Sample records for wide band gap

  1. Thermoelectric power measurements of wide band gap semiconducting Chul-Ho Lee,1

    E-Print Network [OSTI]

    Kim, Philip

    Thermoelectric power measurements of wide band gap semiconducting nanowires Chul-Ho Lee,1 Gyu online 13 January 2009 We investigated the temperature-dependent thermoelectric power TEP of individual concentration in wide band gap semiconducting nano- wires employing temperature-dependent thermoelectric power

  2. Method for implantation of high dopant concentrations in wide band gap materials

    DOE Patents [OSTI]

    Usov, Igor (Los Alamos, NM); Arendt, Paul N. (Los Alamos, NM)

    2009-09-15T23:59:59.000Z

    A method that combines alternate low/medium ion dose implantation with rapid thermal annealing at relatively low temperatures. At least one dopant is implanted in one of a single crystal and an epitaxial film of the wide band gap compound by a plurality of implantation cycles. The number of implantation cycles is sufficient to implant a predetermined concentration of the dopant in one of the single crystal and the epitaxial film. Each of the implantation cycles includes the steps of: implanting a portion of the predetermined concentration of the one dopant in one of the single crystal and the epitaxial film; annealing one of the single crystal and the epitaxial film and implanted portion at a predetermined temperature for a predetermined time to repair damage to one of the single crystal and the epitaxial film caused by implantation and activates the implanted dopant; and cooling the annealed single crystal and implanted portion to a temperature of less than about 100.degree. C. This combination produces high concentrations of dopants, while minimizing the defect concentration.

  3. Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices

    E-Print Network [OSTI]

    Atwater, Harry

    Molecular beam epitaxy of n-type ZnS: A wide band gap emitter for heterojunction PV devices Jeffrey and AZO transparent conductive oxides did not. Applications to novel PV devices incorporating low electron-ray diffraction, zinc compounds. I. INTRODUCTION The growing interest in scalable, thin-film photovoltaics (PV

  4. Wide-band-gap InAlAs solar cell for an alternative multijunction approach Marina S. Leite,1,a

    E-Print Network [OSTI]

    Atwater, Harry

    Wide-band-gap InAlAs solar cell for an alternative multijunction approach Marina S. Leite,1,a Robyn; published online 28 February 2011 We have fabricated an In0.52Al0.48As solar cell lattice-matched to In-free InxAl1-xAs alloyed layers were used to fabricate the single junction solar cell. Photoluminescence

  5. Novel wide band gap materials for highly efficient thin film tandem solar cells

    SciTech Connect (OSTI)

    Brian E. Hardin, Stephen T. Connor, Craig H. Peters

    2012-06-11T23:59:59.000Z

    Tandem solar cells (TSCs), which use two or more materials to absorb sunlight, have achieved power conversion efficiencies of >25% versus 11-20% for commercialized single junction solar cell modules. The key to widespread commercialization of TSCs is to develop the wide-band, top solar cell that is both cheap to fabricate and has a high open-circuit voltage (i.e. >1V). Previous work in TSCs has generally focused on using expensive processing techniques with slow growth rates resulting in costs that are two orders of magnitude too expensive to be used in conventional solar cell modules. The objective of the PLANT PV proposal was to investigate the feasibility of using Ag(In,Ga)Se2 (AIGS) as the wide-bandgap absorber in the top cell of a thin film tandem solar cell (TSC). Despite being studied by very few in the solar community, AIGS solar cells have achieved one of the highest open-circuit voltages within the chalcogenide material family with a Voc of 949mV when grown with an expensive processing technique (i.e. Molecular Beam Epitaxy). PLANT PV�s goal in Phase I of the DOE SBIR was to 1) develop the chemistry to grow AIGS thin films via solution processing techniques to reduce costs and 2) fabricate new device architectures with high open-circuit voltage to produce full tandem solar cells in Phase II. PLANT PV attempted to translate solution processing chemistries that were successful in producing >12% efficient Cu(In,Ga)Se2 solar cells by replacing copper compounds with silver. The main thrust of the research was to determine if it was possible to make high quality AIGS thin films using solution processing and to fully characterize the materials properties. PLANT PV developed several different types of silver compounds in an attempt to fabricate high quality thin films from solution. We found that silver compounds that were similar to the copper based system did not result in high quality thin films. PLANT PV was able to deposit AIGS thin films using a mixture of solution and physical vapor deposition processing, but these films lacked the p-type doping levels that are required to make decent solar cells. Over the course of the project PLANT PV was able to fabricate efficient CIGS solar cells (8.7%) but could not achieve equivalent performance using AIGS. During the nine-month grant PLANT PV set up a variety of thin film characterization tools (e.g. drive-level capacitance profiling) at the Molecular Foundry, a Department of Energy User Facility, that are now available to both industrial and academic researchers via the grant process. PLANT PV was also able to develop the back end processing of thin film solar cells at Lawrence Berkeley National Labs to achieve 8.7% efficient CIGS solar cells. This processing development will be applied to other types of thin film PV cells at the Lawrence Berkeley National Labs. While PLANT PV was able to study AIGS film growth and optoelectronic properties we concluded that AIGS produced using these methods would have a limited efficiency and would not be commercially feasible. PLANT PV did not apply for the Phase II of this grant.

  6. Final Report: Laser-Material Interactions Relevant to Analytic Spectroscopy of Wide Band Gap Materials

    SciTech Connect (OSTI)

    Dickinson, J. T. [Washington State University] [Washington State University

    2014-04-05T23:59:59.000Z

    We summarize our studies aimed at developing an understanding of the underlying physics and chemistry in terms of laser materials interactions relevant to laser-based sampling and chemical analysis of wide bandgap materials. This work focused on the determination of mechanisms for the emission of electrons, ions, atoms, and molecules from laser irradiation of surfaces. We determined the important role of defects on these emissions, the thermal, chemical, and physical interactions responsible for matrix effects and mass-dependent transport/detection. This work supported development of new techniques and technology for the determination of trace elements contained such as nuclear waste materials.

  7. Wide band gap semiconductor templates

    DOE Patents [OSTI]

    Arendt, Paul N. (Los Alamos, NM); Stan, Liliana (Los Alamos, NM); Jia, Quanxi (Los Alamos, NM); DePaula, Raymond F. (Santa Fe, NM); Usov, Igor O. (Los Alamos, NM)

    2010-12-14T23:59:59.000Z

    The present invention relates to a thin film structure based on an epitaxial (111)-oriented rare earth-Group IVB oxide on the cubic (001) MgO terminated surface and the ion-beam-assisted deposition ("IBAD") techniques that are amendable to be over coated by semiconductors with hexagonal crystal structures. The IBAD magnesium oxide ("MgO") technology, in conjunction with certain template materials, is used to fabricate the desired thin film array. Similarly, IBAD MgO with appropriate template layers can be used for semiconductors with cubic type crystal structures.

  8. Low band gap polymers Organic Photovoltaics

    E-Print Network [OSTI]

    Low band gap polymers for Organic Photovoltaics Eva Bundgaard Ph.D. Dissertation Risø National Bundgaard Title: Low band gap polymers for Organic photovoltaics Department: The polymer department Report the area of organic photovoltaics are focusing on low band gap polymers, a type of polymer which absorbs

  9. Photonic band gap structure simulator

    DOE Patents [OSTI]

    Chen, Chiping; Shapiro, Michael A.; Smirnova, Evgenya I.; Temkin, Richard J.; Sirigiri, Jagadishwar R.

    2006-10-03T23:59:59.000Z

    A system and method for designing photonic band gap structures. The system and method provide a user with the capability to produce a model of a two-dimensional array of conductors corresponding to a unit cell. The model involves a linear equation. Boundary conditions representative of conditions at the boundary of the unit cell are applied to a solution of the Helmholtz equation defined for the unit cell. The linear equation can be approximated by a Hermitian matrix. An eigenvalue of the Helmholtz equation is calculated. One computation approach involves calculating finite differences. The model can include a symmetry element, such as a center of inversion, a rotation axis, and a mirror plane. A graphical user interface is provided for the user's convenience. A display is provided to display to a user the calculated eigenvalue, corresponding to a photonic energy level in the Brilloin zone of the unit cell.

  10. Narrow band gap amorphous silicon semiconductors

    DOE Patents [OSTI]

    Madan, A.; Mahan, A.H.

    1985-01-10T23:59:59.000Z

    Disclosed is a narrow band gap amorphous silicon semiconductor comprising an alloy of amorphous silicon and a band gap narrowing element selected from the group consisting of Sn, Ge, and Pb, with an electron donor dopant selected from the group consisting of P, As, Sb, Bi and N. The process for producing the narrow band gap amorphous silicon semiconductor comprises the steps of forming an alloy comprising amorphous silicon and at least one of the aforesaid band gap narrowing elements in amount sufficient to narrow the band gap of the silicon semiconductor alloy below that of amorphous silicon, and also utilizing sufficient amounts of the aforesaid electron donor dopant to maintain the amorphous silicon alloy as an n-type semiconductor.

  11. Modeling the effect of native and laser-induced states on the dielectric breakdown of wide band gap optical materials by multiple subpicosecond laser pulses

    SciTech Connect (OSTI)

    Emmert, Luke A.; Mero, Mark; Rudolph, Wolfgang [Department of Physics and Astronomy, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2010-08-15T23:59:59.000Z

    A model for the multiple-pulse laser-induced breakdown behavior of dielectrics is presented. It is based on a critical conduction band (CB) electron density leading to dielectric breakdown. The evolution of the CB electron density during the pulse train is calculated using rate equations involving transitions between band and mid-gap states (native and laser-induced). Using realistic estimations for the trap density and ionization cross-section, the model is able to reproduce the experimentally observed drop in the multiple-pulse damage threshold relative to the single-pulse value, as long as the CB electron density is controlled primarily by avalanche ionization seeded by multiphoton ionization of the traps and the valence band. The model shows that at long pulse duration, the breakdown threshold becomes more sensitive to presence of traps close (within one photon energy) to the CB. The effect of native and laser-induced defects can be distinguished by their saturation behavior. Finally, measurements of the multiple-pulse damage threshold of hafnium oxide films are used to illustrate the application of the model.

  12. Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Band-Gap Engineering of Carbon Nanotubes with Grain Boundaries. Abstract: Structure and electronic properties of...

  13. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, Mark W. (Golden, CO)

    1994-01-01T23:59:59.000Z

    A single-junction solar cell having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of "pinning" the optimum band gap for a wide range of operating conditions at a value of 1.14.+-.0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap.

  14. Fabrication of photonic band gap materials

    DOE Patents [OSTI]

    Constant, Kristen (Ames, IA); Subramania, Ganapathi S. (Ames, IA); Biswas, Rana (Ames, IA); Ho, Kai-Ming (Ames, IA)

    2002-01-15T23:59:59.000Z

    A method for forming a periodic dielectric structure exhibiting photonic band gap effects includes forming a slurry of a nano-crystalline ceramic dielectric or semiconductor material and monodisperse polymer microspheres, depositing a film of the slurry on a substrate, drying the film, and calcining the film to remove the polymer microspheres therefrom. The film may be cold-pressed after drying and prior to calcining. The ceramic dielectric or semiconductor material may be titania, and the polymer microspheres may be polystyrene microspheres.

  15. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Wednesday, 26 March 2008 00:00 Prospective challengers to...

  16. Direct band gap narrowing in highly doped Ge

    E-Print Network [OSTI]

    Han, Zhaohong

    Direct band gap narrowing in highly doped n-type Ge is observed through photoluminescence measurements by determining the spectrum peak shift. A linear relationship between the direct band gap emission and carrier concentration ...

  17. Single-junction solar cells with the optimum band gap for terrestrial concentrator applications

    DOE Patents [OSTI]

    Wanlass, M.W.

    1994-12-27T23:59:59.000Z

    A single-junction solar cell is described having the ideal band gap for terrestrial concentrator applications. Computer modeling studies of single-junction solar cells have shown that the presence of absorption bands in the direct spectrum has the effect of ''pinning'' the optimum band gap for a wide range of operating conditions at a value of 1.14[+-]0.02 eV. Efficiencies exceeding 30% may be possible at high concentration ratios for devices with the ideal band gap. 7 figures.

  18. Substrate-induced band gap opening in epitaxial graphene

    E-Print Network [OSTI]

    2008-01-01T23:59:59.000Z

    H.A. Electronic states of graphene nanoribbons studied withS.G. Louie. Energy gaps in graphene nanoribbons. Phys. Rev.band-gap engineering of graphene nanoribbons. Phys. Rev.

  19. acoustic band gaps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    type of phononic crystals manufactured Institute of Physics. DOI: 10.10631.2167794 The propagation of acoustic waves in periodic composite Deymier, Pierre 2 Acoustic band gap...

  20. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Substrate-Induced Band-Gap Opening in Epitaxial Graphene Print Prospective challengers to silicon, the long-reigning king of semiconductors for computer chips and other electronic...

  1. SEMIEMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS

    E-Print Network [OSTI]

    Goddard III, William A.

    SEMI­EMPIRICAL MOLECULAR ORBITAL CALCULATIONS OF BAND GAPS OF CONJUGATED POLYMERS Tahir Cagin Research and Development Center, Materials Labarotory, Polymer Branch, Wright Patterson AFB, Ohio 45433 geometries and energy band gaps of conjugated polymers. In this study, we used a modified version of semi

  2. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, M.B.; Gardner, D.; Patrick, D.; Lewallen, T.A.; Nammath, S.R.; Painter, K.D.; Vadnais, K.G.

    1996-03-12T23:59:59.000Z

    A wide band ground penetrating radar system is described embodying a method wherein a series of radio frequency signals is produced by a single radio frequency source and provided to a transmit antenna for transmission to a target and reflection therefrom to a receive antenna. A phase modulator modulates those portions of the radio frequency signals to be transmitted and the reflected modulated signal is combined in a mixer with the original radio frequency signal to produce a resultant signal which is demodulated to produce a series of direct current voltage signals, the envelope of which forms a cosine wave shaped plot which is processed by a Fast Fourier Transform Unit 44 into frequency domain data wherein the position of a preponderant frequency is indicative of distance to the target and magnitude is indicative of the signature of the target. 6 figs.

  3. Wide band stepped frequency ground penetrating radar

    DOE Patents [OSTI]

    Bashforth, Michael B. (Buellton, CA); Gardner, Duane (Santa Maria, CA); Patrick, Douglas (Santa Maria, CA); Lewallen, Tricia A. (Ventura, CA); Nammath, Sharyn R. (Santa Barbara, CA); Painter, Kelly D. (Goleta, CA); Vadnais, Kenneth G. (Alexandria, VA)

    1996-01-01T23:59:59.000Z

    A wide band ground penetrating radar system (10) embodying a method wherein a series of radio frequency signals (60) is produced by a single radio frequency source (16) and provided to a transmit antenna (26) for transmission to a target (54) and reflection therefrom to a receive antenna (28). A phase modulator (18) modulates those portion of the radio frequency signals (62) to be transmitted and the reflected modulated signal (62) is combined in a mixer (34) with the original radio frequency signal (60) to produce a resultant signal (53) which is demodulated to produce a series of direct current voltage signals (66) the envelope of which forms a cosine wave shaped plot (68) which is processed by a Fast Fourier Transform unit 44 into frequency domain data (70) wherein the position of a preponderant frequency is indicative of distance to the target (54) and magnitude is indicative of the signature of the target (54).

  4. Band gap engineering at a semiconductor - crystalline oxide interface

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moghadam, Jahangir-Moghadam; Shen, Xuan; Chrysler, Matthew; Ahmadi-Majlan, Kamyar; Su, Dong; Ngai, Joseph H.

    2015-03-01T23:59:59.000Z

    The epitaxial growth of crystalline oxides on semiconductors provides a pathway to introduce new functionalities to semiconductor devices. Key to integrating the functionalities of oxides onto semiconductors is controlling the band alignment at interfaces between the two materials. Here we apply principles of band gap engineering traditionally used at heterojunctions between conventional semiconductors to control the band offset between a single crystalline oxide and a semiconductor. Reactive molecular beam epitaxy is used to realize atomically abrupt and structurally coherent interfaces between SrZrxTi1-xO? and Ge, in which the band gap of the former is enhanced with Zr content x. We presentmore »structural and electrical characterization of SrZrxTi1-xO?-Ge heterojunctions and demonstrate a type-I band offset can be achieved. These results demonstrate that band gap engineering can be exploited to realize functional semiconductor crystalline oxide heterojunctions.« less

  5. Feasibility of band gap engineering of pyrite FeS?

    E-Print Network [OSTI]

    Sun, Ruoshi

    We use first-principles computations to investigate whether the band gap of pyrite FeS? can be increased by alloying in order to make it a more effective photovoltaic material. In addition to the isostructural compounds ...

  6. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    SciTech Connect (OSTI)

    Wang, Fenggong, E-mail: fenggong@sas.upenn.edu; Grinberg, Ilya; Rappe, Andrew M., E-mail: rappe@sas.upenn.edu [The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104–6323 (United States)

    2014-04-14T23:59:59.000Z

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2?eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics.

  7. On band gaps in photonic crystal fibers

    E-Print Network [OSTI]

    Shane Cooper; Ilia Kamotski; Valery Smyshlyaev

    2014-11-02T23:59:59.000Z

    We consider the Maxwell's system for a periodic array of dielectric `fibers' embedded into a `matrix', with respective electric permittivities $\\epsilon_0$ and $\\epsilon_1$, which serves as a model for cladding in photonic crystal fibers (PCF). The interest is in describing admissible and forbidden (gap) pairs $(\\omega,k)$ of frequencies $\\omega$ and propagation constants $k$ along the fibers, for a Bloch wave solution on the cross-section. We show that, for "pre-critical" values of $k(\\omega)$ i.e. those just below $\\omega (\\min\\{\\epsilon_0,\\epsilon_1\\}\\mu)^{1/2}$ (where $\\mu$ is the magnetic permeability assumed constant for simplicity), the coupling specific to the Maxwell's systems leads to a particular partially degenerating PDE system for the axial components of the electromagnetic field. Its asymptotic analysis allows to derive the limit spectral problem where the fields are constrained in one of the phases by Cauchy-Riemann type relations. We prove related spectral convergence. We finally give some examples, in particular of small size "arrow" fibers ($\\epsilon_0>\\epsilon_1$) where the existence of the gaps near appropriate "micro-resonances" is demonstrated by a further asymptotic analysis.

  8. Special purpose modes in photonic band gap fibers

    DOE Patents [OSTI]

    Spencer, James; Noble, Robert; Campbell, Sara

    2013-04-02T23:59:59.000Z

    Photonic band gap fibers are described having one or more defects suitable for the acceleration of electrons or other charged particles. Methods and devices are described for exciting special purpose modes in the defects including laser coupling schemes as well as various fiber designs and components for facilitating excitation of desired modes. Results are also presented showing effects on modes due to modes in other defects within the fiber and due to the proximity of defects to the fiber edge. Techniques and devices are described for controlling electrons within the defect(s). Various applications for electrons or other energetic charged particles produced by such photonic band gap fibers are also described.

  9. Implications of mercury interactions with band-gap semiconductor oxides

    SciTech Connect (OSTI)

    Granite, E.J.; King, W.P.; Stanko, D.C.; Pennline, H.W.

    2008-09-01T23:59:59.000Z

    Titanium dioxide is a well-known photooxidation catalyst. It will oxidize mercury in the presence of ultraviolet light from the sun and oxygen and/or moisture to form mercuric oxide. Several companies manufacture self-cleaning windows. These windows have a transparent coating of titanium dioxide. The titanium dioxide is capable of destroying organic contaminants in air in the presence of ultraviolet light from the sun, thereby keeping the windows clean. The commercially available self-cleaning windows were used to sequester mercury from oxygen–nitrogen mixtures. Samples of the self-cleaning glass were placed into specially designed photo-reactors in order to study the removal of elemental mercury from oxygen–nitrogen mixtures resembling air. The possibility of removing mercury from ambient air with a self-cleaning glass apparatus is examined. The intensity of 365-nm ultraviolet light was similar to the natural intensity from sunlight in the Pittsburgh region. Passive removal of mercury from the air may represent an option in lieu of, or in addition to, point source clean-up at combustion facilities. There are several common band-gap semiconductor oxide photocatalysts. Sunlight (both the ultraviolet and visible light components) and band-gap semiconductor particles may have a small impact on the global cycle of mercury in the environment. The potential environmental consequences of mercury interactions with band-gap semiconductor oxides are discussed. Heterogeneous photooxidation might impact the global transport of elemental mercury emanating from flue gases.

  10. Transport band gap opening at metal–organic interfaces

    SciTech Connect (OSTI)

    Haidu, Francisc, E-mail: francisc.haidu@physik.tu-chemnitz.de; Salvan, Georgeta; Zahn, Dietrich R. T. [Semiconductor Physics, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Smykalla, Lars; Hietschold, Michael [Solid Surfaces Analysis, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Knupfer, Martin [Electronic and Optical Properties Department, IFW Dresden, D-01171 Dresden (Germany)

    2014-07-01T23:59:59.000Z

    The interface formation between copper phthalocyanine (CuPc) and two representative metal substrates, i.e., Au and Co, was investigated by the combination of ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy. The occupied and unoccupied molecular orbitals and thus the transport band gap of CuPc are highly influenced by film thickness, i.e., molecule substrate distance. Due to the image charge potential given by the metallic substrates the transport band gap of CuPc “opens” from (1.4?±?0.3) eV for 1?nm thickness to (2.2?±?0.3) eV, and saturates at this value above 10?nm CuPc thickness. The interface dipoles with values of 1.2?eV and 1.0?eV for Au and Co substrates, respectively, predominantly depend on the metal substrate work functions. X-ray photoelectron spectroscopy measurements using synchrotron radiation provide detailed information on the interaction between CuPc and the two metal substrates. While charge transfer from the Au or Co substrate to the Cu metal center is present only at sub-monolayer coverages, the authors observe a net charge transfer from the molecule to the Co substrate for films in the nm range. Consequently, the Fermi level is shifted as in the case of a p-type doping of the molecule. This is, however, a competing phenomenon to the energy band shifts due to the image charge potential.

  11. Voltage-matched, monolithic, multi-band-gap devices

    SciTech Connect (OSTI)

    Wanlass, Mark W.; Mascarenhas, Angelo

    2006-08-22T23:59:59.000Z

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a sting of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  12. Voltage-Matched, Monolithic, Multi-Band-Gap Devices

    DOE Patents [OSTI]

    Wanlass, M. W.; Mascarenhas, A.

    2006-08-22T23:59:59.000Z

    Monolithic, tandem, photonic cells include at least a first semiconductor layer and a second semiconductor layer, wherein each semiconductor layer includes an n-type region, a p-type region, and a given band-gap energy. Formed within each semiconductor layer is a string of electrically connected photonic sub-cells. By carefully selecting the numbers of photonic sub-cells in the first and second layer photonic sub-cell string(s), and by carefully selecting the manner in which the sub-cells in a first and second layer photonic sub-cell string(s) are electrically connected, each of the first and second layer sub-cell strings may be made to achieve one or more substantially identical electrical characteristics.

  13. Recent emission channeling studies in wide band gap semiconductors

    E-Print Network [OSTI]

    Wahl, Ulrich; Rita, E; Alves, E; Carvalho-Soares, João; De Vries, Bart; Matias, V; Vantomme, A

    2005-01-01T23:59:59.000Z

    We present results of recent emission channeling experiments on the lattice location of implanted Fe and rare earths in wurtzite GaN and ZnO. In both cases the majority of implanted atoms are found on substitutional cation sites. The root mean square displacements from the ideal substitutional Ga and Zn sites are given and the stability of the Fe and rare earth lattice location against thermal annealing is discussed.

  14. Surface Plasmon Band Gap Sensor A new sensor for robust on-field biosensing (SEN 1)

    E-Print Network [OSTI]

    Arnaud Benahmed; Robert Lam; Chih-Ming Ho

    2006-01-01T23:59:59.000Z

    Networked Sensing Surface Plasmon Band Gap Sensor A newsensing concept Nanostructures for Surface Plasmon SensingSurface Plasmon are surface EM waves whose wavelength is

  15. PHYSICAL REVIEW B 90, 115209 (2014) Computational search for direct band gap silicon crystals

    E-Print Network [OSTI]

    Lee, Jooyoung

    2014-01-01T23:59:59.000Z

    of microns thick, while solar cells made from direct band gap materials (such as CdTe, CIGS, or CZTS) can

  16. Electronic structure of Pt based topological Heusler compounds with C1{sub b} structure and 'zero band gap'

    SciTech Connect (OSTI)

    Ouardi, Siham; Shekhar, Chandra; Fecher, Gerhard H.; Kozina, Xeniya; Stryganyuk, Gregory; Felser, Claudia [Institut fuer Anorganische Chemie und Analytische Chemie, Johannes Gutenberg-Universitaet, D-55099 Mainz (Germany); Ueda, Shigenori; Kobayashi, Keisuke [NIMS Beamline Station at SPring-8, National Institute for Materials Science, Hyogo 679-5148 (Japan)

    2011-05-23T23:59:59.000Z

    Besides of their well-known wide range of properties it was recently shown that many of the heavy Heusler semiconductors with 1:1:1 composition and C1{sub b} structure exhibit a zero band gap behavior and are topological insulators induced by their inverted band structure. In the present study, the electronic structure of the Heusler compounds PtYSb and PtLaBi was investigated by bulk sensitive hard x-ray photoelectron spectroscopy. The measured valence band spectra are clearly resolved and in well agreement to the first-principles calculations of the electronic structure of the compounds. The experimental results give clear evidence for the zero band gap state.

  17. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, Isidoro E. (Newport News, VA)

    1992-01-01T23:59:59.000Z

    An absorber wave guide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the wave guide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the wave guide.

  18. Wide band cryogenic ultra-high vacuum microwave absorber

    DOE Patents [OSTI]

    Campisi, I.E.

    1992-05-12T23:59:59.000Z

    An absorber waveguide assembly for absorbing higher order modes of microwave energy under cryogenic ultra-high vacuum conditions, that absorbs wide-band multi-mode energy. The absorber is of a special triangular shape, made from flat tiles of silicon carbide and aluminum nitride. The leading sharp end of the absorber is located in a corner of the waveguide and tapers to a larger cross-sectional area whose center is located approximately in the center of the wave guide. The absorber is relatively short, being of less height than the maximum width of the waveguide. 11 figs.

  19. Light trapping design for low band-gap polymer solar cells

    E-Print Network [OSTI]

    John, Sajeev

    Light trapping design for low band-gap polymer solar cells Stephen Foster1,* and Sajeev John1,2 1 demonstrate numerically a 2-D nanostructured design for light trapping in a low band-gap polymer solar cell observe an enhancement in solar absorption of almost 40% relative to a planar cell. Improvements

  20. Band gap changes of GaN shocked to 13 GPa M. D. McCluskeya)

    E-Print Network [OSTI]

    McCluskey, Matthew

    Band gap changes of GaN shocked to 13 GPa M. D. McCluskeya) and Y. M. Gupta Institute for Shock, California 94304 Received 24 October 2001; accepted for publication 19 December 2001 The band gap of GaN in shock-wave experiments. Shock waves were generated by impacting the GaN samples with c-cut sapphire

  1. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition

    E-Print Network [OSTI]

    . INTRODUCTION Zinc oxide ZnO is a wide direct band-gap 3.37 eV semiconductor with a broad range of applications. Dimethylzinc DMZn , N2 gas, and high-purity O2 were used as the zinc source, carrier gas, and oxidizing agent including light-emitting devices,1 varistors,2 solar cells,3 and gas sensors.4 Moreover, ZnO is a promising

  2. X-Band Photonic Band-Gap Accelerator Structure Breakdown Experiment

    SciTech Connect (OSTI)

    Marsh, Roark A.; /MIT /MIT /NIFS, Gifu /JAERI, Kyoto /LLNL, Livermore; Shapiro, Michael A.; Temkin, Richard J.; /MIT; Dolgashev, Valery A.; Laurent, Lisa L.; Lewandowski, James R.; Yeremian, A.Dian; Tantawi, Sami G.; /SLAC

    2012-06-11T23:59:59.000Z

    In order to understand the performance of photonic band-gap (PBG) structures under realistic high gradient, high power, high repetition rate operation, a PBG accelerator structure was designed and tested at X band (11.424 GHz). The structure consisted of a single test cell with matching cells before and after the structure. The design followed principles previously established in testing a series of conventional pillbox structures. The PBG structure was tested at an accelerating gradient of 65 MV/m yielding a breakdown rate of two breakdowns per hour at 60 Hz. An accelerating gradient above 110 MV/m was demonstrated at a higher breakdown rate. Significant pulsed heating occurred on the surface of the inner rods of the PBG structure, with a temperature rise of 85 K estimated when operating in 100 ns pulses at a gradient of 100 MV/m and a surface magnetic field of 890 kA/m. A temperature rise of up to 250 K was estimated for some shots. The iris surfaces, the location of peak electric field, surprisingly had no damage, but the inner rods, the location of the peak magnetic fields and a large temperature rise, had significant damage. Breakdown in accelerator structures is generally understood in terms of electric field effects. These PBG structure results highlight the unexpected role of magnetic fields in breakdown. The hypothesis is presented that the moderate level electric field on the inner rods, about 14 MV/m, is enhanced at small tips and projections caused by pulsed heating, leading to breakdown. Future PBG structures should be built to minimize pulsed surface heating and temperature rise.

  3. Calculation of wakefields in a 17 GHz beam-driven photonic band-gap accelerator structure

    E-Print Network [OSTI]

    Hu, Min

    We present the theoretical analysis and computer simulation of the wakefields in a 17 GHz photonic band-gap (PBG) structure for accelerator applications. Using the commercial code CST Particle Studio, the fundamental ...

  4. Tunable frequency band-gap and pulse propagation in a strongly nonlinear diatomic chain

    E-Print Network [OSTI]

    E. B. Herbold; J. Kim; V. F. Nesterenko; S. Wang; C. Daraio

    2008-06-26T23:59:59.000Z

    One-dimensional nonlinear phononic crystals have been assembled from periodic diatomic chains of stainless steel cylinders alternated with Polytetrafluoroethylene (PTFE) spheres. We report the presence of acoustic band gaps in the dispersion relation of the linearized systems and study the transformation of single and multiple pulses in linear, nonlinear and strongly nonlinear regimes with numerical calculations and experiments. The limiting frequencies of the band gap are within the audible frequency range (20-20,000 Hz) and can be tuned by varying the particle's material properties, mass and initial compression. Pulses rapidly transform within very short distances from the impacted end due to the influence of the band gap in the linear and in nonlinear elastic chains. The effects of an in situ band gap created by a mean dynamic compression are observed in the strongly nonlinear wave regime.

  5. Thermophotovoltaic conversion using selective infrared line emitters and large band gap photovoltaic devices

    DOE Patents [OSTI]

    Brandhorst, Jr., Henry W. (Auburn, AL); Chen, Zheng (Auburn, AL)

    2000-01-01T23:59:59.000Z

    Efficient thermophotovoltaic conversion can be performed using photovoltaic devices with a band gap in the 0.75-1.4 electron volt range, and selective infrared emitters chosen from among the rare earth oxides which are thermally stimulated to emit infrared radiation whose energy very largely corresponds to the aforementioned band gap. It is possible to use thermovoltaic devices operating at relatively high temperatures, up to about 300.degree. C., without seriously impairing the efficiency of energy conversion.

  6. One-dimensional electromagnetic band gap structures formed by discharge plasmas in a waveguide

    SciTech Connect (OSTI)

    Arkhipenko, V. I.; Simonchik, L. V., E-mail: l.simonchik@dragon.bas-net.by; Usachonak, M. S. [B.I. Stepanov Institute of Physics of the NAS of Belarus, Ave. Nezavisimostsi 68, 220072 Minsk (Belarus); Callegari, Th.; Sokoloff, J. [Université de Toulouse, UPS, INPT, LAPLACE, Laboratoire Plasma et Conversion d'Energie, 118 route de Narbonne, F-31062 Toulouse cedex 9 (France)

    2014-09-28T23:59:59.000Z

    We demonstrate the ability to develop one-dimensional electromagnetic band gap structure in X-band waveguide solely by using the positive columns of glow discharges in neon at the middle pressure. Plasma inhomogeneities are distributed uniformly along a typical X-band waveguide with cross section of 23?×?10?mm{sup 2}. It is shown that electron densities larger than 10{sup 14?}cm{sup ?3} are needed in order to create an effective one-dimensional electromagnetic band gap structure. Some applications for using the one-dimensional electromagnetic band gap structure in waveguide as a control of microwave (broadband filter and device for variation of pulse duration) are demonstrated.

