National Library of Energy BETA

Sample records for wide band gap

  1. Method for implantation of high dopant concentrations in wide band gap materials

    DOE Patents [OSTI]

    Usov, Igor; Arendt, Paul N.

    2009-09-15

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  2. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PVâ??s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a

  3. Wide band gap p-type nanocrystalline CuBO{sub 2} as a novel UV photocatalyst

    SciTech Connect (OSTI)

    Santra, S.; Das, N.S.; Chattopadhyay, K.K.

    2013-07-15

    Graphical abstract: - Highlights: CuBO{sub 2} nanocrystals were synthesized by solgel route. The products have been characterized to confirm the formation of CuBO{sub 2}. Photocatalytic activity of this material is reported for the first time. - Abstract: Wide band gap copper based delafossite CuBO{sub 2} nanocrystalline powders of different particle sizes were synthesized via solgel route. Structural characterization was performed using X-ray diffraction (XRD) and transmission electron microscopy (TEM) which confirmed good crystallinity and proper phase formation of the samples. Compositional analysis was carried out by energy dispersive X-ray studies (EDX), whereas field emission scanning electron microscopy revealed morphological information of the samples. The photocatalytic performance of this delafossite material was studied for the first time with a standard photocatalytic set-up and the photocatalytic efficiency was found to increase with decreasing particle size. The LangmuirHinshelwood photocatalytic rate constants increased considerably for the samples synthesized at different pH from 2.75 to 0.5; which eventually varied particle size. The efficient photocatalytic performance, found for the first time here, will make this novel p-type wide band gap semiconductor a truly multifunctional material.

  4. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect (OSTI)

    Dickinson, J. T.

    2014-04-05

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  5. Wide band gap semiconductor templates

    DOE Patents [OSTI]

    Arendt, Paul N.; Stan, Liliana; Jia, Quanxi; DePaula, Raymond F.; Usov, Igor O.

    2010-12-14

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  6. Photonic band gap structure simulator

    DOE Patents [OSTI]

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  7. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  8. WIDE BAND REGENERATIVE FREQUENCY DIVIDER AND MULTIPLIER

    DOE Patents [OSTI]

    Laine, E.F.

    1959-11-17

    A regenerative frequency divider and multiplier having wide band input characteristics is presented. The circuit produces output oscillations having frequencies related by a fixed ratio to input oscillations over a wide band of frequencies. In accomplishing this end, the divider-multiplier includes a wide band input circuit coupled by mixer means to a wide band output circuit having a pass band related by a fixed ratio to that of the input circuit. A regenerative feedback circuit derives a fixed frequency ratio feedback signal from the output circuit and applies same to the mixer means in proper phase relation to sustain fixed frequency ratio oscillations in the output circuit.

  9. Fabrication of photonic band gap materials

    DOE Patents [OSTI]

    Constant, Kristen; Subramania, Ganapathi S.; Biswas, Rana; Ho, Kai-Ming

    2002-01-15

    A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

  10. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W.

    1994-01-01

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  11. Plasma-Assisted Coevaporation of S and Se for Wide Band Gap Chalcopyrite Photovoltaics: Phase I Annual Report; December 2001-December 2002

    SciTech Connect (OSTI)

    Repins, I.; Wolden, C.

    2003-01-01

    In this work, ITN Energy Systems (ITN) and lower-tier subcontractor Colorado School of Mines (CSM) explore the replacement of the molecular chalcogen precursors during deposition (e.g., Se2 or H2Se) with more reactive chalcogen monomers or radicals (e.g., Se). Molecular species will be converted to atomic species in a low-pressure inductively coupled plasma. The non-equilibrium environment created by the plasma will allow control over the S/Se ratio in these films. Tasks of the proposed program center on developing and validating monoatomic chalcogen chemistry, tuning of low-pressure monomer chalcogen sources, and evaluating plasma-assisted coevaporation (PACE) for CIGS coevaporation. Likely advantages of deposition by plasma-enhanced coevaporation include: (a)provides potential for lower deposition temperature and/or for better film quality at higher deposition temperature; (b) provide potential for decreased deposition times; (c) provides high material utilization efficiency ({approx}90%) that results in less deposition on other parts of the reactor, leading to lower clean-up and maintenance costs, as well as longer equipment lifetime; (d) high material utilization efficiency also reduces the total operating pressure, which is beneficial for the design and control of metal coevaporation (advantages include minimal metal-vapor beam spread and lower source operating temperatures); (e) enables deposition of wide-bandgap copper indium gallium sulfur-selenide (CIGSS) films with controlled stoichiometry.

  12. Band-gap and band-edge engineering of multicomponent garnet scintillators from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yadav, Satyesh K.; Uberuaga, Blas P.; Nikl, Martin; Jiang, Chao; Stanek, Christopher R.

    2015-11-24

    Complex doping schemes in R3Al5O12 (where R is the rare-earth element) garnet compounds have recently led to pronounced improvements in scintillator performance. Specifically, by admixing lutetium and yttrium aluminate garnets with gallium and gadolinium, the band gap is altered in a manner that facilitates the removal of deleterious electron trapping associated with cation antisite defects. Here, we expand upon this initial work to systematically investigate the effect of substitutional admixing on the energy levels of band edges. Density-functional theory and hybrid density-functional theory (HDFT) are used to survey potential admixing candidates that modify either the conduction-band minimum (CBM) or valence-bandmore » maximum (VBM). We consider two sets of compositions based on Lu3B5O12 where B is Al, Ga, In, As, and Sb, and R3Al5O12, where R is Lu, Gd, Dy, and Er. We find that admixing with various R cations does not appreciably affect the band gap or band edges. In contrast, substituting Al with cations of dissimilar ionic radii has a profound impact on the band structure. We further show that certain dopants can be used to selectively modify only the CBM or the VBM. Specifically, Ga and In decrease the band gap by lowering the CBM, while As and Sb decrease the band gap by raising the VBM, the relative change in band gap is quantitatively validated by HDFT. These results demonstrate a powerful approach to quickly screen the impact of dopants on the electronic structure of scintillator compounds, identifying those dopants which alter the band edges in very specific ways to eliminate both electron and hole traps responsible for performance limitations. Furthermore, this approach should be broadly applicable for the optimization of electronic and optical performance for a wide range of compounds by tuning the VBM and CBM.« less

  13. Plasma-Assisted Coevaporation of S and Se for Wide Band Gap Chalcopyrite Photovoltaics: Phase II Annual Report, December 2002--December 2003

    SciTech Connect (OSTI)

    Repins, I.; Wolden, C.

    2004-01-01

    In this work, ITN Energy Systems (ITN) and lower-tier subcontractor Colorado School of Mines (CSM) explore the replacement of the molecular chalcogen precursors during deposition (e.g., Se2 or H2Se) with more reactive chalcogen monomers or radicals (e.g., Se). Molecular species are converted to atomic species in a low-pressure inductively coupled plasma (ICP). Tasks of the proposed program center on development and validation of monatomic chalcogen chemistry, tuning of low-pressure monomer chalcogen sources, and evaluation of plasma-assisted co-evaporation (PACE) for CIGS co-evaporation. Likely advantages of deposition by plasma-enhanced co-evaporation include: (1) Providing potential for lower deposition temperature and/or for better film quality at higher deposition temperature. (2) Providing potential for decreased deposition times. (3) Providing high material utilization efficiency ({approx}90%) that results in less deposition on other parts of the reactor, leading to lower clean up and maintenance costs, as well as longer equipment lifetime. High material utilization efficiency also reduces the total operating pressure, which is beneficial for the design and control of metal co-evaporation. Advantages include minimal metal-vapor beam spread and lower source operating temperatures. (4) Enabling deposition of wide-bandgap copper indium gallium disulfur-selenide (CIGSS) films with controlled stoichiometry. University researchers at CSM are developing and testing the fundamental chemistry and engineering principles. Industrial researchers at ITN are adapting PACE technology to CIGSS co-evaporation and validating PACE process for fabrication of thin-film photovoltaics. In2Se3 films, which are used as precursor layers in high-efficiency CIGS depositions, were used this year as the first test case for examining the advantages of PACE listed above. Gradually, the investigation is being extended to the complete high-efficiency three-stage co-evaporation process.

  14. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

  15. Metallic photonic band-gap materials

    SciTech Connect (OSTI)

    Sigalas, M.M.; Chan, C.T.; Ho, K.M.; Soukoulis, C.M.

    1995-10-15

    We calculate the transmission and absorption of electromagnetic waves propagating in two-dimensional (2D) and 3D periodic metallic photonic band-gap (PBG) structures. For 2D systems, there is substantial difference between the {ital s}- and {ital p}-polarized waves. The {ital p}-polarized waves exhibit behavior similar to the dielectric PBG`s. But, the {ital s}-polarized waves have a cutoff frequency below which there are no propagating modes. For 3D systems, the results are qualitatively the same for both polarizations but there are important differences related to the topology of the structure. For 3D structures with isolated metallic scatterers (cermet topology), the behavior is similar to that of the dielectric PBG`s, while for 3D structures with the metal forming a continuous network (network topology), there is a cutoff frequency below which there are no propagating modes. The systems with the network topology may have some interesting applications for frequencies less than about 1 THz where the absorption can be neglected. We also study the role of the defects in the metallic structures.

  16. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  17. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  18. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B.; Gardner, Duane; Patrick, Douglas; Lewallen, Tricia A.; Nammath, Sharyn R.; Painter, Kelly D.; Vadnais, Kenneth G.

    1996-01-01

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  19. Method for Creating Photonic Band Gap Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Method for Creating Photonic Band Gap Materials Ames Laboratory Contact AMES About This Technology Technology Marketing Summary Innovative microstructures that can direct light in a manner similar to the way semiconductors can influence electrons can be produced by creating what is termed a photonic band gap. These microstructures have the potential to change the way optoelectronic devices, such as photodiodes, LEDs, and integrated optical circuit elements, are designed and used. Ames Laboratory

  20. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest

  1. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect (OSTI)

    Wang, Fenggong Grinberg, Ilya; Rappe, Andrew M.

    2014-04-14

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  2. Amorphous copper tungsten oxide with tunable band gaps

    SciTech Connect (OSTI)

    Chen Le; Shet, Sudhakar; Tang Houwen; Wang Heli; Yan Yanfa; Turner, John; Al-Jassim, Mowafak; Ahn, Kwang-soon

    2010-08-15

    We report on the synthesis of amorphous copper tungsten oxide thin films with tunable band gaps. The thin films are synthesized by the magnetron cosputtering method. We find that due to the amorphous nature, the Cu-to-W ratio in the films can be varied without the limit of the solubility (or phase separation) under appropriate conditions. As a result, the band gap and conductivity type of the films can be tuned by controlling the film composition. Unfortunately, the amorphous copper tungsten oxides are not stable in aqueous solution and are not suitable for the application of photoelectrochemical splitting of water. Nonetheless, it provides an alternative approach to search for transition metal oxides with tunable band gaps.

  3. Special purpose modes in photonic band gap fibers

    DOE Patents [OSTI]

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  4. Continuously controlled optical band gap in oxide semiconductor thin films

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Herklotz, Andreas; Rus, Stefania Florina; Ward, Thomas Zac

    2016-02-02

    The optical band gap of the prototypical semiconducting oxide SnO2 is shown to be continuously controlled through single axis lattice expansion of nanometric films induced by low-energy helium implantation. While traditional epitaxy-induced strain results in Poisson driven multidirectional lattice changes shown to only allow discrete increases in bandgap, we find that a downward shift in the band gap can be linearly dictated as a function of out-of-plane lattice expansion. Our experimental observations closely match density functional theory that demonstrates that uniaxial strain provides a fundamentally different effect on the band structure than traditional epitaxy-induced multiaxes strain effects. In conclusion, chargemore » density calculations further support these findings and provide evidence that uniaxial strain can be used to drive orbital hybridization inaccessible with traditional strain engineering techniques.« less

  5. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal A New Gap-Opening Mechanism in a Triple-Band Metal Print Wednesday, 23 February 2005 00:00 A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to

  6. Inverse Design of Mn-based ternary p-type wide-gap oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ZnO is an important prototypical wide-gap oxide semiconductor. The discrepancy between band- structure theory and ARPES is removed by a correction for the Zn-d band energy in GW calculations. Significance and Impact The present approach improves the capability for property prediction and design of energy materials. Benchmarking Band-Structure Calculations Against Angular-Resolved Photoemission Spectroscopy (ARPES) for ZnO L.Y. Lim, S. Lany, Y.J. Chang, E. Rotenberg, A. Zunger, M.F. Toney,

  7. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  8. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  9. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  10. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  11. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome silicon's superb collection of materials properties as well as sophisticated fabrication technologies refined by six decades of effort by materials scientists and engineers. Graphene, one of the latest contenders, has a rather impressive list of features of its own but has lacked a key

  12. Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors

    SciTech Connect (OSTI)

    Dey, Anup; Maiti, Biswajit; Chanda, Debasree

    2014-04-14

    A generalized theory is developed to study inter-band optical absorption coefficient (IOAC) and material gain (MG) in quantum dot structures of narrow gap III-V compound semiconductor considering the wave-vector (k{sup ?}) dependence of the optical transition matrix element. The band structures of these low band gap semiconducting materials with sufficiently separated split-off valance band are frequently described by the three energy band model of Kane. This has been adopted for analysis of the IOAC and MG taking InAs, InSb, Hg{sub 1?x}Cd{sub x}Te, and In{sub 1?x}Ga{sub x}As{sub y}P{sub 1?y} lattice matched to InP, as example of IIIV compound semiconductors, having varied split-off energy band compared to their bulk band gap energy. It has been found that magnitude of the IOAC for quantum dots increases with increasing incident photon energy and the lines of absorption are more closely spaced in the three band model of Kane than those with parabolic energy band approximations reflecting the direct the influence of energy band parameters. The results show a significant deviation to the MG spectrum of narrow-gap materials having band nonparabolicity compared to the parabolic band model approximations. The results reflect the important role of valence band split-off energies in these narrow gap semiconductors.

  13. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOE Patents [OSTI]

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  14. Voltage-matched, monolithic, multi-band-gap devices

    DOE Patents [OSTI]

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  15. Wide band focusing x-ray spectrograph with spatial resolution

    SciTech Connect (OSTI)

    Pikuz, S. A.; Douglass, J. D.; Shelkovenko, T. A.; Sinars, D. B.; Hammer, D. A.

    2008-01-15

    A new, wide spectral bandwidth x-ray spectrograph, the wide-bandwidth focusing spectrograph with spatial resolution (WB-FSSR), based on spherically bent mica crystals, is described. The wide bandwidth is achieved by combining three crystals to form a large aperture dispersive element. Since the WB-FSSR covers a wide spectral band, it is very convenient for application as a routine diagnostic tool in experiments in which the desired spectral coverage is different from one test to the next. The WB-FSSR has been tested in imploding wire-array experiments on a 1 MA pulsed power machine, and x-ray spectra were recorded in the 1-20 A spectral band using different orders of mica crystal reflection. Using a two mirror-symmetrically placed WB-FSSR configuration, it was also possible to distinguish between a real spectral shift and a shift of recorded spectral lines caused by the spatial distribution of the radiating plasma. A spectral resolution of about 2000 was demonstrated and a spatial resolution of {approx}100 {mu}m was achieved in the spectral band of 5-10 A in second order of mica reflection. A simple method of numerical analysis of spectrograph capability is proposed.

  16. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    SciTech Connect (OSTI)

    Inaoka, Takeshi Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  17. Optical Absorption and Band Gap Reduction in (Fe 1-x Cr x ) 2...

    Office of Scientific and Technical Information (OSTI)

    Broadening of the valence band due to hybridization of the O 2p states with Fe and Cr 3d states also contributes to band gap reduction. Authors: Wang, Yong ; Lopata, Kenneth ; ...

  18. The Band Gap of AlGaN Alloys (Journal Article) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Journal Article: The Band Gap of AlGaN Alloys Citation Details In-Document Search Title: The Band ... Publication Date: 1999-01-29 OSTI Identifier: 3336 Report Number(s): ...

  19. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  20. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  1. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  2. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  3. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A New Gap-Opening Mechanism in a Triple-Band Metal Print A "wire" of indium only one or a few atoms wide grown on a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University in Korea, the ALS, and the University of Oregon, who have discovered that the phase transition from metal to insulator that occurs at low temperature in indium wires on the silicon (111) surface

  4. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, I.E.

    1992-05-12

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  5. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, Isidoro E. (Newport News, VA)

    1992-01-01

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  6. High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier Management Higher-Efficiency...

  7. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    SciTech Connect (OSTI)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We present structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.

  8. Band-Gap Engineering at a Semiconductor-Crystalline Oxide Interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Jahangir-Moghadam, Mohammadreza; Ahmadi-Majlan, Kamyar; Shen, Xuan; Droubay, Timothy; Bowden, Mark; Chrysler, Matthew; Su, Dong; Chambers, Scott A.; Ngai, Joseph H.

    2015-02-09

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO₃ and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore » structural and electrical characterization of SrZrxTi1-xO₃-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  9. Significant Reduction in NiO Band Gap Upon Formation of LixNi1...

    Office of Scientific and Technical Information (OSTI)

    Significant Reduction in NiO Band Gap Upon Formation of LixNi1-xO alloys: Applications To Solar Energy Conversion Citation Details In-Document Search Title: Significant Reduction ...

  10. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W.; Chen, Zheng

    2000-01-01

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  11. A versatile optical junction using photonic band-gap guidance and self collimation

    SciTech Connect (OSTI)

    Gupta, Man Mohan; Medhekar, Sarang

    2014-09-29

    We show that it is possible to design two photonic crystal (PC) structures such that an optical beam of desired wavelength gets guided within the line defect of the first structure (photonic band gap guidance) and the same beam gets guided in the second structure by self-collimation. Using two dimensional simulation of a design made of the combination of these two structures, we propose an optical junction that allows for crossing of two optical signals of same wavelength and same polarization with very low crosstalk. Moreover, the junction can be operated at number of frequencies in a wide range. Crossing of multiple beams with very low cross talk is also possible. The proposed junction should be important in future integrated photonic circuits.

  12. L-asparagine crystals with wide gap semiconductor features: Optical absorption measurements and density functional theory computations

    SciTech Connect (OSTI)

    Zanatta, G.; Gottfried, C.; Silva, A. M.; Caetano, E. W. S.; Sales, F. A. M.; Freire, V. N.

    2014-03-28

    Results of optical absorption measurements are presented together with calculated structural, electronic, and optical properties for the anhydrous monoclinic L-asparagine crystal. Density functional theory (DFT) within the generalized gradient approximation (GGA) including dispersion effects (TS, Grimme) was employed to perform the calculations. The optical absorption measurements revealed that the anhydrous monoclinic L-asparagine crystal is a wide band gap material with 4.95 eV main gap energy. DFT-GGA+TS simulations, on the other hand, produced structural parameters in very good agreement with X-ray data. The lattice parameter differences ?a, ?b, ?c between theory and experiment were as small as 0.020, 0.051, and 0.022, respectively. The calculated band gap energy is smaller than the experimental data by about 15%, with a 4.23 eV indirect band gap corresponding to Z???? and Z???? transitions. Three other indirect band gaps of 4.30 eV, 4.32 eV, and 4.36 eV are assigned to ?3 ???, ?1 ???, and ?2 ??? transitions, respectively. ?-sol computations, on the other hand, predict a main band gap of 5.00 eV, just 50 meV above the experimental value. Electronic wavefunctions mainly originating from O 2pcarboxyl, C 2pside chain, and C 2pcarboxyl orbitals contribute most significantly to the highest valence and lowest conduction energy bands, respectively. By varying the lattice parameters from their converged equilibrium values, we show that the unit cell is less stiff along the b direction than for the a and c directions. Effective mass calculations suggest that hole transport behavior is more anisotropic than electron transport, but the mass values allow for some charge mobility except along a direction perpendicular to the molecular layers of L-asparagine which form the crystal, so anhydrous monoclinic L-asparagine crystals could behave as wide gap semiconductors. Finally, the calculations point to a high degree of optical anisotropy for the absorption and complex

  13. Band gap engineering for graphene by using Na{sup +} ions

    SciTech Connect (OSTI)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W.

    2014-08-25

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the ?* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}. The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}?0.70?eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  14. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOE Patents [OSTI]

    Gupta, Sandhya; Tuttle, Gary L.; Sigalas, Mihail; McCalmont, Jonathan S.; Ho, Kai-Ming

    2001-08-14

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  15. Local strain effect on the band gap engineering of graphene by a first-principles study

    SciTech Connect (OSTI)

    Gui, Gui; Booske, John; Ma, Zhenqiang E-mail: mazq@engr.wisc.edu; Morgan, Dane; Zhong, Jianxin E-mail: mazq@engr.wisc.edu

    2015-02-02

    We have systematically investigated the effect of local strain on electronic properties of graphene by first-principles calculations. Two major types of local strain, oriented along the zigzag and the armchair directions, have been studied. We find that local strain with a proper range and strength along the zigzag direction results in opening of significant band gaps in graphene, on the order of 10{sup ?1?}eV; whereas, local strain along the armchair direction cannot open a significant band gap in graphene. Our results show that appropriate local strain can effectively open and tune the band gap in graphene; therefore, the electronic and transport properties of graphene can also be modified.

  16. Band gap estimation from temperature dependent Seebeck measurementDeviations from the 2e|S|{sub max}T{sub max} relation

    SciTech Connect (OSTI)

    Gibbs, Zachary M.; Kim, Hyun-Sik; Wang, Heng; Snyder, G. Jeffrey

    2015-01-12

    In characterizing thermoelectric materials, electrical and thermal transport measurements are often used to estimate electronic band structure properties such as the effective mass and band gap. The Goldsmid-Sharp band gap, E{sub g}?=?2e|S|{sub max}T{sub max}, is a tool widely employed to estimate the band gap from temperature dependent Seebeck coefficient measurements. However, significant deviations of more than a factor of two are now known to occur. We find that this is when either the majority-to-minority weighted mobility ratio (A) becomes very different from 1.0 or as the band gap (E{sub g}) becomes significantly smaller than 10 k{sub B}T. For narrow gaps (E{sub g}???6 k{sub B}T), the Maxwell-Boltzmann statistics applied by Goldsmid-Sharp break down and Fermi-Dirac statistics are required. We generate a chart that can be used to quickly estimate the expected correction to the Goldsmid-Sharp band gap depending on A and S{sub max}; however, additional errors can occur for S?

  17. Better band gaps with asymptotically corrected local exchange potentials

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Singh, Prashant; Harbola, Manoj K.; Hemanadhan, M.; Mookerjee, Abhijit; Johnson, D. D.

    2016-02-22

    In this study, we formulate a spin-polarized van Leeuwen and Baerends (vLB) correction to the local density approximation (LDA) exchange potential [R. van Leeuwen and E. J. Baerends, Phys. Rev. A 49, 2421 (1994)] that enforces the ionization potential (IP) theorem following T. Stein et al. [Phys. Rev. Lett. 105, 266802 (2010)]. For electronic-structure problems, the vLB correction replicates the behavior of exact-exchange potentials, with improved scaling and well-behaved asymptotics, but with the computational cost of semilocal functionals. The vLB + IP correction produces a large improvement in the eigenvalues over those from the LDA due to correct asymptotic behaviormore » and atomic shell structures, as shown in rare-gas, alkaline-earth, zinc-based oxides, alkali halides, sulfides, and nitrides. In half-Heusler alloys, this asymptotically corrected LDA reproduces the spin-polarized properties correctly, including magnetism and half-metallicity. We also consider finite-sized systems [e.g., ringed boron nitride (B12N12) and graphene (C24)] to emphasize the wide applicability of the method.« less

  18. Structural studies and band gap tuning of Cr doped ZnO nanoparticles

    SciTech Connect (OSTI)

    Srinet, Gunjan Kumar, Ravindra Sajal, Vivek

    2014-04-24

    Structural and optical properties of Cr doped ZnO nanoparticles prepared by the thermal decomposition method are presented. X-ray diffraction studies confirmed the substitution of Cr on Zn sites without changing the wurtzite structure of ZnO. Modified form of W-H equations was used to calculate various physical parameters and their variation with Cr doping is discussed. Significant red shift was observed in band gap, i.e., a band gap tuning is achieved by Cr doping which could eventually be useful for optoelectronic applications.

  19. Electronegativity calculation of bulk modulus and band gap of ternary ZnO-based alloys

    SciTech Connect (OSTI)

    Li, Keyan; Kang, Congying [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China)] [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); Xue, Dongfeng, E-mail: dongfeng@ciac.jl.cn [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China) [State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2012-10-15

    In this work, the bulk moduli and band gaps of M{sub x}Zn{sub 1?x}O (M = Be, Mg, Ca, Cd) alloys in the whole composition range were quantitatively calculated by using the electronegativity-related models for bulk modulus and band gap, respectively. We found that the change trends of bulk modulus and band gap with an increase of M concentration x are same for Be{sub x}Zn{sub 1?x}O and Cd{sub x}Zn{sub 1?x}O, while the change trends are reverse for Mg{sub x}Zn{sub 1?x}O and Ca{sub x}Zn{sub 1?x}O. It was revealed that the bulk modulus is related to the valence electron density of atoms whereas the band gap is strongly influenced by the detailed chemical bonding behaviors of constituent atoms. The current work provides us a useful guide to compositionally design advanced alloy materials with both good mechanical and optoelectronic properties.

  20. Band-gap tailoring of ZnO by means of heavy Al doping

    SciTech Connect (OSTI)

    Sernelius, B.E.; Berggren, K.; Jin, Z.; Hamberg, I.; Granqvist, C.G.

    1988-06-15

    Films of ZnO:Al were produced by weakly reactive dual-target magnetron sputtering. Optical band gaps, evaluated from spectrophotometric data, were widened in proportion to the Al doping. The widening could be quantitatively reconciled with an effective-mass model for n-doped semiconductors, provided the polar character of ZnO was accounted for.

  1. Photonic band gap of a graphene-embedded quarter-wave stack

    SciTech Connect (OSTI)

    Fan, Yuancheng; Wei, Zeyong; Li, Hongqiang; Chen, Hong; Soukoulis, Costas M

    2013-12-10

    Here, we present a mechanism for tailoring the photonic band structure of a quarter-wave stack without changing its physical periods by embedding conductive sheets. Graphene is utilized and studied as a realistic, two-dimensional conductive sheet. In a graphene-embedded quarter-wave stack, the synergic actions of Bragg scattering and graphene conductance contributions open photonic gaps at the center of the reduced Brillouin zone that are nonexistent in conventional quarter-wave stacks. Such photonic gaps show giant, loss-independent density of optical states at the fixed lower-gap edges, of even-multiple characteristic frequency of the quarter-wave stack. The conductive sheet-induced photonic gaps provide a platform for the enhancement of light-matter interactions.

  2. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect (OSTI)

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  3. P and n-type microcrystalline semiconductor alloy material including band gap widening elements, devices utilizing same

    DOE Patents [OSTI]

    Guha, Subhendu; Ovshinsky, Stanford R.

    1988-10-04

    An n-type microcrystalline semiconductor alloy material including a band gap widening element; a method of fabricating p-type microcrystalline semiconductor alloy material including a band gap widening element; and electronic and photovoltaic devices incorporating said n-type and p-type materials.

  4. Formation of Bragg band gaps in anisotropic phononic crystals analyzed with the empty lattice model

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Yan -Feng; Maznev, Alexei; Laude, Vincent

    2016-05-11

    Bragg band gaps of phononic crystals generally, but not always, open at Brillouin zone boundaries. The commonly accepted explanation stems from the empty lattice model: assuming a small material contrast between the constituents of the unit cell, avoided crossings in the phononic band structure appear at frequencies and wavenumbers corresponding to band intersections; for scalar waves the lowest intersections coincide with boundaries of the first Brillouin zone. However, if a phononic crystal contains elastically anisotropic materials, its overall symmetry is not dictated solely by the lattice symmetry. We construct an empty lattice model for phononic crystals made of isotropic andmore » anisotropic materials, based on their slowness curves. We find that, in the anisotropic case, avoided crossings generally do not appear at the boundaries of traditionally defined Brillouin zones. Furthermore, the Bragg "planes" which give rise to phononic band gaps, are generally not flat planes but curved surfaces. Lastly, the same is found to be the case for avoided crossings between shear (transverse) and longitudinal bands in the isotropic case.« less

  5. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, Ekmel; Tuttle, Gary; Michel, Erick; Ho, Kai-Ming; Biswas, Rana; Chan, Che-Ting; Soukoulis, Costas

    1995-01-01

    A method for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap.

  6. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  7. Band gaps and internal electric fields in semipolar short period InN/GaN superlattices

    SciTech Connect (OSTI)

    Gorczyca, I.; Skrobas, K.; Suski, T.; Christensen, N. E.; Svane, A.

    2014-06-09

    The electronic structures and internal electric fields of semipolar short-period mInN/nGaN superlattices (SLs) have been calculated for several compositions (m, n). Two types of SL are considered, (112{sup ¯}2) and (202{sup ¯}1), corresponding to growth along the wurtzite s2 and s6 directions, respectively. The results are compared to similar calculations for polar SLs (grown in the c-direction) and nonpolar SLs (grown in the a- and m-directions). The calculated band gaps for the semipolar SLs lie between those calculated for the nonpolar and polar SLs: For s2-SLs they fall slightly below the band gaps of a-plane SLs, whereas for s6-SLs they are considerably smaller.

  8. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect (OSTI)

    Henry Hao-Chuan Kang

    2004-12-19

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  9. Band gap tuning in transition metal oxides by site-specific substitution

    DOE Patents [OSTI]

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  10. Near-edge band structures and band gaps of Cu-based semiconductors predicted by the modified Becke-Johnson potential plus an on-site Coulomb U

    SciTech Connect (OSTI)

    Zhang, Yubo; Zhang, Jiawei; Wang, Youwei; Gao, Weiwei; Abtew, Tesfaye A.; Zhang, Peihong E-mail: wqzhang@mail.sic.ac.cn; Beijing Computational Science Research Center, Beijing 100084 ; Zhang, Wenqing E-mail: wqzhang@mail.sic.ac.cn; School of Chemistry and Chemical Engineering and Sate Key Laboratory of Coordination Chemistry, Nanjing University, Jiangsu 210093

    2013-11-14

    Diamond-like Cu-based multinary semiconductors are a rich family of materials that hold promise in a wide range of applications. Unfortunately, accurate theoretical understanding of the electronic properties of these materials is hindered by the involvement of Cu d electrons. Density functional theory (DFT) based calculations using the local density approximation or generalized gradient approximation often give qualitative wrong electronic properties of these materials, especially for narrow-gap systems. The modified Becke-Johnson (mBJ) method has been shown to be a promising alternative to more elaborate theory such as the GW approximation for fast materials screening and predictions. However, straightforward applications of the mBJ method to these materials still encounter significant difficulties because of the insufficient treatment of the localized d electrons. We show that combining the promise of mBJ potential and the spirit of the well-established DFT + U method leads to a much improved description of the electronic structures, including the most challenging narrow-gap systems. A survey of the band gaps of about 20 Cu-based semiconductors calculated using the mBJ + U method shows that the results agree with reliable values to within 0.2 eV.

