which makes it possible to extend the phenomenon in general.

  10. Bandgap calculations and trends of organometal halide perovskites

    SciTech Connect (OSTI)

    Castelli, Ivano E., E-mail: ivca@fysik.dtu.dk; Thygesen, Kristian S.; Jacobsen, Karsten W. [Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK 2800 Kgs. Lyngby (Denmark); Garca-Lastra, Juan Mara [Center for Atomic-scale Materials Design (CAMD), Department of Physics, Technical University of Denmark, DK 2800 Kgs. Lyngby (Denmark); Department of Energy Conversion and Storage, Technical University of Denmark, DK 4000 Roskilde (Denmark)

    2014-08-01T23:59:59.000Z

    Energy production from the Sun requires a stable efficient light absorber. Promising candidates in this respect are organometal perovskites (ABX{sub 3}), which have been intensely investigated during the last years. Here, we have performed electronic structure calculations of 240 perovskites composed of Cs, CH{sub 3}NH{sub 3}, and HC(NH{sub 2}){sub 2} as A-cation, Sn and Pb as B-ion, and a combination of Cl, Br, and I as anions. The calculated gaps span over a region from 0.5 to 5.0 eV. In addition, the trends over bandgaps have been investigated: the bandgap increases with an increase of the electronegativities of the constituent species, while it reduces with an increase of the lattice constants of the system.

  11. Thermophotovoltaic energy conversion using photonic bandgap selective emitters

    DOE Patents [OSTI]

    Gee, James M. (Albuquerque, NM); Lin, Shawn-Yu (Albuquerque, NM); Fleming, James G. (Albuquerque, NM); Moreno, James B. (Albuquerque, NM)

    2003-06-24T23:59:59.000Z

    A method for thermophotovoltaic generation of electricity comprises heating a metallic photonic crystal to provide selective emission of radiation that is matched to the peak spectral response of a photovoltaic cell that converts the radiation to electricity. The use of a refractory metal, such as tungsten, for the photonic crystal enables high temperature operation for high radiant flux and high dielectric contrast for a full 3D photonic bandgap, preferable for efficient thermophotovoltaic energy conversion.

  12. Analysis of AlN/AlGaN/GaN metal-insulator-semiconductor structure by using capacitance-frequency-temperature mapping

    SciTech Connect (OSTI)

    Shih, Hong-An; Kudo, Masahiro; Suzuki, Toshi-kazu [Center for Nano Materials and Technology, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan)

    2012-07-23T23:59:59.000Z

    AlN/AlGaN/GaN metal-insulator-semiconductor (MIS) structure is analyzed by using capacitance-frequency-temperature (C-f-T) mapping. Applying sputtering-deposited AlN, we attained AlN/AlGaN/GaN MIS heterostructure field-effect transistors with much suppressed gate leakage currents, but exhibiting frequency dispersion in C-V characteristics owing to high-density AlN/AlGaN interface states. In order to investigate the interface states deteriorating the device performance, we measured temperature-dependent frequency dispersion in the C-V characteristics. As a result, we obtained C-f-T mapping, whose analysis gives the activation energies of electron trapping, namely the interface state energy levels, for a wide range of the gate biases. This analysis method is auxiliary to the conventional conductance method, serving as a valuable tool for characterization of wide-bandgap devices with deep interface states. From the analysis, we can directly evaluate the gate-control efficiency of the devices.

  13. Interconnected semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1990-10-23T23:59:59.000Z

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  14. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, R.W. Jr.; Grubelich, M.C.

    1999-01-19T23:59:59.000Z

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge (SCB) igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length. 3 figs.

  15. Semiconductor bridge (SCB) detonator

    DOE Patents [OSTI]

    Bickes, Jr., Robert W. (Albuquerque, NM); Grubelich, Mark C. (Albuquerque, NM)

    1999-01-01T23:59:59.000Z

    The present invention is a low-energy detonator for high-density secondary-explosive materials initiated by a semiconductor bridge igniter that comprises a pair of electrically conductive lands connected by a semiconductor bridge. The semiconductor bridge is in operational or direct contact with the explosive material, whereby current flowing through the semiconductor bridge causes initiation of the explosive material. Header wires connected to the electrically-conductive lands and electrical feed-throughs of the header posts of explosive devices, are substantially coaxial to the direction of current flow through the SCB, i.e., substantially coaxial to the SCB length.

  16. High-efficiency, monolithic, multi-bandgap, tandem photovoltaic energy converters

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    2011-11-29T23:59:59.000Z

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  17. High-efficiency, monolithic, multi-bandgap, tandem, photovoltaic energy converters

    DOE Patents [OSTI]

    Wanlass, Mark W

    2014-05-27T23:59:59.000Z

    A monolithic, multi-bandgap, tandem solar photovoltaic converter has at least one, and preferably at least two, subcells grown lattice-matched on a substrate with a bandgap in medium to high energy portions of the solar spectrum and at least one subcell grown lattice-mismatched to the substrate with a bandgap in the low energy portion of the solar spectrum, for example, about 1 eV.

  18. all-solid photonic bandgap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    V. Englich-059 Krakw, Poland ABSTRACT Microstructured optical fibers provide a unique environment for new compact gaseous medium within a hollow-core photonic bandgap fiber...

  19. Chemical dynamics and bonding at gas/semiconductor and oxide/semiconductor interfaces

    E-Print Network [OSTI]

    Bishop, Sarah R.

    2010-01-01T23:59:59.000Z

    applied to alternative semiconductor materials to determinephase oxides and semiconductor surfaces. Both experimentalunderstanding of the oxide/semiconductor interface. The

  20. SSSSSSSS LLLLSemiconductor System LabSemiconductor System LabSemiconductor System LabSemiconductor System Lab Jaeseo Lee, Gigabit Optical Interface IC Design 1

    E-Print Network [OSTI]

    Yoo, Hoi-Jun

    range Wide Bandwidth Low Noise amplifier is required!! 60~80dB 1) providing dc level restoration 2Semiconductor System Lab Design Goal Gain range : 60~80dB (1k ~ 10k) Wide bandwidth Low Noise CMOS Motivation Transimpedance Amplifier (TIA) Why TIA? Noise Source TIA Noise & Design Solution

  1. Manipulating Light Pulses via Dynamically Controlled Photonic Bandgap

    E-Print Network [OSTI]

    A. Andre; M. D. Lukin

    2002-05-13T23:59:59.000Z

    When a resonance associated with electromagnetically induced transparency (EIT) in an atomic ensemble is modulated by an off-resonant standing light wave, a band of frequencies can appear for which light propagation is forbidden. We show that dynamic control of such a bandgap can be used to coherently convert a propagating light pulse into a stationary excitation with non-vanishing photonic component. This can be accomplished with high efficiency and negligble noise even at a level of few-photon quantum fields thereby facilitating possible applications in quantum nonlinear optics and quantum information.

  2. Guided-mode based Faraday rotation spectroscopy within a photonic bandgap fiber

    E-Print Network [OSTI]

    gaseous medium within a hollow-core photonic bandgap fiber (HC-PCF). This novel fiber-optic approach to Faraday Rotation Spectroscopy (FRS) demonstrates the detection of molecular oxygen at 762.309 nm with nano reference gas cells1 . For example, hollow-core photonic bandgap fibers (HC-PCF's) enable efficient

  3. Light trapping design for low band-gap polymer solar cells

    E-Print Network [OSTI]

    John, Sajeev

    Light trapping design for low band-gap polymer solar cells Stephen Foster1,* and Sajeev John1,2 1 demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell observe an enhancement in solar absorption of almost 40% relative to a planar cell. Improvements

  4. High performance, high bandgap, lattice-mismatched, GaInP solar cells

    DOE Patents [OSTI]

    Wanlass, Mark W.; Carapella, Jeffrey J.; Steiner, Myles A.

    2014-07-08T23:59:59.000Z

    High performance, high bandgap, lattice-mismatched, photovoltaic cells (10), both transparent and non-transparent to sub-bandgap light, are provided as devices for use alone or in combination with other cells in split spectrum apparatus or other applications.

  5. Mesoscopic pointlike defects in semiconductors: Deep-level energies D. D. Nolte

    E-Print Network [OSTI]

    Nolte, David D.

    -semiconductor heterostructures to include metal-semiconductor,1 insulator-semiconductor, and superconductor-semiconductor

  6. Semiconductor Engineers in a Global Economy

    E-Print Network [OSTI]

    Brown, Clair; Linden, Greg

    2007-01-01T23:59:59.000Z

    Technology: The Case of Semiconductors. Brookings Institute:Society, Space, and Semiconductors in The Restructuring Ofin the Global Semiconductor Industry. California

  7. Synthesis and Characterization of Mesoporous Semiconductors

    E-Print Network [OSTI]

    Kang, Chris Byung-hwa

    2012-01-01T23:59:59.000Z

    Brock, S. L. Porous semiconductor chalcogenide aerogels. Nanostructured Semiconductor. J. Am. Chem. Soc. , 127,in mesostructured semiconductors based on the [SnSe 4 ]4-

  8. Semiconductor Nanowires and Nanotubes for Energy Conversion

    E-Print Network [OSTI]

    Fardy, Melissa Anne

    2010-01-01T23:59:59.000Z

    Thermoelectricity in semiconductor nanostructures. Science,splitting using semiconductor electrodes. InternationalChalcogenides, Monographs in Semiconductor Physics, ed. L.S.

  9. Recent emission channeling studies in wide band gap semiconductors

    E-Print Network [OSTI]

    Wahl, Ulrich; Rita, E; Alves, E; Carvalho-Soares, Joo; De Vries, Bart; Matias, V; Vantomme, A

    2005-01-01T23:59:59.000Z

    We present results of recent emission channeling experiments on the lattice location of implanted Fe and rare earths in wurtzite GaN and ZnO. In both cases the majority of implanted atoms are found on substitutional cation sites. The root mean square displacements from the ideal substitutional Ga and Zn sites are given and the stability of the Fe and rare earth lattice location against thermal annealing is discussed.

  10. Broad-area tandem semiconductor laser

    SciTech Connect (OSTI)

    Chen, T.R.; Mehuys, D.; Zhuang, Y.H.; Mittelstein, M.; Wang, H.; Derry, P.L.; Kajanto, M.; Yariv, A.

    1988-10-17T23:59:59.000Z

    A tandem combination of a uniform gain broad-area semiconductor laser and a (lateral) periodic gain section displays a stable, near-diffraction-limited single-lobed far-field pattern. The GaAs/GaAlAs quantum well lasers display a high degree of coherence across 60-..mu..m-wide apertures provided that the broad-area section is sufficiently long.

  11. Blasting detonators incorporating semiconductor bridge technology

    SciTech Connect (OSTI)

    Bickes, R.W. Jr.

    1994-05-01T23:59:59.000Z

    The enormity of the coal mine and extraction industries in Russia and the obvious need in both Russia and the US for cost savings and enhanced safety in those industries suggests that joint studies and research would be of mutual benefit. The author suggests that mine sites and well platforms in Russia offer an excellent opportunity for the testing of Sandia`s precise time-delay semiconductor bridge detonators, with the potential for commercialization of the detonators for Russian and other world markets by both US and Russian companies. Sandia`s semiconductor bridge is generating interest among the blasting, mining and perforation industries. The semiconductor bridge is approximately 100 microns long, 380 microns wide and 2 microns thick. The input energy required for semiconductor bridge ignition is one-tenth the energy required for conventional bridgewire devices. Because semiconductor bridge processing is compatible with other microcircuit processing, timing and logic circuits can be incorporated onto the chip with the bridge. These circuits can provide for the precise timing demanded for cast effecting blasting. Indeed tests by Martin Marietta and computer studies by Sandia have shown that such precise timing provides for more uniform rock fragmentation, less fly rock, reduce4d ground shock, fewer ground contaminants and less dust. Cost studies have revealed that the use of precisely timed semiconductor bridges can provide a savings of $200,000 per site per year. In addition to Russia`s vast mineral resources, the Russian Mining Institute outside Moscow has had significant programs in rock fragmentation for many years. He anticipated that collaborative studies by the Institute and Sandia`s modellers would be a valuable resource for field studies.

  12. Method of doping a semiconductor

    DOE Patents [OSTI]

    Yang, Chiang Y. (Miller Place, NY); Rapp, Robert A. (Columbus, OH)

    1983-01-01T23:59:59.000Z

    A method for doping semiconductor material. An interface is established between a solid electrolyte and a semiconductor to be doped. The electrolyte is chosen to be an ionic conductor of the selected impurity and the semiconductor material and electrolyte are jointly chosen so that any compound formed from the impurity and the semiconductor will have a free energy no lower than the electrolyte. A potential is then established across the interface so as to allow the impurity ions to diffuse into the semiconductor. In one embodiment the semiconductor and electrolyte may be heated so as to increase the diffusion coefficient.

  13. Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes

    E-Print Network [OSTI]

    Sun, Xiaochen

    We report what we believe to be the first demonstration of direct bandgap electroluminescence (EL) from Ge/Si heterojunction light-emitting diodes (LEDs) at room temperature. In-plane biaxial tensile strain is used to ...

  14. Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure

    E-Print Network [OSTI]

    Hu, Min

    We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental ...

  15. Quantum Semiconductor Modeling Ansgar Jungel

    E-Print Network [OSTI]

    Jngel, Ansgar

    Quantum Semiconductor Modeling Ansgar Jungel Vienna University of Technology, Austria www.jungel.at.vu Ansgar Jungel (TU Wien) Quantum Semiconductor Modeling www.jungel.at.vu 1 / 154 #12;Contents 1 Introduction 2 Semiconductor modeling 3 Microscopic quantum models Density matrices Schrodinger models Wigner

  16. Novel room temperature ferromagnetic semiconductors

    SciTech Connect (OSTI)

    Gupta, Amita

    2004-11-01T23:59:59.000Z

    Today's information world, bits of data are processed by semiconductor chips, and stored in the magnetic disk drives. But tomorrow's information technology may see magnetism (spin) and semiconductivity (charge) combined in one 'spintronic' device that exploits both charge and 'spin' to carry data (the best of two worlds). Spintronic devices such as spin valve transistors, spin light emitting diodes, non-volatile memory, logic devices, optical isolators and ultra-fast optical switches are some of the areas of interest for introducing the ferromagnetic properties at room temperature in a semiconductor to make it multifunctional. The potential advantages of such spintronic devices will be higher speed, greater efficiency, and better stability at a reduced power consumption. This Thesis contains two main topics: In-depth understanding of magnetism in Mn doped ZnO, and our search and identification of at least six new above room temperature ferromagnetic semiconductors. Both complex doped ZnO based new materials, as well as a number of nonoxides like phosphides, and sulfides suitably doped with Mn or Cu are shown to give rise to ferromagnetism above room temperature. Some of the highlights of this work are discovery of room temperature ferromagnetism in: (1) ZnO:Mn (paper in Nature Materials, Oct issue, 2003); (2) ZnO doped with Cu (containing no magnetic elements in it); (3) GaP doped with Cu (again containing no magnetic elements in it); (4) Enhancement of Magnetization by Cu co-doping in ZnO:Mn; (5) CdS doped with Mn, and a few others not reported in this thesis. We discuss in detail the first observation of ferromagnetism above room temperature in the form of powder, bulk pellets, in 2-3 mu-m thick transparent pulsed laser deposited films of the Mn (<4 at. percent) doped ZnO. High-resolution transmission electron microscopy (HRTEM) and electron energy loss spectroscopy (EELS) spectra recorded from 2 to 200nm areas showed homogeneous distribution of Mn substituting for Zn a 2+ state in the ZnO lattice. Ferromagnetic Resonance (FMR) technique is used to confirm the existence of ferromagnetic ordering at temperatures as high as 425K. The ab initio calculations were found to be consistent with the observation of ferromagnetism arising from fully polarized Mn 2+ state. The key to observed room temperature ferromagnetism in this system is the low temperature processing, which prevents formation of clusters, secondary phases and the host ZnO from becoming n-type. The electronic structure of the same Mn doped ZnO thin films studied using XAS, XES and RIXS, revealed a strong hybridization between Mn 3d and O 2p states, which is an important characteristic of a Dilute magnetic Semiconductor (DMS). It is shown that the various processing conditions like sintering temperature, dopant concentration and the properties of precursors used for making of DMS have a great influence on the final properties. Use of various experimental techniques to verify the physical properties, and to understand the mechanism involved to give rise to ferromagnetism is presented. Methods to improve the magnetic moment in Mn doped ZnO are also described. New promising DMS materials (such as Cu doped ZnO are explored). The demonstrated new capability to fabricate powder, pellets, and thin films of room temperature ferromagnetic semiconductors thus makes possible the realization of a wide range of complex elements for a variety of new multifunctional phenomena related to Spintronic devices as well as magneto-optic components.

  17. Kansas Advanced Semiconductor Project

    SciTech Connect (OSTI)

    Baringer, P.; Bean, A.; Bolton, T.; Horton-Smith, G.; Maravin, Y.; Ratra, B.; Stanton, N.; von Toerne, E.; Wilson, G.

    2007-09-21T23:59:59.000Z

    KASP (Kansas Advanced Semiconductor Project) completed the new Layer 0 upgrade for D0, assumed key electronics projects for the US CMS project, finished important new physics measurements with the D0 experiment at Fermilab, made substantial contributions to detector studies for the proposed e+e- international linear collider (ILC), and advanced key initiatives in non-accelerator-based neutrino physics.

  18. Recombination in Low-Bandgap InGaAs

    SciTech Connect (OSTI)

    Gfroerer, T. H.; Wanlass, M. W.

    2006-01-01T23:59:59.000Z

    We review our investigation of recombination in In{sub x}Ga{sub 1-x}As with indium concentrations ranging between x=0.53 (i.e., lattice-matched to InP) and x=0.78. External radiative efficiency measurements were used to study how defect-related and Auger mechanisms compete with radiative recombination. The results indicated that deep mid-gap levels facilitate defect-related recombination in lattice-matched InGaAs while shallower levels play a more important role in the indium-rich alloys. Subsequent sub-bandgap photoluminescence measurements confirmed the presence of deep levels in the lattice-matched InGaAs. The superlinear excitation dependence of the sub-gap emission led to a defect-related deep-donor/shallow-acceptor pair model. Recent cathodoluminescence measurements of the subgap transitions show no spatial contrast, supporting the assignment of this mechanism to evenly distributed point defects. We hypothesize that the deep states observed in lattice-matched InGaAs are related to imperfections in the incorporation of indium or gallium, which become less likely as the indium concentration is increased.

  19. Synthesis and Characterization of Mesoporous Semiconductors and Their Energy Applications

    E-Print Network [OSTI]

    Kang, Chris Byung-hwa

    2013-01-01T23:59:59.000Z

    Biomaterials, Ceramics, and Semiconductors. Science, 277,I. Nanostructured Semiconductors Templated by Cholesteryl-Nanostructured Semiconductor. J. Am. Chem. Soc. , 127,

  20. A Novel Class of High-TC Ferromagnetic Semiconductors

    E-Print Network [OSTI]

    Shlyk, L. V.

    2008-01-01T23:59:59.000Z

    Diluted magnetic semiconductor or clustering effect? ,ferromagnetism in semiconductors, J. Appl. Phys. , inMaking nonmagnetic semiconductors ferromagnetic, Science,

  1. Magnetization dynamics and spin diffusion in semiconductors and metals

    E-Print Network [OSTI]

    Cywi?ski, ?ukasz

    2007-01-01T23:59:59.000Z

    to (III,Mn)V ferromagnetic semiconductors . . . . . . . . .semiconductors . . . . . . . . . . . . . . . . . .Spin di?usion in semiconductors and metals: a general

  2. Semiconductor radiation detector

    DOE Patents [OSTI]

    Patt, Bradley E. (Sherman Oaks, CA); Iwanczyk, Jan S. (Los Angeles, CA); Tull, Carolyn R. (Orinda, CA); Vilkelis, Gintas (Westlake Village, CA)

    2002-01-01T23:59:59.000Z

    A semiconductor radiation detector is provided to detect x-ray and light photons. The entrance electrode is segmented by using variable doping concentrations. Further, the entrance electrode is physically segmented by inserting n+ regions between p+ regions. The p+ regions and the n+ regions are individually biased. The detector elements can be used in an array, and the p+ regions and the n+ regions can be biased by applying potential at a single point. The back side of the semiconductor radiation detector has an n+ anode for collecting created charges and a number of p+ cathodes. Biased n+ inserts can be placed between the p+ cathodes, and an internal resistor divider can be used to bias the n+ inserts as well as the p+ cathodes. A polysilicon spiral guard can be implemented surrounding the active area of the entrance electrode or surrounding an array of entrance electrodes.

  3. WWW.MOTOROLA.COM/SEMICONDUCTORS Microcontrollers

    E-Print Network [OSTI]

    Song, Joe

    WWW.MOTOROLA.COM/SEMICONDUCTORS M68HC11 Microcontrollers M68HC11RM/D Rev. 6, 4/2002 M68HC11 Reference Manual FreescaleSemiconductor,I Freescale Semiconductor, Inc. For More Information On This Product, Go to: www.freescale.com nc... #12;FreescaleSemiconductor,I Freescale Semiconductor, Inc. For More

  4. Coherence and focusing properties of unstable resonator semiconductor lasers

    SciTech Connect (OSTI)

    Mittelstein, M.; Salzman, J.; Venkatesan, T.; Lang, R.; Yariv, A.

    1985-05-15T23:59:59.000Z

    The emission characteristics of unstable resonator semiconductor lasers were measured. The output of an 80-..mu..m-wide laser consists of a diverging beam with a virtual source 5 ..mu..m wide located 50 ..mu..m behind the laser facet. A high degree of spatial coherence of the laser output was measured, indicating single lateral mode operation for currents I< or approx. =3 I/sub th/.

  5. Semiconductor bridge, SCB, ignition of energetic materials

    SciTech Connect (OSTI)

    Bickes, R.W.; Grubelich, M.D.; Harris, S.M.; Merson, J.A.; Tarbell, W.W.

    1997-04-01T23:59:59.000Z

    Sandia National Laboratories` semiconductor bridge, SCB, is now being used for the ignition or initiation of a wide variety of exeoergic materials. Applications of this new technology arose because of a need at the system level to provide light weight, small volume and low energy explosive assemblies. Conventional bridgewire devices could not meet the stringent size, weight and energy requirements of our customers. We present an overview of SCB technology and the ignition characteristics for a number of energetic materials including primary and secondary explosives, pyrotechnics, thermites and intermetallics. We provide examples of systems designed to meet the modern requirements that sophisticated systems must satisfy in today`s market environments.

  6. Semiconductor lasers with uniform longitudinal intensity distribution

    SciTech Connect (OSTI)

    Schrans, T.; Yariv, A. (Department of Applied Physics 128-95, California Institute of Technology, Pasadena, California 91125 (USA))

    1990-04-16T23:59:59.000Z

    Power-dependent nonuniform longitudinal intensity distribution leading to spectral and spatial instabilities is a major problem in semiconductor lasers. It is shown theoretically that a proper choice of the longitudinal distribution of the gain as well as that of the magnitude of the grating coupling coefficient will lead to a uniform intensity distribution in distributed feedback lasers. We also show that the widely used phase, rather than magnitude, control of the coupling coefficient cannot lead to a uniform intensity distribution when the facet reflectivities are zero.

  7. Thin film three-dimensional topological insulator metal-oxide-semiconductor field-effect-transistors: A candidate for sub-10?nm devices

    SciTech Connect (OSTI)

    Akhavan, N. D., E-mail: nima.dehdashti@uwa.edu.au; Jolley, G.; Umana-Membreno, G. A.; Antoszewski, J.; Faraone, L. [Department of Electrical, Electronic and Computer Engineering, University of Western Australia, Crawley, WA 6009 (Australia)

    2014-08-28T23:59:59.000Z

    Three-dimensional (3D) topological insulators (TI) are a new state of quantum matter in which surface states reside in the bulk insulating energy bandgap and are protected by time-reversal symmetry. It is possible to create an energy bandgap as a consequence of the interaction between the conduction band and valence band surface states from the opposite surfaces of a TI thin film, and the width of the bandgap can be controlled by the thin film thickness. The formation of an energy bandgap raises the possibility of thin-film TI-based metal-oxide-semiconductor field-effect-transistors (MOSFETs). In this paper, we explore the performance of MOSFETs based on thin film 3D-TI structures by employing quantum ballistic transport simulations using the effective continuous Hamiltonian with fitting parameters extracted from ab-initio calculations. We demonstrate that thin film transistors based on a 3D-TI structure provide similar electrical characteristics compared to a Si-MOSFET for gate lengths down to 10?nm. Thus, such a device can be a potential candidate to replace Si-based MOSFETs in the sub-10?nm regime.

  8. Method of passivating semiconductor surfaces

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1990-01-01T23:59:59.000Z

    A method of passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  9. Sandia National Laboratories: compound semiconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    compound semiconductor Sandia and EMCORE: Solar Photovoltaics, Fiber Optics, MODE, and Energy Efficiency On March 29, 2013, in Concentrating Solar Power, Energy, Partnership,...

  10. Method of passivating semiconductor surfaces

    DOE Patents [OSTI]

    Wanlass, M.W.

    1990-06-19T23:59:59.000Z

    A method is described for passivating Group III-V or II-VI semiconductor compound surfaces. The method includes selecting a passivating material having a lattice constant substantially mismatched to the lattice constant of the semiconductor compound. The passivating material is then grown as an ultrathin layer of passivating material on the surface of the Group III-V or II-VI semiconductor compound. The passivating material is grown to a thickness sufficient to maintain a coherent interface between the ultrathin passivating material and the semiconductor compound. In addition, a device formed from such method is also disclosed.

  11. Noise and synamics in semiconductor lasers

    E-Print Network [OSTI]

    Rana, Farhan, 1971-

    2003-01-01T23:59:59.000Z

    In this thesis, theoretical and experimental work on the noise and dynamics in continuous wave and mode-locked semiconductor lasers is presented. The main focus is on semiconductor cascade lasers and semiconductor mode-locked ...

  12. Semiconductors: From Manipulated to Managed Trade

    E-Print Network [OSTI]

    Tyson, Laura D'Andrea; Yoffie, David B.

    1991-01-01T23:59:59.000Z

    o f the Japanese semiconductor industry is a sucecsslul aridcommodnv product Ol the semiconductor industry. They are afor maJtini: semiconductors: nc

  13. Electron vortices in semiconductors devicesa... Kamran Mohsenib

    E-Print Network [OSTI]

    Electron vortices in semiconductors devicesa... Kamran Mohsenib Aerospace Engineering Sciencies; published online 3 October 2005 The hydrodynamic model of electron transport in semiconductors is analyzed vorticity effects. Furthermore, conditions for observation of electron vortices in semiconductor devices

  14. Tandem Polymer Solar Cells Featuring a Spectrally Matched Low-Bandgap Polymer

    SciTech Connect (OSTI)

    Dou, L.; You, J.; Yang, J.; Chen, C. C.; He, Y.; Murase, S.; Moriarty, T.; Emery, K.; Li, G.; Yang, Y.

    2012-03-01T23:59:59.000Z

    Tandem solar cells provide an effective way to harvest a broader spectrum of solar radiation by combining two or more solar cells with different absorption bands. However, for polymer solar cells, the performance of tandem devices lags behind single-layer solar cells mainly due to the lack of a suitable low-bandgap polymer. Here, we demonstrate highly efficient single and tandem polymer solar cells featuring a low-bandgap conjugated polymer (PBDTT-DPP: bandgap, {approx}1.44 eV). A single-layer device based on the polymer provides a power conversion efficiency of {approx}6%. When the polymer is applied to tandem solar cells, a power conversion efficiency of 8.62% is achieved, which is, to the best of our knowledge, the highest certified efficiency for a polymer solar cell to date.