  7. Energy Band-Gap Engineering of Graphene Nanoribbons Melinda Y. Han,1

    E-Print Network [OSTI]

    Kim, Philip

    , New York, New York 10027, USA 2 Department of Physics, Columbia University, New York, New York 10027Energy Band-Gap Engineering of Graphene Nanoribbons Melinda Y. Han,1 Barbaros O¨ zyilmaz,2 Yuanbo an energy gap near the charge neutrality point. Individual graphene layers are contacted with metal

  8. Plasma process-induced band-gap modifications of a strained SiGe heterostructure

    E-Print Network [OSTI]

    Misra, Durgamadhab "Durga"

    Plasma process-induced band-gap modifications of a strained SiGe heterostructure P. K. Swain,a) S the strain of coherently strained SiGe. This work investigates the change in valence-band discontinuity in plasma-exposed SiGe films due to strain relaxation by a capacitance­voltage (C­V) profiling technique

  9. Band gap engineering for graphene by using Na{sup +} ions

    SciTech Connect (OSTI)

    Sung, S. J.; Lee, P. R.; Kim, J. G.; Ryu, M. T.; Park, H. M.; Chung, J. W., E-mail: jwc@postech.ac.kr [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2014-08-25T23:59:59.000Z

    Despite the noble electronic properties of graphene, its industrial application has been hindered mainly by the absence of a stable means of producing a band gap at the Dirac point (DP). We report a new route to open a band gap (E{sub g}) at DP in a controlled way by depositing positively charged Na{sup +} ions on single layer graphene formed on 6H-SiC(0001) surface. The doping of low energy Na{sup +} ions is found to deplete the ?* band of graphene above the DP, and simultaneously shift the DP downward away from Fermi energy indicating the opening of E{sub g}. The band gap increases with increasing Na{sup +} coverage with a maximum E{sub g}?0.70?eV. Our core-level data, C 1s, Na 2p, and Si 2p, consistently suggest that Na{sup +} ions do not intercalate through graphene, but produce a significant charge asymmetry among the carbon atoms of graphene to cause the opening of a band gap. We thus provide a reliable way of producing and tuning the band gap of graphene by using Na{sup +} ions, which may play a vital role in utilizing graphene in future nano-electronic devices.

  10. Band gap structure modification of amorphous anodic Al oxide film by Ti-alloying

    SciTech Connect (OSTI)

    Canulescu, S., E-mail: stec@fotonik.dtu.dk; Schou, J. [Department of Photonics Engineering, Technical University of Denmark, 4000 Roskilde (Denmark); Rechendorff, K.; Pleth Nielsen, L. [Danish Technological Institute, Kongsvang Alle 29, 8000 Aarhus (Denmark); Borca, C. N. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Jones, N. C.; Hoffmann, S. V. [ISA, Department of Physics and Astronomy, Aarhus University, 8000 Aarhus (Denmark); Bordo, K.; Ambat, R. [Department of Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby (Denmark)

    2014-03-24T23:59:59.000Z

    The band structure of pure and Ti-alloyed anodic aluminum oxide has been examined as a function of Ti concentration varying from 2 to 20 at.?%. The band gap energy of Ti-alloyed anodic Al oxide decreases with increasing Ti concentration. X-ray absorption spectroscopy reveals that Ti atoms are not located in a TiO{sub 2} unit in the oxide layer, but rather in a mixed Ti-Al oxide layer. The optical band gap energy of the anodic oxide layers was determined by vacuum ultraviolet spectroscopy in the energy range from 4.1 to 9.2?eV (300–135?nm). The results indicate that amorphous anodic Al{sub 2}O{sub 3} has a direct band gap of 7.3?eV, which is about ?1.4?eV lower than its crystalline counterpart (single-crystal Al{sub 2}O{sub 3}). Upon Ti-alloying, extra bands appear within the band gap of amorphous Al{sub 2}O{sub 3}, mainly caused by Ti 3d orbitals localized at the Ti site.

  11. Method of manufacturing flexible metallic photonic band gap structures, and structures resulting therefrom

    DOE Patents [OSTI]

    Gupta, Sandhya (Bloomington, MN); Tuttle, Gary L. (Ames, IA); Sigalas, Mihail (Ames, IA); McCalmont, Jonathan S. (Ames, IA); Ho, Kai-Ming (Ames, IA)

    2001-08-14T23:59:59.000Z

    A method of manufacturing a flexible metallic photonic band gap structure operable in the infrared region, comprises the steps of spinning on a first layer of dielectric on a GaAs substrate, imidizing this first layer of dielectric, forming a first metal pattern on this first layer of dielectric, spinning on and imidizing a second layer of dielectric, and then removing the GaAs substrate. This method results in a flexible metallic photonic band gap structure operable with various filter characteristics in the infrared region. This method may be used to construct multi-layer flexible metallic photonic band gap structures. Metal grid defects and dielectric separation layer thicknesses are adjusted to control filter parameters.

  12. Defect assistant band alignment transition from staggered to broken gap in mixed As/Sb tunnel field effect transistor heterostructure

    E-Print Network [OSTI]

    Yener, Aylin

    .3As heterointerface. As a result, the band alignment was converted from staggered gap to broken gap-to-source voltage, VGS. As the SS of a MOSFET is governed by the transport mechanism of thermionic-emission over

  13. Direct measurements of band gap grading in polycrystalline CIGS solar cells

    E-Print Network [OSTI]

    Heinrich, M P; Zhang, Y; Kiowski, O; Powalla, M; Lemmer, U; Slobodskyy, A

    2010-01-01T23:59:59.000Z

    We present direct measurements of depth-resolved band gap variations of CuIn(1-x)Ga(x)Se2 thin-film solar cell absorbers. A new measurement technique combining parallel measurements of local thin-film interference and spectral photoluminescence was developed for this purpose. We find sample-dependent correlation parameters between measured band gap depth and composition profiles, and emphasize the importance of direct measurements. These results bring a quantitative insight into the electronic properties of the solar cells and open a new way to analyze parameters that determine the efficiency of solar cells.

  14. Direct measurements of band gap grading in polycrystalline CIGS solar cells

    E-Print Network [OSTI]

    M. P. Heinrich; Z-H. Zhang; Y. Zhang; O. Kiowski; M. Powalla; U. Lemmer; A. Slobodskyy

    2010-09-20T23:59:59.000Z

    We present direct measurements of depth-resolved band gap variations of CuIn(1-x)Ga(x)Se2 thin-film solar cell absorbers. A new measurement technique combining parallel measurements of local thin-film interference and spectral photoluminescence was developed for this purpose. We find sample-dependent correlation parameters between measured band gap depth and composition profiles, and emphasize the importance of direct measurements. These results bring a quantitative insight into the electronic properties of the solar cells and open a new way to analyze parameters that determine the efficiency of solar cells.

  15. Amplitude modulation free, wide band frequency modulated oscillator

    E-Print Network [OSTI]

    Nelson, Dick Frank

    1951-01-01T23:59:59.000Z

    /g sCIRIE/90 " --j/s~P&CI, 5 (5) The value of thc capacitance produced across the tank circuit is C = qgRICI. he c!er'vation gust nade is only good for the case where a si~mal is nodulated over a narrow band of two or t'. ~e per- cent deviation...

  16. Surface Plasmon Polariton Assisted Optical Switching in Noble Metal Nanoparticle Systems: A Sub-Band Gap Approach

    E-Print Network [OSTI]

    Dhara, S

    2015-01-01T23:59:59.000Z

    In a proposed book chapter surface plasmon polariton assisted optical switching in noble metal nanoparticle systems is discussed in the sub-band gap formalism.

  17. New Reconfigurable Power Divider Based on Radial Waveguide and Cylindrical Electromagnetic Band Gap Structure for Low

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Structure for Low Power and Low Cost Smart Antenna Systems Halim Boutayeb, Paul Watson and Toby Kemp AntennaNew Reconfigurable Power Divider Based on Radial Waveguide and Cylindrical Electromagnetic Band Gap halim.boutayeb@huawei.com Abstract--A new low power and low cost technique is proposed for designing

  18. Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal

    E-Print Network [OSTI]

    ) cylinders is investigated numerically. This system was previously shown to undergo a pattern transformation with uniaxial compression by Go¨ncu¨ et al. [Soft Matter 7, 2321 (2011)]. The dispersion relations, or elastic waves in certain frequency ranges known as band gaps is an important feature of these materials

  19. The Electrical and Band-Gap Properties of Amorphous Zinc-Indium-Tin Oxide Thin Films

    E-Print Network [OSTI]

    Shahriar, Selim

    MRSEC The Electrical and Band-Gap Properties of Amorphous Zinc-Indium-Tin Oxide Thin Films D Science & Engineering Center For zinc-indium-tin oxide (ZITO) films, grown by pulsed-laser deposition was replaced by substitution with zinc and tin in equal molar proportions (co-substitution). All ZITO films

  20. Photonic band gap of a graphene-embedded quarter-wave stack

    SciTech Connect (OSTI)

    Fan, Yuancheng [Ames Laboratory; Wei, Zeyong [Tongji University; Li, Hongqiang [Tongji University; Chen, Hong [Tongji University; Soukoulis, Costas M [Ames Laboratory

    2013-12-10T23:59:59.000Z

    Here, we present a mechanism for tailoring the photonic band structure of a quarter-wave stack without changing its physical periods by embedding conductive sheets. Graphene is utilized and studied as a realistic, two-dimensional conductive sheet. In a graphene-embedded quarter-wave stack, the synergic actions of Bragg scattering and graphene conductance contributions open photonic gaps at the center of the reduced Brillouin zone that are nonexistent in conventional quarter-wave stacks. Such photonic gaps show giant, loss-independent density of optical states at the fixed lower-gap edges, of even-multiple characteristic frequency of the quarter-wave stack. The conductive sheet-induced photonic gaps provide a platform for the enhancement of light-matter interactions.

  1. Band gap reduction in GaNSb alloys due to the anion mismatch

    SciTech Connect (OSTI)

    Veal, T.D.; Piper, L.F.J.; Jollands, S.; Bennett, B.R.; Jefferson, P.H.; Thomas, P.A.; McConville, C.F.; Murdin, B.N.; Buckle, L.; Smith, G.W.; Ashley, T. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); School of Electronics and Physical Sciences, University of Surrey, Guildford, GU2 5XH (United Kingdom); QinetiQ Ltd., St. Andrews Road, Malvern, Worcestershire, WR14 3PS (United Kingdom)

    2005-09-26T23:59:59.000Z

    The structural and optoelectronic properties in GaN{sub x}Sb{sub 1-x} alloys (0{<=}x<0.02) grown by molecular-beam epitaxy on both GaSb substrates and AlSb buffer layers on GaAs substrates are investigated. High-resolution x-ray diffraction (XRD) and reciprocal space mapping indicate that the GaN{sub x}Sb{sub 1-x} epilayers are of high crystalline quality and the alloy composition is found to be independent of substrate, for identical growth conditions. The band gap of the GaNSb alloys is found to decrease with increasing nitrogen content from absorption spectroscopy. Strain-induced band-gap shifts, Moss-Burstein effects, and band renormalization were ruled out by XRD and Hall measurements. The band-gap reduction is solely due to the substitution of dilute amounts of highly electronegative nitrogen for antimony, and is greater than observed in GaNAs with the same N content.

  2. Band gap tuning in transition metal oxides by site-specific substitution

    DOE Patents [OSTI]

    Lee, Ho Nyung; Chisholm, Jr., Matthew F; Jellison, Jr., Gerald Earle; Singh, David J; Choi, Woo Seok

    2013-12-24T23:59:59.000Z

    A transition metal oxide insulator composition having a tuned band gap includes a transition metal oxide having a perovskite or a perovskite-like crystalline structure. The transition metal oxide includes at least one first element selected form the group of Bi, Ca, Ba, Sr, Li, Na, Mg, K, Pb, and Pr; and at least one second element selected from the group of Ti, Al, V, Cr, Mn, Fe, Co, Ni, Cu, Zr, Nb, Mo, Ru, Rh, Hf, Ta, W, Re, Os, Ir, and Pt. At least one correlated insulator is integrated into the crystalline structure, including REMO.sub.3, wherein RE is at least one Rare Earth element, and wherein M is at least one element selected from the group of Co, V, Cr, Ni, Mn, and Fe. The composition is characterized by a band gap of less of 4.5 eV.

  3. Fabrication of Ceramic Layer-by-Layer Infrared Wavelength Photonic Band Gap Crystals

    SciTech Connect (OSTI)

    Henry Hao-Chuan Kang

    2004-12-19T23:59:59.000Z

    Photonic band gap (PBG) crystals, also known as photonic crystals, are periodic dielectric structures which form a photonic band gap that prohibit the propagation of electromagnetic (EM) waves of certain frequencies at any incident angles. Photonic crystals have several potential applications including zero-threshold semiconductor lasers, the inhibition of spontaneous emission, dielectric mirrors, and wavelength filters. If defect states are introduced in the crystals, light can be guided from one location to another or even a sharp bending of light in micron scale can be achieved. This generates the potential for optical waveguide and optical circuits, which will contribute to the improvement in the fiber-optic communications and the development of high-speed computers.

  4. Periodic dielectric structure for production of photonic band gap and method for fabricating the same

    DOE Patents [OSTI]

    Ozbay, E.; Tuttle, G.; Michel, E.; Ho, K.M.; Biswas, R.; Chan, C.T.; Soukoulis, C.

    1995-04-11T23:59:59.000Z

    A method is disclosed for fabricating a periodic dielectric structure which exhibits a photonic band gap. Alignment holes are formed in a wafer of dielectric material having a given crystal orientation. A planar layer of elongate rods is then formed in a section of the wafer. The formation of the rods includes the step of selectively removing the dielectric material of the wafer between the rods. The formation of alignment holes and layers of elongate rods and wafers is then repeated to form a plurality of patterned wafers. A stack of patterned wafers is then formed by rotating each successive wafer with respect to the next-previous wafer, and then placing the successive wafer on the stack. This stacking results in a stack of patterned wafers having a four-layer periodicity exhibiting a photonic band gap. 42 figures.

  5. Pre-Stressed Viscoelastic Composites: Effective Incremental Moduli and Band-Gap Tuning

    SciTech Connect (OSTI)

    Parnell, William J. [School of Mathematics, Alan Turing Building, University of Manchester, Manchester, M13 9PL (United Kingdom)

    2010-09-30T23:59:59.000Z

    We study viscoelastic wave propagation along pre-stressed nonlinear elastic composite bars. In the pre-stressed state we derive explicit forms for the effective incremental storage and loss moduli with dependence on the pre-stress. We also derive a dispersion relation for the effective wavenumber in the case of arbitrary frequency, hence permitting a study of viscoelastic band-gap tuning via pre-stress.

  6. Engineering of the band gap and optical properties of thin films of yttrium hydride

    SciTech Connect (OSTI)

    You, Chang Chuan; Mongstad, Trygve; Maehlen, Jan Petter; Karazhanov, Smagul, E-mail: smagulk@ife.no [Institute for Energy Technology, P.O. Box 40, NO-2027 Kjeller (Norway)

    2014-07-21T23:59:59.000Z

    Thin films of oxygen-containing yttrium hydride show photochromic effect at room temperature. In this work, we have studied structural and optical properties of the films deposited at different deposition pressures, discovering the possibility of engineering the optical band gap by variation of the oxygen content. In sum, the transparency of the films and the wavelength range of photons triggering the photochromic effect can be controlled by variation of the deposition pressure.

  7. Band gap tunning in BN-doped graphene systems with high carrier mobility

    SciTech Connect (OSTI)

    Kaloni, T. P.; Schwingenschlögl, U., E-mail: udo.schwingenschlogl@kaust.edu.sa [KAUST, PSE Division, Thuwal 23955-6900 (Saudi Arabia); Joshi, R. P.; Adhikari, N. P. [Central Department of Physics, Tribhuvan University, Kirtipur, Kathmandu (Nepal)

    2014-02-17T23:59:59.000Z

    Using density functional theory, we present a comparative study of the electronic properties of BN-doped graphene monolayer, bilayer, trilayer, and multilayer systems. In addition, we address a superlattice of pristine and BN-doped graphene. Five doping levels between 12.5% and 75% are considered, for which we obtain band gaps from 0.02?eV to 2.43?eV. We demonstrate a low effective mass of the charge carriers.

  8. Microwave band gap and cavity mode in spoof-insulator-spoof waveguide with multiscale structured surface

    E-Print Network [OSTI]

    Zhang, Qiang; Han, Dezhuan; Qin, Fei Fei; Zhang, Xiao Ming; Yao, Yong

    2015-01-01T23:59:59.000Z

    We propose a multiscale spoof-insulator-spoof (SIS) waveguide by introducing periodic geometry modulation in the wavelength scale to a SIS waveguide made of perfect electric conductor. The MSIS consists of multiple SIS subcells. The dispersion relationship of the fundamental guided mode of the spoof surface plasmon polaritons (SSPPs) is studied analytically within the small gap approximation. It is shown that the multiscale SIS possesses microwave band gap (MBG) due to the Bragg scattering. The "gap maps" in the design parameter space are provided. We demonstrate that the geometry of the subcells can efficiently adjust the effective refraction index of the elementary SIS and therefore further control the width and the position of the MBG. The results are in good agreement with numerical calculations by the finite element method (FEM). For finite-sized MSIS of given geometry in the millimeter scale, FEM calculations show that the first-order symmetric SSPP mode has zero transmission in the MBG within frequency...

  9. Photonic-band-gap properties for two-component slow light

    SciTech Connect (OSTI)

    Ruseckas, J.; Kudriasov, V.; Juzeliunas, G.; Unanyan, R. G.; Otterbach, J.; Fleischhauer, M. [Institute of Theoretical Physics and Astronomy, Vilnius University, A. Gostauto 12, Vilnius 01108 (Lithuania); Fachbereich Physik and Research Center OPTIMAS, Technische Universitaet Kaiserslautern, Kaiserslautern D-67663 (Germany)

    2011-06-15T23:59:59.000Z

    We consider two-component ''spinor'' slow light in an ensemble of atoms coherently driven by two pairs of counterpropagating control laser fields in a double tripod-type linkage scheme. We derive an equation of motion for the spinor slow light (SSL) representing an effective Dirac equation for a massive particle with the mass determined by the two-photon detuning. By changing the detuning the atomic medium acts as a photonic crystal with a controllable band gap. If the frequency of the incident probe light lies within the band gap, the light experiences reflection from the sample and can tunnel through it. For frequencies outside the band gap, the transmission and reflection probabilities oscillate with the increasing length of the sample. In both cases the reflection takes place into the complementary mode of the probe field. We investigate the influence of the finite excited state lifetime on the transmission and reflection coefficients of the probe light. We discuss possible experimental implementations of the SSL using alkali-metal atoms such as rubidium or sodium.

  10. Blocking a wave: Frequency band gaps in ice shelves with periodic crevasses

    E-Print Network [OSTI]

    Julian Freed-Brown; Jason M. Amundson; Douglas R. MacAyeal; Wendy W. Zhang

    2011-12-14T23:59:59.000Z

    We assess how the propagation of high-frequency elastic-flexural waves through an ice shelf is modified by the presence of spatially periodic crevasses. Analysis of the normal modes supported by the ice shelf with and without crevasses reveals that a periodic crevasse distribution qualitatively changes the mechanical response. The normal modes of an ice shelf free of crevasses are evenly distributed as a function of frequency. In contrast, the normal modes of a crevasse-ridden ice shelf are distributed unevenly. There are "band gaps", frequency ranges over which no eigenmodes exist. A model ice shelf that is 50 km in lateral extent and 300 m thick with crevasses spaced 500 m apart has a band gap from 0.2 to 0.38 Hz. This is a frequency range relevant for ocean wave/ice-shelf interactions. When the outermost edge of the crevassed ice shelf is oscillated at a frequency within the band gap, the ice shelf responds very differently from a crevasse-free ice shelf. The flexural motion of the crevassed ice shelf is confined to a small region near the outermost edge of the ice shelf and effectively "blocked" from reaching the interior.

  11. Blocking a wave: Frequency band gaps in ice shelves with periodic crevasses

    E-Print Network [OSTI]

    Freed-Brown, Julian; MacAyeal, Douglas R; Zhang, Wendy W

    2011-01-01T23:59:59.000Z

    We assess how the propagation of high-frequency elastic-flexural waves through an ice shelf is modified by the presence of spatially periodic crevasses. Analysis of the normal modes supported by the ice shelf with and without crevasses reveals that a periodic crevasse distribution qualitatively changes the mechanical response. The normal modes of an ice shelf free of crevasses are evenly distributed as a function of frequency. In contrast, the normal modes of a crevasse-ridden ice shelf are distributed unevenly. There are "band gaps", frequency ranges over which no eigenmodes exist. A model ice shelf that is 50 km in lateral extent and 300 m thick with crevasses spaced 500 m apart has a band gap from 0.2 to 0.38 Hz. This is a frequency range relevant for ocean wave/ice-shelf interactions. When the outermost edge of the crevassed ice shelf is oscillated at a frequency within the band gap, the ice shelf responds very differently from a crevasse-free ice shelf. The flexural motion of the crevassed ice shelf is c...

  12. Wave propagation in ordered, disordered, and nonlinear photonic band gap materials

    SciTech Connect (OSTI)

    Lidorikis, Elefterios

    1999-12-10T23:59:59.000Z

    Photonic band gap materials are artificial dielectric structures that give the promise of molding and controlling the flow of optical light the same way semiconductors mold and control the electric current flow. In this dissertation the author studied two areas of photonic band gap materials. The first area is focused on the properties of one-dimensional PBG materials doped with Kerr-type nonlinear material, while, the second area is focused on the mechanisms responsible for the gap formation as well as other properties of two-dimensional PBG materials. He first studied, in Chapter 2, the general adequacy of an approximate structure model in which the nonlinearity is assumed to be concentrated in equally-spaced very thin layers, or 6-functions, while the rest of the space is linear. This model had been used before, but its range of validity and the physical reasons for its limitations were not quite clear yet. He performed an extensive examination of many aspects of the model's nonlinear response and comparison against more realistic models with finite-width nonlinear layers, and found that the d-function model is quite adequate, capturing the essential features in the transmission characteristics. The author found one exception, coming from the deficiency of processing a rigid bottom band edge, i.e. the upper edge of the gaps is always independent of the refraction index contrast. This causes the model to miss-predict that there are no soliton solutions for a positive Kerr-coefficient, something known to be untrue.

  13. Effect of silver incorporation in phase formation and band gap tuning of tungsten oxide thin films

    SciTech Connect (OSTI)

    Jolly Bose, R.; Kumar, R. Vinod; Sudheer, S. K.; Mahadevan Pillai, V. P. [Department of Optoelectronics, University of Kerala, Kariyavattom, Thiruvananthapuram, Kerala 695581 (India); Reddy, V. R.; Ganesan, V. [UGC - DAE Consortium for Scientific Research, Khandwa Road, Indore 452017, Madhyapradesh (India)

    2012-12-01T23:59:59.000Z

    Silver incorporated tungsten oxide thin films are prepared by RF magnetron sputtering technique. The effect of silver incorporation in micro structure evolution, phase enhancement, band gap tuning and other optical properties are investigated using techniques such as x-ray diffraction, micro-Raman spectroscopy, atomic force microscopy, scanning electron microscopy, energy dispersive x-ray spectroscopy, and UV-Visible spectroscopy. Effect of silver addition in phase formation and band gap tuning of tungsten oxide thin films are investigated. It is found that the texturing and phase formation improves with enhancement in silver content. It is also found that as the silver incorporation enhances the thickness of the films increases at the same time the strain in the film decreases. Even without annealing the desired phase can be achieved by doping with silver. A broad band centered at the wavelength 437 nm is observed in the absorption spectra of tungsten oxide films of higher silver incorporation and this can be attributed to surface plasmon resonance of silver atoms present in the tungsten oxide matrix. The transmittance of the films is decreased with increase in silver content which can be due to increase in film thickness, enhancement of scattering, and absorption of light caused by the increase of grain size, surface roughness and porosity of films and enhanced absorption due to surface plasmon resonance of silver. It is found that silver can act as the seed for the growth of tungsten oxide grains and found that the grain size increases with silver content which in turn decreases the band gap of tungsten oxide from 3.14 eV to 2.70 eV.

  14. Design and 3D simulation of a two-cavity wide-gap relativistic klystron amplifier with high power injection

    SciTech Connect (OSTI)

    Bai Xianchen; Yang Jianhua; Zhang Jiande [College of Optoelectronic Science and Engineering, National University of Defense Technology, Changsha 410073 (China)

    2012-08-15T23:59:59.000Z

    By using an electromagnetic particle-in-cell (PIC) code, an S-band two-cavity wide-gap klystron amplifier (WKA) loaded with washers/rods structure is designed and investigated for high power injection application. Influences of the washers/rods structure on the high frequency characteristics and the basic operation of the amplifier are presented. Generally, the rod structure has great impacts on the space-charge potential depression and the resonant frequency of the cavities. Nevertheless, if only the resonant frequency is tuned to the desired operation frequency, effects of the rod size on the basic operation of the amplifier are expected to be very weak. The 3-dimension (3-D) PIC simulation results show an output power of 0.98 GW corresponding to an efficiency of 33% for the WKA, with a 594 keV, 5 kA electron beam guided by an external magnetic field of 1.5 Tesla. Moreover, if a conductive plane is placed near the output gap, such as the electron collector, the beam potential energy can be further released, and the RF power can be increased to about 1.07 GW with the conversion efficiency of about 36%.

  15. Engineering direct-indirect band gap transition in wurtzite GaAs nanowires through size and uniaxial strain

    E-Print Network [OSTI]

    Copple, Andrew; Peng, Xihong; 10.1063/1.4718026

    2012-01-01T23:59:59.000Z

    Electronic structures of wurtzite GaAs nanowires in the [0001] direction were studied using first-principles calculations. It was found that the band gap of GaAs nanowires experience a direct-to-indirect transition when the diameter of the nanowires is smaller than ~28 {\\AA}. For those thin GaAs nanowires with an indirect band gap, it was found that the gap can be tuned to be direct if a moderate external uniaxial strain is applied. Both tensile and compressive strain can trigger the indirect-to-direct gap transition. The critical strains for the gap-transition are determined by the energy crossover of two states in conduction bands.

  16. DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS

    E-Print Network [OSTI]

    Honsberg, Christiana

    DESIGN, GROWTH, FABRICATION AND CHARACTERIZATION OF HIGH-BAND GAP InGaN/GaN SOLAR CELLS Omkar Jani1 with a band gap of 2.4 eV or greater. InxGa1-xN is one of a few alloys that can meet this key requirement. InGaN.4 eV. InGaN has the appropriate optical properties and has been well demonstrated for light

  17. Analysis of plasma-magnetic photonic crystal with a tunable band gap

    SciTech Connect (OSTI)

    Mehdian, H.; Mohammadzahery, Z.; Hasanbeigi, A. [Department of Physics and Plasma Research Institute of Tarbiat Moallem University, 49 Dr Mofatteh Avenue, Tehran 15614 (Iran, Islamic Republic of)

    2013-04-15T23:59:59.000Z

    In this paper, electromagnetic wave propagation through the one-dimensional plasma-magnetic photonic crystal in the presence of external magnetic field has been analyzed. The dispersion relation, transmission and reflection coefficients have been obtained by using the transfer matrix method. It is investigated how photonic band gap of photonic crystals will be tuned when both dielectric function {epsilon} and magnetic permeability {mu} of the constitutive materials, depend on applied magnetic field. This is shown by one dimensional photonic crystals consisting of plasma and ferrite material layers stacked alternately.

  18. Waveguides in three-dimensional metallic photonic band-gap materials

    SciTech Connect (OSTI)

    Sigalas, M.M.; Biswas, R.; Ho, K.M.; Soukoulis, C.M. [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States)] [Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, Iowa 50011 (United States); Crouch, D.D. [Advanced Electromagnetic Technologies Center, Raytheon Corporation, Rancho Cucamonga, California 91729 (United States)] [Advanced Electromagnetic Technologies Center, Raytheon Corporation, Rancho Cucamonga, California 91729 (United States)

    1999-08-01T23:59:59.000Z

    We theoretically investigate waveguide structures in three-dimensional metallic photonic band-gap (MPBG) materials. The MPBG materials used in this study consist of a three-dimensional mesh of metallic wires embedded in a dielectric. An {ital L}-shaped waveguide is created by removing part of the metallic wires. Using finite difference time domain simulations, we found that an 85{percent} transmission efficiency can be achieved through the 90{degree} bend with just three unit cell thickness MPBG structures. thinsp {copyright} {ital 1999} {ital The American Physical Society}

  19. Indirect-direct band gap transition through electric tuning in bilayer MoS{sub 2}

    SciTech Connect (OSTI)

    Zhang, Z. Y.; Si, M. S., E-mail: sims@lzu.edu.cn; Wang, Y. H.; Gao, X. P. [Key laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730 000 (China)] [Key laboratory for Magnetism and Magnetic Materials of the Ministry of Education, School of Physical Science and Technology, Lanzhou University, Lanzhou 730 000 (China); Sung, Dongchul; Hong, Suklyun [Graphene Research Institute, Sejong University, Seoul 143 747 (Korea, Republic of)] [Graphene Research Institute, Sejong University, Seoul 143 747 (Korea, Republic of); He, Junjie [Department of Physics, Xiangtan University, Hunan 411 105 (China)] [Department of Physics, Xiangtan University, Hunan 411 105 (China)

    2014-05-07T23:59:59.000Z

    We investigate the electronic properties of bilayer MoS{sub 2} exposed to an external electric field by using first-principles calculations. It is found that a larger interlayer distance, referring to that by standard density functional theory (DFT) with respect to that by DFT with empirical dispersion corrections, makes indirect-direct band gap transition possible by electric control. We show that external electric field effectively manipulates the valence band contrast between the K- and ?-valleys by forming built-in electric dipole fields, which realizes an indirect-direct transition before a semiconductor-metal transition happens. Our results provide a novel efficient access to tune the electronic properties of two-dimensional layered materials.

  20. Band gap corrections for molecules and solids using Koopmans theorem and Wannier functions

    E-Print Network [OSTI]

    Ma, Jie

    2015-01-01T23:59:59.000Z

    We have proposed a method for correcting the Kohn-Sham eigen energies in the density functional theory (DFT) based on the Koopmans theorem using Wannier functions. The method provides a general approach applicable for molecules and solids for electronic structure calculations. It does not have any adjustable parameters and the computational cost is at the DFT level. For solids, the calculated eigen energies agree well with the experiments for not only the band gaps, but also the energies of other valence and conduction bands. For molecules, the calculated eigen energies agree well with the experimental ionization potentials and electron affinities, and show better trends than the traditional Delta-self-consistent-field (?SCF) results.

  1. Effects of surface termination on the band gap of ultrabright Si29 nanoparticles: Experiments and computational models

    E-Print Network [OSTI]

    Braun, Paul

    Effects of surface termination on the band gap of ultrabright Si29 nanoparticles: Experiments constituting a H-terminated reconstructed Si surface was recently proposed as a structural prototype termination with a N linkage in butylamine and O linkage in pentane . The emission band for N-termination

  2. Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration

    E-Print Network [OSTI]

    Savazzi, Stefano

    Synchronous Ultra-Wide Band Wireless Sensors Networks for oil and gas exploration Stefano Savazzi1 of new oil and gas reservoir. Seismic exploration requires a large number (500 ÷ 2000 nodes, MAC and network layer to develop wireless sensors networks tailored for oil (and gas) exploration

  3. Periodic dielectric structure for production of photonic band gap and devices incorporating the same

    DOE Patents [OSTI]

    Ho, Kai-Ming (Ames, IA); Chan, Che-Ting (Ames, IA); Soukoulis, Costas (Ames, IA)

    1994-08-02T23:59:59.000Z

    A periodic dielectric structure which is capable of producing a photonic band gap and which is capable of practical construction. The periodic structure is formed of a plurality of layers, each layer being formed of a plurality of rods separated by a given spacing. The material of the rods contrasts with the material between the rods to have a refractive index contrast of at least two. The rods in each layer are arranged with their axes parallel and at a given spacing. Adjacent layers are rotated by 90.degree., such that the axes of the rods in any given layer are perpendicular to the axes in its neighbor. Alternating layers (that is, successive layers of rods having their axes parallel such as the first and third layers) are offset such that the rods of one are about at the midpoint between the rods of the other. A four-layer periocity is thus produced, and successive layers are stacked to form a three-dimensional structure which exhibits a photonic band gap. By virtue of forming the device in layers of elongate members, it is found that the device is susceptible of practical construction.

  4. Fermion space charge in narrow-band gap semiconductors, Weyl semimetals and around highly charged nuclei

    E-Print Network [OSTI]

    Eugene B. Kolomeisky; Joseph P. Straley; Hussain Zaidi

    2013-10-15T23:59:59.000Z

    The field of charged impurities in narrow-band gap semiconductors and Weyl semimetals can create electron-hole pairs when the total charge $Ze$ of the impurity exceeds a value $Z_{c}e$. The particles of one charge escape to infinity, leaving a screening space charge. The result is that the observable dimensionless impurity charge $Q_{\\infty}$ is less than $Z$ but greater than $Z_{c}$. There is a corresponding effect for nuclei with $Z >Z_{c} \\approx 170$, however in the condensed matter setting we find $Z_{c} \\simeq 10$. Thomas-Fermi theory indicates that $Q_{\\infty} = 0$ for the Weyl semimetal, but we argue that this is a defect of the theory. For the case of a highly-charged recombination center in a narrow band-gap semiconductor (or of a supercharged nucleus), the observable charge takes on a nearly universal value. In Weyl semimetals the observable charge takes on the universal value $Q_{\\infty} = Z_{c}$ set by the reciprocal of material's fine structure constant.

  5. Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact-exchange density-functional theory

    E-Print Network [OSTI]

    Band gap and band parameters of InN and GaN from quasiparticle energy calculations based on exact; published online 20 October 2006 The authors have studied the electronic structure of InN and GaN employing. © 2006 American Institute of Physics. DOI: 10.1063/1.2364469 The group III-nitrides AlN, GaN, and In

  6. Fluorine Substituted Conjugated Polymer of Medium Band Gap Yields 7% Efficiency in Polymer--Fullerene Solar Cells

    SciTech Connect (OSTI)

    Price, S C; Stuart, Andrew C.; Yang, L; Zhou, H; You, Wei

    2011-01-01T23:59:59.000Z

    Recent research advances on conjugated polymers for photovoltaic devices have focused on creating low band gap materials, but a suitable band gap is only one of many performance criteria required for a successful conjugated polymer. This work focuses on the design of two medium band gap (?2.0 eV) copolymers for use in photovoltaic cells which are designed to possess a high hole mobility and low highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels. The resulting fluorinated polymer PBnDT?FTAZ exhibits efficiencies above 7% when blended with [6,6]-phenyl C{sub 61}-butyric acid methyl ester in a typical bulk heterojunction, and efficiencies above 6% are still maintained at an active layer thicknesses of 1 ?m. PBnDT?FTAZ outperforms poly(3-hexylthiophene), the current medium band gap polymer of choice, and thus is a viable candidate for use in highly efficient tandem cells. PBnDT?FTAZ also highlights other performance criteria which contribute to high photovoltaic efficiency, besides a low band gap.