  11. Photonic band gaps in three-dimensional network structures with short-range order

    SciTech Connect (OSTI)

    Liew, Seng Fatt; Noh, Heeso; Yang, Jin-Kyu; Schreck, Carl F.; Dufresne, Eric R.; O'Hern, Corey S.; Cao, Hui

    2011-12-15

    We present a systematic study of photonic band gaps (PBGs) in three-dimensional (3D) photonic amorphous structures (PASs) with short-range order. From calculations of the density of optical states (DOS) for PASs with different topologies, we find that tetrahedrally connected dielectric networks produce the largest isotropic PBGs. Local uniformity and tetrahedral order are essential to the formation of PBGs in PASs, in addition to short-range geometric order. This work demonstrates that it is possible to create broad, isotropic PBGs for vector light fields in 3D PASs without long-range order.

  12. Analysis of plasma-magnetic photonic crystal with a tunable band gap

    SciTech Connect (OSTI)

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A. [Department of Physics and Plasma Research Institute of Tarbiat Moallem University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2013-04-15

    In this paper, electromagnetic wave propagation through the one-dimensional plasma-magnetic photonic crystal in the presence of external magnetic field has been analyzed. The dispersion relation, transmission and reflection coefficients have been obtained by using the transfer matrix method. It is investigated how photonic band gap of photonic crystals will be tuned when both dielectric function {epsilon} and magnetic permeability {mu} of the constitutive materials, depend on applied magnetic field. This is shown by one dimensional photonic crystals consisting of plasma and ferrite material layers stacked alternately.

  13. Nonlinear optical response of semiconductor-nanocrystals-embedded photonic band gap structure

    SciTech Connect (OSTI)

    Liao, Chen; Zhang, Huichao; Tang, Luping; Zhou, Zhiqiang; Lv, Changgui; Cui, Yiping; Zhang, Jiayu

    2014-04-28

    Colloidal CdSe/ZnS core/shell nanocrystals (NCs), which were dispersed in SiO{sub 2} sol, were utilized to fabricate a SiO{sub 2}:NCs/TiO{sub 2} all-dielectric photonic band gap (PBG) structure. The third-order nonlinear refractive index (n{sub 2}) of the PBG structure was nearly triple of that of the SiO{sub 2}:NCs film due to the local field enhancement in the PBG structure. The photoinduced change in refractive index (Δn) could shift the PBG band edge, so the PBG structure would show significant transmission modification, whose transmission change was ∼17 folds of that of the SiO{sub 2}:NCs film. Under excitation of a 30 GW/cm{sup 2} femtosecond laser beam, a transmission decrease of 80% was realized.

  14. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOE Patents [OSTI]

    Ho, Kai-Ming; Chan, Che-Ting; Soukoulis, Costas

    1994-08-02

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  15. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    SciTech Connect (OSTI)

    Bai Xianchen; Yang Jianhua; Zhang Jiande

    2012-08-15

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  16. First-principles study of direct and narrow band gap semiconducting β -CuGaO2

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nguyen, Manh Cuong; Zhao, Xin; Wang, Cai-Zhuang; Ho, Kai-Ming

    2015-04-16

    Semiconducting oxides have attracted much attention due to their great stability in air or water and the abundance of oxygen. Recent success in synthesizing a metastable phase of CuGaO2 with direct narrow band gap opens up new applications of semiconducting oxides as absorber layer for photovoltaics. Using first-principles density functional theory calculations, we investigate the thermodynamic and mechanical stabilities as well as the structural and electronic properties of the β-CuGaO2 phase. Our calculations show that the β-CuGaO2 structure is dynamically and mechanically stable. The energy band gap is confirmed to be direct at the Γ point of Brillouin zone. Inmore » conclusion, the optical absorption occurs right at the band gap edge and the density of states near the valance band maximum is large, inducing an intense absorption of light as observed in experiment.« less

  17. Photonic-band-gap effects in two-dimensional polycrystalline and amorphous structures

    SciTech Connect (OSTI)

    Yang, Jin-Kyu; Noh, Heeso; Liew, Seng-Fatt; Schreck, Carl; Guy, Mikhael I.; O'Hern, Corey S.; Cao, Hui

    2010-11-15

    We study numerically the density of optical states (DOS) in two-dimensional photonic structures with short-range positional order and observe a transition from polycrystalline to amorphous photonic systems. In polycrystals, photonic band gaps (PBGs) are formed within individual domains, which leads to a depletion of the DOS similar to that in periodic structures. In amorphous photonic media, the domain sizes are too small to form PBGs, thus the depletion of the DOS is weakened significantly. The critical domain size that separates the polycrystalline and amorphous regimes is determined by the attenuation length of Bragg scattering, which depends not only on the degree of positional order but also the refractive-index contrast of the photonic material. Even with relatively low-refractive-index contrast, we find that modest short-range positional order in photonic structures enhances light confinement via collective scattering and interference.

  18. A Monte Carlo simulation for bipolar resistive memory switching in large band-gap oxides

    SciTech Connect (OSTI)

    Hur, Ji-Hyun E-mail: jeonsh@korea.ac.kr; Lee, Dongsoo; Jeon, Sanghun E-mail: jeonsh@korea.ac.kr

    2015-11-16

    A model that describes bilayered bipolar resistive random access memory (BL-ReRAM) switching in oxide with a large band gap is presented. It is shown that, owing to the large energy barrier between the electrode and thin oxide layer, the electronic conduction is dominated by trap-assisted tunneling. The model is composed of an atomic oxygen vacancy migration model and an electronic tunneling conduction model. We also show experimentally observed three-resistance-level switching in Ru/ZrO{sub 2}/TaO{sub x} BL-ReRAM that can be explained by the two types of traps, i.e., shallow and deep traps in ZrO{sub 2}.

  19. Observation of Wakefield Suppression in a Photonic-Band-Gap Accelerator Structure

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Simakov, Evgenya I.; Arsenyev, Sergey A.; Buechler, Cynthia E.; Edwards, Randall L.; Romero, William P.; Conde, Manoel; Ha, Gwanghui; Power, John G.; Wisniewski, Eric E.; Jing, Chunguang

    2016-02-10

    We report experimental observation of higher order mode (HOM) wakefield suppression in a room-temperature traveling-wave photonic band gap (PBG) accelerating structure at 11.700 GHz. It has been long recognized that PBG structures have potential for reducing long-range wakefields in accelerators. The first ever demonstration of acceleration in a room-temperature PBG structure was conducted in 2005. Since then, the importance of PBG accelerator research has been recognized by many institutions. However, the full experimental characterization of the wakefield spectrum and demonstration of wakefield suppression when the accelerating structure is excited by an electron beam has not been performed to date. Wemore » conducted an experiment at the Argonne Wakefield Accelerator (AWA) test facility and observed wakefields excited by a single high charge electron bunch when it passes through a PBG accelerator structure. Lastly, excellent HOM suppression properties of the PBG accelerator were demonstrated in the beam test.« less

  20. Band gap narrowing in zinc oxide-based semiconductor thin films

    SciTech Connect (OSTI)

    Kumar, Jitendra E-mail: akrsri@gmail.com; Kumar Srivastava, Amit E-mail: akrsri@gmail.com

    2014-04-07

    A simple expression is proposed for the band gap narrowing (or shrinkage) in semiconductors using optical absorption measurements of spin coated 1 at. % Ga-doped ZnO (with additional 0–1.5 at. % zinc species) thin films as ΔE{sub BGN} = Bn{sup 1/3} [1 − (n{sub c}/n){sup 1/3}], where B is the fitting parameter, n is carrier concentration, and n{sub c} is the critical density required for shrinkage onset. Its uniqueness lies in not only describing variation of ΔE{sub BGN} correctly but also allowing deduction of n{sub c} automatically for several M-doped ZnO (M: Ga, Al, In, B, Mo) systems. The physical significance of the term [1 − (n{sub c}/n){sup 1/3}] is discussed in terms of carrier separation.

  1. Direct band gap measurement of Cu(In,Ga)(Se,S){sub 2} thin films using high-resolution reflection electron energy loss spectroscopy

    SciTech Connect (OSTI)

    Heo, Sung; Lee, Hyung-Ik; Park, Jong-Bong; Ko, Dong-Su; Chung, JaeGwan; Kim, KiHong; Kim, Seong Heon; Yun, Dong-Jin; Ham, YongNam; Park, Gyeong Su; Song, Taewon; Lee, Dongho Nam, Junggyu; Kang, Hee Jae; Choi, Pyung-Ho; Choi, Byoung-Deog

    2015-06-29

    To investigate the band gap profile of Cu(In{sub 1−x},Ga{sub x})(Se{sub 1−y}S{sub y}){sub 2} of various compositions, we measured the band gap profile directly as a function of in-depth using high-resolution reflection energy loss spectroscopy (HR-REELS), which was compared with the band gap profile calculated based on the auger depth profile. The band gap profile is a double-graded band gap as a function of in-depth. The calculated band gap obtained from the auger depth profile seems to be larger than that by HR-REELS. Calculated band gaps are to measure the average band gap of the spatially different varying compositions with respect to considering its void fraction. But, the results obtained using HR-REELS are to be affected by the low band gap (i.e., out of void) rather than large one (i.e., near void). Our findings suggest an analytical method to directly determine the band gap profile as function of in-depth.

  2. Radiation response analysis of wide-gap p-AlInGaP for superhigh-efficiency space photovoltaics

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Marupaduga, S.; Anandakrishnan, S.S.; Alam, M.; Ekins-Daukes, N.J.; Lee, H.S.; Sasaki, T.; Yamaguchi, M.; Takamoto, T.; Agui, T.; Kamimura, K.; Kaneiwa, M.; Imazumi, M.

    2004-11-29

    We present here the direct observation of the majority and minority carrier defects generation from wide-band-gap (2.04 eV) and thick (2 {mu}m) p-AlInGaP diodes and solar cells structures before and after 1 MeV electron irradiation by deep level transient spectroscopy (DLTS). One dominant hole-emitting trap H1 (E{sub V}+0.37{+-}0.05 eV) and two electron-emitting traps, E1 (E{sub C}-0.22{+-}0.04 eV) and E3 (E{sub C}-0.78{+-}0.05 eV) have been observed in the temperature range, which we could scan by DLTS. Detailed analysis of the minority carrier injection annealing experiment reveals that the H1 center has shown the same annealing characteristics, which has been previously observed in all phosphide-based materials such as InP, InGaP, and InGaAsP. The annealing property of the radiation-induced defects in p-AlInGaP reveals that multijunction solar cells and other optoelectronic devices such as light-emitting diodes based on this material could be considerably better to Si and GaAs in a radiation environment.

  3. Method of fabricating n-type and p-type microcrystalline semiconductor alloy material including band gap widening elements

    DOE Patents [OSTI]

    Guha, Subhendu; Ovshinsky, Stanford R.

    1990-02-02

    A method of fabricating doped microcrystalline semiconductor alloy material which includes a band gap widening element through a glow discharge deposition process by subjecting a precursor mixture which includes a diluent gas to an a.c. glow discharge in the absence of a magnetic field of sufficient strength to induce electron cyclotron resonance.

  4. Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap

    SciTech Connect (OSTI)

    Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.

    2015-03-28

    Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.

  5. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOE Patents [OSTI]

    Abraham, Marvin M.; Chen, Yok; Kernohan, Robert H.

    1981-01-01

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  6. Band gap narrowing in zinc oxide-based semiconductor thin films...

    Office of Scientific and Technical Information (OSTI)

    ABSORPTION; ALUMINIUM COMPOUNDS; BORON COMPOUNDS; CHARGE CARRIERS; CONCENTRATION RATIO; DENSITY; DOPED MATERIALS; ELECTRONIC STRUCTURE; ENERGY GAP; GALLIUM COMPOUNDS; INDIUM...

  7. Band gap and defect states of MgO thin films investigated using reflection electron energy loss spectroscopy

    SciTech Connect (OSTI)

    Heo, Sung; Cho, Eunseog; Lee, Hyung-Ik; Park, Gyeong Su; Kang, Hee Jae; Nagatomi, T.; Choi, Pyungho; Choi, Byoung-Deog

    2015-07-15

    The band gap and defect states of MgO thin films were investigated by using reflection electron energy loss spectroscopy (REELS) and high-energy resolution REELS (HR-REELS). HR-REELS with a primary electron energy of 0.3 keV revealed that the surface F center (FS) energy was located at approximately 4.2 eV above the valence band maximum (VBM) and the surface band gap width (E{sub g}{sup S}) was approximately 6.3 eV. The bulk F center (F{sub B}) energy was located approximately 4.9 eV above the VBM and the bulk band gap width was about 7.8 eV, when measured by REELS with 3 keV primary electrons. From a first-principles calculation, we confirmed that the 4.2 eV and 4.9 eV peaks were F{sub S} and F{sub B}, induced by oxygen vacancies. We also experimentally demonstrated that the HR-REELS peak height increases with increasing number of oxygen vacancies. Finally, we calculated the secondary electron emission yields (γ) for various noble gases. He and Ne were not influenced by the defect states owing to their higher ionization energies, but Ar, Kr, and Xe exhibited a stronger dependence on the defect states owing to their small ionization energies.

  8. Analysis of photonic band gaps in two-dimensional photonic crystals with rods covered by a thin interfacial layer

    SciTech Connect (OSTI)

    Trifonov, T.; Marsal, L.F.; Pallares, J.; Rodriguez, A.; Alcubilla, R.

    2004-11-15

    We investigate different aspects of the absolute photonic band gap (PBG) formation in two-dimensional photonic structures consisting of rods covered with a thin dielectric film. Specifically, triangular and honeycomb lattices in both complementary arrangements, i.e., air rods drilled in silicon matrix and silicon rods in air, are studied. We consider that the rods are formed of a dielectric core (silicon or air) surrounded by a cladding layer of silicon dioxide (SiO{sub 2}), silicon nitride (Si{sub 3}N{sub 4}), or germanium (Ge). Such photonic lattices present absolute photonic band gaps, and we study the evolution of these gaps as functions of the cladding material and thickness. Our results show that in the case of air rods in dielectric media the existence of dielectric cladding reduces the absolute gap width and may cause complete closure of the gap if thick layers are considered. For the case of dielectric rods in air, however, the existence of a cladding layer can be advantageous and larger absolute PBG's can be achieved.

  9. Band gap tuning of epitaxial SrTiO{sub 3-δ}/Si(001) thin films through strain engineering

    SciTech Connect (OSTI)

    Cottier, Ryan J.; Steinle, Nathan A.; Currie, Daniel A.; Theodoropoulou, Nikoleta

    2015-11-30

    We investigate the effect of strain and oxygen vacancies (V{sub O}) on the crystal and optical properties of oxygen deficient, ultra-thin (4–30 nm) films of SrTiO{sub 3-δ} (STO) grown heteroepitaxially on p-Si(001) substrates by molecular beam epitaxy. We demonstrate that STO band gap tuning can be achieved through strain engineering and show that the energy shift of the direct energy gap transition of SrTiO{sub 3-δ}/Si films has a quantifiable dimensional and doping dependence that correlates well with the changes in crystal structure.

  10. Fully Polarimetric Passive W-band Millimeter Wave Imager for Wide Area Search

    SciTech Connect (OSTI)

    Tedeschi, Jonathan R.; Bernacki, Bruce E.; Sheen, David M.; Kelly, James F.; McMakin, Douglas L.

    2013-09-27

    We describe the design and phenomenology imaging results of a fully polarimetric W-band millimeter wave (MMW) radiometer developed by Pacific Northwest National Laboratory for wide-area search. Operating from 92 - 94 GHz, the W-band radiometer employs a Dicke switching heterodyne design isolating the horizontal and vertical mm-wave components with 40 dB of polarization isolation. Design results are presented for both infinite conjugate off-axis parabolic and finite conjugate off-axis elliptical fore-optics using optical ray tracing and diffraction calculations. The received linear polarizations are down-converted to a microwave frequency band and recombined in a phase-shifting network to produce all six orthogonal polarization states of light simultaneously, which are used to calculate the Stokes parameters for display and analysis. The resulting system performance produces a heterodyne receiver noise equivalent delta temperature (NEDT) of less than 150m Kelvin. The radiometer provides novel imaging capability by producing all four of the Stokes parameters of light, which are used to create imagery based on the polarization states associated with unique scattering geometries and their interaction with the down welling MMW energy. The polarization states can be exploited in such a way that man-made objects can be located and highlighted in a cluttered scene using methods such as image comparison, color encoding of Stokes parameters, multivariate image analysis, and image fusion with visible and infrared imagery. We also present initial results using a differential imaging approach used to highlight polarization features and reduce common-mode noise. Persistent monitoring of a scene using the polarimetric passive mm-wave technique shows great promise for anomaly detection caused by human activity.

  11. Halftoning band gap of InAs/InP quantum dots using inductively coupled argon plasma-enhanced intermixing

    SciTech Connect (OSTI)

    Nie, D.; Mei, T.; Xu, C. D.; Dong, J. R.

    2006-09-25

    Inductively coupled argon plasma-enhanced intermixing of InAs/InP quantum dots grown on InP substrate is investigated. Intermixing is promoted by the near-surface defects generated by plasma exposure in annealing at a temperature of 600 deg. C for 30 s. The annealing results in a maximum differential band-gap blueshift of 106 nm but a thermal shift of only 10 nm. Band-gap halftones are obtained by controlling the amount of near-surface defects via wet chemical etching on the plasma-exposed InP cap layer. No degradation of quantum-dot crystal quality due to the process has been observed as evidenced by photoluminescence intensity.

  12. The change in dielectric constant, AC conductivity and optical band gaps of polymer electrolyte film: Gamma irradiation

    SciTech Connect (OSTI)

    Raghu, S. Subramanya, K. Sharanappa, C. Mini, V. Archana, K. Sanjeev, Ganesh Devendrappa, H.

    2014-04-24

    The effects of gamma (γ) irradiation on dielectric and optical properties of polymer electrolyte film were investigated. The dielectric constant and ac conductivity increases with γ dose. Also optical band gap decreased from 4.23 to 3.78ev after irradiation. A large dependence of the polymer properties on the irradiation dose was noticed. This suggests that there is a possibility of improving polymer electrolyte properties on gamma irradiation.

  13. Two-dimensional topological insulators with tunable band gaps: Single-layer HgTe and HgSe

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Li, Jin; He, Chaoyu; Meng, Lijun; Xiao, Huaping; Tang, Chao; Wei, Xiaolin; Kim, Jinwoong; Kioussis, Nicholas; Stocks, G. Malcolm; Zhong, Jianxin

    2015-09-14

    Here, we report that two-dimensional (2D) topological insulators (TIs) with large band gaps are of great importance for the future applications of quantum spin Hall (QSH) effect. Employing ab initio electronic calculations we propose a novel type of 2D topological insulators, the monolayer (ML) low-buckled (LB) mercury telluride (HgTe) and mercury selenide (HgSe), with tunable band gap. We demonstrate that LB HgTe (HgSe) monolayers undergo a trivial insulator to topological insulator transition under in-plane tensile strain of 2.6% (3.1%) due to the combination of the strain and the spin orbital coupling (SOC) effects. Furthermore, the band gaps can be tunedmore » up to large values (0.2 eV for HgTe and 0.05 eV for HgSe) by tensile strain, which far exceed those of current experimentally realized 2D quantum spin Hall insulators. Our results suggest a new type of material suitable for practical applications of 2D TI at room-temperature.« less

  14. Structure and band gap determination of irradiation-induced amorphous nano-channels in LiNbO{sub 3}

    SciTech Connect (OSTI)

    Sachan, R. Pakarinen, O. H.; Chisholm, M. F.; Liu, P.; Patel, M. K.; Zhang, Y.; Wang, X. L.; Weber, W. J.

    2015-04-07

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization: (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterization of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with electronic energy loss of ions. Energetic Kr ions ({sup 84}Kr{sup 22} with 1.98?GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2 10{sup 10} ions/cm{sup 2}, which results in the formation of individual ion tracks with a penetration depth of ?180??m. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO{sub 3}, resulting in increases in track diameter of a factor of ?2 with depth. This diameter increase with electronic energy loss is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.

  15. Band gap engineering by swift heavy ions irradiation induced amorphous nano-channels in LiNbO3

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sachan, Ritesh; Pakarinen, Olli H.; Liu, Peng; Patel, Maulik; Chisholm, Matthew F.; Zhang, Yanwen; Wang, Xuelin; Weber, William J.

    2015-04-01

    The irradiation of lithium niobate with swift heavy ions results in the creation of amorphous nano-sized channels along the incident ion path. These nano-channels are on the order of a hundred microns in length and could be useful for photonic applications. However, there are two major challenges in these nano-channels characterization; (i) it is difficult to investigate the structural characteristics of these nano-channels due to their very long length, and (ii) the analytical electron microscopic analysis of individual ion track is complicated due to electron beam sensitive nature of lithium niobate. Here, we report the first high resolution microscopic characterizationmore » of these amorphous nano-channels, widely known as ion-tracks, by direct imaging them at different depths in the material, and subsequently correlating the key characteristics with Se of ions. Energetic Kr ions (84Kr22 with 1.98 GeV energy) are used to irradiate single crystal lithium niobate with a fluence of 2x1010 ions/cm2, which results in the formation of individual ion tracks with a penetration depth of ~180 μm. Along the ion path, electron energy loss of the ions, which is responsible for creating the ion tracks, increases with depth under these conditions in LiNbO3, resulting in increases in track diameter of a factor of ~2 with depth. This diameter increase with electronic stopping power is consistent with predictions of the inelastic thermal spike model. We also show a new method to measure the band gap in individual ion track by using electron energy-loss spectroscopy.« less

  16. Electronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine

    SciTech Connect (OSTI)

    Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin

    2015-06-18

    To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine above the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.

  17. Electronic Structures, Bonding Configurations, and Band-Gap-Opening Properties of Graphene Binding with Low-Concentration Fluorine

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Duan, Yuhua; Stinespring, Charter D.; Chorpening, Benjamin

    2015-06-18

    To better understand the effects of low-level fluorine in graphene-based sensors, first-principles density functional theory (DFT) with van der Waals dispersion interactions has been employed to investigate the structure and impact of fluorine defects on the electrical properties of single-layer graphene films. The results show that both graphite-2H and graphene have zero band gaps. When fluorine bonds to a carbon atom, the carbon atom is pulled slightly above the graphene plane, creating what is referred to as a CF defect. The lowest-binding energy state is found to correspond to two CF defects on nearest neighbor sites, with one fluorine abovemore » the carbon plane and the other below the plane. Overall this has the effect of buckling the graphene. The results further show that the addition of fluorine to graphene leads to the formation of an energy band (BF) near the Fermi level, contributed mainly from the 2p orbitals of fluorine with a small contribution from the porbitals of the carbon. Among the 11 binding configurations studied, our results show that only in two cases does the BF serve as a conduction band and open a band gap of 0.37 eV and 0.24 eV respectively. The binding energy decreases with decreasing fluorine concentration due to the interaction between neighboring fluorine atoms. The obtained results are useful for sensor development and nanoelectronics.« less

  18. Direct band gaps in multiferroic h-LuFeO{sub 3}

    SciTech Connect (OSTI)

    Holinsworth, B. S.; Mazumdar, D.; Musfeldt, J. L.; Brooks, C. M.; Mundy, J. A.; Das, H.; Fennie, C. J.; Cherian, J. G.; McGill, S. A.; Schlom, D. G.

    2015-02-23

    We measured the optical properties of epitaxial thin films of the metastable hexagonal polymorph of LuFeO{sub 3} by absorption spectroscopy, magnetic circular dichroism, and photoconductivity. Comparison with complementary electronic structure calculations reveals a 1.1 eV direct gap involving hybridized Fe 3d{sub z{sup 2}}+O 2p{sub z}→Fe d excitations at the Γ and A points, with a higher energy direct gap at 2.0 eV. Both charge gaps nicely overlap the solar spectrum.

  19. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  20. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect (OSTI)

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ? ? 0.5?e, where ?e is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3?e and 0.6?e. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  1. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... The measured energy bands of indium atomic wires in the metallic state (left) and in the ... of indium wires on silicon with the soft x-ray angle-resolved photoemission endstation ...

  2. Nonlinear sub-cyclotron resonance as a formation mechanism for gaps in banded chorus

    SciTech Connect (OSTI)

    Fu, Xiangrong; Guo, Zehua; Dong, Chuanfei; Gary, S. Peter

    2015-05-14

    An interesting characteristic of magnetospheric chorus is the presence of a frequency gap at ω ≃ 0.5Ωe, where Ωe is the electron cyclotron angular frequency. Recent chorus observations sometimes show additional gaps near 0.3Ωe and 0.6Ωe. Here we present a novel nonlinear mechanism for the formation of these gaps using Hamiltonian theory and test particle simulations in a homogeneous, magnetized, collisionless plasma. We find that an oblique whistler wave with frequency at a fraction of the electron cyclotron frequency can resonate with electrons, leading to effective energy exchange between the wave and particles.

  3. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.; Friedman, Daniel J.

    2001-01-01

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  4. Effectiveness of dye sensitised solar cell under low light condition using wide band dye

    SciTech Connect (OSTI)

    Sahmer, Ahmad Zahrin Mohamed, Norani Muti Zaine, Siti Nur Azella

    2015-07-22

    Dye sensistised solar cell (DSC) based on nanocrystalline TiO{sub 2} has the potential to be used in indoor consumer power application. In realizing this, the DSC must be optimized to generate power under low lighting condition and under wider visible light range. The use of wide band dye N749 which has a wider spectrum sensitivity increases the photon conversion to electron between the visible light spectrums of 390nm to 700nm. This paper reports the study on the effectiveness of the dye solar cell with N749 dye under low light condition in generating usable power which can be used for indoor consumer application. The DSC was fabricated using fluorine doped tin oxide (FTO) glass with screen printing method and the deposited TiO{sub 2} film was sintered at 500°C. The TiO{sub 2} coated FTO glass was then soaked in the N749 dye, assembled into test cell, and tested under the standard test condition at irradiance of 1000 W/m{sup 2} with AM1.5 solar soaker. The use of the 43T mesh for the dual pass screen printing TiO{sub 2} paste gives a uniform TiO{sub 2} film layer of 16 µm. The low light condition was simulated using 1/3 filtered irradiance with the solar soaker. The fabricated DSC test cell with the N749 dye was found to have a higher efficiency of 6.491% under low light condition compared to the N719 dye. Under the standard test condition at 1 sun the N749 test cell efficiency is 4.55%. The increases in efficiency is attributed to the wider spectral capture of photon of the DSC with N749 dye. Furthermore, the use of N749 dye is more effective under low light condition as the V{sub OC} decrement is less significant compared to the latter.

  5. Inverse Design of Mn-based ternary p-type wide-gap oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    used theory to predict band structure and transport properties for the d 5 transition metal (TM) oxides MnO and Fe 2 O 3 . Significance and Impact This work identified design principles for improving d 5 oxides as a new class of semiconductors with potential applications in energy conversion. Design Principles Demonstrated for Semiconducting d 5 Transition-Metal Oxides with Photovoltaic Applications Potential H. Peng and S. Lany, Phys. Rev. B (Rapid Comm.) 85, 201202(R) (2012). Figure 1:

  6. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    SciTech Connect (OSTI)

    Michael David Petersen

    2001-05-01

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn,Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  7. Numerical Simulation of the Performance Characteristics, Instability, and Effects of Band Gap Grading in Cadmium Telluride Based Photovoltaic Devices

    SciTech Connect (OSTI)

    Michael David Petersen

    2001-06-27

    Using computer simulations, the performance of several CdTe based photovoltaic structures has been studied. The advantages and disadvantages of band gap grading, through the use of (Zn, Cd)Te, have also been investigated in these structures. Grading at the front interface between a CdS window layer and a CdTe absorber layer, can arise due to interdiffusion between the materials during growth or due to the intentional variation of the material composition. This grading has been shown to improve certain performance metrics, such as the open-circuit voltage, while degrading others, such as the fill factor, depending on the amount and distance of the grading. The presence of a Schottky barrier as the back contact has also been shown to degrade the photovoltaic performance of the device, resulting in a characteristic IV curve. However, with the appropriate band gap grading at the back interface, it has been shown that the performance can be enhanced through more efficient carrier collection. These results were then correlated with experimental observations of the performance degradation in devices subjected to light and heat stress.

  8. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Atomic structure models of indium wires four rows wide running from left to right on silicon. Top: The metallic 41 phase. Bottom: The period-doubled 42 insulating phase....

  9. Elevated temperature dependence of energy band gap of ZnO thin films grown by e-beam deposition

    SciTech Connect (OSTI)

    Rai, R. C.; Guminiak, M.; Wilser, S.; Cai, B.; Nakarmi, M. L.

    2012-04-01

    We report the surface, structural, electronic, and optical properties of the epitaxial ZnO thin films grown on (0001) sapphire substrate at 600 deg. C by an electron-beam deposition technique. ZnO thin films have been deposited in an oxygen environment and post-deposition annealed to improve the stoichiometry and the crystal quality. In order to investigate the free exciton binding energy and the temperature dependence of the energy bandgap, we carried out variable temperature (78-450 K) transmittance measurements on ZnO thin films. The absorption data below the energy bandgap have been modeled with the Urbach tail and a free exciton, while the data above the gap have been modeled with the charge transfer excitations. The exciton binding energy is measured to be E{sub 0}= 64 {+-} 7 meV, and the energy band gaps of the ZnO film are measured to be E{sub g}-tilde 3.51 and 3.48 eV at 78 and 300 K, respectively. The temperature dependence of the energy gap has been fitted with the Varshni model to extract the fitting parameters {alpha}= 0.00020 {+-} 0.00002 eV/K, {beta}= 325 {+-} 20 K, and E{sub g} (T = 0 K) = 3.516 {+-} 0.0002 eV.

  10. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O₃ solid solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; Bennett, Joseph W.; Grinberg, Ilya; Rappe, Andrew M.

    2011-12-15

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn1/3Nb2/3)O₃ and Pb(Mg1/3Nb2/3)O₃, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies can have a significant impactmore » on both the conduction and valence band energies, in some cases lowering the band gap by ≈0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less

  11. Physics of band-gap formation and its evolution in the pillar-based phononic crystal structures

    SciTech Connect (OSTI)

    Pourabolghasem, Reza; Mohammadi, Saeed; Eftekhar, Ali Asghar; Adibi, Ali; Khelif, Abdelkrim

    2014-07-07

    In this paper, the interplay of Bragg scattering and local resonance is theoretically studied in a phononic crystal (PnC) structure composed of a silicon membrane with periodic tungsten pillars. The comparison of phononic band gaps (PnBGs) in three different lattice types (i.e., square, triangular, and honeycomb) with different pillar geometries shows that different PnBGs have varying degrees of dependency on the lattice symmetry based on the interplay of the local resonances and the Bragg effect. The details of this interplay is discussed. The significance of locally resonating pillars, specially in the case of tall pillars, on PnBGs is discussed and verified by examining the PnBG position and width in perturbed lattices via Monte Carlo simulations. It is shown that the PnBGs caused by the local resonance of the pillars are more resilient to the lattice perturbations than those caused by Bragg scattering.

  12. Conductivity and optical band gaps of polyethylene oxide doped with Li{sub 2}SO{sub 4} salt

    SciTech Connect (OSTI)

    Chapi, Sharanappa Raghu, S. Subramanya, K. Archana, K. Mini, V. Devendrappa, H.

    2014-04-24

    The conductivity and optical properties of Li{sub 2}SO{sub 4} doped polyethylene oxide (PEO) films were studied. The polymer electrolyte films are prepared using solution casting technique. The material phase change was confirmed by X-ray diffraction (XRD) technique. Optical absorption study was conducted using UV- Vis. Spectroscopy in the wavelength range 190–1100nm on pure and doped PEO films. The direct and indirect optical band gaps were found decreased from 5.81–4.51eV and 4.84–3.43eV respectively with increasing the Li{sub 2}SO{sub 4}. The conductivity found to increases with increasing the dopant concentration due to strong hopping mechanism at room temperature.