  15. Intermediate Mirrors to Reach Theoretical Efficiency Limits of Multi-Bandgap Solar Cells

    E-Print Network [OSTI]

    Ganapati, Vidya; Yablonovitch, Eli

    2014-01-01T23:59:59.000Z

    Creating a single bandgap solar cell that approaches the Shockley-Queisser limit requires a highly reflective rear mirror. This mirror enhances the voltage of the solar cell by providing photons with multiple opportunities for escaping out the front surface. Efficient external luminescence is a pre-requisite for high voltage. Intermediate mirrors in a multijunction solar cell can enhance the voltage for each cell in the stack. These intermediate mirrors need to have the added function of transmitting the below bandgap photons to the next cell in the stack. In this work, we quantitatively establish the efficiency increase possible with the use of intermediate selective reflectors between cells in a tandem stack. The absolute efficiency increase can be up to ~6% in dual bandgap cells with optimal intermediate and rear mirrors. A practical implementation of an intermediate selective mirror is an air gap sandwiched by antireflection coatings. The air gap provides perfect reflection for angles outside the escape c...

  16. Buffer layers for narrow bandgap a-SiGe solar cells

    SciTech Connect (OSTI)

    Liao, X.B.; Walker, J.; Deng, X.

    1999-07-01T23:59:59.000Z

    In high efficiency narrow bandgap (NBG) a-SiGe solar cells, thin buffer layers of unalloyed hydrogenated amorphous silicon (a-Si) are usually used at the interfaces between the a-SiGe intrinsic layer and the doped layers. They investigated the effect of inserting additional a-SiGe interface layers between these a-Si buffer layers and the a-SiGe absorber layer. They found that such additional interface layers increase solar cell V{sub oc} and FF sizably, most likely due to the reduction or elimination of the abrupt bandgap discontinuity between the a-SiGe absorber layer and the a-Si buffer layers. With these improved narrow bandgap solar cells incorporated into the fabrication of triple-junction a-Si based solar cells, they obtained triple cells with initial efficiency of 10.6%.

  17. Climate VISION: Private Sector Initiatives: Semiconductors

    Office of Scientific and Technical Information (OSTI)

    Agreements The U.S. semiconductor industry, represented by the members of the Environmental Protection Agency's PFC ReductionClimate Partnership for the Semiconductor...

  18. Climate VISION: Private Sector Initiatives: Semiconductors: Resources...

    Office of Scientific and Technical Information (OSTI)

    over 100 companies that account for more than 83% of U.S.-based semiconductor production. The SIA provides a forum for domestic semiconductor companies to work collectively...

  19. Characterization of Amorphous Zinc Tin Oxide Semiconductors....

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Amorphous Zinc Tin Oxide Semiconductors. Characterization of Amorphous Zinc Tin Oxide Semiconductors. Abstract: Amorphous zinc tin oxide (ZTO) was investigated to determine the...

  20. Layered semiconductor neutron detectors

    DOE Patents [OSTI]

    Mao, Samuel S; Perry, Dale L

    2013-12-10T23:59:59.000Z

    Room temperature operating solid state hand held neutron detectors integrate one or more relatively thin layers of a high neutron interaction cross-section element or materials with semiconductor detectors. The high neutron interaction cross-section element (e.g., Gd, B or Li) or materials comprising at least one high neutron interaction cross-section element can be in the form of unstructured layers or micro- or nano-structured arrays. Such architecture provides high efficiency neutron detector devices by capturing substantially more carriers produced from high energy .alpha.-particles or .gamma.-photons generated by neutron interaction.

  1. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, Xiaonan (Golden, CO); Sheldon, Peter (Lakewood, CO)

    1998-01-01T23:59:59.000Z

    A method of depositing a semiconductor material on a substrate. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  2. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, R.; Chen, Y.W.

    1985-04-30T23:59:59.000Z

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  3. Variable temperature semiconductor film deposition

    DOE Patents [OSTI]

    Li, X.; Sheldon, P.

    1998-01-27T23:59:59.000Z

    A method of depositing a semiconductor material on a substrate is disclosed. The method sequentially comprises (a) providing the semiconductor material in a depositable state such as a vapor for deposition on the substrate; (b) depositing the semiconductor material on the substrate while heating the substrate to a first temperature sufficient to cause the semiconductor material to form a first film layer having a first grain size; (c) continually depositing the semiconductor material on the substrate while cooling the substrate to a second temperature sufficient to cause the semiconductor material to form a second film layer deposited on the first film layer and having a second grain size smaller than the first grain size; and (d) raising the substrate temperature, while either continuing or not continuing to deposit semiconductor material to form a third film layer, to thereby anneal the film layers into a single layer having favorable efficiency characteristics in photovoltaic applications. A preferred semiconductor material is cadmium telluride deposited on a glass/tin oxide substrate already having thereon a film layer of cadmium sulfide.

  4. Process for producing chalcogenide semiconductors

    DOE Patents [OSTI]

    Noufi, Rommel (Westminster, CO); Chen, Yih-Wen (Omaha, NE)

    1987-01-01T23:59:59.000Z

    A process for producing chalcogenide semiconductor material is disclosed. The process includes forming a base metal layer and then contacting this layer with a solution having a low pH and containing ions from at least one chalcogen to chalcogenize the layer and form the chalcogenide semiconductor material.

  5. Physics with isotopically controlled semiconductors

    SciTech Connect (OSTI)

    Haller, E. E., E-mail: eehaller@lbl.gov [University of California at Berkeley, Department of Materials Science and Engineering (United States)

    2010-07-15T23:59:59.000Z

    This paper is based on a tutorial presentation at the International Conference on Defects in Semiconductors (ICDS-25) held in Saint Petersburg, Russia in July 2009. The tutorial focused on a review of recent research involving isotopically controlled semiconductors. Studies with isotopically enriched semiconductor structures experienced a dramatic expansion at the end of the Cold War when significant quantities of enriched isotopes of elements forming semiconductors became available for worldwide collaborations. Isotopes of an element differ in nuclear mass, may have different nuclear spins and undergo different nuclear reactions. Among the latter, the capture of thermal neutrons which can lead to neutron transmutation doping, is the most prominent effect for semiconductors. Experimental and theoretical research exploiting the differences in all the properties has been conducted and will be illustrated with selected examples.

  6. Wafer Fusion for Integration of Semiconductor Materials and Devices

    SciTech Connect (OSTI)

    Choquette, K.D.; Geib, K.M.; Hou, H.Q.; Allerman, A.A.; Kravitz, S.; Follstaedt, D.M.; Hindi, J.J.

    1999-05-01T23:59:59.000Z

    We have developed a wafer fusion technology to achieve integration of semiconductor materials and heterostructures with widely disparate lattice parameters, electronic properties, and/or optical properties for novel devices not now possible on any one substrate. Using our simple fusion process which uses low temperature (400-600 C) anneals in inert N{sub 2} gas, we have extended the scope of this technology to examine hybrid integration of dissimilar device technologies. As a specific example, we demonstrate wafer bonding vertical cavity surface emitting lasers (VCSELs) to transparent AlGaAs and GaP substrates to fabricate bottom-emitting short wavelength VCSELs. As a baseline fabrication technology applicable to many semiconductor systems, wafer fusion will revolutionize the way we think about possible semiconductor devices, and enable novel device configurations not possible by epitaxial growth.

  7. Dopant-induced band filling and bandgap renormalization in CdO:In films

    E-Print Network [OSTI]

    thereof or The Regents of the University of California. 1 #12;Abstract The effect of carrier concentration-Moss effect for a nonparabolic conduction band and bandgap renormalization effects. The band filling attracted much interest due to their tremendous importance in applications such as displays, photovoltaic

  8. Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a

    E-Print Network [OSTI]

    Byer, Robert L.

    Waveguides in three-dimensional photonic bandgap materials for particle-accelerator on a chip@physics.anu.edu.au Abstract: The quest for less costly and more compact high-energy particle accelerators of suggested concepts, the photonic accelerator design by B. M. Cowan [Phys. Rev. ST Accel. Beams 11, 011301

  9. Controlling terahertz waves with meta-materials and photonic bandgap structures

    SciTech Connect (OSTI)

    Shchegolkov, Dmitry [Los Alamos National Laboratory; Azad, Abul [Los Alamos National Laboratory; O' Hara, John F [Los Alamos National Laboratory; Moody, Nathan A [Los Alamos National Laboratory; Simakov, Evgenya I [Los Alamos National Laboratory

    2010-12-07T23:59:59.000Z

    We will describe research conducted at Los Alamos National Laboratory towards developing components for controlling terahertz waves. We employ meta-materials and, particularly, meta-films, as very compact absorbers for controlling quasioptical beams. We believe that dielectric photonic bandgap structures could replace ordinary metal waveguide devices at THz, since metal structures become extremely lossy in this frequency range.

  10. Bandgap and band discontinuity in wurtzite/zincblende GaAs homomaterial heterostructure

    E-Print Network [OSTI]

    Shalish, Ilan

    Bandgap and band discontinuity in wurtzite/zincblende GaAs homomaterial heterostructure Ron Gurwitz (Received 28 January 2012; accepted 21 April 2012; published online 9 May 2012) A wurtzite GaAs epilayer photovoltage spectroscopy. The wurtzite structure of the epilayer is disclosed by scanning electron microscope

  11. Efficiency-Droop Suppression by Using Large-Bandgap AlGaInN Thin Barrier

    E-Print Network [OSTI]

    Gilchrist, James F.

    Efficiency-Droop Suppression by Using Large-Bandgap AlGaInN Thin Barrier Layers in InGaN Quantum DOI: 10.1109/JPHOT.2013.2255028 1943-0655/$31.00 2013 IEEE #12;Efficiency-Droop Suppression by Using with the consideration of carrier transport effect for efficiency droop suppression. The lattice-matched Al

  12. The Electrical and Band-Gap Properties of Amorphous Zinc-Indium-Tin Oxide Thin Films

    E-Print Network [OSTI]

    Shahriar, Selim

    MRSEC The Electrical and Band-Gap Properties of Amorphous Zinc-Indium-Tin Oxide Thin Films D Science & Engineering Center For zinc-indium-tin oxide (ZITO) films, grown by pulsed-laser deposition was replaced by substitution with zinc and tin in equal molar proportions (co-substitution). All ZITO films

  13. Energy Band-Gap Engineering of Graphene Nanoribbons Melinda Y. Han,1

    E-Print Network [OSTI]

    Kim, Philip

    , New York, New York 10027, USA 2 Department of Physics, Columbia University, New York, New York 10027Energy Band-Gap Engineering of Graphene Nanoribbons Melinda Y. Han,1 Barbaros O zyilmaz,2 Yuanbo an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal

  14. Plasma process-induced band-gap modifications of a strained SiGe heterostructure

    E-Print Network [OSTI]

    Misra, Durgamadhab "Durga"

    Plasma process-induced band-gap modifications of a strained SiGe heterostructure P. K. Swain,a) S the strain of coherently strained SiGe. This work investigates the change in valence-band discontinuity in plasma-exposed SiGe films due to strain relaxation by a capacitancevoltage (CV) profiling technique

  15. Semiconductor device PN junction fabrication using optical processing of amorphous semiconductor material

    DOE Patents [OSTI]

    Sopori, Bhushan; Rangappan, Anikara

    2014-11-25T23:59:59.000Z

    Systems and methods for semiconductor device PN junction fabrication are provided. In one embodiment, a method for fabricating an electrical device having a P-N junction comprises: depositing a layer of amorphous semiconductor material onto a crystalline semiconductor base, wherein the crystalline semiconductor base comprises a crystalline phase of a same semiconductor as the amorphous layer; and growing the layer of amorphous semiconductor material into a layer of crystalline semiconductor material that is epitaxially matched to the lattice structure of the crystalline semiconductor base by applying an optical energy that penetrates at least the amorphous semiconductor material.

  16. Mid-infrared gas sensing using a photonic bandgap fiber

    E-Print Network [OSTI]

    . The gas filling process of the air core is described, and qualitative methane concentrations measurements. Introduction Sensing of gas species and their concentrations is widely used for process control [1-proven technique requires a spectrometer and a sensing volume (gas cell) in which the light can interact

  17. Semiconductor Bridge Cable Test

    SciTech Connect (OSTI)

    KING, TONY L.

    2002-01-01T23:59:59.000Z

    The semiconductor bridge (SCB) is an electroexplosive device used to initiate detonators. A C cable is commonly used to connect the SCB to a firing set. A series of tests were performed to identify smaller, lighter cables for firing single and multiple SCBs. This report provides a description of these tests and their results. It was demonstrated that lower threshold voltages and faster firing times can be achieved by increasing the wire size, which reduces ohmic losses. The RF 100 appears to be a reasonable substitute for C cable when firing single SCBs. This would reduce the cable volume by 68% and the weight by 67% while increasing the threshold voltage by only 22%. In general, RG 58 outperforms twisted pair when firing multiple SCBs in parallel. The RG 58's superior performance is attributed to its larger conductor size.

  18. First principle analyses of direct bandgap solar cells with absorbing substrates versus mirrors

    SciTech Connect (OSTI)

    Kirk, Alexander P. [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Kirk, Wiley P. [Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2013-11-07T23:59:59.000Z

    Direct bandgap InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P solar cells containing backside mirrors as well as parasitically absorbing substrates are analyzed for their limiting open circuit voltage and power conversion efficiency with comparison to record solar cells. From the principle of detailed balance, it is shown quantitatively that mirror solar cells have greater voltage and power conversion efficiency than their substrate counterparts. Next, the radiative recombination coefficient and maximum radiative lifetime of GaAs mirror and substrate solar cells are calculated and compared to the nonradiative Auger and Shockley-Read-Hall (SRH) lifetimes. Mirror solar cells have greater radiative lifetime than their substrate variants. Auger lifetime exceeds radiative lifetime for both substrate and mirror cells while SRH lifetime may be less or greater than radiative lifetime depending on trap concentration and capture cross section. Finally, the change in free energy of the photogenerated carriers is analyzed in a comparison between InP, GaAs, CdTe, and Ga{sub 0.5}In{sub 0.5}P mirror and substrate solar cells in order to characterize the relationship between solar photon quality and free energy management in solar cells with differing bandgaps. Wider bandgap visible threshold Ga{sub 0.5}In{sub 0.5}P solar cells make better use of the available change in free energy of the photogenerated charge carriers, even when normalized to the bandgap energy, than narrower bandgap near-IR threshold InP, GaAs, and CdTe solar cells.

  19. Mathematical Modeling of Semiconductor Devices

    E-Print Network [OSTI]

    Jngel, Ansgar

    fibers. Optoelectronic emitters convert an electronic signal into light. Examples are light-emitting diodes (LED) used in displays and indication lambs and semiconductor lasers used in compact disk systems

  20. Modeling the semiconductor industry dynamics

    E-Print Network [OSTI]

    Wu, Kailiang

    2008-01-01T23:59:59.000Z

    The semiconductor industry is an exciting and challenging industry. Strong demand at the application end, plus the high capital intensity and rapid technological innovation in manufacturing, makes it difficult to manage ...

  1. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOE Patents [OSTI]

    Rogers, John A. (Champaign, IL); Meitl, Matthew (Raleigh, NC); Sun, Yugang (Naperville, IL); Ko, Heung Cho (Urbana, IL); Carlson, Andrew (Urbana, IL); Choi, Won Mook (Champaign, IL); Stoykovich, Mark (Dover, NH); Jiang, Hanqing (Urbana, IL); Huang, Yonggang (Glencoe, IL); Nuzzo, Ralph G. (Champaign, IL); Lee, Keon Jae (Tokyo, JP); Zhu, Zhengtao (Rapid City, SD); Menard, Etienne (Durham, NC); Khang, Dahl-Young (Seoul, KR); Kan, Seong Jun (Daejeon, KR); Ahn, Jong Hyun (Suwon, KR); Kim, Hoon-sik (Champaign, IL)

    2012-07-10T23:59:59.000Z

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  2. Controlled buckling structures in semiconductor interconnects and nanomembranes for stretchable electronics

    DOE Patents [OSTI]

    Rogers, John A; Meitl, Matthew; Sun, Yugang; Ko, Heung Cho; Carlson, Andrew; Choi, Won Mook; Stoykovich, Mark; Jiang, Hanqing; Huang, Yonggang; Nuzzo, Ralph G; Zhu, Zhengtao; Menard, Etienne; Khang, Dahl-Young

    2014-05-20T23:59:59.000Z

    In an aspect, the present invention provides stretchable, and optionally printable, components such as semiconductors and electronic circuits capable of providing good performance when stretched, compressed, flexed or otherwise deformed, and related methods of making or tuning such stretchable components. Stretchable semiconductors and electronic circuits preferred for some applications are flexible, in addition to being stretchable, and thus are capable of significant elongation, flexing, bending or other deformation along one or more axes. Further, stretchable semiconductors and electronic circuits of the present invention are adapted to a wide range of device configurations to provide fully flexible electronic and optoelectronic devices.

  3. Hydrogen local vibrational modes in semiconductors

    SciTech Connect (OSTI)

    McCluskey, M D [Univ. of California, Berkeley, CA (United States). Dept. of Physics

    1997-06-01T23:59:59.000Z

    Following, a review of experimental techniques, theory, and previous work, the results of local vibrational mode (LVM) spectroscopy on hydrogen-related complexes in several different semiconductors are discussed. Hydrogen is introduced either by annealing in a hydrogen ambient. exposure to a hydrogen plasma, or during growth. The hydrogen passivates donors and acceptors in semiconductors, forming neutral complexes. When deuterium is substituted for hydrogen. the frequency of the LVM decreases by approximately the square root of two. By varying the temperature and pressure of the samples, the microscopic structures of hydrogen-related complexes are determined. For group II acceptor-hydrogen complexes in GaAs, InP, and GaP, hydrogen binds to the host anion in a bond-centered orientation, along the [111] direction, adjacent to the acceptor. The temperature dependent shift of the LVMs are proportional to the lattice thermal energy U(T), a consequence of anharmonic coupling between the LVM and acoustical phonons. In the wide band gap semiconductor ZnSe, epilayers grown by metalorganic chemical vapor phase epitaxy (MOCVD) and doped with As form As-H complexes. The hydrogen assumes a bond-centered orientation, adjacent to a host Zn. In AlSb, the DX centers Se and Te are passivated by hydrogen. The second, third, and fourth harmonics of the wag modes are observed. Although the Se-D complex has only one stretch mode, the Se-H stretch mode splits into three peaks. The anomalous splitting is explained by a new interaction between the stretch LVM and multi-phonon modes of the lattice. As the temperature or pressure is varied, and anti-crossing is observed between LVM and phonon modes.

  4. Universal alignment of hydrogen levels in semiconductors and insulators

    E-Print Network [OSTI]

    Van de Walle, C G

    2006-01-01T23:59:59.000Z

    including nitride semiconductors and transparent oxides.and C. G. Van de Walle, in Hydrogen in SemiconductorsII, Semiconductors and Semimetals Vol. 61, edited by N. H.

  5. Identifying semiconductors by d.c. ionization conductivity

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    expected from high-Z semiconductor detectors? , IEEE Transand binary compound semiconductors and insulators, J PhysIdentifying Semiconductors by D.C. Ionization Conductivity

  6. Nitride semiconductor Surface and interface characterization and device design

    E-Print Network [OSTI]

    Zhang, Hongtao

    2006-01-01T23:59:59.000Z

    Lett. 80 , D. Schroder, Semiconductor Material and Devicein III-V Nitride Semiconductors: Applications and Devices ,SAN DIEGO Nitride Semiconductor Surface and Interface

  7. Semiconductor Quantum Rods as Single Molecule Fluorescent Biological Labels

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    Alivisatos, A.P. Semiconductor nanocrystas for biologicalemission from colloidal semiconductor quantum rods. ScienceLight amplification in semiconductor nanocrystals: Quantum

  8. Enhanced Semiconductor Nanocrystal Conductance via Solution Grown Contacts

    E-Print Network [OSTI]

    Sheldon, Matthew T.

    2010-01-01T23:59:59.000Z

    G. ; Avouris, P. , Metal-semiconductor nanocontacts: SiliconIndividual Colloidal Semiconductor Nanorods. Nano Lett 2008,Physical Chemistry of Semiconductor Nanocrystals. J. Phys.

  9. Isovalent Anion Substitution in Ga-Mn-pnictide Ferromagnetic Semiconductors

    E-Print Network [OSTI]

    Stone, Peter

    2010-01-01T23:59:59.000Z

    63. O. Madelung, Semiconductors - Basic Data, 2nd Ed. (in Laser Annealing of Semiconductors, edited by J. M. PoateProperties of Semiconductors ("Atom" Publ. House, Moscow,

  10. Diffraction coupled phase-locked semiconductor laser array

    SciTech Connect (OSTI)

    Katz, J.; Margalit, S.; Yariv, A.

    1983-04-01T23:59:59.000Z

    A new monolithic, diffraction coupled phase-locked semiconductor laser array has been fabricated. Stable narrow far-field patterns (approx.3/sup 0/) and peak power levels of 1 W have been obtained for 100-..mu..m-wide devices with threshold currents as low as 250 mA. Such devices may be useful in applications where high power levels and stable radiation patterns are needed.

  11. Impurity gettering in semiconductors

    DOE Patents [OSTI]

    Sopori, B.L.

    1995-06-20T23:59:59.000Z

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device is disclosed. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500 C to about 700 C for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal. 1 fig.

  12. Impurity gettering in semiconductors

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO)

    1995-01-01T23:59:59.000Z

    A process for impurity gettering in a semiconductor substrate or device such as a silicon substrate or device. The process comprises hydrogenating the substrate or device at the back side thereof with sufficient intensity and for a time period sufficient to produce a damaged back side. Thereafter, the substrate or device is illuminated with electromagnetic radiation at an intensity and for a time period sufficient to cause the impurities to diffuse to the back side and alloy with a metal there present to form a contact and capture the impurities. The impurity gettering process also can function to simultaneously passivate defects within the substrate or device, with the defects likewise diffusing to the back side for simultaneous passivation. Simultaneously, substantially all hydrogen-induced damage on the back side of the substrate or device is likewise annihilated. Also taught is an alternate process comprising thermal treatment after hydrogenation of the substrate or device at a temperature of from about 500.degree. C. to about 700.degree. C. for a time period sufficient to cause the impurities to diffuse to the damaged back side thereof for subsequent capture by an alloying metal.

  13. Tunable MoS{sub 2} bandgap in MoS{sub 2}-graphene heterostructures

    SciTech Connect (OSTI)

    Ebnonnasir, Abbas [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States); Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States); Narayanan, Badri; Ciobanu, Cristian V., E-mail: cciobanu@mines.edu, E-mail: kodambaka@ucla.edu [Department of Mechanical Engineering and Materials Science Program, Colorado School of Mines, Golden, Colorado 80401 (United States); Kodambaka, Suneel, E-mail: cciobanu@mines.edu, E-mail: kodambaka@ucla.edu [Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California 90095 (United States)

    2014-07-21T23:59:59.000Z

    Using density functional theory calculations with van der Waals corrections, we investigated how the interlayer orientation affects the structure and electronic properties of MoS{sub 2}-graphene bilayer heterostructures. Changing the orientation of graphene with respect to MoS{sub 2} strongly influences the type and the value of the electronic bandgap in MoS{sub 2}, while not significantly altering the binding energy between the layers or the interlayer spacing. We show that the physical origin of this tunable bandgap arises from variations in the SS interplanar distance (MoS{sub 2} thickness) with the interlayer orientation, variations which are caused by electron transfer away from the MoS bonds.

  14. Linear tailored gain broad area semiconductor lasers

    SciTech Connect (OSTI)

    Lindsey, C.P.; Mehuys, D.; Yariv, A.

    1987-06-01T23:59:59.000Z

    Tailored gain semiconductor lasers capable of high-power operation with single-lobed, nearly diffraction limited beamwidths only a few degrees wide have been demonstrated in proton implanted chirped arrays and ''halftone'' broad area lasers. The authors analyze lasers with a linear gain gradient, and obtain analytic approximations for their unsaturated optical eigenmodes. Unlike a uniform array, the fundamental mode of a linear tailored gain laser is the mode at threshold. Mode discrimination may be controlled by lasing the spatial gain gradient. All modes of asymmetric tailored gain waveguides have single-lobed far-field patterns offset from 0/sup 0/. Finally, they utilize tailored gain broad area lasers to make a measurement of the antiguiding parameter, and find b = 2.5 +- 0.5, in agreement with previous results.

  15. Pre-Stressed Viscoelastic Composites: Effective Incremental Moduli and Band-Gap Tuning

    SciTech Connect (OSTI)

    Parnell, William J. [School of Mathematics, Alan Turing Building, University of Manchester, Manchester, M13 9PL (United Kingdom)

    2010-09-30T23:59:59.000Z

    We study viscoelastic wave propagation along pre-stressed nonlinear elastic composite bars. In the pre-stressed state we derive explicit forms for the effective incremental storage and loss moduli with dependence on the pre-stress. We also derive a dispersion relation for the effective wavenumber in the case of arbitrary frequency, hence permitting a study of viscoelastic band-gap tuning via pre-stress.

  16. Theory of Organic Magnetoresistance in Disordered Organic Semiconductors

    E-Print Network [OSTI]

    Flatte, Michael E.

    Theory of Organic Magnetoresistance in Disordered Organic Semiconductors Nicholas J. Harmon semiconductors, disordered semiconductors, organic magnetoresistance, percolation theory, spin transport organic semiconductors. The theory proposed here maps the complex phenomena of spin-dependent hopping onto

  17. ECE 344--Semiconductor Devices & Materials ECE Department, UMass Amherst

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    1 Syllabus ECE 344--Semiconductor Devices & Materials ECE Department, UMass Amherst Fall 2013 transport in semiconductors Explain the operating principles in semiconductor devices (diodes, capacitors Topics: Fundamentals of Semiconductors; Theory of Electrical Conduction; Device Operations (See "Class

  18. ECE 609 Semiconductor Devices Department of Electrical and Computer Engineering

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ECE 609 Semiconductor Devices Department of Electrical and Computer Engineering University of semiconductor electronic devices in terms of material properties, interface and junction characteristics). ________________________________________________________________________ Preliminary Course Outline 1. Overview of Semiconductor Physics 1.1 Semiconductor Materials

  19. ECE 609 Semiconductor Devices Department of Electrical and Computer Engineering

    E-Print Network [OSTI]

    Massachusetts at Amherst, University of

    ECE 609 Semiconductor Devices Department of Electrical and Computer Engineering University. ________________________________________________________________________ Preliminary Course Outline 1. Overview of Semiconductor Physics 1.1 Semiconductor Materials-V Characteristics, Nonideal Behavior) 2.2 Metal Semiconductor Junctions (Schottky Barriers, Ohmic Contacts) 2

  20. Correlated exciton dynamics in semiconductor nanostructures

    E-Print Network [OSTI]

    Wen, Patrick, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    The absorption and dissipation of energy in semiconductor nanostructures are often determined by excited electron dynamics. In semiconductors, one fundamentally important electronic state is an exciton, an excited electron ...

  1. Method of preparing nitrogen containing semiconductor material

    DOE Patents [OSTI]

    Barber, Greg D.; Kurtz, Sarah R.

    2004-09-07T23:59:59.000Z

    A method of combining group III elements with group V elements that incorporates at least nitrogen from a nitrogen halide for use in semiconductors and in particular semiconductors in photovoltaic cells.