  7. Catalyzed Water Oxidation by Solar Irradiation of Band-Gap-Narrowed Semiconductors (Part 1. Overview).

    SciTech Connect (OSTI)

    Fujita,E.; Khalifah, P.; Lymar, S.; Muckerman, J.T.; Rodgriguez, J.

    2008-03-18T23:59:59.000Z

    The objectives of this report are: (1) Investigate the catalysis of water oxidation by cobalt and manganese hydrous oxides immobilized on titania or silica nanoparticles, and dinuclear metal complexes with quinonoid ligands in order to develop a better understanding of the critical water oxidation chemistry, and rationally search for improved catalysts. (2) Optimize the light-harvesting and charge-separation abilities of stable semiconductors including both a focused effort to improve the best existing materials by investigating their structural and electronic properties using a full suite of characterization tools, and a parallel effort to discover and characterize new materials. (3) Combine these elements to examine the function of oxidation catalysts on Band-Gap-Narrowed Semiconductor (BGNSC) surfaces and elucidate the core scientific challenges to the efficient coupling of the materials functions.

  8. Radiation response analysis of wide-gap p-AlInGaP for superhigh-efficiency space photovoltaics

    SciTech Connect (OSTI)

    Khan, Aurangzeb; Marupaduga, S.; Anandakrishnan, S.S.; Alam, M.; Ekins-Daukes, N.J.; Lee, H.S.; Sasaki, T.; Yamaguchi, M.; Takamoto, T.; Agui, T.; Kamimura, K.; Kaneiwa, M.; Imazumi, M. [Department of Electrical and Computer Engineering, University of South Alabama, Mobile, Alabama 36688 (United States); Toyota Technological Institute, Nagoya (Japan); Sharp Corporation, Nara (Japan); JAXA, Tsukuba (Japan)

    2004-11-29T23:59:59.000Z

    We present here the direct observation of the majority and minority carrier defects generation from wide-band-gap (2.04 eV) and thick (2 {mu}m) p-AlInGaP diodes and solar cells structures before and after 1 MeV electron irradiation by deep level transient spectroscopy (DLTS). One dominant hole-emitting trap H1 (E{sub V}+0.37{+-}0.05 eV) and two electron-emitting traps, E1 (E{sub C}-0.22{+-}0.04 eV) and E3 (E{sub C}-0.78{+-}0.05 eV) have been observed in the temperature range, which we could scan by DLTS. Detailed analysis of the minority carrier injection annealing experiment reveals that the H1 center has shown the same annealing characteristics, which has been previously observed in all phosphide-based materials such as InP, InGaP, and InGaAsP. The annealing property of the radiation-induced defects in p-AlInGaP reveals that multijunction solar cells and other optoelectronic devices such as light-emitting diodes based on this material could be considerably better to Si and GaAs in a radiation environment.

  9. Calculation of semiconductor band gaps with the M06-L density functional Yan Zhao and Donald G. Truhlara

    E-Print Network [OSTI]

    Truhlar, Donald G

    2009 The performance of the M06-L density functional has been tested for band gaps in seven,13 that is designed for main group thermo- chemistry, transition metal bonding, thermochemical kinet- ics in group-4, group 3­5, and metal oxide semiconductors. In Sec. II, we describe the test sets

  10. Photovoltaic devices with low band gap polymers Eva Bundgaarda, Sean Shaheenb, David S. Ginleyb, Frederik C. Krebsa

    E-Print Network [OSTI]

    Photovoltaic devices with low band gap polymers Eva Bundgaarda, Sean Shaheenb, David S. Ginleyb, Colorado, USA Abstract Progress in organic photovoltaic devices has recently resulted in reported temperature, active area of the device and molecular weight of the polymer, on the photovoltaic response

  11. Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap

    E-Print Network [OSTI]

    Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap in the lowest-order term s of the multipole far-field radiation expansion. We focus on the system of photonic-order term s in a multipole expansion of the far-field radiation, distinct from the near- field multipole

  12. Band-gap grading in Cu(In,Ga)Se2 solar cells M. Gloeckler and J. R. Sites

    E-Print Network [OSTI]

    Sites, James R.

    Band-gap grading in Cu(In,Ga)Se2 solar cells M. Gloeckler and J. R. Sites Department of Physics solar cells, and some researchers have asserted that these fields can enhance performance to show that (1) there can be a beneficial effect of grading, (2) in standard thick- ness CIGS cells

  13. Elastic and viscoelastic effects in rubber/air acoustic band gap structures: A theoretical and experimental study

    E-Print Network [OSTI]

    Deymier, Pierre

    Elastic and viscoelastic effects in rubber/air acoustic band gap structures: A theoretical rubber/air phononic crystal structures is investigated theoretically and experimentally. We introduce in a solid rubber matrix, as well as an array of rubber cylinders in an air matrix, are shown to behave

  14. Optical bistability and phase transitions in a doped photonic band-gap material Sajeev John and Tran Quang

    E-Print Network [OSTI]

    John, Sajeev

    in a pseudophotonic band gap PBG to an applied laser field. It is shown that in the case when the variance of resonant reactive ion etching techniques. The relative dif- ficulty in drilling to a depth of more than a few unit

  15. Here, we present the fabrication and use of plastic Photonic Band Gap Bragg fibres in photonic textiles for applications in

    E-Print Network [OSTI]

    Skorobogatiy, Maksim

    Here, we present the fabrication and use of plastic Photonic Band Gap Bragg fibres in photonic­section, Bragg fibres feature periodic sequence of layers of two distinct plastics. Under ambient illumination SCHICKER2 , NING GUO1 , CHARLES DUBOIS3 , RACHEL WINGFIELD2 & MAKSIM SKOROBOGATIY1 COLOUR-ON-DEMAND

  16. Band gap tuning in GaN through equibiaxial in-plane strains S. K. Yadav,2

    E-Print Network [OSTI]

    Alpay, S. Pamir

    in photovoltaics and light emission diodes LEDs . The InGaN system has been intensively studied during the past to the large atomic size mismatch between Ga and In.3 Thus, other methods to tune the band gap are needed for potential appli- cations of GaN and related materials systems. It is well-known that the structure

  17. Double Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation

    E-Print Network [OSTI]

    Hasan, Tawfique; Sun, Zhipei; Tan, PingHeng; Popa, Daniel; Flahaut, Emmanuel; Kelleher, Edmund J. R.; Bonaccorso, Francesco; Wang, Fengqiu; Jiang, Zhe; Torrisi, Felice; Privitera, Giulia; Nicolosi, Valeria; Ferrari, Andrea C.

    2014-04-15T23:59:59.000Z

    Accepted Manuscript: ACS Nano, 2014, 8 (5), pp 4836–4847DOI: 10.1021/nn500767b 1 Double Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation Tawfique Hasan1,*, Zhipei Sun2, PingHeng Tan3, Daniel Popa1, Emmanuel Flahaut4,5, Edmund J. R... , Polymer Composites, Saturable Absorber, Ultrafast Laser. Accepted Manuscript: ACS Nano, 2014, 8 (5), pp 4836–4847DOI: 10.1021/nn500767b 2 ABSTRACT: We demonstrate wideband ultrafast optical pulse generation at 1, 1.5 and 2?m using a single polymer...

  18. Gallium arsenide-based ternary compounds and multi-band-gap solar cell research

    SciTech Connect (OSTI)

    Vernon, S. (Spire Corp., Bedford, MA (United States))

    1993-02-01T23:59:59.000Z

    Aim of this contract is the achievement of a high-efficiency, low-cost solar cell. The basic approach to the problem is centered upon the heteroepitaxial growth of a III-V compound material onto a single-crystal silicon wafer. The growth technique employed is metalorganic chemical vapor deposition. The silicon wafer may serve as a mechanical substrate and ohmic contact for a single-junction device, or may contain a p-n junction of its own and form the bottom cell of a two junction tandem solar cell structure. The III-V material for the single-junction case is GaAs and for the two-junction case is either GaAlAs or GaAsP, either material having the proper composition to yield a band gap of approximately 1.7 eV. Results achieved in this contract include the following: (1) a 17.6% efficient GaAs-on-Si solar cell; (2) an 18.5% efficient GaAs-on-Si concentrator solar cell at 400 suns; (3) a 24.8% efficient GaAs-on-GaAs solar cell; (4) a 28.7% efficient GaAs-on-GaAs concentrator solar cell at 200 suns; (5) measurement of the effects of dislocation density and emitter doping on GaAs cells; and (6) improvements in the growth process to achieve reproducible thin AlGaAs window layers with low recombination velocities and environmental stability.

  19. Wide-band-gap, alkaline-earth-oxide semiconductor and devices utilizing same

    DOE Patents [OSTI]

    Abraham, Marvin M. (Oak Ridge, TN); Chen, Yok (Oak Ridge, TN); Kernohan, Robert H. (Oak Ridge, TN)

    1981-01-01T23:59:59.000Z

    This invention relates to novel and comparatively inexpensive semiconductor devices utilizing semiconducting alkaline-earth-oxide crystals doped with alkali metal. The semiconducting crystals are produced by a simple and relatively inexpensive process. As a specific example, a high-purity lithium-doped MgO crystal is grown by conventional techniques. The crystal then is heated in an oxygen-containing atmosphere to form many [Li].degree. defects therein, and the resulting defect-rich hot crystal is promptly quenched to render the defects stable at room temperature and temperatures well above the same. Quenching can be effected conveniently by contacting the hot crystal with room-temperature air.

  20. Alternative Wide-Band-Gap Materials for Gamma-Ray Spectroscopy

    E-Print Network [OSTI]

    He, Zhong

    Engineering and Radiological Sciences) in The University of Michigan 2013 Doctoral Committee: Professor Zhong emotionally, physically, spiritually, and intellectually through every moment of my graduate school career, the Orion group would not be successful without the great work of his graduate students. It has been a truly

  1. SPECTROSCOPIE DE DEFAUTS -LUMINESCENCE I. THE ANALYSIS OF WIDE BAND GAP SEMICONDUCTORS

    E-Print Network [OSTI]

    Boyer, Edmond

    on analysis depend very much on the device. In semiconductors, light emitting diodes (LEDs) are formed from pn

  2. InAlAs EPITAXIAL GROWTH FOR WIDE BAND GAP SOLAR CELLS Marina S. Leite

    E-Print Network [OSTI]

    Atwater, Harry

    concentrator cells made of metamorphic InGaP/GaAs/InGaAs can achieve > 41 % by using metamorphic epitaxial

  3. Designing double-gap linear accelerators for a wide mass range

    SciTech Connect (OSTI)

    Lysenko, W.P.; Wadlinger, E.A.; Rusnak, B.; Krawczyk, F. [Los Alamos National Lab., NM (United States); Saadatmand, K.; Wan, Z. [Eaton Corp., Beverly, MA (United States)

    1998-12-31T23:59:59.000Z

    For applications like ion implantation, rf linacs using double-gap structures with external resonators can be used because they are practical at low frequencies. However, since the two gaps associated with a given resonator cannot be individually phased, it is not obvious how to build a linac that can efficiently accelerate particles having different mass/charge ratios. This paper describes the beam dynamics of double-gap rf linacs and shows how to maximize the range of mass/charge ratios. The theory also tells one how to rescale a linac tune (i.e., reset the voltages and phases) so that a new particle, having a different mass or charge, will behave similarly to the original particle.

  4. Channelization architecture for wide-band slow light in atomic vapors

    E-Print Network [OSTI]

    Zachary Dutton; Mark Bashkansky; Michael Steiner; John Reintjes

    2005-10-20T23:59:59.000Z

    We propose a ``channelization'' architecture to achieve wide-band electromagnetically induced transparency (EIT) and ultra-slow light propagation in atomic Rb-87 vapors. EIT and slow light are achieved by shining a strong, resonant ``pump'' laser on the atomic medium, which allows slow and unattenuated propagation of a weaker ``signal'' beam, but only when a two-photon resonance condition is satisfied. Our wideband architecture is accomplished by dispersing a wideband signal spatially, transverse to the propagation direction, prior to entering the atomic cell. When particular Zeeman sub-levels are used in the EIT system, then one can introduce a magnetic field with a linear gradient such that the two-photon resonance condition is satisfied for each individual frequency component. Because slow light is a group velocity effect, utilizing differential phase shifts across the spectrum of a light pulse, one must then introduce a slight mismatch from perfect resonance to induce a delay. We present a model which accounts for diffusion of the atoms in the varying magnetic field as well as interaction with levels outside the ideal three-level system on which EIT is based. We find the maximum delay-bandwidth product decreases with bandwidth, and that delay-bandwidth product ~1 should be achievable with bandwidth ~50 MHz (~5 ns delay). This is a large improvement over the ~1 MHz bandwidths in conventional slow light systems and could be of use in signal processing applications.

  5. Indirect-to-direct band gap transition in relaxed and strained Ge{sub 1?x?y}Si{sub x}Sn{sub y} ternary alloys

    SciTech Connect (OSTI)

    Attiaoui, Anis; Moutanabbir, Oussama [Department of Engineering Physics, École Polytechnique de Montréal, Montréal, C.P. 6079, Succ. Centre-Ville, Montréal, Québec H3C 3A7 (Canada)

    2014-08-14T23:59:59.000Z

    Sn-containing group IV semiconductors create the possibility to independently control strain and band gap thus providing a wealth of opportunities to develop an entirely new class of low dimensional systems, heterostructures, and silicon-compatible electronic and optoelectronic devices. With this perspective, this work presents a detailed investigation of the band structure of strained and relaxed Ge{sub 1?x?y}Si{sub x}Sn{sub y} ternary alloys using a semi-empirical second nearest neighbors tight binding method. This method is based on an accurate evaluation of the deformation potential constants of Ge, Si, and ?-Sn using a stochastic Monte-Carlo approach as well as a gradient based optimization method. Moreover, a new and efficient differential evolution approach is also developed to accurately reproduce the experimental effective masses and band gaps. Based on this, we elucidated the influence of lattice disorder, strain, and composition on Ge{sub 1?x?y}Si{sub x}Sn{sub y} band gap energy and directness. For 0???x???0.4 and 0???y???0.2, we found that tensile strain lowers the critical content of Sn needed to achieve a direct band gap semiconductor with the corresponding band gap energies below 0.76?eV. This upper limit decreases to 0.43?eV for direct gap, fully relaxed ternary alloys. The obtained transition to direct band gap is given by y?>?0.605?×?x?+?0.077 and y?>?1.364?×?x?+?0.107 for epitaxially strained and fully relaxed alloys, respectively. The effects of strain, at a fixed composition, on band gap directness were also investigated and discussed.

  6. Band Gap Shift of GaN under Uniaxial Strain Compression H. Y. Peng, M. D. McCluskey, Y. M. Gupta, M. Kneissl1

    E-Print Network [OSTI]

    McCluskey, Matthew

    Band Gap Shift of GaN under Uniaxial Strain Compression H. Y. Peng, M. D. McCluskey, Y. M. Gupta, M.S.A. ABSTRACT The band-gap shift of GaN:Mg epilayers on (0001)-oriented sapphire was studied as a function is approximately 0.026 eV/GPa. Combining this result with the known behavior of wurtzite GaN under hydrostatic

  7. Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials H. Y. Peng, M. D. McCluskey,* and Y. M. Gupta

    E-Print Network [OSTI]

    McCluskey, Matthew

    Shock-induced band-gap shift in GaN: Anisotropy of the deformation potentials H. Y. Peng, M. D. Mc Alto, California 94304, USA Received 19 October 2004; published 24 March 2005 The band-gap shift of GaN=1.9 eV, and D4=-1.0 eV. These values indicate that the deformation potentials in wurtzite GaN

  8. Multi-junction, monolithic solar cell using low-band-gap materials lattice matched to GaAs or Ge

    DOE Patents [OSTI]

    Olson, Jerry M. (Lakewood, CO); Kurtz, Sarah R. (Golden, CO); Friedman, Daniel J. (Lakewood, CO)

    2001-01-01T23:59:59.000Z

    A multi-junction, monolithic, photovoltaic solar cell device is provided for converting solar radiation to photocurrent and photovoltage with improved efficiency. The solar cell device comprises a plurality of semiconductor cells, i.e., active p/n junctions, connected in tandem and deposited on a substrate fabricated from GaAs or Ge. To increase efficiency, each semiconductor cell is fabricated from a crystalline material with a lattice constant substantially equivalent to the lattice constant of the substrate material. Additionally, the semiconductor cells are selected with appropriate band gaps to efficiently create photovoltage from a larger portion of the solar spectrum. In this regard, one semiconductor cell in each embodiment of the solar cell device has a band gap between that of Ge and GaAs. To achieve desired band gaps and lattice constants, the semiconductor cells may be fabricated from a number of materials including Ge, GaInP, GaAs, GaInAsP, GaInAsN, GaAsGe, BGaInAs, (GaAs)Ge, CuInSSe, CuAsSSe, and GaInAsNP. To further increase efficiency, the thickness of each semiconductor cell is controlled to match the photocurrent generated in each cell. To facilitate photocurrent flow, a plurality of tunnel junctions of low-resistivity material are included between each adjacent semiconductor cell. The conductivity or direction of photocurrent in the solar cell device may be selected by controlling the specific p-type or n-type characteristics for each active junction.

  9. 480 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 12, NO. 5, MAY 2000 Coupled Structure for Wide-Band EDFA with Gain

    E-Print Network [OSTI]

    Park, Namkyoo

    480 IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 12, NO. 5, MAY 2000 Coupled Structure for Wide applications due to the maturity of the supporting technologies such as the host material and pump sources-band EDFA's [4], [5], we have suggested a structure that recycles useless backward amplified spontaneous

  10. PHYSICAL REVIEW B 84, 155438 (2011) Tunable graphene band gaps from superstrate-mediated interactions

    E-Print Network [OSTI]

    Hague, Jim

    2011-01-01T23:59:59.000Z

    , and photovoltaics through the relatively simple application of polarizable materials such as SiO2 and Si3N4. DOI: 10, light-emitting diodes (LEDs), photovoltaics, heterojunctions, and photodetectors. Here, I investigate gap-enhancement effects due to inter- actions mediated through superstrates placed on graphene systems

  11. Partial frequency band gap in one-dimensional magnonic crystals M. Kostylev,1,a

    E-Print Network [OSTI]

    Adeyeye, Adekunle

    approach. It is shown that, due to the one-dimensional artificial periodicity of the medium, the gaps with the artificial spatial periodicity of the structure. In this work, by measuring the frequencies of collective on a silicon substrate using deep ultraviolet lithography with 248 nm exposure wavelength followed by a lift

  12. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O? solid solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; Bennett, Joseph W.; Grinberg, Ilya; Rappe, Andrew M.

    2011-12-01T23:59:59.000Z

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn1/3Nb2/3)O? and Pb(Mg1/3Nb2/3)O?, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies can have a significant impact on both the conduction and valence band energies, in some cases lowering the band gap by ?0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.

  13. First-principles study of band gap engineering via oxygen vacancy doping in perovskite ABB'O? solid solutions

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Qi, Tingting; Curnan, Matthew T.; Kim, Seungchul; Bennett, Joseph W.; Grinberg, Ilya; Rappe, Andrew M.

    2011-12-01T23:59:59.000Z

    Oxygen vacancies in perovskite oxide solid solutions are fundamentally interesting and technologically important. However, experimental characterization of the vacancy locations and their impact on electronic structure is challenging. We have carried out first-principles calculations on two Zr-modified solid solutions, Pb(Zn1/3Nb2/3)O? and Pb(Mg1/3Nb2/3)O?, in which vacancies are present. We find that the vacancies are more likely to reside between low-valent cation-cation pairs than high-valent cation-cation pairs. Based on the analysis of our results, we formulate guidelines that can be used to predict the location of oxygen vacancies in perovskite solid solutions. Our results show that vacancies can have a significant impactmore »on both the conduction and valence band energies, in some cases lowering the band gap by ?0.5 eV. The effects of vacancies on the electronic band structure can be understood within the framework of crystal field theory.« less

  14. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month toA New Gap-Opening

  15. Three-dimensional assemblies built up by quantum dots in size-quantization regime: Band gap shifts due to size-distribution of cadmium selenide nanoparticles

    SciTech Connect (OSTI)

    Pejova, Biljana, E-mail: biljana@pmf.ukim.mk

    2013-11-15T23:59:59.000Z

    In the present study, it is predicted that the band gap energy of a three-dimensional quantum dot assembly exhibits a red shift when the dispersion of the crystal size distribution is enlarged, even at a fixed average value thereof. The effect is manifested when the size quantization regime in individual quantum dots constituting the assembly has been entered. Under the same conditions, the sub-band gap absorption tails are characterized with large Urbach energies, which could be one or two orders of magnitude larger than the value characteristic for the non-quantized case. - Graphical abstract: Band gap shifts due to size-distribution of nanoparticles in 3D assemblies built up by quantum dots in size-quantization regime. Display Omitted - Highlights: • Optical absorption of 3D QD assemblies in size-quantization regime is modeled. • Band gap energy of the QD solid depends on the size-distribution of the nanoparticles. • QD solid samples with same ?R? exhibit band gap shift depending on size distribution. • QD size distribution leads to large Urbach energies.

  16. Significant Reduction in NiO Band Gap upon Formation of LixNi1?xO Alloys: Applications to Solar Energy Conversion

    SciTech Connect (OSTI)

    Alidoust, Nima; Toroker, Maytal; Keith, John A.; Carter, Emily A.

    2014-01-01T23:59:59.000Z

    Long-term sustainable solar energy conversion relies on identifying economical and versatile semiconductor materials with appropriate band structures for photovoltaic and photocatalytic applications (e.g., band gaps of ?1.5–2.0 eV). Nickel oxide (NiO) is an inexpensive yet highly promising candidate. Its charge-transfer character may lead to longer carrier lifetimes needed for higher efficiencies, and its conduction band edge is suitable for driving hydrogen evolution via water-splitting. However, NiO’s large band gap (?4 eV) severely limits its use in practical applications. Our first-principles quantum mechanics calculations show band gaps dramatically decrease to ?2.0 eV when NiO is alloyed with Li2O. We show that LixNi1?xO alloys (with x=0.125 and 0.25) are p-type semiconductors, contain states with no impurity levels in the gap and maintain NiO’s desirable charge-transfer character. Lastly, we show that the alloys have potential for photoelectrochemical applications, with band edges well-placed for photocatalytic hydrogen production and CO2 reduction, as well as in tandem dye-sensitized solar cells as a photocathode.

  17. Physics of band-gap formation and its evolution in the pillar-based phononic crystal structures

    SciTech Connect (OSTI)

    Pourabolghasem, Reza; Mohammadi, Saeed; Eftekhar, Ali Asghar; Adibi, Ali [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Khelif, Abdelkrim [Institut FEMTO-ST, Université de Franche-Comté, CNRS, 32 Avenue de l'Observatoire, 25044 Besançon Cedex (France)

    2014-07-07T23:59:59.000Z

    In this paper, the interplay of Bragg scattering and local resonance is theoretically studied in a phononic crystal (PnC) structure composed of a silicon membrane with periodic tungsten pillars. The comparison of phononic band gaps (PnBGs) in three different lattice types (i.e., square, triangular, and honeycomb) with different pillar geometries shows that different PnBGs have varying degrees of dependency on the lattice symmetry based on the interplay of the local resonances and the Bragg effect. The details of this interplay is discussed. The significance of locally resonating pillars, specially in the case of tall pillars, on PnBGs is discussed and verified by examining the PnBG position and width in perturbed lattices via Monte Carlo simulations. It is shown that the PnBGs caused by the local resonance of the pillars are more resilient to the lattice perturbations than those caused by Bragg scattering.

  18. Band-gap nonlinear optical generation: The structure of internal optical field and the structural light focusing

    SciTech Connect (OSTI)

    Zaytsev, Kirill I., E-mail: kirzay@gmail.com; Katyba, Gleb M.; Yakovlev, Egor V.; Yurchenko, Stanislav O., E-mail: st.yurchenko@mail.ru [Bauman Moscow State Technical University, 2nd Baumanskaya str. 5, Moscow 105005 (Russian Federation); Gorelik, Vladimir S. [P. N. Lebedev Physics Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, Moscow 119991 (Russian Federation)

    2014-06-07T23:59:59.000Z

    A novel approach for the enhancement of nonlinear optical effects inside globular photonic crystals (PCs) is proposed and systematically studied via numerical simulations. The enhanced optical harmonic generation is associated with two- and three-dimensional PC pumping with the wavelength corresponding to different PC band-gaps. The interactions between light and the PC are numerically simulated using the finite-difference time-domain technique for solving the Maxwell's equations. Both empty and infiltrated two-dimensional PC structures are considered. A significant enhancement of harmonic generation is predicted owing to the highly efficient PC pumping based on the structural light focusing effect inside the PC structure. It is shown that a highly efficient harmonic generation could be attained for both the empty and infiltrated two- and three-dimensional PCs. We are demonstrating the ability for two times enhancement of the parametric decay efficiency, one order enhancement of the second harmonic generation, and two order enhancement of the third harmonic generation in PC structures in comparison to the nonlinear generations in appropriate homogenous media. Obviously, the nonlinear processes should be allowed by the molecular symmetry. The criteria of the nonlinear process efficiency are specified and calculated as a function of pumping wavelength position towards the PC globule diameter. Obtained criterion curves exhibit oscillating characteristics, which indicates that the highly efficient generation corresponds to the various PC band-gap pumping. The highest efficiency of nonlinear conversions could be reached for PC pumping with femtosecond optical pulses; thus, the local peak intensity would be maximized. Possible applications of the observed phenomenon are also discussed.

  19. New multi-rod linear actuator for direct-drive, wide mechanical band pass

    E-Print Network [OSTI]

    Boyer, Edmond

    (e.g. gears). This mechanical transmission is required in order to adapt the load to a standard motor), · reducing noise, · increasing movement control, · widening the mechanical band pass, · lowering maintenance. For automation applications, such as command (plane command, hard disk harm) or regulation (vibration

  20. On the sub-band gap optical absorption in heat treated cadmium sulphide thin film deposited on glass by chemical bath deposition technique

    SciTech Connect (OSTI)

    Chattopadhyay, P.; Karim, B.; Guha Roy, S. [Department of Electronic Science, University of Calcutta, 92, A.P.C. Road, Kolkata 700009 (India)

    2013-12-28T23:59:59.000Z

    The sub-band gap optical absorption in chemical bath deposited cadmium sulphide thin films annealed at different temperatures has been critically analyzed with special reference to Urbach relation. It has been found that the absorption co-efficient of the material in the sub-band gap region is nearly constant up to a certain critical value of the photon energy. However, as the photon energy exceeds the critical value, the absorption coefficient increases exponentially indicating the dominance of Urbach rule. The absorption coefficients in the constant absorption region and the Urbach region have been found to be sensitive to annealing temperature. A critical examination of the temperature dependence of the absorption coefficient indicates two different kinds of optical transitions to be operative in the sub-band gap region. After a careful analyses of SEM images, energy dispersive x-ray spectra, and the dc current-voltage characteristics, we conclude that the absorption spectra in the sub-band gap domain is possibly associated with optical transition processes involving deep levels and the grain boundary states of the material.

  1. Size-dependent shifts of the Néel temperature and optical band-gap in NiO nanoparticles

    SciTech Connect (OSTI)

    Thota, Subhash, E-mail: mseehra@wvu.edu, E-mail: subhasht@iitg.ac.in [Department of Physics, Indian Institute of Technology, Guwahati, Assam 781039 (India); Shim, J. H.; Seehra, M. S., E-mail: mseehra@wvu.edu, E-mail: subhasht@iitg.ac.in [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506 (United States)

    2013-12-07T23:59:59.000Z

    Bulk NiO is a well-known antiferromagnet with Neel temperature T{sub N}(?)?=?524?K and an optical band-gap E{sub g}?=?4.3?eV. With decrease in particle size D from 40?nm to 4?nm of NiO, systematic changes of T{sub N} and E{sub g} are observed and discussed here. From magnetic measurements, the changes in T{sub N} with D are found to fit finite-size scaling equation T{sub N}(D)?=?T{sub N}(?) [1 ? (?{sub o}/D){sup ?}] with ??=?3.2?±?0.5 and ?{sub o}?=?3.2?±?0.2?nm, in good agreement with the predictions for a Heisenberg system. The observed blue shifts of E{sub g} with decrease in D reaching E{sub g}?=?5.12?eV for D???4?nm are likely due to quantum confinement and non-stoichiometry.

  2. Toward Photochemical Water Splitting Using Band-Gap-Narrowed Semiconductors and Transition-Metal Based Molecular Catalysts

    SciTech Connect (OSTI)

    Muckerman,J.T.; Rodriguez, J.A.; Fujita, E.

    2009-06-07T23:59:59.000Z

    We are carrying out coordinated theoretical and experimental studies of toward photochemical water splitting using band-gap-narrowed semiconductors (BGNSCs) with attached multi-electron molecular water oxidation and hydrogen production catalysts. We focus on the coupling between the materials properties and the H{sub 2}O redox chemistry, with an emphasis on attaining a fundamental understanding of the individual elementary steps in the following four processes: (1) Light-harvesting and charge-separation of stable oxide or oxide-derived semiconductors for solar-driven water splitting, including the discovery and characterization of the behavior of such materials at the aqueous interface; (2) The catalysis of the four-electron water oxidation by dinuclear hydroxo transition-metal complexes with quinonoid ligands, and the rational search for improved catalysts; (3) Transfer of the design principles learned from the elucidation of the DuBois-type hydrogenase model catalysts in acetonitrile to the rational design of two-electron hydrogen production catalysts for aqueous solution; (4) Combining these three elements to examine the function of oxidation catalysts on BGNSC photoanode surfaces and hydrogen production catalysts on cathode surfaces at the aqueous interface to understand the challenges to the efficient coupling of the materials functions.

  3. Electric-field-dependent electroreflectance spectra of visible-band-gap (InAlGa)P quantum-well structures

    SciTech Connect (OSTI)

    Fritz, I.J.; Blum, O.; Schneider, R.P. Jr.; Howard, A.J.; Follstaedt, D.M. (Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States))

    1994-04-04T23:59:59.000Z

    We present results from the first studies of electric-field effects on optical transitions in visible-band-gap InGaP/InAlGaP multiple-quantum-well (MQW) structures. These structures, grown at 775 [degree]C by metalorganic vapor phase epitaxy on (100) GaAs substrates misoriented 6[degree] towards P(111)[r angle][l angle]111[r angle]A, consist of nominally undoped MQWs surrounded by doped In[sub 0.49]Al[sub 0.51]P cladding layers to form [ital p]-[ital i]-[ital n] diodes. The Stark shifts of various allowed and forbidden quantum-well transitions were observed in bias-dependent electroreflectance spectra of In[sub 0.49]Ga[sub 0.51]P/In[sub 0.49](Al[sub 0.5]Ga[sub 0.5])[sub 0.51]P MQW samples with 10-nm-thick layers. We find the magnitude of these shifts to depend on the details of the Mg doping profile, confirming the importance of Mg diffusion and unintentional background doping in these materials. Our results show that (InAlGa)P materials are promising for visible-wavelength electro-optic modulator applications.

  4. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01T23:59:59.000Z

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  5. Visible-light absorption and large band-gap bowing of GaN1-xSbx from first principles

    SciTech Connect (OSTI)

    Sheetz, R. Michael; Richter, Ernst; Andriotis, Antonis N.; Lisenkov, Sergey; Pendyala, Chandrashekhar; Sunkara, Mahendra K.; Menon, Madhu

    2011-08-01T23:59:59.000Z

    Applicability of the Ga(Sbx)N1-x alloys for practical realization of photoelectrochemical water splitting is investigated using first-principles density functional theory incorporating the local density approximation and generalized gradient approximation plus the Hubbard U parameter formalism. Our calculations reveal that a relatively small concentration of Sb impurities is sufficient to achieve a significant narrowing of the band gap, enabling absorption of visible light. Theoretical results predict that Ga(Sbx)N1-x alloys with 2-eV band gaps straddle the potential window at moderate to low pH values, thus indicating that dilute Ga(Sbx)N1-x alloys could be potential candidates for splitting water under visible light irradiation.

  6. Band gap engineering of In{sub 2}O{sub 3} by alloying with Tl{sub 2}O{sub 3}

    SciTech Connect (OSTI)

    Scanlon, David O., E-mail: d.scanlon@ucl.ac.uk [Kathleen Lonsdale Materials Chemistry, Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Regoutz, Anna; Egdell, Russell G. [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom)] [Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QR (United Kingdom); Morgan, David J. [Cardiff Catalysis Institute (CCI), School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT (United Kingdom)] [Cardiff Catalysis Institute (CCI), School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT (United Kingdom); Watson, Graeme W. [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland)] [School of Chemistry and CRANN, Trinity College Dublin, Dublin 2 (Ireland)

    2013-12-23T23:59:59.000Z

    Efficient modulation of the bandgap of In{sub 2}O{sub 3} will open up a route to improved electronic properties. We demonstrate using ab initio calculations that Tl incorporation into In{sub 2}O{sub 3} reduces the band gap and confirm that narrowing of the gap is observed by X-ray photoemission spectroscopy on ceramic surfaces. Incorporation of Tl does not break the symmetry of the allowed optical transitions, meaning that the doped thin films should retain optical transparency in the visible region, in combination with a lowering of the conduction band effective mass. We propose that Tl-doping may be an efficient way to increase the dopability and carrier mobility of In{sub 2}O{sub 3}.