  13. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    SciTech Connect (OSTI)

    Zaytsev, Kirill I. Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O.; Gorelik, Vladimir S.

    2014-06-07

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  14. Significant Reduction in NiO Band Gap upon Formation of LixNi1?xO Alloys: Applications to Solar Energy Conversion

    SciTech Connect (OSTI)

    Alidoust, Nima; Toroker, Maytal; Keith, John A.; Carter, Emily A.

    2014-01-01

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ?1.52.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiOs large band gap (?4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ?2.0 eV when NiO is alloyed with Li2O. We show that LixNi1?xO alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiOs desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode.

  15. Properties of Wide-Gap Chalcopyrite Semiconductors for Photovoltaic Applications: Final Report, 8 July 1998 -- 17 October 2001

    SciTech Connect (OSTI)

    Rockett, A.

    2003-07-01

    The objectives of this project were to obtain a fundamental understanding of wide-gap chalcopyrite semiconductors and photovoltaic devices. Information to be gathered included significant new fundamental materials data necessary for accurate modeling of single- and tandem-junction devices, basic materials science of wider-gap chalcopyrite semiconductors to be used in next-generation devices, and practical information on the operation of devices incorporating these materials. Deposition used a hybrid sputtering and evaporation method shown previously to produce high-quality epitaxial layers of Cu(In,Ga)Se2 (CIGS). Materials analysis was also provided to assist members of the National CIS Team, of which, through this contract, we were a member. Solar cells produced from resulting single-crystal epitaxial layers in collaboration with various members of the CIS Team were used to determine the factors limiting performance of the devices based on analysis of the results. Because epitaxial growth allows us to determine the surface orientation of our films specifically by choice of the substrate surface on which the film is grown, a major focus of the project concerned the nature of (110)-oriented CIGS films and the performance of solar cells produced from these films. We begin this summary with a description of the results for growth on (110) GaAs, which formed a basis for much of the work ultimately conducted under the program.

  16. Optical absorption and band gap reduction in (Fe1-xCrx)2O3 solid solutions: A first-principles study

    SciTech Connect (OSTI)

    Wang, Yong; Lopata, Kenneth A.; Chambers, Scott A.; Govind, Niranjan; Sushko, Petr V.

    2013-12-02

    We provide a detailed theoretical analysis of the character of optical transitions and band gap reduction in (Fe1-xCrx)2O3 solid solutions using extensive periodic model and embedded cluster calculations. Optical absorption bands for x = 0.0, 0.5, and 1.0 are assigned on the basis of timedependent density functional theory (TDDFT) calculations. A band-gap reduction of as much as 0.7 eV with respect to that of pure ?-Fe2O3 is found. This result can be attributed to predominantly two effects: (i) the higher valence band edge for x ? 0.5, as compared to those in pure ?-Fe2O3 and ?-Cr2O3, and, (ii) the appearance of Cr ? Fe dd transitions in the solid solutions. Broadening of the valence band due to hybridization of the O 2p states with Fe and Cr 3d states also contributes to band gap reduction.

  17. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect (OSTI)

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  18. Empirical determination of the energy band gap narrowing in p{sup +} silicon heavily doped with boron

    SciTech Connect (OSTI)

    Yan, Di Cuevas, Andres

    2014-11-21

    In the analysis of highly doped silicon, energy band gap narrowing (BGN) and degeneracy effects may be accounted for separately, as a net BGN in conjunction with Fermi-Dirac statistics, or lumped together in an apparent BGN used with Boltzmann statistics. This paper presents an experimental study of silicon highly doped with boron, with the aim of evaluating the applicability of previously reported BGN models. Different boron diffusions covering a broad range of dopant densities were prepared, and their characteristic recombination current parameters J{sub 0} were measured using a contactless photoconductance technique. The BGN was subsequently extracted by matching theoretical simulations of carrier transport and recombination in each of the boron diffused regions and the measured J{sub 0} values. An evaluation of two different minority carrier mobility models indicates that their impact on the extraction of the BGN is relatively small. After considering possible uncertainties, it can be concluded that the BGN is slightly larger in p{sup +} silicon than in n{sup +} silicon, in qualitative agreement with theoretical predictions by Schenk. Nevertheless, in quantitative terms that theoretical model is found to slightly underestimate the BGN in p{sup +} silicon. With the two different parameterizations derived in this paper for the BGN in p{sup +} silicon, both statistical approaches, Boltzmann and Fermi-Dirac, provide a good agreement with the experimental data.

  19. Experimental and theoretical studies of band gap alignment in GaAs{sub 1?x}Bi{sub x}/GaAs quantum wells

    SciTech Connect (OSTI)

    Kudrawiec, R. Kopaczek, J.; Polak, M. P.; Scharoch, P.; Gladysiewicz, M.; Misiewicz, J.; Richards, R. D.; Bastiman, F.; David, J. P. R.

    2014-12-21

    Band gap alignment in GaAs{sub 1?x}Bi{sub x}/GaAs quantum wells (QWs) was studied experimentally by photoreflectance (PR) and theoretically, ab initio, within the density functional theory in which the supercell based calculations are combined with the alchemical mixing approximation applied to a single atom in a supercell. In PR spectra, the optical transitions related to the excited states in the QW (i.e., the transition between the second heavy-hole and the second electron subband) were clearly observed in addition to the ground state QW transition and the GaAs barrier transition. This observation is clear experimental evidence that this is a type I QW with a deep quantum confinement in the conduction and valence bands. From the comparison of PR data with calculations of optical transitions in GaAs{sub 1?x}Bi{sub x}/GaAs QW performed for various band gap alignments, the best agreement between experimental data and theoretical calculations has been found for the valence band offset of 52??5%. A very similar valence band offset was obtained from ab initio calculations. These calculations show that the incorporation of Bi atoms into GaAs host modifies both the conduction and the valence band. For GaAs{sub 1?x}Bi{sub x} with 0?band shifts lineary at a rate of ?33?meV per % Bi, which only slightly decreases with Bi concentration. Whereas the valance band shift is clearly non-linear. Reducing initially at a rate of ?51?meV per % Bi for low concentrations of Bi and then at a significantly reduced rate of ?20?meV per % Bi near the end of the studied composition range. The overall reduction rate of the band gap is parabolic and the reduction rates change from ?84 to ?53?meV per % Bi for lower and higher Bi concentrations, respectively. The calculated shifts of valence and conduction bands give the variation of valence (conduction) band offset between GaAs{sub 1?x}Bi{sub x} and GaAs in the range of ?60%40% (?40%60%), which is in good

  20. Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application

    SciTech Connect (OSTI)

    Zhu, Y.; Jain, N.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, A. K.

    2013-01-14

    The experimental study of the valence band offset ({Delta}E{sub v}) of a mixed As/Sb type-II staggered gap GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterostructure used as source/channel junction of n-channel tunnel field effect transistor (TFET) grown by molecular beam epitaxy was investigated by x-ray photoelectron spectroscopy (XPS). Cross-sectional transmission electron micrograph shows high crystalline quality at the source/channel heterointerface. XPS results demonstrate a {Delta}E{sub v} of 0.39 {+-} 0.05 eV at the GaAs{sub 0.35}Sb{sub 0.65}/In{sub 0.7}Ga{sub 0.3}As heterointerface. The conduction band offset was calculated to be {approx}0.49 eV using the band gap values of source and channel materials and the measured valence band offset. An effective tunneling barrier height of 0.21 eV was extracted, suggesting a great promise for designing a metamorphic mixed As/Sb type-II staggered gap TFET device structure for low-power logic applications.

  1. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  2. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect (OSTI)

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  3. Synthesis of cadmium telluride quantum wires and the similarity of their band gaps to those of equidiameter cadmium telluride quantum dots

    SciTech Connect (OSTI)

    Wang, Lin-Wang; Sun, Jianwei; Wang, Lin-Wang; Buhro, William E.

    2008-07-11

    High-quality colloidal CdTe quantum wires having purposefully controlled diameters in the range of 5-11 nm are grown by the solution-liquid-solid (SLS) method, using Bi-nanoparticle catalysts, cadmium octadecylphosphonate and trioctylphosphine telluride as precursors, and a TOPO solvent. The wires adopt the wurtzite structure, and grow along the [002] direction (parallel to the c axis). The size dependence of the band gaps in the wires are determined from the absorption spectra, and compared to the experimental results for high-quality CdTe quantum dots. In contrast to the predictions of an effective-mass approximation, particle-in-a-box model, and previous experimental results from CdSe and InP dot-wire comparisons, the band gaps of CdTe dots and wires of like diameter are found to be experimentally indistinguishable. The present results are analyzed using density functional theory under the local-density approximation by implementing a charge-patching method. The higher-level theoretical analysis finds the general existence of a threshold diameter, above which dot and wire band gaps converge. The origin and magnitude of this threshold diameter is discussed.

  4. Structural properties and band offset determination of p-channel mixed As/Sb type-II staggered gap tunnel field-effect transistor structure

    SciTech Connect (OSTI)

    Zhu, Y.; Jain, N.; Hudait, M. K.; Mohata, D. K.; Datta, S.; Lubyshev, D.; Fastenau, J. M.; Liu, A. K.

    2012-09-10

    The structural properties and band offset determination of p-channel staggered gap In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} heterostructure tunnel field-effect transistor (TFET) grown by molecular beam epitaxy (MBE) were investigated. High resolution x-ray diffraction revealed that the active layers are strained with respect to 'virtual substrate.' Dynamic secondary ion mass spectrometry confirmed an abrupt junction profile at the In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} heterointerface and minimal level of intermixing between As and Sb atoms. The valence band offset of 0.37 {+-} 0.05 eV was extracted from x-ray photoelectron spectroscopy. A staggered band lineup was confirmed at the heterointerface with an effective tunneling barrier height of 0.13 eV. Thus, MBE-grown staggered gap In{sub 0.7}Ga{sub 0.3}As/GaAs{sub 0.35}Sb{sub 0.65} TFET structures are a promising p-channel option to provide critical guidance for the future design of mixed As/Sb type-II based complementary logic and low power devices.

  5. Effect of thermal annealing on structure and optical band gap of Se{sub 66}Te{sub 25}In{sub 9} thin films

    SciTech Connect (OSTI)

    Dwivedi, D. K.; Pathak, H. P.; Shukla, Nitesh; Kumar, Vipin

    2015-05-15

    Thin films of a-Se{sub 66}Te{sub 25}In{sub 9} have been deposited onto a chemically cleaned glass substrate by thermal evaporation technique under vacuum. Glassy nature of the films has been ascertained by X-ray diffraction pattern. The analysis of absorption spectra, measured at normal incidence, in the spectral range 400-1100 nm has been used for the optical characterization of thin films under investigation. The effect of thermal annealing on structure and optical band gap (E{sub g}) of a-Se{sub 66}Te{sub 25}In{sub 9} have been studied.

  6. One-photon band gap engineering of borate glass doped with ZnO for photonics applications

    SciTech Connect (OSTI)

    Abdel-Baki, Manal; Abdel-Wahab, Fathy A.; El-Diasty, Fouad

    2012-04-01

    Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{sub 2}O{sub 3} by ZnO.

  7. Complete photonic band gaps and tunable self-collimation in the two-dimensional plasma photonic crystals with a new structure

    SciTech Connect (OSTI)

    Zhang, Hai-Feng; Ding, Guo-Wen; Li, Hai-Ming; Liu, Shao-Bin

    2015-02-15

    In this paper, the properties of complete photonic band gaps (CPBGs) and tunable self-collimation in two-dimensional plasma photonic crystals (2D PPCs) with a new structure in square lattices, whose dielectric fillers (GaAs) are inserted into homogeneous and nomagnetized plasma background are theoretically investigated by a modified plane wave expansion (PWE) method with a novel technique. The novel PWE method can be utilized to compute the dispersion curves of 2D PPCs with arbitrary-shaped cross section in any lattices. As a comparison, CPBGs of PPCs for four different configurations are numerically calculated. The computed results show that the proposed design has the advantages of achieving the larger CPBGs compared to the other three configurations. The influences of geometric parameters of filled unit cell and plasma frequency on the properties of CPBGs are studied in detail. The calculated results demonstrate that CPBGs of the proposed 2D PPCs can be easily engineered by changing those parameters, and the larger CPBGs also can be obtained by optimization. The self-collimation in such 2D PPCs also is discussed in theory under TM wave. The theoretical simulations reveal that the self-collimation phenomena can be found in the TM bands, and both the frequency range of self-collimation and the equifrequency surface contours can be tuned by the parameters as mentioned above. It means that the frequency range and direction of electromagnetic wave can be manipulated by designing, as it propagates in the proposed PPCs without diffraction. Those results can hold promise for designing the tunable applications based on the proposed PPCs.

  8. Band-Gap Reduction and Dopant Interaction in Epitaxial La,Cr Co-doped SrTiO3 Thin Films

    SciTech Connect (OSTI)

    Comes, Ryan B.; Sushko, Petr; Heald, Steve M.; Colby, Robert J.; Bowden, Mark E.; Chambers, Scott A.

    2014-12-03

    We show that by co-doping SrTiO3 (STO) epitaxial thin films with equal amounts of La and Cr it is possible to produce films with an optical band gap ~0.9 eV lower than that of undoped STO. Sr1-xLaxTi1-xCrxO3 thin films were deposited by molecular beam epitaxy and characterized using x-ray photoelectron spectroscopy and x-ray absorption near-edge spectroscopy to show that the Cr dopants are almost exclusively in the Cr3+ oxidation state. Extended x-ray absorption fine structure measurements and theoretical modeling suggest that it is thermodynamically preferred for La and Cr dopants to occupy nearest neighbor A- and B-sites in the lattice. Transport measurements show that the material exhibits variable-range hopping conductivity with high resistivity. These results create new opportunities for the use of doped STO films in photovoltaic and photocatalytic applications.

  9. Control of morphology and function of low band gap polymer bis-fullerene mixed heterojunctions in organic photovoltaics with selective solvent vapor annealing.

    SciTech Connect (OSTI)

    Chen, Huipeng; Hsiao, Yu-Che; Dadmun, Mark D

    2014-01-01

    Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.

  10. Control of morphology and function of low band gap polymer-bis-fullerene mixed heterojunctions in organic photovoltaics with selection solvent vapor annealing

    SciTech Connect (OSTI)

    Chen, Huipeng; Hsiao, Yu-Che; Hu, Bin; Dadmun, Mark D

    2014-01-01

    Replacing PCBM with a bis-adduct fullerene (i.e. ICBA) has been reported to significantly improve the open circuit voltage (VOC) and power conversion efficiency (PCE) in P3HT bulk heterojunctions. However, for the most promising low band-gap polymer (LBP) systems, replacing PCBM with ICBA results in very poor shortcircuit current (JSC) and PCE although the VOC is significantly improved. Therefore, in this work, we have completed small angle neutron scattering and neutron reflectometry experiments to study the impact of post-deposition solvent annealing (SA) with control of solvent quality on the morphology and performance of LBP bis-fullerene BHJ photovoltaics. The results show that SA in a solvent that is selective for the LBP results in a depletion of bis-fullerene near the air surface, which limits device performance. SA in a solvent vapor which has similar solubility for polymer and bis-fullerene results in a higher degree of polymer ordering, bis-fullerene phase separation, and segregation of the bis-fullerene to the air surface, which facilitates charge transport and increases power conversion efficiency (PCE) by 100%. The highest degree of polymer ordering combined with significant bis-fullerene phase separation and segregation of bis-fullerene to the air surface is obtained by SA in a solvent vapor that is selective for the bis-fullerene. The resultant morphology increases PCE by 190%. These results indicate that solvent annealing with judicious solvent choice provides a unique tool to tune the morphology of LBP bisfullerene BHJ system, providing sufficient polymer ordering, formation of a bis-fullerene pure phase, and segregation of bis-fullerene to the air surface to optimize the morphology of the active layer. Moreover, this process is broadly applicable to improving current disappointing LBP bis-fullerene systems to optimize their morphology and OPV performance post-deposition, including higher VOC and power conversion efficiency.

  11. Band gap tuning and orbital mediated electron–phonon coupling in HoFe{sub 1−x}Cr{sub x}O{sub 3} (0 ≤ x ≤ 1)

    SciTech Connect (OSTI)

    Kotnana, Ganesh; Jammalamadaka, S. Narayana

    2015-09-28

    We report on the evidenced orbital mediated electron–phonon coupling and band gap tuning in HoFe{sub 1−x}Cr{sub x}O{sub 3} (0 ≤ x ≤ 1) compounds. From the room temperature Raman scattering, it is apparent that the electron-phonon coupling is sensitive to the presence of both the Fe and Cr at the B-site. Essentially, an A{sub g} like local oxygen breathing mode is activated due to the charge transfer between Fe{sup 3+} and Cr{sup 3+} at around 670 cm{sup −1}, this observation is explained on the basis of Franck-Condon mechanism. Optical absorption studies infer that there exists a direct band gap in the HoFe{sub 1−x}Cr{sub x}O{sub 3} (0 ≤ x ≤ 1) compounds. Decrease in band gap until x = 0.5 is ascribed to the broadening of the oxygen p-orbitals as a result of the induced spin disorder due to Fe{sup 3+} and Cr{sup 3+} at B-site. In contrast, the increase in band gap above x = 0.5 is explained on the basis of the reduction in the available unoccupied d-orbitals of Fe{sup 3+} at the conduction band. We believe that above results would be helpful for the development of the optoelectronic devices based on the ortho-ferrites.

  12. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    SciTech Connect (OSTI)

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  13. Efficient H{sub 2} production over Au/graphene/TiO{sub 2} induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2}

    SciTech Connect (OSTI)

    Liu, Yang; Yu, Hongtao; Wang, Hua; Chen, Shuo; Quan, Xie

    2014-11-15

    Highlights: Both surface plasmon resonance and band-gap excitation were used for H{sub 2} production. Au/Gr/TiO{sub 2} composite photocatalyst was synthesized. Au/Gr/TiO{sub 2} exhibited enhancement of light absorption and charge separation. H{sub 2} production rate of Au/Gr/TiO{sub 2} was about 2 times as high as that of Au/TiO{sub 2}. - Abstract: H{sub 2} production over Au/Gr/TiO{sub 2} composite photocatalyst induced by surface plasmon resonance of Au and band-gap excitation of TiO{sub 2} using graphene (Gr) as an electron acceptor has been investigated. Electron paramagnetic resonance study indicated that, in this composite, Gr collected electrons not only from Au with surface plasmon resonance but also from TiO{sub 2} with band-gap excitation. Surface photovoltage and UVvis absorption measurements revealed that compared with Au/TiO{sub 2}, Au/Gr/TiO{sub 2} displayed more effective photogenerated charge separation and higher optical absorption. Benefiting from these advantages, the H{sub 2} production rate of Au/Gr/TiO{sub 2} composite with Gr content of 1.0 wt% and Au content of 2.0 wt% was about 2 times as high as that of Au/TiO{sub 2}. This work represents an important step toward the efficient application of both surface plasmon resonance and band-gap excitation on the way to converting solar light into chemical energy.

  14. Coloration and oxygen vacancies in wide band gap oxide semiconductors: Absorption at metallic nanoparticles induced by vacancy clustering—A case study on indium oxide

    SciTech Connect (OSTI)

    Albrecht, M. Schewski, R.; Irmscher, K.; Galazka, Z.; Markurt, T.; Naumann, M.; Schulz, T.; Uecker, R.; Fornari, R.; Meuret, S.; Kociak, M.

    2014-02-07

    In this paper, we show by optical and electron microscopy based investigations that vacancies in oxides may cluster and form metallic nanoparticles that induce coloration by extinction of visible light. Optical extinction in this case is caused by generation of localized surface plasmon resonances at metallic particles embedded in the dielectric matrix. Based on Mie's approach, we are able to fit the absorption due to indium nanoparticles in In{sub 2}O{sub 3} to our absorption measurements. The experimentally found particle distribution is in excellent agreement with the one obtained from fitting by Mie theory. Indium particles are formed by precipitation of oxygen vacancies. From basic thermodynamic consideration and assuming theoretically calculated activation energies for vacancy formation and migration, we find that the majority of oxygen vacancies form just below the melting point. Since they are ionized at this temperature they are Coulomb repulsive. Upon cooling, a high supersaturation of oxygen vacancies forms in the crystal that precipitates once the Fermi level crosses the transition energy level from the charged to the neutral charge state. From our considerations we find that the ionization energy of the oxygen vacancy must be higher than 200 meV.

  15. Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} ferroelectrics

    SciTech Connect (OSTI)

    Zhou, Wenliang; Yang, Pingxiong Chu, Junhao; Deng, Hongmei

    2014-09-15

    Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ? 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it is noted that KBNNO with compositions x?=?0.10.3 have quite narrow E{sub g} of below 1.5?eV, much smaller than the 3.2?eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagneticantiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.

  16. Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

    SciTech Connect (OSTI)

    Schleife, A; Bechstedt, F

    2012-02-15

    Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparent conducting oxides in good agreement with experiment.

  17. Quantum-Size Effects on the Pressure-Induced Direct-to-Indirect Band-Gap Transition in InP Quantum Dots

    SciTech Connect (OSTI)

    Fu, H.; Zunger, A.

    1998-06-01

    We predict that the difference in quantum confinement energies of {Gamma} -like and X -like conduction states in a covalent quantum dot will cause the direct-to-indirect transition to occur at substantially lower pressure than in the bulk material. Furthermore, the first-order transition in the bulk is predicted to become, for certain dot sizes, a second-order transition. Measurements of the {open_quotes}anticrossing gap{close_quotes} could thus be used to obtain unique information on the {Gamma}-X- L intervalley coupling, predicted here to be surprisingly large (50{endash}100thinspthinspmeV). {copyright} {ital 1998} {ital The American Physical Society}

  18. Systematic approach for simultaneously correcting the band-gap andp-dseparation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-31

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles methodmore » can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.« less

  19. Switching of the photonic band gap in three-dimensional film photonic crystals based on opal-VO{sub 2} composites in the 1.3-1.6 {mu}m spectral range

    SciTech Connect (OSTI)

    Pevtsov, A. B. Grudinkin, S. A.; Poddubny, A. N.; Kaplan, S. F.; Kurdyukov, D. A.; Golubev, V. G.

    2010-12-15

    The parameters of three-dimensional photonic crystals based on opal-VO{sub 2} composite films in the 1.3-1.6 {mu}m spectral range important for practical applications (Telecom standard) are numerically calculated. For opal pores, the range of filling factors is established (0.25-0.6) wherein the composite exhibits the properties of a three-dimensional insulator photonic crystal. On the basis of the opal-VO{sub 2} composites, three-dimensional photonic film crystals are synthesized with specified parameters that provide a maximum shift of the photonic band gap in the vicinity of the wavelength {approx}1.5 {mu}m ({approx}170 meV) at the semiconductor-metal transition in VO{sub 2}.

  20. Variation in band gap of lanthanum chromate by transition metals doping LaCr{sub 0.9}A{sub 0.1}O{sub 3} (A:Fe/Co/Ni)

    SciTech Connect (OSTI)

    Naseem, Swaleha Khan, Wasi Saad, A. A. Shoeb, M. Ahmed, Hilal Naqvi, A. H.; Husain, Shahid

    2014-04-24

    Transition metal (Fe, Co, Ni) doped lanthanum chromate (LaCrO{sub 3}) nanoparticles (NPs) were prepared by gel combustion method and calcinated at 800°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible and photoluminescence techniques. The energy band gap was calculated and the variation was observed with the doping of transition metal ions. Photoluminescence spectra show the emission peak maxima for the pure LaCrO{sub 3} at about 315 nm. Influence of Fe, Co, Ni doping was studied and compared with pure lanthanum chromate nanoparticles.

  1. Development of Low Energy Gap and Fully Regioregular Polythienylenevin...

    Office of Scientific and Technical Information (OSTI)

    Gap and Fully Regioregular Polythienylenevinylene Derivative Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. ...

  2. Gap Resolution

    Energy Science and Technology Software Center (OSTI)

    2009-06-16

    With the continued improvements of next generation DNA sequencing technologies and their advantages over traditional Sanger sequencing, the Joint Genome Institute (JGI) has modified its sequencing pipeline to take advantage of the benefits of such technologies. Currently, standard 454 Titanium, paired end 454 Titanium, and Illumina GAll data are generated for all microbial projects and then assembled using draft assemblies at a much greater throughput than before. However, it also presents us with new challenges.more » In addition to the increased throughput, we also have to deal with a larger number of gaps in the Newbler genome assemblies. Gaps in these assemblies are usually caused by repeats (Newbler collapses repeat copies into individual contigs, thus creating gaps), strong secondary structures, and artifacts of the PCR process (specific to 454 paired end libraries). Some gaps in draft assemblies can be resolved merely by adding back the collapsed data from repeats. To expedite gap closure and assembly improvement on large numbers of these assemblies, we developed software to address this issue.« less

  3. Band anticrossing in dilute nitrides

    SciTech Connect (OSTI)

    Shan, W.; Yu, K.M.; Walukiewicz, W.; Wu, J.; Ager III, J.W.; Haller, E.E.

    2003-12-23

    Alloying III-V compounds with small amounts of nitrogen leads to dramatic reduction of the fundamental band-gap energy in the resulting dilute nitride alloys. The effect originates from an anti-crossing interaction between the extended conduction-band states and localized N states. The interaction splits the conduction band into two nonparabolic subbands. The downward shift of the lower conduction subband edge is responsible for the N-induced reduction of the fundamental band-gap energy. The changes in the conduction band structure result in significant increase in electron effective mass and decrease in the electron mobility, and lead to a large enhance of the maximum doping level in GaInNAs doped with group VI donors. In addition, a striking asymmetry in the electrical activation of group IV and group VI donors can be attributed to mutual passivation process through formation of the nearest neighbor group-IV donor nitrogen pairs.

  4. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1996-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  5. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  6. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  7. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, Alan W.; Gonzales, Aaron A.; Patel, Mahadeo R.; Olich, Eugene E.

    1994-01-01

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups.

  8. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    2012-01-25

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  9. Systematic approach for simultaneously correcting the band-gap andp-dseparation errors of common cation III-V or II-VI binaries in density functional theory calculations within a local density approximation

    SciTech Connect (OSTI)

    Wang, Jianwei; Zhang, Yong; Wang, Lin-Wang

    2015-07-31

    We propose a systematic approach that can empirically correct three major errors typically found in a density functional theory (DFT) calculation within the local density approximation (LDA) simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X = N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X = O,S,Se,Te. By correcting (1) the binary band gaps at high-symmetry points , L, X, (2) the separation of p-and d-orbital-derived valence bands, and (3) conduction band effective masses to experimental values and doing so simultaneously for common cation binaries, the resulting DFT-LDA-based quasi-first-principles method can be used to predict the electronic structure of complex materials involving multiple binaries with comparable accuracy but much less computational cost than a GW level theory. This approach provides an efficient way to evaluate the electronic structures and other material properties of complex systems, much needed for material discovery and design.

  10. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between ?? stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  11. Electrical, optical, and electronic properties of Al:ZnO films in a wide doping range

    SciTech Connect (OSTI)

    Valenti, Ilaria; Valeri, Sergio; Perucchi, Andrea; Di Pietro, Paola; Lupi, Stefano; Torelli, Piero

    2015-10-28

    The combination of photoemission spectroscopies, infrared and UV-VIS absorption, and electric measurements has allowed to clarify the mechanisms governing the conductivity and the electronic properties of Al-doped ZnO (AZO) films in a wide doping range. The contribution of defect-related in-gap states to conduction has been excluded in optimally doped films (around 4 at. %). The appearance of gap states at high doping, the disappearance of occupied DOS at Fermi level, and the bands evolution complete the picture of electronic structure in AZO when doped above 4 at. %. In this situation, compensating defects deplete the conduction band and increase the electronic bandgap of the material. Electrical measurements and figure of merit determination confirm the high quality of the films obtained by magnetron sputtering, and thus allow to extend their properties to AZO films in general.

  12. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Technology), D.-H. Lee (University of California, Berkeley), F. Guinea (Instituto de Ciencia de Materiales de Madrid, Spain), and A.H. Castro Neto (Boston University). Research...

  13. Electron Elevator: Excitations across the Band Gap via a Dynamical...

    Office of Scientific and Technical Information (OSTI)

    Record 10.1103PhysRevLett.116.043201 http:dx.doi.org10.1103PhysRevLett.116.043201 Have feedback or suggestions for a way to improve these results? Save Share this Record ...

  14. Direct band gap electroluminescence from bulk germanium at room...

    Office of Scientific and Technical Information (OSTI)

    Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan) Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1...

  15. Systematic study of photoluminescence upon band gap excitation...

    Office of Scientific and Technical Information (OSTI)

    R sub 12Nasub 12TiOsub 3:Pr (RLa, Gd, Lu, and Y) Citation Details In-Document ... R sub 12Nasub 12TiOsub 3:Pr (RLa, Gd, Lu, and Y) Prsup 3+-doped perovskites R ...

  16. Systematic approach for simultaneously correcting the band-gap...

    Office of Scientific and Technical Information (OSTI)

    simultaneously for a set of common cation binary semiconductors, such as III-V compounds, (Ga or In)X with X N,P,As,Sb, and II-VI compounds, (Zn or Cd)X, with X O,S,Se,Te. ...

  17. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    controllable by chemically doping or by an electric field, high thermal conductivity, and high quality and strength-quickly stamped it as a possible material for future generations...

  18. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wednesday, 26 March 2008 00:00 Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome...

  19. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic devices, have to overcome...

  20. Linear Scaling of the Exciton Binding Energy versus the Band...

    Office of Scientific and Technical Information (OSTI)

    Linear Scaling of the Exciton Binding Energy versus the Band Gap of Two-Dimensional Materials This content will become publicly available on August 6, 2016 Prev Next Title:...

  1. Bridging Gaps | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Bridging Gaps Bridging Gaps Analysis to identify issues, best practices, and recommendations Implementation of modernization, infrastructure planning, and sustainability efforts ...

  2. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    SciTech Connect (OSTI)

    Dabhi, Shweta Mankad, Venu Jha, Prafulla K.

    2014-04-24

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  3. Band Structure of Strain-Balanced GaAsBi/GaAsN Super-lattices on GaAs

    SciTech Connect (OSTI)

    Hwang, J.; Phillips, J. D.

    2011-05-31

    GaAs alloys with dilute content of Bi and N provide a large reduction in band-gap energy with increasing alloy composition. GaAsBi/GaAsN heterojunctions have a type-II band alignment, where superlattices based on these materials offer a wide range for designing effective band-gap energy by varying superlattice period and alloy composition. The miniband structure and effective band gap for strain-balanced GaAsBi/GaAsN superlattices with effective lattice match to GaAs are calculated for alloy compositions up to 5% Bi and N using the kp method. The effective band gap for these superlattices is found to vary between 0.89 and 1.32 eV for period thickness ranging from 10 to 100 . The joint density of states and optical absorption of a 40/40 GaAs0.96Bi0.04/GaAs0.98N0.02 superlattice are reported demonstrating a ground-state transition at 1.005 eV and first excited transition at 1.074 eV. The joint density of states is similar in magnitude to GaAs, while the optical absorption is approximately one order of magnitude lower due to the spatially indirect optical transition in the type-II structure. The GaAsBi/GaAsN system may provide a new material system with lattice match to GaAs in a spectral range of high importance for optoelectronic devices including solar cells, photodetectors, and light emitters.

  4. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A.; Flood, William S.; Arthur, Allan A.; Voelker, Ferdinand

    1986-01-01

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  5. Study of transmission line attenuation in broad band millimeter wave frequency range

    SciTech Connect (OSTI)

    Pandya, Hitesh Kumar B.; Austin, M. E.; Ellis, R. F.