  2. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01T23:59:59.000Z

    1.1 Magnetic Semiconductors . . . . . . . . . . . . . . .Semiconductors . . . . . . . . . . . . . . . . . . . 1.3in Semiconductors . . . . . . . . . . . . . . . . . . 1.3.5

  3. Semiconductor electrode with improved photostability characteristics

    DOE Patents [OSTI]

    Frank, A.J.

    1985-02-19T23:59:59.000Z

    An electrode is described for use in photoelectrochemical cells having an electrolyte which includes an aqueous constituent. The electrode consists of a semiconductor and a hydrophobic film disposed between the semiconductor and the aqueous constituent. The hydrophobic film is adapted to permit charges to pass therethrough while substantially decreasing the activity of the aqueous constituent at the semiconductor surface thereby decreasing the photodegradation of the semiconductor electrode.

  4. Semiconductor nanocrystal-based phagokinetic tracking

    DOE Patents [OSTI]

    Alivisatos, A Paul; Larabell, Carolyn A; Parak, Wolfgang J; Le Gros, Mark; Boudreau, Rosanne

    2014-11-18T23:59:59.000Z

    Methods for determining metabolic properties of living cells through the uptake of semiconductor nanocrystals by cells. Generally the methods require a layer of neutral or hydrophilic semiconductor nanocrystals and a layer of cells seeded onto a culture surface and changes in the layer of semiconductor nanocrystals are detected. The observed changes made to the layer of semiconductor nanocrystals can be correlated to such metabolic properties as metastatic potential, cell motility or migration.

  5. Review: Semiconductor Quantum Light Sources

    E-Print Network [OSTI]

    Andrew J Shields

    2007-04-03T23:59:59.000Z

    Lasers and LEDs display a statistical distribution in the number of photons emitted in a given time interval. New applications exploiting the quantum properties of light require sources for which either individual photons, or pairs, are generated in a regulated stream. Here we review recent research on single-photon sources based on the emission of a single semiconductor quantum dot. In just a few years remarkable progress has been made in generating indistinguishable single-photons and entangled photon pairs using such structures. It suggests it may be possible to realise compact, robust, LED-like semiconductor devices for quantum light generation.

  6. Semiconductor films on flexible iridium substrates

    DOE Patents [OSTI]

    Goyal, Amit

    2005-03-29T23:59:59.000Z

    A laminate semiconductor article includes a flexible substrate, an optional biaxially textured oxide buffer system on the flexible substrate, a biaxially textured Ir-based buffer layer on the substrate or the buffer system, and an epitaxial layer of a semiconductor. Ir can serve as a substrate with an epitaxial layer of a semiconductor thereon.

  7. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration

    E-Print Network [OSTI]

    Khurgin, Jacob B

    2014-01-01T23:59:59.000Z

    Laser cooling of semiconductors has been an elusive goal for many years, and while attempts to cool the narrow gap semiconductors such as GaAs are yet to succeed, recently, net cooling has been attained in a wider gap CdS. This raises the question of whether wider gap semiconductors with higher phonon energies and stronger electron-phonon coupling are better suitable for laser cooling. In this work we develop a straightforward theory of phonon-assisted absorption and photoluminescence of semiconductors that involves more than one phonon and use to examine wide gap materials, such as GaN and CdS and compare them with GaAs. The results indicate that while strong electron-phonon coupling in both GaN and CdS definitely improves the prospects of laser cooling, large phonon energy in GaN may be a limitation, which makes CdS a better prospect for laser cooling.

  8. Multi-phonon-assisted absorption and emission in semiconductors and its potential for laser refrigeration

    SciTech Connect (OSTI)

    Khurgin, Jacob B., E-mail: jakek@jhu.edu [Johns Hopkins University, Baltimore, Maryland 21208 (United States)

    2014-06-02T23:59:59.000Z

    Laser cooling of semiconductors has been an elusive goal for many years, and while attempts to cool the narrow gap semiconductors such as GaAs are yet to succeed, recently, net cooling has been attained in a wider gap CdS. This raises the question of whether wider gap semiconductors with higher phonon energies and stronger electron-phonon coupling are better suitable for laser cooling. In this work, we develop a straightforward theory of phonon-assisted absorption and photoluminescence of semiconductors that involves more than one phonon and use to examine wide gap materials, such as GaN and CdS and compare them with GaAs. The results indicate that while strong electron-phonon coupling in both GaN and CdS definitely improves the prospects of laser cooling, large phonon energy in GaN may be a limitation, which makes CdS a better prospect for laser cooling.

  9. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, P.T.

    1985-03-05T23:59:59.000Z

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer. 5 figs.

  10. Mechanical scriber for semiconductor devices

    DOE Patents [OSTI]

    Lin, Peter T. (East Brunswick, NJ)

    1985-01-01T23:59:59.000Z

    A mechanical scriber using a scribing tip, such as a diamond, provides controlled scriber forces with a spring-loaded compound lever arrangement. The scribing force and range of scribing depth are adjusted by a pair of adjustable micrometer heads. A semiconductor device, such as a multilayer solar cell, can be formed into scribed strips at each layer.

  11. Celebrating Faculty Excellence acclaiming the awards, honors,

    E-Print Network [OSTI]

    of the world's foremost experts on doping wide band-gap semiconductors, creating blue and ultraviolet light-emitting diodes (leds) and lasers that have led to improved consumer products, including sharper laser printers

  12. Wide Blue Sky

    E-Print Network [OSTI]

    Collins, Caroline Imani

    2011-01-01T23:59:59.000Z

    dressed neatly in a dark blue dress, its high neck trimmedIt was covered in a light blue fabric embellished with softOF CALIFORNIA RIVERSIDE Wide Blue Sky A Thesis submitted in

  13. Fermion space charge in narrow-band gap semiconductors, Weyl semimetals and around highly charged nuclei

    E-Print Network [OSTI]

    Eugene B. Kolomeisky; Joseph P. Straley; Hussain Zaidi

    2013-10-15T23:59:59.000Z

    The field of charged impurities in narrow-band gap semiconductors and Weyl semimetals can create electron-hole pairs when the total charge $Ze$ of the impurity exceeds a value $Z_{c}e$. The particles of one charge escape to infinity, leaving a screening space charge. The result is that the observable dimensionless impurity charge $Q_{\\infty}$ is less than $Z$ but greater than $Z_{c}$. There is a corresponding effect for nuclei with $Z >Z_{c} \\approx 170$, however in the condensed matter setting we find $Z_{c} \\simeq 10$. Thomas-Fermi theory indicates that $Q_{\\infty} = 0$ for the Weyl semimetal, but we argue that this is a defect of the theory. For the case of a highly-charged recombination center in a narrow band-gap semiconductor (or of a supercharged nucleus), the observable charge takes on a nearly universal value. In Weyl semimetals the observable charge takes on the universal value $Q_{\\infty} = Z_{c}$ set by the reciprocal of material's fine structure constant.

  14. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, E.D.

    1992-07-21T23:59:59.000Z

    A method is disclosed for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B[sub x]O[sub y] are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T[sub m1] of the oxide of boron (T[sub m1]=723 K for boron oxide B[sub 2]O[sub 3]), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T[sub m2] of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm[sup 2]. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 [mu]m. 7 figs.

  15. Controlled growth of semiconductor crystals

    DOE Patents [OSTI]

    Bourret-Courchesne, Edith D. (Richmond, CA)

    1992-01-01T23:59:59.000Z

    A method for growth of III-V, II-VI and related semiconductor single crystals that suppresses random nucleation and sticking of the semiconductor melt at the crucible walls. Small pieces of an oxide of boron B.sub.x O.sub.y are dispersed throughout the comminuted solid semiconductor charge in the crucible, with the oxide of boron preferably having water content of at least 600 ppm. The crucible temperature is first raised to a temperature greater than the melt temperature T.sub.m1 of the oxide of boron (T.sub.m1 =723.degree. K. for boron oxide B.sub.2 O.sub.3), and the oxide of boron is allowed to melt and form a reasonably uniform liquid layer between the crucible walls and bottom surfaces and the still-solid semiconductor charge. The temperature is then raised to approximately the melt temperature T.sub.m2 of the semiconductor charge material, and crystal growth proceeds by a liquid encapsulated, vertical gradient freeze process. About half of the crystals grown have a dislocation density of less than 1000/cm.sup.2. If the oxide of boron has water content less than 600 ppm, the crucible material should include boron nitride, a layer of the inner surface of the crucible should be oxidized before the oxide of boron in the crucible charge is melted, and the sum of thicknesses of the solid boron oxide layer and liquid boron oxide layer should be at least 50 .mu.m.

  16. Rational Design and Preparation of Organic Semiconductors for use in Field Effect Transistors and Photovoltaic Cells

    E-Print Network [OSTI]

    Mauldin, Clayton Edward

    2010-01-01T23:59:59.000Z

    Distyryl Oligothiophene Semiconductors Abstract We describebonded Oligothiophene Semiconductor Side Chains Abstract Ato assemble oligothiophene semiconductors and control their

  17. Scanning laser photoluminescence imaging system for nondestructive evaluation of direct bandgap materials

    E-Print Network [OSTI]

    Moon, Inchul

    1986-01-01T23:59:59.000Z

    optoelectronic device applications for light generators such as light emitting diodes (LED) and lasers. The use of LEDs in digital watches and calculators displays is well known. LEDs are also used as lamps and optoisolators. Semiconductor lasers...

  18. Back-side readout semiconductor photomultiplier

    DOE Patents [OSTI]

    Choong, Woon-Seng; Holland, Stephen E

    2014-05-20T23:59:59.000Z

    This disclosure provides systems, methods, and apparatus related to semiconductor photomultipliers. In one aspect, a device includes a p-type semiconductor substrate, the p-type semiconductor substrate having a first side and a second side, the first side of the p-type semiconductor substrate defining a recess, and the second side of the p-type semiconductor substrate being doped with n-type ions. A conductive material is disposed in the recess. A p-type epitaxial layer is disposed on the second side of the p-type semiconductor substrate. The p-type epitaxial layer includes a first region proximate the p-type semiconductor substrate, the first region being implanted with p-type ions at a higher doping level than the p-type epitaxial layer, and a second region disposed on the first region, the second region being doped with p-type ions at a higher doping level than the first region.

  19. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect (OSTI)

    Dickinson, J. T. [Washington State University] [Washington State University

    2014-04-05T23:59:59.000Z

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  20. Waveguides in three-dimensional metallic photonic band-gap materials

    SciTech Connect (OSTI)

    Sigalas, M.M.; Biswas, R.; Ho, K.M.; Soukoulis, C.M. [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)] [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Crouch, D.D. [Advanced Electromagnetic Technologies Center, Raytheon Corporation, Rancho Cucamonga, California 91729 (United States)] [Advanced Electromagnetic Technologies Center, Raytheon Corporation, Rancho Cucamonga, California 91729 (United States)

    1999-08-01T23:59:59.000Z

    We theoretically investigate waveguide structures in three-dimensional metallic photonic band-gap (MPBG) materials. The MPBG materials used in this study consist of a three-dimensional mesh of metallic wires embedded in a dielectric. An {ital L}-shaped waveguide is created by removing part of the metallic wires. Using finite difference time domain simulations, we found that an 85{percent} transmission efficiency can be achieved through the 90{degree} bend with just three unit cell thickness MPBG structures. thinsp {copyright} {ital 1999} {ital The American Physical Society}

  1. Controlling Bandgap of Rippled Hexagonal Boron Nitride Membranes via Plasma Treatment

    SciTech Connect (OSTI)

    Zhang, H. X. [Institute for Functional Nanomaterials and Department of Physics, University of Puerto Rico; Feng, P. X. [Oak Ridge National Laboratory (ORNL)

    2011-01-01T23:59:59.000Z

    Few-layer rippled hexagonal boron nitride (h- BN) membranes were processed with hydrogen plasma, which exhibit distinct and pronounced changes in its electronic properties after the plasma treatment. The bandgaps of the h- BN membrane reduced from 5.6 eV at 0 s to 4.25 eV at 250s, which is a signature of transition from the insulating to the semiconductive regime. It typically required 250 s of plasma treatment to reach the saturation. It illustrates that twodimensional material with engineered electronic properties can be created by attaching other atoms or molecules.

  2. First Evidence of Near-Infrared Photonic Bandgap in Polymeric Rod-Connected Diamond Structure

    E-Print Network [OSTI]

    Chen, Lifeng; Zheng, Xu; Lin, Jia-De; Oulton, Ruth; Lopez-Garcia, Martin; Ho, Ying-Lung D; Rarity, John G

    2015-01-01T23:59:59.000Z

    We present the simulation, fabrication, and optical characterization of low-index polymeric rod-connected diamond (RCD) structures. Such complex three-dimensional photonic crystal structures are created via direct laser writing by two-photon polymerization. To our knowledge, this is the first measurement at near-infrared wavelengths, showing partial photonic bandgaps. We characterize structures in transmission and reflection using angular resolved Fourier image spectroscopy to visualize the band structure. Comparison of the numerical simulations of such structures with the experimentally measured data show good agreement for both P- and S-polarizations.

  3. Direct-bandgap electroluminescence from a horizontal Ge p-i-n ridge waveguide on Si(001) substrate

    SciTech Connect (OSTI)

    Liu, Zhi; Li, Yaming; He, Chao; Li, Chuanbo; Xue, Chunlai; Zuo, Yuhua; Cheng, Buwen, E-mail: cbw@semi.ac.cn; Wang, Qiming [State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-05-12T23:59:59.000Z

    Horizontal injection Ge p-i-n ridge waveguide light emitting diodes (LEDs) were fabricated on n{sup ?}-Si(001) substrates by ultrahigh vacuum chemical vapor deposition. The direct-bandgap electroluminescence (EL) of Ge waveguide LEDs under a continuous/pulse electrical pump was studied. The heating effect from a continuous electrical pump was found to significantly enhance the emission of devices. The top surface EL intensity of the Ge waveguide LEDs significantly depended on the position. Most direct-bandgap radiative recombination of Ge p-i-n waveguide LEDs occurred near the N{sup +} region of the junction. This interesting phenomenon could be explained by the carrier distribution in the junction and the pseudo-direct bandgap of Ge.

  4. High-field electroluminescence in semiconductor tunnel junctions with a Mn-doped GaAs layer

    SciTech Connect (OSTI)

    Hai, Pham Nam [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-0033 (Japan); Yatsui, Takashi; Ohtsu, Motoichi; Tanaka, Masaaki [Department of Electrical Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nanophotonics Research Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2014-09-21T23:59:59.000Z

    We investigated high-field electroluminescence (EL) in semiconductor tunnel junctions with a Mn-doped GaAs layer (here, referred to as GaAs:Mn). Besides the band-gap emission of GaAs, the EL spectra show visible light emissions with two peaks at 1.94?eV and 2.19?eV, which are caused by d-d transitions of the Mn atoms excited by hot electrons. The threshold voltages for band-gap and visible light EL in the tunnel junctions with a GaAs:Mn electrode are 1.3?V higher than those of GaAs:Mn excited by hot holes in reserve biased p{sup +}-n junctions, which is consistent with the hot carrier transport in the band profiles of these structures. Our EL results at room temperature show that the electron temperature in GaAs:Mn can be as high as ?700?K for a low input electrical power density of 0.4?W/cm{sup 2}, while the lattice temperature of the GaAs:Mn layer can be kept at 340?K.

  5. PHYSICAL REVIEW B 90, 115415 (2014) Geometrically induced transitions between semimetal and semiconductor in graphene

    E-Print Network [OSTI]

    Wu, Zhigang

    and semiconductor in graphene Marc Dvorak and Zhigang Wu* Department of Physics, Colorado School of Mines, Golden of graphene remains an outstanding problem in nanoscience, which precludes the practical method of patterning graphene from being widely adopted for making graphene-based electronic and optoelectronic devices, because

  6. Semiconductor lasers with broad tunnel-coupled waveguides, emitting at a wavelength of 980 nm

    SciTech Connect (OSTI)

    Zvonkov, N B; Ershov, A V; Zvonkov, B N; Maksimov, G A; Uskova, E A [Scientific-Research Physicotechnical Institute at the Nizhnii Novgorod State University, Nizhnii Novgorod (Russian Federation); Akhlestina, S A [Research Insitute of Chemistry, N.I. Lobachevskii Nizhnii Novgorod State University, Nizhnii Novgorod (Russian Federation)

    1999-03-31T23:59:59.000Z

    InGaP/GaAs/InGaAs semiconductor lasers with broad tunnel-coupled waveguides were developed and investigated experimentally. Output radiation power of 5.2 - 5.8 W was obtained from an emitting region 100 {mu}m wide with a 36{sup 0} divergence of the emitted radiation in a plane perpendicular to the p - n junction. (lasers)

  7. Wide Angle Compton Scattering

    E-Print Network [OSTI]

    Rainer Jakob

    2000-10-16T23:59:59.000Z

    We present the handbag contribution to Wide Angle Compton Scattering (WACS) at moderately large momentum transfer obtained with a proton distribution amplitude close to the asymptotic form. In comparison it is found to be significantly larger than results from the hard scattering (pQCD) approach.

  8. Lateral coupled cavity semiconductor laser

    SciTech Connect (OSTI)

    Salzman, J.; Lang, R.; Yariv, A.

    1985-08-01T23:59:59.000Z

    We report the fabrication and operation of a lateral coupled cavity semiconductor laser that consists of two phase-locked parallel lasers of different lengths and with separate electrical contacts. Mode selectivity that results from the interaction between the two supermodes is investigated experimentally. Frequency selectivity and tunability are obtained by controlling the current to each laser separately. Highly stable single mode operation is also demonstrated.

  9. Compound semiconductor optical waveguide switch

    DOE Patents [OSTI]

    Spahn, Olga B.; Sullivan, Charles T.; Garcia, Ernest J.

    2003-06-10T23:59:59.000Z

    An optical waveguide switch is disclosed which is formed from III-V compound semiconductors and which has a moveable optical waveguide with a cantilevered portion that can be bent laterally by an integral electrostatic actuator to route an optical signal (i.e. light) between the moveable optical waveguide and one of a plurality of fixed optical waveguides. A plurality of optical waveguide switches can be formed on a common substrate and interconnected to form an optical switching network.

  10. Tungsten-incorporation induced red-shift in the bandgap of gallium oxide thin films

    SciTech Connect (OSTI)

    Rubio, E. J.; Ramana, C. V. [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)] [Department of Mechanical Engineering, University of Texas at El Paso, El Paso, Texas 79968 (United States)

    2013-05-13T23:59:59.000Z

    Tungsten (W) incorporated Ga{sub 2}O{sub 3} films were produced by co-sputter deposition. W-concentration was varied by the applied sputtering-power. The structure and optical properties of W-incorporated Ga{sub 2}O{sub 3} films were evaluated using X-ray diffraction, scanning electron microscopy, and spectrophotometric measurements. No secondary phase formation was observed in W-incorporated Ga{sub 2}O{sub 3} films. W-induced effects were significant on the structure and optical properties of Ga{sub 2}O{sub 3} films. The bandgap of Ga{sub 2}O{sub 3} films without W-incorporation was {approx}5 eV. Red-shift in the bandgap was noted with increasing W-concentration indicating the electronic structure changes in W-Ga{sub 2}O{sub 3} films. A functional relationship between W-concentration and optical property is discussed.

  11. Routing for analog chip design at NXP semiconductors

    E-Print Network [OSTI]

    Utrecht, Universiteit

    Routing for analog chip design at NXP semiconductors Marjan van den Akker Theo Beelen Rob H.O. Box 80.089 3508 TB Utrecht The Netherlands #12;Routing for analog chip designs at NXP Semiconductors.1 NXP Semiconductors NXP Semiconductors N.V. (Nasdaq: NXPI) is a global semiconductor company and a long

  12. Fundamental lateral mode oscillation via gain tailoring in broad area semiconductor lasers

    SciTech Connect (OSTI)

    Lindsey, C.; Derry, P.; Yariv, A.

    1985-09-15T23:59:59.000Z

    We show that by employing gain tailoring in a broad area semiconductor laser we achieve fundamental lateral mode operation with a diffraction-limited single-lobed far-field pattern. We demonstrate a tailored gain broad area laser 60 ..mu..m wide which emits 450 mW per mirror into a stable, single-lobed far-field pattern 3 1/2/sup 0/ wide at 5.3 I/sub th/.

  13. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

    2012-08-07T23:59:59.000Z

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  14. Optical devices featuring textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D. (Dover, MA); Cabalu, Jasper S. (Cary, NC)

    2011-10-11T23:59:59.000Z

    A semiconductor sensor, solar cell or emitter, or a precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate. The textured layers enhance light extraction or absorption. Texturing in the region of multiple quantum wells greatly enhances internal quantum efficiency if the semiconductor is polar and the quantum wells are grown along the polar direction. Electroluminescence of LEDs of the invention is dichromatic, and results in variable color LEDs, including white LEDs, without the use of phosphor.

  15. Phase-locked semiconductor laser array with separate contacts

    SciTech Connect (OSTI)

    Katz, J.; Kapon, E.; Lindsey, C.; Margalit, S.; Shreter, U.; Yariv, A.

    1983-09-15T23:59:59.000Z

    A new monolithic phase-locked semiconductor laser array has been fabricated. Employing two-level metallization, each of the eight elements in the array has a separate contact, thus making it possible to compensate for device nonuniformities and control the near-field and far-field patterns. Threshold currents are approximately 60 mA for each 5-..mu..m-wide laser in the array. Phase locking has been observed via the narrowing of the far-field pattern. Experimental results are compared to those obtained from the same arrays operated with all the lasers connected in parallel.

  16. Conduction properties of metal/organic monolayer/semiconductor heterostructures

    SciTech Connect (OSTI)

    Li, D.; Bishop, A.; Gim, Y.; Shi, X.B.; Fitzsimmons, M.R.; Jia, Q.X. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    1998-11-01T23:59:59.000Z

    We have fabricated and characterized rectifying devices made of metal/organic monolayer/semiconductor heterostructures. The devices consist of an organic barrier layer sandwiched between an aluminum (Al) metal contact and a {ital p}-type Si semiconductor. The barrier materials were chosen from three types of self-assembled monolayers (SAMs) with different electronic properties: (1) wide-band gap poly(diallydimethyl ammonium) chloride (PDDA), (2) narrow-band gap PDDA/NiPc (nickel phthalocyanine tetrasulfonate), and (3) donor type PDDA/PPP (poly {ital p}-quaterphenylene-disulfonic-dicarboxylic acid). From current{endash}voltage (I{endash}V) measurements at room temperature, we have found the turn-on voltage of the devices can be tuned by varying the structure, hence electronic properties, of the organic monolayers, and that there exists a power-law dependence of {ital I} on V, I{proportional_to}V{sup {alpha}}, with the exponent {alpha}=2.2 for PDDA, 2.7 for PDDA/NiPc, and 1.44 for PDDA/PPP as the barrier layer, respectively. Our results imply that the transport properties are controlled by both the electronic properties of the SAMs and those of the metal and semiconductor, as indicated by the power-law dependence of the I{endash}V characteristics. {copyright} {ital 1998 American Institute of Physics.}

  17. Optical Nonlinearities and Ultrafast Carrier Dynamics in Semiconductor Quantum Dots

    SciTech Connect (OSTI)

    Klimov, V.; McBranch, D.; Schwarz, C.

    1998-08-10T23:59:59.000Z

    Low-dimensional semiconductors have attracted great interest due to the potential for tailoring their linear and nonlinear optical properties over a wide-range. Semiconductor nanocrystals (NC's) represent a class of quasi-zero-dimensional objects or quantum dots. Due to quantum cordhement and a large surface-to-volume ratio, the linear and nonlinear optical properties, and the carrier dynamics in NC's are significantly different horn those in bulk materials. napping at surface states can lead to a fast depopulation of quantized states, accompanied by charge separation and generation of local fields which significantly modifies the nonlinear optical response in NC's. 3D carrier confinement also has a drastic effect on the energy relaxation dynamics. In strongly confined NC's, the energy-level spacing can greatly exceed typical phonon energies. This has been expected to significantly inhibit phonon-related mechanisms for energy losses, an effect referred to as a phonon bottleneck. It has been suggested recently that the phonon bottleneck in 3D-confined systems can be removed due to enhanced role of Auger-type interactions. In this paper we report femtosecond (fs) studies of ultrafast optical nonlinearities, and energy relaxation and trap ping dynamics in three types of quantum-dot systems: semiconductor NC/glass composites made by high temperature precipitation, ion-implanted NC's, and colloidal NC'S. Comparison of ultrafast data for different samples allows us to separate effects being intrinsic to quantum dots from those related to lattice imperfections and interface properties.

  18. Reflection technique for thermal mapping of semiconductors

    DOE Patents [OSTI]

    Walter, Martin J. (Lee, NY)

    1989-06-20T23:59:59.000Z

    Semiconductors may be optically tested for their temperatures by illuminating them with tunable monochromatic electromagnetic radiation and observing the light reflected off of them. A transition point will occur when the wavelength of the light corresponds with the actual band gap energy of the semiconductor. At the transition point, the image of the semiconductor will appreciably darken as the light is transmitted through it, rather than being reflected off of it. The wavelength of the light at the transition point corresponds to the actual band gap energy and the actual temperature of the semiconductor.

  19. Low Energy Ion Implantationin Semiconductor Manufacturing | U...

    Office of Science (SC) Website

    Low Energy Ion Implantation in Semiconductor Manufacturing Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Applications of Nuclear Science...

  20. Climate VISION: Private Sector Initiatives: Semiconductors: Work...

    Office of Scientific and Technical Information (OSTI)

    of EPA. The plan describes actions the industry intends to take to achieve its Climate VISION goal by 2010. Read the Semiconductor Industry Association Work Plan (PDF 94...

  1. Climate VISION: Private Sector Initiatives: Semiconductors: Resources...

    Office of Scientific and Technical Information (OSTI)

    to reduce high global warming potential (GWP) greenhouse gas emissions by following a pollution prevention strategy. Today, nearly 80 percent of U.S. semiconductor manufacturers...

  2. Isovalent Anion Substitution in Ga-Mn-pnictide Ferromagnetic Semiconductors

    E-Print Network [OSTI]

    Stone, Peter

    2010-01-01T23:59:59.000Z

    a so-called diluted magnetic semiconductor (DMS). DMSs arein heavily doped magnetic semiconductors as the probabilitythis method to magnetic semiconductors, the 66 kp matrix

  3. Performance of Adaptive DualDropping ILUT Preconditioners in Semiconductor

    E-Print Network [OSTI]

    Zhang, Jun

    Performance of Adaptive DualDropping ILUT Preconditioners in Semiconductor Dopant Diffusion for iterative solution of sparse linear systems arising in semiconductor dopant diffusion modeling resolution, timestep in the adaptive ODE integrator and the problem physics. Key words: semiconductor TCAD

  4. OPTI 240: Semiconductor Physics and Lasers Instructor: Mahmoud Fallahi

    E-Print Network [OSTI]

    Arizona, University of

    OPTI 240: Semiconductor Physics and Lasers Instructor: Mahmoud Fallahi fallahi@optics.arizona.edu Spring Semester Introduction to Semiconductor Optoelectronic Introduction to quantum mechanics: Energy exclusion principle Metal, Insulator, Semiconductor Conduction band, valance band, energy gap Electrons

  5. Semiconductor Capabilities in the U.S. and Industrializing Asia

    E-Print Network [OSTI]

    Brown, Clair; Linden, Greg

    2008-01-01T23:59:59.000Z

    data. Table 2: U.S. Semiconductor Engineers By Location,medium-sized U.S. semiconductor companies, which togetherto represent all U.S. semiconductor firms. The total

  6. Band-gap grading in Cu(In,Ga)Se2 solar cells M. Gloeckler and J. R. Sites

    E-Print Network [OSTI]

    Sites, James R.