  7. PHYSICAL REVIEW B 85, 155101 (2012) Electronic properties of layered multicomponent wide-band-gap oxides: A combinatorial approach

    E-Print Network [OSTI]

    Medvedeva, Julia E.

    devices including solar cells, smart windows, and flat panel displays, and they also find application as heating, antistatic, and optical coatings (for select reviews, see Refs. 1­7). Multicomponent TCOs

  8. Structure and red shift of optical band gap in CdO–ZnO nanocomposite synthesized by the sol gel method

    SciTech Connect (OSTI)

    Mosquera, Edgar, E-mail: edemova@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile); Pozo, Ignacio del, E-mail: ignacio.dpf@gmail.com [Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Av. José Pedro Alessandri 1242, Santiago (Chile); Morel, Mauricio, E-mail: mmorel@ing.uchile.cl [Laboratorio de Materiales a Nanoescala, Departamento de Ciencia de los Materiales, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Av. Tupper 2069, Santiago (Chile)

    2013-10-15T23:59:59.000Z

    The structure and the optical band gap of CdO–ZnO nanocomposites were studied. Characterization using X-ray diffraction (XRD), transmission electron microscopy (TEM) and diffuse reflectance spectroscopy (DRS) analysis confirms that CdO phase is present in the nanocomposites. TEM analysis confirms the formation of spheroidal nanoparticles and nanorods. The particle size was calculated from Debey–Sherrer?s formula and corroborated by TEM images. FTIR spectroscopy shows residual organic materials (aromatic/Olefinic carbon) from nanocomposites surface. CdO content was modified in the nanocomposites in function of polyvinylalcohol (PVA) added. The optical band gap is found to be red shift from 3.21 eV to 3.11 eV with the increase of CdO content. Photoluminescence (PL) measurements reveal the existence of defects in the synthesized CdO–ZnO nanocomposites. - Graphical abstract: Optical properties of ZnO, CdO and ZnO/CdO nanoparticles. Display Omitted - Highlights: • TEM analysis confirms the presence of spherical nanoparticles and nanorods. • The CdO phase is present in the nanocomposites. • The band gap of the CdO–ZnO nanocomposites is slightly red shift with CdO content. • PL emission of CdO–ZnO nanocomposite are associated to structural defects.

  9. Iron K{alpha} measurement of LHD plasmas using a wide band and compact x-ray crystal spectrometer

    SciTech Connect (OSTI)

    Sakurai, I.; Tawara, Y.; Matsumoto, C.; Furuzawa, A.; Morita, S.; Goto, M. [EcoTopia Science Institute, Nagoya University, Nagoya 464-8603, Aichi (Japan); National Institute for Fusion Science, Toki 509-5292, Gifu (Japan)

    2006-10-15T23:59:59.000Z

    X-ray spectra of Fe K{alpha} transitions have been obtained on the Large Helical Device (LHD) using a wide band and compact x-ray spectrometer. The spectrometer consists of a Johann-type LiF(220) crystal with a curvature of 430 mm and a back-illuminated charge-coupled device (CCD) detector with a size of 26.6x6.7 mm{sup 2}. A wide energy range of 6.4-7.0 keV can be observed with high brightness and high temporal resolution, which enables us the measurement of K{alpha} transitions from all charge states of Fe ions. An energy resolution of the spectrometer was 10 eV at full width at half maximum. Time-developed K{alpha} spectra after injection of Fe-coated impurity pellet were also measured with a time interval of 10 ms in the full binning mode of CCD in order to analyze the impurity transport at the central column of LHD plasmas. The system can be modified to have better time response up to 1 ms to analyze the ionization and recombination processes after the pellet injection.

  10. Direct band gap optical emission from compressively strained Ge films grown on relaxed Si{sub 0.5}Ge{sub 0.5} substrate

    SciTech Connect (OSTI)

    Aluguri, R.; Manna, S.; Ray, S. K. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)] [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2013-10-14T23:59:59.000Z

    Compressively strained Ge films have been grown on relaxed Si{sub 0.5}Ge{sub 0.5} virtual substrate in ultra high vacuum using molecular beam epitaxy. Structural characterization has shown that the Ge films are compressively strained with partial strain relaxation in a film thicker than 3.0 nm, due to onset of island nucleation. Photoluminescence spectra exhibit the splitting of degenerate Ge valence band into heavy hole and light hole bands with a broad direct band gap emission peak around 0.81 eV. Temperature and excitation power dependent emission characteristics have been studied to investigate the mechanism of luminescence quenching at high temperatures and the role of non-radiative recombination centers.

  11. Band-Gap Engineering of Zinc Oxide Colloids via Lattice Substitution with Sulfur Leading to Materials with Advanced Properties for

    E-Print Network [OSTI]

    Nabben, Reinhard

    gap semiconductors like III/V compounds, for instance, gallium nitride (GaN),2 or II/VI compounds bandgap of 3.37 eV at room temperature.7 Thus, one of its most elemental functions is the absorption

  12. Optical and structural study of GaN nanowires grown by catalyst-free molecular beam epitaxy. II. Sub-band-gap luminescence and electron irradiation effects

    SciTech Connect (OSTI)

    Robins, Lawrence H.; Bertness, Kris A.; Barker, Joy M.; Sanford, Norman A.; Schlager, John B. [National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); National Institute of Standards and Technology, Boulder, Colorado 80305 (United States)

    2007-06-01T23:59:59.000Z

    GaN nanowires with diameters of 50-250 nm, grown by catalyst-free molecular beam epitaxy, were characterized by photoluminescence (PL) and cathodoluminescence (CL) spectroscopy at temperatures from 3 to 297 K. Both as-grown samples and dispersions of the nanowires onto other substrates were examined. The properties of the near-band-edge PL and CL spectra were discussed in Part I of this study by [Robins et al. [L. H. Robins, K. A. Bertness, J. M. Barker, N. A. Sanford, and J. B. Schlager, J. Appl. Phys. 101,113505 (2007)]. Spectral features below the band gap, and the effect of extended electron irradiation on the CL, are discussed in Part II. The observed sub-band-gap PL and CL peaks are identified as phonon replicas of the free-exciton transitions, or excitons bound to structural defects or surface states. The defect-related peaks in the nanowires are correlated with luminescence lines previously reported in GaN films, denoted the Y lines [M. A. Reshchikov and H. Morkoc, J. Appl. Phys. 97, 061301 (2005)]. The CL was partially quenched by electron beam irradiation for an extended time; the quenching was stronger for the free and shallow-donor-bound exciton peaks than for the defect-related peaks. The quenching appeared to saturate at high irradiation dose (with final intensity {approx_equal}30% of initial intensity) and was reversible on thermal cycling to room temperature. The electron irradiation-induced quenching of the CL is ascribed to charge injection and trapping phenomena.

  13. Solar Energy Materials & Solar Cells 91 (2007) 15991610 Improving solar cell efficiency using photonic band-gap materials

    E-Print Network [OSTI]

    Dowling, Jonathan P.

    Solar Energy Materials & Solar Cells 91 (2007) 1599­1610 Improving solar cell efficiency using) solar energy conversion systems (or solar cells) are the most widely used power systems. However and reliable solar-cell devices is presented. We show that due their ability to modify the spectral and angular

  14. Identifying topological-band insulator transitions in silicene and other 2D gapped Dirac materials by means of Rényi-Wehrl entropy

    E-Print Network [OSTI]

    M. Calixto; E. Romera

    2015-02-11T23:59:59.000Z

    We propose a new method to identify transitions from a topological insulator to a band insulator in silicene (the silicon equivalent of graphene) in the presence of perpendicular magnetic and electric fields, by using the R\\'enyi-Wehrl entropy of the quantum state in phase space. Electron-hole entropies display an inversion/crossing behavior at the charge neutrality point for any Landau level, and the combined entropy of particles plus holes turns out to be maximum at this critical point. The result is interpreted in terms of delocalization of the quantum state in phase space. The entropic description presented in this work will be valid in general 2D gapped Dirac materials, with a strong intrinsic spin-orbit interaction, isoestructural with silicene.

  15. Resonant charge transfer of hydrogen Rydberg atoms incident at a Cu(100) projected band-gap surface

    E-Print Network [OSTI]

    Gibbard, J A; Kohlhoff, M; Rennick, C J; So, E; Ford, M; Softley, T P

    2015-01-01T23:59:59.000Z

    The charge transfer (ionization) of hydrogen Rydberg atoms (principal quantum number $n=25-34$) incident at a Cu(100) surface is investigated. Unlike fully metallic surfaces, where the Rydberg electron energy is degenerate with the conduction band of the metal, the Cu(100) surface has a projected bandgap at these energies, and only discrete image states are available through which charge transfer can take place. Resonant enhancement of charge transfer is observed at hydrogen principal quantum numbers for which the Rydberg energy matches the energy of one of the image states. The integrated surface ionization signals show clear periodicity as the energies of states with increasing $n$ come in and out of resonance with the image states. The velocity dependence of the surface ionization dynamics is also investigated. Decreased velocity of the incident H atom leads to a greater mean distance of ionization and a lower field required to extract the ion. The surface-ionization profiles (signal versus applied field) ...

  16. One-photon band gap engineering of borate glass doped with ZnO for photonics applications

    SciTech Connect (OSTI)

    Abdel-Baki, Manal [Glass Department, National Research Centre, Dokki 12311 Giza (Egypt); Abdel-Wahab, Fathy A.; El-Diasty, Fouad [Physics Department, Faculty of Science, Ain Shams University, Abbasia, 11566 Cairo (Egypt)

    2012-04-01T23:59:59.000Z

    Lithium tungsten borate glass of the composition (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0 {<=}x{<=} 0.1 mol. %) is prepared for photonics applications. The glass is doped with ZnO to tune the glass absorption characteristics in a wide spectrum range (200-2500 nm). Chemical bond approach, including chemical structure, electronegativity, bond ionicity, nearest-neighbor coordination, and other chemical bonding aspect, is used to analyze and to explain the obtained glass properties such as: transmittance, absorption, electronic structure parameters (bandgap, Fermi level, and Urbach exciton-phonon coupling), Wannier free excitons excitation (applying Elliott's model), and two-photon absorption coefficient as a result of replacement of B{sub 2}O{sub 3} by ZnO.

  17. Hybrid density functional calculations of the band gap of GaxIn1-xN Xifan Wu,1 Eric J. Walter,2 Andrew M. Rappe,3 Roberto Car,1 and Annabella Selloni1

    E-Print Network [OSTI]

    Rappe, Andrew M.

    Hybrid density functional calculations of the band gap of GaxIn1-xN Xifan Wu,1 Eric J. Walter,2 Andrew M. Rappe,3 Roberto Car,1 and Annabella Selloni1 1Chemistry Department, Princeton University Recent theoretical work has provided evidence that hybrid functionals, which include a fraction of exact

  18. VOLUME 84, NUMBER 19 P H Y S I C A L R E V I E W L E T T E R S 8 MAY 2000 Theory and Experiments on Elastic Band Gaps

    E-Print Network [OSTI]

    Investigaciones Científicas (CSIC), Serrano 144, 28006 Madrid, Spain 2 Ames Laboratory, Iowa State University, Ames, Iowa 50011 3 Instituto de Acústica, CSIC, Serrano 144, 28006 Madrid, Spain 4 Instituto de Física Aplicada, CSIC, Serrano 144, 28006 Madrid, Spain (Received 26 February 1999) We study elastic band gaps

  19. The Study of Energy Band Gap of In{sub x}Al{sub y}Ga{sub 1-x-y}N Quaternary Alloys using UV-VIS Spectroscopy

    SciTech Connect (OSTI)

    Raof, N. H. Abd.; Ng, S. S.; Hassan, H. Abu; Hassan, Z. [Nano-Optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2009-06-01T23:59:59.000Z

    Quaternary In{sub x}Al{sub y}Ga{sub 1-x-y}N alloys with indium (In) mole fraction x ranging from 0.01 to 0.10 and constant aluminum (Al) mole fraction y = 0.06, were grown by molecular beam epitaxy. The energy band gaps of InAlGaN alloys were investigated using UV-VIS spectroscopy under room temperature. The energy band gap decreases with increasing In composition from 0.01 to 0.08. This trend is expected since the incorporation of In lowers the energy band gap of Al{sub 0.06}Ga{sub 0.94}N(3.72 eV). However, for InAlGaN with In composition of 0.1, the band gap shows a sudden increase in energy. This is probably due to local alloy compositional fluctuations in the epilayer, contributed by incomplete substitutions of Ga atoms by the In atoms, thus retaining a much richer GaN structure. Finally, we investigate the bowing parameter appears also to be very sensitive on In content. We obtained b 50.08 for quaternary InAlGaN alloys.

  20. Band-Gap Reduction and Dopant Interaction in Epitaxial La,Cr Co-doped SrTiO3 Thin Films

    SciTech Connect (OSTI)

    Comes, Ryan B.; Sushko, Petr; Heald, Steve M.; Colby, Robert J.; Bowden, Mark E.; Chambers, Scott A.

    2014-12-03T23:59:59.000Z

    We show that by co-doping SrTiO3 (STO) epitaxial thin films with equal amounts of La and Cr it is possible to produce films with an optical band gap ~0.9 eV lower than that of undoped STO. Sr1-xLaxTi1-xCrxO3 thin films were deposited by molecular beam epitaxy and characterized using x-ray photoelectron spectroscopy and x-ray absorption near-edge spectroscopy to show that the Cr dopants are almost exclusively in the Cr3+ oxidation state. Extended x-ray absorption fine structure measurements and theoretical modeling suggest that it is thermodynamically preferred for La and Cr dopants to occupy nearest neighbor A- and B-sites in the lattice. Transport measurements show that the material exhibits variable-range hopping conductivity with high resistivity. These results create new opportunities for the use of doped STO films in photovoltaic and photocatalytic applications.

  1. Gallium arsenide-based ternary compounds and multi-band-gap solar cell research. Annual subcontract report, 15 April 1988--14 June 1990

    SciTech Connect (OSTI)

    Vernon, S. [Spire Corp., Bedford, MA (United States)

    1993-02-01T23:59:59.000Z

    Aim of this contract is the achievement of a high-efficiency, low-cost solar cell. The basic approach to the problem is centered upon the heteroepitaxial growth of a III-V compound material onto a single-crystal silicon wafer. The growth technique employed is metalorganic chemical vapor deposition. The silicon wafer may serve as a mechanical substrate and ohmic contact for a single-junction device, or may contain a p-n junction of its own and form the bottom cell of a two junction tandem solar cell structure. The III-V material for the single-junction case is GaAs and for the two-junction case is either GaAlAs or GaAsP, either material having the proper composition to yield a band gap of approximately 1.7 eV. Results achieved in this contract include the following: (1) a 17.6% efficient GaAs-on-Si solar cell; (2) an 18.5% efficient GaAs-on-Si concentrator solar cell at 400 suns; (3) a 24.8% efficient GaAs-on-GaAs solar cell; (4) a 28.7% efficient GaAs-on-GaAs concentrator solar cell at 200 suns; (5) measurement of the effects of dislocation density and emitter doping on GaAs cells; and (6) improvements in the growth process to achieve reproducible thin AlGaAs window layers with low recombination velocities and environmental stability.

  2. Gallium arsenide-based ternary compounds and multi-band-gap solar cell research. Final subcontract report, 1 April 1988--31 March 1990

    SciTech Connect (OSTI)

    Vernon, S. [Spire Corp., Bedford, MA (United States)

    1993-07-01T23:59:59.000Z

    This report describes work to achieve a high-efficiency, low-cost solar cell. The basic approach to the problem is centered upon the heteroepitaxial growth of a III-V compound material onto a single-crystal silicon wafer. The growth technique employed throughout this work is metal-organic chemical vapor deposition. The silicon wafer may serve as a mechanical substrate and ohmic contact for a single-junction device, or it may contain a p-n junction of its own and form the bottom cell of a two-junction tandem solar cell structure. The III-V material for the single-junction case is GaAs, and for the two-junction case it is either GaAlAs or GaAsP, either material having the proper composition to yield a band gap of approximately 1.7 eV. Results achieved in this contract include (1) a 17.6%-efficient GaAs-on-Si solar cell; (2) an 18.5%-efficient GaAs-on-Si concentrator solar cell at 400 suns; (3) a 24.8%-efficient GaAs-on-GaAs solar cell; (4) a 28.7%-efficient GaAs-on-GaAs concentrator solar cell at 200 suns; (5) the measurement of the effects of dislocation density and emitter doping on GaAs cells; and (6) improvements in the growth process to achieve reproducible thin AlGaAs window layers with low recombination velocities and environmental stability.

  3. CARS: the CFHTLS-Archive-Research Survey; I. Five-band multi-colour data from 37 sq. deg. CFHTLS-Wide observations

    E-Print Network [OSTI]

    T. Erben; H. Hildebrandt; M. Lerchster; P. Hudelot; J. Benjamin; L. van Waerbeke; T. Schrabback; F. Brimioulle; O. Cordes; J. P. Dietrich; K. Holhjem; M. Schirmer; P. Schneider

    2008-11-13T23:59:59.000Z

    We present the CFHTLS-Archive-Research Survey (CARS). It is a virtual multi-colour survey based on public archive images from the CFHT-Legacy-Survey. Our main scientific interests in CARS are optical searches for galaxy clusters from low to high redshift and their subsequent study with photometric and weak-gravitational lensing techniques. As a first step of the project we present multi-colour catalogues from 37 sq. degrees of the CFHTLS-Wide component. Our aims are to create astrometrically and photometrically well calibrated co-added images. Second goal are five-band (u*, g', r', i', z') multi-band catalogues with an emphasis on reliable estimates for object colours. These are subsequently used for photometric redshift estimates. The article explains in detail data processing, multi-colour catalogue creation and photometric redshift estimation. Furthermore we apply a novel technique, based on studies of the angular galaxy cross-correlation function, to quantify the reliability of photo-z's. The accuracy of our high-confidence photo-z sample (10-15 galaxies per sq. arcmin) is estimated to $\\sigma_{\\Delta_z/(1+z)}\\approx 0.04-0.05$ up to i'<24 with typically only 1-3% outliers. Interested users can obtain access to our data by request to the authors.

  4. Theoretical study of influencing factors on the dispersion of bulk band-gap edges and the surface states in topological insulators Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3}

    SciTech Connect (OSTI)

    Rusinov, I. P., E-mail: rusinovip@gmail.com; Nechaev, I. A. [Tomsk State University (Russian Federation); Chulkov, E. V. [Donostia International Physics Center (DIPC) (Spain)

    2013-06-15T23:59:59.000Z

    The dispersion of the band-gap edge states in bulk topological insulators Bi{sub 2}Te{sub 3} and Bi{sub 2}Se{sub 3} is considered within density functional theory. The dependences of this dispersion both on the approximation used for an exchange-correlation functional at fixed unit cell parameters and atomic positions and on these parameters and positions that are obtained upon structural relaxation performed using a certain approximated functional are analyzed. The relative position of the Dirac point of topologically protected surface states and the valence band maximum in the surface electronic structure of the topological insulators is discussed.

  5. Band gap modification and ferroelectric properties of Bi{sub 0.5}(Na,K){sub 0.5}TiO{sub 3}-based by Li substitution

    SciTech Connect (OSTI)

    Quan, Ngo Duc [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Ha Noi (Viet Nam) [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Ha Noi (Viet Nam); International Training Institute for Materials Science, Hanoi University of Science and Technology, 1 Dai Co Viet road, Hanoi (Viet Nam); Hung, Vu Ngoc [International Training Institute for Materials Science, Hanoi University of Science and Technology, 1 Dai Co Viet road, Hanoi (Viet Nam)] [International Training Institute for Materials Science, Hanoi University of Science and Technology, 1 Dai Co Viet road, Hanoi (Viet Nam); Quyet, Nguyen Van [Hanautech Co., Ltd., 832, Tamnip-dong, Yuseong-gu, Daejeon (Korea, Republic of)] [Hanautech Co., Ltd., 832, Tamnip-dong, Yuseong-gu, Daejeon (Korea, Republic of); Chung, Hoang Vu [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Hanoi (Viet Nam)] [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet street, Hanoi (Viet Nam); Dung, Dang Duc, E-mail: dung.dangduc@hust.edu.vn [Department of General Physics, School of Engineering Physics, Ha Noi University of Science and Technology, 1 Dai Co Viet road, Ha Noi (Viet Nam)

    2014-01-15T23:59:59.000Z

    We report on the reduction of band gap in Bi{sub 0.5}(Na{sub 0.82-x}Li{sub x}K{sub 0.18}){sub 0.5}(Ti{sub 0.95}Sn{sub 0.05})O{sub 3} from 2.99 eV to 2.84 eV due to the substitutions of Li{sup +} ions to Na{sup +} sites. In addition, the lithium substitution samples exhibit an increasing of the maximal polarizations from 21.8 to 25.7 ?C/cm{sup 2}. The polarization enhancement of ferroelectric and reduction of the band gaps are strongly related to the Li substitution concentration as evaluated via the electronegative between A-site and oxygen and tolerance factor. The results are promising for photovoltaic and photocatalytic applications.

  6. Towards Direct-Gap Silicon Phases by the Inverse Band Structure Design Approach H. J. Xiang,1,2,* Bing Huang,2

    E-Print Network [OSTI]

    Gong, Xingao

    phase with quasidirect gaps of 1.55 eV, which is a promising candidate for making thin-film solar cells have also been based on diamond Si in monocrystalline or large-grained polycrystalline form [1 gap of 1.55 eV. We suggest that these new Si phases could be used in thin-film solar cells

  7. Structural phase transition, narrow band gap, and room-temperature ferromagnetism in [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} ferroelectrics

    SciTech Connect (OSTI)

    Zhou, Wenliang; Yang, Pingxiong, E-mail: pxyang@ee.ecnu.edu.cn; Chu, Junhao [Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronic Engineering, East China Normal University, Shanghai 200241 (China); Deng, Hongmei [Instrumental Analysis and Research Center, Institute of Materials, Shanghai University, 99 Shangda Road, Shanghai 200444 (China)

    2014-09-15T23:59:59.000Z

    Structural phase transition, narrow band gap (E{sub g}), and room-temperature ferromagnetism (RTFM) have been observed in the [KNbO{sub 3}]{sub 1?x}[BaNi{sub 1/2}Nb{sub 1/2}O{sub 3??}]{sub x} (KBNNO) ceramics. All the samples have single phase perovskite structure, but exhibit a gradual transition behaviour from the orthorhombic to a cubic structure with the increase of x. Raman spectroscopy analysis not only corroborates this doping-induced change in normal structure but also shows the local crystal symmetry for x ? 0.1 compositions to deviate from the idealized cubic perovskite structure. A possible mechanism for the observed specific changes in lattice structure is discussed. Moreover, it is noted that KBNNO with compositions x?=?0.1–0.3 have quite narrow E{sub g} of below 1.5?eV, much smaller than the 3.2?eV band gap of parent KNbO{sub 3} (KNO), which is due to the increasing Ni 3d electronic states within the gap of KNO. Furthermore, the KBNNO materials present RTFM near a tetragonal to cubic phase boundary. With increasing x from 0 to 0.3, the magnetism of the samples develops from diamagnetism to ferromagnetism and paramagnetism, originating from the ferromagnetic–antiferromagnetic competition. These results are helpful in the deeper understanding of phase transitions, band gap tunability, and magnetism variations in perovskite oxides and show the potential role, such materials can play, in perovskite solar cells and multiferroic applications.

  8. Interaction of wide-band-gap single crystals with 248-nm excimer laser radiation. XI. The effect of water vapor and temperature on laser desorption

    E-Print Network [OSTI]

    Dickinson, J. Thomas

    . Significantly, introducing water vapor lowers the particle velocities and thus the effective surface temperature systems, simultaneous electronic excitation and exposure to aggressive chemicals can acceler- ate etching-induced neutral particle desorption and surface erosion on single- crystal sodium chloride in the presence of low

  9. On sky characterization of the BAORadio wide band digital backend: Search for HI emission in Abell85, Abell1205 and Abell2440 galaxy clusters

    E-Print Network [OSTI]

    Ansari, R; Colom, P; Ferrari, C; Magneville, Ch; Martin, J M; Moniez, M; Torrento, A S

    2015-01-01T23:59:59.000Z

    We have observed regions of three galaxy clusters at z$\\sim$ [0.06, 0.09] (Abell85, Abell1205, Abell2440), as well as calibration sources with the Nancay radiotelescope (NRT) to search for 21 cm emission and fully characterize the FPGA based BAORadio digital backend. The total observation time of few hours per source have been distributed over few months, from March 2011 to January 2012, due to scheduling constraints of the NRT, which is a transit telescope. Data have been acquired in parallel with the NRT standard correlator (ACRT) back-end, as well as with the BAORadio data acquisition system. The latter enables wide band instantaneous observation of the [1250, 1500]MHz frequency range, as well as the use of powerful RFI mitigation methods thanks to its fine time sampling. A number of questions related to instrument stability, data processing and calibration are discussed. We have obtained the radiometer curves over the integration time range [0.01,10 000] seconds and we show that sensitivities of few mJy o...

  10. Real-structure effects: Band gaps of Mg_xZn_{1-x}O, Cd_xZn_{1-x}O, and n-type ZnO from ab-initio calculations

    SciTech Connect (OSTI)

    Schleife, A; Bechstedt, F

    2012-02-15T23:59:59.000Z

    Many-body perturbation theory is applied to compute the quasiparticle electronic structures and the optical-absorption spectra (including excitonic effects) for several transparent conducting oxides. We discuss HSE+G{sub 0}W{sub 0} results for band structures, fundamental band gaps, and effective electron masses of MgO, ZnO, CdO, SnO{sub 2}, SnO, In{sub 2}O{sub 3}, and SiO{sub 2}. The Bethe-Salpeter equation is solved to account for excitonic effects in the calculation of the frequency-dependent absorption coefficients. We show that the HSE+G{sub 0}W{sub 0} approach and the solution of the Bethe-Salpeter equation are very well-suited to describe the electronic structure and the optical properties of various transparent conducting oxides in good agreement with experiment.

  11. IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 51, NO. 6, JUNE 2003 1705 Cryogenic Wide-Band Ultra-Low-Noise IF

    E-Print Network [OSTI]

    -Band Ultra-Low-Noise IF Amplifiers Operating at Ultra-Low DC Power Niklas Wadefalk, Anders Mellberg, Iltcho Identifier 10.1109/TMTT.2003.812570 ultra-low-noise and ultra-low dc power dissipation are of interest--This paper describes cryogenic broad-band ampli- fiers with very low power consumption and very low noise

  12. A Fully Integrated Multi-Band Multi-Output Synthesizer with Wide-Locking-Range 1/3 Injection Locked Divider Utilizing Self-Injection Technique for Multi-Band Microwave Systems

    E-Print Network [OSTI]

    Lee, Sang Hun

    2012-10-19T23:59:59.000Z

    This dissertation reports the development of a new multi-band multi-output synthesizer, 1/2 dual-injection locked divider, 1/3 injection-locked divider with phase-tuning, and 1/3 injection-locked divider with self-injection using 0.18-micrometer...

  13. Variation in band gap of lanthanum chromate by transition metals doping LaCr{sub 0.9}A{sub 0.1}O{sub 3} (A:Fe/Co/Ni)

    SciTech Connect (OSTI)

    Naseem, Swaleha, E-mail: wasiamu@gmail.com; Khan, Wasi, E-mail: wasiamu@gmail.com; Saad, A. A., E-mail: wasiamu@gmail.com; Shoeb, M., E-mail: wasiamu@gmail.com; Ahmed, Hilal, E-mail: wasiamu@gmail.com; Naqvi, A. H. [Centre of Excellence in Materials Science (Nanomaterials), Department of Applied Physics, Z.H. College of Engg. and Technology, Aligarh Muslim University, Aligarh-202002 (India); Husain, Shahid [Department of Physics, Aligarh Muslim University, Aligarh-202002 (India)

    2014-04-24T23:59:59.000Z

    Transition metal (Fe, Co, Ni) doped lanthanum chromate (LaCrO{sub 3}) nanoparticles (NPs) were prepared by gel combustion method and calcinated at 800°C. Microstructural studies were carried by XRD and SEM/EDS techniques. The results of structural characterization show the formation of all samples in single phase without any impurity. Optical properties were studied by UV- visible and photoluminescence techniques. The energy band gap was calculated and the variation was observed with the doping of transition metal ions. Photoluminescence spectra show the emission peak maxima for the pure LaCrO{sub 3} at about 315 nm. Influence of Fe, Co, Ni doping was studied and compared with pure lanthanum chromate nanoparticles.

  14. Domain walls in gapped graphene

    E-Print Network [OSTI]

    G. W. Semenoff; V. Semenoff; Fei Zhou

    2008-05-31T23:59:59.000Z

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  15. Domain walls in gapped graphene

    E-Print Network [OSTI]

    Semenoff, G W; Zhou, Fei

    2015-01-01T23:59:59.000Z

    The electronic properties of a particular class of domain walls in gapped graphene are investigated. We show that they can support mid-gap states which are localized in the vicinity of the domain wall and propagate along its length. With a finite density of domain walls, these states can alter the electronic properties of gapped graphene significantly. If the mid-gap band is partially filled,the domain wall can behave like a one-dimensional metal embedded in a semi-conductor, and could potentially be used as a single-channel quantum wire.

  16. Transformation Optics with Photonic Band Gap Media

    E-Print Network [OSTI]

    Urzhumov, Yaroslav A

    2010-01-01T23:59:59.000Z

    We introduce a class of optical media based on adiabatically modulated, dielectric-only, and potentially extremely low-loss, photonic crystals. The media we describe represent a generalization of the eikonal limit of transformation optics (TO). The foundation of the concept is the possibility to fit frequency isosurfaces in the k-space of photonic crystals with elliptic surfaces, allowing them to mimic the dispersion relation of light in anisotropic effective media. Photonic crystal cloaks and other TO devices operating at visible wavelengths can be constructed from optically transparent substances like glasses, whose attenuation coefficient can be as small as 10 dB/km, suggesting the TO design methodology can be applied to the development of optical devices not limited by the losses inherent to metal-based, passive metamaterials.

  17. Compositional dependence of the luminescence of In{sub 0.49}(Al{sub {ital y}}Ga{sub 1{minus}{ital y}}){sub 0.51}P alloys near the direct{endash}indirect band-gap crossover

    SciTech Connect (OSTI)

    Nelson, J.S.; Jones, E.D. [Semiconductor Materials and Device Sciences Department, 1113, MS-0601, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Semiconductor Materials and Device Sciences Department, 1113, MS-0601, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Myers, S.M.; Follstaedt, D.M. [Semiconductor Nanostructure Physics Department, 1112, MS-1414, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Semiconductor Nanostructure Physics Department, 1112, MS-1414, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Hjalmarson, H.P. [Compound Semiconductor Technology Department, 1322, MS-0603, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Compound Semiconductor Technology Department, 1322, MS-0603, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Schirber, J.E. [Solid State Sciences Department, 1100, MS-1437, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Solid State Sciences Department, 1100, MS-1437, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Schneider, R.P. [Semiconductor Materials Department, 1311, MS-0603, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States)] [Semiconductor Materials Department, 1311, MS-0603, Sandia National Laboratories, Albuquerque, New Mexico 87185 (United States); Fouquet, J.E.; Robbins, V.M.; Carey, K.W. [Hewlett Packard Laboratories, 3500 Deer Creek Road, Palo Alto, California 94303 (United States)] [Hewlett Packard Laboratories, 3500 Deer Creek Road, Palo Alto, California 94303 (United States)

    1996-06-01T23:59:59.000Z

    A number of complementary experimental characterization tools and theoretical band structure methods were used to determine unambiguously the band-edge luminescence as a function of Al concentration, and to place an upper limit on the short-wavelength emission of InAlGaP alloys lattice matched to GaAs. In particular, the direct-to-indirect band-gap crossing has been determined by analyzing a series of metalorganic vapor-phase-epitaxy-grown In{sub 0.49}(Al{sub {ital y}}Ga{sub 1{minus}{ital y}}){sub 0.51}P alloys lattice matched to GaAs with double-crystal x-ray analysis, Rutherford backscattering spectroscopy, pressure- and temperature-dependent photoluminescence, and transmission electron microscopy. The experimental measurements are compared to first-principles plane-wave pseudopotential band structure calculations for the ternary end points, InGaP and InAlP. The maximum room temperature direct band gap is found to be 2.24 eV, corresponding to an Al composition of {ital y}=0.52{plus_minus}0.02, in good agreement with the theoretical prediction of 0.58{plus_minus}0.05. {copyright} {ital 1996 The American Physical Society.}

  18. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1994-04-05T23:59:59.000Z

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figures.

  19. Banded electromagnetic stator core

    DOE Patents [OSTI]

    Fanning, A.W.; Gonzales, A.A.; Patel, M.R.; Olich, E.E.

    1996-06-11T23:59:59.000Z

    A stator core for an electromagnetic pump includes a plurality of circumferentially adjoining groups of flat laminations disposed about a common centerline axis and collectively defining a central bore and a discontinuous outer perimeter, with adjacent groups diverging radially outwardly to form V-shaped gaps. An annular band surrounds the groups and is predeterminedly tensioned to clamp together the laminations, and has a predetermined flexibility in a radial direction to form substantially straight bridge sections between the adjacent groups. 5 figs.