    2013-10-15

    Broad band millimeter wave transmission lines are used in fusion plasma diagnostics such as electron cyclotron emission (ECE), electron cyclotron absorption, reflectometry and interferometry systems. In particular, the ECE diagnostic for ITER will require efficient transmission over an ultra wide band, 100 to 1000 GHz. A circular corrugated waveguide transmission line is a prospective candidate to transmit such wide band with low attenuation. To evaluate this system, experiments of transmission line attenuation were performed and compared with theoretical loss calculations. A millimeter wave Michelson interferometer and a liquid nitrogen black body source are used to perform all the experiments. Atmospheric water vapor lines and continuum absorption within this band are reported. Ohmic attenuation in corrugated waveguide is very low; however, there is Bragg scattering and higher order mode conversion that can cause significant attenuation in this transmission line. The attenuation due to miter bends, gaps, joints, and curvature are estimated. The measured attenuation of 15 m length with seven miter bends and eighteen joints is 1 dB at low frequency (300 GHz) and 10 dB at high frequency (900 GHz), respectively.

  6. SPARK GAP SWITCH

    DOE Patents [OSTI]

    Neal, R.B.

    1957-12-17

    An improved triggered spark gap switch is described, capable of precisely controllable firing time while switching very large amounts of power. The invention in general comprises three electrodes adjustably spaced and adapted to have a large potential impressed between the outer electrodes. The central electrode includes two separate elements electrically connected togetaer and spaced apart to define a pair of spark gaps between the end electrodes. Means are provided to cause the gas flow in the switch to pass towards the central electrode, through a passage in each separate element, and out an exit disposed between the two separate central electrode elements in order to withdraw ions from the spark gap.

  7. Fiber optic gap gauge

    DOE Patents [OSTI]

    Wood, Billy E.; Groves, Scott E.; Larsen, Greg J.; Sanchez, Roberto J.

    2006-11-14

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  8. Momentum dependence of the superconducting gap and in-gap states in MgB2 multiband superconductor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Mou, Daixiang; Jiang, Rui; Taufour, Valentin; Bud'ko, S. L.; Canfield, P. C.; Kaminski, Adam

    2015-06-29

    We use tunable laser-based angle-resolved photoemission spectroscopy to study the electronic structure of the multiband superconductor MgB2. These results form the baseline for detailed studies of superconductivity in multiband systems. We find that the magnitude of the superconducting gap on both σ bands follows a BCS-like variation with temperature with Δ0 ~ 7meV. Furthermore, the value of the gap is isotropic within experimental uncertainty and in agreement with a pure s-wave pairing symmetry. We observe in-gap states confined to kF of the σ band that occur at some locations of the sample surface. As a result, the energy of thismore » excitation, ~ 3 meV, was found to be somewhat larger than the previously reported gap on π Fermi sheet and therefore we cannot exclude the possibility of interband scattering as its origin.« less

  9. MULTIPLE SPARK GAP SWITCH

    DOE Patents [OSTI]

    Schofield, A.E.

    1958-07-22

    A multiple spark gap switch of unique construction is described which will permit controlled, simultaneous discharge of several capacitors into a load. The switch construction includes a disc electrode with a plurality of protuberances of generally convex shape on one surface. A firing electrode is insulatingly supponted In each of the electrode protuberances and extends substantially to the apex thereof. Individual electrodes are disposed on an insulating plate parallel with the disc electrode to form a number of spark gaps with the protuberances. These electrodes are each connected to a separate charged capacitor and when a voltage ls applied simultaneously between the trigger electrodes and the dlsc electrode, each spark gap fires to connect its capacitor to the disc electrode and a subsequent load.

  10. Precision gap particle separator

    DOE Patents [OSTI]

    Benett, William J.; Miles, Robin; Jones, II., Leslie M.; Stockton, Cheryl

    2004-06-08

    A system for separating particles entrained in a fluid includes a base with a first channel and a second channel. A precision gap connects the first channel and the second channel. The precision gap is of a size that allows small particles to pass from the first channel into the second channel and prevents large particles from the first channel into the second channel. A cover is positioned over the base unit, the first channel, the precision gap, and the second channel. An port directs the fluid containing the entrained particles into the first channel. An output port directs the large particles out of the first channel. A port connected to the second channel directs the small particles out of the second channel.

  11. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between π–π stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  12. Wide bandgap OPV polymers based on pyridinonedithiophene unit with efficiency >5%

    SciTech Connect (OSTI)

    Schneider, Alexander M.; Lu, Luyao; Manley, Eric F.; Zheng, Tianyue; Sharapov, Valerii; Xu, Tao; Marks, Tobin J.; Chen, Lin X.; Yu, Luping

    2015-06-04

    We report the properties of a new series of wide band gap photovoltaic polymers based on the N-alkyl 2-pyridone dithiophene (PDT) unit. These polymers are effective bulk heterojunction solar cell materials when blended with phenyl-C71-butyric acid methyl ester (PC71BM). They achieve power conversion efficiencies (up to 5.33%) high for polymers having such large bandgaps, ca. 2.0 eV (optical) and 2.5 eV (electrochemical). As a result, grazing incidence wide-angle X-ray scattering (GIWAXS) reveals strong correlations between ?? stacking distance and regularity, polymer backbone planarity, optical absorption maximum energy, and photovoltaic efficiency.

  13. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L.

    1981-01-01

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  14. Dynamically Generated Mott Gap from Holography

    SciTech Connect (OSTI)

    Edalati, Mohammad; Leigh, Robert G.; Phillips, Philip W.

    2011-03-04

    In the fermionic sector of top-down approaches to holographic systems, one generically finds that the fermions are coupled to gravity and gauge fields in a variety of ways, beyond minimal coupling. In this Letter, we take one such interaction--a Pauli, or dipole, interaction--and study its effects on fermion correlators. We find that this interaction modifies the fermion spectral density in a remarkable way. As we change the strength of the interaction, we find that spectral weight is transferred between bands, and beyond a critical value, a gap emerges in the fermion density of states. A possible interpretation of this bulk interaction then is that it drives the dynamical formation of a (Mott) gap, in the absence of continuous symmetry breaking.

  15. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  16. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen Edward; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2008-07-29

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  17. InfiniBand Interconnects

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MPICH2 MVAPICH2 Equipment InfiniBand 4x 10 GigE Fujitsu switch NetEffect NIC Equipment & Benchmarks Latency Results Bandwidth Results Bidirectional Bandwidth...

  18. A Wide Temperature, Radiation Tolerant, CMOS-compatible Precision Voltage Reference for Extreme Environment Instrumentation Systems

    SciTech Connect (OSTI)

    McCue, Mr. Benjamin; Blalock, Benjamin; Potts, J.; Kemerling, Mr. James; Isihara, Mr. Kyoshi; Leines, Capt. Matt; Britton Jr, Charles L

    2013-01-01

    Many design techniques have been incorporated into modern CMOS design practices to improve radiation tolerance of integrated circuits. Annular-gate NMOS structures have been proven to be significantly more radiation tolerant than the standard straight-gate variety. Many circuits can be designed using the annular-gate NMOS and the inherently radiation tolerant PMOS. Band-gap reference circuits, however, typically require p-n junction diodes. These p-n junction diodes are the dominating factor in radiation degradation in band-gap reference circuits. This paper proposes a different approach to band-gap reference design to alleviate the radiation susceptibility presented by the p-n junction diodes.

  19. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOE Patents [OSTI]

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  20. GAP | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    GAP Environmental Assessment for Gap Material Plutonium - Transport, Receipt, and Processing The U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA), has prepared this Environmental Assessment for Gap Material Plutonium - Transport, Receipt, and Processing to evaluate the potential environmental impacts associated with transporting plutonium from foreign

  1. To Bridge LEDs' Green Gap, Scientists Think Small

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    To Bridge LEDs' Green Gap, Scientists Think Small To Bridge LEDs' Green Gap, Scientists Think Small Nanostructures Half a DNA Strand-Wide Show Promise for Efficient LEDs April 4, 2014 Contact: Margie Wylie, mwylie@lbl.gov, +1 510 486 7421 Nanostructures half the breadth of a DNA strand could improve the efficiency of light emitting diodes (LEDs), especially in the "green gap," a portion of the spectrum where LED efficiency plunges, simulations at the U.S. Department of Energy's

  2. Wide-range voltage modulation

    SciTech Connect (OSTI)

    Rust, K.R.; Wilson, J.M.

    1992-06-01

    The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

  3. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1986-08-19

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility is disclosed. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length. 4 figs.

  4. Axial gap rotating electrical machine

    DOE Patents [OSTI]

    None

    2016-02-23

    Direct drive rotating electrical machines with axial air gaps are disclosed. In these machines, a rotor ring and stator ring define an axial air gap between them. Sets of gap-maintaining rolling supports bear between the rotor ring and the stator ring at their peripheries to maintain the axial air gap. Also disclosed are wind turbines using these generators, and structures and methods for mounting direct drive rotating electrical generators to the hubs of wind turbines. In particular, the rotor ring of the generator may be carried directly by the hub of a wind turbine to rotate relative to a shaft without being mounted directly to the shaft.

  5. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Y.

    1984-02-16

    A combined gap and stripline monitor device for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchrotron radiation facility. The monitor has first and second beam pipe portions with an axial gap therebetween. An outer pipe cooperates with the first beam pipe portion to form a gap enclosure, while inner strips cooperate with the first beam pipe portion to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  6. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Yan

    1986-01-01

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  7. FAQS Gap Analysis Qualification Card - Occupational Safety |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Occupational Safety FAQS Gap Analysis Qualification Card - Occupational Safety Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  8. FAQS Gap Analysis Qualification Card - Chemical Processing |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Chemical Processing FAQS Gap Analysis Qualification Card - Chemical Processing Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences ...

  9. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, D.A.; Flood, W.S.; Arthur, A.A.; Voelker, F.

    1984-03-20

    A broad-band beam bunther is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-

  10. Triaxial strongly deformed bands in {sup 164}Hf and the effect of elevated yrast line

    SciTech Connect (OSTI)

    Ma Wenchao

    2012-10-20

    Two exotic rotational bands have been identified in {sup 164}Hf and linked to known states. They are interpreted as being associated with the calculated triaxial strongly deformed (TSD) potential energy minimum. The bands are substantially stronger and are located at much lower spins than the previously discovered TSD bands in {sup 168}Hf. In addition to the proton and neutron shell gaps at large trixiality, it was proposed that the relative excitation energy of TSD bands above the yrast line plays an important role in the population of TSD bands.

  11. the World Wide Web

    Office of Scientific and Technical Information (OSTI)

    technical report has been made electronically available on the World Wide Web through a contribution from Walter L. Warnick In honor of Enrico Fermi Leader of the first nuclear ...

  12. Pneumatic gap sensor and method

    DOE Patents [OSTI]

    Bagdal, Karl T.; King, Edward L.; Follstaedt, Donald W.

    1992-01-01

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment.

  13. Pneumatic gap sensor and method

    DOE Patents [OSTI]

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    An apparatus and method for monitoring and maintaining a predetermined width in the gap between a casting nozzle and a casting wheel, wherein the gap is monitored by means of at least one pneumatic gap sensor. The pneumatic gap sensor is mounted on the casting nozzle in proximity to the casting surface and is connected by means of a tube to a regulator and a transducer. The regulator provides a flow of gas through a restictor to the pneumatic gap sensor, and the transducer translates the changes in the gas pressure caused by the proximity of the casting wheel to the pneumatic gap sensor outlet into a signal intelligible to a control device. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. The apparatus and method enables accurate monitoring of the actual casting gap in a simple and reliable manner resistant to the extreme temperatures and otherwise hostile casting environment. 6 figs.

  14. Eight electrode optical readout gap

    DOE Patents [OSTI]

    Boettcher, Gordon E.; Crain, Robert W.

    1985-01-01

    A protective device for a plurality of electrical circuits includes a pluity of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  15. Eight electrode optical readout gap

    DOE Patents [OSTI]

    Boettcher, G.E.; Crain, R.W.

    1984-01-01

    A protective device for a plurality of electrical circuits includes a plurality of isolated electrodes forming a gap with a common electrode. An output signal, electrically isolated from the circuits being monitored, is obtained by a photosensor viewing the discharge gap through an optical window. Radioactive stabilization of discharge characteristics is provided for slowly changing voltages and carbon tipped dynamic starters provide desirable discharge characteristics for rapidly varying voltages. A hydrogen permeation barrier is provided on external surfaces of the device.

  16. Pneumatic gap sensor and method

    SciTech Connect (OSTI)

    Bagdal, K.T.; King, E.L.; Follstaedt, D.W.

    1992-03-03

    This patent describes in a casting system which including an apparatus for monitoring the gap between a casting nozzle and a casting surface of a substrate during casting of molten material, wherein the molten material is provided through a channel of the casting nozzle for casting onto the casting surface of the substrate for solidification. It comprises: a pneumatic gap mounted at least partially within a cavity in the casting nozzle adjacent the channel and having a sensor face located within the gap between the nozzle and the casting surface of the substrate, means for supply gas under predetermined pressure to the inlet orifice; and means for measuring the pressure of the gas within the sensor chamber during casting procedures, whereby relative changes in the gap can be determined by corresponding changes in the measured pressure. This patent also describes a method for monitoring the gap between a casting nozzle and a casting surface of a substrate for continuous casting of molten material. It comprises: providing a casting nozzle with a channel for directing the flow of molten material, locating the nozzle and the casting surface is proximity with one another and having a predetermined gap there-between, and dressing the sensor face to correspond in conformation to the casting surface and to adjust the predetermined distance as desired; providing a molten material to the nozzle for casting onto and casting surface; supplying gas at a predetermined pressure to the inlet orifice of the sensor during casting procedures.

  17. Broad band waveguide spectrometer

    DOE Patents [OSTI]

    Goldman, Don S.

    1995-01-01

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  18. Hydrothermal Exploration Data Gap Analysis Update

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Hydrothermal Exploration Data Gap Analysis Update GTP Peer Review Lunch Presentation Westminster, CO Kate Young Dan Getman Ariel Esposito May 10, 2012 2 Data Gap Analysis PROJECT ...

  19. Highly Mismatched Alloys for Intermediate Band Solar Cells

    SciTech Connect (OSTI)

    Walukiewicz, W.; Yu, K.M.; Wu, J.; Ager III, J.W.; Shan, W.; Scrapulla, M.A.; Dubon, O.D.; Becla, P.

    2005-03-21

    It has long been recognized that the introduction of a narrow band of states in a semiconductor band gap could be used to achieve improved power conversion efficiency in semiconductor-based solar cells. The intermediate band would serve as a ''stepping stone'' for photons of different energy to excite electrons from the valence to the conduction band. An important advantage of this design is that it requires formation of only a single p-n junction, which is a crucial simplification in comparison to multijunction solar cells. A detailed balance analysis predicts a limiting efficiency of more than 50% for an optimized, single intermediate band solar cell. This is higher than the efficiency of an optimized two junction solar cell. Using ion beam implantation and pulsed laser melting we have synthesized Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys with x<0.03. These highly mismatched alloys have a unique electronic structure with a narrow oxygen-derived intermediate band. The width and the location of the band is described by the Band Anticrossing model and can be varied by controlling the oxygen content. This provides a unique opportunity to optimize the absorption of solar photons for best solar cell performance. We have carried out systematic studies of the effects of the intermediate band on the optical and electrical properties of Zn{sub 1-y}Mn{sub y}O{sub x}Te{sub 1-x} alloys. We observe an extension of the photovoltaic response towards lower photon energies, which is a clear indication of optical transitions from the valence to the intermediate band.

  20. Island Wide Management Corporation

    Office of Legacy Management (LM)

    9 1986 Island Wide Management Corporation 3000 Marcus Avenue Lake Success, New York 11042 Dear Sir or Madam: I am sending you this letter and the enclosed information as you have been identified by L. I. Trinin of Glick Construction Company as the representatives of the owners of the property that was formerly the site of the Sylvania-Corning Nuclear Corporation in Bayside, New York. The Department of Energy is evaluating the radiological condition of sites that were utilized under the Manhattan

  1. Direct Observation of Energy-Gap Scaling Law in CdSe Quantum Dots with Positrons

    SciTech Connect (OSTI)

    Denison, Arthur Blanchard; Weber, M. H.; Lynn, K. G.; Barbiellini, B.; Sterne, P. A.

    2002-07-01

    CdSe quantum dot samples with sizes in the range of 1.8~6 nm in diameter were examined by positron annihilation spectroscopy. The results were compared to data obtained for single-crystal bulk CdSe. Evidence is provided that the positrons annihilate within the nanospheres. The annihilation line shape shows a smearing at the boundary of the Jones zone proportional to the widening of the band gap due to a reduction in the size of the quantum dots. The data confirm that the change in the band gap is inversely proportional to the square of the quantum dot diameter.

  2. ABORT GAP CLEANING IN RHIC.

    SciTech Connect (OSTI)

    DREES,A.; AHRENS,L.; III FLILLER,R.; GASSNER,D.; MCINTYRE,G.T.; MICHNOFF,R.; TRBOJEVIC,D.

    2002-06-03

    During the RHIC Au-run in 2001 the 200 MHz storage cavity system was used for the first time. The rebucketing procedure caused significant beam debunching in addition to amplifying debunching due to other mechanisms. At the end of a four hour store, debunched beam could account for approximately 30%-40% of the total beam intensity. Some of it will be in the abort gap. In order to minimize the risk of magnet quenching due to uncontrolled beam losses at the time of a beam dump, a combination of a fast transverse kicker and copper collimators were used to clean the abort gap. This report gives an overview of the gap cleaning procedure and the achieved performance.

  3. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  4. Gap solitons and Bloch waves of interacting bosons in one-dimensional optical lattices: From the weak- to the strong-interaction limits

    SciTech Connect (OSTI)

    Xu, T.F.; Guo, X.M.; Jing, X.L.; Wu, W.C.; Liu, C.S.

    2011-04-15

    We study the gap solitons and nonlinear Bloch waves of interacting bosons in one-dimensional optical lattices, taking into account the interaction from the weak to the strong limits. It is shown that composition relation between the gap solitons and nonlinear Bloch waves exists for the whole span of the interaction strength. The linear stability analysis indicates that the gap solitons are stable when their energies are near the bottom of the linear Bloch band gap. By increasing the interaction strength, the stable gap solitons can become unstable. It is argued that the stable gap solitons can easily be formed in a weakly interacting system with energies near the bottom of the lower-level linear Bloch band gaps.

  5. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, Christopher L.; Beaman, Joseph J.; Melgaard, David K.; Williamson, Rodney L.

    1999-01-01

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  6. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  7. Valence-band electronic structure evolution of graphene oxide upon thermal annealing for optoelectronics

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Yamaguchi, Hisato; Ogawa, Shuichi; Watanabe, Daiki; Hozumi, Hideaki; Gao, Yongqian; Eda, Goki; Mattevi, Cecilia; Fujita, Takeshi; Yoshigoe, Akitaka; Ishizuka, Shinji; et al

    2016-04-08

    We report valence band electronic structure evolution of graphene oxide (GO) upon its thermal reduction. Degree of oxygen functionalization was controlled by annealing temperatures, and an electronic structure evolution was monitored using real-time ultraviolet photoelectron spectroscopy. We observed a drastic increase in density of states around the Fermi level upon thermal annealing at ~600 °C. The result indicates that while there is an apparent band gap for GO prior to a thermal reduction, the gap closes after an annealing around that temperature. This trend of band gap closure was correlated with electrical, chemical, and structural properties to determine a setmore » of GO material properties that is optimal for optoelectronics. The results revealed that annealing at a temperature of ~500 °C leads to the desired properties, demonstrated by a uniform and an order of magnitude enhanced photocurrent map of an individual GO sheet compared to as-synthesized counterpart.« less

  8. Emplacement Gantry Gap Analysis Study

    SciTech Connect (OSTI)

    R. Thornley

    2005-05-27

    To date, the project has established important to safety (ITS) performance requirements for structures, systems, and components (SSCs) based on the identification and categorization of event sequences that may result in a radiological release. These performance requirements are defined within the ''Nuclear Safety Design Bases for License Application'' (NSDB) (BSC 2005 [DIRS 171512], Table A-11). Further, SSCs credited with performing safety functions are classified as ITS. In turn, assurance that these SSCs will perform as required is sought through the use of consensus codes and standards. This gap analysis is based on the design completed for license application only. Accordingly, identification of ITS SSCs beyond those defined within the NSDB are based on designs that may be subject to further development during detail design. Furthermore, several design alternatives may still be under consideration to satisfy certain safety functions, and final selection will not be determined until further design development has occurred. Therefore, for completeness, alternative designs currently under consideration will be discussed throughout this study. This gap analysis will evaluate each code and standard identified within the ''Emplacement Gantry ITS Standards Identification Study'' (BSC 2005 [DIRS 173586]) to ensure each ITS performance requirement is fully satisfied. When a performance requirement is not fully satisfied, a gap is highlighted. This study will identify requirements to supplement or augment the code or standard to meet performance requirements. Further, this gap analysis will identify nonstandard areas of the design that will be subject to a design development plan. Nonstandard components and nonstandard design configurations are defined as areas of the design that do not follow standard industry practices or codes and standards. Whereby, assurance that an SSC will perform as required may not be readily sought though the use of consensus standards. This

  9. Air Gap Effects in LX-17

    SciTech Connect (OSTI)

    Souers, P C; Ault, S; Avara, R; Bahl, K L; Boat, R; Cunningham, B; Gidding, D; Janzen, J; Kuklo, D; Lee, R; Lauderbach, L; Weingart, W C; Wu, B; Winer, K

    2005-09-26

    Three experiments done over twenty years on gaps in LX-17 are reported. For the detonation front moving parallel to the gaps, jets of gas products were seen coming from the gaps at velocities greater than the detonation velocity. A case can be made that the jet velocity increased with gap thickness but the data is scattered. For the detonation front moving transverse to the gap, time delays were seen. The delays roughly increase with gap width, going from 0-70 ns at 'zero gap' to around 300 ns at 0.5-1 mm gap. Larger gaps of up to 6 mm width almost certainly stopped the detonation, but this was not proved. Real-time resolution of the parallel jets and determination of the actual re-detonation or failure in the transverse case needs to be done in future experiments.

  10. Electronic gap sensor and method

    DOE Patents [OSTI]

    Williams, Robert S.; King, Edward L.; Campbell, Steven L.

    1991-01-01

    An apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces.

  11. Electronic gap sensor and method

    DOE Patents [OSTI]

    Williams, R.S.; King, E.L.; Campbell, S.L.

    1991-08-06

    Disclosed are an apparatus and method for regulating the gap between a casting nozzle and a casting wheel in which the gap between the casting nozzle and the casting wheel is monitored by means of at least one sensing element protruding from the face of the casting nozzle. The sensing element is preferably connected to a voltage source and the casting wheel grounded. When the sensing element contacts the casting wheel, an electric circuit is completed. The completion of the circuit can be registered by an indicator, and the presence or absence of a completed circuit indicates the relative position of the casting nozzle to the casting wheel. The relative positions of the casting nozzle and casting wheel can thereby be selectively adjusted to continually maintain a predetermined distance between their adjacent surfaces. 5 figures.

  12. Intrinsic electron and hole bands in electron-doped cuprate superconductors

    SciTech Connect (OSTI)

    Xiang, T.

    2010-02-24

    We propose that the upper Hubbard band (electron-like) and the Zhang-Rice singlet band (holelike) are two essential components in describing low-energy excitations of electron-doped cuprate superconductors. We find that the gap between these two bands is significantly smaller than the charge-transfer gap measured by optics and is further reduced upon doping. This indicates that the charge fluctuation is strong and the system is in the intermediate correlation regime. A two-band model is derived. In the limit that the intraband and interband hopping integrals are equal to each other, this model is equivalent to the unconstrained t-J model with on-site Coulomb repulsions.

  13. Closed Gap Enzen | Open Energy Information

    Open Energy Info (EERE)

    search Name: Closed Gap-Enzen Place: Bangalore, India Zip: 560 052 Product: Formed as a joint venture, Closed Gap-Enzen provides a new integrated meter enabling seamless customer...

  14. Spark gap with low breakdown voltage jitter

    DOE Patents [OSTI]

    Rohwein, Gerald J.; Roose, Lars D.

    1996-01-01

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  15. Spark gap with low breakdown voltage jitter

    DOE Patents [OSTI]

    Rohwein, G.J.; Roose, L.D.

    1996-04-23

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  16. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  17. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    a silicon surface comprises an ideal test laboratory for studying one-dimensional (1D) metals. A new example comes from a collaboration between researchers from Yonsei University...

  18. Optical characterization of band gap graded ZnMgO films (Journal...

    Office of Scientific and Technical Information (OSTI)

    DOE Contract Number: DE-AC05-00OR22725 Resource Type: Journal Article Resource Relation: Journal Name: Solid State Communications; Journal Volume: 152; Journal Issue: 5 Research ...

  19. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    researchers from Yonsei University in Korea, the ALS, and the University of Oregon, ... Research conducted by J.R. Ahn, J.H. Byun, and H.W. Yeom (Yonsei University, Korea); H. ...

  20. Second harmonic generation from direct band gap quantum dots pumped by femtosecond laser pulses

    SciTech Connect (OSTI)

    Liu, Liwei Wang, Yue; Hu, Siyi; Ren, Yu; Huang, Chen

    2014-02-21

    We report on nonlinear optical experiments performed on Cu{sub 2}S quantum dots (QDs) pumped by femtosecond laser pulses. We conduct a theoretical simulation and experiments to determine their second harmonic generation characteristics. Furthermore, we demonstrate that the QDs have a second harmonic generation conversion efficiency of up to 76%. Our studies suggest that these Cu{sub 2}S QDs can be used for solar cells, bioimaging, biosensing, and electric detection.

  1. Significant Reduction in NiO Band Gap Upon Formation of LixNi1...

    Office of Scientific and Technical Information (OSTI)

    obtain a copy of this journal article from the publisher. Find in Google Scholar Find in Google Scholar Search WorldCat Search WorldCat to find libraries that may hold this journal

  2. Final Report: Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    SciTech Connect (OSTI)

    Bedair, Salah M.; Hauser, John R.; Elmasry, Nadia; Colter, Peter C.; Bradshaw, G.; Carlin, C. Z.; Samberg, J.; Edmonson, Kenneth

    2012-07-31

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  3. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on 1D metals has been enriched by the synthesis of quite novel materials, of which carbon nanotubes and metallic atomic wires on surfaces are recent examples. Atomic structure...

  4. Ultrafast band engineering and transient spin currents in antiferromagnetic oxides

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gu, Mingqiang; Rondinelli, James M.

    2016-04-29

    Here, we report a dynamic structure and band engineering strategy with experimental protocols to induce indirect-to-direct band gap transitions and coherently oscillating pure spin-currents in three-dimensional antiferromagnets (AFM) using selective phononic excitations. In the Mott insulator LaTiO3, we show that a photo-induced nonequilibrium phonon mode amplitude destroys the spin and orbitally degenerate ground state, reduces the band gap by 160 meV and renormalizes the carrier masses. The time scale of this process is a few hundreds of femtoseconds. Then in the hole-doped correlated metallic titanate, we show how pure spin-currents can be achieved to yield spin-polarizations exceeding those observed inmore » classic semiconductors. Last, we demonstrate the generality of the approach by applying it to the non-orbitally degenerate AFM CaMnO3. These results advance our understanding of electron-lattice interactions in structures out-of-equilibrium and establish a rational framework for designing dynamic phases that may be exploited in ultrafast optoelectronic and optospintronic devices.« less

  5. Table of superdeformed nuclear bands and fission isomers

    SciTech Connect (OSTI)

    Firestone, R.B.; Singh, B.

    1994-06-01

    A minimum in the second potential well of deformed nuclei was predicted and the associated shell gaps are illustrated in the harmonic oscillator potential shell energy surface calculations shown in this report. A strong superdeformed minimum in {sup 152}Dy was predicted for {beta}{sub 2}-0.65. Subsequently, a discrete set of {gamma}-ray transitions in {sup 152}DY was observed and, assigned to the predicted superdeformed band. Extensive research at several laboratories has since focused on searching for other mass regions of large deformation. A new generation of {gamma}-ray detector arrays is already producing a wealth of information about the mechanisms for feeding and deexciting superdeformed bands. These bands have been found in three distinct regions near A=l30, 150, and 190. This research extends upon previous work in the actinide region near A=240 where fission isomers were identified and also associated with the second potential well. Quadrupole moment measurements for selected cases in each mass region are consistent with assigning the bands to excitations in the second local minimum. As part of our committment to maintain nuclear structure data as current as possible in the Evaluated Nuclear Structure Reference File (ENSDF) and the Table of Isotopes, we have updated the information on superdeformed nuclear bands. As of April 1994, we have complied data from 86 superdeformed bands and 46 fission isomers identified in 73 nuclides for this report. For each nuclide there is a complete level table listing both normal and superdeformed band assignments; level energy, spin, parity, half-life, magneto moments, decay branchings; and the energies, final levels, relative intensities, multipolarities, and mixing ratios for transitions deexciting each level. Mass excess, decay energies, and proton and neutron separation energies are also provided from the evaluation of Audi and Wapstra.

  6. Evidence of Eu{sup 2+} 4f electrons in the valence band spectra of EuTiO{sub 3} and EuZrO{sub 3}

    SciTech Connect (OSTI)

    Kolodiazhnyi, T.; Valant, M.; Williams, J. R.; Bugnet, M.; Botton, G. A.; Ohashi, N.; Sakka, Y.

    2012-10-15

    We report on optical band gap and valence electronic structure of two Eu{sup 2+}-based perovskites, EuTiO{sub 3} and EuZrO{sub 3} as revealed by diffuse optical scattering, electron energy loss spectroscopy, and valence-band x-ray photoelectron spectroscopy. The data show good agreement with the first-principles studies in which the top of the valence band structure is formed by the narrow Eu 4f{sup 7} electron band. The O 2p band shows the features similar to those of the Ba(Sr)TiO{sub 3} perovskites except that it is shifted to higher binding energies. Appearance of the Eu{sup 2+} 4f{sup 7} band is a reason for narrowing of the optical band gap in the title compounds as compared to their Sr-based analogues.

  7. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46 eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is −4.79 eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of −3.33 eV based on optical energy gap. The polymer wasmore » synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  8. Stability of S and Se induced reconstructions on GaP(001)(21) surface

    SciTech Connect (OSTI)

    Li , D. F.; Guo, Zhi C.; Xiao, Hai Yan; Zu, Xiaotao T.; Gao, Fei

    2010-10-15

    The structural and electronic properties of S- and Se- passivated GaP(001)(21) surfaces were studied using first-principles simulations. Our calculations showed that the most stable structure consists of a single chalcogen atom (S or Se) in the first crystal layer, which is bonded to two Ga atoms of the second layer, and the third P layer replaced by chalcogen atoms, similar to the passivation of GaAs(001)(21) surface by chalcogen atoms. The structural parameters were determined and the surface band characters and the local density of states were also analyzed. The results showed that the preferable structure has no surface states in the bulk band gap, but the energy band gaps of the S- and Se-adsorbed GaP(001) surfaces are 1.83eV and 1.63eV, respectively. The passivation effects for the S- and Se-adsorbed surfaces are similar to each other.