    Band-gap grading in Cu(In,Ga)Se2 solar cells M. Gloeckler and J. R. Sites Department of Physics solar cells, and some researchers have asserted that these fields can enhance performance to show that (1) there can be a beneficial effect of grading, (2) in standard thick- ness CIGS cells

  7. IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, VOL. 49, NO. 3, AUGUST 2007 661 Novel Planar Electromagnetic Bandgap Structures

    E-Print Network [OSTI]

    Ramahi, Omar

    bandgap (EBG) structures with novel meandered lines and super cell configuration are pro- posed capacitor and embedded capacitance [3], [4]. However, the method of decou- pling capacitors fails when operated at high frequency due to the inherent lead inductance of capacitors. Embedded capacitance

  8. Bandgap tuning in SrTi(N,O,F){sub 3} by anionic-lattice variation

    SciTech Connect (OSTI)

    Yoon, Songhak; Maegli, Alexandra E.; Karvonen, Lassi; Matam, Santhosh K.; Shkabko, Andrey [Laboratory for Solid State Chemistry and Catalysis, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dbendorf (Switzerland); Riegg, Stefan [Lehrstuhl fr Experimentalphysik 5, EKM, Universitt Augsburg, Universittsstrae 1, 86135 Augsburg (Germany); Gromann, Thomas; Ebbinghaus, Stefan G. [Institut fr Chemie, Martin-Luther Universitt Halle-Wittenberg, Kurt-Mothes-Strae 2, 06120 Halle/Saale (Germany); Pokrant, Simone [Laboratory for Solid State Chemistry and Catalysis, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dbendorf (Switzerland); Weidenkaff, Anke, E-mail: anke.weidenkaff@empa.ch [Laboratory for Solid State Chemistry and Catalysis, Empa-Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dbendorf (Switzerland)

    2013-10-15T23:59:59.000Z

    Polycrystalline SrTiO{sub 3} and SrTi(O,F){sub 3} powders were synthesized by a solid-state reaction. A partial substitution of oxygen by nitrogen was subsequently carried out using thermal ammonolysis resulting in SrTi(N,O){sub 3} and SrTi(N,O,F){sub 3}. Powder X-ray diffraction (XRD) revealed a cubic perovskite structure with space group Pm-3m for all samples. The thermal ammonolysis slightly increased the lattice parameters, crystallite sizes and strain. As a result from the co-substitution of oxygen with nitrogen and fluorine for SrTi(N,O,F){sub 3}, highly distorted TiO{sub 6} octahedra were detected using X-ray absorption near edge structure (XANES) spectroscopy. The weakening of all active modes of the Raman spectra after thermal ammonolysis also indicated enhanced distortions in the local crystal structure. SrTi(N,O,F){sub 3} has the largest amount of nitrogen as well as fluorine among all four samples as determined by thermogravimetric analysis (TGA), elemental analysis and X-ray photoelectron spectroscopy (XPS). In the UVvis spectra a distinctive shift of the absorption-edge energy was observed exclusively for the SrTi(N,O,F){sub 3} sample from 390 to 510 nm corresponding to a bandgap narrowing from 3.18 to 2.43 eV. - Graphical abstract: Figure shows the shift of the absorption-edge energy for the SrTi(N,O,F){sub 3} sample from 390 to 510 nm corresponding to a bandgap narrowing from 3.18 to 2.43 eV. Display Omitted - Highlights: Synthesis of phase-pure SrTi(N,O,F){sub 3} via solid-state reaction. The incorporated nitrogen contents increase by the presence of fluorine in SrTi(N,O,F){sub 3}. Co-substitution with nitrogen and fluorine is beneficial for the bandgap narrowing compared to by only nitrogen or fluorine substitution.

  9. PROTECTIVE SURFACE COATINGS ON SEMICONDUCTOR NUCLEAR RADIATION DETECTORS

    E-Print Network [OSTI]

    Hansen, W.L.

    2010-01-01T23:59:59.000Z

    ON SEMICONDUCTOR NUCLEAR RADIATION DETECTORS W. L. Hansen,COATINGS ON SEMICONDUCTOR NUCLEAR RADIATION DETECTORS* W. L.the use of germanium nuclear radiation detec tors, a new

  10. New ALS Technique Guides IBM in Next-Generation Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New ALS Technique Guides IBM in Next-Generation Semiconductor Development New ALS Technique Guides IBM in Next-Generation Semiconductor Development Print Wednesday, 21 January 2015...

  11. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition and Remarkable Large Magnetism. Hydrogenated Graphene Nanoflakes: Semiconductor to Half-Metal Transition...

  12. Engineering Density of States of Earth Abundant Semiconductors...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of States of Earth Abundant Semiconductors for Enhanced Thermoelectric Power Factor Engineering Density of States of Earth Abundant Semiconductors for Enhanced Thermoelectric...

  13. advanced semiconductor manufacturing: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Websites Summary: Business and Manufacturing Tohru Ogawa Semiconductor Company Sony Corporation 12;WISE 2000 ContentsContents Paradigm Shift in Semiconductor Business...

  14. Charge-carrier transport in amorphous organic semiconductors

    E-Print Network [OSTI]

    Limketkai, Benjie, 1982-

    2008-01-01T23:59:59.000Z

    Since the first reports of efficient luminescence and absorption in organic semiconductors, organic light-emitting devices (OLEDs) and photovoltaics (OPVs) have attracted increasing interest. Organic semiconductors have ...

  15. Optic probe for semiconductor characterization

    DOE Patents [OSTI]

    Sopori, Bhushan L. (Denver, CO); Hambarian, Artak (Yerevan, AM)

    2008-09-02T23:59:59.000Z

    Described herein is an optical probe (120) for use in characterizing surface defects in wafers, such as semiconductor wafers. The optical probe (120) detects laser light reflected from the surface (124) of the wafer (106) within various ranges of angles. Characteristics of defects in the surface (124) of the wafer (106) are determined based on the amount of reflected laser light detected in each of the ranges of angles. Additionally, a wafer characterization system (100) is described that includes the described optical probe (120).

  16. Low-bandgap double-heterostructure InAsP/GaInAs photovoltaic converters

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    2001-01-01T23:59:59.000Z

    A low-bandgap, double-heterostructure PV device is provided, including in optical alignment a first InP.sub.1-y As.sub.y n-layer formed with an n-type dopant, an Ga.sub.x In.sub.1-x As absorber layer, the absorber layer having an n-region formed with an n-type dopant and an p-region formed with a p-type dopant to form a single pn-junction, and a second InP.sub.1-y As.sub.y p-layer formed with a p-type dopant, wherein the first and second layers are used for passivation and minority carrier confinement of the absorber layers.

  17. Nonlinear Peltier effect in semiconductors Mona Zebarjadia

    E-Print Network [OSTI]

    Nonlinear Peltier effect in semiconductors Mona Zebarjadia Department of Electrical Engineering; published online 18 September 2007 Nonlinear Peltier coefficient of a doped InGaAs semiconductor is calculated numerically using the Monte Carlo technique. The Peltier coefficient is also obtained analytically

  18. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, M.; Schulz, D.L.; Curtis, C.J.; Ginley, D.S.

    1998-01-27T23:59:59.000Z

    A process is disclosed for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  19. Ultra-high speed semiconductor lasers

    SciTech Connect (OSTI)

    Lau, K.Y.; Yariv, A.

    1985-02-01T23:59:59.000Z

    Recent progress on semiconductor lasers having a very high direct modulation bandwidth of beyond 10 GHz are described. Issues related to application of these lasers in actual systems are addressed. Possibilities of further extending the bandwidth of semiconductor lasers are examined.

  20. Preparation of a semiconductor thin film

    DOE Patents [OSTI]

    Pehnt, Martin (TuBingen, DE); Schulz, Douglas L. (Denver, CO); Curtis, Calvin J. (Lakewood, CO); Ginley, David S. (Evergreen, CO)

    1998-01-01T23:59:59.000Z

    A process for the preparation of a semiconductor film. The process comprises depositing nanoparticles of a semiconductor material onto a substrate whose surface temperature during nanoparticle deposition thereon is sufficient to cause substantially simultaneous fusion of the nanoparticles to thereby coalesce with each other and effectuate film growth.

  1. Stable surface passivation process for compound semiconductors

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM)

    2001-01-01T23:59:59.000Z

    A passivation process for a previously sulfided, selenided or tellurated III-V compound semiconductor surface. The concentration of undesired mid-gap surface states on a compound semiconductor surface is reduced by the formation of a near-monolayer of metal-(sulfur and/or selenium and/or tellurium)-semiconductor that is effective for long term passivation of the underlying semiconductor surface. Starting with the III-V compound semiconductor surface, any oxidation present thereon is substantially removed and the surface is then treated with sulfur, selenium or tellurium to form a near-monolayer of chalcogen-semiconductor of the surface in an oxygen-free atmosphere. This chalcogenated surface is then contacted with a solution of a metal that will form a low solubility chalcogenide to form a near-monolayer of metal-chalcogen-semiconductor. The resulting passivating layer provides long term protection for the underlying surface at or above the level achieved by a freshly chalcogenated compound semiconductor surface in an oxygen free atmosphere.

  2. Hybrid anode for semiconductor radiation detectors

    DOE Patents [OSTI]

    Yang, Ge; Bolotnikov, Aleksey E; Camarda, Guiseppe; Cui, Yonggang; Hossain, Anwar; Kim, Ki Hyun; James, Ralph B

    2013-11-19T23:59:59.000Z

    The present invention relates to a novel hybrid anode configuration for a radiation detector that effectively reduces the edge effect of surface defects on the internal electric field in compound semiconductor detectors by focusing the internal electric field of the detector and redirecting drifting carriers away from the side surfaces of the semiconductor toward the collection electrode(s).

  3. Semiconductor switch geometry with electric field shaping

    DOE Patents [OSTI]

    Booth, Rex (Livermore, CA); Pocha, Michael D. (Livermore, CA)

    1994-01-01T23:59:59.000Z

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium.

  4. Semiconductor switch geometry with electric field shaping

    DOE Patents [OSTI]

    Booth, R.; Pocha, M.D.

    1994-08-23T23:59:59.000Z

    An optoelectric switch is disclosed that utilizes a cylindrically shaped and contoured GaAs medium or other optically active semiconductor medium to couple two cylindrically shaped metal conductors with flat and flared termination points each having an ovoid prominence centrally extending there from. Coupling the truncated ovoid prominence of each conductor with the cylindrically shaped optically active semiconductor causes the semiconductor to cylindrically taper to a triple junction circular line at the base of each prominence where the metal conductor conjoins with the semiconductor and a third medium such as epoxy or air. Tapering the semiconductor at the triple junction inhibits carrier formation and injection at the triple junction and thereby enables greater current carrying capacity through and greater sensitivity of the bulk area of the optically active medium. 10 figs.

  5. Details in Semiconductors Gordon Conference, New London, NH, August 3-8, 2008

    SciTech Connect (OSTI)

    Shengbai Zhang and Nancy Ryan Gray

    2009-09-16T23:59:59.000Z

    Continuing its tradition of excellence, this Gordon Conference will focus on research at the forefront of the field of defects in homogeneous and structured semiconductors. The conference will have a strong emphasis on the control of defects during growth and processing, with an increases emphasis on nanostructures as compared to previous conferences. Electronic, magnetic, and optical properties of bulk, thin film, and nanoscale semiconductors will be discussed in detail. In contrast to many conferences, which tend to focus on specific semiconductors, this conference deals with defects in a broad range of bulk and nanoscale electronic materials. This approach has proved to be extremely fruitful for advancing fundamental understanding in emerging materials such as wide-band-gap semiconductors, doped nanoparticles, and organic semiconductors. Presentations of state-of-the-art theoretical methods will contribute to a fundamental understanding of atomic-scale phenomena. The program consists of about twenty invited talks, with plenty of discussion time, and a number of contributed poster sessions. Because of the large amount of discussion time, the conference provides an ideal forum for dealing with topics that are new and/or controversial.

  6. Inorganic Chemistry Solutions to Semiconductor Nanocrystal Problems

    SciTech Connect (OSTI)

    Alvarado, Samuel R. [Ames Laboratory; Guo, Yijun [Ames Laboratory; Ruberu, T. Purnima A. [Ames Laboratory; Tavasoli, Elham [Ames Laboratory; Vela, Javier [Ames Laboratory

    2014-03-15T23:59:59.000Z

    The optoelectronic and chemical properties of semiconductor nanocrystals heavily depend on their composition, size, shape and internal structure, surface functionality, etc. Available strategies to alter these properties through traditional colloidal syntheses and ligand exchange methods place a premium on specific reaction conditions and surfactant combinations. In this invited review, we apply a molecular-level understanding of chemical precursor reactivity to reliably control the morphology, composition and intimate architecture (core/shell vs. alloyed) of semiconductor nanocrystals. We also describe our work aimed at achieving highly selective, low-temperature photochemical methods for the synthesis of semiconductormetal and semiconductormetal oxide photocatalytic nanocomposites. In addition, we describe our work on surface modification of semiconductor nanocrystal quantum dots using new approaches and methods that bypass ligand exchange, retaining the nanocrystal's native ligands and original optical properties, as well as on spectroscopic methods of characterization useful in determining surface ligand organization and chemistry. Using recent examples from our group and collaborators, we demonstrate how these efforts have lead to faster, wider and more systematic application of semiconductor nanocrystal-based materials to biological imaging and tracking, and to photocatalysis of unconventional substrates. We believe techniques and methods borrowed from inorganic chemistry (including coordination, organometallic and solid state chemistry) have much to offer in reaching a better understanding of the synthesis, functionalization and real-life application of such exciting materials as semiconductor nanocrystals (quantum dots, rods, tetrapods, etc.).

  7. Transport Equations for Semiconductors Prof. Dr. Ansgar Jungel

    E-Print Network [OSTI]

    Jngel, Ansgar

    - cations have been invented; for instance, semiconductor lasers, solar cells, light-emitting diodes (LED

  8. Kinetic and Macroscopic Models for Semiconductors Ansgar Jungel

    E-Print Network [OSTI]

    Jngel, Ansgar

    Kinetic and Macroscopic Models for Semiconductors Ansgar Jungel Vienna University of Technology, Austria www.jungel.at.vu Ansgar Jungel (TU Wien) Kinetic Semiconductor Models www.jungel.at.vu 1 / 165 #12;Contents 1 Introduction 2 Semiconductor modeling Basics of semiconductor physics Kinetic models 3

  9. EEE 6397 Semiconductor Device Theory (Fall, 2014, 5th

    E-Print Network [OSTI]

    Fang, Yuguang "Michael"

    1 EEE 6397 Semiconductor Device Theory (Fall, 2014, 5th period MWF, BEN328) Goals: (1) Develop fundamental understanding on the device physics of the most important semiconductor devices, such as PN junctions, metal-semiconductor contacts, metal-oxide-semiconductor capacitors, and field-effect transistors

  10. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, S.R.

    1999-07-27T23:59:59.000Z

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernible pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light. 4 figs.

  11. Heating device for semiconductor wafers

    DOE Patents [OSTI]

    Vosen, Steven R. (Berkeley, CA)

    1999-01-01T23:59:59.000Z

    An apparatus for heat treating semiconductor wafers is disclosed. The apparatus includes a heating device which contains an assembly of light energy sources for emitting light energy onto a wafer. In particular, the light energy sources are positioned such that many different radial heating zones are created on a wafer being heated. For instance, in one embodiment, the light energy sources form a spiral configuration. In an alternative embodiment, the light energy sources appear to be randomly dispersed with respect to each other so that no discernable pattern is present. In a third alternative embodiment of the present invention, the light energy sources form concentric rings. Tuning light sources are then placed in between the concentric rings of light.

  12. ZnMgO by APCVD Enabling High-Performance Mid-bandgap CIGS on Polyimide Modules: October 2009--October 2010

    SciTech Connect (OSTI)

    Woods, L.

    2011-04-01T23:59:59.000Z

    This Pre-Incubator project was designed to increase the 'real world' CIGS based photovoltaic module performance and decrease the Levelized Cost of Energy (LCOE) of systems utilizing those modules compared to our traditional CIGS based photovoltaic modules. This was enabled by a) increasing the CIGS bandgap and b) developing better matched device finishing layers to the mid-bandgap CIGS based photovoltaics; including window and buffer layers (and eventually the TCO). Incremental progress in the novel device performance was demonstrated throughout the program, and ultimately achieved performance results that exceeded the milestones ahead of schedule. Metal-oxide buffer layer devices with mid-bandgap CIGS alloys on polyimide substrates were produced with efficiencies of over 12%. Corresponding mid-bandgap devices with CdS buffers produced over 13% efficient devices. Furthermore, no obvious degradation in the device performance has been observed to date, after proper storage ambient of the different types of unencapsulated devices were identified.

  13. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    DOE Patents [OSTI]

    Yang, Peidong (El Cerrito, CA); Choi, Heonjin (Seoul, KR); Lee, Sangkwon (Daejeon, KR); He, Rongrui (Albany, CA); Zhang, Yanfeng (El Cerrito, CA); Kuykendal, Tevye (Berkeley, CA); Pauzauskie, Peter (Berkeley, CA)

    2011-08-23T23:59:59.000Z

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  14. Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials H. Y. Peng, M. D. McCluskey,* and Y. M. Gupta

    E-Print Network [OSTI]

    McCluskey, Matthew

    Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials H. Y. Peng, M. D. Mc Alto, California 94304, USA Received 19 October 2004; published 24 March 2005 The band-gap shift of GaN=1.9 eV, and D4=-1.0 eV. These values indicate that the deformation potentials in wurtzite GaN

  15. Temperature dependence of the energy bandgap of two-dimensional hexagonal boron nitride probed by excitonic photoluminescence

    SciTech Connect (OSTI)

    Du, X. Z.; Lin, J. Y.; Jiang, H. X., E-mail: hx.jiang@ttu.edu [Department of Electrical and Computer Engineering, Texas Tech University, Lubbock, Texas 79409 (United States); Frye, C. D.; Edgar, J. H. [Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506-5102 (United States)

    2014-02-07T23:59:59.000Z

    Hexagonal boron nitride (hBN) is an emerging material for the exploration of new physics in two-dimensional (2D) systems that are complementary to graphene. Nanotubes with a diameter (?60?nm) that is much larger than the exciton binding energy in hBN have been synthesized and utilized to probe the fundamental optical transitions and the temperature dependence of the energy bandgap of the corresponding 2D hBN sheets. An excitonic transition at 5.901?eV and its longitudinal optical phonon replica at 5.735?eV were observed. The excitonic emission line is blue shifted by about 130?meV with respect to that in hBN bulk crystals due to the effects of reduced dimensionality. The temperature evolution of the excitonic emission line measured from 300 to 800?K revealed that the temperature coefficient of the energy bandgap of hBN nanotubes with large diameters (or equivalently hBN sheets) is about 0.43?meV/{sup 0}K, which is a factor of about 5 times smaller than the theoretically predicted value for the transitions between the ? and ?* bands in hBN bulk crystals and 6 times smaller than the measured value in AlN epilayers with a comparable energy bandgap. The observed weaker temperature dependence of the bandgap than those in 3D hBN and AlN is a consequence of the effects of reduced dimensionality in layer-structured hBN.

  16. Spin injection and manipulation in organic semiconductors

    E-Print Network [OSTI]

    Venkataraman, Karthik (Karthik Raman)

    2011-01-01T23:59:59.000Z

    The use of organic semiconductors to enable organic spintronic devices requires the understanding of transport and control of the spin state of the carriers. This thesis deals with the above issue, focusing on the interface ...

  17. Electrical Usage Characterization of Semiconductor Processing Tools

    E-Print Network [OSTI]

    Hinson, S. R.

    This paper presents the basic concepts in performing an energy and power audit of a semiconductor process tool. A protocol exists that fully describes these measurements and their use and applicability and it will be described. This protocol...

  18. NANOSTRUCTURES, MAGNETIC SEMICONDUCTORS AND SPINELECTRONICS Paata Kervalishvili

    E-Print Network [OSTI]

    Paris-Sud XI, Universit de

    to data storage, switching, lighting and other devices, can lead to substantially new hardwareNANOSTRUCTURES, MAGNETIC SEMICONDUCTORS AND SPINELECTRONICS Paata Kervalishvili Georgian Technical and manipulation on a nanometre scale, which allows the fabrication of nanostructures with the properties mainly

  19. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10T23:59:59.000Z

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  20. Surface phonons of III-V semiconductors

    E-Print Network [OSTI]

    Das, Pradip Kumar

    1994-01-01T23:59:59.000Z

    are the simplest of all semiconductor surfaces. Their atomic relaxations and electronic surface states are rather well understood. There have, however, been surprisingly few experimental studies of their vibrational properties, and ours in the first detailed...

  1. Semiconductor-nanocrystal/conjugated polymer thin films

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Dittmer, Janke J. (Munich, DE); Huynh, Wendy U. (Munich, DE); Milliron, Delia (Berkeley, CA)

    2010-08-17T23:59:59.000Z

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  2. EXCITONIC EIGENSTATES OF DISORDERED SEMICONDUCTOR QUANTUM WIRES

    E-Print Network [OSTI]

    of semiconductors are exploited in solar cells, light emitting diodes, and lasers, and, furthermore, future UNIVERSITY OF MINNESOTA 400 Lind Hall 207 Church Street S.E. Minneapolis, Minnesota 554550436 Phone: 612

  3. Science and applications of infrared semiconductor nanocrystals

    E-Print Network [OSTI]

    Geyer, Scott Mitchell

    2010-01-01T23:59:59.000Z

    In this work we study several applications of semiconductor nanocrystals (NCs) with infrared band gaps. In the first half, we explore the physics of two systems with applications in NC based photovoltaics. The physics of ...

  4. Nanopatterned Electrically Conductive Films of Semiconductor Nanocrystals

    E-Print Network [OSTI]

    Mentzel, Tamar

    We present the first semiconductor nanocrystal films of nanoscale dimensions that are electrically conductive and crack-free. These films make it possible to study the electrical properties intrinsic to the nanocrystals ...

  5. Thermovoltaic semiconductor device including a plasma filter

    DOE Patents [OSTI]

    Baldasaro, Paul F. (Clifton Park, NY)

    1999-01-01T23:59:59.000Z

    A thermovoltaic energy conversion device and related method for converting thermal energy into an electrical potential. An interference filter is provided on a semiconductor thermovoltaic cell to pre-filter black body radiation. The semiconductor thermovoltaic cell includes a P/N junction supported on a substrate which converts incident thermal energy below the semiconductor junction band gap into electrical potential. The semiconductor substrate is doped to provide a plasma filter which reflects back energy having a wavelength which is above the band gap and which is ineffectively filtered by the interference filter, through the P/N junction to the source of radiation thereby avoiding parasitic absorption of the unusable portion of the thermal radiation energy.

  6. Fabrication of Semiconductors by Wet Chemical Etch

    E-Print Network [OSTI]

    Francoviglia, Laura

    2008-07-01T23:59:59.000Z

    - ern devices. Beginning with Bardeen, Brittain and Shockleys invention of the transistor in Bell Labs in 1947 and Kilby and Noyces introduction of the integrated circuit about a decade later, semiconductor devices have dramat- ically advanced... ad- dition of impurities, their conductivity can be altered. With the need to manu- facture devices at the micro- and nano- scale, the semiconductor industry has followed Moores Law, the trend that the number of transistors placed...

  7. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1995-01-01T23:59:59.000Z

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  8. A Semiconductor Microlaser for Intracavity Flow Cytometry

    SciTech Connect (OSTI)

    Akhil, O.; Copeland, G.C.; Dunne, J.L.; Gourley, P.L.; Hendricks, J.K.; McDonald, A.E.

    1999-01-20T23:59:59.000Z

    Semiconductor microlasers are attractive components for micro-analysis systems because of their ability to emit coherent intense light from a small aperture. By using a surface-emitting semiconductor geometry, we were able to incorporate fluid flow inside a laser microcavity for the first time. This confers significant advantages for high throughput screening of cells, particulates and fluid analytes in a sensitive microdevice. In this paper we discuss the intracavity microfluidics and present preliminary results with flowing blood and brain cells.

  9. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (Aiken, SC)

    1998-01-01T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card.

  10. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1996-01-01T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit.

  11. Optical devices featuring nonpolar textured semiconductor layers

    DOE Patents [OSTI]

    Moustakas, Theodore D; Moldawer, Adam; Bhattacharyya, Anirban; Abell, Joshua

    2013-11-26T23:59:59.000Z

    A semiconductor emitter, or precursor therefor, has a substrate and one or more textured semiconductor layers deposited onto the substrate in a nonpolar orientation. The textured layers enhance light extraction, and the use of nonpolar orientation greatly enhances internal quantum efficiency compared to conventional devices. Both the internal and external quantum efficiencies of emitters of the invention can be 70-80% or higher. The invention provides highly efficient light emitting diodes suitable for solid state lighting.

  12. Optical temperature indicator using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, James W. (108 Independent Blvd., Aiken, SC 29801)

    1996-01-01T23:59:59.000Z

    A reversible optical temperature indicator utilizes thermochromic semiconductors which vary in color in response to various temperature levels. The thermochromic material is enclosed in an enamel which provides protection and prevents breakdown at higher temperatures. Cadmium sulfide is the preferred semiconductor material. The indicator may be utilized as a sign or in a striped arrangement to clearly provide a warning to a user. The various color responses provide multiple levels of alarm.

  13. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1996-08-20T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually or by utilizing an optical fiber and an electrical sensing circuit. 7 figs.

  14. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1998-06-30T23:59:59.000Z

    An optical temperature measuring device utilizes thermochromic semiconductors which vary in color in response to changes in temperature. The thermochromic material is sealed in a glass matrix which allows the temperature sensor to detect high temperatures without breakdown. Cuprous oxide and cadmium sulfide are among the semiconductor materials which provide the best results. The changes in color may be detected visually using a sensor chip and an accompanying color card. 8 figs.

  15. Widely tunable mid-infrared generation via frequency conversion in semiconductor waveguides

    E-Print Network [OSTI]

    of mid-infrared and far-infrared (IR) radiation using second-order optical nonlinearities is attractive, large optical nonlinearities, large optical damage threshold, and mature fabrication tech- nology [3 Optical Society of America OCIS codes: (190.4975) Parametric processes; (230.4320) Nonlinear optical

  16. Ultrafast Control of Magnetism in Ferromagnetic Semiconductors via Photoexcited Transient Carriers

    E-Print Network [OSTI]

    Cotoros, Ingrid A.

    2009-01-01T23:59:59.000Z

    1.2 Overview of semiconductor2.2 Dilute magnetic semiconductors . . . . . . . . .generated holes in (In,Mn)As Magnetic semiconductor FET

  17. Bandgap Engineering of InP QDs Through Shell Thickness and Composition

    SciTech Connect (OSTI)

    Dennis, Allison M. [Los Alamos National Laboratory; Mangum, Benjamin D. [Los Alamos National Laboratory; Piryatinski, Andrei [Los Alamos National Laboratory; Park, Young-Shin [Los Alamos National Laboratory; Htoon, Han [Los Alamos National Laboratory; Hollingsworth, Jennifer A. [Los Alamos National Laboratory

    2012-06-21T23:59:59.000Z

    Fields as diverse as biological imaging and telecommunications utilize the unique photophysical and electronic properties of nanocrystal quantum dots (NQDs). The development of new NQD compositions promises material properties optimized for specific applications, while addressing material toxicity. Indium phosphide (InP) offers a 'green' alternative to the traditional cadmium-based NQDs, but suffers from extreme susceptibility to oxidation. Coating InP cores with more stable shell materials significantly improves nanocrystal resistance to oxidation and photostability. We have investigated several new InP-based core-shell compositions, correlating our results with theoretical predictions of their optical and electronic properties. Specifically, we can tailor the InP core-shell QDs to a type-I, quasi-type-II, or type-II bandgap structure with emission wavelengths ranging from 500-1300 nm depending on the shell material used (ZnS, ZnSe, CdS, or CdSe) and the thickness of the shell. Single molecule microscopy assessments of photobleaching and blinking are used to correlate NQD properties with shell thickness.