  20. Utility-Scale Solar Power Converter: Agile Direct Grid Connect Medium Voltage 4.7-13.8 kV Power Converter for PV Applications Utilizing Wide Band Gap Devices

    SciTech Connect (OSTI)

    None

    2012-01-25T23:59:59.000Z

    Solar ADEPT Project: Satcon is developing a compact, lightweight power conversion device that is capable of taking utility-scale solar power and outputting it directly into the electric utility grid at distribution voltage levels—eliminating the need for large transformers. Transformers “step up” the voltage of the power that is generated by a solar power system so it can be efficiently transported through transmission lines and eventually “stepped down” to usable voltages before it enters homes and businesses. Power companies step up the voltage because less electricity is lost along transmission lines when the voltage is high and current is low. Satcon’s new power conversion devices will eliminate these heavy transformers and connect a utility-scale solar power system directly to the grid. Satcon’s modular devices are designed to ensure reliability—if one device fails it can be bypassed and the system can continue to run.

  1. Interaction of wide-band-gap single crystals with 248-nm excimer laser irradiation. X. Laser-induced near-surface absorption in single-crystal NaCl

    E-Print Network [OSTI]

    Dickinson, J. Thomas

    are expected to play an important role in optical break- down and surface damage. II. EXPERIMENT The results of a few thousand kelvin even in the absence of visible surface damage. The origin of the laser absorption radiation. As much as 20% of the incident radiation at 248 nm must be absorbed in the near-surface region

  2. Below gap optical absorption in GaAs driven by intense, single-cycle coherent transition radiation

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Goodfellow, J.; Fuchs, M.; Daranciang, D.; Ghimire, S.; Chen, F.; Loos, H.; Reis, D. A.; Fisher, A. S.; Lindenberg, A. M.

    2014-01-01T23:59:59.000Z

    Single-cycle terahertz fields generated by coherent transition radiation from a relativistic electron beam are used to study the high field optical response of single crystal GaAs. Large amplitude changes in the sub-band-gap optical absorption are induced and probed dynamically by measuring the absorption of a broad-band optical beam generated by transition radiation from the same electron bunch, providing an absolutely synchronized pump and probe geometry. This modification of the optical properties is consistent with strong-field-induced electroabsorption. These processes are pertinent to a wide range of nonlinear terahertz-driven light-matter interactions anticipated at accelerator-based sources.

  3. First principles investigation of scaling trends of zirconium silicate interface band offsets

    E-Print Network [OSTI]

    Dutton, Robert W.

    First principles investigation of scaling trends of zirconium silicate interface band offsets out to investigate the scaling trends of band offsets at model silicon/zirconium silicate interfaces. Owing to the d character of zirconium silicate conduction bands, the band gap and band offset are shown

  4. Closing the Mesoscale Gap

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Closing the Mesoscale Gap Los Alamos proposes to fill in the gaps in our fundamental understanding of materials with MaRIE, a facility designed to gain access to the mesoscale....

  5. First principles electronic band structure and phonon dispersion curves for zinc blend beryllium chalcogenide

    SciTech Connect (OSTI)

    Dabhi, Shweta, E-mail: venu.mankad@gmail.com; Mankad, Venu, E-mail: venu.mankad@gmail.com; Jha, Prafulla K., E-mail: venu.mankad@gmail.com [Department of Physics, Maharaja Krishnakumasinhji Bhavnagar University, Bhavnagar-364001 (India)

    2014-04-24T23:59:59.000Z

    A detailed theoretical study of structural, electronic and Vibrational properties of BeX compound is presented by performing ab-initio calculations based on density-functional theory using the Espresso package. The calculated value of lattice constant and bulk modulus are compared with the available experimental and other theoretical data and agree reasonably well. BeX (X = S,Se,Te) compounds in the ZB phase are indirect wide band gap semiconductors with an ionic contribution. The phonon dispersion curves are represented which shows that these compounds are dynamically stable in ZB phase.

  6. Influence of film thickness and air exposure on the transport gap of manganese phthalocyanine

    SciTech Connect (OSTI)

    Haidu, F.; Fechner, A.; Salvan, G.; Gordan, O. D.; Fronk, M.; Zahn, D. R. T. [Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany); Lehmann, D. [Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz (Germany); INNOVENT Technology Development, D-07745 Jena (Germany); Mahns, B.; Knupfer, M. [Electronic and Optical Properties Department, IFW Dresden, D-01171 Dresden (Germany)

    2013-06-15T23:59:59.000Z

    The interface formation between manganese phthalocyanine (MnPc) and cobalt was investigated combining ultraviolet photoelectron spectroscopy and inverse photoelectron spectroscopy. The transport band gap of the MnPc increases with the film thickness up to a value of (1.2 {+-} 0.3) eV while the optical band gap as determined from spectroscopic ellipsometry amounts to 0.5 eV. The gap values are smaller compared to other phthalocyanines due to metallic Mn 3d states close to the Fermi level. The transport band gap was found to open upon air exposure as a result of the disappearance of the occupied 3d electronic states.

  7. RESOLVING THE GAP AND AU-SCALE ASYMMETRIES IN THE PRE-TRANSITIONAL DISK OF V1247 ORIONIS

    SciTech Connect (OSTI)

    Kraus, Stefan; Espaillat, Catherine; Wilner, David J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Ireland, Michael J. [Department of Physics and Astronomy, Macquarie University, Sydney, NSW 2109 (Australia); Sitko, Michael L.; Swearingen, Jeremy R.; Werren, Chelsea [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Monnier, John D.; Calvet, Nuria [Department of Astronomy, University of Michigan, 918 Dennison Building, Ann Arbor, MI 48109 (United States); Grady, Carol A. [Eureka Scientific Inc., Oakland, CA 94602 (United States); Harries, Tim J. [School of Physics, University of Exeter, Stocker Road, Exeter EX4 4QL (United Kingdom); Hoenig, Sebastian F. [Department of Physics, University of California Santa Barbara, Broida Hall, Santa Barbara, CA 93106 (United States); Russell, Ray W. [The Aerospace Corporation, Los Angeles, CA 90009 (United States)

    2013-05-01T23:59:59.000Z

    Pre-transitional disks are protoplanetary disks with a gapped disk structure, potentially indicating the presence of young planets in these systems. In order to explore the structure of these objects and their gap-opening mechanism, we observed the pre-transitional disk V1247 Orionis using the Very Large Telescope Interferometer, the Keck Interferometer, Keck-II, Gemini South, and IRTF. This allows us to spatially resolve the AU-scale disk structure from near- to mid-infrared wavelengths (1.5-13 {mu}m), tracing material at different temperatures and over a wide range of stellocentric radii. Our observations reveal a narrow, optically thick inner-disk component (located at 0.18 AU from the star) that is separated from the optically thick outer disk (radii {approx}> 46 AU), providing unambiguous evidence for the existence of a gap in this pre-transitional disk. Surprisingly, we find that the gap region is filled with significant amounts of optically thin material with a carbon-dominated dust mineralogy. The presence of this optically thin gap material cannot be deduced solely from the spectral energy distribution, yet it is the dominant contributor at mid-infrared wavelengths. Furthermore, using Keck/NIRC2 aperture masking observations in the H, K', and L' bands, we detect asymmetries in the brightness distribution on scales of {approx}15-40 AU, i.e., within the gap region. The detected asymmetries are highly significant, yet their amplitude and direction changes with wavelength, which is not consistent with a companion interpretation but indicates an inhomogeneous distribution of the gap material. We interpret this as strong evidence for the presence of complex density structures, possibly reflecting the dynamical interaction of the disk material with sub-stellar mass bodies that are responsible for the gap clearing.

  8. College Gender Gaps

    E-Print Network [OSTI]

    Bronson, Mary Ann

    2013-01-01T23:59:59.000Z

    College Gender Gaps BY MARY ANN BRONSONBY MARY ANN BRONSON FALL 2013 W HY DO WOMEN ATTEND collegerelationship is crucial. Mary Ann Bronson, a Ph.D. candidate

  9. A 250 GHz photonic band gap gyrotron amplifier

    E-Print Network [OSTI]

    Nanni, Emilio A. (Emilio Alessandro)

    2013-01-01T23:59:59.000Z

    This thesis reports the theoretical and experimental investigation of a novel gyrotron traveling-wave-tube (TWT) amplifier at 250 GHz. The gyrotron amplifier designed and tested in this thesis has achieved a peak small ...

  10. Experimental study of photonic band gap accelerator structures

    E-Print Network [OSTI]

    Marsh, Roark A

    2009-01-01T23:59:59.000Z

    This thesis reports theoretical and experimental research on a novel accelerator concept using a photonic bandgap (PBG) structure. Major advances in higher order mode (HOM) damping are required for the next generation of ...

  11. Characterization of Novel Semiconductor Alloys for Band Gap Engineering

    E-Print Network [OSTI]

    Broesler, Robert Joseph

    2010-01-01T23:59:59.000Z

    including high efficiency photovoltaics and light emittingEngineering 1.2.1 High Efficiency Photovoltaics 1.2.2 High1.2.1 High Efficiency Photovoltaics There has been

  12. Correlation between surface chemistry, density and band gap in...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of WO3 films. The XPS analyses indicate the formation of stoichiometric WO3 with tungsten existing in fully oxidized valence state (W6+). However, WO3 films grown at high...

  13. Band Gap Optimization of Two-Dimensional Photonic Crystals Using ...

    E-Print Network [OSTI]

    2009-07-10T23:59:59.000Z

    Jul 10, 2009 ... proven very important as device components for integrated optics ...... Inhibited spontaneous emission in solid-state physics and electronics.

  14. Characterization of Novel Semiconductor Alloys for Band Gap Engineering

    E-Print Network [OSTI]

    Broesler, Robert Joseph

    2010-01-01T23:59:59.000Z

    and pulsed laser melting (PLM) to crystallize the amorphousrich crystalline phases, where as PLM results in GaAs-richFurther study into the effects of PLM on amorphous GaNAs is

  15. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe Mark A.

  16. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe Mark

  17. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe MarkSubstrate-Induced

  18. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribe

  19. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over Our InstagramStructure of All-Polymer. . ~0sFailureSubscribeSubstrate-Induced

  20. Method for Creating Photonic Band Gap Materials - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOEThe Bonneville PowerCherries 82981-1cnHighand Retrievals from aRodMIT-HarvardEnergy Innovation Portal

  1. Substrate-Induced Band-Gap Opening in Epitaxial Graphene

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del SolStrengthening a solid ... StrengtheningLabSubmitting JobsSubseaSubstrate-Induced

  2. A Simple Analytical Model for Gaps in Protoplanetary Disks

    E-Print Network [OSTI]

    Duffell, Paul C

    2015-01-01T23:59:59.000Z

    An analytical model is presented for calculating the surface density as a function of radius $\\Sigma(r)$ in protoplanetary disks in which a planet has opened a gap. This model is also applicable to circumbinary disks with extreme binary mass ratios. The gap profile can be solved for algebraically, without performing any numerical integrals. In contrast with previous one-dimensional gap models, this model correctly predicts that low-mass (sub-Jupiter) planets can open gaps in sufficiently low-viscosity disks, and it correctly recovers the power-law dependence of gap depth on planet-to-star mass ratio $q$, disk aspect ratio $h/r$, and dimensionless viscosity $\\alpha$ found in previous numerical studies. Analytical gap profiles are compared with numerical calculations over a range of parameter space in $q$, $h/r$, and $\\alpha$, demonstrating accurate reproduction of the "partial gap" regime, and general agreement over a wide range of parameter space.

  3. Bridging conduction and radiation : investigating thermal transport in nanoscale gaps

    E-Print Network [OSTI]

    Chiloyan, Vazrik

    2015-01-01T23:59:59.000Z

    Near field radiation transfer between objects separated by small gaps is a widely studied field in heat transfer and has become more important than ever. Many technologies such as heat assisted magnetic recording, aerogels, ...

  4. Broad-band beam buncher

    DOE Patents [OSTI]

    Goldberg, David A. (Walnut Creek, CA); Flood, William S. (Berkeley, CA); Arthur, Allan A. (Martinez, CA); Voelker, Ferdinand (Orinda, CA)

    1986-01-01T23:59:59.000Z

    A broad-band beam buncher is disclosed, comprising an evacuated housing, an electron gun therein for producing an electron beam, a buncher cavity having entrance and exit openings through which the beam is directed, grids across such openings, a source providing a positive DC voltage between the cavity and the electron gun, a drift tube through which the electron beam travels in passing through such cavity, grids across the ends of such drift tube, gaps being provided between the drift tube grids and the entrance and exit grids, a modulator for supplying an ultrahigh frequency modulating signal to the drift tube for producing velocity modulation of the electrons in the beam, a drift space in the housing through which the velocity modulated electron beam travels and in which the beam is bunched, and a discharge opening from such drift tube and having a grid across such opening through which the bunched electron beam is discharged into an accelerator or the like. The buncher cavity and the drift tube may be arranged to constitute an extension of a coaxial transmission line which is employed to deliver the modulating signal from a signal source. The extended transmission line may be terminated in its characteristic impedance to afford a broad-band response and the device as a whole designed to effect broad-band beam coupling, so as to minimize variations of the output across the response band.

  5. Generation gaps in engineering?

    E-Print Network [OSTI]

    Kim, David J. (David Jinwoo)

    2008-01-01T23:59:59.000Z

    There is much enthusiastic debate on the topic of generation gaps in the workplace today; what the generational differences are, how to address the apparent challenges, and if the generations themselves are even real. ...

  6. Fiber optic gap gauge

    DOE Patents [OSTI]

    Wood, Billy E. (Livermore, CA); Groves, Scott E. (Brentwood, CA); Larsen, Greg J. (Brentwood, CA); Sanchez, Roberto J. (Pleasanton, CA)

    2006-11-14T23:59:59.000Z

    A lightweight, small size, high sensitivity gauge for indirectly measuring displacement or absolute gap width by measuring axial strain in an orthogonal direction to the displacement/gap width. The gap gauge includes a preferably titanium base having a central tension bar with springs connecting opposite ends of the tension bar to a pair of end connector bars, and an elongated bow spring connected to the end connector bars with a middle section bowed away from the base to define a gap. The bow spring is capable of producing an axial strain in the base proportional to a displacement of the middle section in a direction orthogonal to the base. And a strain sensor, such as a Fabry-Perot interferometer strain sensor, is connected to measure the axial strain in the base, so that the displacement of the middle section may be indirectly determined from the measurement of the axial strain in the base.

  7. Low gap amorphous GaN{sub 1-x}As{sub x} alloys grown on glass substrate

    SciTech Connect (OSTI)

    Yu, K. M.; Liliental-Weber, Z.; Kao, V. M.; Walukiewicz, W. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8197 (United States); Novikov, S. V.; Foxon, C. T. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Broesler, R.; Levander, A. X.; Dubon, O. D.; Wu, J. [Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720-8197 (United States); Department of Materials Science and Engineering, University of California, Berkeley, California 94720 (United States)

    2010-09-06T23:59:59.000Z

    Amorphous GaN{sub 1-x}As{sub x} layers with As content in the range of x=0.1 to 0.6 were grown by molecular beam epitaxy on Pyrex glass substrate. These alloys exhibit a wide range of band gap values from 2.2 to 1.3 eV. We found that the density of the amorphous films is {approx}0.8-0.85 of their corresponding crystalline value. These amorphous films have smooth morphology, homogeneous composition, and sharp well defined optical absorption edges. The measured band gap values for the crystalline and amorphous GaN{sub 1-x}As{sub x} alloys are in excellent agreement with the predictions of the band anticrossing model. The high absorption coefficient of {approx}10{sup 5} cm{sup -1} for the amorphous GaN{sub 1-x}As{sub x} films suggests that relatively thin films (on the order of 1 {mu}m) are necessary for photovoltaic application.

  8. MI Gap Clearing Kicker Magnet Design Review

    SciTech Connect (OSTI)

    Jensen, Chris; /Fermilab

    2008-10-01T23:59:59.000Z

    The kicker system requirements were originally conceived for the NOvA project. NOvA is a neutrino experiment located in Minnesota. To achieve the desired neutrino flux several upgrades are required to the accelerator complex. The Recycler will be used as a proton pre-injector for the Main Injector (MI). As the Recycler is the same size as the MI, it is possible to do a single turn fill ({approx}11 {micro}sec), minimizing the proton injection time in the MI cycle and maximizing the protons on target. The Recycler can then be filled with beam while the MI is ramping to extract beam to the target. To do this requires two new transfer lines. The existing Recycler injection line was designed for 10{pi} pbar beams, not the 20{pi} proton beams we anticipate from the Booster. The existing Recycler extraction line allows for proton injection through the MI, while we want direct injection from the Booster. These two lines will be decommissioned. The new injection line from the MI8 line into the Recycler will start at 848 and end with injection kickers at RR104. The new extraction line in the RR30 straight section will start with a new extraction kicker at RR232 and end with new MI injection kickers at MI308. Finally, to reduce beam loss activation in the enclosure, a new gap clearing kicker will be used to extract uncaptured beam created during the slip stack injection process down the existing dump line. It was suggested that the MI could benefit from this type of system immediately. This led to the early installation of the gap clearing system in the MI, followed by moving the system to Recycler during NOvA. The specifications also changed during this process. Initially the rise and fall time requirements were 38 ns and the field stability was {+-}1%. The 38 ns is based on having a gap of 2 RF buckets between injections. (There are 84 RF buckets that can be filled from the Booster for each injection, but 82 would be filled with beam. MI and Recycler contain 588 RF buckets.) A rough cost/benefit analysis showed that increasing the number of empty buckets to 3 decreased the kicker system cost by {approx}30%. This could be done while not extending the running time since this is only a 1% reduction in protons per pulse, hence the rise and fall time are now 57 ns. Additionally, the {+-}1% tolerance would have required a fast correction kicker while {+-}3% could be achieved without this kicker. The loosened tolerance was based on experience on wide band damping systems in the MI. A higher power wideband damping system is a better use of the resources as it can be used to correct for multiple sources of emittance growth. Finally, with the use of this system for MI instead of Recycler, the required strength grew from 1.2 mrad to 1.7 mrad. The final requirements for this kicker are listed.

  9. Fabrication of stable, wide-bandgap thin films of Mg, Zn and O

    DOE Patents [OSTI]

    Katiyar, Ram S.; Bhattacharya, Pijush; Das, Rasmi R.

    2006-07-25T23:59:59.000Z

    A stable, wide-bandgap (approximately 6 eV) ZnO/MgO multilayer thin film is fabricated using pulsed-laser deposition on c-plane Al2O3 substrates. Layers of ZnO alternate with layers of MgO. The thickness of MgO is a constant of approximately 1 nm; the thicknesses of ZnO layers vary from approximately 0.75 to 2.5 nm. Abrupt structural transitions from hexagonal to cubic phase follow a decrease in the thickness of ZnO sublayers within this range. The band gap of the thin films is also influenced by the crystalline structure of multilayer stacks. Thin films with hexagonal and cubic structure have band-gap values of 3.5 and 6 eV, respectively. In the hexagonal phase, Mg content of the films is approximately 40%; in the cubic phase Mg content is approximately 60%. The thin films are stable and their structural and optical properties are unaffected by annealing at 750.degree. C.

  10. Uncertainties in Gapped Graphene

    E-Print Network [OSTI]

    Eylee Jung; Kwang S. Kim; DaeKil Park

    2012-03-20T23:59:59.000Z

    Motivated by graphene-based quantum computer we examine the time-dependence of the position-momentum and position-velocity uncertainties in the monolayer gapped graphene. The effect of the energy gap to the uncertainties is shown to appear via the Compton-like wavelength $\\lambda_c$. The uncertainties in the graphene are mainly contributed by two phenomena, spreading and zitterbewegung. While the former determines the uncertainties in the long-range of time, the latter gives the highly oscillation to the uncertainties in the short-range of time. The uncertainties in the graphene are compared with the corresponding values for the usual free Hamiltonian $\\hat{H}_{free} = (p_1^2 + p_2^2) / 2 M$. It is shown that the uncertainties can be under control within the quantum mechanical law if one can choose the gap parameter $\\lambda_c$ freely.

  11. Mind The Gap

    E-Print Network [OSTI]

    Daniel F. Litim

    2001-04-25T23:59:59.000Z

    We discuss an optimisation criterion for the exact renormalisation group based on the inverse effective propagator, which displays a gap. We show that a simple extremisation of the gap stabilises the flow, leading to better convergence of approximate solutions towards the physical theory. This improves the reliability of truncations, most relevant for any high precision computation. These ideas are closely linked to the removal of a spurious scheme dependence and a minimum sensitivity condition. The issue of predictive power and a link to the Polchinski RG are discussed as well. We illustrate our findings by computing critical exponents for the Ising universality class.

  12. Mid-Gap Electronic States in Zn1 xMnxO. | EMSL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    measurements were performed on epitaxial Zn1 xMnxO films to investigate the origin of the new mid-gap band that appears upon introduction of Mn2+ into the ZnO lattice. Absorption...

  13. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen Edward (Pinole, CA); Bourret-Courchesne, Edith (Berkeley, CA); Weber, Marvin J. (Danville, CA); Klintenberg, Mattias K. (Berkeley, CA)

    2008-07-29T23:59:59.000Z

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  14. Codoped direct-gap semiconductor scintillators

    DOE Patents [OSTI]

    Derenzo, Stephen E.; Bourret-Courchesne, Edith; Weber, Marvin J.; Klintenberg, Mattias K.

    2006-05-23T23:59:59.000Z

    Fast, bright inorganic scintillators at room temperature are based on radiative electron-hole recombination in direct-gap semiconductors, e.g. CdS and ZnO. The direct-gap semiconductor is codoped with two different impurity atoms to convert the semiconductor to a fast, high luminosity scintillator. The codopant scheme is based on dopant band to dopant trap recombination. One dopant provides a significant concentration of carriers of one type (electrons or holes) and the other dopant traps carriers of the other type. Examples include CdS:In,Te; CdS:In,Ag; CdS:In,Na; ZnO:Ga,P; ZnO:Ga,N; ZnO:Ga,S; and GaN:Ge,Mg.

  15. GAP TESTS; COMPARISON BETWEEN UN GAP TEST AND CARD GAP TEST

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    98-36 GAP TESTS; COMPARISON BETWEEN UN GAP TEST AND CARD GAP TEST by R. BRANKA and C. MICHOT, FRANCE (tel.: 33 3 44 55 65 19, fax: 33 3 44 55 65 10) ABSTRACT: UN gap test, type 1(a) or 2(a), is the recommended test in the acceptance procedure for transport of explosives in class 1. Up to the revision

  16. Multiple gap photovoltaic device

    DOE Patents [OSTI]

    Dalal, Vikram L. (Newark, DE)

    1981-01-01T23:59:59.000Z

    A multiple gap photovoltaic device having a transparent electrical contact adjacent a first cell which in turn is adjacent a second cell on an opaque electrical contact, includes utilizing an amorphous semiconductor as the first cell and a crystalline semiconductor as the second cell.

  17. Extreme multiplex spectroscopy at wide-field 4-m telescopes

    E-Print Network [OSTI]

    Robert Content; Tom Shanks

    2008-08-18T23:59:59.000Z

    We describe the design and science case for a spectrograph for the prime focus of classical 4-m wide-field telescopes that can deliver at least 4000 MOS slits over a 1 degree field. This extreme multiplex capability means that 25000 galaxy redshifts can be measured in a single night, opening up the possibilities for large galaxy redshift surveys out to z~0.7 and beyond for the purpose of measuring the Baryon Acoustic Oscillation (BAO) scale and for many other science goals. The design features four cloned spectrographs and exploits the exclusive possibility of tiling the focal plane of wide-field 4-m telescopes with CCDs for multi-object spectroscopic purposes. In ~200 night projects, such spectrographs have the potential to make galaxy redshift surveys of ~6 million galaxies over a wide redshift range and thus may provide a low-cost alternative to other survey routes such as WFMOS and SKA. Two of these extreme multiplex spectrographs are currently being designed for the AAT (NG1dF) and Calar Alto (XMS) 4-m class telescopes. NG2dF, a larger version for the AAT 2 degree field, would have 12 clones and at least 12000 slits. The clones use a transparent design including a grism in which all optics are smaller than the clone square subfield so that the clones can be tightly packed with little gaps between the contiguous fields. Only low cost glasses are used; the variations in chromatic aberrations between bands are compensated by changing one or two of the lenses adjacent to the grism. The total weight and length is smaller with a few clones than a unique spectrograph which makes it feasible to place the spectrograph at the prime focus.

  18. Narrow gap electronegative capacitive discharges

    SciTech Connect (OSTI)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J. [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)] [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States)

    2013-10-15T23:59:59.000Z

    Narrow gap electronegative (EN) capacitive discharges are widely used in industry and have unique features not found in conventional discharges. In this paper, plasma parameters are determined over a range of decreasing gap length L from values for which an electropositive (EP) edge exists (2-region case) to smaller L-values for which the EN region connects directly to the sheath (1-region case). Parametric studies are performed at applied voltage V{sub rf}=500 V for pressures of 10, 25, 50, and 100 mTorr, and additionally at 50 mTorr for 1000 and 2000 V. Numerical results are given for a parallel plate oxygen discharge using a planar 1D3v (1 spatial dimension, 3 velocity components) particle-in-cell (PIC) code. New interesting phenomena are found for the case in which an EP edge does not exist. This 1-region case has not previously been investigated in detail, either numerically or analytically. In particular, attachment in the sheaths is important, and the central electron density n{sub e0} is depressed below the density n{sub esh} at the sheath edge. The sheath oscillations also extend into the EN core, creating an edge region lying within the sheath and not characterized by the standard diffusion in an EN plasma. An analytical model is developed using minimal inputs from the PIC results, and compared to the PIC results for a base case at V{sub rf}=500 V and 50 mTorr, showing good agreement. Selected comparisons are made at the other voltages and pressures. A self-consistent model is also developed and compared to the PIC results, giving reasonable agreement.

  19. Optical gain from the direct gap transition of Ge-on-Si at room temperature

    E-Print Network [OSTI]

    Liu, Jifeng

    We report direct band gap optical gain of tensile strained n+ epitaxial Ge-on-Si at room temperature, which confirms that band-engineered Ge-on-Si is a promising gain medium for monolithic optical amplifiers and lasers on Si.

  20. The diameter of the world wide web

    E-Print Network [OSTI]

    Reka Albert; Hawoong Jeong; Albert-Laszlo Barabasi

    1999-09-10T23:59:59.000Z

    Despite its increasing role in communication, the world wide web remains the least controlled medium: any individual or institution can create websites with unrestricted number of documents and links. While great efforts are made to map and characterize the Internet's infrastructure, little is known about the topology of the web. Here we take a first step to fill this gap: we use local connectivity measurements to construct a topological model of the world wide web, allowing us to explore and characterize its large scale properties.

  1. Mind the gap

    E-Print Network [OSTI]

    M. S. Bhagwat; A. Krassnigg; P. Maris; C. D. Roberts

    2006-12-06T23:59:59.000Z

    In this summary of the application of Dyson-Schwinger equations to the theory and phenomenology of hadrons, some deductions following from a nonperturbative, symmetry-preserving truncation are highlighted, notable amongst which are results for pseudoscalar mesons. We also describe inferences from the gap equation relating to the radius of convergence of a chiral expansion, applications to heavy-light and heavy-heavy mesons, and quantitative estimates of the contribution of quark orbital angular momentum in pseudoscalar mesons; and recapitulate upon studies of nucleon electromagnetic form factors.

  2. Wide-range voltage modulation

    SciTech Connect (OSTI)

    Rust, K.R.; Wilson, J.M.

    1992-06-01T23:59:59.000Z

    The Superconducting Super Collider`s Medium Energy Booster Abort (MEBA) kicker modulator will supply a current pulse to the abort magnets which deflect the proton beam from the MEB ring into a designated beam stop. The abort kicker will be used extensively during testing of the Low Energy Booster (LEB) and the MEB rings. When the Collider is in full operation, the MEBA kicker modulator will abort the MEB beam in the event of a malfunction during the filling process. The modulator must generate a 14-{mu}s wide pulse with a rise time of less than 1 {mu}s, including the delay and jitter times. It must also be able to deliver a current pulse to the magnet proportional to the beam energy at any time during ramp-up of the accelerator. Tracking the beam energy, which increases from 12 GeV at injection to 200 GeV at extraction, requires the modulator to operate over a wide range of voltages (4 kV to 80 kV). A vacuum spark gap and a thyratron have been chosen for test and evaluation as candidate switches for the abort modulator. Modulator design, switching time delay, jitter and pre-fire data are presented.

  3. Gap generation in Weyl semimetals in a model with local four-fermion interaction

    E-Print Network [OSTI]

    P. O. Sukhachov

    2014-06-25T23:59:59.000Z

    We study the gap generation in Weyl semimetals in a model with local four-fermion interaction. It is shown that there exists a critical value of coupling constant separating the symmetric and broken symmetry phases, and the corresponding phase diagram is described. The gap generation in a more general class of Weyl materials with small bare gap is studied, and the quasiparticle energy spectrum is determined. It is found that, in this case, the dynamically generated gap leads to additional splitting of the quasiparticle energy bands.

  4. Band-engineered Ge-on-Si lasers

    E-Print Network [OSTI]

    Liu, Jifeng

    We report optically-pumped Ge-on-Si lasers with direct gap emission near 1600 nm at room temperature. The Ge-on-Si material was band-engineered by tensile strain and n-type doping to compensate the energy difference between ...

  5. Cu(In,Ga)Se2 alloys are the leading choice for absorber layers in high-efficiency thin film solar cells due to their direct gap, high absorption

    E-Print Network [OSTI]

    Rockett, Angus

    film solar cells due to their direct gap, high absorption coefficient and excellent thermal stability Cu(In,Ga)Se2 are used to interpret PL results. ·No evidence of band-to-band transitions (rare in CIGS

  6. Gap and stripline combined monitor

    DOE Patents [OSTI]

    Yin, Yan (Palo Alto, CA)

    1986-01-01T23:59:59.000Z

    A combined gap and stripline monitor device (10) for measuring the intensity and position of a charged particle beam bunch in a beam pipe of a synchotron radiation facility. The monitor has first and second beam pipe portions (11a, 11b) with an axial gap (12) therebetween. An outer pipe (14) cooperates with the first beam pipe portion (11a) to form a gap enclosure, while inner strips (23a-d) cooperate with the first beam pipe portion (11a) to form a stripline monitor, with the stripline length being the same as the gap enclosure length.

  7. The Pennsylvania State University Marching Blue Band Blue Band Office

    E-Print Network [OSTI]

    Maroncelli, Mark

    The Pennsylvania State University Marching Blue Band Press Kit Blue Band Office 101 Blue Band Director vcc2@psu.edu orb1@psu.edu gad157@psu.edu (814) 865 - 3982 #12;History of the Blue Band The Marching Blue Band numbers 310 members which includes: 260 instrumentalists, 34 silks, 14 Touch of Blue

  8. Crystal and electronic band structure of Cu2ZnSnX4 ,,X=S and Se... photovoltaic absorbers: First-principles insights

    E-Print Network [OSTI]

    Gong, Xingao

    components, and the band gap is usually not optimal for high efficiency CIGS solar cells. Currently, designing and synthesizing novel, high-efficiency, and low cost solar cell absorbers to replace CIGS has.1063/1.3074499 An ideal thin-film solar cell absorber material should have a direct band gap around 1.3­1.5 e

  9. Wide Blue Sky

    E-Print Network [OSTI]

    Collins, Caroline Imani

    2011-01-01T23:59:59.000Z

    dressed neatly in a dark blue dress, its high neck trimmedIt was covered in a light blue fabric embellished with softOF CALIFORNIA RIVERSIDE Wide Blue Sky A Thesis submitted in

  10. Triaxial strongly deformed bands in {sup 164}Hf and the effect of elevated yrast line

    SciTech Connect (OSTI)

    Ma Wenchao [Department of Physics, Mississippi State University, Mississippi State, MS 39762 (United States)

    2012-10-20T23:59:59.000Z

    Two exotic rotational bands have been identified in {sup 164}Hf and linked to known states. They are interpreted as being associated with the calculated triaxial strongly deformed (TSD) potential energy minimum. The bands are substantially stronger and are located at much lower spins than the previously discovered TSD bands in {sup 168}Hf. In addition to the proton and neutron shell gaps at large trixiality, it was proposed that the relative excitation energy of TSD bands above the yrast line plays an important role in the population of TSD bands.

  11. Partially filled intermediate band of Cr-doped GaN films

    SciTech Connect (OSTI)

    Sonoda, S. [Department of Electronics, Kyoto Institute of Technology, Kyoto 606-8585 (Japan)

    2012-05-14T23:59:59.000Z

    We investigated the band structure of sputtered Cr-doped GaN (GaCrN) films using optical absorption, photoelectron yield spectroscopy, and charge transport measurements. It was found that an additional energy band is formed in the intrinsic band gap of GaN upon Cr doping, and that charge carriers in the material move in the inserted band. Prototype solar cells showed enhanced short circuit current and open circuit voltage in the n-GaN/GaCrN/p-GaN structure compared to the GaCrN/p-GaN structure, which validates the proposed concept of an intermediate-band solar cell.