  9. Evidence of ion intercalation mediated band structure modification and opto-ionic coupling in lithium niobite

    SciTech Connect (OSTI)

    Shank, Joshua C.; Tellekamp, M. Brooks; Doolittle, W. Alan

    2015-01-21

    The theoretically suggested band structure of the novel p-type semiconductor lithium niobite (LiNbO{sub 2}), the direct coupling of photons to ion motion, and optically induced band structure modifications are investigated by temperature dependent photoluminescence. LiNbO{sub 2} has previously been used as a memristor material but is shown here to be useful as a sensor owing to the electrical, optical, and chemical ease of lithium removal and insertion. Despite the high concentration of vacancies present in lithium niobite due to the intentional removal of lithium atoms, strong photoluminescence spectra are observed even at room temperature that experimentally confirm the suggested band structure implying transitions from a flat conduction band to a degenerate valence band. Removal of small amounts of lithium significantly modifies the photoluminescence spectra including additional larger than stoichiometric-band gap features. Sufficient removal of lithium results in the elimination of the photoluminescence response supporting the predicted transition from a direct to indirect band gap semiconductor. In addition, non-thermal coupling between the incident laser and lithium ions is observed and results in modulation of the electrical impedance.

  10. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2012-07-31

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  11. Dilute group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw; Yu, Kin Man

    2015-02-24

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  12. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect (OSTI)

    Sahdan, Muhammad Fauzi Darma, Yudi

    2014-03-24

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  13. Gap solitons in rocking optical lattices and waveguides with undulating gratings

    SciTech Connect (OSTI)

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2009-07-15

    We report results of a systematic analysis of the stability of one-dimensional solitons in a model including the self-repulsive or attractive cubic nonlinearity and a linear potential represented by a periodically shaking lattice, which was recently implemented in experiments with Bose-Einstein condensates. In optics, the same model applies to undulated waveguiding arrays, which are also available to the experiment. In the case of the repulsive nonlinearity, stability regions are presented, in relevant parameter planes, for fundamental gap solitons and their two-peak and three-peak bound complexes, in the first and second finite band gaps. In the model with the attractive nonlinearity, stability regions are produced for fundamental solitons and their bound states populating the semi-infinite gap. In the first finite and semi-infinite gaps, unstable solitons gradually decay into radiation, while, in the second finite band gap, they are transformed into more complex states, which may represent new species of solitons. For a large amplitude of the rocking-lattice drive, the model is tantamount to that with a 'flashing' lattice potential, which is controlled by periodic sequences of instantaneous kicks. Using this correspondence, we explain generic features of the stability diagrams for the solitons. We also derive a limit case of the latter system, in the form of coupled-mode equations with a 'flashing' linear coupling.

  14. Strain-engineered band parameters of graphene-like SiC monolayer

    SciTech Connect (OSTI)

    Behera, Harihar; Mukhopadhyay, Gautam

    2014-10-06

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices.

  15. Gap Assessment (FY 13 Update)

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Getman, Dan

    2013-09-30

    To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for

  16. Gap between active and passive solar heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  17. Scenarios, targets, gaps, and costs

    SciTech Connect (OSTI)

    Edmonds, James A.; Joos, Fortunat; Nakicenovic, Nebojsa; Richels, Richard G.; Sarmiento, Jorge L.

    2005-03-30

    This paper explores the connection between human activities and the concentration of carbon dioxide in the atmosphere. t explores the implication of the wide range of emissions scenarios developed by the IPCC in the Special Report on Emissions Scenarios and concludes that a robust finding is that major changes will be required in the global energy system if the concentration of carbon dioxide is eventually to be stabilized.

  18. Hydrothermal Exploration Data Gap Analysis Update

    Broader source: Energy.gov [DOE]

    Hydrothermal Exploration Data Gap Analysis presentation by Kate Young, Dan Getman, and Ariel Esposito at the 2012 Peer Review Meeting on May 10, 2012

  19. FAQS Gap Analysis Qualification Card Emergency Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  20. Resistive band for turbomachine blade

    DOE Patents [OSTI]

    Roberts, Herbert Chidsey; Taxacher, Glenn Curtis

    2015-08-25

    A turbomachine system includes a rotor that defines a longitudinal axis of the turbomachine system. A first blade is coupled to the rotor, and the first blade has first and second laminated plies. A first band is coupled to the first blade and is configured to resist separation of the first and second laminated plies.

  1. Drop short control of electrode gap

    DOE Patents [OSTI]

    Fisher, Robert W.; Maroone, James P.; Tipping, Donald W.; Zanner, Frank J.

    1986-01-01

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  2. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, Loucas G.; McCorkle, Dennis L.; Hunter, Scott R.

    1988-01-01

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches.

  3. Gas mixtures for spark gap closing switches

    DOE Patents [OSTI]

    Christophorou, L.G.; McCorkle, D.L.; Hunter, S.R.

    1987-02-20

    Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low molecular weight, inert buffer gases. To this can be added a third gas having a low ionization potential relative to the buffer gas. The gas mixtures presented possess properties that optimized the efficiency spark gap closing switches. 6 figs.

  4. Analysis of band structure, transmission properties, and dispersion behavior of THz wave in one-dimensional parabolic plasma photonic crystal

    SciTech Connect (OSTI)

    Askari, Nasim; Eslami, Esmaeil; Mirzaie, Reza

    2015-11-15

    The photonic band gap of obliquely incident terahertz electromagnetic waves in a one-dimensional plasma photonic crystal is studied. The periodic structure consists of lossless dielectric and inhomogeneous plasma with a parabolic density profile. The dispersion relation and the THz wave transmittance are analyzed based on the electromagnetic equations and transfer matrix method. The dependence of effective plasma frequency and photonic band gap characteristics on dielectric and plasma thickness, plasma density, and incident angle are discussed in detail. A theoretical calculation for effective plasma frequency is presented and compared with numerical results. Results of these two methods are in good agreement.

  5. Lac Courte Oreilles Band of Lake Superior Ojibwe

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oreilles Band of Lake Superior Ojibwe Leslie Isham, Director/Assistant Director Lac Courte Oreilles Energy Project Lac Courte Oreilles Public works Department First Steps towards Tribal Weatherization Assessing the Feasibility of the Hydro Dam About Lac Courte Oreilles (LCO) * Located in Upper Northwest Wisconsin * 76,000 acres and 15 miles wide * 90 miles from Duluth 100 miles from Eau Claire 10 miles from Hayward * Close to 6,000 members, 50% live on or near the reservation * 68% unemployment

  6. Extended investigation of superdeformed bands in {sup 151,152}Tb nuclei

    SciTech Connect (OSTI)

    Robin, J.; Byrski, Th.; Duchene, G.; Beck, F. A.; Curien, D.; Dubray, N.; Dudek, J.; Courtin, S.; Dorvaux, O.; France, G. de; Gall, B.; Joshi, P.; Nourredine, A.; Pachoud, E.; Piqueras, I.; Vivien, J. P.; Gozdz, A.; Odahara, A.; Schunck, N.; Adimi, N.

    2008-01-15

    A detailed study of known and new SD bands in Tb isotopes has been performed with the use of the EUROBALL IV {gamma}-ray array. The high-statistics data set has allowed for the extension of known SD bands at low and high spins by new {gamma}-ray transitions. These transitions, as it turns out, correspond to the rotational frequencies where the principal superdeformed gaps (Z=66,N=86) close giving rise to up- or down-bending mechanisms. This enables to attribute the underlying theoretical configurations with much higher confidence as compared to the previous identifications. Five new SD bands have been discovered, three of them assigned to the {sup 152}Tb and the two others to the {sup 151}Tb nuclei. Nuclear mean-field calculations have been used to interpret the structure of known SD bands as well as of the new ones in terms of nucleonic configurations.

  7. Engine piston having an insulating air gap

    DOE Patents [OSTI]

    Jarrett, Mark Wayne; Hunold,Brent Michael

    2010-02-02

    A piston for an internal combustion engine has an upper crown with a top and a bottom surface, and a lower crown with a top and a bottom surface. The upper crown and the lower crown are fixedly attached to each other using welds, with the bottom surface of the upper crown and the top surface of the lower crown forming a mating surface. The piston also has at least one centrally located air gap formed on the mating surface. The air gap is sealed to prevent substantial airflow into or out of the air gap.

  8. Wide field of view telescope

    DOE Patents [OSTI]

    Ackermann, Mark R.; McGraw, John T.; Zimmer, Peter C.

    2008-01-15

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  9. Mid-Gap Electronic States in Zn1 xMnxO

    SciTech Connect (OSTI)

    Johnson, Claire A.; Kittilstved, Kevin R.; Kaspar, Tiffany C.; Droubay, Timothy C.; Chambers, Scott A.; Salley, G. Mackay; Gamelin, Daniel R.

    2010-09-02

    Electronic absorption, magnetic circular dichroism, photoconductivity, and valence-band X-ray photoelectron (XPS) spectroscopic measurements were performed on epitaxial Zn1 xMnxO films to investigate the origin of the new mid-gap band that appears upon introduction of Mn2+ into the ZnO lattice. Absorption and MCD spectroscopies reveal Mn2+-related intensity at energies below the first excitonic transition of ZnO, tailing well into the visible energy region, with an onset at ~2.2 eV. Photoconductivity measurements show that excitation into this visible band generates mobile charge carriers, consistent with assignment as a Mn2+/3+ photoionization transition. XPS measurements reveal the presence of occupied Mn2+ levels just above the valence-band edge, supporting this assignment. Magnetic circular dichroism measurements additionally show a change in sign and large increase in magnitude of the excitonic Zeeman splitting in Zn1 xMnxO relative to ZnO, suggesting that sp-d exchange in Zn1 xMnxO is not as qualitatively different from those in other II-VI diluted magnetic semiconductors as has been suggested. The singular electronic structure feature of Zn1 xMnxO is its Mn2+/3+ ionization level within the gap, and the influence of this level on other physical properties of Zn1 xMnxO is discussed.

  10. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  11. Campo Band of Mission Indians- 2010 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Campo Band of Mission Indians ("Band") goal is to develop a 300 MW wind energy project ("Kumeyaay Wind II") in two phases over the next two to five years.

  12. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  13. Gap between jets at the LHC

    SciTech Connect (OSTI)

    Royon, Christophe

    2013-04-15

    We describe a NLL BFKL calculation implemented in the HERWIG MC of the gap between jets cross section, that represent a test of BFKL dynamics. We compare the predictions with recent measurements at the Tevatron and present predictions for the LHC. We also discuss the interesting process of looking for gap between jets in diffractive events when protons are detected in the ATLAS Forward Physics (AFP) detectors.

  14. Oxygen isotope variability within Nautilus shell growth bands

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Linzmeier, Benjamin J.; Kozdon, Reinhard; Peters, Shanan E.; Valley, John W.

    2016-04-21

    Nautilus is often used as an analogue for the ecology and behavior of extinct externally shelled cephalopods. Nautilus shell grows quickly, has internal growth banding, and is widely believed to precipitate aragonite in oxygen isotope equilibrium with seawater. Pieces of shell from a wild-caught Nautilus macromphalus from New Caledonia and from a Nautilus belauensis reared in an aquarium were cast in epoxy, polished, and then imaged. Growth bands were visible in the outer prismatic layer of both shells. The thicknesses of the bands are consistent with previously reported daily growth rates measured in aquarium reared individuals. In situ analysis ofmore » oxygen isotope ratios using secondary ion mass spectrometry (SIMS) with 10 μm beam-spot size reveals inter- and intra-band δ18O variation. In the wild-caught sample, a traverse crosscutting 45 growth bands yielded δ18O values ranging 2.5‰, from +0.9 to -1.6 ‰ (VPDB), a range that is larger than that observed in many serial sampling of entire shells by conventional methods. The maximum range within a single band (~32 μm) was 1.5‰, and 27 out of 41 bands had a range larger than instrumental precision (±2 SD = 0.6‰). The results from the wild individual suggest depth migration is recorded by the shell, but are not consistent with a simple sinusoidal, diurnal depth change pattern. In addition, to create the observed range of δ18O, however, this Nautilus must have traversed a temperature gradient of at least ~12°C, corresponding to approximately 400 m depth change. Isotopic variation was also measured in the aquarium-reared sample, but the pattern within and between bands likely reflects evaporative enrichment arising from a weekly cycle of refill and replacement of the aquarium water. Overall, this work suggests that depth migration behavior in ancient nektonic mollusks could be elucidated by SIMS analysis across individual growth bands.« less

  15. Wide Bandgap Semiconductors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wide Bandgap Semiconductors Wide Bandgap Semiconductors Addthis Duration 1:55 Topic Energy Sector Jobs Manufacturing Transmission Innovation

  16. Electronic band structure and Kondo coupling in YbRh2Si2

    SciTech Connect (OSTI)

    Wigger, G.A.

    2010-04-15

    The electronic band structure of YbRh2Si2 is calculated in a relativistic framework including correlation corrections and magnetization of the Yb ion and compared to detailed angle-resolved photoemission spectra. The photoemission spectra for LuRh2Si2 are used as reference to identify electronic bands with no f symmetry. The calculated band structure manifests a 4f13 spin-polarized configuration leaving the unoccupied state at 1.4eV above the Fermi energy. At the band theory level, the 4f bands are located far below the Fermi level and the anisotropic Coulomb interaction within the 4f shell spreads the multilevel into broader 4f complexes below -2.5eV . The photoemission spectra obtained on YbRh2Si2 show a clear f -multilevel splitting into j=7/2 and 5/2 excitations. The interaction of the 4f7/2 levels close to the Fermi energy with two conduction bands shows visible hybridization gaps of 45 and 80meV, respectively. We discuss the origin of these excitations and provide an analysis according to Anderson's single-impurity model with parameters suggested by the band-structure calculation and the photoemission spectra. Both experiment and theory indicate nearly identical Fermi surfaces for LuRh2Si2 and YbRh2Si2 . The valency of Yb in YbRh2Si2 is estimated to be close to +3.

  17. Physical properties and analytical models of band-to-band tunneling in low-bandgap semiconductors

    SciTech Connect (OSTI)

    Shih, Chun-Hsing Dang Chien, Nguyen

    2014-01-28

    Low-bandgap semiconductors, such as InAs and InSb, are widely considered to be ideal for use in tunnel field-effect transistors to ensure sufficient on-current boosting at low voltages. This work elucidates the physical and mathematical considerations of applying conventional band-to-band tunneling models in low-bandgap semiconductors, and presents a new analytical alternative for practical use. The high-bandgap tunneling generates most at maximum field region with shortest tunnel path, whereas the low-bandgap generations occur dispersedly because of narrow tunnel barrier. The local electrical field associated with tunneling-electron numbers dominates in low-bandgap materials. This work proposes decoupled electric-field terms in the pre-exponential factor and exponential function of generation-rate expressions. Without fitting, the analytical results and approximated forms exhibit great agreements with the sophisticated forms both in high- and low-bandgap semiconductors. Neither nonlocal nor local field is appropriate to be used in numerical simulations for predicting the tunneling generations in a variety of low- and high-bandgap semiconductors.

  18. Gas mixtures for spark gap closing switches (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Gas mixtures for spark gap closing switches Title: Gas mixtures for spark gap closing switches Gas mixtures for use in spark gap closing switches comprised of fluorocarbons and low ...

  19. Wide Bandgap Extrinsic Photoconductive Switches

    SciTech Connect (OSTI)

    Sullivan, J S

    2012-01-17

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  20. Code Gaps and Future Research Needs of Combustion Safety: Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update Code Gaps and Future Research Needs of Combustion Safety: Building America Expert ...

  1. Tuning the energy gap of conjugated polymer zwitterions for efficient...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Tuning the energy gap of conjugated polymer zwitterions for efficient interlayers and solar cells Citation Details In-Document Search Title: Tuning the energy gap...

  2. Olene Gap Space Heating Low Temperature Geothermal Facility ...

    Open Energy Info (EERE)

    Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name Olene Gap Space Heating Low Temperature Geothermal Facility Facility Olene Gap Sector Geothermal...

  3. FAQS Gap Analysis Qualification Card - Technical Training | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Training FAQS Gap Analysis Qualification Card - Technical Training Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between ...

  4. FAQS Gap Analysis Qualification Card - Industrial Hygiene | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Industrial Hygiene FAQS Gap Analysis Qualification Card - Industrial Hygiene Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between ...

  5. FAQS Gap Analysis Qualification Card - Nuclear Safety Specialist...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nuclear Safety Specialist FAQS Gap Analysis Qualification Card - Nuclear Safety Specialist Functional Area Qualification Standard Gap Analysis Qualification Cards outline the ...

  6. FAQS Gap Analysis Qualification Card - Quality Assurance | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quality Assurance FAQS Gap Analysis Qualification Card - Quality Assurance Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between ...

  7. Summary of Gaps and Barriers for Implementing Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies ...

  8. FAQS Gap Analysis Qualification Card - Senior Technical Safety...

    Office of Environmental Management (EM)

    Senior Technical Safety Manager FAQS Gap Analysis Qualification Card - Senior Technical Safety Manager Functional Area Qualification Standard Gap Analysis Qualification Cards ...

  9. Rapidity gap survival in central exclusive diffraction: Dynamical...

    Office of Scientific and Technical Information (OSTI)

    Rapidity gap survival in central exclusive diffraction: Dynamical mechanisms and uncertainties Citation Details In-Document Search Title: Rapidity gap survival in central exclusive ...

  10. CHP: Connecting the Gap between Markets and Utility Interconnection...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, ...

  11. Heterojunction band offsets and dipole formation at BaTiO{sub 3}/SrTiO{sub 3} interfaces

    SciTech Connect (OSTI)

    Balaz, Snjezana; Zeng, Zhaoquan; Brillson, Leonard J.; Department of Physics, The Ohio State University, 191 West Woodruff, Columbus, Ohio 43210

    2013-11-14

    We used a complement of photoemission and cathodoluminescence techniques to measure formation of the BaTiO{sub 3} (BTO) on SrTiO{sub 3} (STO) heterojunction band offset grown monolayer by monolayer by molecular beam epitaxy. X-ray photoemission spectroscopy (XPS) provided core level and valence band edge energies to monitor the valence band offset in-situ as the first few crystalline BTO monolayers formed on the STO substrate. Ultraviolet photoemission spectroscopy (UPS) measured Fermi level positions within the band gap, work functions, and ionization potentials of the growing BTO film. Depth-resolved cathodoluminescence spectroscopy measured energies and densities of interface states at the buried heterojunction. Kraut-based XPS heterojunction band offsets provided evidence for STO/BTO heterojunction linearity, i.e., commutativity and transitivity. In contrast, UPS and XPS revealed a large dipole associated either with local charge transfer or strain-induced polarization within the BTO epilayer.

  12. The effect of spin-orbit coupling in band structure and edge states of bilayer graphene

    SciTech Connect (OSTI)

    Sahdan, Muhammad Fauzi; Darma, Yudi

    2015-04-16

    Topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of bilayer grapheme and also its edge states by using this model with analytical approach. The results of our calculation show that the gap opening occurs at K and K’ point in bilayer graphene.In addition, a pair of gapless edge modes occurs both in the zigzag and arm-chair configurations are no longer exist. There are gap created at the edge even though thery are very small.

  13. Project Reports for Agua Caliente Band of Cahuilla Indians -...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agua Caliente Band of Cahuilla Indians - 2010 Project Project Reports for Agua Caliente Band of Cahuilla Indians - 2010 Project The Agua Caliente Band of Cahuilla Indians (ACBCI) ...

  14. Digital Architecture – Results From a Gap Analysis

    SciTech Connect (OSTI)

    Oxstrand, Johanna Helene; Thomas, Kenneth David; Fitzgerald, Kirk

    2015-09-01

    The digital architecture is defined as a collection of IT capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. The digital architecture can be thought of as an integration of the separate I&C and information systems already in place in NPPs, brought together for the purpose of creating new levels of automation in NPP work activities. In some cases, it might be an extension of the current communication systems, to provide digital communications where they are currently analog only. This collection of IT capabilities must in turn be based on a set of user requirements that must be supported for the interconnected technologies to operate in an integrated manner. These requirements, simply put, are a statement of what sorts of digital work functions will be exercised in a fully-implemented seamless digital environment and how much they will be used. The goal of the digital architecture research is to develop a methodology for mapping nuclear power plant operational and support activities into the digital architecture, which includes the development of a consensus model for advanced information and control architecture. The consensus model should be developed at a level of detail that is useful to the industry. In other words, not so detailed that it specifies specific protocols and not so vague that it is only provides a high level description of technology. The next step towards the model development is to determine the current state of digital architecture at typical NPPs. To investigate the current state, the researchers conducted a gap analysis to determine to what extent the NPPs can support the future digital technology environment with their existing I&C and IT structure, and where gaps exist with respect to the full deployment of technology over time. The methodology, result, and conclusions from the gap analysis are described in this report.

  15. Homolumo gap from dynamical energy levels

    SciTech Connect (OSTI)

    Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B.

    2009-11-15

    We introduce a dynamical matrix model where the matrix is interpreted as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show how a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest eigenvalue of the occupied single-fermion states and the lowest eigenvalue of the unoccupied single-fermion states. We describe the development of the gap in both the strong and weak coupling regimes, while for the intermediate coupling strength we expect formation of homolumo kinks.

  16. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.T.

    2014-03-01

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  17. RRI-GBT MULTI-BAND RECEIVER: MOTIVATION, DESIGN, AND DEVELOPMENT

    SciTech Connect (OSTI)

    Maan, Yogesh; Deshpande, Avinash A.; Chandrashekar, Vinutha; Chennamangalam, Jayanth; Rao, K. B. Raghavendra; Somashekar, R.; Ezhilarasi, M. S.; Sujatha, S.; Kasturi, S.; Sandhya, P.; Duraichelvan, R.; Amiri, Shahram; Aswathappa, H. A.; Sarabagopalan, G.; Ananda, H. M.; Anderson, Gary; Bauserman, Jonah; Beaudet, Carla; Bloss, Marty; Barve, Indrajit V.; and others

    2013-01-15

    We report the design and development of a self-contained multi-band receiver (MBR) system, intended for use with a single large aperture to facilitate sensitive and high time-resolution observations simultaneously in 10 discrete frequency bands sampling a wide spectral span (100-1500 MHz) in a nearly log-periodic fashion. The development of this system was primarily motivated by need for tomographic studies of pulsar polar emission regions. Although the system design is optimized for the primary goal, it is also suited for several other interesting astronomical investigations. The system consists of a dual-polarization multi-band feed (with discrete responses corresponding to the 10 bands pre-selected as relatively radio frequency interference free), a common wide-band radio frequency front-end, and independent back-end receiver chains for the 10 individual sub-bands. The raw voltage time sequences corresponding to 16 MHz bandwidth each for the two linear polarization channels and the 10 bands are recorded at the Nyquist rate simultaneously. We present the preliminary results from the tests and pulsar observations carried out with the Robert C. Byrd Green Bank Telescope using this receiver. The system performance implied by these results and possible improvements are also briefly discussed.

  18. Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Vasseur, Guillaume; Fagot-Revurat, Yannick; Sicot, Muriel; Kierren, Bertrand; Moreau, Luc; Malterre, Daniel; Cardenas, Luis; Galeotti, Gianluca; Lipton-Duffin, Josh; Rosei, Frederico; et al

    2016-01-04

    We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a function of oligomer length by scanning tunnelling spectroscopy, with Fermi level crossings observed for chains longer than ten phenyl rings. Angle-resolved photoelectron spectroscopy reveals a quasi-one-dimensional valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the organic band-structure, includingmore » the k-dispersion, the gap size and electron charge transfer mechanisms, highlighting a strong substrate-molecule interaction that drives the system into a metallic behaviour. In summary, we have fully characterized the band structure of a carbon-based conducting wire. This model system may be considered as a fingerprint of -conjugation of surface organic frameworks.« less

  19. X-BAND KLYSTRON DEVELOPMENT AT SLAC

    SciTech Connect (OSTI)

    Vlieks, Arnold E.; /SLAC

    2009-08-03

    The development of X-band klystrons at SLAC originated with the idea of building an X-band Linear Collider in the late 1980's. Since then much effort has been expended in developing a reliable X-band Power source capable of delivering >50 MW RF power in pulse widths >1.5 {micro}s. I will report on some of the technical issues and design strategies which have led to the current SLAC klystron designs.

  20. Five Facts About the Gender Pay Gap

    Office of Energy Efficiency and Renewable Energy (EERE)

    Over the past century, American women have made tremendous strides in increasing their labor market experience and their skills. On Equal Pay Day, however, we focus on a stubborn and troubling fact: Despite women’s gains, a large gender pay gap still exists.

  1. Spark gap device for precise switching

    DOE Patents [OSTI]

    Boettcher, G.E.

    1984-10-02

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations. 3 figs.

  2. Spark gap device for precise switching

    DOE Patents [OSTI]

    Boettcher, Gordon E.

    1984-01-01

    A spark gap device for precise switching of an energy storage capacitor into an exploding bridge wire load is disclosed. Niobium electrodes having a melting point of 2,415 degrees centrigrade are spaced apart by an insulating cylinder to define a spark gap. The electrodes are supported by conductive end caps which, together with the insulating cylinder, form a hermetically sealed chamber filled with an inert, ionizable gas, such as pure xenon. A quantity of solid radioactive carbon-14 within the chamber adjacent the spark gap serves as a radiation stabilizer. The sides of the electrodes and the inner wall of the insulating cylinder are spaced apart a sufficient distance to prevent unwanted breakdown initiation. A conductive sleeve may envelop the outside of the insulating member from the midpoint of the spark gap to the cap adjacent the cathode. The outer metallic surfaces of the device may be coated with a hydrogen-impermeable coating to lengthen the shelf life and operating life of the device. The device breaks down at about 1,700 volts for input voltage rates up to 570 volts/millisecond and allows peak discharge currents of up to 3,000 amperes from a 0.3 microfarad energy storage capacitor for more than 1,000 operations.

  3. FINAL REPORT ON GDE GAP CELL

    SciTech Connect (OSTI)

    Herman, D.; Summers, W.; Danko, E.

    2009-09-28

    A project has been undertaken to develop an electrochemical cell and support equipment for evaluation of a gas diffusion electrode-based, narrow-electrolyte-gap anode for SO{sub 2} oxidation in the hydrogen production cycle of the hybrid sulfur (HyS) process. The project supported the HyS development program at the Savannah River National Lab (SRNL). The benefits of using a gas diffusion electrode in conjunction with the narrow anolyte gap are being determined through electrochemical polarization testing under a variety conditions, and by comparison to results produced by SRNL and others using anode technologies that have no anolyte gap. These test results indicate that the NGA cell has low resistance suitable for use in the HyS electrolyzer, exhibits good efficiency at high current densities compared to the direct feed HyS electrolyzer, and indicates robust performance in extended testing over 65 hours. Seepage episodes were mostly caused by port clogging, which can be mitigated in future designs through minor modifications to the hardware. Significant reductions in sulfur crossover have not yet been demonstrated in the NGA configuration compared to in-house direct feed testing, but corroborative sulfur layer analysis is as yet incomplete. Further testing in a single-pass anolyte configuration is recommended for complete evaluation of steady-state electrochemical efficiency and SO{sub 2} crossover in the narrow gap configuration.

  4. Aroostook Band of Micmac Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The goal of the project is to develop a strategic energy plan in order to reduce energy costs in the Aroostook Band of Micmacs' government buildings and homes.

  5. Eastern Band of Cherokee Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Eastern Band of Cherokee Indians (EBCI) is using the grant funds from the Department of Energy to complete the Energy Efficiency Improvements to seven EBCI facilities.

  6. Hanford Site Wide Programs - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Page | Print Print Page |Text Increase Font Size Decrease Font Size Hanford Site-Wide Programs Hanford Safety and Health Hanford Site Wide Programs Hanford Fire Department...

  7. Interconnection-Wide Transmission Planning Initiative - Meeting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Interconnection-Wide Transmission Planning Initiative - Meeting Calendars Click on the links below to ...

  8. Ka-Band ARM Zenith Radar (KAZR) Instrument Handbook

    SciTech Connect (OSTI)

    Widener, K; Bharadwaj, N; Johnson, K

    2012-03-06

    The Ka-band ARM zenith radar (KAZR) is a zenith-pointing Doppler cloud radar operating at approximately 35 GHz. The KAZR is an evolutionary follow-on radar to ARM's widely successful millimeter-wavelength cloud radar (MMCR). The main purpose of the KAZR is to provide vertical profiles of clouds by measuring the first three Doppler moments: reflectivity, radial Doppler velocity, and spectra width. At the sites where the dual-polarization measurements are made, the Doppler moments for the cross-polarization channel are also available. In addition to the moments, velocity spectra are also continuously recorded for each range gate.

  9. Intermediate band solar cells: Recent progress and future directions

    SciTech Connect (OSTI)

    Okada, Y. Tamaki, R.; Farrell, D. J.; Yoshida, K.; Ahsan, N.; Shoji, Y.; Sogabe, T.; Ekins-Daukes, N. J. Yoshida, M.; Pusch, A.; Hess, O.; Phillips, C. C.; Kita, T.; Guillemoles, J.-F.

    2015-06-15

    Extensive literature and publications on intermediate band solar cells (IBSCs) are reviewed. A detailed discussion is given on the thermodynamics of solar energy conversion in IBSCs, the device physics, and the carrier dynamics processes with a particular emphasis on the two-step inter-subband absorption/recombination processes that are of paramount importance in a successful implementation high-efficiency IBSC. The experimental solar cell performance is further discussed, which has been recently demonstrated by using highly mismatched alloys and high-density quantum dot arrays and superlattice. IBSCs having widely different structures, materials, and spectral responses are also covered, as is the optimization of device parameters to achieve maximum performance.

  10. Narrow-band optical transmission of metallic nanoslit arrays

    SciTech Connect (OSTI)

    Sun Zhijun; Yang Ying; Zuo Xiaoliu

    2012-10-22

    Metallic nanoslit arrays usually demonstrate wide transmission bands for transverse-magnetic-polarized incidence light. Here, we show that by introducing multi-dielectric layers underneath the metallic structure layer on the substrate, a narrow peak is formed, whose bandwidth can be down to a few nanometers. Three types of resonance modes in the region under the metal layer are identified responsible for the formation of the peak, i.e., a two-dimensional cavity resonance mode, which supports optical transmission, and two in-plane hybrid surface plasmon resonance modes locating on both sides of the peak that suppresses the transmission. Such structures can be applied in advanced photonic devices.

  11. Mid-gap phenomena in chalcogenide glasses and barrier-cluster-heating model

    SciTech Connect (OSTI)

    Banik, Ivan Kubliha, Marián; Lukovičová, Jozefa; Pavlendová, Gabriela

    2015-12-07

    The physical mechanism of photoluminescence spectrum formation of chalcogenide glasses (CHG) belongs to the important unsolved problems in physics of non-crystalline materials. Photoluminescence is an important means of the electron spectrum investigation. PL spectrum in CHG is produced mostly in the middle of the band gap, and its profile is normal - Gaussian. Several features of PL spectra in CHG is still a great mystery. The aim of the paper is to make reader acquainted with the new insight into the problem. In this article we also deal with the issue of clarifying the nature of mid-gap absorption. From the experiments it is known that after excitation of the glass As{sub 2}S{sub 3} (or As{sub 2}Se{sub 3}) with primary radiation from Urbach-tail region the glass will be able to absorb the photons of low energy (IR) radiation from mid-gap region of spectra. This low photon absorption without action of the primary excitation radiation of the higher photon energy is impossible. Mid-gap absorption yields boost in the photoluminescence. The paper gives the reader the new insights into some, until now, unexplained effects and contexts in chalcogenide glasses from the position of barrier-cluster-heating model.