  18. Spin Transport in Semiconductor heterostructures

    SciTech Connect (OSTI)

    Domnita Catalina Marinescu

    2011-02-22T23:59:59.000Z

    The focus of the research performed under this grant has been the investigation of spin transport in magnetic semiconductor heterostructures. The interest in these systems is motivated both by their intriguing physical properties, as the physical embodiment of a spin-polarized Fermi liquid, as well as by their potential applications as spintronics devices. In our work we have analyzed several different problems that affect the spin dynamics in single and bi-layer spin-polarized two-dimensional (2D) systems. The topics of interests ranged from the fundamental aspects of the electron-electron interactions, to collective spin and charge density excitations and spin transport in the presence of the spin-orbit coupling. The common denominator of these subjects is the impact at the macroscopic scale of the spin-dependent electron-electron interaction, which plays a much more subtle role than in unpolarized electron systems. Our calculations of several measurable parameters, such as the excitation frequencies of magneto-plasma modes, the spin mass, and the spin transresistivity, propose realistic theoretical estimates of the opposite-spin many-body effects, in particular opposite-spin correlations, that can be directly connected with experimental measurements.

  19. Dissipative chaos in semiconductor superlattices

    SciTech Connect (OSTI)

    Alekseev, K.N.; Berman, G.P. [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)] [Center for Nonlinear Studies and Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); [Kirensky Institute of Physics, 660036, Krasnoyarsk (Russia); [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States); Campbell, D.K.; Cannon, E.H.; Cargo, M.C. [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States)] [Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801-3080 (United States)

    1996-10-01T23:59:59.000Z

    We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use a semiclassical, balance-equation approach, which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free-electron lasers, chaos may be observable in SSL{close_quote}s. We clarify the nature of this interesting nonlinear dynamics in the superlattice{endash}external-field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field, and to Josephson junctions. {copyright} {ital 1996 The American Physical Society.}

  20. Method for removing semiconductor layers from salt substrates

    DOE Patents [OSTI]

    Shuskus, Alexander J. (West Hartford, CT); Cowher, Melvyn E. (East Brookfield, MA)

    1985-08-27T23:59:59.000Z

    A method is described for removing a CVD semiconductor layer from an alkali halide salt substrate following the deposition of the semiconductor layer. The semiconductor-substrate combination is supported on a material such as tungsten which is readily wet by the molten alkali halide. The temperature of the semiconductor-substrate combination is raised to a temperature greater than the melting temperature of the substrate but less than the temperature of the semiconductor and the substrate is melted and removed from the semiconductor by capillary action of the wettable support.

  1. Room temperature triplet state spectroscopy of organic semiconductors

    E-Print Network [OSTI]

    Reineke, Sebastian

    2013-01-01T23:59:59.000Z

    Organic light emitting devices and solar cells are machines that create, manipulate and destroy excited states in organic semiconductors. It is crucial to characterize these excited states, or excitons, to optimize device performance in applications like displays and solar energy harvesting. This is complicated if the excited state is a triplet because the electronic transition is dark with a vanishing oscillator strength. As a consequence, triplet state spectroscopy must usually be performed at cryogenic temperatures to reduce competition from non-radiative rates. Here, we control non-radiative rates by engineering a solid-state host matrix containing the target molecule, allowing the observation of phosphorescence at room temperature and alleviating constraints of cryogenic experiments. We test these techniques on a wide range of materials with functionalities spanning multi-exciton generation (singlet exciton fission), organic light emitting device host materials, and thermally activated delayed fluorescen...

  2. Semiconductor nanowires for photovoltaic and photoelectrochemical energy conversion

    SciTech Connect (OSTI)

    Dasgupta, Neil; Yang, Peidong

    2013-01-23T23:59:59.000Z

    Semiconductor nanowires (NW) possess several beneficial properties for efficient conversion of solar energy into electricity and chemical energy. Due to their efficient absorption of light, short distances for minority carriers to travel, high surface-to-volume ratios, and the availability of scalable synthesis methods, they provide a pathway to address the low cost-to-power requirements for wide-scale adaptation of solar energy conversion technologies. Here we highlight recent progress in our group towards implementation of NW components as photovoltaic and photoelectrochemical energy conversion devices. An emphasis is placed on the unique properties of these one-dimensional (1D) structures, which enable the use of abundant, low-cost materials and improved energy conversion efficiency compared to bulk devices.

  3. Conductance matrix of multiterminal semiconductor devices with edge channels

    SciTech Connect (OSTI)

    Danilovskii, E. Yu., E-mail: danilovskii@mail.ioffe.ru; Bagraev, N. T. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2014-12-15T23:59:59.000Z

    A method for determining the conductance matrix of multiterminal semiconductor structures with edge channels is proposed. The method is based on the solution of a system of linear algebraic equations based on Kirchhoff equations, made up of potential differences U{sub ij} measured at stabilized currents I{sub kl}, where i, j, k, l are terminal numbers. The matrix obtained by solving the system of equations completely describes the structure under study, reflecting its configuration and homogeneity. This method can find wide application when using the known Landauer-Buttiker formalism to analyze carrier transport in the quantum Hall effect and quantum spin Hall effect modes. Within the proposed method, the contribution of the contact area resistances R{sub c} to the formation of conductance matrix elements is taken into account. The possibilities of practical application of the results obtained in developing analog cryptographic devices are considered.

  4. High-temperature electronics are needed to permit signal acquisition and feedback control in close

    E-Print Network [OSTI]

    Rollins, Andrew M.

    circuit technology based on silicon car- bide (SiC). This wide-bandgap semiconductor has potential Semiconductor IC Symp., and the IEEE Custom Integrated Circuits Conf.(CICC). #12;HHT212 Quad CMOS Precision, or cross- connected with the pull-up switches to form an H-bridge that can drive bipolar cur- rent through

  5. RUBY NANDINI GHOSH Research Associate Professor

    E-Print Network [OSTI]

    Ghosh, Ruby N.

    University 1996 to 2004 "Wide bandgap semiconductor devices" Catalytic gate silicon carbide devices have been. Demonstrated an Er3+ waveguide amplifier, pumped by a semiconductor diode laser, with the lowest threshold. Investigated using an SET electrometer in a capacitance bridge to measure the leakage rate of a capacitor at 10

  6. J. Chem. Sci., Vol. 121, No. 5, September 2009, pp. 561574. Indian Academy of Sciences. Dedicated to the memory of the late Professor S K Rangarajan

    E-Print Network [OSTI]

    chromophores in the first excited singlet state attached via different bridgeanchor groups to the TiO2 surface of an electron from the excited electronic state of a chromophore to the surface of a semiconductor or metal in the wide bandgap of a suitable semiconductor and the excited state of the molecular donor above the lower

  7. Congrs SFC-EuroChem Universit Henri

    E-Print Network [OSTI]

    not energetically possible with insulators. More specifically, an excited sensitizer, electron to the semiconductor of binding a molecular system to nanocrystalline wide band-gap semiconductors, of new types of electrochromic of solar energy conversion and of optical memor devices. Recent advances in the design of new electron

  8. pubs.acs.org/cmPublished on Web 12/08/2009r 2009 American Chemical Society Chem. Mater. 2010, 22, 579584 579

    E-Print Network [OSTI]

    Lin, Zhiqun

    of a DSSC consists of a sintered, wide- bandgap semiconductor TiO2 nanoparticle network film, a ruthenium of a DSSC can be improved by optimizing the semiconductor TiO2 nano- particle film, sensitizer, and electrolyte. An overall power conversion efficiency (PCE) of >10% for a DSSC, which is dictated by its light

  9. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    SciTech Connect (OSTI)

    Marsh, Roark A.; /MIT /MIT /NIFS, Gifu /JAERI, Kyoto /LLNL, Livermore; Shapiro, Michael A.; Temkin, Richard J.; /MIT; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11T23:59:59.000Z

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  10. Optical spin orientation of a single manganese atom in a semiconductor quantum dot using quasi-resonant excitation

    E-Print Network [OSTI]

    Boyer, Edmond

    of these mem- ories. Dilute magnetic semiconductors (DMS) systems combining semiconductor heterostructures

  11. Antiferromagnetic exchange bias of a ferromagnetic semiconductor by a ferromagnetic metal

    E-Print Network [OSTI]

    Olejnik, K.

    2010-01-01T23:59:59.000Z

    exchange bias of a magnetic semiconductor by a magneticexchange bias in the magnetic semiconductor. The shape and

  12. Semiconductor nanowires for future electronics : growth, characterization, device fabrication, and integration

    E-Print Network [OSTI]

    Dayeh, Shadi A.

    2008-01-01T23:59:59.000Z

    1 1.1 Introduction to Semiconductorin InAs Semiconductor Nanowires. . . . . . . . . . . . .Comparison of different semiconductor NWFETs (non-passivated

  13. 962 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 3, MAY 2014 Ultrabroadband and Wide-Angle Hybrid

    E-Print Network [OSTI]

    Bowers, John

    962 IEEE JOURNAL OF PHOTOVOLTAICS, VOL. 4, NO. 3, MAY 2014 Ultrabroadband and Wide-Angle Hybrid) are essential to realizing efficiency gains for state-of- the-art multijunction photovoltaic devices approach. Index Terms--Biomimetics, optical films, photovoltaic cells, IIIV semiconductor materials. I

  14. Engineering the electronic bandgaps and band edge positions in carbon-substituted 2D boron nitride: a first-principles investigation

    E-Print Network [OSTI]

    Shirodkar, Sharmila N; Fisher, Timothy S; Grau-Crespo, Ricardo

    2015-01-01T23:59:59.000Z

    Modification of graphene to open a robust gap in its electronic spectrum is essential for its use in field effect transistors and photochemistry applications. Inspired by recent experimental success in the preparation of homogeneous alloys of graphene and boron nitride (BN), we consider here engineering the electronic structure and bandgap of C$_{2x}$B$_{1-x}$N$_{1-x}$ alloys via both compositional and configurational modification. We start from the BN end-member, which already has a large bandgap, and then show that (a) the bandgap can in principle be reduced to about 2 eV with moderate substitution of C $(x<0.25)$; and (b) the electronic structure of C$_{2x}$B$_{1-x}$N$_{1-x}$ can be further tuned not only with composition $x$, but also with the configuration adopted by C substituents in the BN matrix. Our analysis, based on accurate screened hybrid functional calculations, provides a clear understanding of the correlation found between the bandgap and the level of aggregation of C atoms: the bandgap dec...

  15. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1987-10-23T23:59:59.000Z

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In molecular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating. 1 tab.

  16. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, Timothy J. (Tijeras, NM); Ginley, David S. (Albuquerque, NM); Zipperian, Thomas E. (Albuquerque, NM)

    1989-01-01T23:59:59.000Z

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  17. Substrate solder barriers for semiconductor epilayer growth

    DOE Patents [OSTI]

    Drummond, T.J.; Ginley, D.S.; Zipperian, T.E.

    1989-05-09T23:59:59.000Z

    During the growth of compound semiconductors by epitaxial processes, substrates are typically mounted to a support. In modular beam epitaxy, mounting is done using indium as a solder. This method has two drawbacks: the indium reacts with the substrate, and it is difficult to uniformly wet the back of a large diameter substrate. Both of these problems have been successfully overcome by sputter coating the back of the substrate with a thin layer of tungsten carbide or tungsten carbide and gold. In addition to being compatible with the growth of high quality semiconductor epilayers this coating is also inert in all standard substrate cleaning etchants used for compound semiconductors, and provides uniform distribution of energy in radiant heating.

  18. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen Edward (Pinole, CA); Bourret-Courchesne, Edith (Berkeley, CA); Weber, Marvin J. (Danville, CA); Klintenberg, Mattias K. (Berkeley, CA)

    2008-07-29T23:59:59.000Z

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  19. Two-Photon Emission from Semiconductors

    E-Print Network [OSTI]

    Alex Hayat; Pavel Ginzburg; Meir Orenstein

    2007-10-25T23:59:59.000Z

    We report the first experimental observations of two-photon emission from semiconductors, to the best of our knowledge, and develop a corresponding theory for the room-temperature process. Spontaneous two-photon emission is demonstrated in optically-pumped bulk GaAs and in electrically-driven GaInP/AlGaInP quantum wells. Singly-stimulated two-photon emission measurements demonstrate the theoretically predicted two-photon optical gain in semiconductors - a necessary ingredient for any realizations of future two-photon semiconductor lasers. Photon-coincidence experiment validates the simultaneity of the electrically-driven GaInP/AlGaInP two-photon emission, limited only by detector's temporal resolution.

  20. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23T23:59:59.000Z

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  1. Electroluminescence in ion gel gated organic polymer semiconductor transistors

    E-Print Network [OSTI]

    Bhat, Shrivalli

    2011-07-12T23:59:59.000Z

    This thesis reports the light emission in ion gel gated, thin film organic semiconductor transistors and investigates the light emission mechanism behind these devices. We report that ion gel gated organic polymer semiconductor transistors emit...

  2. Lattice mismatched compound semiconductors and devices on silicon

    E-Print Network [OSTI]

    Yang, Li, Ph. D. Massachusetts Institute of Technology

    2011-01-01T23:59:59.000Z

    III-V compound semiconductors, due to their superior electron mobility, are promising candidates for n-type metal-oxide-semiconductor field effect transistors (MOSFETs). However, the limited size of III-V substrates and ...

  3. Radio frequency identification (RFID) applications in semiconductor manufacturing

    E-Print Network [OSTI]

    Cassett, David Ian, 1971-

    2004-01-01T23:59:59.000Z

    Radio frequency identification (RFID) has an enormous potential impact within the semiconductor supply chain, especially within semiconductor manufacturing. The end benefit of RFID will be in the mass serialization, and ...

  4. A New Cleanroom for a Next-Generation Semiconductor Research...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Cleanroom for a Next-Generation Semiconductor Research Tool A New Cleanroom for a Next-Generation Semiconductor Research Tool Print The new Sector 12 cleanroom under...

  5. A study of corporate entrepreneurship in the semiconductor industry

    E-Print Network [OSTI]

    Tallapureddy, Anish R

    2014-01-01T23:59:59.000Z

    The number of semiconductor companies receiving venture funding has been decreasing through-out the last decade. The economics of manufacturing semiconductors do not offer an attractive risk-reward profile to the traditional ...

  6. Course Information --EE 531 Semiconductor Devices and Device Simulation

    E-Print Network [OSTI]

    Hochberg, Michael

    of Semiconductor Devices" by Hess "Si Processing for the VLSI Era: Vol. 3-- The Submicron MOSFET" by Wolf "Advanced: 20% Exam 1: 30% Exam 2: 30% Project: 20% Prerequisite: Semiconductor Devices (EE 482) or equivalent

  7. High-Throughput Transfer Imprinting for Organic Semiconductors

    E-Print Network [OSTI]

    Choo, Gihoon

    2013-08-06T23:59:59.000Z

    semiconductors because heat and pressure used in thermal nanoimprint do not damage functional materials. However, issues such as residual layer removal and mold contamination still limit the application of nanoimprint for organic semiconductor patterning...

  8. Surface passivation process of compound semiconductor material using UV photosulfidation

    DOE Patents [OSTI]

    Ashby, Carol I. H. (Edgewood, NM)

    1995-01-01T23:59:59.000Z

    A method for passivating compound semiconductor surfaces by photolytically disrupting molecular sulfur vapor with ultraviolet radiation to form reactive sulfur which then reacts with and passivates the surface of compound semiconductors.

  9. Acoustoelectric Harmonic Generation in a Photoconductive Piezoelectric Semiconductor

    E-Print Network [OSTI]

    Acoustoelectric Harmonic Generation in a Photoconductive Piezoelectric Semiconductor W. Arthur, R harmonics in the low frequency regime (. Piezoelectric semiconductors can exhibit harmonic generation because of interactions between the acoustic

  10. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, R.J.; Constantine, C.

    1997-04-29T23:59:59.000Z

    A dry etching method is disclosed. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators. 1 fig.

  11. High power semiconductor laser sources. Final report

    SciTech Connect (OSTI)

    Yariv, A.

    1989-01-01T23:59:59.000Z

    The main purpose of the research was to design and fabricate a surface-emitting semiconductor laser based on multi quantum-well amplification. During the contract period, the author succeeded in improving the basic quantum-well active medium so as to result in maximum gain for a given inversion density and analyzed the fabrication of GaAs/GaAlAs multilayer dielectric reflectors for providing the optical feedback to the surface-emitting semiconductor laser. He also made significant progress in the development of diffusion techniques to provide the p and n regions adjacent to the active region for carrier injection.

  12. Dry etching method for compound semiconductors

    DOE Patents [OSTI]

    Shul, Randy J. (Albuquerque, NM); Constantine, Christopher (Safety Harbor, FL)

    1997-01-01T23:59:59.000Z

    A dry etching method. According to the present invention, a gaseous plasma comprising, at least in part, boron trichloride, methane, and hydrogen may be used for dry etching of a compound semiconductor material containing layers including aluminum, or indium, or both. Material layers of a compound semiconductor alloy such as AlGaInP or the like may be anisotropically etched for forming electronic devices including field-effect transistors and heterojunction bipolar transistors and for forming photonic devices including vertical-cavity surface-emitting lasers, edge-emitting lasers, and reflectance modulators.

  13. Excess carrier generation in femtosecond-laser processed sulfur doped silicon by means of sub-bandgap illumination

    SciTech Connect (OSTI)

    Guenther, Kay-Michael, E-mail: kay-michael.guenther@efzn.de [Clausthal University of Technology, EFZN, Am Stollen 19B, 38640 Goslar (Germany); Gimpel, Thomas; Ruibys, Augustinas; Kontermann, Stefan [Fraunhofer Heinrich Hertz Institute, Am Stollen 19B, 38640 Goslar (Germany); Tomm, Jens W. [Max Born Institut, Max-Born-Strae 2A, 12489 Berlin (Germany); Winter, Stefan [Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig (Germany); Schade, Wolfgang [Clausthal University of Technology, EFZN, Am Stollen 19B, 38640 Goslar (Germany); Fraunhofer Heinrich Hertz Institute, Am Stollen 19B, 38640 Goslar (Germany)

    2014-01-27T23:59:59.000Z

    With Fourier-transform photocurrent spectroscopy and spectral response measurements, we show that silicon doped with sulfur by femtosecond laser irradiation generates excess carriers, when illuminated with infrared light above 1100?nm. Three distinct sub-bandgap photocurrent features are observed. Their onset energies are in good agreement with the known sulfur levels S{sup +}, S{sup 0}, and S{sub 2}{sup 0}. The excess carriers are separated by a pn-junction to form a significant photocurrent. Therefore, this material likely demonstrates the impurity band photovoltaic effect.

  14. Method of physical vapor deposition of metal oxides on semiconductors

    DOE Patents [OSTI]

    Norton, David P. (Knoxville, TN)

    2001-01-01T23:59:59.000Z

    A process for growing a metal oxide thin film upon a semiconductor surface with a physical vapor deposition technique in a high-vacuum environment and a structure formed with the process involves the steps of heating the semiconductor surface and introducing hydrogen gas into the high-vacuum environment to develop conditions at the semiconductor surface which are favorable for growing the desired metal oxide upon the semiconductor surface yet is unfavorable for the formation of any native oxides upon the semiconductor. More specifically, the temperature of the semiconductor surface and the ratio of hydrogen partial pressure to water pressure within the vacuum environment are high enough to render the formation of native oxides on the semiconductor surface thermodynamically unstable yet are not so high that the formation of the desired metal oxide on the semiconductor surface is thermodynamically unstable. Having established these conditions, constituent atoms of the metal oxide to be deposited upon the semiconductor surface are directed toward the surface of the semiconductor by a physical vapor deposition technique so that the atoms come to rest upon the semiconductor surface as a thin film of metal oxide with no native oxide at the semiconductor surface/thin film interface. An example of a structure formed by this method includes an epitaxial thin film of (001)-oriented CeO.sub.2 overlying a substrate of (001) Ge.

  15. Semiconductor liquid crystal composition and methods for making the same

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Li, Liang-shi

    2005-04-26T23:59:59.000Z

    Semiconductor liquid crystal compositions and methods for making such compositions are disclosed. One embodiment of the invention is directed to a liquid crystal composition including a solvent and semiconductor particles in the solvent. The solvent and the semiconductor particles are in an effective amount in the liquid crystal composition to form a liquid crystal phase.

  16. Quantum of optical absorption in two-dimensional semiconductors

    E-Print Network [OSTI]

    California at Irvine, University of

    Quantum of optical absorption in two-dimensional semiconductors Hui Fanga,b,c , Hans A. Bechteld semiconductor, where is the fine structure con- stant and nc is an optical local field correction factor quantitative examination of the intrinsic absorption properties of free-standing 2D semiconductor thin films

  17. Effects of Quantum Confinement on the Doping Limit of Semiconductor

    E-Print Network [OSTI]

    Wu, Junqiao

    Effects of Quantum Confinement on the Doping Limit of Semiconductor Nanowires D. R. Khanal,, Joanne concentrations in semiconductor nanowires. Our calculations are based on the amphoteric defect model, which describes the thermodynamic doping limit in semiconductors in terms of the compensation of external dopants

  18. Defects activated photoluminescence in two-dimensional semiconductors

    E-Print Network [OSTI]

    Wu, Junqiao

    Defects activated photoluminescence in two-dimensional semiconductors: interplay between bound of Semiconductors, Chinese Academy of Sciences, P.O. Box 912, Beijing 100083, People's Republic of China, 3, Berkeley, California 94720, United States. Point defects in semiconductors can trap free charge carriers

  19. Structure and magnetism of transition-metal implanted dilute magnetic semiconductors

    E-Print Network [OSTI]

    Pereira, Lino; Temst, K; Arajo, JP; Wahl, U

    The discovery of a dilute magnetic semiconductor (DMS) in which ferromagnetism is carrier-mediated and persists above room temperature is a critical step towards the development of semiconductor-based spintronics. Among the many types of DMS materials which have been investigated, the current research interest can be narrowed down to two main classes of materials: (1) narrow-gap III-V semiconductors, mostly GaAs and InAs, doped with Mn; (2) wide-gap oxides and nitrides doped with 3d transition metals, mostly Mn- and Co-doped ZnO and Mn-doped GaN. With a number of interesting functionalities deriving from the carrier-mediated ferromagnetism and demonstrated in various proof-of-concept devices, Mn-doped GaAs has become, among DMS materials, one of the best candidates for technological application. However, despite major developments over the last 15 years, the maximum Curie temperature (185 K) remains well below room temperature. On the other hand, wide-gap DMS materials appear to exhibit ferromagnetic behavior...

  20. Visible light surface emitting semiconductor laser

    DOE Patents [OSTI]

    Olbright, Gregory R. (Boulder, CO); Jewell, Jack L. (Bridgewater, NJ)

    1993-01-01T23:59:59.000Z

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  1. Analog Sauter-Schwinger effect in semiconductors

    E-Print Network [OSTI]

    Linder, Malte F

    2015-01-01T23:59:59.000Z

    We develop a 1+1-dimensional model of a semiconductor, which exhibits an analog of the nonperturbative electron-positron pair creation from the quantum vacuum via time-dependent external electric fields (Sauter-Schwinger effect). In the one-particle picture of the relativistic Dirac theory, pair production from the Dirac vacuum can be understood as the excitation of a Dirac sea electron into the upper energy continuum. The analog effect in the semiconductor model is the excitation of electrons from the valence band into the conduction band (electron-hole pair creation). We show that the underlying equations describing the excitation processes in both systems are in some cases formally equivalent. The critical electric field strength for the Sauter-Schwinger effect is much smaller in typical semiconductors than in Dirac theory due to the different physical scales. This fact makes analog systems like the semiconductor model promising candidates for the observation of the Sauter-Schwinger effect in the laborator...

  2. High resolution scintillation detector with semiconductor readout

    DOE Patents [OSTI]

    Levin, Craig S. (Santa Monica, CA); Hoffman, Edward J. (Los Angeles, CA)

    2000-01-01T23:59:59.000Z

    A novel high resolution scintillation detector array for use in radiation imaging such as high resolution Positron Emission Tomography (PET) which comprises one or more parallelepiped crystals with at least one long surface of each crystal being in intimate contact with a semiconductor photodetector such that photons generated within each crystal by gamma radiation passing therethrough is detected by the photodetector paired therewith.

  3. HYDROGEN LOCAL VIBRATIONAL MODES IN COMPOUND SEMICONDUCTORS

    E-Print Network [OSTI]

    McCluskey, Matthew

    HYDROGEN LOCAL VIBRATIONAL MODES IN COMPOUND SEMICONDUCTORS M.D. MCCLUSKEY* University) spectroscopy of hydrogen and deuterium in GaP, AlSb, ZnSe, and GaN has provided important information about the structures of dopant- hydrogen complexes and their interaction with the host lattice. In GaN:Mg, for example

  4. Organic conductive films for semiconductor electrodes

    DOE Patents [OSTI]

    Frank, A.J.

    1984-01-01T23:59:59.000Z

    According to the present invention, improved electrodes overcoated with conductive polymer films and preselected catalysts are provided. The electrodes typically comprise an inorganic semiconductor over-coated with a charge conductive polymer film comprising a charge conductive polymer in or on which is a catalyst or charge-relaying agent.

  5. Optical temperature sensor using thermochromic semiconductors

    DOE Patents [OSTI]

    Kronberg, J.W.

    1994-01-01T23:59:59.000Z

    Optical thermometry is a growing technological field which exploits the ability of certain materials to change their optical properties with temperature. A subclass of such materials are those which change their color as a reversible and reproducible function of temperature. These materials are thermochromic. This invention is a composition to measure temperature utilizing thermochromic semiconductors.

  6. Laterally coupled-cavity semiconductor lasers

    SciTech Connect (OSTI)

    Lang, R.J.; Yariv, A.; Salzman, J.

    1987-04-01T23:59:59.000Z

    The authors analyze the threshold behaviour or a pair of laterally coupled semiconductor lasers of different lengths. The predictions include longitudinal mode selectivity leading to single longitudinal mode operation with a periodicity determined by the length mismatch, and ripples in the equipower curves in the current plane due to carrier-induced index shifts. They present experimental measurements that confirm these predictions.

  7. Theory of longitudinal modes in semiconductor lasers

    SciTech Connect (OSTI)

    Lau, K.Y.; Yariv, A.

    1982-05-01T23:59:59.000Z

    A theory of longitudinal mode lasing spectrum of semiconductor lasers is developed which takes into account the nonuniform carrier and photon distributions and local gain spectrum shifts inside lasers with low end mirror reflectivities. The theory gives results consistent with observed longitudinal mode behavior in lasers with reduced facet reflectivity.

  8. Semiconductor Nanowire Optical Antenna Solar Absorbers

    E-Print Network [OSTI]

    Fan, Shanhui

    a clear, intuitive guidance for the design of efficient NW solar cells. The presented approach technology. KEYWORDS Solar cell, semiconductor nanowires, optical antennas, photon management, light trapping employing non-earth-abundant elements like indium (CuInGaSe or CIGS cells) or tellurium (CdTe cells

  9. Preparation of III-V semiconductor nanocrystals

    DOE Patents [OSTI]

    Alivisatos, A.P.; Olshavsky, M.A.