  12. Investigation of crystalline and electronic band alignment properties of GaP/Ge(111) heterostructure

    SciTech Connect (OSTI)

    Dixit, V. K.; Kumar, Shailendra; Singh, S. D.; Khamari, S. K.; Kumar, R.; Tiwari, Pragya; Sharma, T. K.; Oak, S. M. [Raja Ramanna Centre for Advanced Technology, Indore, Madhya Pradesh 452013 (India); Phase, D. M. [UGC-DAE Consortium for Scientific Research, Khandwa Road, Indore, Madhya Pradesh 452001 (India)

    2014-03-03T23:59:59.000Z

    Gallium phosphide (GaP) epitaxial layer and nanostructures are grown on n-Ge(111) substrates using metal organic vapour phase epitaxy. It is confirmed by high resolution x-ray diffraction measurements that the layer is highly crystalline and oriented with the coexistence of two domains, i.e., GaP(111)A and GaP(111)B, with an angle of 60° between them due to the formation of a wurtzite monolayer at the interface. The valence band offset between GaP and Ge is 0.7?±?0.1?eV as determined from the valence band onsets and from Kraut's method. A band alignment diagram for GaP/Ge/GeOx is also constructed which can be used to design monolithic optoelectronic integrated circuits.

  13. Band anticrossing effects in highly mismatched semiconductor alloys

    SciTech Connect (OSTI)

    Wu, Junqiao

    2002-09-09T23:59:59.000Z

    The first five chapters of this thesis focus on studies of band anticrossing (BAC) effects in highly electronegativity- mismatched semiconductor alloys. The concept of bandgap bowing has been used to describe the deviation of the alloy bandgap from a linear interpolation. Bowing parameters as large as 2.5 eV (for ZnSTe) and close to zero (for AlGaAs and ZnSSe) have been observed experimentally. Recent advances in thin film deposition techniques have allowed the growth of semiconductor alloys composed of significantly different constituents with ever- improving crystalline quality (e.g., GaAs{sub 1-x}N{sub x} and GaP{sub 1-x}N{sub x} with x {approx}< 0.05). These alloys exhibit many novel and interesting properties including, in particular, a giant bandgap bowing (bowing parameters > 14 eV). A band anticrossing model has been developed to explain these properties. The model shows that the predominant bowing mechanism in these systems is driven by the anticrossing interaction between the localized level associated with the minority component and the band states of the host. In this thesis I discuss my studies of the BAC effects in these highly mismatched semiconductors. It will be shown that the results of the physically intuitive BAC model can be derived from the Hamiltonian of the many-impurity Anderson model. The band restructuring caused by the BAC interaction is responsible for a series of experimental observations such as a large bandgap reduction, an enhancement of the electron effective mass, and a decrease in the pressure coefficient of the fundamental gap energy. Results of further experimental investigations of the optical properties of quantum wells based on these materials will be also presented. It will be shown that the BAC interaction occurs not only between localized states and conduction band states at the Brillouin zone center, but also exists over all of k-space. Finally, taking ZnSTe and ZnSeTe as examples, I show that BAC also occurs between localized states and the valence band states. Soft x-ray fluorescence experiments provide direct evidence of the BAC interaction in these systems. In the final chapter of the thesis, I describe and summarize my studies of optical properties of wurtzite InN and related alloys. Early studies performed on InN films grown by sputtering techniques suggested a direct bandgap of {approx}1.9 eV for this semiconductor. Very recently, high-quality InN films with much higher mobility have become available by using the molecular beam epitaxy growth method. Optical experiments carried out on these samples reveal a narrow bandgap for InN of 0.77 eV, much lower than the previously accepted value. Optical properties of InGaN and InAlN ternaries on the In rich side have also been characterized and are found to be consistent with the narrow bandgap of InN. The bandgap bowing parameters in these alloys were determined. In the context of these findings, the bandgap energies of InGaN and InAlN were found to cover a wide spectral range from the infrared for InN to the ultraviolet for GaN and deep ultraviolet for AlN. The significance of this work is rooted in many important applications of nitride semiconductors in optoelectronics and solar energy conversion devices.

  14. Wide Angle Compton Scattering

    E-Print Network [OSTI]

    Rainer Jakob

    2000-10-16T23:59:59.000Z

    We present the handbag contribution to Wide Angle Compton Scattering (WACS) at moderately large momentum transfer obtained with a proton distribution amplitude close to the asymptotic form. In comparison it is found to be significantly larger than results from the hard scattering (pQCD) approach.

  15. Influence of gap spacing on the characteristics of Trichel pulse generated in point-to-plane discharge gaps

    SciTech Connect (OSTI)

    Li, Zhen, E-mail: leezhen1988@gmail.com; Zhang, Bo, E-mail: shizbcn@mail.tsinghua.edu.cn; He, Jinliang, E-mail: hejl@tsinghua.edu.cn; Xu, Yongsheng, E-mail: evebus@163.com [State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)] [State Key Laboratory of Power Systems, Department of Electrical Engineering, Tsinghua University, Beijing 100084 (China)

    2014-01-15T23:59:59.000Z

    In this paper, the specific characteristics of the Trichel pulse generated in wide point-to-plane discharge gaps are investigated and compared with those of the currents generated in narrow gaps. A set of empirical formulas are derived to describe the specific characteristics. The influence of the gap spacing both on the current characteristics and on the coefficients of the formulas is studied. Based on the experiment results, an improvement is made to the space charge calculation method proposed by Lama and Gallo [J. Appl. Phys. 45, 103–113 (1974)] and the calculation results are compared to the ones obtained with Lama and Gallo's original method. With the influence of the space charge considered, the modified method obtains more accurate results of the space charge accumulating in the gap and gives a more precise description of the motion of the space charge in the gap. Based on the calculation results, the influence of the space charge on the distribution of the electric field is examined and the influence of the gap spacing on the current characteristics is also studied.

  16. THE ENERGY GAP IN NUCLEAR MATTER

    E-Print Network [OSTI]

    Emery, V.J.

    2008-01-01T23:59:59.000Z

    of Physics, The Ohio State University, THE ENERGY GAP INEnergy Commission. + Permanent addross: Columbus, Ohio.

  17. Virtual gap dielectric wall accelerator

    DOE Patents [OSTI]

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05T23:59:59.000Z

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  18. Majorana Flat Bands in s-Wave Gapless Topological Superconductors

    E-Print Network [OSTI]

    Shusa Deng; Gerardo Ortiz; Amrit Poudel; Lorenza Viola

    2014-04-28T23:59:59.000Z

    We demonstrate how the non-trivial interplay between spin-orbit coupling and nodeless $s$-wave superconductivity can drive a fully gapped two-band topological insulator into a time-reversal invariant gapless topological superconductor supporting symmetry-protected Majorana flat bands. We characterize topological phase diagrams by a ${\\mathbb Z}_2 \\times{\\mathbb Z}_2$ partial Berry-phase invariant, and show that, despite the trivial crystal geometry, no unique bulk-boundary correspondence exists. We trace this behavior to the anisotropic quasiparticle bulk gap closing, linear vs. quadratic, and argue that this provides a unifying principle for gapless topological superconductivity. Experimental implications for tunneling conductance measurements are addressed, relevant for lead chalcogenide materials.

  19. Temperature dependent band offsets in PbSe/PbEuSe quantum well heterostructures

    SciTech Connect (OSTI)

    Simma, M.; Bauer, G.; Springholz, G. [Institut fuer Halbleiter und Festkoerperphysik, Johannes Kepler Universitaet, A-4040 Linz (Austria)

    2012-10-22T23:59:59.000Z

    The band offsets of PbSe/Pb{sub 1-x}Eu{sub x}Se multi-quantum wells grown by molecular beam epitaxy are determined as a function of temperature and europium content using temperature-modulated differential transmission spectroscopy. The confined quantum well states in the valence and conduction bands are analyzed using a k{center_dot}p model with envelope function approximation. From the fit of the experimental data, the normalized conduction band offset is determined as 0.45{+-}0.15 of the band gap difference, independently of Eu content up to 14% and temperature from 20 to 300 K.

  20. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, C.L.; Beaman, J.J.; Melgaard, D.K.; Williamson, R.L.

    1999-07-27T23:59:59.000Z

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows. 17 figs.

  1. Multiple input electrode gap controller

    DOE Patents [OSTI]

    Hysinger, Christopher L. (Austin, TX); Beaman, Joseph J. (Austin, TX); Melgaard, David K. (Albuquerque, NE); Williamson, Rodney L. (Albuquerque, NE)

    1999-01-01T23:59:59.000Z

    A method and apparatus for controlling vacuum arc remelting (VAR) furnaces by estimation of electrode gap based on a plurality of secondary estimates derived from furnace outputs. The estimation is preferably performed by Kalman filter. Adaptive gain techniques may be employed, as well as detection of process anomalies such as glows.

  2. Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M. Feenstra

    E-Print Network [OSTI]

    Feenstra, Randall

    1 Band Offsets of InGaP/GaAs Heterojunctions by Scanning Tunneling Spectroscopy Y. Dong and R. M Abstract Scanning tunneling microscopy and spectroscopy are used to study InGaP/GaAs heterojunctions computation of the tunnel current. Curve fitting of theory to experiment is performed. Using an InGaP band gap

  3. Physical properties and band structure of reactive molecular beam epitaxy grown oxygen engineered HfO{sub 2{+-}x}

    SciTech Connect (OSTI)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, 64287 Darmstadt (Germany)

    2012-12-01T23:59:59.000Z

    We have conducted a detailed thin film growth structure of oxygen engineered monoclinic HfO{sub 2{+-}x} grown by reactive molecular beam epitaxy. The oxidation conditions induce a switching between (111) and (002) texture of hafnium oxide. The band gap of oxygen deficient hafnia decreases with increasing amount of oxygen vacancies by more than 1 eV. For high oxygen vacancy concentrations, defect bands form inside the band gap that induce optical transitions and p-type conductivity. The resistivity changes by several orders of magnitude as a function of oxidation conditions. Oxygen vacancies do not give rise to ferromagnetic behavior.

  4. Broad band waveguide spectrometer

    SciTech Connect (OSTI)

    Goldman, D.S.

    1995-08-29T23:59:59.000Z

    A spectrometer is disclosed for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the waveguide and a sample material. A tapered portion forms a part of the entry of the waveguide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis. 16 figs.

  5. Broad band waveguide spectrometer

    DOE Patents [OSTI]

    Goldman, Don S. (Folsom, CA)

    1995-01-01T23:59:59.000Z

    A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

  6. Hard-gapped Holographic Superconductors

    E-Print Network [OSTI]

    Pallab Basu; Jianyang He; Anindya Mukherjee; Hsien-Hang Shieh

    2009-12-05T23:59:59.000Z

    In this work we discuss the zero temperature limit of a "p-wave" holographic superconductor. The bulk description consists of a non-Abelian SU(2) gauge fields minimally coupled to gravity. We numerically construct the zero temperature solution which is the gravity dual of the superconducting ground state of the "p-wave" holographic superconductors. The solution is a smooth soliton with zero horizon size and shows an emergent conformal symmetry in the IR. We found the expected superconducting behavior. Using the near horizon analysis we show that the system has a "hard gap" for the relevant gauge field fluctuations. At zero temperature the real part of the conductivity is zero for an excitation frequency less than the gap frequency. This is in contrast with what has been observed in similar scalar- gravity-gauge systems (holographic superconductors). We also discuss the low but finite temperature behavior of our solution.

  7. The History of Cranfills Gap ISD

    E-Print Network [OSTI]

    Rudd, Charla J

    2013-05-06T23:59:59.000Z

    of Bosque County, Texas ....................................... 30 4 Topographical Map of Cranfills Gap ....................................................... 34 5 Upper Meridian Creek Settlement... ............................................................ 36 6 Topographical Map of German Settlement .............................................. 37 7 Cranfills Gap Land Deed, 1888 ............................................................... 46 8 Dream Stage to Infancy Stage...

  8. Enhancement of band-to-band tunneling in mono-layer transition metal dichalcogenides two-dimensional materials by vacancy defects

    SciTech Connect (OSTI)

    Jiang, Xiang-Wei; Li, Shu-Shen [State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China); Gong, Jian [School of Physics Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Xu, Nuo [Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California 94720 (United States); Zhang, Jinfeng; Hao, Yue [Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071 (China); Wang, Lin-Wang, E-mail: lwwang@lbl.gov [Material Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States)

    2014-01-13T23:59:59.000Z

    The band-to-band tunneling of monolayer transition metal dichalcogenides nano-junction is investigated using atomistic ab initio quantum transport simulations. From the simulation, it is found that the transition metal vacancy defect in the two-dimensional MX{sub 2} (M = Mo,W; X = S,Se) band-to-band tunneling diode can dramatically boost the on-state current up to 10 times while maintaining the device sub-threshold swing. The performance enhancement mechanism is discussed in detail by examining partial density of states of the system. It is found that the transition metal vacancy induces band-gap states, which reduce the effective length of the tunneling transition region.

  9. Spark gap with low breakdown voltage jitter

    DOE Patents [OSTI]

    Rohwein, Gerald J. (Albuquerque, NM); Roose, Lars D. (Albuquerque, NM)

    1996-01-01T23:59:59.000Z

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed.

  10. Spark gap with low breakdown voltage jitter

    DOE Patents [OSTI]

    Rohwein, G.J.; Roose, L.D.

    1996-04-23T23:59:59.000Z

    Novel spark gap devices and electrodes are disclosed. The novel spark gap devices and electrodes are suitable for use in a variety of spark gap device applications. The shape of the electrodes gives rise to local field enhancements and reduces breakdown voltage jitter. Breakdown voltage jitter of approximately 5% has been measured in spark gaps according the invention. Novel electrode geometries and materials are disclosed. 13 figs.

  11. Low gap amorphous GaN1-xAsx alloys grown on glass substrate K. M. Yu,1,a

    E-Print Network [OSTI]

    Wu, Junqiao

    Low gap amorphous GaN1-xAsx alloys grown on glass substrate K. M. Yu,1,a S. V. Novikov,2 R September 2010 Amorphous GaN1-xAsx layers with As content in the range of x=0.1 to 0.6 were grown defined optical absorption edges. The measured band gap values for the crystalline and amorphous GaN1-x

  12. Air Gap Tunin Yilin Mao, Yashwanth

    E-Print Network [OSTI]

    Elsherbeni, Atef Z.

    Air Gap Tunin Yilin Mao, Yashwanth Electrical Engineering Departm The Unive ymao1@olemiss.edu, ypadooru@ Abstract-- An adjustable air gap was proposed the resonant frequency of patch antennas the frequency of coaxially fed p center conductor has to be de-soldered and r time the width of the air gap

  13. Calibration curves for some standard Gap Tests

    SciTech Connect (OSTI)

    Bowman, A.L.; Sommer, S.C.

    1989-01-01T23:59:59.000Z

    The relative shock sensitivities of explosive compositions are commonly assessed using a family of experiments that can be described by the generic term ''Gap Test.'' Gap tests include a donor charge, a test sample, and a spacer, or gap, between two explosives charges. The donor charge, gap material, and test dimensions are held constant within each different version of the gap test. The thickness of the gap is then varied to find the value at which 50% of the test samples will detonate. The gap tests measure the ease with a high-order detonation can be established in the test explosive, or the ''detonability,'' of the explosive. Test results are best reported in terms of the gap thickness at the 50% point. It is also useful to define the shock pressure transmitted into the test sample at the detonation threshold. This requires calibrating the gap test in terms of shock pressure in the gap as a function of the gap thickness. It also requires a knowledge of the shock Hugoniot of the sample explosive. We used the 2DE reactive hydrodynamic code with Forest Fire burn rates for the donor explosives to calculate calibration curves for several gap tests. The model calculations give pressure and particle velocity on the centerline of the experimental set-up and provide information about the curvature and pulse width of the shock wave. 10 refs., 1 fig.

  14. Genetic-Algorithm Discovery of a Direct-Gap and Optically Allowed Superstructure from Indirect-Gap Si and Ge Semiconductors

    SciTech Connect (OSTI)

    d'Avezac, M.; Luo, J. W.; Chanier, T.; Zunger, A.

    2012-01-13T23:59:59.000Z

    Combining two indirect-gap materials - with different electronic and optical gaps - to create a direct gap material represents an ongoing theoretical challenge with potentially rewarding practical implications, such as optoelectronics integration on a single wafer. We provide an unexpected solution to this classic problem, by spatially melding two indirect-gap materials (Si and Ge) into one strongly dipole-allowed direct-gap material. We leverage a combination of genetic algorithms with a pseudopotential Hamiltonian to search through the astronomic number of variants of Si{sub n}/Ge{sub m}/.../Si{sub p}/Ge{sub q} superstructures grown on (001) Si{sub 1-x}Ge{sub x}. The search reveals a robust configurational motif - SiGe{sub 2}Si{sub 2}Ge{sub 2}SiGe{sub n} on (001) Si{sub x}Ge{sub 1-x} substrate (x {le} 0.4) presenting a direct and dipole-allowed gap resulting from an enhanced {Gamma}-X coupling at the band edges.

  15. Wide-Bandgap Semiconductors

    SciTech Connect (OSTI)

    Chinthavali, M.S.

    2005-11-22T23:59:59.000Z

    With the increase in demand for more efficient, higher-power, and higher-temperature operation of power converters, design engineers face the challenge of increasing the efficiency and power density of converters [1, 2]. Development in power semiconductors is vital for achieving the design goals set by the industry. Silicon (Si) power devices have reached their theoretical limits in terms of higher-temperature and higher-power operation by virtue of the physical properties of the material. To overcome these limitations, research has focused on wide-bandgap materials such as silicon carbide (SiC), gallium nitride (GaN), and diamond because of their superior material advantages such as large bandgap, high thermal conductivity, and high critical breakdown field strength. Diamond is the ultimate material for power devices because of its greater than tenfold improvement in electrical properties compared with silicon; however, it is more suited for higher-voltage (grid level) higher-power applications based on the intrinsic properties of the material [3]. GaN and SiC power devices have similar performance improvements over Si power devices. GaN performs only slightly better than SiC. Both SiC and GaN have processing issues that need to be resolved before they can seriously challenge Si power devices; however, SiC is at a more technically advanced stage than GaN. SiC is considered to be the best transition material for future power devices before high-power diamond device technology matures. Since SiC power devices have lower losses than Si devices, SiC-based power converters are more efficient. With the high-temperature operation capability of SiC, thermal management requirements are reduced; therefore, a smaller heat sink would be sufficient. In addition, since SiC power devices can be switched at higher frequencies, smaller passive components are required in power converters. Smaller heat sinks and passive components result in higher-power-density power converters. With the advent of the use of SiC devices it is imperative that models of these be made available in commercial simulators. This enables power electronic designers to simulate their designs for various test conditions prior to fabrication. To build an accurate transistor-level model of a power electronic system such as an inverter, the first step is to characterize the semiconductor devices that are present in the system. Suitable test beds need to be built for each device to precisely test the devices and obtain relevant data that can be used for modeling. This includes careful characterization of the parasitic elements so as to emulate the test setup as closely as possible in simulations. This report is arranged as follows: Chapter 2--The testing and characterization of several diodes and power switches is presented. Chapter 3--A 55-kW hybrid inverter (Si insulated gate bipolar transistor--SiC Schottky diodes) device models and test results are presented. A detailed description of the various test setups followed by the parameter extraction, modeling, and simulation study of the inverter performance is presented. Chapter 4--A 7.5-kW all-SiC inverter (SiC junction field effect transistors (JFET)--SiC Schottky diodes) was built and tested. The models built in Saber were validated using the test data and the models were used in system applications in the Saber simulator. The simulation results and a comparison of the data from the prototype tests are discussed in this chapter. Chapter 5--The duration test results of devices utilized in buck converters undergoing reliability testing are presented.

  16. Development of Low Energy Gap and Fully Regioregular Polythienylenevinylene Derivative

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    David, Tanya M. S.; Zhang, Cheng; Sun, Sam-Shajing

    2014-01-01T23:59:59.000Z

    Low energy gap and fully regioregular conjugated polymers find its wide use in solar energy conversion applications. This paper will first briefly review this type of polymers and also report synthesis and characterization of a specific example new polymer, a low energy gap, fully regioregular, terminal functionalized, and processable conjugated polymer poly-(3-dodecyloxy-2,5-thienylene vinylene) or PDDTV. The polymer exhibited an optical energy gap of 1.46?eV based on the UV-vis-NIR absorption spectrum. The electrochemically measured highest occupied molecular orbital (HOMO) level is ?4.79?eV, resulting in the lowest unoccupied molecular orbital (LUMO) level of ?3.33?eV based on optical energy gap. The polymer wasmore »synthesized via Horner-Emmons condensation and is fairly soluble in common organic solvents such as tetrahydrofuran and chloroform with gentle heating. DSC showed two endothermic peaks at 67°C and 227°C that can be attributed to transitions between crystalline and liquid states. The polymer is thermally stable up to about 300°C. This polymer appears very promising for cost-effective solar cell applications.« less

  17. Evidence of Eu{sup 2+} 4f electrons in the valence band spectra of EuTiO{sub 3} and EuZrO{sub 3}

    SciTech Connect (OSTI)

    Kolodiazhnyi, T. [National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Valant, M. [Materials Research Laboratory, University of Nova Gorica, Vipavska 13, 5000 Nova Gorica (Slovenia); Williams, J. R. [International Center for Young Scientists (ICYS), MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Bugnet, M.; Botton, G. A. [Department of Materials Science and Engineering, McMaster University, Hamilton, Ontario L8S 4L7 (Canada); Ohashi, N. [International Center for Materials Nanoarchitectonics, MANA, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sakka, Y. [National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047 (Japan)

    2012-10-15T23:59:59.000Z

    We report on optical band gap and valence electronic structure of two Eu{sup 2+}-based perovskites, EuTiO{sub 3} and EuZrO{sub 3} as revealed by diffuse optical scattering, electron energy loss spectroscopy, and valence-band x-ray photoelectron spectroscopy. The data show good agreement with the first-principles studies in which the top of the valence band structure is formed by the narrow Eu 4f{sup 7} electron band. The O 2p band shows the features similar to those of the Ba(Sr)TiO{sub 3} perovskites except that it is shifted to higher binding energies. Appearance of the Eu{sup 2+} 4f{sup 7} band is a reason for narrowing of the optical band gap in the title compounds as compared to their Sr-based analogues.

  18. High Efficiency S-band Class AB Push-Pull Power Amplifier with Wide Band Harmonic Suppression

    E-Print Network [OSTI]

    Itoh, Tatsuo

    of the battery cell, and reduce the size and weight of the heat sink. In addition, Class AB operation is often. The microstrip line width is 40mil, and its length is 720 mil. Fig. 2 (b) shows the measured input impedance design. The measured PAE is 63.8% at an output power of 28.2dBm. In addition, the measured IP3 is 45 d

  19. FAQS Gap Analysis Qualification Card - Senior Technical Safety...

    Office of Environmental Management (EM)

    Gap Analysis Qualification Card - Senior Technical Safety Manager FAQS Gap Analysis Qualification Card - Senior Technical Safety Manager Functional Area Qualification Standard Gap...

  20. Searching Room Temperature Ferromagnetism in Wide Gap Semiconductors Fe-doped Strontium Titanate and Zinc Oxide

    E-Print Network [OSTI]

    Pereira, LMC; Wahl, U

    Scientic findings in the very beginning of the millennium are taking us a step further in the new paradigm of technology: spintronics. Upgrading charge-based electronics with the additional degree of freedom of the carriers spin-state, spintronics opens a path to the birth of a new generation of devices with the potential advantages of non-volatility and higher processing speed, integration densities and power efficiency. A decisive step towards this new age lies on the attribution of magnetic properties to semiconductors, the building block of today's electronics, that is, the realization of ferromagnetic semiconductors (FS) with critical temperatures above room temperature. Unfruitful search for intrinsic RT FS lead to the concept of Dilute(d) Magnetic Semiconductors (DMS): ordinary semiconductor materials where 3 d transition metals randomly substitute a few percent of the matrix cations and, by some long-range mechanism, order ferromagnetically. The times are of intense research activity and the last few ...

  1. Inverse Design of Mn-based ternary p-type wide-gap oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | NationalCurriculum Introduction toLucas MaltaCenter for

  2. Inverse Design of Mn-based ternary p-type wide-gap oxides

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC)Integrated Codes | NationalCurriculum Introduction toLucas MaltaCenter forused

  3. Influence of Al doping on the critical fields and gap values in magnesium diboride single crystals T. Klein,1,2 L. Lyard,1 J. Marcus,1 C. Marcenat,3 P. Szab,4 Z. Hol'anov,4 P. Samuely,4 B. W. Kang,5 H-J. Kim,5

    E-Print Network [OSTI]

    Boyer, Edmond

    that MgB2 belongs to an origi- nal class of superconductors in which two weakly coupled bands with very the existence of two distinct superconducting gaps. One of the main consequence of this two-band superconduc of the superconducting gaps with Al doping remains controversial. Whereas Gonnelli et al.15 sug- gested that the small

  4. Goncu, JASA-EL Exploiting pattern transformation to tune phononic band

    E-Print Network [OSTI]

    Luding, Stefan

    .05 × 103 kg/m3 , Young's modulus Er = 360 kPa, shear modulus Gr = 120 kPa and longitudinal speed of sound . The attenuation of electromagnetic, acoustic or elastic waves in certain frequency ranges known as band gaps numerically the propagation of elastic waves in a 2D bi-disperse granular crystal composed of large (and soft

  5. Photonic band structures of periodic arrays of pores in a metallic host

    E-Print Network [OSTI]

    Stroud, David

    . Scherer, O. Painter, B. D'Urso, R. Lee, and A. Yariv, "InGaAsP photonic band gap crystal membrane mi Crystal Waveguides," Phys. Rev. Lett. 77, 3787­3790 (1996). 6. O. Painter, R. K. Lee, A. Scherer, A. Yariv Spontaneous Emission in Solid-State Physics and Electronics," Phys. Rev. Lett. 58, 2059­2062 (1987). 4. A

  6. The effect of spin-orbit coupling in band structure of few-layer graphene

    SciTech Connect (OSTI)

    Sahdan, Muhammad Fauzi, E-mail: sahdan89@yahoo.co.id; Darma, Yudi, E-mail: sahdan89@yahoo.co.id [Department of Physics, Institut Teknologi Bandung, Jalan Ganesa 10, Bandung 40132 (Indonesia)

    2014-03-24T23:59:59.000Z

    Topological insulators are electronic materials that have a bulk band gap like an ordinary insulator but have protected conducting states on their edge or surface. This can be happened due to spin-orbit coupling and time-reversal symmetry. Moreover, the edge current flows through their edge or surface depends on its spin orientation and also it is robust against non-magnetic impurities. Therefore, topological insulators are predicted to be useful ranging from spintronics to quantum computation. Graphene was first predicted to be the precursor of topological insulator by Kane-Mele. They developed a Hamiltonian model to describe the gap opening in graphene. In this work, we investigate the band structure of few-layer graphene by using this model with analytical approach. The results of our calculations show that the gap opening occurs at K and K’ point, not only in single layer, but also in bilayer and trilayer graphene.

  7. Dilute Group III-V nitride intermediate band solar cells with contact blocking layers

    DOE Patents [OSTI]

    Walukiewicz, Wladyslaw (Kensington, CA); Yu, Kin Man (Lafayette, CA)

    2012-07-31T23:59:59.000Z

    An intermediate band solar cell (IBSC) is provided including a p-n junction based on dilute III-V nitride materials and a pair of contact blocking layers positioned on opposite surfaces of the p-n junction for electrically isolating the intermediate band of the p-n junction by blocking the charge transport in the intermediate band without affecting the electron and hole collection efficiency of the p-n junction, thereby increasing open circuit voltage (V.sub.OC) of the IBSC and increasing the photocurrent by utilizing the intermediate band to absorb photons with energy below the band gap of the absorber layers of the IBSC. Hence, the overall power conversion efficiency of a IBSC will be much higher than an conventional single junction solar cell. The p-n junction absorber layers of the IBSC may further have compositionally graded nitrogen concentrations to provide an electric field for more efficient charge collection.

  8. Strain-engineered band parameters of graphene-like SiC monolayer

    SciTech Connect (OSTI)

    Behera, Harihar, E-mail: harihar@theglocaluniversity.in [School of Technology, The Glocal University, Mirzapur Pole, Dist.-Saharanpur, U.P.-247001, India and Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India); Mukhopadhyay, Gautam, E-mail: gmukh@phy.iitb.ac.in [Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai-400076 (India)

    2014-10-06T23:59:59.000Z

    Using full-potential density functional theory (DFT) calculations we show that the band gap and effective masses of charge carriers in SiC monolayer (ML-SiC) in graphene-like two-dimensional honeycomb structure are tunable by strain engineering. ML-SiC was found to preserve its flat 2D graphene-like structure under compressive strain up to 7%. A transition from indirect-to-direct gap-phase is predicted to occur for a strain value lying within the interval (1.11 %, 1.76%). In both gap-phases band gap decreases with increasing strain, although the rate of decrease is different in the two gap-phases. Effective mass of electrons show a non-linearly decreasing trend with increasing tensile strain in the direct gap-phase. The strain-sensitive properties of ML-SiC, may find applications in future strain-sensors, nanoelectromechanical systems (NEMS) and nano-optomechanical systems (NOMS) and other nano-devices.

  9. Chiral gap effect in curved space

    E-Print Network [OSTI]

    Antonino Flachi; Kenji Fukushima

    2014-06-25T23:59:59.000Z

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  10. Gap between active and passive solar heating

    SciTech Connect (OSTI)

    Balcomb, J.D.

    1985-01-01T23:59:59.000Z

    The gap between active and passive solar could hardly be wider. The reasons for this are discussed and advantages to narrowing the gap are analyzed. Ten years of experience in both active and passive systems are reviewed, including costs, frequent problems, performance prediction, performance modeling, monitoring, and cooling concerns. Trends are analyzed, both for solar space heating and for service water heating. A tendency for the active and passive technologies to be converging is observed. Several recommendations for narrowing the gap are presented.

  11. Predicted band structures of III-V semiconductors in wurtzite phase

    E-Print Network [OSTI]

    Amrit De; Craig E. Pryor

    2009-08-13T23:59:59.000Z

    While non-nitride III-V semiconductors typically have a zincblende structure, they may also form wurtzite crystals under pressure or when grown as nanowhiskers. This makes electronic structure calculation difficult since the band structures of wurtzite III-V semiconductors are poorly characterized. We have calculated the electronic band structure for nine III-V semiconductors in the wurtzite phase using transferable empirical pseudopotentials including spin-orbit coupling. We find that all the materials have direct gaps. Our results differ significantly from earlier {\\it ab initio} calculations, and where experimental results are available (InP, InAs and GaAs) our calculated band gaps are in good agreement. We tabulate energies, effective masses, and linear and cubic Dresselhaus zero-field spin-splitting coefficients for the zone-center states. The large zero-field spin-splitting coefficients we find may lead to new functionalities for designing devices that manipulate spin degrees of freedom.

  12. FAQS Gap Analysis Qualification Card – Radiation Protection

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  13. FAQS Gap Analysis Qualification Card – Mechanical Systems

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  14. FAQS Gap Analysis Qualification Card – Environmental Restoration

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  15. Undecidability of the Spectral Gap (short version)

    E-Print Network [OSTI]

    Cubitt, Toby; Wolf, Michael M

    2015-01-01T23:59:59.000Z

    The spectral gap -- the difference in energy between the ground state and the first excited state -- is one of the most important properties of a quantum many-body system. Quantum phase transitions occur when the spectral gap vanishes and the system becomes critical. Much of physics is concerned with understanding the phase diagrams of quantum systems, and some of the most challenging and long-standing open problems in theoretical physics concern the spectral gap, such as the Haldane conjecture that the Heisenberg chain is gapped for integer spin, proving existence of a gapped topological spin liquid phase, or the Yang-Mills gap conjecture (one of the Millennium Prize problems). These problems are all particular cases of the general spectral gap problem: Given a quantum many-body Hamiltonian, is the system it describes gapped or gapless? Here we show that this problem is undecidable, in the same sense as the Halting Problem was proven to be undecidable by Turing. A consequence of this is that the spectral gap...

  16. Undecidability of the Spectral Gap (short version)

    E-Print Network [OSTI]

    Toby Cubitt; David Perez-Garcia; Michael M. Wolf

    2015-02-13T23:59:59.000Z

    The spectral gap -- the difference in energy between the ground state and the first excited state -- is one of the most important properties of a quantum many-body system. Quantum phase transitions occur when the spectral gap vanishes and the system becomes critical. Much of physics is concerned with understanding the phase diagrams of quantum systems, and some of the most challenging and long-standing open problems in theoretical physics concern the spectral gap, such as the Haldane conjecture that the Heisenberg chain is gapped for integer spin, proving existence of a gapped topological spin liquid phase, or the Yang-Mills gap conjecture (one of the Millennium Prize problems). These problems are all particular cases of the general spectral gap problem: Given a quantum many-body Hamiltonian, is the system it describes gapped or gapless? Here we show that this problem is undecidable, in the same sense as the Halting Problem was proven to be undecidable by Turing. A consequence of this is that the spectral gap of certain quantum many-body Hamiltonians is not determined by the axioms of mathematics, much as Goedels incompleteness theorem implies that certain theorems are mathematically unprovable. We extend these results to prove undecidability of other low temperature properties, such as correlation functions. The proof hinges on simple quantum many-body models that exhibit highly unusual physics in the thermodynamic limit.

  17. FAQS Gap Analysis Qualification Card – Criticality Safety

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  18. FAQS Gap Analysis Qualification Card – Construction Management

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  19. The refractive index and electronic gap of water and ice increase with increasing pressure

    E-Print Network [OSTI]

    Pan, Ding; Galli, Giulia

    2014-01-01T23:59:59.000Z

    Determining the electronic and dielectric properties of water at high pressure and temperature is an essential prerequisite to understand the physical and chemical properties of aqueous environments under supercritical conditions, e.g. in the Earth interior. However optical measurements of compressed ice and water remain challenging and it has been common practice to assume that their band gap is inversely correlated to the measured refractive index, consistent with observations reported for hundreds of materials. Here we report ab initio molecular dynamics and electronic structure calculations showing that both the refractive index and the electronic gap of water and ice increase with pressure, at least up to 30 GPa. Subtle electronic effects, related to the nature of interband transitions and band edge localization under pressure, are responsible for this apparently anomalous behavior.