  12. GaNPAs Solar Cells Lattice-Matched To GaP: Preprint

    SciTech Connect (OSTI)

    Geisz, J. F.; Friedman, D. J.; Kurtz, S.

    2002-05-01

    This conference paper describes the III-V semiconductors grown on silicon substrates are very attractive for lower-cost, high-efficiency multijunction solar cells, but lattice-mismatched alloys that result in high dislocation densities have been unable to achieve satisfactory performance. GaNxP1-x-yAsy is a direct-gap III-V alloy that can be grown lattice-matched to Si when y= 4.7x - 0.1. We propose the use of lattice-matched GaNPAs on silicon for high-efficiency multijunction solar cells. We have grown GaNxP1-x-yAsy on GaP (with a similar lattice constant to silicon) by metal-organic chemical vapor phase epitaxy with direct band-gaps in the range of 1.5 to 2.0 eV. We demonstrate the performance of single-junction GaNxP1-x-yAsy solar cells grown on GaP substrates and discuss the prospects for the development of monolithic high-efficiency multijunction solar cells based on silicon substrates.

  13. Wide area continuous offender monitoring

    SciTech Connect (OSTI)

    Hoshen, J.; Drake, G.; Spencer, D.

    1996-11-01

    The corrections system in the U.S. is supervising over five million offenders. This number is rising fast and so are the direct and indirect costs to society. To improve supervision and reduce the cost of parole and probation, first generation home arrest systems were introduced in 1987. While these systems proved to be helpful to the corrections system, their scope is rather limited because they only cover an offender at a single location and provide only a partial time coverage. To correct the limitations of first-generation systems, second-generation wide area continuous electronic offender monitoring systems, designed to monitor the offender at all times and locations, are now on the drawing board. These systems use radio frequency location technology to track the position of offenders. The challenge for this technology is the development of reliable personal locator devices that are small, lightweight, with long operational battery life, and indoors/outdoors accuracy of 100 meters or less. At the center of a second-generation system is a database that specifies the offender`s home, workplace, commute, and time the offender should be found in each. The database could also define areas from which the offender is excluded. To test compliance, the system would compare the observed coordinates of the offender with the stored location for a given time interval. Database logfiles will also enable law enforcement to determine if a monitored offender was present at a crime scene and thus include or exclude the offender as a potential suspect.

  14. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, S.R.

    1990-03-20

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials. 2 figs.

  15. Apparatus for loading a band saw blade

    DOE Patents [OSTI]

    Reeves, Steven R.

    1990-01-01

    A band saw blade is loaded between pairs of guide wheels upon tensioning the blade by guiding the blade between pairs of spaced guide plates which define converging slots that converge toward the guide wheels. The approach is particularly useful in loading blades on underwater band saw machines used to cut radioactive materials.

  16. Superconducting gap evolution in overdoped BaFe₂(As1-xPx)₂ single crystals through nanocalorimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-18

    We report on specific heat measurements on clean overdoped BaFe₂(As1-xPx)₂ single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature γr=C/T|T→0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave α model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of Δ₀~5.3 me V, corresponding to Δ₀/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces tillmore » a value of Δ₀ ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on γr, all samples however show similar behavior [γr(H) - γr (H = 0)∝ Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less

  17. Plant-wide Systems | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Plant-wide Systems Plant-wide Systems Improving the energy efficiency of plant-wide systems can lead to significant savings. Use the software tools, training, and publications listed below to improve performance and save energy. Plant Wide Tools Tools to manage energy DOE eGuide for ISO 50001 DOE eGuide Lite Energy Performance Indicator Plant-Wide Case Studies Alcoa: C-Suite Participation in Energy Efficiency Increases Accountability and Staff Engagement Throughout the Organization Success

  18. Gap Assessment in the Emergency Response Community

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Burtner, Edwin R.; Pike, William A.; Peddicord, Annie M Boe; Minsk, Brian S.

    2010-09-27

    This report describes a gap analysis of the emergency response and management (EM) community, performed during the fall of 2009. Pacific Northwest National Laboratory (PNNL) undertook this effort to identify potential improvements to the functional domains in EM that could be provided by the application of current or future technology. To perform this domain-based gap analysis, PNNL personnel interviewed subject matter experts (SMEs) across the EM domain; to make certain that the analyses reflected a representative view of the community, the SMEs were from a variety of geographic areas and from various sized communities (urban, suburban, and rural). PNNL personnel also examined recent and relevant after-action reports and U.S. Government Accountability Office reports.

  19. Spark gap switch with spiral gas flow

    DOE Patents [OSTI]

    Brucker, John P.

    1989-01-01

    A spark gap switch having a contaminate removal system using an injected gas. An annular plate concentric with an electrode of the switch defines flow paths for the injected gas which form a strong spiral flow of the gas in the housing which is effective to remove contaminates from the switch surfaces. The gas along with the contaminates is exhausted from the housing through one of the ends of the switch.

  20. Bridging the Gaps on Prepaid Utility Service

    Broader source: Energy.gov [DOE]

    Prepaid utility service — which is an alternative payment option in which consumers buy a dollar amount of electricity, and utilities deduct energy usage from that balance as it is used — is one area where these changes converge. The Office of Electricity Delivery and Energy Reliability’s report entitled “Bridging the Gaps on Prepaid Utility Service” examines utilities’ and consumers’ experiences with prepay.

  1. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOE Patents [OSTI]

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  2. J- AND H-BAND IMAGING OF AKARI NORTH ECLIPTIC POLE SURVEY FIELD

    SciTech Connect (OSTI)

    Jeon, Yiseul; Im, Myungshin; Kang, Eugene; Lee, Hyung Mok; Matsuhara, Hideo E-mail: mim@astro.snu.ac.kr

    2014-10-01

    We present the J- and H-band source catalog covering the AKARI North Ecliptic Pole field. Filling the gap between the optical data from other follow-up observations and mid-infrared (MIR) data from AKARI, our near-infrared (NIR) data provides contiguous wavelength coverage from optical to MIR. For the J- and H-band imaging, we used the FLoridA Multi-object Imaging Near-ir Grism Observational Spectrometer on the Kitt Peak National Observatory 2.1m telescope covering a 5.1 deg{sup 2} area down to a 5σ depth of ∼21.6 mag and ∼21.3 mag (AB) for the J and H bands with an astrometric accuracy of 0.''14 and 0.''17 for 1σ in R.A. and decl. directions, respectively. We detected 208,020 sources for the J band and 203,832 sources for the H band. This NIR data is being used for studies including the analysis of the physical properties of infrared sources such as stellar mass and photometric redshifts, and will be a valuable data set for various future missions.

  3. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect (OSTI)

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  4. ARM - Campaign Instrument - s-band-profiler

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    govInstrumentss-band-profiler Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send Campaign Instrument : NOAA S-band (2835 Mhz) Profiler (S-BAND-PROFILER) Instrument Categories Atmospheric Profiling, Cloud Properties Campaigns CRYSTAL-FACE [ Download Data ] Off Site Campaign : various, including non-ARM sites, 2002.06.26 - 2002.08.01 Midlatitude Continental Convective Clouds Experiment (MC3E) [ Download Data ] Southern Great Plains, 2011.04.22 -

  5. ROSS Skills, Knowledge, and Abilities Training Evaluation. Gaps and Recommendations

    SciTech Connect (OSTI)

    Ala, Maureen; Gruidl, Jeremiah; Buddemeier, Brooke

    2015-09-30

    This document describes the development of the ROSS SKAs, the cross-mapping of the SKAs to the available training, identifies gaps in the SKA and training, and provides recommendations to address those gaps.

  6. Interface Ferroelectric Transition near the Gap-Opening Temperature...

    Office of Scientific and Technical Information (OSTI)

    Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell ... Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-Doped SrTiO 3 ...

  7. Vehicle Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C.; Buttner, W.; Rivkin, C.

    2010-02-01

    This report identifies gaps in vehicle codes and standards and recommends ways to fill the gaps, focusing on six alternative fuels: biodiesel, natural gas, electricity, ethanol, hydrogen, and propane.

  8. Buffalo Gap 3 Wind Farm | Open Energy Information

    Open Energy Info (EERE)

    3 Wind Farm Jump to: navigation, search Name Buffalo Gap 3 Wind Farm Facility Buffalo Gap 3 Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner...

  9. Coexistence of a pseudogap and a superconducting gap for the...

    Office of Scientific and Technical Information (OSTI)

    Coexistence of a pseudogap and a superconducting gap for the high - T c superconductor La ... Title: Coexistence of a pseudogap and a superconducting gap for the high - T c ...

  10. Electronic Band Structure And Kondo Coupling in YbRh(2)Si(2)

    SciTech Connect (OSTI)

    Wigger, G.A.; Baumberger, F.; Shen, Z.X.; Yin, Z.P.; Pickett, W.E.; Maquilon, S.; Fisk, Z.; /UC, Davis

    2007-09-26

    The electronic band structure of YbRh{sub 2}Si{sub 2} is calculated in a relativistic framework including correlation corrections and magnetization of the Yb ion and compared to detailed angle-resolved photoemission spectra. The photoemission spectra for LuRh{sub 2}Si{sub 2} are used as reference to identify electronic bands with no f symmetry. The calculated band structure manifests a 4f{sup 13} spin-polarized configuration leaving the unoccupied state at 1.4 eV above the Fermi energy. At the band theory level, the 4f bands are located far below the Fermi level and the anisotropic Coulomb interaction within the 4f shell spreads the multilevel into broader 4f complexes below -2.5 eV. The photoemission spectra obtained on YbRh2Si2 show a clear f-multilevel splitting into j=7/2 and 5/2 excitations. The interaction of the 4f{sub 7/2} levels close to the Fermi energy with two conduction bands shows visible hybridization gaps of 45 and 80 meV, respectively. We discuss the origin of these excitations and provide an analysis according to Anderson's single-impurity model with parameters suggested by the band-structure calculation and the photoemission spectra. Both experiment and theory indicate nearly identical Fermi surfaces for LuRh{sub 2}Si{sub 2} and YbRh{sub 2}Si{sub 2}. The valency of Yb in YbRh{sub 2}Si{sub 2} is estimated to be close to +3.

  11. Control Banding and Nanotechnology Synergist

    SciTech Connect (OSTI)

    Zalk, D; Paik, S

    2009-12-15

    The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with

  12. Fact #609: February 8, 2010 The Transportation Petroleum Gap | Department

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    of Energy 09: February 8, 2010 The Transportation Petroleum Gap Fact #609: February 8, 2010 The Transportation Petroleum Gap In 1989 the transportation sector petroleum consumption surpassed U.S. petroleum production for the first time, creating a gap that must be met with imports of petroleum. By the year 2035, transportation petroleum consumption is expected to grow to more than 17 million barrels per day; at that time, the gap between U.S. production and transportation consumption will be

  13. FAQS Gap Analysis Qualification Card - Waste Management | Department of

    Office of Environmental Management (EM)

    Energy Technical Training FAQS Gap Analysis Qualification Card - Technical Training Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard. Technical Training Gap Analysis Qualification Card (83.77 KB) More Documents & Publications DOE-STD-1179-2004 DOE-HDBK-1078-94 FAQS Reference Guide - Technical Training Energy

    Waste Management FAQS Gap Analysis Qualification Card - Waste Management

  14. Functional Area Qualification Standard Gap Analysis Qualification Cards

    Broader source: Energy.gov [DOE]

    FAQS Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  15. Technical Standards, MELCOR - Gap Analysis - May 3, 2004 | Department of

    Office of Environmental Management (EM)

    Energy MELCOR - Gap Analysis - May 3, 2004 Technical Standards, MELCOR - Gap Analysis - May 3, 2004 May 3, 2004 Software Quality Assurance Improvement Plan: MELCOR Gap Analysis This report documents the outcome of an evaluation of the Software Quality Assurance (SQA) attributes of the MELCOR computer code for leak path factor applications, relative to established software requirements. This evaluation, a "gap analysis," is performed to meet Commitment 4.2.1.3 of the Department of

  16. Minority Serving Institutions (MSIs): Bridging the Gap between Federal

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Agencies and MSIs | Department of Energy Minority Serving Institutions (MSIs): Bridging the Gap between Federal Agencies and MSIs Minority Serving Institutions (MSIs): Bridging the Gap between Federal Agencies and MSIs Different Minority Serving institutions Minority Serving Institutions (MSIs): Bridging the Gap between Federal Agencies and MSIs (1.04 MB) More Documents & Publications Bridging the Gap Between Federal Agencies and MSIs Research and Services at the Alabama A&M

  17. Enterprise-Wide Agreements | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Enterprise-Wide Agreements Enterprise-Wide Agreements hand-819279_960_720.jpg Enterprise-Wide Agreements The IT Acquisition: Enterprise-Wide Agreement (EWA) Program develops policies and procedures that support the identification, acquisition, oversight and compliance of enterprise licenses. The EWA Program's core objectives are to: Maximize IT buying power Reduce the total cost of ownership Streamline the IT total acquisition lifecycle The EWA Program employs a centralized, cross-functional,

  18. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediateband

    SciTech Connect (OSTI)

    Yoshikawa, H. Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C.

    2014-07-07

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using widegap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediateband solar cells (IBSCs) with twostep photonabsorption. The planewave expanded BurtForeman operator ordered 8band kp theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of twostep photonabsorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is latticematched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of twostep photonabsorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  19. Ramona Band of Cahuilla Mission Indians

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    RAMONA RAMONA BAND BAND OF OF CAHUILLA CAHUILLA INDIANS INDIANS Concept and Design for the Ramona Concept and Design for the Ramona Eco Eco - - Tourism Center Tourism Center Tribal History Tribal History The Reservation was established on The Reservation was established on February 10, 1893. February 10, 1893. Ramona is part of the Bear Clan of the Ramona is part of the Bear Clan of the Cahuilla Nation and are descendents of the Cahuilla Nation and are descendents of the Apapatcem Apapatcem

  20. Dipole Bands in {sup 196}Hg

    SciTech Connect (OSTI)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D.; Msezane, B.; Benatar, M.; Mabala, G. K.; Mutshena, K. P.; Federke, M.; Mullins, S. M.; Ncapayi, N. J.; Vymers, P.

    2011-10-28

    High spin states in {sup 196}Hg have been populated in the {sup 198}Pt({alpha},6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  1. Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bands Campaign (RHUBC) D. Turner and E. Mlawer RHUBC Breakout Session 2008 ARM Science Team Meeting 13 March, 2008 Norfolk, Virginia Motivation * Radiative heating/cooling in the mid-troposphere modulate the vertical motions of the atmosphere - This heating/cooling occurs primarily in water vapor absorption bands that are opaque at the surface * Approximately 40% of the OLR comes from the far-IR * Until recently, the observational tools were not available to evaluate the accuracy of the far-IR

  2. Turbine blade tip gap reduction system

    SciTech Connect (OSTI)

    Diakunchak, Ihor S.

    2012-09-11

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  3. Quantum chaos and thermalization in gapped systems

    SciTech Connect (OSTI)

    Rigol, Marcos [Department of Physics, Georgetown University, Washington, DC 20057 (United States); Santos, Lea F. [Department of Physics, Yeshiva University, New York, New York 10016 (United States)

    2010-07-15

    We investigate the onset of thermalization and quantum chaos in finite one-dimensional gapped systems of hard-core bosons. Integrability in these systems is broken by next-nearest-neighbor repulsive interactions, which also generate a superfluid to insulator transition. By employing full exact diagonalization, we study chaos indicators and few-body observables. We show that with increasing system size, chaotic behavior is seen over a broader range of parameters and, in particular, deeper into the insulating phase. Concomitantly, we observe that, as the system size increases, the eigenstate thermalization hypothesis extends its range of validity inside the insulating phase and is accompanied by the thermalization of the system.

  4. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David; Hensley, Dale

    2006-09-12

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  5. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David; Hensley, Dale

    2006-04-04

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz-6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  6. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J; Burchell, Timothy D; Corwin, William R; Fisher, Stephen Eugene; Forsberg, Charles W.; Morris, Robert Noel; Moses, David Lewis

    2008-12-01

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  7. Prediction of a strain-induced conduction-band minimum in embedded quantum dots

    SciTech Connect (OSTI)

    Williamson, A.J.; Zunger, A.; Canning, A.

    1998-02-01

    Free-standing InP quantum dots have previously been theoretically and experimentally shown to have a direct band gap across a large range of experimentally accessible sizes. We demonstrated that when these dots are embedded coherently within a GaP barrier material, the effects of quantum confinement in conjunction with coherent strain suggest there will be a critical diameter of dot ({approx}60 {Angstrom}), above which the dot is direct, type I, and below which it is indirect, type II. However, the strain in the system acts to produce another conduction state with an even lower energy, in which electrons are localized in small pockets at the interface between the InP dot and the GaP barrier. Since this conduction state is GaP X{sub 1c} derived and the highest occupied valence state is InP, {Gamma} derived, the fundamental transition is predicted to be indirect in both real and reciprocal space ({open_quotes}type II{close_quotes}) for all dot sizes. This effect is peculiar to the strained dot, and is absent in the freestanding dot. {copyright} {ital 1998} {ital The American Physical Society}

  8. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  9. Recent experimental results from a long-pulse J-band relativistic klystron amplifier developmental effort

    SciTech Connect (OSTI)

    Kato, K.G.; Crouch, D.D.; Sar, D.R.; Speciale, R.A.; Carlsten, B.E.; Fazio, M.V.; Haynes, W.B.; Stringfield, R.M.

    1994-12-31

    Recent experimental results, supporting simulations, and design modeling are presented from a developmental effort to a produce a long pulse ({approximately}1{mu}s) J-band (5.85-8.2 GHz) relativistic klystron amplifier (RKA) of the high current NRL genealogy. This RKA is designed to operate at approximately 6.6 GHz, with a desired RF output {approximately}700 MW. Conversion of electron beam energy to microwave energy is obtained by a mock magnetically insulated coaxial converter which, in various incarnations, can be made to be either a cavity gap extractor or an inverse cathode.

  10. Band structure anisotropy in semiconductor quantum wells

    SciTech Connect (OSTI)

    Novotny, S.J.

    1999-03-01

    The focus of this research is an investigation of energy band anisotropy in simple quantum well structures. This anisotropy results from the asymmetry of the periodic potential within the crystal lattice. For sufficiently high doping levels, band structure anisotropy is expected to play an important role in the evaluation of the electronic and optical properties of the quantum well structures. The analysis uses a model based on a 6x6 Luttinger-Kohn k.p approach for bulk material valence band structure together with the Envelope Function Approximation. The model is used to analyze Si/SiGe, AlGaAs/GaAs, and GaAs/InGaAs quantum wells for the 001 and the 110 growth directions. The resulting band structures show significant anisotropy for materials grown in both the 110 and 001 directions. In all cases the materials grown in the 110 direction show a more pronounced anisotropy than the materials grown in the 001 directions. For the 001 growth directions, the band structures were effectively isotropic for values of k-parallel less than 0.4 inverse angstrom for Si/SiGe, 0.6 inverse angstrom for GaAs/AlGaAs, and 0.5 inverse angstrom for InGaAs/GaAs.

  11. Modeling fluid flow in deformation bands with stabilized localization...

    Office of Scientific and Technical Information (OSTI)

    Modeling fluid flow in deformation bands with stabilized localization mixed finite elements. Citation Details In-Document Search Title: Modeling fluid flow in deformation bands...

  12. IR Spectral Bands and Performance | Open Energy Information

    Open Energy Info (EERE)

    2013 DOI Not Provided Check for DOI availability: http:crossref.org Online Internet link for IR Spectral Bands and Performance Citation Chris Douglass. IR Spectral Bands...

  13. INFOGRAPHIC: Wide Bandgap Semiconductors | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INFOGRAPHIC: Wide Bandgap Semiconductors INFOGRAPHIC: Wide Bandgap Semiconductors January 21, 2014 - 12:44pm Addthis INFOGRAPHIC: Wide Bandgap Semiconductors MORE RESOURCES Watch the video on WBG semiconductors Read the Advanced Manufacturing Office fact sheet on WBG semiconductors Subscribe to Advanced Manufacturing Office news updates Learn about the Clean Energy Manufacturing Initiative For decades, power electronics - or tiny pieces of equipment such as inverters and rectifiers made of

  14. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell ... kgd H2 produced) Fuel Cell System Cost Transportation projected to (500,000 ...

  15. West Wide Programmatic Environmental Impact Statement Record...

    Open Energy Info (EERE)

    navigation, search OpenEI Reference LibraryAdd to library Legal Document- OtherOther: West Wide Programmatic Environmental Impact Statement Record of Decision (BLM)Legal...

  16. Site-wide Environmental Impact Statement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWEIS Site-wide Environmental Impact Statement We analyze the potential environmental impacts ... and the Department of Energy's NEPA Implementing Procedures (10 CFR part 1021). ...

  17. Site-wide Environmental Impact Statement

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SWEIS Site-wide Environmental Impact Statement We analyze the potential environmental impacts associated with Laboratory operations and facilities. Contact Environmental...

  18. Radioactive Waste Management Complex Wide Review

    Office of Environmental Management (EM)

    This page intentionally blank i Complex-Wide Review of DOE's Radioactive Waste Management ... 1.8 Demonstrated Progress in Radioactive Waste Management ......

  19. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Western ...

  20. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Eastern Interconnection on Electric Resource Planning and Priorities Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation Among States in the Eastern ...

  1. Interconnection-Wide Transmission Planning Initiative: Topic...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    A, Interconnection-Level Analysis and Planning Interconnection-Wide Transmission Planning Initiative: Topic A, Interconnection-Level Analysis and Planning A description of the ...

  2. Interconnection-Wide Transmission Planning Initiative: Topic...

    Energy Savers [EERE]

    the Texas Interconnection Interconnection-Wide Transmission Planning Initiative: Topic B, State Agency Input Regarding Electric Resource and Transmission Planning in the Texas ...

  3. Band alignment at AlN/Si (111) and (001) interfaces

    SciTech Connect (OSTI)

    King, Sean W. Davis, Robert F.; Nemanich, Robert J.

    2015-07-28

    To advance the development of III-V nitride on silicon heterostructure semiconductor devices, we have utilized in-situ x-ray photoelectron spectroscopy (XPS) to investigate the chemistry and valence band offset (VBO) at interfaces formed by gas source molecular beam epitaxy of AlN on Si (001) and (111) substrates. For the range of growth temperatures (600–1050 °C) and Al pre-exposures (1–15 min) explored, XPS showed the formation of Si-N bonding at the AlN/Si interface in all cases. The AlN/Si VBO was determined to be −3.5 ± 0.3 eV and independent of the Si orientation and degree of interfacial Si-N bond formation. The corresponding AlN/Si conduction band offset (CBO) was calculated to be 1.6 ± 0.3 eV based on the measured VBO and band gap for wurtzite AlN. Utilizing these results, prior reports for the GaN/AlN band alignment, and transitive and commutative rules for VBOs, the VBO and CBO at the GaN/Si interface were determined to be −2.7 ± 0.3 and −0.4 ± 0.3 eV, respectively.

  4. High power W-band klystrons

    SciTech Connect (OSTI)

    Caryotakis, George; Scheitrum, Glenn; Jongewaard, Erik; Vlieks, Arnold; Fowkes, Randy [Stanford Linear Accelerator Center, Menlo Park, California 94025 (United States); Li, Jeff [University of California Davis, Davis, California 95616 (United States)

    1999-05-01

    The development of W-band klystrons is discussed. Modeling of the klystron performance predicts 100 kW output power from a single klystron. The permanent magnet focusing and small size of the circuit permit combination of multiple klystrons in a module. A six-klystron module in a single vacuum envelope is expected to produce 500 kW peak power and up to 5 kW average power. The critical issues in the W-band klystron development are the electron beam transport and the fabrication of the klystron circuit. Two microfabrication techniques, EDM and LIGA, are being evaluated to produce the W-band circuit. {copyright} {ital 1999 American Institute of Physics.}

  5. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    SciTech Connect (OSTI)

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil recovery.

  6. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect (OSTI)

    Kunets, Vas. P. Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J.; Mortazavi, M.

    2014-08-28

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  7. Band structure engineering of anatase TiO{sub 2} by metal-assisted P-O coupling

    SciTech Connect (OSTI)

    Wang, Jiajun; Meng, Qiangqiang; Huang, Jing; School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei, Anhui 230601 ; Li, Qunxiang Yang, Jinlong; Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026

    2014-05-07

    In this work, we demonstrate that the metal-assisted P-O coupling is an effective approach to improve the photoelectrochemical properties of TiO{sub 2}. The (Sc + P) and (In + P) codoping effects on electronic structures and photocatalytic activities of anatase TiO{sub 2} are examined by performing hybrid density functional theory calculations. It is found that the coupling of P dopant with the second-nearest neighboring O atom assisted by acceptor metals (Sc/In) leads to the fully occupied and delocalized intermediate bands within the band gap of anatase TiO{sub 2}, which is driven by the P-O antibonding states (π*). This metal-assisted P-O coupling can prevent the recombination of photogenerated electron-hole pairs and effectively reduce the band gap of TiO{sub 2}. Moreover, the band edge alignments in (Sc + P) and (In + P) codoped anatase TiO{sub 2} are desirable for water-splitting. The calculated optical absorption curves indicate that (Sc + P) and (In + P) codoping in anatase TiO{sub 2} can also effectively enhance the visible light absorption.

  8. Sandia National Laboratories: DOE Complex Wide Agreements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Complex Wide Agreements Sandia National Laboratories utilizes complex wide agreements to leverage the annual spending, to yield lower prices, and to provide cost savings to the complex. The Complex agreements utilized by Sandia National Laboratories include: Supply Chain Management Center (SCMC) agreements Integrated Contractor Purchasing TEAM (ICPT) General Services Administration (GSA)

  9. Wide Bandgap Materials | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    1 DOE Hydrogen and Fuel Cells Program, and Vehicle Technologies Program Annual Merit Review and Peer Evaluation ape007_chinthavali_2011_o.pdf (472.25 KB) More Documents & Publications Wide Bandgap Materials Wide Bandgap Materials High Temperature, High Voltage Fully Integrated Gate Driver Circuit

  10. Media Advisory: Site-wide Safety Standards

    Broader source: Energy.gov [DOE]

    Department of Energy to announce two additions to the Hanford Site-wide Safety Standards – a set of 14 areas where Hanford contractors have collaborated to establish one uniform standard to guide safe operations. The latest additions to the Site-wide Safety Standards are Fall Protection and Electrical Safety.

  11. Determination of heterojunction band offsets between CdS bulk and PbS quantum dots using photoelectron spectroscopy

    SciTech Connect (OSTI)

    Bhandari, Khagendra P.; Mahabaduge, Hasitha; Ellingson, Randy J.; Choi, Hyekyoung; Jeong, Sohee

    2014-09-29

    Photoelectron spectroscopy was used to measure the energy discontinuity in the valence band (ΔE{sub V}) of a CdS/PbS quantum dot (QD) heterojunction for which the PbS QD layer was deposited using solution based layer-by-layer dip coating method on top of RF magnetron sputtered CdS. A value of ΔE{sub V} = 1.73 eV was obtained using the Cd 3d and Pb 4f energy levels as references. Given the band gap energies of the CdS and PbS-QD layers, the conduction band offset ΔE{sub C} was determined to be 0.71 eV.

  12. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    SciTech Connect (OSTI)

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; Hybertsen, Mark S.

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulk heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.

  13. Semiconductor-based photoelectrochemical water splitting at the limit of very wide depletion region

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Mingzhao; Lyons, John L.; Yan, Danhua H.; Hybertsen, Mark S.

    2015-11-23

    In semiconductor-based photoelectrochemical (PEC) water splitting, carrier separation and delivery largely relies on the depletion region formed at the semiconductor/water interface. As a Schottky junction device, the trade-off between photon collection and minority carrier delivery remains a persistent obstacle for maximizing the performance of a water splitting photoelectrode. Here, it is demonstrated that the PEC water splitting efficiency for an n-SrTiO3 (n-STO) photoanode is improved very significantly despite its weak indirect band gap optical absorption (α < 10⁴ cm⁻¹), by widening the depletion region through engineering its doping density and profile. Graded doped n-SrTiO3 photoanodes are fabricated with their bulkmore » heavily doped with oxygen vacancies but their surface lightly doped over a tunable depth of a few hundred nanometers, through a simple low temperature re-oxidation technique. The graded doping profile widens the depletion region to over 500 nm, thus leading to very efficient charge carrier separation and high quantum efficiency (>70%) for the weak indirect transition. As a result, this simultaneous optimization of the light absorption, minority carrier (hole) delivery, and majority carrier (electron) transport by means of a graded doping architecture may be useful for other indirect band gap photocatalysts that suffer from a similar problem of weak optical absorption.« less

  14. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOE Patents [OSTI]

    Williamson, Rodney L.; Zanner, Frank J.; Grose, Stephen M.

    1998-01-01

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap.

  15. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOE Patents [OSTI]

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1998-01-13

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap. 4 figs.

  16. Cabazon Band of Mission Indians- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Cabazon Band of Mission Indians' long-range goals are to become energy self-sufficient, foster economic diversity, grow jobs, and improve the well-being of members of the tribe as well as those in its region of Southern California.

  17. Closing Gaps in Modeling Multifamily Retrofits | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closing Gaps in Modeling Multifamily Retrofits Closing Gaps in Modeling Multifamily Retrofits This presentation was delivered at the U.S. Department of Energy Building America Technical Update meeting on April 29-30, 2013, in Denver, Colorado. cq6_closing_gaps_multifamily_dentz.pdf (1.61 MB) More Documents & Publications Critical Question #6: What are the Challenges and Solutions for Modeling Multifamily Buildings? Building America Webinar: Central Multifamily Water Heating Systems -

  18. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard; Perez, Danielle

    2014-10-01

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  19. Summary of Gaps and Barriers for Implementing Residential Building Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Efficiency Strategies | Department of Energy Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies This report presents the key gaps and barriers to implementing residential energy efficiency strategies in the U.S. market, as identified in sessions at the U.S. Department of Energy's Building America 2010 Residential Energy Efficiency Meeting held in Denver, Colorado,

  20. Pseudogap and Superconducting Gap in High-Temperature Superconductors

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Pseudogap and Superconducting Gap in High-Temperature Superconductors Two decades after the discovery of first high temperature superconductors, the microscopic mechanism of high-Tc superconductivity remains elusive. In conventional superconductors, it has been well established that electrons form so-called "Cooper pairs" to give rise to superconductivity. The pair binding manifests itself as an energy gap in many spectroscopic measurements. This energy gap, known as superconducting

  1. X-Band Photoinjector Beam Dynamics

    SciTech Connect (OSTI)

    Zhou, Feng; Adolphsen, Chris; Ding, Yuantao; Li, Zenghai; Vlieks, Arnold; /SLAC

    2011-12-13

    SLAC is studying the feasibility of using an X-band RF photocathode gun to produce low emittance bunches for applications such as a mono-energetic MeV {gamma} ray source (in collaboration with LLNL) and a photoinjector for a compact FEL. Beam dynamics studies are being done for a configuration consisting of a 5.5-cell X-band gun followed by several 53-cell high-gradient X-band accelerator structures. A fully 3D program, ImpactT, is used to track particles taking into account space charge forces, short-range longitudinal and transverse wakefields, and the 3D rf fields in the structures, including the quadrupole component of the couplers. The effect of misalignments of the various elements, including the drive-laser, gun, solenoid and accelerator structures, are evaluated. This paper presents these results and estimates of the expected bunch emittance vs cathode gradient, and the effects of mixing between the fundamental and off-frequency longitudinal modes. An X-band gun at SLAC has been shown to operate reliably with a 200 MV/m acceleration gradient at the cathode, which is nearly twice the 115 MV/m acceleration gradient in the LCLS gun. The higher gradient should roughly balance the space charge related transverse emittance growth for the same bunch charge but provide a 3-4 times shorter bunch length. The shorter length would make the subsequent bunch compression easier and allow for a more effective use of emittance exchange. Such a gun can also be used with an X-band linac to produce a compact FEL or g ray source that would require rf sources of only one frequency for beam generation and acceleration. The feasibility of using an X-band rf photocathode gun and accelerator structures to generate high quality electron beams for compact FELs and g ray sources is being studied at SLAC. Results from the X-band photoinjector beam dynamics studies are reported in this paper.