    1996-04-09T23:59:59.000Z

    Nanometer-scale crystals of III-V semiconductors are disclosed. They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline. 4 figs.

  10. Semiconductor laser with multiple lasing wavelengths

    DOE Patents [OSTI]

    Fischer, Arthur J.; Choquette, Kent D.; Chow, Weng W.

    2003-07-29T23:59:59.000Z

    A new class of multi-terminal vertical-cavity semiconductor laser components has been developed. These multi-terminal laser components can be switched, either electrically or optically, between distinct lasing wavelengths, or can be made to lase simultaneously at multiple wavelengths.

  11. Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing

    E-Print Network [OSTI]

    Marcus, Steven I.

    1 Optimal Preventive Maintenance Scheduling in Semiconductor Manufacturing Xiaodong Yao, Emmanuel on Control Applications in 2001. #12;2 Abstract Preventive Maintenance (PM) scheduling is a very challenging schedule with that of a baseline reference schedule are also presented. Index Terms preventive maintenance

  12. Semiconductor detectors with proximity signal readout

    SciTech Connect (OSTI)

    Asztalos, Stephen J. [XIA, LLC, Hayward, CA (United States)

    2014-01-30T23:59:59.000Z

    Semiconductor-based radiation detectors are routinely used for the detection, imaging, and spectroscopy of x-rays, gamma rays, and charged particles for applications in the areas of nuclear and medical physics, astrophysics, environmental remediation, nuclear nonproliferation, and homeland security. Detectors used for imaging and particle tracking are more complex in that they typically must also measure the location of the radiation interaction in addition to the deposited energy. In such detectors, the position measurement is often achieved by dividing or segmenting the electrodes into many strips or pixels and then reading out the signals from all of the electrode segments. Fine electrode segmentation is problematic for many of the standard semiconductor detector technologies. Clearly there is a need for a semiconductor-based radiation detector technology that can achieve fine position resolution while maintaining the excellent energy resolution intrinsic to semiconductor detectors, can be fabricated through simple processes, does not require complex electrical interconnections to the detector, and can reduce the number of required channels of readout electronics. Proximity electrode signal readout (PESR), in which the electrodes are not in physical contact with the detector surface, satisfies this need.

  13. Solid State Lighting Semiconductor Spectroscopy & Devices

    E-Print Network [OSTI]

    Strathclyde, University of

    and fluorescent lamps, are very inefficient in transforming energy into light. Due to upcoming problems in energy % of Earth's total power consumption is used for lighting! Figure 3: Earth at night from space. Evolution inside a semiconductor for light emission. Over 150 years ago... How to achieve white LEDs? Figure 5

  14. Preparation of III-V semiconductor nanocrystals

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Berkeley, CA); Olshavsky, Michael A. (Brunswick, OH)

    1996-01-01T23:59:59.000Z

    Nanometer-scale crystals of III-V semiconductors are disclosed, They are prepared by reacting a group III metal source with a group V anion source in a liquid phase at elevated temperature in the presence of a crystallite growth terminator such as pyridine or quinoline.

  15. Analog Sauter-Schwinger effect in semiconductors

    E-Print Network [OSTI]

    Malte F. Linder; Ralf Schtzhold

    2015-03-24T23:59:59.000Z

    We develop a 1+1-dimensional model of a semiconductor, which exhibits an analog of the nonperturbative electron-positron pair creation from the quantum vacuum via time-dependent external electric fields (Sauter-Schwinger effect). In the one-particle picture of the relativistic Dirac theory, pair production from the Dirac vacuum can be understood as the excitation of a Dirac sea electron into the upper energy continuum. The analog effect in the semiconductor model is the excitation of electrons from the valence band into the conduction band (electron-hole pair creation). We show that the underlying equations describing the excitation processes in both systems are in some cases formally equivalent. The critical electric field strength for the Sauter-Schwinger effect is much smaller in typical semiconductors than in Dirac theory due to the different physical scales. This fact makes analog systems like the semiconductor model promising candidates for the observation of the Sauter-Schwinger effect in the laboratory.

  16. Bi-Se doped with Cu, p-type semiconductor

    DOE Patents [OSTI]

    Bhattacharya, Raghu Nath; Phok, Sovannary; Parilla, Philip Anthony

    2013-08-20T23:59:59.000Z

    A Bi--Se doped with Cu, p-type semiconductor, preferably used as an absorber material in a photovoltaic device. Preferably the semiconductor has at least 20 molar percent Cu. In a preferred embodiment, the semiconductor comprises at least 28 molar percent of Cu. In one embodiment, the semiconductor comprises a molar percentage of Cu and Bi whereby the molar percentage of Cu divided by the molar percentage of Bi is greater than 1.2. In a preferred embodiment, the semiconductor is manufactured as a thin film having a thickness less than 600 nm.

  17. Lattice matched semiconductor growth on crystalline metallic substrates

    DOE Patents [OSTI]

    Norman, Andrew G; Ptak, Aaron J; McMahon, William E

    2013-11-05T23:59:59.000Z

    Methods of fabricating a semiconductor layer or device and said devices are disclosed. The methods include but are not limited to providing a metal or metal alloy substrate having a crystalline surface with a known lattice parameter (a). The methods further include growing a crystalline semiconductor alloy layer on the crystalline substrate surface by coincident site lattice matched epitaxy. The semiconductor layer may be grown without any buffer layer between the alloy and the crystalline surface of the substrate. The semiconductor alloy may be prepared to have a lattice parameter (a') that is related to the lattice parameter (a). The semiconductor alloy may further be prepared to have a selected band gap.

  18. Magnonic band structure, complete bandgap, and collective spin wave excitation in nanoscale two-dimensional magnonic crystals

    SciTech Connect (OSTI)

    Kumar, D.; Barman, A., E-mail: abarman@bose.res.in [Thematic Unit of Excellence on Nanodevice Technology, Department of Condensed Matter Physics and Material Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata 700 098 (India); K?os, J. W.; Krawczyk, M. [Faculty of Physics, Adam Mickiewicz University in Poznan, Umultowska 85, Pozna? 61-614 (Poland)

    2014-01-28T23:59:59.000Z

    We present the observation of a complete bandgap and collective spin wave excitation in two-dimensional magnonic crystals comprised of arrays of nanoscale antidots and nanodots, respectively. Considering that the frequencies dealt with here fall in the microwave band, these findings can be used for the development of suitable magnonic metamaterials and spin wave based signal processing. We also present the application of a numerical procedure, to compute the dispersion relations of spin waves for any high symmetry direction in the first Brillouin zone. The results obtained from this procedure have been reproduced and verified by the well established plane wave method for an antidot lattice, when magnetization dynamics at antidot boundaries are pinned. The micromagnetic simulation based method can also be used to obtain isofrequency contours of spin waves. Isofrequency contours are analogous of the Fermi surfaces and hence, they have the potential to radicalize our understanding of spin wave dynamics. The physical origin of bands, partial and full magnonic bandgaps have been explained by plotting the spatial distribution of spin wave energy spectral density. Although, unfettered by rigid assumptions and approximations, which afflict most analytical methods used in the study of spin wave dynamics, micromagnetic simulations tend to be computationally demanding. Thus, the observation of collective spin wave excitation in the case of nanodot arrays, which can obviate the need to perform simulations, may also prove to be valuable.

  19. Investigation of the basic physics of high efficiency semiconductor hot carrier solar cell. Annual status report, 31 May 1994-30 May 1995

    SciTech Connect (OSTI)

    Alfano, R.R.; Wang, W.B.; Mohaidat, J.M.; Cavicchia, M.A.; Raisky, O.Y.

    1995-05-01T23:59:59.000Z

    The main purpose of this research program is to investigate potential semiconductor materials and their multi-band-gap MQW (multiple quantum wells) structures for high efficiency solar cells for aerospace and commercial applications. The absorption and PL (photoluminescence) spectra, the carrier dynamics, and band structures have been investigated for semiconductors of InP, GaP, GaInP, and InGaAsP/InP MQW structures, and for semiconductors of GaAs and AlGaAs by previous measurements. The barrier potential design criteria for achieving maximum energy conversion efficiency, and the resonant tunneling time as a function of barrier width in high efficiency MQW solar cell structures have also been investigated in the first two years. Based on previous carrier dynamics measurements and the time-dependent short circuit current density calculations, an InAs/InGaAs - InGaAs/GaAs - GaAs/AlGaAs MQW solar cell structure with 15 bandgaps has been designed. The absorption and PL spectra in InGaAsP/InP bulk and MQW structures were measured at room temperature and 77 K with different pump wavelength and intensity, to search for resonant states that may affect the solar cell activities. Time-resolved IR absorption for InGaAsP/InP bulk and MQW structures has been measured by femtosecond visible-pump and IR-probe absorption spectroscopy. This, with the absorption and PL measurements, will be helpful to understand the basic physics and device performance in multi-bandgap InAs/InGaAs - InGaAs/InP - InP/InGaP MQW solar cells. In particular, the lifetime of the photoexcited hot electrons is an important parameter for the device operation of InGaAsP/InP MQW solar cells working in the resonant tunneling conditions. Lastly, time evolution of the hot electron relaxation in GaAs has been measured in the temperature range of 4 K through 288 K using femtosecond pump-IR-probe absorption technique.

  20. Wide field of view telescope

    DOE Patents [OSTI]

    Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)

    2008-01-15T23:59:59.000Z

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  1. SOFTWAREENGINEERING The World Wide Web

    E-Print Network [OSTI]

    Whitehead, James

    SOFTWAREENGINEERING The World Wide Web Distributed Authoring and Versioning working group on the Web. WEBDAV: IETF Standard for Collaborative Authoring on the Web E. JAMES WHITEHEAD, JR. University remains to be done. What if instead you could simply edit Web documents (or any Web resource) in place

  2. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  3. Growth, microstructure, and luminescent properties of direct-bandgap InAlP on relaxed InGaAs on GaAs substrates

    E-Print Network [OSTI]

    Beaton, D. A.

    Direct-bandgap InAlP alloy has the potential to be an active material in nitride-free yellow-green and amber optoelectronics with applications in solid-state lighting, display devices, and multi-junction solar cells. We ...

  4. Intrinsic bandgap of cleaved ZnO(110) surfaces A. Sabitova, Ph. Ebert, A. Lenz, S. Schaafhausen, L. Ivanova et al.

    E-Print Network [OSTI]

    Nabben, Reinhard

    by the American Institute of Physics. Related Articles Reexamination of band offset transitivity employing oxide the occurrence of step-induced gap states. These states lead to a pinning of the Fermi level at the surface apparent bandgap. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4776674] Zinc oxide

  5. Time-resolved THz studies of carrier dynamics in semiconductors, superconductors, and strongly-correlated electron materials

    E-Print Network [OSTI]

    Kaindl, Robert A

    2011-01-01T23:59:59.000Z

    correlation effects in semiconductors, Nature 411, 549-557,in optically excited semiconductors, Phys. Rev. B 54,and Terahertz Gain in Semiconductors Excited to Resonance,

  6. Proximity charge sensing for semiconductor detectors

    DOE Patents [OSTI]

    Luke, Paul N; Tindall, Craig S; Amman, Mark

    2013-10-08T23:59:59.000Z

    A non-contact charge sensor includes a semiconductor detector having a first surface and an opposing second surface. The detector includes a high resistivity electrode layer on the first surface and a low resistivity electrode on the high resistivity electrode layer. A portion of the low resistivity first surface electrode is deleted to expose the high resistivity electrode layer in a portion of the area. A low resistivity electrode layer is disposed on the second surface of the semiconductor detector. A voltage applied between the first surface low resistivity electrode and the second surface low resistivity electrode causes a free charge to drift toward the first or second surface according to a polarity of the free charge and the voltage. A charge sensitive preamplifier coupled to a non-contact electrode disposed at a distance from the exposed high resistivity electrode layer outputs a signal in response to movement of free charge within the detector.

  7. Semiconductor Probes of Light Dark Matter

    E-Print Network [OSTI]

    Peter W. Graham; David E. Kaplan; Surjeet Rajendran; Matthew T. Walters

    2012-11-12T23:59:59.000Z

    Dark matter with mass below about a GeV is essentially unobservable in conventional direct detection experiments. However, newly proposed technology will allow the detection of single electron events in semiconductor materials with significantly lowered thresholds. This would allow detection of dark matter as light as an MeV in mass. Compared to other detection technologies, semiconductors allow enhanced sensitivity because of their low ionization energy around an eV. Such detectors would be particularly sensitive to dark matter with electric and magnetic dipole moments, with a reach many orders of magnitude beyond current bounds. Observable dipole moment interactions can be generated by new particles with masses as great as 1000 TeV, providing a window to scales beyond the reach of current colliders.

  8. Optical cavity furnace for semiconductor wafer processing

    DOE Patents [OSTI]

    Sopori, Bhushan L.

    2014-08-05T23:59:59.000Z

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  9. Scanning probe microscopy studies of semiconductor surfaces

    SciTech Connect (OSTI)

    Weinberg, W.H. [Univ. of California, Santa Barbara, CA (United States)

    1996-10-01T23:59:59.000Z

    Recent work involving atomic force microscopy and scanning tunneling microscopy is discussed which involves strain-induced, self-assembling nanostructures in compound semiconductor materials. Specific examples include one-dimensional quantum wires of InAs grown by MBE on GaAs(001) and zero-dimensional quantum dots of InP grown by MOCVD on InGaP which is lattice matched to GaAs(001).

  10. Visible-wavelength semiconductor lasers and arrays

    DOE Patents [OSTI]

    Schneider, Jr., Richard P. (Albuquerque, NM); Crawford, Mary H. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    A visible semiconductor laser. The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1.lambda.) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%.

  11. 7/14/2004 World of Compound Semiconductors Page 1 of 191 TThhee WWoorrlldd

    E-Print Network [OSTI]

    7/14/2004 World of Compound Semiconductors Page 1 of 191 TThhee WWoorrlldd ooff CCoommppoouunndd ...... ---- ...... ---- ...... ---- ...... ---- ...... ---- ...... ---- ...... ---- #12;7/14/2004 World of Compound Semiconductors Page 2 of 191 0.1 Scope Compound III-V Semiconductors A new family of semiconductors is changing the way we live. These semiconductors are in our cell phones

  12. 1.0. Semiconductor Diodes 1 of 27 1.2 Ideal Diode

    E-Print Network [OSTI]

    Allen, Gale

    1.0. Semiconductor Diodes 1 of 27 1.2 Ideal Diode ID VD ID Open Circuit Short Circuit VD + - #12;1.0. Semiconductor Diodes 2 of 27 1.3 Semiconductor Materials Conductor Insulator Semiconductor R = (Resistivity Resistivity of a semiconductor decreases as temperature increases. ure coefficient.Negative temperat #12

  13. Resonant charge transfer of hydrogen Rydberg atoms incident at a Cu(100) projected band-gap surface

    E-Print Network [OSTI]

    Gibbard, J A; Kohlhoff, M; Rennick, C J; So, E; Ford, M; Softley, T P

    2015-01-01T23:59:59.000Z

    The charge transfer (ionization) of hydrogen Rydberg atoms (principal quantum number $n=25-34$) incident at a Cu(100) surface is investigated. Unlike fully metallic surfaces, where the Rydberg electron energy is degenerate with the conduction band of the metal, the Cu(100) surface has a projected bandgap at these energies, and only discrete image states are available through which charge transfer can take place. Resonant enhancement of charge transfer is observed at hydrogen principal quantum numbers for which the Rydberg energy matches the energy of one of the image states. The integrated surface ionization signals show clear periodicity as the energies of states with increasing $n$ come in and out of resonance with the image states. The velocity dependence of the surface ionization dynamics is also investigated. Decreased velocity of the incident H atom leads to a greater mean distance of ionization and a lower field required to extract the ion. The surface-ionization profiles (signal versus applied field) ...

  14. Photovoltaic healing of non-uniformities in semiconductor devices

    DOE Patents [OSTI]

    Karpov, Victor G.; Roussillon, Yann; Shvydka, Diana; Compaan, Alvin D.; Giolando, Dean M.

    2006-08-29T23:59:59.000Z

    A method of making a photovoltaic device using light energy and a solution to normalize electric potential variations in the device. A semiconductor layer having nonuniformities comprising areas of aberrant electric potential deviating from the electric potential of the top surface of the semiconductor is deposited onto a substrate layer. A solution containing an electrolyte, at least one bonding material, and positive and negative ions is applied over the top surface of the semiconductor. Light energy is applied to generate photovoltage in the semiconductor, causing a redistribution of the ions and the bonding material to the areas of aberrant electric potential. The bonding material selectively bonds to the nonuniformities in a manner such that the electric potential of the nonuniformities is normalized relative to the electric potential of the top surface of the semiconductor layer. A conductive electrode layer is then deposited over the top surface of the semiconductor layer.

  15. Band gap engineering at a semiconductor - crystalline oxide interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moghadam, Jahangir-Moghadam; Shen, Xuan; Chrysler, Matthew; Ahmadi-Majlan, Kamyar; Su, Dong; Ngai, Joseph H.

    2015-03-01T23:59:59.000Z

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmorestructural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.less

  16. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    SciTech Connect (OSTI)

    Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Gorelik, Vladimir S. [P. N. Lebedev Physics Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119991 (Russian Federation)

    2014-06-07T23:59:59.000Z

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  17. Method and system for powering and cooling semiconductor lasers

    DOE Patents [OSTI]

    Telford, Steven J; Ladran, Anthony S

    2014-02-25T23:59:59.000Z

    A semiconductor laser system includes a diode laser tile. The diode laser tile includes a mounting fixture having a first side and a second side opposing the first side and an array of semiconductor laser pumps coupled to the first side of the mounting fixture. The semiconductor laser system also includes an electrical pulse generator thermally coupled to the diode bar and a cooling member thermally coupled to the diode bar and the electrical pulse generator.

  18. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOE Patents [OSTI]

    Alivisatos, A. Paul; Scher, Erik C.; Manna, Liberato

    2013-03-26T23:59:59.000Z

    Graded core/shell semiconductor nanorods and shapped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  19. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Scher, Erik C. (San Francisco, CA); Manna, Liberato (Palo Del Collie, IT)

    2009-05-19T23:59:59.000Z

    Disclosed herein is a graded core/shell semiconductor nanorod having at least a first segment of a core of a Group II-VI, Group III-V or a Group IV semiconductor, a graded shell overlying the core, wherein the graded shell comprises at least two monolayers, wherein the at least two monolayers each independently comprise a Group II-VI, Group III-V or a Group IV semiconductor.

  20. Graded core/shell semiconductor nanorods and nanorod barcodes

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Scher, Erik C. (San Francisco, CA); Manna, Liberato (Lecce, IT)

    2010-12-14T23:59:59.000Z

    Graded core/shell semiconductor nanorods and shaped nanorods are disclosed comprising Group II-VI, Group III-V and Group IV semiconductors and methods of making the same. Also disclosed are nanorod barcodes using core/shell nanorods where the core is a semiconductor or metal material, and with or without a shell. Methods of labeling analytes using the nanorod barcodes are also disclosed.

  1. Deposition method for producing silicon carbide high-temperature semiconductors

    DOE Patents [OSTI]

    Hsu, George C. (La Crescenta, CA); Rohatgi, Naresh K. (W. Corine, CA)

    1987-01-01T23:59:59.000Z

    An improved deposition method for producing silicon carbide high-temperature semiconductor material comprising placing a semiconductor substrate composed of silicon carbide in a fluidized bed silicon carbide deposition reactor, fluidizing the bed particles by hydrogen gas in a mildly bubbling mode through a gas distributor and heating the substrate at temperatures around 1200.degree.-1500.degree. C. thereby depositing a layer of silicon carbide on the semiconductor substrate.

  2. Production of pulsed, mass-selected beams of metal and semiconductor clusters

    SciTech Connect (OSTI)

    Kamalou, Omar; Rangama, Jimmy; Ramillon, Jean-Marc; Guinement, Patrick; Huber, Bernd A. [CIMAP, CEA-CNRS-ENSICaen-UCBN, Bv. Henry Becquerel (B.P. 5133), F-14070 Caen Cedex 05 (France)

    2008-06-15T23:59:59.000Z

    We report on the development of a beam line for mass-selected metal and semiconductor clusters. The cluster source combines the principles of plasma sputtering and gas condensation. Both techniques together allow to produce clusters in a wide size range. With the aid of a time-of-flight system, small clusters (i.e., Cu{sub n}{sup +}, n<100) are selected and pure beams containing only one cluster size are provided. For large clusters (containing several thousands of atoms), a beam with a narrow size distribution is obtained. A 90 deg. quadrupole deviator is used to separate charged clusters from neutral ones.

  3. Interpretation of the Phonon Frequency Shifts in ZnO Quantum Dots Khan A. Alim, Vladimir A. Fonoberov, and Alexander A. Balandin

    E-Print Network [OSTI]

    Fonoberov, Vladimir

    made of zinc oxide (ZnO), a wide-bandgap semiconductor, have recently attracted attention due Zinc oxide (ZnO) presents interesting material system because of its wide band gap of 3.37 eV and some ultraviolet (UV) protection films, gas sensors, and varistors. Raman spectroscopy presents a powerful tool

  4. Method for fabricating an interconnected array of semiconductor devices

    DOE Patents [OSTI]

    Grimmer, Derrick P. (White Bear Lake, MN); Paulson, Kenneth R. (North St. Paul, MN); Gilbert, James R. (St. Paul, MN)

    1989-10-10T23:59:59.000Z

    Semiconductor layer and conductive layer formed on a flexible substrate, divided into individual devices and interconnected with one another in series by interconnection layers and penetrating terminals.

  5. Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor...

    Open Energy Info (EERE)

    Kyungdong Photovoltaic Energy Corp KPE formerly Photon Semiconductor Energy Jump to: navigation, search Name: Kyungdong Photovoltaic Energy Corp (KPE) (formerly Photon...

  6. Magnetic Gas Sensing Using a Dilute Magnetic Semiconductor. ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Abstract: The authors report on a magnetic gas sensing methodology to detect hydrogen using the ferromagnetic properties of a nanoscale dilute magnetic semiconductor...

  7. Method for depositing high-quality microcrystalline semiconductor materials

    DOE Patents [OSTI]

    Guha, Subhendu (Bloomfield Hills, MI); Yang, Chi C. (Troy, MI); Yan, Baojie (Rochester Hills, MI)

    2011-03-08T23:59:59.000Z

    A process for the plasma deposition of a layer of a microcrystalline semiconductor material is carried out by energizing a process gas which includes a precursor of the semiconductor material and a diluent with electromagnetic energy so as to create a plasma therefrom. The plasma deposits a layer of the microcrystalline semiconductor material onto the substrate. The concentration of the diluent in the process gas is varied as a function of the thickness of the layer of microcrystalline semiconductor material which has been deposited. Also disclosed is the use of the process for the preparation of an N-I-P type photovoltaic device.

  8. Statistical Methods for Enhanced Metrology in Semiconductor/Photovoltaic Manufacturing

    E-Print Network [OSTI]

    Zeng, Dekong

    2012-01-01T23:59:59.000Z

    process control charts (SPC) for product quality and processstatistical process control (SPC) charts. The concept is toMethods Univariate SPC for semiconductor manufacturing

  9. Argonne announces new licensing agreement with AKHAN Semiconductor...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Argonne announces new licensing agreement with AKHAN Semiconductor By Jared Sagoff * November 19, 2014 Tweet EmailPrint ARGONNE, Ill. - The U.S. Department of Energy's (DOE)...

  10. Exploring Electron Transfer in Organic Semiconductors | MIT-Harvard...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electron Transfer in Organic Semiconductors January 28, 2009 at 3pm36-428 Troy Van Voorhis Department of Chemistry, Massachusetts Institute of Technology vanvoorhis2000 abstract:...

  11. Metal Oxide Semiconductor Nanoparticles Open the Door to New...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Innovations Technology available for licensing: novel nanometer-sized metal oxide semiconductors that allow targeting, initiating and control of in vitro and in vivo chemical...

  12. Ferromagnetic Semiconductor Nanoclusters: Co-doped Cu2O. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    exhibits a temperature dependent decrease. Citation: Antony J, Y Qiang, F Muhammad, D Meyer, DE McCready, and MH Engelhard.2007."Ferromagnetic Semiconductor Nanoclusters:...

  13. The Technical and Economic Potential for Electricity Energy Efficiency in a Semiconductor Manufacturing Plant

    E-Print Network [OSTI]

    Lee, A. H. W.; Golden, J. W.; Zarnikau, J. W.

    In recent years, there has been renewed interest in energy efficiency in the semiconductor industry. The declining prices for semiconductor products has prompted semiconductor manufacturing plants to control costs so as to maintain profitability...

  14. Polarized x-ray spectroscopy of quaternary ferromagnetic semiconductor (Ga,Mn)(As,P)

    E-Print Network [OSTI]

    Wadley, P.

    2011-01-01T23:59:59.000Z

    quaternary diluted magnetic semiconductor (Ga,Mn)(As,P) as aIn diluted magnetic semiconductors such as (Ga,Mn)As, whichquaternary diluted magnetic semiconductors such as (Ga,Mn)(

  15. Construction of a Deep Level Transient Spectroscopy (DLTS) Setup Semiconductors and DLTS

    E-Print Network [OSTI]

    Zhao, Yuxiao

    Construction of a Deep Level Transient Spectroscopy (DLTS) Setup Semiconductors and DLTS Semiconductor devices are central to information technology. Their importance stems from the fact Ian Booker Semiconductor Materials Group Dept. Of Physics, Chemistry and Biology, IFM Linkping

  16. Study of Semiconductor Microring Lasers for use in Wavelength Division Multiplexing (WDM)

    E-Print Network [OSTI]

    Kouroupetroglou, Georgios

    Study of Semiconductor Microring Lasers for use in Wavelength Division Multiplexing (WDM of all-active microring resonators as lasers are studied. The structure of a semiconductor microring demonstrated. Keywords: Semiconductor microring lasers, non-linear gain, multimode operation, mode

  17. Atomic and electronic structures of oxides on III-V semiconductors :

    E-Print Network [OSTI]

    Shen, Jian

    2010-01-01T23:59:59.000Z

    and passivation of a compound semiconductor surface duringIn 2 O and SiO/III-V Semiconductor Interface, in press with2 O and SiO/III-V Semiconductor Interface, ECS Transaction (

  18. Strain broadening of the magnetization steps in diluted magnetic semiconductors Yuri G. Rubo* and M. F. Thorpe

    E-Print Network [OSTI]

    Thorpe, Michael

    Strain broadening of the magnetization steps in diluted magnetic semiconductors Yuri G. Rubo* and M alloys diluted magnetic semiconductors results in fluctuations of the exchange constants between semiconducting alloys, the so- called semimagnetic semiconductors or diluted magnetic semiconductors DMS

  19. Wide-range voltage modulation

    SciTech Connect (OSTI)

    Rust, K.R.; Wilson, J.M.

    1992-06-01T23:59:59.000Z

    The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

  20. Semiconductor heterojunction band offsets and charge neutrality

    E-Print Network [OSTI]

    Lee, Chomsik

    1989-01-01T23:59:59.000Z

    = 33&Pb = 3 3&PAB = 35 1 . aI M 0 A 0. ? 1 2. 0. Energy(eV) 1 2. 0 0. ? 1 0. Energy(eV) 1 2. Figure 4. 4. Local density of states, parameters for this case are s, = ? 7, s?= 1, s, = l&sp 7~Pa = 4~A = 4)DAB ? .35. -12. 0. Energy(eV) 0... Signature of APS Member Roland E. Allen Department of Physics'- Texas A&M University ' College Station, TX 77843 s p ~ CX3 SEMICONDUCTOR HETEROJUNCTION BAND OFFSETS AND CHARGE NEUTRALITY A Thesis by CHOMSIK LEE Submitted to the Oflice of Graduate...