  20. Detection of DNA Hybridization Using the Near-Infrared Band-Gap

    E-Print Network [OSTI]

    Allen, Jont

    shift of 2 meV, with a detection sensitivity of 6 nM. The energy shift is modeled by correlating in the solution- based systems, is advantageous due to the sensitivity and selectivity of the technique.14 absorption of blood and tissue17-19 and the low auto- fluorescence of cells20 in the nIR. Furthermore, SWNTs

  1. Photonic band gap airbridge microcavity resonances in GaAs/AlxOy waveguides

    E-Print Network [OSTI]

    Fan, Shanhui

    -dielectric-contrast GaAs/AlxOy III­V compound semiconductor structure. The photonic crystal is defined by a regularly of optical states will be modified and quantized by such a cavity. Typical semiconductor optical cavities measurements of a one- dimensional PBG air-bridge optical microcavity are pre- sented here. A schematic

  2. Tunable micro-cavities in photonic band-gap yarns and optical fibers

    E-Print Network [OSTI]

    Benoit, Gilles, Ph. D. Massachusetts Institute of Technology

    2006-01-01T23:59:59.000Z

    The vision behind this work is the fabrication of high performance innovative fiber-based optical components over kilometer length-scales. The optical properties of these fibers derive from their multilayer dielectric ...

  3. A Novel Synthesis Method for Designing Electromagnetic Band Gap (EBG) Structures in Packaged Mixed Signal Systems

    E-Print Network [OSTI]

    Swaminathan, Madhavan

    on a periodically patterned power/ground plane. CPA-Method gives a final dimension of EBG structure for a desired. PLM calculates isolation level of an EBG structure based on the transmitted power. The proposed's mixed-signal systems are very sensitive to power/ground noise. For high-speed systems, it has been

  4. Control of ionization processes in high band gap materials via tailored

    E-Print Network [OSTI]

    Kassel, Universität

    on Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics," Phys. Rev. Lett. 83, 5182­5182

  5. Bispyridinium-phenylene-based copolymers: low band gap n-type alternating copolymers

    E-Print Network [OSTI]

    Swager, Timothy Manning

    Bispyridinium-phenylene-based conjugated donor–acceptor copolymers were synthesized by a Stille cross-coupling and cyclization sequence. These polyelectrolytes are freely soluble in organic solvents and display broad optical ...

  6. Comment on "Direct space-time observation of pulse tunneling in an electromagnetic band gap"

    E-Print Network [OSTI]

    G. Nimtz; A. A. Stahlhofen

    2008-01-13T23:59:59.000Z

    The investigation presented by Doiron, Hache, and Winful [Phys. Rev. A 76, 023823 (2007)] is not valid for the tunneling process as claimed in the paper.

  7. Second harmonic generation from direct band gap quantum dots pumped by femtosecond laser pulses

    SciTech Connect (OSTI)

    Liu, Liwei, E-mail: liulw@cust.edu.cn; Wang, Yue; Hu, Siyi; Ren, Yu; Huang, Chen [School of Science, Changchun University of Science and Technology, Changchun, Jilin 130022, People's Republic of China and International Joint Research Center for Nanophotonics and Biophotonics, Changchun University of Science and Technology, Changchun, Jilin 130022 (China)

    2014-02-21T23:59:59.000Z

    We report on nonlinear optical experiments performed on Cu{sub 2}S quantum dots (QDs) pumped by femtosecond laser pulses. We conduct a theoretical simulation and experiments to determine their second harmonic generation characteristics. Furthermore, we demonstrate that the QDs have a second harmonic generation conversion efficiency of up to 76%. Our studies suggest that these Cu{sub 2}S QDs can be used for solar cells, bioimaging, biosensing, and electric detection.

  8. Final Report: Tunable Narrow Band Gap Absorbers For Ultra High Efficiency Solar Cells

    SciTech Connect (OSTI)

    Bedair, Salah M. [NCSU; Hauser, John R. [NCSU; Elmasry, Nadia [NCSU; Colter, Peter C. [NCSU; Bradshaw, G. [NCSU; Carlin, C. Z. [NCSU; Samberg, J. [NCSU; Edmonson, Kenneth [Spectrolab

    2012-07-31T23:59:59.000Z

    We report on a joint research program between NCSU and Spectrolab to develop an upright multijunction solar cell structure with a potential efficiency exceeding the current record of 41.6% reported by Spectrolab. The record efficiency Ge/GaAs/InGaP triple junction cell structure is handicapped by the fact that the current generated by the Ge cell is much higher than that of both the middle and top cells. We carried out a modification of the record cell structure that will keep the lattice matched condition and allow better matching of the current generated by each cell. We used the concept of strain balanced strained layer superlattices (SLS), inserted in the i-layer, to reduce the bandgap of the middle cell without violating the desirable lattice matched condition. For the middle GaAs cell, we have demonstrated an n-GaAs/i-(InGaAs/GaAsP)/p-GaAs structure, where the InxGa1-xAs/GaAs1-yPy SLS is grown lattice matched to GaAs and with reduced bandgap from 1.43 eV to 1.2 eV, depending upon the values of x and y.

  9. Nature of the Band Gap and Origin of the Electro-/Photo-Activity...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    oxidematerials in photocatalysis and solar applications. Citation: Qiao L, HY Xiao, HM Meyer, JN Sun, CM Rouleau, AA Puretzky, DB Geohegan, IN Ivanov, M Yoon, WJ Weber, and MD...

  10. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month to RememberEIA'sNewAA

  11. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month to RememberEIA'sNewAAA

  12. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month to RememberEIA'sNewAAAA

  13. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of ScienceandMesa del(ANL-IN-03-032) -Less isNFebruaryOctober 2, AlgeriaQ1A Month to

  14. A New Gap-Opening Mechanism in a Triple-Band Metal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch >InternshipDepartmentNeutrino-Induced Charged-CurrentN N U A L R EA New

  15. Gap Assessment (FY 13 Update)

    SciTech Connect (OSTI)

    Getman, Dan

    2013-09-30T23:59:59.000Z

    To help guide its future data collection efforts, The DOE GTO funded a data gap analysis in FY2012 to identify high potential hydrothermal areas where critical data are needed. This analysis was updated in FY2013 and the resulting datasets are represented by this metadata. The original process was published in FY 2012 and is available here: https://pangea.stanford.edu/ERE/db/GeoConf/papers/SGW/2013/Esposito.pdf Though there are many types of data that can be used for hydrothermal exploration, five types of exploration data were targeted for this analysis. These data types were selected for their regional reconnaissance potential, and include many of the primary exploration techniques currently used by the geothermal industry. The data types include: 1. well data 2. geologic maps 3. fault maps 4. geochemistry data 5. geophysical data To determine data coverage, metadata for exploration data (including data type, data status, and coverage information) were collected and catalogued from nodes on the National Geothermal Data System (NGDS). It is the intention of this analysis that the data be updated from this source in a semi-automated fashion as new datasets are added to the NGDS nodes. In addition to this upload, an online tool was developed to allow all geothermal data providers to access this assessment and to directly add metadata themselves and view the results of the analysis via maps of data coverage in Geothermal Prospector (http://maps.nrel.gov/gt_prospector). A grid of the contiguous U.S. was created with 88,000 10-km by 10-km grid cells, and each cell was populated with the status of data availability corresponding to the five data types. Using these five data coverage maps and the USGS Resource Potential Map, sites were identified for future data collection efforts. These sites signify both that the USGS has indicated high favorability of occurrence of geothermal resources and that data gaps exist. The uploaded data are contained in two data files for each data category. The first file contains the grid and is in the SHP file format (shape file.) Each populated grid cell represents a 10k area within which data is known to exist. The second file is a CSV (comma separated value) file that contains all of the individual layers that intersected with the grid. This CSV can be joined with the map to retrieve a list of datasets that are available at any given site. The attributes in the CSV include: 1. grid_id : The id of the grid cell that the data intersects with 2. title: This represents the name of the WFS service that intersected with this grid cell 3. abstract: This represents the description of the WFS service that intersected with this grid cell 4. gap_type: This represents the category of data availability that these data fall within. As the current processing is pulling data from NGDS, this category universally represents data that are available in the NGDS and are ready for acquisition for analytic purposes. 5. proprietary_type: Whether the data are considered proprietary 6. service_type: The type of service 7. base_url: The service URL

  16. Drop short control of electrode gap

    DOE Patents [OSTI]

    Fisher, Robert W. (Albuquerque, NM); Maroone, James P. (Albuquerque, NM); Tipping, Donald W. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM)

    1986-01-01T23:59:59.000Z

    During vacuum consumable arc remelting the electrode gap between a consumable electrode and a pool of molten metal is difficult to control. The present invention monitors drop shorts by detecting a decrease in the voltage between the consumable electrode and molten pool. The drop shorts and their associated voltage reductions occur as repetitive pulses which are closely correlated to the electrode gap. Thus, the method and apparatus of the present invention controls electrode gap based upon drop shorts detected from the monitored anode-cathode voltage. The number of drop shorts are accumulated, and each time the number of drop shorts reach a predetermined number, the average period between drop shorts is calculated from this predetermined number and the time in which this number is accumulated. This average drop short period is used in a drop short period electrode gap model which determines the actual electrode gap from the drop short. The actual electrode gap is then compared with a desired electrode gap which is selected to produce optimum operating conditions and the velocity of the consumable error is varied based upon the gap error. The consumable electrode is driven according to any prior art system at this velocity. In the preferred embodiment, a microprocessor system is utilized to perform the necessary calculations and further to monitor the duration of each drop short. If any drop short exceeds a preset duration period, the consumable electrode is rapidly retracted a predetermined distance to prevent bonding of the consumable electrode to the molten remelt.

  17. Electronic band structure and optical properties of the cubic, Sc, Y and La hydride systems

    SciTech Connect (OSTI)

    Peterman, D.J.

    1980-01-01T23:59:59.000Z

    Electronic band structure calculations are used to interpret the optical spectra of the cubic Sc, Y and La hydride systems. Self-consistent band calculations of ScH/sub 2/ and YH/sub 2/ were carried out. The respective joint densities of states are computed and compared to the dielectric functions determined from the optical measurements. Additional calculations were performed in which the Fermi level or band gap energies are rigidly shifted by a small energy increment. These calculations are then used to simulate the derivative structure in thermomodulation spectra and relate the origin of experimental interband features to the calculated energy bands. While good systematic agreement is obtained for several spectral features, the origin of low-energy interband transitions in YH/sub 2/ cannot be explained by these calculated bands. A lattice-size-dependent premature occupation of octahedral sites by hydrogen atoms in the fcc metal lattice is suggested to account for this discrepancy. Various non-self-consistent calculations are used to examine the effect of such a premature occupation. Measurements of the optical absorptivity of LaH/sub x/ with 1.6 < x < 2.9 are presented which, as expected, indicate a more premature occupation of the octahedral sites in the larger LaH/sub 2/ lattice. These experimental results also suggest that, in contrast to recent calculations, LaH/sub 3/ is a small-band-gap semiconductor.

  18. Influence of grain boundary modification on limited performance of wide bandgap Cu(In,Ga)Se{sub 2} solar cells

    SciTech Connect (OSTI)

    Raghuwanshi, M., E-mail: mohit.raghuwanshi@etu.univ-rouen.fr; Cadel, E.; Pareige, P.; Duguay, S. [Groupe de Physique des Materiaux (GPM), UMR 6634 CNRS, Université et INSA de Rouen, Avenue de l'Universite BP 12, 76801 Saint Etienne du Rouvray (France); Couzinie-Devy, F.; Arzel, L.; Barreau, N. [Institut des Materiaux Jean Rouxel (IMN), UMR 6502 CNRS, Université de Nantes, 2 rue de la Houssiniere BP 32229, 44322 Nantes cedex 3 (France)

    2014-07-07T23:59:59.000Z

    The reason why so-called wide-bandgap CuIn{sub 1?x}Ga{sub x}Se{sub 2} (CIGSe with x?>?0.4) based solar cells show hindered performance compared with theoretical expectations is still a matter of debate. In the present Letter, atom probe tomography studies of CuIn{sub 1?x}Ga{sub x}Se{sub 2} polycrystalline thin films with x varying from 0 to 1 are reported. These investigations confirm that the grain boundaries (GBs) of low gallium containing (x?band gap CIGSe films (x?>?0.8) are Cu-enriched compared with GI. For intermediate gallium contents (0.4?

  19. 50 IEEE TRANSACTIONS ON MAGNETICS, VOL. 40, NO. 1, JANUARY 2004 Analytical Method for Predicting the Air-Gap Flux of

    E-Print Network [OSTI]

    Mi, Chunting "Chris"

    the Air-Gap Flux of Interior-Type Permanent-Magnet Machines Chunting Mi, Senior Member, IEEE, Mariano method to calcu- late the air-gap magnetic flux of interior-type permanent-magnet (IPM) machines taking INTERIOR-TYPE permanent-magnet (IPM) motors are used in a wide range of industrial applications due

  20. Double-Wall Carbon Nanotubes for Wide-Band, Ultrafast Pulse Generation

    E-Print Network [OSTI]

    Hasan, Tawfique; Sun, Zhipei; Tan, PingHeng; Popa, Daniel; Flahaut, Emmanuel; Kelleher, Edmund J. R.; Bonaccorso, Francesco; Wang, Fengqiu; Jiang, Zhe; Torrisi, Felice; Privitera, Giulia; Nicolosi, Valeria; Ferrari, Andrea C.

    2014-04-15T23:59:59.000Z

    , respectively). 48 Thus, in terms of carrier dynamics, DWNTs are comparable to SWNTs. Further, DWNTs can have outer and inner wall combinations with different electronic types (semi- conducting, s, or metallic, m) in their structures (outer-inner: s-s, s-m, m... .; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari, A. C. Carbon Nanotube-Polycarbonate Composites for Ultrafast La- sers. Adv. Mater. 2008, 20, 4040–4043. 21. Wang, F.; Rozhin, A. G.; Scardaci, V.; Sun, Z.; Hennrich, F.; White, I. H.; Milne, W. I.; Ferrari...

  1. On the vortex parameter estimation using wide band signals in active acoustic system

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    is an important operation in a large number of applications such as turbine monitoring, de- tection of a vortex in a closed hydraulic test loop. The objective of the work is to emphasize the effect

  2. High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Ferro-based Rectifier (left) Overview Developed by Lineage Power and acquired in 2011 by GE Industrial Solutions. Commercialized in 2010. Distributed and marketed by GE Power...

  3. Physical-Layer Security: Wide-band Communications & Role of Known Interference

    E-Print Network [OSTI]

    El-Halabi, Mustapha

    2013-12-05T23:59:59.000Z

    to achieve the secrecy capacity of the degraded Gaussian model (dubbed as “secret writing on dirty paper”) to within half a bit. The success of this approach allowed its application to the problem of “secret key agreement via dirty paper coding...

  4. 2D pore-scale simulation of wide-band electromagnetic dispersion of saturated rocks

    E-Print Network [OSTI]

    Torres-Verdín, Carlos

    Engineering,Austin,Texas; presently Chevron NorthAmerica Exploration and Production, Houston,Texas. E- tivity quantifies dissipation of energy, whereas dielectric permittivi- ty quantifies energy storage March 27, 2007. 1 Formerly University ofTexas atAustin, Department of Petroleum and Geosystems

  5. Wide band Fresnel super-resolution applied to capillary break up of viscoelastic fluids

    E-Print Network [OSTI]

    Fiscina, Jorge E; Sattler, Rainer; Wagner, Christian

    2013-01-01T23:59:59.000Z

    We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of less than 100 nanometers. We investigate Rayleigh Plateaux like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 microns thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.

  6. Wide band Fresnel super-resolution applied to capillary break up of viscoelastic fluids

    E-Print Network [OSTI]

    Jorge E. Fiscina; Pierre Fromholz; Rainer Sattler; Christian Wagner

    2013-10-05T23:59:59.000Z

    We report a technique based on Fresnel diffraction with white illumination that permits the resolution of capillary surface patterns of less than 100 nanometers. We investigate Rayleigh Plateaux like instability on a viscoelastic capillary bridge and show that we can overcome the resolution limit of optical microscopy. The viscoelastic filaments are approximately 20 microns thick at the end of the thinning process when the instability sets in. The wavy distortions grow exponentially in time and the pattern is resolved by an image treatment that is based on an approximation of the measured rising flank of the first Fresnel peak.

  7. High-Efficiency, Wide-Band Three-Phase Rectifiers and Adaptive Rectifier

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels DataDepartment of Energy Your Density Isn't YourTransport(Fact Sheet), GeothermalGridHYDROGEND D e e p p a a r r t tDaylighting |Management

  8. Wide field of view telescope

    DOE Patents [OSTI]

    Ackermann, Mark R. (Albuquerque, NM); McGraw, John T. (Placitas, NM); Zimmer, Peter C. (Albuquerque, NM)

    2008-01-15T23:59:59.000Z

    A wide field of view telescope having two concave and two convex reflective surfaces, each with an aspheric surface contour, has a flat focal plane array. Each of the primary, secondary, tertiary, and quaternary reflective surfaces are rotationally symmetric about the optical axis. The combination of the reflective surfaces results in a wide field of view in the range of approximately 3.8.degree. to approximately 6.5.degree.. The length of the telescope along the optical axis is approximately equal to or less than the diameter of the largest of the reflective surfaces.

  9. Engine piston having an insulating air gap

    DOE Patents [OSTI]

    Jarrett, Mark Wayne (Washington, IL); Hunold,Brent Michael (Apex, NC)

    2010-02-02T23:59:59.000Z

    A piston for an internal combustion engine has an upper crown with a top and a bottom surface, and a lower crown with a top and a bottom surface. The upper crown and the lower crown are fixedly attached to each other using welds, with the bottom surface of the upper crown and the top surface of the lower crown forming a mating surface. The piston also has at least one centrally located air gap formed on the mating surface. The air gap is sealed to prevent substantial airflow into or out of the air gap.

  10. Chiral gap effect in curved space

    E-Print Network [OSTI]

    Antonino Flachi; Kenji Fukushima

    2015-05-29T23:59:59.000Z

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum, a mass-gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass-gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  11. SOFTWAREENGINEERING The World Wide Web

    E-Print Network [OSTI]

    Whitehead, James

    SOFTWAREENGINEERING The World Wide Web Distributed Authoring and Versioning working group on the Web. WEBDAV: IETF Standard for Collaborative Authoring on the Web E. JAMES WHITEHEAD, JR. University remains to be done. What if instead you could simply edit Web documents (or any Web resource) in place

  12. Going Deep vs. Going Wide

    Broader source: Energy.gov [DOE]

    Going Deep vs. Going Wide, from the Residential Energy Efficiency Solutions Conference 2012. Provides an overview on the progress of four energy efficiency programs: Clean Energy Works Oregon, Efficiency Maine, Energy Upgrade California Flex Path, and EcoHouse Loan Program.

  13. Are We Closing the School Discipline Gap?

    E-Print Network [OSTI]

    Losen, Daniel; Hodson, Cheri; Keith II, Michael A; Morrison, Katrina; Belway, Shakti

    2015-01-01T23:59:59.000Z

    D.J. , (Ed). Closing the School Discipline Gap: EquitableBooth, E.A. (2011). Breaking schools’ rules: A statewidestudy of how school discipline relates to students’ success

  14. Columbia River Component Data Gap Analysis

    SciTech Connect (OSTI)

    L. C. Hulstrom

    2007-10-23T23:59:59.000Z

    This Data Gap Analysis report documents the results of a study conducted by Washington Closure Hanford (WCH) to compile and reivew the currently available surface water and sediment data for the Columbia River near and downstream of the Hanford Site. This Data Gap Analysis study was conducted to review the adequacy of the existing surface water and sediment data set from the Columbia River, with specific reference to the use of the data in future site characterization and screening level risk assessments.

  15. Code Gaps and Future Research Needs of Combustion Safety: Building...

    Energy Savers [EERE]

    Code Gaps and Future Research Needs of Combustion Safety: Building America Expert Meeting Update Code Gaps and Future Research Needs of Combustion Safety: Building America Expert...

  16. Summary of Gaps and Barriers for Implementing Residential Building...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies Summary of Gaps and Barriers for Implementing Residential Building Energy Efficiency Strategies...

  17. NWChem: Bridging the Gap Between Experimental and Computational...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NWChem: Bridging the Gap Between Experimental and Computational Chemistry NWChem: Bridging the Gap Between Experimental and Computational Chemistry Intel recently interviewed...

  18. antiparticle spectrometer gaps: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Next Page Last Page Topic Index 1 The General Antiparticle Spectrometer (GAPS) - Hunt for dark matter using low-energy antideuterons CERN Preprints Summary: The GAPS experiment is...

  19. CHP: Connecting the Gap between Markets and Utility Interconnection...

    Office of Environmental Management (EM)

    CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff Practices, 2006 CHP: Connecting the Gap between Markets and Utility Interconnection and Tariff...

  20. Wide Bandgap Extrinsic Photoconductive Switches

    SciTech Connect (OSTI)

    Sullivan, J S

    2012-01-17T23:59:59.000Z

    Photoconductive semiconductor switches (PCSS) have been investigated since the late 1970s. Some devices have been developed that withstand tens of kilovolts and others that switch hundreds of amperes. However, no single device has been developed that can reliably withstand both high voltage and switch high current. Yet, photoconductive switches still hold the promise of reliable high voltage and high current operation with subnanosecond risetimes. Particularly since good quality, bulk, single crystal, wide bandgap semiconductor materials have recently become available. In this chapter we will review the basic operation of PCSS devices, status of PCSS devices and properties of the wide bandgap semiconductors 4H-SiC, 6H-SiC and 2H-GaN.

  1. Valence band hybridization in N-rich GaN1-xAsx alloys

    SciTech Connect (OSTI)

    Wu, J.; Walukiewicz, W.; Yu, K.M.; Denlinger, J.D.; Shan, W.; Ager III, J.W.; Kimura, A.; Tang, H.F.; Kuech, T.F.

    2004-05-04T23:59:59.000Z

    We have used photo-modulated transmission and optical absorption spectroscopies to measure the composition dependence of interband optical transitions in N-rich GaN{sub 1-x}As{sub x} alloys with x up to 0.06. The direct bandgap gradually decreases as x increases. In the dilute x limit, the observed band gap approaches 2.8 eV; this limiting value is attributed to a transition between the As localized level, which has been previously observed in As-doped GaN at 0.6 eV above the valence band maximum in As-doped GaN, and the conduction band minimum. The structure of the valence band of GaN{sub 1-x}As{sub x} is explained by the hybridization of the localized As states with the extended valence band states of GaN matrix. The hybridization is directly confirmed by soft x-ray emission experiments. To describe the electronic structure of the GaN{sub 1-x}As{sub x} alloys in the entire composition range a linear interpolation is used to combine the effects of valence band hybridization in N-rich alloys with conduction band anticrossing in As-rich alloys.

  2. Energy band modulation of graphane by hydrogen-vacancy chains: A first-principles study

    SciTech Connect (OSTI)

    Wu, Bi-Ru [Department of Natural science, Center for General Education, Chang Gung University, Kueishan 333, Taiwan, ROC (China); Yang, Chih-Kai, E-mail: ckyang@nccu.edu.tw [Graduate Institute of Applied Physics, National Chengchi University, Taipei 11605, Taiwan, ROC (China)

    2014-08-15T23:59:59.000Z

    We investigated a variety of configurations of hydrogen-vacancy chains in graphane by first-principles density functional calculation. We found that graphane with two zigzag H-vacancy chains segregated by one or more H chain is generally a nonmagnetic conductor or has a negligible band gap. However, the same structure is turned into a semiconductor and generates a magnetic moment if either one or both of the vacancy chains are blocked by isolated H atoms. If H-vacancy chains are continuously distributed, the structure is similar to a zigzag graphene nanoribbon embedded in graphane. It was also found that the embedded zigzag graphene nanoribbon is antiferromagnetic, and isolated H atoms left in the 2-chain nanoribbon can tune the band gap and generate net magnetic moments. Similar effects are also obtained if bare carbon atoms are present outside the nanoribbon. These results are useful for designing graphene-based nanoelectronic circuits.

  3. Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study

    E-Print Network [OSTI]

    Ulybyshev, M V

    2015-01-01T23:59:59.000Z

    We study electronic properties of graphene with finite concentration of vacancies or other resonant scatterers by a straightforward lattice Quantum Monte Carlo calculations. Taking into account realistic long-range Coulomb interaction we calculate distribution of spin density associated to midgap states and demonstrate antiferromagnetic ordering. Energy gap are open due to the interaction effects, both in the bare graphene spectrum and in the vacancy/impurity bands. In the case of 5 % concentration of resonant scatterers the latter gap is estimated as 0.7 eV and 1.1 eV for graphene on boron nitride and freely suspended graphene, respectively.

  4. Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study

    E-Print Network [OSTI]

    M. V. Ulybyshev; M. I. Katsnelson

    2015-02-04T23:59:59.000Z

    We study electronic properties of graphene with finite concentration of vacancies or other resonant scatterers by a straightforward lattice Quantum Monte Carlo calculations. Taking into account realistic long-range Coulomb interaction we calculate distribution of spin density associated to midgap states and demonstrate antiferromagnetic ordering. Energy gap are open due to the interaction effects, both in the bare graphene spectrum and in the vacancy/impurity bands. In the case of 5 % concentration of resonant scatterers the latter gap is estimated as 0.7 eV and 1.1 eV for graphene on boron nitride and freely suspended graphene, respectively.

  5. Magnetism and interaction-induced gap opening in graphene with vacancies or hydrogen adatoms: Quantum Monte Carlo study

    E-Print Network [OSTI]

    M. V. Ulybyshev; M. I. Katsnelson

    2015-05-22T23:59:59.000Z

    We study electronic properties of graphene with finite concentration of vacancies or other resonant scatterers by a straightforward lattice Quantum Monte Carlo calculations. Taking into account realistic long-range Coulomb interaction we calculate distribution of spin density associated to midgap states and demonstrate antiferromagnetic ordering. Energy gaps are open due to the interaction effects, both in the bare graphene spectrum and in the vacancy/impurity bands. In the case of 5 % concentration of resonant scatterers the latter gap is estimated as 0.7 eV and 1.1 eV for graphene on boron nitride and freely suspended graphene, respectively.

  6. Heterojunction band offsets and dipole formation at BaTiO{sub 3}/SrTiO{sub 3} interfaces

    SciTech Connect (OSTI)

    Balaz, Snjezana [Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, Ohio 44555 (United States)] [Department of Physics and Astronomy, Youngstown State University, One University Plaza, Youngstown, Ohio 44555 (United States); Zeng, Zhaoquan [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States)] [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States); Brillson, Leonard J. [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States) [Department of Electrical and Computer Engineering, The Ohio State University, 205 Dreese Lab, 2015 Neil Ave., Columbus, Ohio 43210 (United States); Department of Physics, The Ohio State University, 191 West Woodruff, Columbus, Ohio 43210 (United States)

    2013-11-14T23:59:59.000Z

    We used a complement of photoemission and cathodoluminescence techniques to measure formation of the BaTiO{sub 3} (BTO) on SrTiO{sub 3} (STO) heterojunction band offset grown monolayer by monolayer by molecular beam epitaxy. X-ray photoemission spectroscopy (XPS) provided core level and valence band edge energies to monitor the valence band offset in-situ as the first few crystalline BTO monolayers formed on the STO substrate. Ultraviolet photoemission spectroscopy (UPS) measured Fermi level positions within the band gap, work functions, and ionization potentials of the growing BTO film. Depth-resolved cathodoluminescence spectroscopy measured energies and densities of interface states at the buried heterojunction. Kraut-based XPS heterojunction band offsets provided evidence for STO/BTO heterojunction linearity, i.e., commutativity and transitivity. In contrast, UPS and XPS revealed a large dipole associated either with local charge transfer or strain-induced polarization within the BTO epilayer.

  7. Hanford Waste Physical and Rheological Properties: Data and Gaps

    SciTech Connect (OSTI)

    Kurath, Dean E.; Wells, Beric E.; Huckaby, James L.; Mahoney, Lenna A.; Daniel, Richard C.; Burns, Carolyn A.; Tingey, Joel M.; Cooley, Scott K.

    2012-03-01T23:59:59.000Z

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant. These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed.

  8. Hanford Waste Physical and Rheological Properties: Data and Gaps - 12078

    SciTech Connect (OSTI)

    Kurath, D.E.; Wells, B.E.; Huckaby, J.L.; Mahoney, L.A.; Daniel, R.C.; Burns, C.A.; Tingey, J.M.; Cooley, S.K. [Pacific Northwest National Laboratory PO Box 999, Richland WA 99352 (United States)

    2012-07-01T23:59:59.000Z

    The retrieval, transport, treatment and disposal operations associated with Hanford Tank Wastes involve the handling of a wide range of slurries. Knowledge of the physical and rheological properties of the waste is a key component to the success of the design and implementation of the waste processing facilities. Previous efforts to compile and analyze the physical and rheological properties were updated with new results including information on solids composition and density, particle size distributions, slurry rheology, and particle settling behavior. The primary source of additional data is from a recent series of tests sponsored by the Hanford Waste Treatment and Immobilization Plant (WTP). These tests involved an extensive suite of characterization and bench-scale process testing of 8 waste groups representing approximately 75% of the high-level waste mass expected to be processed through the WTP. Additional information on the morphology of the waste solids was also included. Based on the updated results, a gap analysis to identify gaps in characterization data, analytical methods and data interpretation was completed. (authors)

  9. Parametric representation of wave propagation in nonuniform media (both in transmission and stop bands)

    E-Print Network [OSTI]

    A. Popov; V. Kovalchuk

    2011-12-06T23:59:59.000Z

    An analytical approach based on the parametric representation of the wave propagation in nonuniform media was considered. In addition to the previously developed theory of parametric antiresonance describing the field attenuation in stop bands, in the present paper the behaviour of the Bloch wave in a transmission band was investigated. A wide class of exact solutions was found and the correspondence to the quasi-periodic Floquet solutions was shown.

  10. Opportunities for Wide Bandgap Semiconductor Power Electronics...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen...

  11. Transient Shear Banding in a Simple Yield Stress Fluid Thibaut Divoux,1

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    region with a vanishing local shear rate loc = 0 and a fluidized region sheared at loc = c. Besides, var that somewhat blur the above distinction. First, non-thixotropic nonad- hesive emulsions, for which magnetic resonance velocime- try coupled to wide-gap rheology shows simple yielding behavior [12], were found

  12. Dynamics of regeneration gaps following harvest of aspen stands

    E-Print Network [OSTI]

    Macdonald, Ellen

    Dynamics of regeneration gaps following harvest of aspen stands Daniel A. MacIsaac, Philip G in postharvest regeneration in five stands in north- western Alberta dominated by trembling aspen (Populus conditions in 30 aspen regeneration gaps (gaps in regeneration that were not gaps preharvest and were not due

  13. Homolumo gap from dynamical energy levels

    SciTech Connect (OSTI)

    Andric, I.; Jonke, L.; Jurman, D.; Nielsen, H. B. [Theoretical Physics Division, Rudjer Boskovic Institute, P.O. Box 180, 10002 Zagreb (Croatia); Niels Bohr Institute, Copenhagen DK 2100 (Denmark)

    2009-11-15T23:59:59.000Z

    We introduce a dynamical matrix model where the matrix is interpreted as a Hamiltonian representing interaction of a bosonic system with a single fermion. We show how a system of second-quantized fermions influences the ground state of the whole system by producing a gap between the highest eigenvalue of the occupied single-fermion states and the lowest eigenvalue of the unoccupied single-fermion states. We describe the development of the gap in both the strong and weak coupling regimes, while for the intermediate coupling strength we expect formation of homolumo kinks.

  14. Natural Gas Engine Development Gaps (Presentation)

    SciTech Connect (OSTI)

    Zigler, B.T.

    2014-03-01T23:59:59.000Z

    A review of current natural gas vehicle offerings is presented for both light-duty and medium- and heavy-duty applications. Recent gaps in the marketplace are discussed, along with how they have been or may be addressed. The stakeholder input process for guiding research and development needs via the Natural Gas Vehicle Technology Forum (NGVTF) to the U.S. Department of Energy and the California Energy Commission is reviewed. Current high-level natural gas engine development gap areas are highlighted, including efficiency, emissions, and the certification process.

  15. Gribov gap equation at finite temperature

    E-Print Network [OSTI]

    Fabrizio Canfora; Pablo Pais; Patricio Salgado-Rebolledo

    2014-06-05T23:59:59.000Z

    In this paper the Gribov gap equation at finite temperature is analyzed. The solutions of the gap equation (which depend explicitly on the temperature) determine the structure of the gluon propagator within the semi-classical Gribov approach. The present analysis is consistent with the standard confinement scenario for low temperatures, while for high enough temperatures, deconfinement takes place and a free gluon propagator is obtained. It also suggests the presence of the so-called semi-quark-gluon-plasma phase in between the confined and quark-gluon plasma phases.