  2. FAQS Gap Analysis Qualification Card – Radiation Protection

    Office of Energy Efficiency and Renewable Energy (EERE)

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  3. FAQS Gap Analysis Qualification Card – Civil Structural Engineering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  4. FAQS Gap Analysis Qualification Card – Construction Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  5. Info-Gap Analysis of Truncation Errors in Numerical Simulations...

    Office of Scientific and Technical Information (OSTI)

    Title: Info-Gap Analysis of Truncation Errors in Numerical Simulations. Authors: Kamm, James R. ; Witkowski, Walter R. ; Rider, William J. ; Trucano, Timothy Guy ; Ben-Haim, Yakov. ...

  6. Info-Gap Analysis of Numerical Truncation Errors. (Conference...

    Office of Scientific and Technical Information (OSTI)

    Title: Info-Gap Analysis of Numerical Truncation Errors. Authors: Kamm, James R. ; Witkowski, Walter R. ; Rider, William J. ; Trucano, Timothy Guy ; Ben-Haim, Yakov. Publication ...

  7. Catalysis by Design: Bridging the Gap between Theory and Experiments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research ...

  8. GAPS Power Infrastructure Pvt Ltd | Open Energy Information

    Open Energy Info (EERE)

    Pvt Ltd Jump to: navigation, search Name: GAPS Power & Infrastructure Pvt Ltd. Place: Mumbai, Maharashtra, India Zip: 400098 Sector: Biomass Product: Mumbai-based biomass project...

  9. FAQS Gap Analysis Qualification Card – Environmental Restoration

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  10. FAQS Gap Analysis Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  11. FAQS Gap Analysis Qualification Card – Facility Representative

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  12. FAQS Gap Analysis Qualification Card – Senior Technical Safety Manager

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  13. FAQS Gap Analysis Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  14. Catalysis by Design: Bridging the Gap Between Theory and Experiments...

    Broader source: Energy.gov (indexed) [DOE]

    Catalysis by Design: Bridging the Gap between Theory and Experiments Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Oxidation Catalyst for Diesel ...

  15. FAQS Gap Analysis Qualification Card – General Technical Base

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  16. Minority Serving Institutions (MSIs): Bridging the Gap between...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    More Documents & Publications Bridging the Gap Between Federal Agencies and MSIs Research and Services at the Alabama A&M University Research Institute Office of Energy Efficiency ...

  17. FAQS Gap Analysis Qualification Card – Mechanical Systems

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  18. FAQS Gap Analysis Qualification Card – Fire Protection Engineering

    Office of Energy Efficiency and Renewable Energy (EERE)

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  19. Toward Robust Climate Baselining: Objective Assessment of Climate Change Using Widely Distributed Miniaturized Sensors for Accurate World-Wide Geophysical Measurements

    DOE R&D Accomplishments [OSTI]

    Teller, E.; Leith, C.; Canavan, G.; Marion, J.; Wood, L.

    2001-11-13

    A gap-free, world-wide, ocean-, atmosphere-, and land surface-spanning geophysical data-set of three decades time-duration containing the full set of geophysical parameters characterizing global weather is the scientific perquisite for defining the climate; the generally-accepted definition in the meteorological community is that climate is the 30-year running-average of weather. Until such a tridecadal climate baseline exists, climate change discussions inevitably will have a semi-speculative, vs. a purely scientific, character, as the baseline against which changes are referenced will at least somewhat uncertain.

  20. DOE-wide NEPA Contracting Update

    Broader source: Energy.gov [DOE]

    A DOE team is evaluating the offers received in response to a Request for Quotations to provide NEPA support services. The scope of the solicitation is similar to that of the DOE-wide NEPA support...

  1. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Broader source: Energy.gov (indexed) [DOE]

    Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications" held on October 21, 2014. ... Vehicle Technologies Office Merit Review 2016: Advanced Low-Cost SiC and GaN Wide ...

  2. Sandia Wide-Bandgap Semiconductor Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... In response to increased interest in wide-bandgap (WBG) semiconductor projects by DOE, on October 30, 2012, Sandia hosted a one-day brain-storming workshop aimed at identifying the ...

  3. S-Band Loads for SLAC Linac

    SciTech Connect (OSTI)

    Krasnykh, A.; Decker, F.-J.; LeClair, R.; /INTA Technologies, Santa Clara

    2012-08-28

    The S-Band loads on the current SLAC linac RF system were designed, in some cases, 40+ years ago to terminate 2-3 MW peak power into a thin layer of coated Kanthal material as the high power absorber [1]. The technology of the load design was based on a flame-sprayed Kanthal wire method onto a base material. During SLAC linac upgrades, the 24 MW peak klystrons were replaced by 5045 klystrons with 65+ MW peak output power. Additionally, SLED cavities were introduced and as a result, the peak power in the current RF setup has increased up to 240 MW peak. The problem of reliable RF peak power termination and RF load lifetime required a careful study and adequate solution. Results of our studies and three designs of S-Band RF load for the present SLAC RF linac system is discussed. These designs are based on the use of low conductivity materials.

  4. X-Band RF Gun Development

    SciTech Connect (OSTI)

    Vlieks, Arnold; Dolgashev, Valery; Tantawi, Sami; Anderson, Scott; Hartemann, Fred; Marsh, Roark; /LLNL, Livermore

    2012-06-22

    In support of the MEGa-ray program at LLNL and the High Gradient research program at SLAC, a new X-band multi-cell RF gun is being developed. This gun, similar to earlier guns developed at SLAC for Compton X-ray source program, will be a standing wave structure made of 5.5 cells operating in the pi mode with copper cathode. This gun was designed following criteria used to build SLAC X-band high gradient accelerating structures. It is anticipated that this gun will operate with surface electric fields on the cathode of 200 MeV/m with low breakdown rate. RF will be coupled into the structure through a final cell with symmetric duel feeds and with a shape optimized to minimize quadrupole field components. In addition, geometry changes to the original gun, operated with Compton X-ray source, will include a wider RF mode separation, reduced surface electric and magnetic fields.

  5. HIGH CURRENT L-BAND LINAC

    SciTech Connect (OSTI)

    S. RUSSELL; B. CARLSTEN; J. GOETTEE

    2001-02-01

    The Sub-Picosecond Accelerator (SPA) at the Los Alamos National Laboratory is an L-band photoinjector. Using magnetic compression, the SPA routinely compresses 8 MeV, 1 nC per bunch electron beams from an initial temporal FWHM bunch length of 20 ps to less than 1 ps. In recent plasma wakefield accelerator experiments, we have compressed a 2 nC per bunch electron beam to an approximate temporal length of 1 ps.

  6. Permanent magnet focused X-band photoinjector

    DOE Patents [OSTI]

    Yu, David U. L.; Rosenzweig, James

    2002-09-10

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  7. Agua Caliente Band - Strategic Energy Plan Development

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STRATEGIC ENERGY PLAN DEVELOPMENT Agua Caliente Band of Cahuilla Indians Agua Caliente Indian Reservation Program Overview GOALS * Establishment of a Comprehensive Tribal Energy Policy * Incorporate Energy Efficiency, Renewable Resources into Tribal Economic Development Framework * Capture Economic and Environmental Benefits While Maintaining Respect for Tribal Culture and Traditions PROGRAM OVERVIEW Goals * Create a Living Document That Will Be Responsive to the Planning Needs of the Tribe *

  8. 12. mu. m band tunable ammonia laser

    SciTech Connect (OSTI)

    Li Yuteh; Kuang Ichung; Hsun Hungtao

    1987-01-01

    The 9.4 ..mu..m R(30) line from a TEA-CO/sub 2/ laser was used to pump a NH/sub 3/ laser. Tunable NH/sub 3/ laser emission in the 12 ..mu..m band has been obtained. The output energy at 12.247, 12.261, and 12.079 ..mu..m is 18.6, 23, and 26 mJ, respectively.

  9. Radiative Heating in Underexplored Bands Campaign (RHUBC)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Underexplored Bands Campaign (RHUBC) Feb 22 - Mar 14, 2007 Dave Turner, Eli Mlawer RHUBC Breakout Session ARM Science Team Meeting Monterey, California 27 March 2007 Not a Lot of Time Between IOP and STM! RHUBC Motivation * Radiative cooling due to water vapor in mid- to-upper trop contribute significantly to the dynamical processes and radiative balance the regulate Earth's climate * ~40% of the OLR comes from far-IR (wavelengths > 15 µm) * Far-IR has not been well studied because: -

  10. Manzanita Band of Mission Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Manzanita Band of Mission Indians ("the tribe") has long recognized that its reservation has an abundant wind resource that could be commercially utilized to its benefit. The tribe is now investigating the feasibility of commercial scale development of a wind power project on tribal lands. The proposed project is a joint effort between the tribe and its subcontractor and consultant, SeaWest Consulting.

  11. W-Band Sheet Beam Klystron Simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R.; /SLAC; Smithe, D.N.; /Mission Res., Newington

    2005-09-12

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat} {approx} {lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focusing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35% beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry.

  12. W-band sheet beam klystron simulation

    SciTech Connect (OSTI)

    Colby, E.R.; Caryotakis, G.; Fowkes, W.R. [Stanford Linear Accelerator Center, 2575 Sand Hill Rd., Menlo Park, California 94025 (United States); Smithe, D.N. [Mission Research Corporation, 8560 Cinderbed Road, Ste. 700, Newington, Virginia 22122 (United States)

    1999-05-01

    With the development of ever higher energy particle accelerators comes the need for compactness and high gradient, which in turn require very high frequency high power rf sources. Recent development work in W-band accelerating techniques has spurred the development of a high-power W-band source. Axisymmetric sources suffer from fundamental power output limitations (P{sub sat}{approximately}{lambda}{sup 2}) brought on by the conflicting requirements of small beam sizes and high beam current. The sheet beam klystron allows for an increase in beam current without substantial increase in the beam current density, allowing for reduced cathode current densities and focussing field strengths. Initial simulations of a 20:1 aspect ratio sheet beam/cavity interaction using the 3 dimensional particle-in-cell code Magic3D have demonstrated a 35{percent} beam-power to RF power extraction efficiency. Calculational work and numerical simulations leading to a prototype W-band sheet beam klystron will be presented, together with preliminary cold test structure studies of a proposed RF cavity geometry. {copyright} {ital 1999 American Institute of Physics.}

  13. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    SciTech Connect (OSTI)

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; MacDonald, Elizabeth A.; Reeves, Geoffrey D.; Skoug, Ruth M.; Winske, Dan

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a banded chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.

  14. W-band ARM Cloud Radar (WACR) Update and Status

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-band ARM Cloud Radar (WACR) Update and Status PopStefanija, Ivan ProSensing, Inc. Mead, ... Widener, Kevin Pacific Northwest National Laboratory Category: Instruments Two W-band ARM ...

  15. W-Band ARM Cloud Radar - Specifications and Design

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    W-Band ARM Cloud Radar - Specifications and Design K. B. Widener Pacific Northwest ... to develop and deploy the W-band ARM Cloud Radar (WACR) at the SGP central facility. ...

  16. G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value...

    Office of Scientific and Technical Information (OSTI)

    G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) Value-Added Product Citation Details In-Document Search Title: G-Band Vapor Radiometer Precipitable Water Vapor (GVRPWV) ...

  17. Project Reports for Campo Band of Mission Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Campo Band of Mission Indians ("Band") goal is to develop a 300 MW wind energy project ("Kumeyaay Wind II") in two phases over the next two to five years.

  18. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  19. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, Herbert; Valenzuela, Javier A.; Nutt, William E.

    1991-07-23

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  20. W-Band Sheet Beam Klystron Design

    SciTech Connect (OSTI)

    Scheitrum, G.; Caryotakis, G.; Burke, A.; Jensen, A.; Jongewaard, E.a Krasnykh, A.; Neubauer, M.; Phillips, R.; Rauenbuehler, K.; /SLAC

    2011-11-11

    Sheet beam devices provide important advantages for very high power, narrow bandwidth RF sources like accelerator klystrons [1]. Reduced current density and increased surface area result in increased power capabi1ity, reduced magnetic fields for focusing and reduced cathode loading. These advantages are offset by increased complexity, beam formation and transport issues and potential for mode competition in the ovennoded cavities and drift tube. This paper will describe the design issues encountered in developing a 100 kW peak and 2 kW average power sheet beam k1ystron at W-band including beam formation, beam transport, circuit design, circuit fabrication and mode competition.

  1. Universal EUV in-band intensity detector

    DOE Patents [OSTI]

    Berger, Kurt W.

    2004-08-24

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  2. Cabazon Band of Mission Indians- 2003 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    Strategic energy planning effort to assist in achieving the tribe's primary goals of economic diversity, economic self-sufficiency, and protecting the health and welfare of tribal members. The Cabazon Band Reservation, located on four sections of non-contiguous land on the eastern half of the Coachella Valley in Riverside County is approximately 25 miles east of Palm Springs, comprises 1500 acres and currently has the seventh highest residential electricity rates among U.S. Native American reservations. The Strategic Energy Plan will enable the tribe to make informed decisions in creating and conducting an effective energy management program for their people.

  3. Morongo Band of Cahuilla Mission Indians- 2006 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Southwest Tribal Energy Consortium, represented by the Morongo Band, is comprised of tribes in California, Arizona and New Mexico.

  4. Aroostook Band of Micmacs - Strategic Energy Planning Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Presented by: Fred Corey Environmental Director October 2006 Aroostook Band of Micmacs Overview * About the Aroostook Band of Micmacs * Project Background and Introduction * Project Goals and Objectives * Summary of Report * Vision Statement * Discussion on Vision and Plan * Next Steps Aroostook Band of Micmacs Aroostook Band of Micmacs * Federally Recognized by Congress in 1991 * 1,000 Enrolled Members * Largest Maritime Tribe in Eastern Canada (50,000+ Members, 27 Reserves) * Tribal

  5. Band excitation method applicable to scanning probe microscopy

    SciTech Connect (OSTI)

    Jesse, Stephen; Kalinin, Sergei V.

    2015-08-04

    Scanning probe microscopy may include a method for generating a band excitation (BE) signal and simultaneously exciting a probe at a plurality of frequencies within a predetermined frequency band based on the excitation signal. A response of the probe is measured across a subset of frequencies of the predetermined frequency band and the excitation signal is adjusted based on the measured response.

  6. Excitation of Banded Whistler Waves in the Magnetosphere

    SciTech Connect (OSTI)

    Gary, S. Peter; Liu, Kaijun; Winske, Dan

    2012-07-13

    Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.

  7. W-band free-electron masers

    SciTech Connect (OSTI)

    Freund, H. P. [Science Applications International Corp., McLean, Virginia 22102 (United States); Jackson, R. H.; Danly, B. G.; Levush, B. [Naval Research Laboratory, Washington, District of Columbia 20375 (United States)

    1999-05-07

    Theoretical analyses of high power W-band (i.e., {approx_equal}94 GHz) free-electron maser amplifiers are presented for a helical wiggler/cylindrical waveguide configuration using the three-dimensional slow-time-scale ARACHNE simulation code [9]. The geometry treated by ARACHNE is that of an electron beam propagating through the cylindrical waveguide subject to a helical wiggler and an axial guide magnetic field. Two configurations are discussed. The first is the case of a reversed-guide field geometry where the guide field is oriented antiparallel to the helicity of the wiggler field. Using a 330 kV/20 A electron beam, efficiencies of the order of 7% are calculated with a bandwidth (FWHM) of 5 GHz. The second example employs a strong guide field of 20 kG oriented parallel to the helicity of the wiggler. Here, efficiencies of greater than 8% are possible with a FWHM bandwidth of 4.5 GHz using a 300 kV/20 A electron beam. A normalized emittance of 95 mm-mrad is assumed in both cases, and no beam losses are observed for either case. Both cases assume interaction with the fundamental TE{sub 11} mode, which has acceptably low losses in the W-band.

  8. Interface Ferroelectric Transition near the Gap-Opening Temperature...

    Office of Scientific and Technical Information (OSTI)

    Interface Ferroelectric Transition near the Gap-Opening Temperature in a Single-Unit-Cell FeSe Film Grown on Nb-DopedSrTiO3Substrate Citation Details In-Document Search This...

  9. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2013-03-05

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  10. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2012-02-07

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  11. Enhanced Superconducting Gaps in Trilayer High-Temperature Bi...

    Office of Scientific and Technical Information (OSTI)

    ...-Temperature Bi (2) Sr (2) Ca (2) Cu (3) O (10+delta) Cuprate Superconductor Citation Details In-Document Search Title: Enhanced Superconducting Gaps in Trilayer High-Temperature ...

  12. Proper Sustainability: GAP Grant Proposal Work Plan Strategy Webinar

    Broader source: Energy.gov [DOE]

    In this webinar I will discuss the new GAP grant requirements for tribal environmental programs and strategies for crafting a work plan that focuses on capacity building activities.  My goal is to...

  13. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V. Bogy, David B.

    2014-02-10

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  14. Bridging the Gap between Fundamental Physics and Chemistry and Applied

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Models for HCCI Engines | Department of Energy Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines Bridging the Gap between Fundamental Physics and Chemistry and Applied Models for HCCI Engines 2005 Diesel Engine Emissions Reduction (DEER) Conference Presentations and Posters 2005_deer_assanis.pdf (1.42 MB) More Documents & Publications Computationally Efficient Modeling of High-Efficiency Clean Combustion Engines Modeling of HCCI and PCCI

  15. CHP: Connecting the Gap between Markets and Utility Interconnection and

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tariff Practices, 2006 | Department of Energy Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 The adoption of combined heat and power (CHP) systems by American industries has made substantial strides in the last few years. The purpose of this report is threefold: one, to expose still existent barriers to entry for proposed CHP facilities; secondarily, to

  16. Two-dimensional topological crystalline insulator phase in Sb/Bi planar honeycomb with tunable Dirac gap

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hsu, Chia -Hsiu; Huang, Zhi -Quan; Crisostomo, Christian P.; Yao, Liang -Zi; Chuang, Feng -Chuan; Liu, Yu -Tzu; Wang, Baokai; Hsu, Chuang -Han; Lee, Chi -Cheng; Lin, Hsin; et al

    2016-01-14

    We predict planar Sb/Bi honeycomb to harbor a two-dimensional (2D) topological crystalline insulator (TCI) phase based on first-principles computations. Although buckled Sb and Bi honeycombs support 2D topological insulator (TI) phases, their structure becomes planar under tensile strain. The planar Sb/Bi honeycomb structure restores the mirror symmetry, and is shown to exhibit non-zero mirror Chern numbers, indicating that the system can host topologically protected edge states. Our computations show that the electronic spectrum of a planar Sb/Bi nanoribbon with armchair or zigzag edges contains two Dirac cones within the band gap and an even number of edge bands crossing themore » Fermi level. Lattice constant of the planar Sb honeycomb is found to nearly match that of hexagonal-BN. As a result, the Sb nanoribbon on hexagonal-BN exhibits gapped edge states, which we show to be tunable by an out-of the-plane electric field, providing controllable gating of edge state important for device applications.« less

  17. Thematic World Wide Web Visualization System

    Energy Science and Technology Software Center (OSTI)

    1996-10-10

    WebTheme is a system designed to facilitate world wide web information access and retrieval through visualization. It consists of two principal pieces, a WebTheme Server which allows users to enter in a query and automatocally harvest and process information of interest, and a WebTheme browser, which allows users to work with both Galaxies and Themescape visualizations of their data within a JAVA capable world wide web browser. WebTheme is an Internet solution, meaning that accessmore » to the server and the resulting visualizations can all be performed through the use of a WWW browser. This allows users to access and interact with SPIRE (Spatial Paradigm for Information Retrieval and Exploration) based visualizations through a web browser regardless of what computer platforms they are running on. WebTheme is specifically designed to create databases by harvesting and processing WWW home pages available on the Internet.« less

  18. Hydrogeologic Model for the Gable Gap Area, Hanford Site

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Thorne, Paul D.; Williams, Bruce A.; Last, George V.; Thomas, Gregory S.; Thompson, Michael D.; Ludwig, Jami L.; Lanigan, David C.

    2010-09-30

    Gable Gap is a structural and topographic depression between Gable Mountain and Gable Butte within the central Hanford Site. It has a long and complex geologic history, which includes tectonic uplift synchronous with erosional downcutting associated with the ancestral Columbia River during both Ringold and Cold Creek periods, and by the later Ice Age (mostly glacial Lake Missoula) floods. The gap was subsequently buried and partially backfilled by mostly coarse-grained, Ice Age flood deposits (Hanford formation). Erosional remnants of both the Ringold Formation and Cold Creek unit locally underlie the high-energy flood deposits. A large window exists in the gap where confined basalt aquifers are in contact with the unconfined suprabasalt aquifer. Several paleochannels, of both Hanford and Ringold Formation age, were eroded into the basalt bedrock across Gable Gap. Groundwater from the Central Plateau presently moves through Gable Gap via one or more of these shallow paleochannels. As groundwater levels continue to decline in the region, groundwater flow may eventually be cut off through Gable Gap.

  19. Efficient Wide Area Data Transfer Protocols

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Efficient Wide Area Data Transfer Protocols for 100 Gbps Networks and Beyond Ezra Kissel School of Informatics and Computing Indiana University Bloomington, IN 47405 ezkissel@indiana.edu Martin Swany School of Informatics and Computing Indiana University Bloomington, IN 47405 swany@iu.edu Brian Tierney Lawrence Berkeley National Laboratory Berkeley, CA 94720 bltierney@lbl.gov Eric Pouyoul Lawrence Berkeley National Laboratory Berkeley, CA 94720 epouyoul@lbl.gov Due to a number of recent

  20. Environmentally Benign Electrolytes With Wide Electrochemical Windows -

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Innovation Portal Environmentally Benign Electrolytes With Wide Electrochemical Windows DOE Grant Recipients Arizona Technology Enterprises Contact Arizona Technology Enterprises About This Technology Technology Marketing SummaryAs mobile electronics continue to evolve, the need for safe, long-lasting rechargeable batteries has grown tremendously. In the search for suitable materials from which to construct high energy density solid state batteries, one of the principal obstacles has

  1. Hybrid Band effects program (Lockheed Martin shared vision CRADA)

    SciTech Connect (OSTI)

    Bacon, L. D.

    2012-03-01

    Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.

  2. Fine structure on the green band in ZnO

    SciTech Connect (OSTI)

    Reynolds, D. C.; Look, D. C.; Jogai, B.

    2001-06-01

    An emission band at 2.4 eV, called the green band, is observed in most ZnO samples, no matter what growth technique is used. Sometimes this band includes fine structure, which consists mainly of doublets, repeated with a longitudinal-optical-phonon-energy spacing (72 meV). We have developed a vibronic model for the green band, based on transitions from two separate shallow donors to a deep acceptor. The donors, at energies 30 and 60 meV from the conduction-band edge, respectively, are also found from Hall-effect measurements. {copyright} 2001 American Institute of Physics.

  3. Eastern Band of Cherokee Strategic Energy Plan

    SciTech Connect (OSTI)

    Souther Carolina Institute of energy Studies-Robert Leitner

    2009-01-30

    The Eastern Band of Cherokee Indians was awarded a grant under the U.S. Department of Energy Tribal Energy Program (TEP) to develop a Tribal Strategic Energy Plan (SEP). The grant, awarded under the “First Steps” phase of the TEP, supported the development of a SEP that integrates with the Tribe’s plans for economic development, preservation of natural resources and the environment, and perpetuation of Tribal heritage and culture. The Tribe formed an Energy Committee consisting of members from various departments within the Tribal government. This committee, together with its consultant, the South Carolina Institute for Energy Studies, performed the following activities: • Develop the Tribe’s energy goals and objectives • Establish the Tribe’s current energy usage • Identify available renewable energy and energy efficiency options • Assess the available options versus the goals and objectives • Create an action plan for the selected options

  4. Mississippi Band of Choctaw Indians- 2002 Project

    Broader source: Energy.gov [DOE]

    The Mississippi Band of Choctaw Indians (MBCI) always seeks new opportunities to diversify its economy and create new career opportunities for tribal members, which is the purpose of this feasibility study. The MBCI will study the feasibility of locating a renewable energy installation on tribal lands. The technologies to be utilized in the renewable energy installation will be those that can readily handle poultry litter, either alone or in combination with wood residues. The purpose of the study is to determine whether such an installation can be both economically sustainable and consistent with the cultural, social, and economic goals of the tribe. The feasibility study will result in the development of a thorough business plan that will allow the MBCI to make an informed decision regarding this project.

  5. WIRELESS MINE-WIDE TELECOMMUNICATIONS TECHNOLOGY

    SciTech Connect (OSTI)

    Zvi H. Meiksin

    2004-03-01

    A comprehensive mine-wide, two-way wireless voice and data communication system for the underground mining industry was developed. The system achieves energy savings through increased productivity and greater energy efficiency in meeting safety requirements within mines. The mine-wide system is comprised of two interfaced subsystems: a through-the-earth communications system and an in-mine communications system. The mine-wide system permits two-way communication among underground personnel and between underground and surface personnel. The system was designed, built, and commercialized. Several systems are in operation in underground mines in the United States. The use of these systems has proven they result in considerable energy savings. A system for tracking the location of vehicles and people within the mine was also developed, built and tested successfully. Transtek's systems are being used by the National Institute of Occupational Safety and Health (NIOSH) in their underground mine rescue team training program. This project also resulted in a spin-off rescue team lifeline and communications system. Furthermore, the project points the way to further developments that can lead to a GPS-like system for underground mines allowing the use of autonomous machines in underground mining operations, greatly reducing the amount of energy used in these operations. Some products developed under this program are transferable to applications in fields other than mining. The rescue team system is applicable to use by first responders to natural, accidental, or terrorist-caused building collapses. The in-mine communications system can be installed in high-rise buildings providing in-building communications to security and maintenance personnel as well as to first responders.

  6. Whistler anisotropy instabilities as the source of banded chorus: Van Allen Probes observations and particle-in-cell simulations

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Fu, Xiangrong; Cowee, Misa M.; Friedel, Reinhard H.; Funsten, Herbert O.; Gary, S. Peter; Hospodarsky, George B.; Kletzing, Craig; Kurth, William; Larsen, Brian A.; Liu, Kaijun; et al

    2014-10-22

    Magnetospheric banded chorus is enhanced whistler waves with frequencies ωr < Ωe, where Ωe is the electron cyclotron frequency, and a characteristic spectral gap at ωr ≃ Ωe/2. This paper uses spacecraft observations and two-dimensional particle-in-cell simulations in a magnetized, homogeneous, collisionless plasma to test the hypothesis that banded chorus is due to local linear growth of two branches of the whistler anisotropy instability excited by two distinct, anisotropic electron components of significantly different temperatures. The electron densities and temperatures are derived from Helium, Oxygen, Proton, and Electron instrument measurements on the Van Allen Probes A satellite during a bandedmore » chorus event on 1 November 2012. The observations are consistent with a three-component electron model consisting of a cold (a few tens of eV) population, a warm (a few hundred eV) anisotropic population, and a hot (a few keV) anisotropic population. The simulations use plasma and field parameters as measured from the satellite during this event except for two numbers: the anisotropies of the warm and the hot electron components are enhanced over the measured values in order to obtain relatively rapid instability growth. The simulations show that the warm component drives the quasi-electrostatic upper band chorus and that the hot component drives the electromagnetic lower band chorus; the gap at ~Ωe/2 is a natural consequence of the growth of two whistler modes with different properties.« less

  7. Concave nanomagnets with widely tunable anisotropy

    DOE Patents [OSTI]

    Lambson, Brian; Gu, Zheng; Carlton, David; Bokor, Jeffrey

    2014-07-01

    A nanomagnet having widely tunable anisotropy is disclosed. The disclosed nanomagnet is a magnetic particle with a convex shape having a first magnetically easy axis. The convex shape is modified to include at least one concavity to urge a second magnetically easy axis to form substantially offset from the first magnetically easy axis. In at least one embodiment, the convex shape is also modified to include at least one concavity to urge a second magnetically easy axis to form with a magnetic strength substantially different from the first magnetically easy axis.

  8. Lac Courte Oreilles Band - Energy Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Location of Lac Courte Oreilles * The Lac Courte Oreilles (LCO) Reservation is in Northern Wisconsin, 90 miles from Duluth, Minnesota and 11 miles from Hayward. About Lac Courte Oreilles * The reservation is presently 76,465 acres and is 15 miles wide. * We have a seven member Tribal Governing Board with four year terms. * LCO's membership is about 6,700 with nearly half of its members residing on or near the reservation * There are 25 distinctly different communities within the reservation for

  9. NGNP Project Regulatory Gap Analysis for Modular HTGRs

    SciTech Connect (OSTI)

    Wayne Moe

    2011-09-01

    The Next Generation Nuclear Plant (NGNP) Project Regulatory Gap Analysis (RGA) for High Temperature Gas-Cooled Reactors (HTGR) was conducted to evaluate existing regulatory requirements and guidance against the design characteristics specific to a generic modular HTGR. This final report presents results and identifies regulatory gaps concerning current Nuclear Regulatory Commission (NRC) licensing requirements that apply to the modular HTGR design concept. This report contains appendices that highlight important HTGR licensing issues that were found during the RGA study. The information contained in this report will be used to further efforts in reconciling HTGR-related gaps in the NRC licensing structure, which has to date largely focused on light water reactor technology.

  10. A Fixed Gap APPLE II Undulator for SLS

    SciTech Connect (OSTI)

    Schmidt, T.; Imhof, A.; Ingold, G.; Jakob, B.; Vollenweider, C.

    2007-01-19

    To vary the polarization vector of an APPLE II undulator continuously from 0 - 180 deg., all four magnet arrays need to be movable. Following the adjustable-phase undulator approach by R. Carr, a 3.4 m long fixed gap undulator for SLS with a gap of 11.6 mm has been constructed. It will be installed in fall 2006. The gap drive is replaced by a pair-wise shift of the magnet arrays to change the energy, while the polarization is changed by shifts of diagonal arrays. The high injection efficiency and standard operation top-up mode at the SLS allows this simplified undulator design. The design as well as the operational aspects will be discussed.

  11. Aroostook Band of Micmacs - Strategic Enegy Planning Initiative

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Initiative Presented by: Russell Dennis Economic Development Director Presented to: US DOE Tribal Energy Program FY05 Program Review Meeting Aroostook Band of Micmacs Presentation Overview * ABM Background and Demographics * Geographic Area * Energy Perspective * Project Goals and Objectives * Project Activities * Project Partners * Next Steps Aroostook Band of Micmacs ABM Background and Demographics * 1,000 Members in ABM * Micmac Nation: 7 districts of 29 bands with 30,000 members * Federally

  12. Plant Wide Assessment for SIFCO Industries, Inc.

    SciTech Connect (OSTI)

    Kelly Kissock, Arvind Thekdi et. al.