  1. Transient Rayleigh scattering from single semiconductor nanowires

    SciTech Connect (OSTI)

    Montazeri, Mohammad; Jackson, Howard E.; Smith, Leigh M. [Department of Physics, University of Cincinnati, Cincinnati, OH 45221-0011 (United States); Yarrison-Rice, Jan M. [Department of Physics, Miami University, Oxford, OH 45056 (United States); Kang, Jung-Hyun; Gao, Qiang; Tan, Hark Hoe; Jagadish, Chennupati [Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200 (Australia)

    2013-12-04T23:59:59.000Z

    Transient Rayleigh scattering spectroscopy is a new pump-probe technique to study the dynamics and cooling of photo-excited carriers in single semiconductor nanowires. By studying the evolution of the transient Rayleigh spectrum in time after excitation, one can measure the time evolution of the density and temperature of photo-excited electron-hole plasma (EHP) as they equilibrate with lattice. This provides detailed information of dynamics and cooling of carriers including linear and bimolecular recombination properties, carrier transport characteristics, and the energy-loss rate of hot electron-hole plasma through the emission of LO and acoustic phonons.

  2. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, G.M.; Baca, A.G.; Zutavern, F.J.

    1998-09-08T23:59:59.000Z

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device is disclosed. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices. 5 figs.

  3. GaAs photoconductive semiconductor switch

    DOE Patents [OSTI]

    Loubriel, Guillermo M. (Sandia Park, NM); Baca, Albert G. (Albuquerque, NM); Zutavern, Fred J. (Albuquerque, NM)

    1998-01-01T23:59:59.000Z

    A high gain, optically triggered, photoconductive semiconductor switch (PCSS) implemented in GaAs as a reverse-biased pin structure with a passivation layer above the intrinsic GaAs substrate in the gap between the two electrodes of the device. The reverse-biased configuration in combination with the addition of the passivation layer greatly reduces surface current leakage that has been a problem for prior PCSS devices and enables employment of the much less expensive and more reliable DC charging systems instead of the pulsed charging systems that needed to be used with prior PCSS devices.

  4. Dissipative dynamics in semiconductors at low temperature

    E-Print Network [OSTI]

    George Androulakis; Jean Bellissard; Christian Sadel

    2011-07-06T23:59:59.000Z

    A mathematical model is introduced which describes the dissipation of electrons in lightly doped semi-conductors. The dissipation operator is proved to be densely defined and positive and to generate a Markov semigroup of operators. The spectrum of the dissipation operator is studied and it is shown that zero is a simple eigenvalue, which makes the equilibrium state unique. Also it is shown that there is a gap between zero and the rest of its spectrum which makes the return to equilibrium exponentially fast in time.

  5. Modular Algorithms for Transient Semiconductor Device Simulation, Part I

    E-Print Network [OSTI]

    Jerome, Joseph W.

    Modular Algorithms for Transient Semiconductor Device Simulation, Part I: Analysis of the Outer, is introduced at dis- crete time steps for the one-dimensional semiconductor device model. The it- eration as approximate Newton iterations. Continuation is employed as the time-stepping bridge. 1 Introduction In Part I

  6. Effect of superluminescence on the modulation response of semiconductor lasers

    SciTech Connect (OSTI)

    Lau, K.Y.; Yariv, A.

    1982-03-15T23:59:59.000Z

    The small-signal modulation response of semiconductor lasers with a very small mirror reflectivity is analyzed. Superluminescent effects inside the laser cavity provide yet another mechanism for damping relaxation oscillation resonance. These results can serve as useful guides in designing high frequency semiconductor lasers.

  7. Profiling the Thermoelectric Power of Semiconductor Junctions with

    E-Print Network [OSTI]

    Profiling the Thermoelectric Power of Semiconductor Junctions with Nanometer Resolution Ho-Ki Lyeo,3 * We have probed the local thermoelectric power of semiconductor nanostruc- tures with the use of ultrahigh-vacuum scanning thermoelectric microscopy. When applied to a p-n junction, this method reveals

  8. ECE 451 -Fall 2011 Physics of Semiconductor Devices (3)

    E-Print Network [OSTI]

    Gilchrist, James F.

    ECE 451 - Fall 2011 Physics of Semiconductor Devices (3) Electronics and Optoelectronics-Photon Scattering Processes (Optional) 18. Novel Optoelectronics and Electronics Devices (Optional) Structure on Semiconductor Physics and Device Physics, Draft Version (2010). Other Additional References or Readings: 1. J

  9. hal00267005, Modeling semiconductor thermal properties. The dispersion role.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , or in solar panels 3 , and are even used in medicine 4 . The increasing use of semiconductor micro in transistors 6 and semiconductor nano#12;lms in solar cells. At these low scale, Fourier's law may give , similar to photon intensity used in radiative transfer 24 . Thus, the energy ux per apparent surface unit

  10. Propagation of Nonclassical Radiation through a Semiconductor Slab

    E-Print Network [OSTI]

    D. Yu. Vasylyev; W. Vogel; T. Schmielau; K. Henneberger; D. -G. Welsch

    2008-02-20T23:59:59.000Z

    Based on a microscopic derivation of the emission spectra of a bulk semiconductor we arrive at a clear physical interpretation of the noise current operators in macroscopic quantum electrodynamics. This opens the possibility to study medium effects on nonclassical radiation propagating through an absorbing or amplifying semiconductor. As an example, the propagation of an incident squeezed vacuum is analyzed.

  11. Semiconductor Nanocomposites DOI: 10.1002/anie.201100200

    E-Print Network [OSTI]

    Lin, Zhiqun

    Semiconductor Nanocomposites DOI: 10.1002/anie.201100200 Semiconductor Anisotropic Nanocomposites-based organic/inorganic hybrid solar cells (e.g., CP/QD composites) are favorable alternatives to inorganic elegant approach is to chemically tether CPs on the QD surface (i.e., preparing CPQD nanocomposites

  12. Apparatus for the etching for semiconductor devices

    SciTech Connect (OSTI)

    Reinberg, A.R.; Steinberg, G.N.

    1983-01-11T23:59:59.000Z

    Apparatus for the etching of semiconductor devices which includes, in combination, an etching chamber containing the semiconductor device to be etched, an electrodeless etching plasma forming chamber having an inlet connected to a source of continuously flowing etching gas and having an outlet connected to said etching chamber in fluid flow communication; a helical inductive resonator coupler for coupling a source of R.F. electrical power into the electrodeless plasma forming chamber for continuously forming etching plasma from the etching gas flowing therethrough; this inductive resonator coupler including a grounded hollow cylinder of electrically conductive material, with a grounded base member at one end; a helically coiled wire conductor concentrically mounted within the cylinder and spaced from the inner walls thereof; the plasma forming chamber being mounted substantially concentrically within the coil, the end of the coil toward the base member being grounded; and an electrical coupling for applying into the coil an R.F. source of electrical power at a position near, but spaced from, the grounded end thereof.

  13. Coated semiconductor devices for neutron detection

    DOE Patents [OSTI]

    Klann, Raymond T. (Bolingbrook, IL); McGregor, Douglas S. (Whitmore Lake, MI)

    2002-01-01T23:59:59.000Z

    A device for detecting neutrons includes a semi-insulated bulk semiconductor substrate having opposed polished surfaces. A blocking Schottky contact comprised of a series of metals such as Ti, Pt, Au, Ge, Pd, and Ni is formed on a first polished surface of the semiconductor substrate, while a low resistivity ("ohmic") contact comprised of metals such as Au, Ge, and Ni is formed on a second, opposed polished surface of the substrate. In one embodiment, n-type low resistivity pinout contacts comprised of an Au/Ge based eutectic alloy or multi-layered Pd/Ge/Ti/Au are also formed on the opposed polished surfaces and in contact with the Schottky and ohmic contacts. Disposed on the Schottky contact is a neutron reactive film, or coating, for detecting neutrons. The coating is comprised of a hydrogen rich polymer, such as a polyolefin or paraffin; lithium or lithium fluoride; or a heavy metal fissionable material. By varying the coating thickness and electrical settings, neutrons at specific energies can be detected. The coated neutron detector is capable of performing real-time neutron radiography in high gamma fields, digital fast neutron radiography, fissile material identification, and basic neutron detection particularly in high radiation fields.

  14. Visible-wavelength semiconductor lasers and arrays

    DOE Patents [OSTI]

    Schneider, R.P. Jr.; Crawford, M.H.

    1996-09-17T23:59:59.000Z

    The visible semiconductor laser includes an InAlGaP active region surrounded by one or more AlGaAs layers on each side, with carbon as the sole p-type dopant. Embodiments of the invention are provided as vertical-cavity surface-emitting lasers (VCSELs) and as edge-emitting lasers (EELs). One or more transition layers comprised of a substantially indium-free semiconductor alloy such as AlAsP, AlGaAsP, or the like may be provided between the InAlGaP active region and the AlGaAS DBR mirrors or confinement layers to improve carrier injection and device efficiency by reducing any band offsets. Visible VCSEL devices fabricated according to the invention with a one-wavelength-thick (1{lambda}) optical cavity operate continuous-wave (cw) with lasing output powers up to 8 mW, and a peak power conversion efficiency of up to 11%. 5 figs.

  15. Ultra-Thin, Triple-Bandgap GaInP/GaAs/GaInAs Monolithic Tandem Solar Cells

    SciTech Connect (OSTI)

    Wanlass, M. W.; Ahrenkiel, S. P.; Albin, D. S.; Carapella, J. J.; Duda, A.; Emery, K.; Geisz, J. F.; Jones, K.; Kurtz, S.; Moriarty, T.; Romero, M. J.

    2007-02-01T23:59:59.000Z

    The performance of state-of-the-art, series-connected, lattice-matched (LM), triple-junction (TJ), III-V tandem solar cells could be improved substantially (10-12%) by replacing the Ge bottom subcell with a subcell having a bandgap of {approx}1 eV. For the last several years, research has been conducted by a number of organizations to develop {approx}1-eV, LM GaInAsN to provide such a subcell, but, so far, the approach has proven unsuccessful. Thus, the need for a high-performance, monolithically integrable, 1-eV subcell for TJ tandems has remained. In this paper, we present a new TJ tandem cell design that addresses the above-mentioned problem. Our approach involves inverted epitaxial growth to allow the monolithic integration of a lattice-mismatched (LMM) {approx}1-eV GaInAs/GaInP double-heterostructure (DH) bottom subcell with LM GaAs (middle) and GaInP (top) upper subcells. A transparent GaInP compositionally graded layer facilitates the integration of the LM and LMM components. Handle-mounted, ultra-thin device fabrication is a natural consequence of the inverted-structure approach, which results in a number of advantages, including robustness, potential low cost, improved thermal management, incorporation of back-surface reflectors, and possible reclamation/reuse of the parent crystalline substrate for further cost reduction. Our initial work has concerned GaInP/GaAs/GaInAs tandem cells grown on GaAs substrates. In this case, the 1-eV GaInAs experiences 2.2% compressive LMM with respect to the substrate. Specially designed GaInP graded layers are used to produce 1-eV subcells with performance parameters nearly equaling those of LM devices with the same bandgap (e.g., LM, 1-eV GaInAsP grown on InP). Previously, we reported preliminary ultra-thin tandem devices (0.237 cm{sup 2}) with NREL-confirmed efficiencies of 31.3% (global spectrum, one sun) (1), 29.7% (AM0 spectrum, one sun) (2), and 37.9% (low-AOD direct spectrum, 10.1 suns) (3), all at 25 C. Here, we include recent results of testing similar devices under the concentrated AMO spectrum, and also present the first demonstration of a high-efficiency, ultra-thin GaInP/GaAs/GaInAs tandem cell processed on a flexible kapton handle.

  16. Conversion of above- and below-bandgap photons via InAs quantum dot media embedded into GaAs solar cell

    SciTech Connect (OSTI)

    Sablon, K.; Little, J. [U.S. Army Research Laboratory, Adelphi, Maryland 20783 (United States); Vagidov, N. [Optoelectronic Nanodevices LLC, Amherst, New York 14226 (United States); Li, Y.; Mitin, V.; Sergeev, A. [EE Department, University at BuffaloSUNY, Buffalo, New York 14260 (United States)

    2014-06-23T23:59:59.000Z

    Quantum dots (QDs) provide photovoltaic conversion of below-bandgap photons due to multistep electron transitions. QDs also increase conversion efficiency of the above-bandgap photons due to extraction of electrons from QDs via Coulomb interaction with hot electrons excited by high-energy photons. Nanoscale potential profile (potential barriers) and nanoscale band engineering (AlGaAs atomically thin barriers) allow for suppression of photoelectron capture to QDs. To study these kinetic effects and to distinguish them from the absorption enhancement due to light scattering on QDs, we investigate long, 3-?m base GaAs devices with various InAs QD media with 20 and 40 QD layers. Quantum efficiency measurements show that, at least at low doping, the multistep processes in QD media are strongly affected by the wetting layer (WL). The QD media with WLs provide substantial conversion of below-bandgap photons and for devices with 40 QD layers the short circuit current reaches 29.2?mA/cm{sup 2}. The QD media with band-engineered AlGaAs barriers and reduced wetting layers (RWL) enhance conversion of high-energy photons and decrease the relaxation (thermal) losses.

  17. Monolithic heteroepitaxial integration of III-V semiconductor lasers on Si substrates

    E-Print Network [OSTI]

    Groenert, Michael

    2002-01-01T23:59:59.000Z

    Monolithic optoelectronic integration on silicon-based integrated circuits has to date been limited to date by the large material differences between silicon (Si) and the direct-bandgap GaAs compounds from which optoelectronic ...

  18. Engineered substrates for coplanar integration of lattice-mismatched semiconductors with silicon

    E-Print Network [OSTI]

    Pitera, Arthur Joseph, 1975-

    2005-01-01T23:59:59.000Z

    As we approach the end of traditional CMOS scaling, further improvements in integrated circuit performance and functionality will become limited by the inherently low carrier mobility and indirect bandgap of silicon. These ...

  19. Size-dependent shifts of the Nel temperature and optical band-gap in NiO nanoparticles

    SciTech Connect (OSTI)

    Thota, Subhash, E-mail: mseehra@wvu.edu, E-mail: subhasht@iitg.ac.in [Department of Physics, Indian Institute of Technology, Guwahati, Assam 781039 (India); Shim, J. H.; Seehra, M. S., E-mail: mseehra@wvu.edu, E-mail: subhasht@iitg.ac.in [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2013-12-07T23:59:59.000Z

    Bulk NiO is a well-known antiferromagnet with Neel temperature T{sub N}(?)?=?524?K and an optical band-gap E{sub g}?=?4.3?eV. With decrease in particle size D from 40?nm to 4?nm of NiO, systematic changes of T{sub N} and E{sub g} are observed and discussed here. From magnetic measurements, the changes in T{sub N} with D are found to fit finite-size scaling equation T{sub N}(D)?=?T{sub N}(?) [1 ? (?{sub o}/D){sup ?}] with ??=?3.2??0.5 and ?{sub o}?=?3.2??0.2?nm, in good agreement with the predictions for a Heisenberg system. The observed blue shifts of E{sub g} with decrease in D reaching E{sub g}?=?5.12?eV for D???4?nm are likely due to quantum confinement and non-stoichiometry.

  20. Tuning the electronic coupling in a low-bandgap donor-acceptor copolymer via the placement of side-chains

    SciTech Connect (OSTI)

    Oberhumer, Philipp M.; Huang, Ya-Shih; Massip, Sylvain; Albert-Seifried, Sebastian; Greenham, Neil C.; Hodgkiss, Justin M.; Friend, Richard H. [Cavendish Laboratory, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); James, David T.; Kim, Ji-Seon [Blackett Laboratory, Imperial College, London SW7 2AZ (United Kingdom); Tu Guoli; Huck, Wilhelm T. S. [Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom); Beljonne, David; Cornil, Jerome [Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc, 20, 7000 Mons (Belgium)

    2011-03-21T23:59:59.000Z

    We present a spectroscopic and theoretical investigation of the effect of the presence and position of hexyl side-chains in the novel low-bandgap alternating donor-acceptor copolymer poly[bis-N,N-(4-octylphenyl)-bis-N,N-phenyl-1, 4-phenylenediamine-alt-5,5'-4',7',-di-2-thienyl-2',1',3'-benzothiadiazole] (T8TBT). We use electronic absorption and Raman spectroscopic measurements supported by calculations of chain conformation, electronic transitions, and Raman modes. Using these tools, we find that sterically demanding side-chain configurations induce twisting in the electronic acceptor unit and reduce the electronic interaction with the donor. This leads to a blue-shifted and weakened (partial) charge-transfer absorption band together with a higher photoluminescence efficiency. On the other hand, sterically relaxed side-chain configurations promote coupling between donor and acceptor units and exhibit enhanced absorption at the expense of luminescence efficiency. The possibility of tuning the donor-acceptor character of conjugated polymers by varying the placement of side-chains has very important ramifications for light emitting diode, Laser, display, and photovoltaic device optimization.

  1. Development of fluorocarbon evaporative cooling recirculators and controls for the ATLAS pixel and semiconductor tracking detectors

    E-Print Network [OSTI]

    Bayer, C; Bonneau, P; Bosteels, Michel; Burckhart, H J; Cragg, D; English, R; Hallewell, G D; Hallgren, Bjrn I; Kersten, S; Kind, P; Langedrag, K; Lindsay, S; Merkel, M; Stapnes, Steinar; Thadome, J; Vacek, V

    2000-01-01T23:59:59.000Z

    Development of fluorocarbon evaporative cooling recirculators and controls for the ATLAS pixel and semiconductor tracking detectors

  2. High power semiconductor laser sources. Annual report, 12 March 1985-11 March 1986

    SciTech Connect (OSTI)

    Lang, R.; Salzman, J.; Yariv

    1986-06-10T23:59:59.000Z

    Unstable semiconductor lasers were fabricated, and their potential as high power laser sources was analyzed.

  3. Control of coherence resonance in semiconductor superlattices

    E-Print Network [OSTI]

    Johanne Hizanidis; Eckehard Schoell

    2008-09-01T23:59:59.000Z

    We study the effect of time-delayed feedback control and Gaussian white noise on the spatio-temporal charge dynamics in a semiconductor superlattice. The system is prepared in a regime where the deterministic dynamics is close to a global bifurcation, namely a saddle-node bifurcation on a limit cycle ({\\it SNIPER}). In the absence of control, noise can induce electron charge front motion through the entire device, and coherence resonance is observed. We show that with appropriate selection of the time-delayed feedback parameters the effect of coherence resonance can either be enhanced or destroyed, and the coherence of stochastic domain motion at low noise intensity is dramatically increased. Additionally, the purely delay-induced dynamics in the system is investigated, and a homoclinic bifurcation of a limit cycle is found.

  4. Modeling direct interband tunneling. I. Bulk semiconductors

    SciTech Connect (OSTI)

    Pan, Andrew, E-mail: pandrew@ucla.edu [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); Chui, Chi On [Department of Electrical Engineering, University of California, Los Angeles, Los Angeles, California 90095 (United States); California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095 (United States)

    2014-08-07T23:59:59.000Z

    Interband tunneling is frequently studied using the semiclassical Kane model, despite uncertainty about its validity. Revisiting the physical basis of this formula, we find that it neglects coupling to other bands and underestimates transverse tunneling. As a result, significant errors can arise at low and high fields for small and large gap materials, respectively. We derive a simple multiband tunneling model to correct these defects analytically without arbitrary parameters. Through extensive comparison with band structure and quantum transport calculations for bulk InGaAs, InAs, and InSb, we probe the accuracy of the Kane and multiband formulas and establish the superiority of the latter. We also show that the nonlocal average electric field should be used when applying either of these models to nonuniform potentials. Our findings are important for efficient analysis and simulation of bulk semiconductor devices involving tunneling.

  5. Ion Trap in a Semiconductor Chip

    E-Print Network [OSTI]

    D. Stick; W. K. Hensinger; S. Olmschenk; M. J. Madsen; K. Schwab; C. Monroe

    2006-01-09T23:59:59.000Z

    The electromagnetic manipulation of isolated atoms has led to many advances in physics, from laser cooling and Bose-Einstein condensation of cold gases to the precise quantum control of individual atomic ion. Work on miniaturizing electromagnetic traps to the micrometer scale promises even higher levels of control and reliability. Compared with 'chip traps' for confining neutral atoms, ion traps with similar dimensions and power dissipation offer much higher confinement forces and allow unparalleled control at the single-atom level. Moreover, ion microtraps are of great interest in the development of miniature mass spectrometer arrays, compact atomic clocks, and most notably, large scale quantum information processors. Here we report the operation of a micrometer-scale ion trap, fabricated on a monolithic chip using semiconductor micro-electromechanical systems (MEMS) technology. We confine, laser cool, and measure heating of a single 111Cd+ ion in an integrated radiofrequency trap etched from a doped gallium arsenide (GaAs) heterostructure.

  6. Ultra wide-bandwidth micro energy harvester

    E-Print Network [OSTI]

    Hajati, Arman

    2011-01-01T23:59:59.000Z

    An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via ...

  7. Simulation of neutron radiation damage in silicon semiconductor devices.

    SciTech Connect (OSTI)

    Shadid, John Nicolas; Hoekstra, Robert John; Hennigan, Gary Lee; Castro, Joseph Pete Jr.; Fixel, Deborah A.

    2007-10-01T23:59:59.000Z

    A code, Charon, is described which simulates the effects that neutron damage has on silicon semiconductor devices. The code uses a stabilized, finite-element discretization of the semiconductor drift-diffusion equations. The mathematical model used to simulate semiconductor devices in both normal and radiation environments will be described. Modeling of defect complexes is accomplished by adding an additional drift-diffusion equation for each of the defect species. Additionally, details are given describing how Charon can efficiently solve very large problems using modern parallel computers. Comparison between Charon and experiment will be given, as well as comparison with results from commercially-available TCAD codes.

  8. Synthesis and Manipulation of Semiconductor Nanocrystals inMicrofluidic Reactors

    SciTech Connect (OSTI)

    Chan, Emory Ming-Yue

    2006-12-19T23:59:59.000Z

    Microfluidic reactors are investigated as a mechanism tocontrol the growth of semiconductor nanocrystals and characterize thestructural evolution of colloidal quantum dots. Due to their shortdiffusion lengths, low thermal masses, and predictable fluid dynamics,microfluidic devices can be used to quickly and reproducibly alterreaction conditions such as concentration, temperature, and reactiontime, while allowing for rapid reagent mixing and productcharacterization. These features are particularly useful for colloidalnanocrystal reactions, which scale poorly and are difficult to controland characterize in bulk fluids. To demonstrate the capabilities ofnanoparticle microreactors, a size series of spherical CdSe nanocrystalswas synthesized at high temperature in a continuous-flow, microfabricatedglass reactor. Nanocrystal diameters are reproducibly controlled bysystematically altering reaction parameters such as the temperature,concentration, and reaction time. Microreactors with finer control overtemperature and reagent mixing were designed to synthesize nanoparticlesof different shapes, such as rods, tetrapods, and hollow shells. The twomajor challenges observed with continuous flow reactors are thedeposition of particles on channel walls and the broad distribution ofresidence times that result from laminar flow. To alleviate theseproblems, I designed and fabricated liquid-liquid segmented flowmicroreactors in which the reaction precursors are encapsulated inflowing droplets suspended in an immiscible carrier fluid. The synthesisof CdSe nanocrystals in such microreactors exhibited reduced depositionand residence time distributions while enabling the rapid screening aseries of samples isolated in nL droplets. Microfluidic reactors werealso designed to modify the composition of existing nanocrystals andcharacterize the kinetics of such reactions. The millisecond kinetics ofthe CdSe-to-Ag2Se nanocrystal cation exchange reaction are measured insitu with micro-X-ray Absorption Spectroscopy in silicon microreactorsspecifically designed for rapid mixing and time-resolved X-rayspectroscopy. These results demonstrate that microreactors are valuablefor controlling and characterizing a wide range of reactions in nLvolumes even when nanoscale particles, high temperatures, causticreagents, and rapid time scales are involved. These experiments providethe foundation for future microfluidic investigations into the mechanismsof nanocrystal growth, crystal phase evolution, and heterostructureassembly.

  9. Process for forming shaped group III-V semiconductor nanocrystals, and product formed using process

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Peng, Xiaogang (Fayetteville, AR); Manna, Liberato (Palo del Colle, IT)

    2001-01-01T23:59:59.000Z

    A process for the formation of shaped Group III-V semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  10. Process for forming shaped group II-VI semiconductor nanocrystals, and product formed using process

    DOE Patents [OSTI]

    Alivisatos, A. Paul (Oakland, CA); Peng, Xiaogang (Fayetteville, AR); Manna, Liberato (Palo del Colle, IT)

    2001-01-01T23:59:59.000Z

    A process for the formation of shaped Group II-VI semiconductor nanocrystals comprises contacting the semiconductor nanocrystal precursors with a liquid media comprising a binary mixture of phosphorus-containing organic surfactants capable of promoting the growth of either spherical semiconductor nanocrystals or rod-like semiconductor nanocrystals, whereby the shape of the semiconductor nanocrystals formed in said binary mixture of surfactants is controlled by adjusting the ratio of the surfactants in the binary mixture.

  11. Thermal Conductivity of Polycrystalline Semiconductors and Ceramics

    E-Print Network [OSTI]

    Wang, Zhaojie

    2012-01-01T23:59:59.000Z

    widely named as spark plasma sintering (SPS), field-assistedalso known as spark plasma sintering (SPS) or the fieldsintering (PECS), there is little convincing evidence showing there are sparks or plasma

  12. Freescale Semiconductor Successfully Implements an Energy Management...

    Broader source: Energy.gov (indexed) [DOE]

    projects at its Oak Hill Fab plant in Austin, Texas, that reduced annual plant-wide energy consumption by 28 million kilowatt hours (kWh) of electricity and 26,000 million...

  13. Thermo-electrically pumped semiconductor light emitting diodes

    E-Print Network [OSTI]

    Santhanam, Parthiban

    2014-01-01T23:59:59.000Z

    Thermo-electric heat exchange in semiconductor light emitting diodes (LEDs) allows these devices to emit optical power in excess of the electrical power used to drive them, with the remaining power drawn from ambient heat. ...

  14. Conductive layer for biaxially oriented semiconductor film growth

    DOE Patents [OSTI]

    Findikoglu, Alp T. (Los Alamos, NM); Matias, Vladimir (Santa Fe, NM)

    2007-10-30T23:59:59.000Z

    A conductive layer for biaxially oriented semiconductor film growth and a thin film semiconductor structure such as, for example, a photodetector, a photovoltaic cell, or a light emitting diode (LED) that includes a crystallographically oriented semiconducting film disposed on the conductive layer. The thin film semiconductor structure includes: a substrate; a first electrode deposited on the substrate; and a semiconducting layer epitaxially deposited on the first electrode. The first electrode includes a template layer deposited on the substrate and a buffer layer epitaxially deposited on the template layer. The template layer includes a first metal nitride that is electrically conductive and has a rock salt crystal structure, and the buffer layer includes a second metal nitride that is electrically conductive. The semiconducting layer is epitaxially deposited on the buffer layer. A method of making such a thin film semiconductor structure is also described.

  15. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Urbana, IL); Lee, Keon Jae (Tokyo, JP); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Westmont, IL); Meitl, Matthew (Champaign, IL); Zhu, Zhengtao (Rapid City, SD); Ko, Heung Cho (Urbana, IL); Mack, Shawn (Goleta, CA)

    2010-09-21T23:59:59.000Z

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  16. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G.; Rogers, John A.; Menard, Etienne; Lee, Keon Jae; Khang; , Dahl-Young; Sun, Yugang; Meitl, Matthew; Zhu, Zhengtao; Ko, Heung Cho; Mack, Shawn

    2013-03-12T23:59:59.000Z

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  17. Printable semiconductor structures and related methods of making and assembling

    DOE Patents [OSTI]

    Nuzzo, Ralph G. (Champaign, IL); Rogers, John A. (Champaign, IL); Menard, Etienne (Durham, NC); Lee, Keon Jae (Tokyo, JP); Khang, Dahl-Young (Urbana, IL); Sun, Yugang (Westmont, IL); Meitl, Matthew (Raleigh, NC); Zhu, Zhengtao (Rapid City, SD); Ko, Heung Cho (Urbana, IL); Mack, Shawn (Goleta, CA)

    2011-10-18T23:59:59.000Z

    The present invention provides a high yield pathway for the fabrication, transfer and assembly of high quality printable semiconductor elements having selected physical dimensions, shapes, compositions and spatial orientations. The compositions and methods of the present invention provide high precision registered transfer and integration of arrays of microsized and/or nanosized semiconductor structures onto substrates, including large area substrates and/or flexible substrates. In addition, the present invention provides methods of making printable semiconductor elements from low cost bulk materials, such as bulk silicon wafers, and smart-materials processing strategies that enable a versatile and commercially attractive printing-based fabrication platform for making a broad range of functional semiconductor devices.

  18. Improving reuse of semiconductor equipment through benchmarking, standardization, and automation

    E-Print Network [OSTI]

    Silber, Jacob B. (Jacob Bradley)

    2006-01-01T23:59:59.000Z

    The 6D program at Intel Corporation was set up to improve operations around capital equipment reuse, primarily in their semiconductor manufacturing facilities. The company was faced with a number of challenges, including ...

  19. Linewidth enhancement factor. cap alpha. in semiconductor injection lasers

    SciTech Connect (OSTI)

    Vahala, K.; Chiu, L.C.; Margalit, S.; Yariv, A.

    1983-04-15T23:59:59.000Z

    A simple model for the linewidth enhancement factor ..cap alpha.. and its frequency dependence in semiconductor lasers is presented. Calculations based on this model are in reasonable agreement with experimental results.

  20. Ultrafast optical studies of electronic dynamics in semiconductors

    E-Print Network [OSTI]

    Ruzicka, Brian Andrew

    2012-05-31T23:59:59.000Z

    to their limited temporal resolution, electron measurement techniques cannot be used to study these processes on time scales in which the carrier-lattice system is not in equilibrium. However, in contemporary semiconductor devices with nanometer dimensions...

  1. Charge and magnetization inhomogeneities in diluted magnetic semiconductors

    E-Print Network [OSTI]

    Timm, Carsten

    2006-03-01T23:59:59.000Z

    It is predicted that III-V diluted magnetic semiconductors can exhibit stripelike modulations of magnetization and carrier concentration. This inhomogeneity results from the strong dependence of the magnetization on the carrier concentration. Within...

  2. Translating semiconductor device physics into nanoparticle films for electronic applications

    E-Print Network [OSTI]

    Wanger, Darcy Deborah

    2014-01-01T23:59:59.000Z

    This thesis explores and quantifies some of the important device physics, parameters, and mechanisms of semiconductor nanocrystal quantum dot (QD) electronic devices, and photovoltaic devices in particular. This involves ...

  3. Semiconductor nanocrystals : synthesis, mechanisms of formation, and applications in biology

    E-Print Network [OSTI]

    Allen, Peter M. (Peter Matthew)

    2010-01-01T23:59:59.000Z

    The primary focus of this thesis is the synthesis and applications of semiconductor nanocrystals, or quantum dots (QDs). Novel synthetic routes to ternary 1-III-VI QDs are presented, and we report the first highly luminescent ...

  4. Exploring and enhancing conductivity in semiconductor nanoparticle films

    E-Print Network [OSTI]

    Porter, Venda Jane

    2007-01-01T23:59:59.000Z

    Semiconductor nanocrystals (NCs) are a promising material for use in opto-electronic devices as their optical properties tune with particle size. NCs formed via colloidal synthesis are suspended in solution by the organic ...

  5. AlGaN/GaN-based power semiconductor switches

    E-Print Network [OSTI]

    Lu, Bin, Ph. D. Massachusetts Institute of Technology

    2013-01-01T23:59:59.000Z

    AlGaN/GaN-based high-electron-mobility transistors (HEMTs) have great potential for their use as high efficiency and high speed power semiconductor switches, thanks to their high breakdown electric field, mobility and ...

  6. Semiconductor Quantum Rods as Single Molecule Fluorescent Biological Labels

    E-Print Network [OSTI]

    2006-01-01T23:59:59.000Z

    A. , Gu, W. , Larabell, C. & Alivisatos, A.P. SemiconductorHu, J.T. , Yang, W.D. & Alivisatos, A.P. Band gap variationZanchet, D. , Weiss, S. , ,Alivisatos, A. P. Synthesis and

  7. Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics

    E-Print Network [OSTI]

    Yang, Peidong

    Semiconductor nanowire array: potential substrates for photocatalysis and photovoltaics Yiying Wu, these nanowire arrays could find unique applications in photocatalysis and photovoltaics. KEY WORDS luminescence efficiency [5,6], enhancement of thermoelectric figure of merit [7] and lowered lasing threshold

  8. High-Throughput Transfer Imprinting for Organic Semiconductors

    E-Print Network [OSTI]

    Choo, Gihoon

    2013-08-06T23:59:59.000Z

    . In this work, nanoimprint-based transfer imprinting of organic semiconductor is studied. In the same time the suggested technique is simulated with COMSOL multi-physics simulator to understand its mechanism. This transfer printing technique utilize thermal...

  9. Ultrafast nonlinear optical properties of passive and active semiconductor devices

    E-Print Network [OSTI]

    Motamedi, Ali Reza

    2011-01-01T23:59:59.000Z

    Nonlinear optical properties and ultrafast carrier dynamics of slab-coupled optical waveguide amplifiers, silicon nanowaveguides, and III-V semiconductor saturable Bragg reflectors are studied. The limits imposed by two ...

  10. Femtosecond time-resolved photoemission electron microscopy for spatiotemporal imaging of photogenerated carrier dynamics in semiconductors

    SciTech Connect (OSTI)

    Fukumoto, Keiki, E-mail: fukumoto.k.ab@m.titech.ac.jp; Yamada, Yuki; Matsuki, Takashi; Koshihara, Shin-ya [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan); Japan Science and Technology Agency JST-CREST, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Onda, Ken [Interactive Research Center of Science, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Japan Science and Technology Agency JST-PRESTO, Honcho, Kawaguchi, Saitama 332-0012 (Japan); Mukuta, Tatsuhiko; Tanaka, Sei-ichi [Department of Materials Science, Tokyo Institute of Technology, Oookayama, Meguro-ku, Tokyo 152-8550 (Japan)

    2014-08-15T23:59:59.000Z

    We constructed an instrument for time-resolved photoemission electron microscopy (TR-PEEM) utilizing femtosecond (fs) laser pulses to visualize the dynamics of photogenerated electrons in semiconductors on ultrasmall and ultrafast scales. The spatial distribution of the excited electrons and their relaxation and/or recombination processes were imaged by the proposed TR-PEEM method with a spatial resolution about 100 nm and an ultrafast temporal resolution defined by the cross-correlation of the fs laser pulses (240 fs). A direct observation of the dynamical behavior of electrons on higher resistivity samples, such as semiconductors, by TR-PEEM has still been facing difficulties because of space and/or sample charging effects originating from the high photon flux of the ultrashort pulsed laser utilized for the photoemission process. Here, a regenerative amplified fs laser with a widely tunable repetition rate has been utilized, and with careful optimization of laser parameters, such as fluence and repetition rate, and consideration for carrier lifetimes, the electron dynamics in semiconductors were visualized. For demonstrating our newly developed TR-PEEM method, the photogenerated carrier lifetimes around a nanoscale defect on a GaAs surface were observed. The obtained lifetimes were on a sub-picosecond time scale, which is much shorter than the lifetimes of carriers observed in the non-defective surrounding regions. Our findings are consistent with the fact that structural defects induce mid-gap states in the forbidden band, and that the electrons captured in these states promptly relax into the ground state.

  11. Differential method of analysis of luminescence spectra of semiconductors

    SciTech Connect (OSTI)

    Emel'yanov, A. M., E-mail: Emelyanov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation)

    2010-09-15T23:59:59.000Z

    A method for analyzing the luminescence spectra of semiconductors is suggested. The method is based on differentiation of the spectra. The potentialities of the method are demonstrated for luminescence in the region of the fundamental absorption edge of Si and SiGe alloy single crystals. The method is superior in accuracy to previously known luminescence methods of determining the band gap of indirect-gap semiconductors and practically insensitive to different conditions of outputting radiation from the sample.

  12. Al-doped HfO2/In0.53Ga0.47As metal-oxide-semiconductor capaci

    E-Print Network [OSTI]

    Stemmer, Susanne

    2011-01-01T23:59:59.000Z

    MOS (Metal Oxide Semiconductor) Phys- ics and Technologywas funded by the Semiconductor Re- search Corporation0.47 As metal-oxide-semiconductor capacitors Yoontae Hwang,

  13. Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation

    E-Print Network [OSTI]

    Kamat, Vineet R.

    NERS Radiation Detection Laboratory The Detection for Nuclear Nonproliferation Lab is used to explore novel techniques for radiation detection and characterization for nuclear nonproliferation); Development of TlBr wide band-gap semiconductor detectors (Radiation Monitoring Devices and DNDO of DHS

  14. journal homepage: www.elsevier.com/locate/nanoenergy Available online at www.sciencedirect.com

    E-Print Network [OSTI]

    Cao, Guozhong

    .sciencedirect.com RAPID COMMUNICATION Improved charge generation and collection in dye-sensitized solar cells of the most promising candidate photoanodes for dye-sensitized solar cells (DSCs) for its high electron reserved. Introduction Dye-sensitized solar cells (DSCs) based on wide bandgap oxide semiconductors

  15. Surface and Interface Science Physics 627; Chemistry 542

    E-Print Network [OSTI]

    Glashausser, Charles

    : Insulator; wide or narrow bandgap semiconductor; Superconductor; ferroelectric; multiferroic ; ... Focus+ Bridge and in-plane oxygen (1 x 1) LEED pattern, STM Rumpling and relaxation 3. Role of point defects rings, but some 5-member 4. Range of bond angles around 104 deg 5. Bridging and non-bridging oxygens

  16. Ga NMR spectra and relaxation in wurtzite GaN M. Corti and A. Gabetta

    E-Print Network [OSTI]

    Svane, Axel Torstein

    69,71 Ga NMR spectra and relaxation in wurtzite GaN M. Corti and A. Gabetta Department of Physics properties of wurtzite GaN are studied by Ga nuclear magnetic resonance NMR in a GaN bulk crystal containing GaN is a wide band-gap semiconductor which crystallizes in the hexagonal wurtzite structure

  17. pubs.acs.org/ICPublished on Web 07/02/2009r 2009 American Chemical Society Inorg. Chem. 2009, 48, 72697279 7269

    E-Print Network [OSTI]

    Lawson, Catherine L.

    of semiconductors like TiO2 and WO3 as photocatalysts. These include wide bandgaps (3 eV), mismatches at 1.00 V (vs Ag/AgCl) under illumination by UV-visible light when suspended in a proton

  18. Electrical properties of GaN/poly,,3-hexylthiophene... interfaces B.-N. Park,1,a

    E-Print Network [OSTI]

    Evans, Paul G.

    Electrical properties of GaN/poly,,3-hexylthiophene... interfaces B.-N. Park,1,a J. J. Uhlrich,2 T. The wide-bandgap semiconductor GaN is readily available with well-defined electronic and structural as the inorganic side of the model system. Electron transport through a GaN/poly 3-hexylthiophene P3HT

  19. GaN/ZnO and AlGaN/ZnO heterostructure LEDs: growth, fabrication, optical and electrical characterization

    E-Print Network [OSTI]

    Wetzel, Christian M.

    GaN/ZnO and AlGaN/ZnO heterostructure LEDs: growth, fabrication, optical and electrical 12180-3590, U.S.A. ABSTRACT The wide bandgap polar semiconductors GaN and ZnO and their related alloys fields, and surface terminations. With a small lattice mismatch of ~1.8 % between GaN and Zn

  20. Reconditioning of semiconductor substrates to remove photoresist during semiconductor device fabrication

    DOE Patents [OSTI]

    Farino, Anthony J.

    2004-01-27T23:59:59.000Z

    A method for reconditioning the surface of a semiconductor substrate to remove an unwanted (i.e. defective) layer of photoresist is disclosed. The method adapts a conventional automated spinner which is used to rotate the substrate at high speed while a stream of a first solvent (e.g. acetone) is used to dissolve the photoresist. A stream of a second solvent (e.g. methanol) is then used to clean the substrate at a lower speed, with the substrate being allowed to dry with continued rotation. The method of the present invention can be used within a photolithography track so that the substrates need never leave the track for reconditioning.

  1. Organo luminescent semiconductor nanocrystal probes for biological applications and process for making and using such probes

    DOE Patents [OSTI]

    Weiss, Shimon (Pinole, CA); Bruchez, Jr., Marcel (Albany, CA); Alivisatos, Paul (Oakland, CA)

    2008-01-01T23:59:59.000Z

    A semiconductor nanocrystal compound is described capable of linking to an affinity molecule. The compound comprises (1) a semiconductor nanocrystal capable of emitting electromagnetic radiation and/or absorbing energy, and/or scattering or diffracting electromagnetic radiation--when excited by an electromagnetic radiation source or a particle beam; and (2) an affinity molecule linked to the semiconductor nanocrystal. The semiconductor nanocrystal is linked to an affinity molecule to form a semiconductor nanocrystal probe capable of bonding with a detectable substance. Exposure of the semiconductor nanocrystal to excitation energy will excite the semiconductor nanocrystal causing the emission of electromagnetic radiation. Further described are processes for respectively: making the luminescent semiconductor nanocrystal compound; making the semiconductor nanocrystal probe; and using the probe to determine the presence of a detectable substance in a material.

  2. Characterization and electrical modeling of semiconductors bridges

    SciTech Connect (OSTI)

    Marx, K.D. [Sandia National Labs., Livermore, CA (United States); Bickes, R.W. Jr.; Wackerbarth, D.E. [Sandia National Labs., Albuquerque, NM (United States)

    1997-03-01T23:59:59.000Z

    Semiconductor bridges (SCBs) are finding increased use as initiators for explosive and pyrotechnic devices. They offer advantages in reduced voltage and energy requirements, coupled with excellent safety features. The design of explosive systems which implement either SCBs or metal bridgewires can be facilitated through the use of electrical simulation software such as the PSpice{reg_sign} computer code. A key component in the electrical simulation of such systems is an electrical model of the bridge. This report has two objectives: (1) to present and characterize electrical data taken in tests of detonators which employ SCBs with BNCP as the explosive powder; and (2) to derive appropriate electrical models for such detonators. The basis of such models is a description of the resistance as a function of energy deposited in the SCB. However, two important features which must be added to this are (1) the inclusion of energy loss through such mechanisms as ohmic heating of the aluminum lands and heat transfer from the bridge to the surrounding media; and (2) accounting for energy deposited in the SCB through heat transfer to the bridge from the explosive powder after the powder ignites. The modeling procedure is entirely empirical; i.e., models for the SCB resistance and the energy gain and loss have been estimated from experimental data taken over a range of firing conditions. We present results obtained by applying the model to the simulation of SCB operation in representative tests.

  3. Competing interactions in semiconductor quantum dots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van den Berg, R.; Brandino, G. P.; El Araby, O.; Konik, R. M.; Gritsev, V.; Caux, J. -S.

    2014-10-01T23:59:59.000Z

    We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. Onmorethe contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.less

  4. Competing interactions in semiconductor quantum dots

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    van den Berg, R. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics; Brandino, G. P. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics; El Araby, O. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics; Konik, R. M. [Brookhaven National Lab. (BNL), Upton, NY (United States); Gritsev, V. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics; Caux, J. -S. [Univ. of Amsterdam (Netherlands). Inst. for Theoretical Physics

    2014-10-01T23:59:59.000Z

    We introduce an integrability-based method enabling the study of semiconductor quantum dot models incorporating both the full hyperfine interaction as well as a mean-field treatment of dipole-dipole interactions in the nuclear spin bath. By performing free induction decay and spin echo simulations we characterize the combined effect of both types of interactions on the decoherence of the electron spin, for external fields ranging from low to high values. We show that for spin echo simulations the hyperfine interaction is the dominant source of decoherence at short times for low fields, and competes with the dipole-dipole interactions at longer times. On the contrary, at high fields the main source of decay is due to the dipole-dipole interactions. In the latter regime an asymmetry in the echo is observed. Furthermore, the non-decaying fraction previously observed for zero field free induction decay simulations in quantum dots with only hyperfine interactions, is destroyed for longer times by the mean-field treatment of the dipolar interactions.

  5. Solution Processed MoS2-PVA Composite for Sub-Bandgap Mode-Locking of a Wideband Tunable Ultrafast Er:Fiber Laser

    E-Print Network [OSTI]

    Zhang, Meng; Howe, Richard C. T.; Woodward, Robert I.; Kelleher, Edmund J. R.; Torrisi, Felice; Hu, Guohua; Popov, Sergei V.; Taylor, J. Roy; Hasan, Tawfique

    2014-11-11T23:59:59.000Z

    with stable, picosecond pulses, tunable from 1535 nm to 1565 nm 2 Solution Processed MoS2-PVA Composite for Sub-Bandgap Mode-Locking of a Wideband Tunable Ultrafast Er:Fiber Laser Meng Zhang1, Richard C. T. Howe2, Robert I. Woodward1... ! to! relaxation! of! thermalized! electron! and!phonon! distribution! [3].! This! combination! of!properties!makes!MoS2!a!suitable!saturable!absorber!(SA)! for! ultrafast! mode+locked! pulsed! lasers,! with!the! potential! for! pulse! generation! at...

  6. Temperature effects on the energy bandgap and conductivity effective masses of charge carriers in lead telluride from first-principles calculations

    SciTech Connect (OSTI)

    Venkatapathi, S., E-mail: saran@vt.edu; Dong, B., E-mail: bind89@vt.edu [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Hin, C., E-mail: celhin@vt.edu [Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Department of Materials Science and Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-07-07T23:59:59.000Z

    We determined the temperature effects on the electronic properties of lead telluride (PbTe) such as the energy bandgap and the effective masses of charge carriers by incorporating the structural changes of the material with temperature using ab-initio density functional theory (DFT) calculations. Though the first-principles DFT calculations are done at absolute zero temperatures, by incorporating the lattice thermal expansion and the distortion of Pb{sup 2+} ions from the equilibrium positions, we could determine the stable structural configuration of the PbTe system at different temperatures.

  7. InGaAsN Solar Cells with 1.0eV Bandgap, Lattice Matched to GaAs

    SciTech Connect (OSTI)

    Allerman, A.A.; Banas, J.J.; Gee, J.M.; Hammons, B.E.; Jones, E.D.; Kurtz, S.R.

    1998-11-24T23:59:59.000Z

    The design, growth by metal-organic chemical vapor deposition, and processing of an In{sub 0.07}Ga{sub 0.93}As{sub 0.98}N{sub 0.02} solar Al, with 1.0 ev bandgap, lattice matched to GaAs is described. The hole diffusion length in annealed, n-type InGaAsN is 0.6-0.8 pm, and solar cell internal quantum efficiencies > 70% arc obwined. Optical studies indicate that defects or impurities, from InGAsN doping and nitrogen incorporation, limit solar cell performance.

  8. DFAS Wide-Area Workflow Issues

    Broader source: Energy.gov [DOE]

    Presentation covers the DFAS wide-area workflow issues and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  9. New Diluted Ferromagnetic Semiconductor isostructural to 122 type iron pnictide superconductor with TC up to 180 K

    E-Print Network [OSTI]

    K. Zhao; Z. Deng; X. C. Wang; W. Han; J. L. Zhu; X. Li; Q. Q. Liu; R. C. Yu; T. Goko; B. Frandsen; Lian Liu; Fanlong Ning; Y. J. Uemura; H. Dabkowska; G. M. Luke; H. Luetkens; E. Morenzoni; S. R. Dunsiger; A. Senyshyn; P. Bni; C. Q. Jin

    2013-03-28T23:59:59.000Z

    Diluted magnetic semiconductors (DMS) have received much attention due to its potential applications to spintronics devices. A prototypical system (Ga,Mn)As has been widely studied since 1990s. The simultaneous spin and charge doping via hetero-valence (Ga3+,Mn2+) substitution, however, resulted in severely limited solubility without availability of bulk specimens. Previously we synthesized a new diluted ferromagnetic semiconductor of bulk Li(Zn,Mn)As with Tc up to 50K, where isovalent (Zn,Mn) spin doping was separated from charge control via Li concentrations. Here we report the synthesis of a new diluted ferromagnetic semiconductor (Ba1-xKx)(Zn1-yMny)2As2, isostructural to iron 122 system, where holes are doped via (Ba2+, K1+), while spins via (Zn2+,Mn2+) substitutions. Bulk samples with x=0.1-0.3 and y=0.05-0.15 exhibit ferromagnetic order with TC up to 180K, comparable to that of record high Tc for Ga(MnAs), significantly enhanced than Li(Zn,Mn)As. Moreover the (Ba,K)(Zn,Mn)2As2 shares the same 122 crystal structure with semiconducting BaZn2As2, antiferromagnetic BaMn2As2, and superconducting (Ba,K)Fe2As2, which makes them promising to the development of multilayer functional devices.

  10. Effects of hole localization on limiting p-type conductivity in oxide and nitride semiconductors

    SciTech Connect (OSTI)

    Lyons, J. L.; Janotti, A.; Van de Walle, C. G. [Materials Department, University of California, Santa Barbara, California 93106-5050 (United States)

    2014-01-07T23:59:59.000Z

    We examine how hole localization limits the effectiveness of substitutional acceptors in oxide and nitride semiconductors and explain why p-type doping of these materials has proven so difficult. Using hybrid density functional calculations, we find that anion-site substitutional impurities in AlN, GaN, InN, and ZnO lead to atomic-like states that localize on the impurity atom itself. Substitution with cation-site impurities, on the other hand, triggers the formation of polarons that become trapped on nearest-neighbor anions, generally leading to large ionization energies for these acceptors. Unlike shallow effective-mass acceptors, these two types of deep acceptors couple strongly with the lattice, significantly affecting the optical properties and severely limiting prospects for achieving p-type conductivity in these wide-band-gap materials.

  11. Effective Community-Wide Policy Technical Assistance

    E-Print Network [OSTI]

    Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach NREL is a national: The DOE/NREL Approach Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach HelpingVoss, Sarah Busche, Eric Lantz, Lynn Billman, and Dan Beckley. The layout and technical editing were

  12. Analytical model for the optical functions of amorphous semiconductors from the near-infrared to ultraviolet: Applications in thin film

    E-Print Network [OSTI]

    Deng, Xunming

    Analytical model for the optical functions of amorphous semiconductors from the near functions of thin film semiconductors are useful for two important purposes, namely, materials, reflectance, and ellipso- metric spectra obtained on the thin film semiconductors. The conventional analysis

  13. Disordered electronic and magnetic systems - transition metal (Mn) and rare earth (Gd) doped amorphous group IV semiconductors (C, Si, Ge)

    E-Print Network [OSTI]

    Zeng, Li

    2007-01-01T23:59:59.000Z

    magnetic semiconductors: the europium chalcogenides. Phys.Classic examples are europium chalcogenides [3], Gd 3?x ? xmagnetic semiconductor europium chalcogenides, where the

  14. Spin-polarized lasing in a highly photoexcited semiconductor microcavity

    E-Print Network [OSTI]

    Hsu, Feng-kuo; Lee, Yi-Shan; Lin, Sheng-Di; Lai, Chih-Wei

    2015-01-01T23:59:59.000Z

    Lasing in semiconductors is generally independent of the spins of electrons and holes, which constitute the gain medium. However, in a few spin-controlled lasers, spin-polarized carriers with long spin relaxation times ($\\sim$1 ns) result in continuous or sub-nanosecond pulsed circularly polarized stimulated emission. In these spin-controlled semiconductor lasers, a spin-imbalanced population inversion has been considered necessary. Here, we demonstrate room-temperature spin-polarized ultrafast ($\\sim$10 ps) lasing in a highly optically excited GaAs microcavity embedded with InGaAs multiple quantum wells within which the spin relaxation time is less than 10 ps. The laser radiation remains highly circularly polarized even when excited by \\emph{nonresonant} \\emph{elliptically} polarized light. In contrast to conventional semiconductor lasers, it exhibits a nonlinear input-output relation, energy shifts, and spectral broadening as a function of the photoexcited density. Such spin-polarized lasing is attributed t...

  15. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D. (Albuquerque, NM); Lear, Kevin L. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  16. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20T23:59:59.000Z

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  17. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    SciTech Connect (OSTI)

    Grant, C D; Zhang, J Z

    2007-09-28T23:59:59.000Z

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  18. Reactive codoping of GaAlInP compound semiconductors

    DOE Patents [OSTI]

    Hanna, Mark Cooper (Boulder, CO); Reedy, Robert (Golden, CO)

    2008-02-12T23:59:59.000Z

    A GaAlInP compound semiconductor and a method of producing a GaAlInP compound semiconductor are provided. The apparatus and method comprises a GaAs crystal substrate in a metal organic vapor deposition reactor. Al, Ga, In vapors are prepared by thermally decomposing organometallic compounds. P vapors are prepared by thermally decomposing phospine gas, group II vapors are prepared by thermally decomposing an organometallic group IIA or IIB compound. Group VIB vapors are prepared by thermally decomposing a gaseous compound of group VIB. The Al, Ga, In, P, group II, and group VIB vapors grow a GaAlInP crystal doped with group IIA or IIB and group VIB elements on the substrate wherein the group IIA or IIB and a group VIB vapors produced a codoped GaAlInP compound semiconductor with a group IIA or IIB element serving as a p-type dopant having low group II atomic diffusion.

  19. Adaptive feedback control of ultrafast semiconductor nonlinearities J. Kunde,a)

    E-Print Network [OSTI]

    Keller, Ursula

    that adaptive feedback optical pulse shaping can be used to control ultrafast semiconductor nonlinearities insight into the interaction of semiconduc- tors and ultrafast optical pulses. Specifically, we develop spectroscopy. More- over, the optimized pulse shape can substantially enhance ultrafast semiconductor

  20. Semiconductor wire array structures, and solar cells and photodetectors based on such structures

    DOE Patents [OSTI]

    Kelzenberg, Michael D.; Atwater, Harry A.; Briggs, Ryan M.; Boettcher, Shannon W.; Lewis, Nathan S.; Petykiewicz, Jan A.

    2014-08-19T23:59:59.000Z

    A structure comprising an array of semiconductor structures, an infill material between the semiconductor materials, and one or more light-trapping elements is described. Photoconverters and photoelectrochemical devices based on such structure also described.