    2005-07-06

    Sifco Industries carreid out a plant wide energy assessment under a collaborative program with the U.S. Department of Energy during October 2004 to September 2005. During the year, personnel from EIS, E3M, DPS, BuyCastings.Com, and Sifco plant facilities and maintenance personnel, as a team collected energy use, construction, process, equipment and operational information about the plant. Based on this information, the team identified 13 energy savings opportunities. Near term savings opportunities have a total potential savings of about $1,329,000 per year and a combined simple payback of about 11 months. Implementation of these recommendations would reduce CO2 emissions by about 16,000,000 pounds per year, which would reduce overall plant CO2 emissions by about 45%. These totals do not include another $830,000 per year in potential savings with an estimated 9-month payback, from converting the forging hammers from steam to compressed air.

  13. Imaging spectrometer wide field catadioptric design

    DOE Patents [OSTI]

    Chrisp; Michael P.

    2008-08-19

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  14. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F.

    1984-01-01

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  15. Germanium blocked impurity band infrared detectors

    SciTech Connect (OSTI)

    Rossington, C.S.; Haller, E.E.

    1988-08-01

    Germanium blocked impurity band (BIB) photoconductors have been fabricated and characterized for responsivity, dark current, and noise equivalent power. BIB photoconductors theoretically provide an extension of the spectral response, a reduction in sensitivity to cosmic radiation and a reduction in noise characteristics compared with conventional photoconductors. Silicon BIB detectors have been successfully developed by researchers at Rockwell International, which do indeed meet their theoretical potential. In the proper configuration, these same Si BIB detectors are capable of continuous detection of individual photons in the wavelength range from 0.4 to 28 ..mu..m. Until the BIB concept was developed, detection of individual photons was only possible with photomultiplier tubes which detected visible light. Due to the successes of the Si BIB detectors, it seemed natural to extend this concept to Ge detectors, which would then allow an extension of the spectral response over conventional Ge detectors from /approximately/100 ..mu..m to /approximately/200 ..mu..m. 8 refs., 2 figs.

  16. Closing the Gender Gap in Energy Policy | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Closing the Gender Gap in Energy Policy Closing the Gender Gap in Energy Policy April 7, 2011 - 3:07pm Addthis Melanie A. Kenderdine Melanie A. Kenderdine Director of the Office of Energy Policy and Systems Analysis What are the key facts? There's not just a shortage of women in technical energy-related fields, there's also a shortage of women in energy policy. Women hold only 27 percent of the science and engineering jobs in the United States. Editor's Note: Join the conversation surrounding

  17. Multi-gap high impedance plasma opening switch

    DOE Patents [OSTI]

    Mason, R.J.

    1996-10-22

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  18. Multi-gap high impedance plasma opening switch

    DOE Patents [OSTI]

    Mason, Rodney J.

    1996-01-01

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  19. GAP Flow Measurements During the Mesoscale Alpine Programme

    SciTech Connect (OSTI)

    Mayr, G.; Armi, L.; Arnold, S.; Banta, Robert M.; Darby, Lisa S.; Durran, D. D.; Flamant, C.; Gabersek, S.; Gohm, A.; Mayr, R.; Mobbs, S.; Nance, L. B.; Vergeiner, I.; Vergeiner, J.; Whiteman, Charles D.

    2004-04-30

    This article provides an overview of the Gap Flow sub-program of the Mesoscale Alpine Programme, a major international meteorological field experiment conducted in the European Alps. The article describes the initial results of an investigation of the wind flow through the Brenner Pass gap in the east-west oriented central section of the European Alps under conditions of south foehn. The overview describes the objectives of the experiments, the instrumentation used for the field investigation, and the mesoscale model simulations. Initial findings of the scientific program are provided.

  20. High Performance Computing with Harness over InfiniBand

    SciTech Connect (OSTI)

    Valentini, Alessandro; Di Biagio, Christian; Batino, Fabrizio; Pennella, Guido; Palma, Fabrizio; Engelmann, Christian

    2009-01-01

    Harness is an adaptable and plug-in-based middleware framework able to support distributed parallel computing. By now, it is based on the Ethernet protocol which cannot guarantee high performance throughput and real time (determinism) performance. During last years, both, the research and industry environments have developed new network architectures (InfiniBand, Myrinet, iWARP, etc.) to avoid those limits. This paper concerns the integration between Harness and InfiniBand focusing on two solutions: IP over InfiniBand (IPoIB) and Socket Direct Protocol (SDP) technology. They allow the Harness middleware to take advantage of the enhanced features provided by the InfiniBand Architecture.

  1. Project Reports for Aroostook Band of Micmac Indians- 2005 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The goal of the project is to develop a strategic energy plan in order to reduce energy costs in the Aroostook Band of Micmacs' government buildings and homes.

  2. Dependence of Band Renormalization Effect on the Number of Copper...

    Office of Scientific and Technical Information (OSTI)

    Journal Article: Dependence of Band Renormalization Effect on the Number of Copper-oxide ... Visit OSTI to utilize additional information resources in energy science and technology. A ...

  3. Agua Caliente Band's Pursuit of Energy Self-Sufficiency Gains...

    Office of Environmental Management (EM)

    The Agua Caliente Band of Cahuilla Indians in the Palm Springs area of California is a ... Caliente Resort and Casino in Rancho Mirage, California. View the workshop presentations. ...

  4. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect (OSTI)

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  5. Santa Ynez Band of Chumash Indians- 2011 Project

    Office of Energy Efficiency and Renewable Energy (EERE)

    The Santa Ynez Band of Chumash Indians (SYBCI) will prepare a comprehensive, strategic energy plan that incorporates energy efficiency, renewable energy, and other energy management and development options.

  6. Ramona Band of Cahuilla Mission Indians- 1999 Project

    Broader source: Energy.gov [DOE]

    The Ramona Band of Cauhilla Indians is establishing an ecotourism facility on their Reservation at the southern end of the San Bernardino National Forest in southern California.

  7. Battle Mountain Band - Te-Moak: Solar Energy Park

    Energy Savers [EERE]

    Battle Mountain Band - Te-Moak Chairman Joseph Holley and Vice-chairman Mark Oppenhein, Members Donna Hill, Delbert Holley, Lydia Johnson, and Lydell Oppenhein Solar Energy Park ...

  8. Project Reports for Eastern Band of Cherokee Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Eastern Band of Cherokee Indians (EBCI) is using the grant funds from the Department of Energy to complete the Energy Efficiency Improvements to seven EBCI facilities.

  9. Band excitation method applicable to scanning probe microscopy...

    Office of Scientific and Technical Information (OSTI)

    The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive ...

  10. Minnesota Chippewa Tribe: White Earth Band- 2003 Project

    Broader source: Energy.gov [DOE]

    Several northern Minnesota tribes interested in building a common foundation for strategic tribal energy capacity have banded together for strategic energy resource planning.

  11. Ewiiaapaayp Band of Kumeyaay Indians - Wind Meteorological Tower...

    Office of Environmental Management (EM)

    Band of Kumeyaay Indians Meteorlogical Tower Deployment and Data Measurement and Analysis ... from the previously collected raw wind data and correlations among the towers show: * ...

  12. Band structure of topological insulators from noise measurements...

    Office of Scientific and Technical Information (OSTI)

    noise measurements in tunnel junctions Citation Details In-Document Search Title: Band structure of topological insulators from noise measurements in tunnel junctions The unique ...

  13. Wide Bandgap Semiconductors: Pursuing the Promise | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wide Bandgap Semiconductors: Pursuing the Promise Wide Bandgap Semiconductors: Pursuing the Promise Wide bandgap semiconductor materials are more efficient than their silicon-based counterparts; making it possible to reduce weight, volume, and life-cycle costs in a wide range of power applications. Wide Bandgap Semiconductors: Pursuing the Promise (1.37 MB) More Documents & Publications Wide Bandgap Semiconductors for Clean Energy Workshop Vehicle Technologies Office Merit Review 2015:

  14. Lac Courte Oreilles Band of Lake Superior Chippewa Indians - Energy Analysis

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Oreilles Band of Lake Superior Ojibwe Location of Lac Courte Oreilles About Lac Courte Oreilles (LCO) * The reservation is presently 76,465 acres and is 15 miles wide. * We have a seven member Tribal Governing Board with four year terms. * LCO's membership is about 7,000 with nearly half of its members residing on or near the reservation * There are 25 distinctly different communities within the reservation for a total of 1,019 households (2000 Census). * LCO operates two casinos; recently

  15. Draft Site-Wide Environmental Impact Statement Nevada Summary...

    National Nuclear Security Administration (NNSA)

    Office of General Counsel National Environmental Policy Act (NEPA) NEPA Reading Room Draft Site-Wide Environmental Impact Statement Nevada Draft Site-Wide Environmental...

  16. DOE Issues Final Site-Wide Environmental Impact Statement for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Site-Wide Environmental Impact Statement for the Nevada National Security Site DOE Issues Final Site-Wide Environmental Impact Statement for the Nevada National Security Site...

  17. DOE Traineeship In Power Engineering (Leveraging Wide Bandgap...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) DOE Traineeship In Power Engineering (Leveraging Wide Bandgap Power Electronics) July 20, 2015 -...

  18. Proposed Energy Transport Corridors: West-wide energy corridor...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Proposed Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor ...

  19. V -209:Cisco WAAS (Wide Area Application Services) Arbitrary...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    V -209:Cisco WAAS (Wide Area Application Services) Arbitrary Code Execution Vulnerabilities V -209:Cisco WAAS (Wide Area Application Services) Arbitrary Code Execution...

  20. AMO's New Institute Focused on Wide Bandgap Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Focused on Wide Bandgap Power Electronics Manufacturing AMO's New Institute Focused on Wide Bandgap Power Electronics Manufacturing January 15, 2014 - 11:34am Addthis The Next ...

  1. Guidance for Site-wide Environmental Impact Statements | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    guidance for Site-wide Environmental Impact Statements PDF icon Guidance for Site-wide Environmental Impact Statements More Documents & Publications Recommendations on...

  2. EIS-0309: Final Site-Wide Environmental Impact Statement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Final Site-Wide Environmental Impact Statement EIS-0309: Final Site-Wide Environmental Impact Statement The Department of Energy (DOE) limits electronic access to certain NEPA ...

  3. EIS-0309: Draft Site-Wide Environmental Impact Statement | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Draft Site-Wide Environmental Impact Statement EIS-0309: Draft Site-Wide Environmental Impact Statement The Department of Energy (DOE) limits electronic access to certain NEPA ...

  4. Government-Wide Diversity and Inclusion Strategic Plan (2011...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Government-Wide Diversity and Inclusion Strategic Plan (2011), Office of Personnel Management Government-Wide Diversity and Inclusion Strategic Plan (2011), Office of Personnel ...

  5. DOE Announces Webinars on Zero Energy Ready Homes, Wide Bandgap...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    October 21: Live Webinar on Opportunities for Wide Bandgap Semiconductor Power Electronics ... "Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and ...

  6. Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Commonwealth Aluminum: Manufacturer Conducts Plant-Wide Energy Assessments at Two Aluminum Sheet Production Operations Commonwealth Aluminum: Manufacturer Conducts Plant-Wide ...

  7. Low temperature synthesis of Ru–Cu alloy nanoparticles with the compositions in the miscibility gap

    SciTech Connect (OSTI)

    Martynova, S.A.; Filatov, E.Yu.; Korenev, S.V.; Kuratieva, N.V.; Sheludyakova, L.A.; Plusnin, P.E.; Shubin, Yu.V.; Slavinskaya, E.M.; Boronin, A.I.

    2014-04-01

    A complex salt [Ru(NH{sub 3}){sub 5}Cl][Cu(C{sub 2}O{sub 4}){sub 2}H{sub 2}O]—the precursor of nanoalloys combining ruthenium and copper was prepared. It crystallizes in the monoclinic space group P2{sub 1}/n. Thermal properties of the prepared salt were examined in different atmospheres (helium, hydrogen, oxygen). Thermal decomposition of the precursor in inert atmosphere was thoroughly examined and the intermediate products were characterized. Experimental conditions for preparation of copper-rich (up to 12 at% of copper) metastable solid solution Cu{sub x}Ru{sub 1−x} (based on Ru structure) were optimized, what is in sharp contrast to the bimetallic miscibility gap known for the bulk counterparts in a wide composition range. Catalytic properties of copper–ruthenium oxide composite were tested in catalytic oxidation of CO. - Highlights: • We synthesized new precursor of CuRu metastable nanoalloys. • Thermal properties of the prepared salt were examined in different atmospheres. • Thermodestruction mechanism of precursor are studied. • Cu{sub 0.12}Ru{sub 0.88} nanoalloy with the compositions in the miscibility gap is obtained. • Catalytic conversion of CO on copper–ruthenium oxide composite were examined.

  8. 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Gaps in your Safety Program?

    Broader source: Energy.gov [DOE]

    2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Gaps in your Safety Program?

  9. A Wide Field of View Plasma Spectrometer

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Skoug, Ruth M.; Funsten, Herbert O.; Moebius, Eberhard; Harper, Ron W.; Kihara, Keith H.; Bower, Jonathan S.

    2016-07-23

    Here we present a fundamentally new type of space plasma spectrometer, the wide field of view plasma spectrometer, whose field of view is >1.25π ster using fewer resources than traditional methods. The enabling component is analogous to a pinhole camera with an electrostatic energy-angle filter at the image plane. Particle energy-per-charge is selected with a tunable bias voltage applied to the filter plate relative to the pinhole aperture plate. For a given bias voltage, charged particles from different directions are focused by different angles to different locations. Particles with appropriate locations and angles can transit the filter plate and aremore » measured using a microchannel plate detector with a position-sensitive anode. Full energy and angle coverage are obtained using a single high-voltage power supply, resulting in considerable resource savings and allowing measurements at fast timescales. Lastly, we present laboratory prototype measurements and simulations demonstrating the instrument concept and discuss optimizations of the instrument design for application to space measurements.« less

  10. Shell model description of band structure in 48Cr

    SciTech Connect (OSTI)

    Vargas, Carlos E.; Velazquez, Victor M.

    2007-02-12

    The band structure for normal and abnormal parity bands in 48Cr are described using the m-scheme shell model. In addition to full fp-shell, two particles in the 1d3/2 orbital are allowed in order to describe intruder states. The interaction includes fp-, sd- and mixed matrix elements.

  11. Excited bands in even-even rare-earth nuclei

    SciTech Connect (OSTI)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-09-13

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands.

  12. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen [Knoxville, TN; Kalinin, Sergei V. [Knoxville, TN

    2010-08-17

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  13. Band excitation method applicable to scanning probe microscopy

    DOE Patents [OSTI]

    Jesse, Stephen; Kalinin, Sergei V

    2013-05-28

    Methods and apparatus are described for scanning probe microscopy. A method includes generating a band excitation (BE) signal having finite and predefined amplitude and phase spectrum in at least a first predefined frequency band; exciting a probe using the band excitation signal; obtaining data by measuring a response of the probe in at least a second predefined frequency band; and extracting at least one relevant dynamic parameter of the response of the probe in a predefined range including analyzing the obtained data. The BE signal can be synthesized prior to imaging (static band excitation), or adjusted at each pixel or spectroscopy step to accommodate changes in sample properties (adaptive band excitation). An apparatus includes a band excitation signal generator; a probe coupled to the band excitation signal generator; a detector coupled to the probe; and a relevant dynamic parameter extractor component coupled to the detector, the relevant dynamic parameter extractor including a processor that performs a mathematical transform selected from the group consisting of an integral transform and a discrete transform.

  14. The electronic structure of heavy fermions: Narrow temperature independent bands

    SciTech Connect (OSTI)

    Arko, A.J.; Joyce, J.J.; Smith, J.L.; Andrews, A.B.

    1996-08-01

    The electronic structure of both Ce and U heavy fermions appears to consist of extremely narrow temperature independent bands. There is no evidence from photoemission for a collective phenomenon normally referred to as the Kondo resonance. In uranium compounds a small dispersion of the bands is easily measurable.

  15. Wide Area Security Region Final Report

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin; Gronquist, James; Du, Pengwei; Nguyen, Tony B.; Burns, J. W.

    2010-03-31

    This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of system parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed

  16. Field-induced Gap and Quantized Charge Pumping in Nano-helix

    SciTech Connect (OSTI)

    Qi, Xiao-Liang; Zhang, Shou-Cheng; /Stanford U., Phys. Dept.

    2010-02-15

    We propose several novel physical phenomena based on nano-scale helical wires. Applying a static electric field transverse to the helical wire induces a metal to insulator transition, with the band gap determined by the applied voltage. Similar idea can be applied to 'geometrically' constructing one-dimensional systems with arbitrary external potential. With a quadrupolar electrode configuration, the electric field could rotate in the transverse plane, leading to a quantized dc charge current proportional to the frequency of the rotation. Such a device could be used as a new standard for the high precession measurement of the electric current. The inverse effect implies that passing an electric current through a helical wire in the presence of a transverse static electric field can lead to a mechanical rotation of the helix. This effect can be used to construct nano-scale electro-mechanical motors. Finally, our methodology also enables new ways of controlling and measuring the electronic properties of helical biological molecules such as the DNA.

  17. Supercondutivity at 9K in Mo5PB2 with evidence for multiple gaps

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    McGuire, Michael A.; Parker, David S.

    2016-02-09

    Superconductivity is observed with critical temperatures near 9 K in the tetragonal compound Mo5PB2. This material adopts the Cr5B3 structure type common to superconducting Nb5Si3–xBx, Mo5SiB2, and W5SiB2, which have critical temperatures of 5.8–7.8 K. We have synthesized polycrystalline samples of the compound, made measurements of electrical resistivity, magnetic susceptibility, and heat capacity, and performed first-principles electronic structure calculations. The highest Tc value (9.2 K) occurs in slightly phosphorus rich samples, with composition near Mo5P1.1B1.9, and the upper critical field Hc2 at T = 0 is estimated to be ≈17 kOe. Together, the measurements and band-structure calculations indicate intermediate couplingmore » (λ=1.0), phonon mediated superconductivity. Here, the temperature dependence of the heat capacity and upper critical field Hc2 below Tc suggest multiple superconducting gaps may be present.« less

  18. Shockley-Read-Hall recombination in pre-filled and photo-filled intermediate band solar cells

    SciTech Connect (OSTI)

    Mayani, Maryam Gholami; Reenaas, Turid Worren

    2014-08-18

    In this work, we study how Shockley-Read-Hall (SRH) recombination via energy levels in the bandgap, caused by defects or impurities, affects the performance of both photo-filled and pre-filled intermediate band solar cells (IBSCs). For a pre-filled cell, the IB is half-filled in equilibrium, while it is empty for the photo-filled cell in equilibrium. The energy level, density, and capture cross-sections of the defects/impurities are varied systematically. We find that the photo-filled cells are, in general, less efficient than pre-filled cells, except when the defect level is between the conduction band and the IB. In that case, for a range of light intensities, the photo-filled cell performs better than the pre-filled. When the defect level is at the same energy as the IB, the efficiency is above 82% of the defect-free case, when less than 50% of the states at the IB lead to SRH recombination. This shows that even if SRH recombination via the IB takes place, high efficiencies can be achieved. We also show that band gap optimization can be used to reduce the SRH recombination.

  19. Gaps and pseudogaps in perovskite rare earth nickelates

    SciTech Connect (OSTI)

    Allen, S. James; Ouellette, Daniel G.; Kally, James; Kozhanov, Alex; Hauser, Adam J.; Mikheev, Evgeny; Zhang, Jack Y.; Moreno, Nelson E.; Son, Junwoo; Stemmer, Susanne; Balents, Leon

    2015-06-01

    We report on tunneling measurements that reveal the evolution of the quasiparticle state density in two rare earth perovskite nickelates, NdNiO{sub 3} and LaNiO{sub 3}, that are close to a bandwidth controlled metal to insulator transition. We measure the opening of a sharp gap of ∼30 meV in NdNiO{sub 3} in its insulating ground state. LaNiO{sub 3}, which remains a correlated metal at all practical temperatures, exhibits a pseudogap of the same order. The results point to both types of gaps arising from a common origin, namely, a quantum critical point associated with the T = 0 K metal-insulator transition. The results support theoretical models of the quantum phase transition in terms of spin and charge instabilities of an itinerant Fermi surface.

  20. Profile of single-pulsed ion beams in acceleration gap

    SciTech Connect (OSTI)

    Xiang, W.; Tang, P.Y.

    2006-03-15

    In an attempt to understand the characteristics of single-pulsed ion beams extracted from a miniature occluded-gas sources with electrodes of metallic hydride, a two-dimensional (2D) projected image of ion beams extracted from the single-pulsed occluded-gas source was captured using a digital charge-coupled device camera on a test bench. Based on image processing and the inverse Abel transform, the 2D integrally projected image with cylindrical symmetry was used to determine the profile of ion beams in the acceleration gap. The result shows that the radial beam profile in acceleration gap has a Gaussian-like shape, and the maximum beam intensity behind the plasma electrode is about 40% higher than that in front of the extraction electrode.

  1. First Operation of the Abort Gap Monitor for LHC

    SciTech Connect (OSTI)

    Lefevre, Thibaut; Bart Pedersen, Stephane; Boccardi, Andrea; Bravin, Enrico; Goldblatt, A.; Jeff, Adam; Roncarolo, Federico; Fisher, Alan; /SLAC

    2012-07-06

    The Large Hadron Collider (LHC) beam-dump system relies on extraction kickers that need 3 microseconds to rise to their nominal field. Since particles transiting the kickers during the rise will not be dumped properly, the proton population in this interval must always remain below quench and damage limits. A specific monitor to measure the particle population of this gap has been designed based on the detection of synchrotron radiation using a gated photomultiplier. Since the quench and damage limits change with the beam energy, the acceptable population in the abort gap and the settings of the monitor must adapt accordingly. This paper presents the design of the monitor, the calibration procedure and the detector performance with beam.

  2. Spark gap switch system with condensable dielectric gas

    DOE Patents [OSTI]

    Thayer, III, William J.

    1991-01-01

    A spark gap switch system is disclosed which is capable of operating at a high pulse rate comprising an insulated switch housing having a purging gas entrance port and a gas exit port, a pair of spaced apart electrodes each having one end thereof within the housing and defining a spark gap therebetween, an easily condensable and preferably low molecular weight insulating gas flowing through the switch housing from the housing, a heat exchanger/condenser for condensing the insulating gas after it exits from the housing, a pump for recirculating the condensed insulating gas as a liquid back to the housing, and a heater exchanger/evaporator to vaporize at least a portion of the condensed insulating gas back into a vapor prior to flowing the insulating gas back into the housing.

  3. Gap soliton formation in a nonlinear anti-directional coupler

    SciTech Connect (OSTI)

    Ryzhov, M S; Maimistov, Andrei I

    2012-11-30

    We consider propagation of electromagnetic solitary waves in two tunnel-coupled waveguides. It is assumed that one of the waveguides is made of a positive-index dielectric, having a Kerr nonlinearity. The other waveguide is made of a linear optical metamaterial characterised by the so-called negative refraction. The gap soliton formation in such a system, which, as shown, has a threshold character, is studied numerically. (solitons)

  4. Bridging the Gaps of High-Tc Superconductor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bridging the Gaps of High-Tc Superconductor Since the discovery of high-temperature superconductor by Bednorz and Müller in 1986, this field has become one of the most important research topics in solid state physics. In the past 20 years many unconventional properties have been discovered in this new class of materials. These have challenged our conventional wisdom and driven the development of many novel theories. Among these discoveries, the most mysterious is probably the pseudogap

  5. Catalysis by Design: Bridging the Gap between Theory and Experiments |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research Conference (DEER 2007). 13-16 August, 2007, Detroit, Michigan. Sponsored by the U.S. Department of Energy's (DOE) Office of FreedomCAR and Vehicle Technologies (OFCVT). deer07_narula.pdf (372.33 KB) More Documents & Publications Catalysts via First Principles Catalysts via First

  6. Pay-banding | National Nuclear Security Administration | (NNSA)

    National Nuclear Security Administration (NNSA)

    Resources Pay-banding NNSA has begun a project designed to attract and retain the best and brightest workers in the national security field. Known as "pay-banding," this pilot project will focus on pay-for-performance rather than pay increases based on longevity. NNSA has begun a project designed to attract and retain the best and brightest workers in the national security field. Known as "pay-banding," this pilot project will focus on pay-for-performance rather than pay

  7. Fast, narrow-band computer model for radiation calculations

    SciTech Connect (OSTI)

    Yan, Z.; Holmstedt, G.

    1997-01-01

    A fast, narrow-band computer model, FASTNB, which predicts the radiation intensity in a general nonisothermal and nonhomogeneous combustion environment, has been developed. The spectral absorption coefficients of the combustion products, including carbon dioxide, water vapor, and soot, are calculated based on the narrow-band model. FASTNB provides an accurate calculation at reasonably high speed. Compared with Grosshandler`s narrow-band model, RADCAL, which has been verified quite extensively against experimental measurements, FASTNB is more than 20 times faster and gives almost exactly the same results.

  8. Project Reports for Soboba Band of Luiseno Indians - 2011 Project |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Soboba Band of Luiseno Indians - 2011 Project Project Reports for Soboba Band of Luiseno Indians - 2011 Project The Soboba Band of Luiseno Indians would like to begin to focus on renewable sources for electricity and to actively target lowering the energy usage of the community. Learn more about this project or find details in the below status reports. November 2011 status report (1.04 MB) November 2012 status report (1.11 MB) Final report (1.62 MB) More Documents &

  9. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOE Patents [OSTI]

    Lawson, R.N.; O'Malley, M.W.; Rohwein, G.J.

    A high voltage spark gap switch is disclosed including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  10. Gas flow stabilized megavolt spark gap for repetitive pulses

    DOE Patents [OSTI]

    Lawson, Robert N.; O'Malley, Martin W.; Rohwein, Gerald J.

    1986-01-01

    A high voltage spark gap switch including a housing having first and second end walls being spaced apart by a predetermined distance. A first electrode is positioned on the first end wall and a second electrode is positioned on the second end wall. The first and second electrodes are operatively disposed relative to each other and are spaced apart by a predetermined gap. An inlet conduit is provided for supplying gas to the first electrode. The conduit includes a nozzle for dispersing the gas in the shape of an annular jet. The gas is supplied into the housing at a predetermined velocity. A venturi housing is disposed within the second electrode. An exhaust conduit is provided for discharging gas and residue from the housing. The gas supplied at the predetermined velocity to the housing through the inlet conduit and the nozzle in an annular shape traverses the gap between the first and second electrodes and entrains low velocity gas within the housing decreasing the velocity of the gas supplied to the housing and increasing the diameter of the annular shape. The venturi disposed within the second electrode recirculates a large volume of gas to clean and cool the surface of the electrodes.

  11. Molecular-beam epitaxy of heterostructures of wide-gap II–VI compounds for low-threshold lasers with optical and electron pumping

    SciTech Connect (OSTI)

    Sorokin, S. V. Gronin, S. V.; Sedova, I. V.; Rakhlin, M. V.; Baidakova, M. V.; Kop’ev, P. S.; Vainilovich, A. G.; Lutsenko, E. V.; Yablonskii, G. P.; Gamov, N. A.; Zhdanova, E. V.; Zverev, M. M.; Ruvimov, S. S.; Ivanov, S. V.

    2015-03-15

    The paper presents basic approaches in designing and growing by molecular beam epitaxy of (Zn,Mg)(S,Se)-based laser heterostructures with multiple CdSe quantum dot (QD) sheets or ZnCdSe quantum wells (QW). The method of calculation of compensating short-period ZnSSe/ZnSe superlattices (SLs) in both active and waveguide regions of laser heterostructures possessing the different waveguide thickness and different number of active regions is presented. The method allowing reduction of the density of nonequilibrium point defects in the active region of the II–VI laser structures has been proposed. It utilizes the migration enhanced epitaxy mode in growing the ZnSe QW confining the CdSe QD sheet. The threshold power density as low as P{sub thr} ∼ 0.8 kW/cm{sup 2} at T = 300 K has been demonstrated for laser heterostructure with single CdSe QD sheet and asymmetric graded-index waveguide with strain-compensating SLs.

  12. Agua Caliente Band of Cahuilla Indians- 2005 Project

    Broader source: Energy.gov [DOE]

    The Agua Caliente Band of Cahuilla Indians will establish a comprehensive energy strategic plan that captures economic and environmental benefits while continuing to respect tribal cultural practices and traditions.

  13. Agua Caliente Band of Cahuilla Indians- 2012 Project

    Broader source: Energy.gov [DOE]

    The Agua Caliente Band of Cahuilla Indians (ACBCI) plans to complete a feasibility study to evaluate a combined wind/solar power generation project on its Whitewater Ranch trust lands in southern California.

  14. Scotts Valley Band of Pomo Indians- 2010 Project

    Broader source: Energy.gov [DOE]

    The Scotts Valley Band of Pomo Indians in Lakeport, California, will establish a Tribal Multi-County Weatherization Energy Program to provide training, outreach, and education on energy assistance and conservation to low-income families.

  15. An X-Band Gun Test Area at SLAC

    SciTech Connect (OSTI)

    Limborg-Deprey, C.; Adolphsen, C.; Chu, T.S.; Dunning, M.P.; Jobe, R.K.; Jongewaard, E.N.; Hast, C.; Vlieks, A.E.; Wang, F.; Walz, D.R.; Marsh, R.A.; Anderson, S.G.; Hartemann, F.V.; Houck, T.L.; /LLNL, Livermore

    2012-09-07

    The X-Band Test Area (XTA) is being assembled in the NLCTA tunnel at SLAC to serve as a test facility for new RF guns. The first gun to be tested will be an upgraded version of the 5.6 cell, 200 MV/m peak field X-band gun designed at SLAC in 2003 for the Compton Scattering experiment run in ASTA. This new version includes some features implemented in 2006 on the LCLS gun such as racetrack couplers, increased mode separation and elliptical irises. These upgrades were developed in collaboration with LLNL since the same gun will be used in an injector for a LLNL Gamma-ray Source. Our beamline includes an X-band acceleration section which takes the electron beam up to 100 MeV and an electron beam measurement station. Other X-Band guns such as the UCLA Hybrid gun will be characterized at our facility.

  16. ARM - Publications: Science Team Meeting Documents: W-Band ARM...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Kevin Pacific Northwest National Laboratory The W-Band ARM Cloud Radar (WACR) is a dual polarization 95 GHz radar that will be deployed at the SGP CART site in the spring of...

  17. Little River Band of Ottawa Indians- 2011 Project

    Broader source: Energy.gov [DOE]

    he main purpose of this project is to increase human capacity of the Little River Band of Ottawa Indians (LRBOI) to understand the components of renewable energy and the importance of energy efficiency.

  18. Y-12 Final Site-Wide Environmental Impact Statement Approved...

    National Nuclear Security Administration (NNSA)

    Blog Home Field Offices Welcome to the NNSA Production Office NPO News Releases Y-12 Final Site-Wide Environmental Impact Statement Approved Y-12 Final Site-Wide...

  19. Benefits of Site-wide NEPA National Environmental Policy Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Site-wide NEPA National Environmental Policy Act Review (DOE, 1994) Benefits of Site-wide NEPA National Environmental Policy Act Review (DOE, 1994) The purpose of this ...

  20. Project Reports for Yakama Nation, Confederated Tribes and Bands - 2008

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Project | Department of Energy Yakama Nation, Confederated Tribes and Bands - 2008 Project Project Reports for Yakama Nation, Confederated Tribes and Bands - 2008 Project It is the intention of the Yakama Nation (YN) to make improvements on the Wapato Irrigation Project (WIP) for the benefit of all stakeholders. Learn more about this project or find details in the below status reports. November 2008 status report (3.29 MB) November 2009 status report (8.95 MB) More Documents &