  16. Bosonic condensation in a flat energy band

    E-Print Network [OSTI]

    Baboux, F; Jacqmin, T; Biondi, M; Lemaître, A; Gratiet, L Le; Sagnes, I; Schmidt, S; Türeci, H E; Amo, A; Bloch, J

    2015-01-01T23:59:59.000Z

    Flat bands are non-dispersive energy bands made of fully degenerate quantum states. Such bands are expected to support emergent phenomena with extraordinary spatial and temporal structures, as they strongly enhance the effect of any perturbation induced by disorder, dissipation or interactions. However, flat bands usually appear at energies above the ground state, preventing their study in systems in thermodynamic equilibrium. Here we use cavity polaritons to circumvent this issue. We engineer a flat band in a frustrated lattice of micro-pillar optical cavities. By taking advantage of the non-hermiticity of our system, we achieve for the first time bosonic condensation in a flat band. This allows revealing the peculiar effect of disorder in such band: The condensate fragments into highly localized modes, reflecting the elementary eigenstates produced by geometric frustration. This non-hermitian engineering of a bosonic flat band condensate offers a novel approach to studying coherent phases of light and matte...

  17. Superconducting gap evolution in overdoped BaFe?(As1-xPx)? single crystals through nanocalorimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-01T23:59:59.000Z

    We report on specific heat measurements on clean overdoped BaFe?(As1-xPx)? single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature ?r=C/T|T?0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave ? model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of ??~5.3 me V, corresponding to ??/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces tillmore »a value of ?? ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on ?r, all samples however show similar behavior [?r(H) - ?r (H = 0)? Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.« less

  18. Superconducting gap evolution in overdoped BaFe?(As1-xPx)? single crystals through nanocalorimetry

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Campanini, D.; Diao, Z.; Fang, L.; Kwok, W.-K.; Welp, U.; Rydh, A.

    2015-06-01T23:59:59.000Z

    We report on specific heat measurements on clean overdoped BaFe?(As1-xPx)? single crystals performed with a high resolution membrane-based nanocalorimeter. A nonzero residual electronic specific heat coefficient at zero temperature ?r=C/T|T?0 is seen for all doping compositions, indicating a considerable fraction of the Fermi surface ungapped or having very deep minima. The remaining superconducting electronic specific heat is analyzed through a two-band s-wave ? model in order to investigate the gap structure. Close to optimal doping we detect a single zero-temperature gap of ??~5.3 me V, corresponding to ??/kBTc ~ 2.2. Increasing the phosphorus concentration x, the main gap reduces till a value of ?? ~ 1.9 meV for x = 0.55 and a second weaker gap becomes evident. From the magnetic field effect on ?r, all samples however show similar behavior [?r(H) - ?r (H = 0)? Hn, with n between 0.6 and 0.7]. This indicates that, despite a considerable redistribution of the gap weights, the total degree of gap anisotropy does not change drastically with doping.

  19. Mobile Access of Wide-Spectrum Networks: Design, Deployment and Experimental Evaluation

    E-Print Network [OSTI]

    Knightly, Edward W.

    --Wireless networks increasingly utilize diverse spec- tral bands that exhibit vast differences in both transmissionMobile Access of Wide-Spectrum Networks: Design, Deployment and Experimental Evaluation Anastasios Giannoulis Paul Patras Edward W. Knightly Dept. of Electrical and Computer Engineering, Rice University

  20. Band offsets at heterojunctions and the charge neutrality condition

    E-Print Network [OSTI]

    Taferner, Waltraud Teresa

    1990-01-01T23:59:59.000Z

    P InSb ZnSe Znte Gap indirect indirect indirect indirect direct indirect direct direct direct direct direct direct E4 (eV) O'K 0. 76 1. 13 2. 30 1. 88 1. 55 2. 35 0. 78 0. 43 1. 41 0. 23 2. 68 2. 56 If the atoms of a...&' ?r&rl c!?? &'nt h&: R . F. . X I 1 e n t C. 'k&r&ic &?f l'nn&rr&it&ee) l. H. B. r&ss (:& I e m h e r! R. R. L?cchese (lvlpmhe& ) etta. g R. AIT&&J?' &t t (Ifead of Department) May 1990 ABSTRACT Band OfFsets at Heterojunctions...

  1. FINAL REPORT ON GDE GAP CELL

    SciTech Connect (OSTI)

    Herman, D.; Summers, W.; Danko, E.

    2009-09-28T23:59:59.000Z

    A project has been undertaken to develop an electrochemical cell and support equipment for evaluation of a gas diffusion electrode-based, narrow-electrolyte-gap anode for SO{sub 2} oxidation in the hydrogen production cycle of the hybrid sulfur (HyS) process. The project supported the HyS development program at the Savannah River National Lab (SRNL). The benefits of using a gas diffusion electrode in conjunction with the narrow anolyte gap are being determined through electrochemical polarization testing under a variety conditions, and by comparison to results produced by SRNL and others using anode technologies that have no anolyte gap. These test results indicate that the NGA cell has low resistance suitable for use in the HyS electrolyzer, exhibits good efficiency at high current densities compared to the direct feed HyS electrolyzer, and indicates robust performance in extended testing over 65 hours. Seepage episodes were mostly caused by port clogging, which can be mitigated in future designs through minor modifications to the hardware. Significant reductions in sulfur crossover have not yet been demonstrated in the NGA configuration compared to in-house direct feed testing, but corroborative sulfur layer analysis is as yet incomplete. Further testing in a single-pass anolyte configuration is recommended for complete evaluation of steady-state electrochemical efficiency and SO{sub 2} crossover in the narrow gap configuration.

  2. SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING

    E-Print Network [OSTI]

    SHEEP MOUNTAIN URANIUM PROJECT CROOKS GAP, WYOMING US EPA Project Meeting April 7 2011April 7, 2011/Titan Uranium, VP Development · Deborah LebowAal/EPA Region 8 Air Program Introduction to Titan Uranium USA;PROJECT OVERVIEW ·Site Location·Site Location ·Fremont , Wyoming ·Existing Uranium Mine Permit 381C

  3. Gapped spin Hamiltonian motivated by quantum teleportation

    E-Print Network [OSTI]

    Ari Mizel

    2014-10-07T23:59:59.000Z

    We construct a Hamiltonian whose ground state encodes a time-independent emulation of quan- tum teleportation. We calculate properties of the Hamiltonian, using exact diagonalization and a mean-field theory, and argue that it has a gap. The system exhibits an illuminating relationship to the well-known AKLT (Affleck, Lieb, Kennedy and Tasaki) model.

  4. Confirmation of intrinsic electron gap states at nonpolar GaN(1-100) surfaces combining photoelectron and surface optical spectroscopy

    SciTech Connect (OSTI)

    Himmerlich, M., E-mail: marcel.himmerlich@tu-ilmenau.de; Eisenhardt, A.; Shokhovets, S.; Krischok, S. [Institut für Physik and Institut für Mikro- und Nanotechnologien, TU Ilmenau, PF 100565, 98684 Ilmenau (Germany); Räthel, J.; Speiser, E.; Neumann, M. D.; Navarro-Quezada, A.; Esser, N. [Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Albert-Einstein-Strasse 9, 12489 Berlin (Germany)

    2014-04-28T23:59:59.000Z

    The electronic structure of GaN(1–100) surfaces is investigated in-situ by photoelectron spectroscopy (PES) and reflection anisotropy spectroscopy (RAS). Occupied surface states 3.1?eV below the Fermi energy are observed by PES, accompanied by surface optical transitions found in RAS around 3.3?eV, i.e., below the bulk band gap. These results indicate that the GaN(1–100) surface band gap is smaller than the bulk one due to the existence of intra-gap states, in agreement with density functional theory calculations. Furthermore, the experiments demonstrate that RAS can be applied for optical surface studies of anisotropic crystals.

  5. Poisson statistics for random deformed band matrices with power law band width

    E-Print Network [OSTI]

    Vladimir Pchelin

    2015-05-25T23:59:59.000Z

    We show Poisson statistics for random band matrices which diagonal entries have Gaussian components. These components are possibly as small as $n^{-\\varepsilon}$. Particularly, our result is applicable for a band matrix cut from the GUE with the band width satisfying $w^{3.5}density of states (DOS) is obtained for complex deformed Gaussian band matrices with arbitrary $w$. A lower estimate of the DOS is also proven for arbitrary $w$ in a certain class of band matrices.

  6. Results of the GAP-4 experiment on molten-fuel drainage through intersubassembly gap geometry. [LMFBR

    SciTech Connect (OSTI)

    Spencer, B.W.; Vetter, D.; Wesel, R.; Sienicki, J.J.

    1983-01-01T23:59:59.000Z

    One of the key issues in assessment of the meltout phase of a hypothetical core disruptive accident in the LMFBR system involves the timing and paths for dispersal of molten fuel from the disrupted core. A program of experiments is underway at Argonne National Laboratory to investigate molten fuel penetration through these postulated escape paths. The purpose of the GAP-4 test was to examine the penetration distances of molten fuel flowing through the flat, narrow channels representing the intersubassembly gap geometry. In the experiment design, the gap geometry was selected to be two-dimensional on the basis that the gap volume in a reactor design would be interconnected and continuous. The molten fuel used in these tests was a mixture of UO/sub 2/ (81%) and molybdenum (19%) which was generated by an exothermic thermite reaction at a temperature of approx. 3470 K.

  7. VIMOS total transmission profiles for broad-band filters

    E-Print Network [OSTI]

    S. Mieske; M. Rejkuba; S. Bagnulo; C. Izzo; G. Marconi

    2007-04-13T23:59:59.000Z

    VIMOS is a wide-field imager and spectrograph mounted on UT3 at the VLT, whose FOV consists of four 7'x8' quadrants. Here we present the measurements of total transmission profiles -- i.e. the throughput of telescope + instrument -- for the broad band filters U, B, V, R, I, and z for each of its four quadrants. Those measurements can also be downloaded from the public VIMOS web-page. The transmission profiles are compared with previous estimates from the VIMOS consortium.

  8. Comparison of GAP-3 and GAP-4 experiments with conduction freezing calculations. [LMFBR

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1983-01-01T23:59:59.000Z

    Experiments GAP-3 and GAP-4 were performed at ANL to investigate the ability of molten fuel to penetrate downward through the narrow channels separating adjacent subassemblies during an LMFBR hypothetical core disruptive accident. Molten fuel-metal mixtures (81% UO/sub 2/, 19% Mo) at an initial temperature of 3470/sup 0/K generated by a thermite reaction were injected downward into 1 m long rectangular test sections (gap thickness = 0.43 cm, channel width = 20.3 cm) initially at 1170/sup 0/K simulating the nominal Clinch River Breeder Reactor intersubassembly gap. In the GAP-3 test, a prolonged reaction time of approx. 15 s resulted in segregation of the metallic Mo and oxidic UO/sub 2/ constituents within the reaction vessel prior to injection. Consequently, Mo entered the test section first and froze, forming a complete plug at a penetration distance of 0.18 m. In GAP-4, the reaction time was reduced to approx. 3 s and the constituents remained well mixed upon injection with the result that the leading edge penetration distance increased to 0.35 m. Posttest examination of the cut-open test sections has revealed the existence of stable insulating crusts upon the underlying steel walls with melting and ablation of the walls only very localized.

  9. Proposal of high efficiency solar cells with closely stacked InAs/In{sub 0.48}Ga{sub 0.52}P quantum dot superlattices: Analysis of polarized absorption characteristics via intermediate–band

    SciTech Connect (OSTI)

    Yoshikawa, H., E-mail: yoshikawa-hirofumi@sharp.co.jp; Kotani, T.; Kuzumoto, Y.; Izumi, M.; Tomomura, Y.; Hamaguchi, C. [Advanced Technology Research Laboratories, Sharp Corporation Tenri, Nara 632-8567 (Japan)

    2014-07-07T23:59:59.000Z

    We present a theoretical study of the electronic structures and polarized absorption properties of quantum dot superlattices (QDSLs) using wide–gap matrix material, InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs, for realizing intermediate–band solar cells (IBSCs) with two–step photon–absorption. The plane–wave expanded Burt–Foreman operator ordered 8–band k·p theory is used for this calculation, where strain effect and piezoelectric effect are taken into account. We find that the absorption spectra of the second transitions of two–step photon–absorption can be shifted to higher energy region by using In{sub 0.48}Ga{sub 0.52}P, which is lattice–matched material to GaAs substrate, as a matrix material instead of GaAs. We also find that the transverse magnetic polarized absorption spectra in InAs/In{sub 0.48}Ga{sub 0.52}P QDSL with a separate IB from the rest of the conduction minibands can be shifted to higher energy region by decreasing the QD height. As a result, the second transitions of two–step photon–absorption by the sunlight occur efficiently. These results indicate that InAs/In{sub 0.48}Ga{sub 0.52}P QDSLs are suitable material combination of IBSCs toward the realization of ultrahigh efficiency solar cells.

  10. Gap Assessment in the Emergency Response Community

    SciTech Connect (OSTI)

    Barr, Jonathan L.; Burtner, Edwin R.; Pike, William A.; Peddicord, Annie M Boe; Minsk, Brian S.

    2010-09-27T23:59:59.000Z

    This report describes a gap analysis of the emergency response and management (EM) community, performed during the fall of 2009. Pacific Northwest National Laboratory (PNNL) undertook this effort to identify potential improvements to the functional domains in EM that could be provided by the application of current or future technology. To perform this domain-based gap analysis, PNNL personnel interviewed subject matter experts (SMEs) across the EM domain; to make certain that the analyses reflected a representative view of the community, the SMEs were from a variety of geographic areas and from various sized communities (urban, suburban, and rural). PNNL personnel also examined recent and relevant after-action reports and U.S. Government Accountability Office reports.

  11. On fixed-gap adiabatic quantum computation

    E-Print Network [OSTI]

    Ari Mizel

    2014-01-21T23:59:59.000Z

    Quantum computation has revolutionary potential for speeding algorithms and for simulating quantum systems such as molecules. We report here a quantum computer design that performs universal quantum computation within a single non-degenerate ground state protected from decohering noise by an energy gap that we argue is system-size-independent. Closely analogous to a traditional electric circuit, it substantially changes the requirements for quantum computer construction, easing measurement, timing, and heating problems. Using the standard adiabatic condition, we present evidence that this design permits "quantum concurrent processing" distributing a quantum computation among extra qubits to perform a quantum algorithm of N gates in an amount of time that scales with the square root of N. One consequence of our work is a fixed gap version of adiabatic quantum computation, which several arguments hinted could be impossible.

  12. Ultra wide-bandwidth micro energy harvester

    E-Print Network [OSTI]

    Hajati, Arman

    2011-01-01T23:59:59.000Z

    An ultra wide-bandwidth resonating thin film PZT MEMS energy harvester has been designed, modeled, fabricated and tested. It harvests energy from parasitic ambient vibration at a wide range of amplitude and frequency via ...

  13. Vehicle Codes and Standards: Overview and Gap Analysis

    SciTech Connect (OSTI)

    Blake, C.; Buttner, W.; Rivkin, C.

    2010-02-01T23:59:59.000Z

    This report identifies gaps in vehicle codes and standards and recommends ways to fill the gaps, focusing on six alternative fuels: biodiesel, natural gas, electricity, ethanol, hydrogen, and propane.

  14. Minding the Gap Makes for More Efficient Solar Cells

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Minding the Gap Makes for More Efficient Solar Cells Minding the Gap Makes for More Efficient Solar Cells Print Thursday, 19 December 2013 11:01 Using novel materials to develop...

  15. Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners

    E-Print Network [OSTI]

    Bridging the Efficiency Gap: Commercial Packaged Rooftop Air Conditioners John Shugars, Consultant ofcommercialpackaged air conditioners, explore the reasons behindthis efficiency gap, and assess opportunities). Although sales of rooftop air conditioners have steadily increased over the past decade, the efficiency

  16. Possible chiral bands in {sup 194}Tl

    SciTech Connect (OSTI)

    Masiteng, P. L.; Ramashidzha, T. M.; Maliage, S. M.; Sharpey-Schafer, J. F.; Vymers, P. A. [iThemba LABS, P.O Box 722, 7129 (South Africa); University of the Western Cape, Private Bag X17, 7535 Bellville (South Africa); Lawrie, E. A.; Lawrie, J. J.; Bark, R. A.; Mullins, S. M.; Murray, S. H. T. [iThemba LABS, P.O Box 722, 7129 (South Africa); Kau, J.; Komati, F. [iThemba LABS, P.O Box 722, 7129 (South Africa); University of the North West, Private Bag X2046, 2735 Mafikeng (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, 7535 Bellville (South Africa); Matamba, I. [University of Venda for Science and Technology, Thohoyandou (South Africa); Mutshena, P. [iThemba LABS, P.O Box 722, 7129 (South Africa); University of Venda for Science and Technology, Thohoyandou (South Africa); Zhang, Y. [iThemba LABS, P.O Box 722, 7129 (South Africa); University of Cape Town, Private Bag, 7701 Rondebosch (South Africa)

    2011-10-28T23:59:59.000Z

    High spin states in {sup 194}Tl, excited through the {sup 181}Ta({sup 18}O,5n) fusion evaporation reaction, were studied using the AFRODITE array at iThemba LABS. Candidate chiral bands built on the {pi}h{sub 9/2} x {nu}i{sub 13/2}{sup 1} configuration were found. Furthermore these bands were observed through a band crossing caused by the excitation of a {nu}i{sub 13/2} pair. Above the band crossing the excitation energies remain close, suggesting that chirality may persist for the four quasiparticle configuration too.

  17. Equivalent Circuit Description of Non-compensated n-p Codoped TiO2 as Intermediate Band Solar Cells

    E-Print Network [OSTI]

    Tian-Li Feng; Guang-Wei Deng; Yi Xia; Feng-Cheng Wu; Ping Cui; Hai-Ping Lan; Zhen-Yu Zhang

    2010-12-09T23:59:59.000Z

    The novel concept of non-compensated n-p codoping has made it possible to create tunable intermediate bands in the intrinsic band gap of TiO2, making the codoped TiO2 a promising material for developing intermediate band solar cells (IBSCs). Here we investigate the quantum efficiency of such IBSCs within two scenarios - with and without current extracted from the extended intermediate band. Using the ideal equivalent circuit model, we find that the maximum efficiency of 57% in the first scenario and 53% in the second are both much higher than the Shockley-Queisser limit from single gap solar cells. We also obtain various key quantities of the circuits, a useful step in realistic development of TiO2 based solar cells invoking device integration. These equivalent circuit results are also compared with the efficiencies obtained directly from consideration of electron transition between the energy bands, and both approaches reveal the intriguing existence of double peaks in the maximum quantum efficiency as a function of the relative location of IBs.

  18. Equivalent Circuit Description of Non-compensated n-p Codoped TiO2 as Intermediate Band Solar Cells

    E-Print Network [OSTI]

    Feng, Tian-Li; Xia, Yi; Wu, Feng-Cheng; Cui, Ping; Lan, Hai-Ping; Zhang, Zhen-Yu

    2010-01-01T23:59:59.000Z

    The novel concept of non-compensated n-p codoping has made it possible to create tunable intermediate bands in the intrinsic band gap of TiO2, making the codoped TiO2 a promising material for developing intermediate band solar cells (IBSCs). Here we investigate the quantum efficiency of such IBSCs within two scenarios - with and without current extracted from the extended intermediate band. Using the ideal equivalent circuit model, we find that the maximum efficiency of 57% in the first scenario and 53% in the second are both much higher than the Shockley-Queisser limit from single gap solar cells. We also obtain various key quantities of the circuits, a useful step in realistic development of TiO2 based solar cells invoking device integration. These equivalent circuit results are also compared with the efficiencies obtained directly from consideration of electron transition between the energy bands, and both approaches reveal the intriguing existence of double peaks in the maximum quantum efficiency as a fun...

  19. Mott Insulator-Superfluid Transition in a Generalized Bose-Hubbard Model with Topologically Non-trivial Flat-Band

    E-Print Network [OSTI]

    Xing-Hai Zhang; Su-Peng Kou

    2012-05-30T23:59:59.000Z

    In this paper, we studied a generalized Bose-Hubbard model on a checkerboard lattice with topologically nontrivial flat-band. We used mean-field method to decouple the model Hamiltonian and obtained phase diagram by Landau theory of second-order phase transition. We further calculate the energy gap and the dispersion of quasi-particle or quasi-hole in Mott insulator state and found that in strong interaction limit the quasi-particles or the quasi-holes also have flat bands.

  20. Modelling of monovacancy diffusion in W over wide temperature range

    SciTech Connect (OSTI)

    Bukonte, L., E-mail: laura.bukonte@helsinki.fi; Ahlgren, T.; Heinola, K. [Department of Physics, University of Helsinki, P.O. Box 43, 00014 Helsinki (Finland)

    2014-03-28T23:59:59.000Z

    The diffusion of monovacancies in tungsten is studied computationally over a wide temperature range from 1300?K until the melting point of the material. Our modelling is based on Molecular Dynamics technique and Density Functional Theory. The monovacancy migration barriers are calculated using nudged elastic band method for nearest and next-nearest neighbour monovacancy jumps. The diffusion pre-exponential factor for monovacancy diffusion is found to be two to three orders of magnitude higher than commonly used in computational studies, resulting in attempt frequency of the order 10{sup 15} Hz. Multiple nearest neighbour jumps of monovacancy are found to play an important role in the contribution to the total diffusion coefficient, especially at temperatures above 2/3 of T{sub m}, resulting in an upward curvature of the Arrhenius diagram. The probabilities for different nearest neighbour jumps for monovacancy in W are calculated at different temperatures.

  1. FORMATION AND SURVIVABILITY OF GIANT PLANETS ON WIDE ORBITS

    SciTech Connect (OSTI)

    Vorobyov, Eduard I. [Institute for Computational Astrophysics, Saint Mary's University, Halifax, NS B3H 3C3 (Canada); Basu, Shantanu, E-mail: vorobyov@ap.smu.c, E-mail: basu@astro.uwo.c [Department of Physics and Astronomy, University of Western Ontario, London, ON N6A 3K7 (Canada)

    2010-05-01T23:59:59.000Z

    Motivated by the recent discovery of massive planets on wide orbits, we present a mechanism for the formation of such planets via disk fragmentation in the embedded phase of star formation. In this phase, the forming disk intensively accretes matter from the natal cloud core and undergoes several fragmentation episodes. However, most fragments are either destroyed or driven into the innermost regions (and probably onto the star) due to angular momentum exchange with spiral arms, leading to multiple FU-Ori-like bursts and disk expansion. Fragments that are sufficiently massive and form in the late embedded phase (when the disk conditions are less extreme) may open a gap and evolve into giant planets on typical orbits of several tens to several hundreds of AU. For this mechanism to work, the natal cloud core must have sufficient mass and angular momentum to trigger the burst mode and also form extended disks of the order of several hundreds of AU. When mass loading from the natal cloud core diminishes and the main fragmentation phase ends, such extended disks undergo a transient episode of contraction and density increase, during which they may give birth to a last and survivable set of giant planets on wide and relatively stable orbits.

  2. Quasiparticle self-consistent GW calculations for PbS, PbSe, and PbTe: Band structure and pressure coefficients

    E-Print Network [OSTI]

    Svane, Axel Torstein

    and in solar-energy panels.8 With Tl doping PbTe may even exhibit superconductivity.9,10 The lead chalcogenides of states. The pressure-induced gap closure leads to linear Dirac-type band dispersions around the L point states being interchanged.19,25 These states have the same L6 symmetry but different parity and orbital

  3. Band alignment of epitaxial ZnS/Zn3P2 heterojunctions Jeffrey P. Bosco, Steven B. Demers, Gregory M. Kimball, Nathan S. Lewis, and Harry A. Atwater

    E-Print Network [OSTI]

    Kimball, Gregory

    ) Determination of the deep donor-like interface state density distribution in metal/Al2O3/n-GaN structures from phosphide (a- Zn3P2) has a nearly optimal, direct band gap of 1.50 eV and a high visible-light absorption

  4. Turbine blade tip gap reduction system

    DOE Patents [OSTI]

    Diakunchak, Ihor S.

    2012-09-11T23:59:59.000Z

    A turbine blade sealing system for reducing a gap between a tip of a turbine blade and a stationary shroud of a turbine engine. The sealing system includes a plurality of flexible seal strips extending from a pressure side of a turbine blade generally orthogonal to the turbine blade. During operation of the turbine engine, the flexible seal strips flex radially outward extending towards the stationary shroud of the turbine engine, thereby reducing the leakage of air past the turbine blades and increasing the efficiency of the turbine engine.

  5. Closed Gap Enzen | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual Siteof EnergyInnovationin UrbanCity ofCityCleanInformation ClimateClio PowerClosed Gap

  6. DFAS Wide-Area Workflow Issues

    Broader source: Energy.gov [DOE]

    Presentation covers the DFAS wide-area workflow issues and is given at the Spring 2011 Federal Utility Partnership Working Group (FUPWG) meeting.

  7. Extended Supersymmetry in Gapped and Superconducting Graphene

    E-Print Network [OSTI]

    V. K. Oikonomou

    2015-06-27T23:59:59.000Z

    In view of the many quantum field theoretical descriptions of graphene in $2+1$ dimensions, we present another field theoretical feature of graphene, in the presence of defects. Particularly, we shall be interested in gapped graphene in the presence of a domain wall and also for superconducting graphene in the presence of a vortex. As we explicitly demonstrate, the gapped graphene electrons that are localized on the domain wall are associated with four $N=2$ one dimensional supersymmetries, with each pair combining to form an extended $N=4$ supersymmetry with non-trivial topological charges. The case of superconducting graphene is more involved, with the electrons localized on the vortex being associated with $n$ one dimensional supersymmetries, which in turn combine to form an $N=2n$ extended supersymmetry with no-trivial topological charges. As we shall prove, all supersymmetries are unbroken, a feature closely related to the number of the localized fermions and also to the exact form of the associated operators. In addition, the corresponding Witten index is invariant under compact and odd perturbations.

  8. Extended Supersymmetry in Gapped and Superconducting Graphene

    E-Print Network [OSTI]

    V. K. Oikonomou

    2014-11-30T23:59:59.000Z

    In view of the many quantum field theoretical descriptions of graphene in $2+1$ dimensions, we present another field theoretical feature of graphene, in the presence of defects. Particularly, we shall be interested in gapped graphene in the presence of a domain wall and also for superconducting graphene in the presence of a vortex. As we explicitly demonstrate, the gapped graphene electrons that are localized on the domain wall are associated with four $N=2$ one dimensional supersymmetries, with each pair combining to form an extended $N=4$ supersymmetry with non-trivial topological charges. The case of superconducting graphene is more involved, with the electrons localized on the vortex being associated with $n$ one dimensional supersymmetries, which in turn combine to form an $N=2n$ extended supersymmetry with no-trivial topological charges. As we shall prove, all supersymmetries are unbroken, a feature closely related to the number of the localized fermions and also to the exact form of the associated operators. In addition, the corresponding Witten index is invariant under compact and odd perturbations.

  9. Next Generation Nuclear Plant GAP Analysis Report

    SciTech Connect (OSTI)

    Ball, Sydney J [ORNL; Burchell, Timothy D [ORNL; Corwin, William R [ORNL; Fisher, Stephen Eugene [ORNL; Forsberg, Charles W. [Massachusetts Institute of Technology (MIT); Morris, Robert Noel [ORNL; Moses, David Lewis [ORNL

    2008-12-01T23:59:59.000Z

    As a follow-up to the phenomena identification and ranking table (PIRT) studies conducted recently by NRC on next generation nuclear plant (NGNP) safety, a study was conducted to identify the significant 'gaps' between what is needed and what is already available to adequately assess NGNP safety characteristics. The PIRT studies focused on identifying important phenomena affecting NGNP plant behavior, while the gap study gives more attention to off-normal behavior, uncertainties, and event probabilities under both normal operation and postulated accident conditions. Hence, this process also involved incorporating more detailed evaluations of accident sequences and risk assessments. This study considers thermal-fluid and neutronic behavior under both normal and postulated accident conditions, fission product transport (FPT), high-temperature metals, and graphite behavior and their effects on safety. In addition, safety issues related to coupling process heat (hydrogen production) systems to the reactor are addressed, given the limited design information currently available. Recommendations for further study, including analytical methods development and experimental needs, are presented as appropriate in each of these areas.

  10. Quantum confinement in GaP nanoclusters

    SciTech Connect (OSTI)

    Laurich, B.K.; Smith, D.C.; Healy, M.D.

    1994-06-01T23:59:59.000Z

    We have prepared GaP and GaAs nanoclusters from organometallic condensation reactions of E[Si(ChH{sub 3})3]3 (E = P, As) and GaCl{sub 3}. The size of the as synthesized clusters is 10 {Angstrom} to 15 {Angstrom}. Larger clusters of 20 {Angstrom} to 30 {Angstrom} size were obtained by thermal annealing of the as grown material. X-ray diffraction and transmission electron microscopy confirm the high crystalline quality. A lattice contraction of 6.7% could be seen for 10 {Angstrom} sized GaAs clusters. The clusters are nearly spherical in shape. Optical absorption spectra show a distinct line which can be assigned to the fundamental transition of the quantum confined electronic state. The measured blue shift, with respect to the GaP bulk absorption edge is 0.53 eV. As the cluster is smaller than the exciton radius, we can calculate the cluster size from this blue shift and obtain 20.2 {Angstrom}, consistent with the results from X-ray diffraction of 19.5 {Angstrom} for the same sample.

  11. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOE Patents [OSTI]

    Williamson, Rodney L. (Albuquerque, NM); Zanner, Frank J. (Sandia Park, NM); Grose, Stephen M. (Glenwood, WV)

    1998-01-01T23:59:59.000Z

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap.

  12. Arc voltage distribution skewness as an indicator of electrode gap during vacuum arc remelting

    DOE Patents [OSTI]

    Williamson, R.L.; Zanner, F.J.; Grose, S.M.

    1998-01-13T23:59:59.000Z

    The electrode gap of a VAR is monitored by determining the skewness of a distribution of gap voltage measurements. A decrease in skewness indicates an increase in gap and may be used to control the gap. 4 figs.

  13. Effective Community-Wide Policy Technical Assistance

    E-Print Network [OSTI]

    Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach NREL is a national: The DOE/NREL Approach Effective Community-Wide Policy Technical Assistance: The DOE/NREL Approach HelpingVoss, Sarah Busche, Eric Lantz, Lynn Billman, and Dan Beckley. The layout and technical editing were

  14. Recent experimental results from a long-pulse J-band relativistic klystron amplifier developmental effort

    SciTech Connect (OSTI)

    Kato, K.G.; Crouch, D.D.; Sar, D.R.; Speciale, R.A. [Hughes Missile Systems Co., Rancho Cucamonga, CA (United States); Carlsten, B.E.; Fazio, M.V.; Haynes, W.B.; Stringfield, R.M. [Los Alamos National Lab., NM (United States)

    1994-12-31T23:59:59.000Z

    Recent experimental results, supporting simulations, and design modeling are presented from a developmental effort to a produce a long pulse ({approximately}1{mu}s) J-band (5.85-8.2 GHz) relativistic klystron amplifier (RKA) of the high current NRL genealogy. This RKA is designed to operate at approximately 6.6 GHz, with a desired RF output {approximately}700 MW. Conversion of electron beam energy to microwave energy is obtained by a mock magnetically insulated coaxial converter which, in various incarnations, can be made to be either a cavity gap extractor or an inverse cathode.

  15. Maximum Likelihood Sub-band Weighting for Robust Speech Recognition

    E-Print Network [OSTI]

    , bins of log filter-band energy (FBE) in each sub-band are multiplied with a weighting factor depending on the reliability of the sub-band. For each sub-band, zero padding is performed on the log FBE vector lengthening. For the DCT has the size of full-band FBE vector, the feature vector consists of the correlations across

  16. Propagation of Lamb waves in one-dimensional quasiperiodic composite thin plates: A split of phonon band gap

    E-Print Network [OSTI]

    Li, Baowen

    Propagation of Lamb waves in one-dimensional quasiperiodic composite thin plates: A split of phonon the propagation of Lamb waves in one-dimensional quasiperiodic composite thin plates made of tungsten B spectra, Raman scattering spectra, and propagating modes of acoustic waves on corrugated surfaces.14

  17. Band Gap Energy of Chalcopyrite Thin Film Solar Cell Absorbers Determined by Soft X-Ray Emission and Absorption Spectroscopy

    E-Print Network [OSTI]

    Bar, M.

    2010-01-01T23:59:59.000Z

    8] J.R. Tuttle et al. , Solar Cells 30, 21 (1991). [9] D.OF CHALCOPYRITE THIN FILM SOLAR CELL ABSORBERS DETERMINED BYchalcopyrite thin film solar cell absorbers significantly

  18. PHYSICAL REVIEW B 84, 035315 (2011) Theoretical analysis of the crystal structure, band-gap energy, polarization, and piezoelectric

    E-Print Network [OSTI]

    Alpay, S. Pamir

    2011-01-01T23:59:59.000Z

    have already been incorporated in flat panel displays and solar cells as transparent electrodesO can be tailored by alloying ZnO with BeO for applications such as electrodes in flat panel displays and solar cells, blue and ultraviolet (UV) light emitting devices, and highly sensitive UV detectors. We

  19. Exact-exchange-based quasiparticle energy calculations for the band gap, effective masses, and deformation potentials of ScN

    E-Print Network [OSTI]

    of less than 2% to cubic gallium nitride GaN . This makes ScN structurally compatible with the group devices. Alloying ScN with GaN Refs. 9­12 might provide a viable alternative to InGaN alloys for use tunneling spectroscopy and optical-absorption mea- surements, Al-Brithen et al.18 were able to reduce

  20. Exploring Visible-Light-Responsive Photocatalysts for Water Splitting Based on Novel Band-gap Engineering Strategies

    E-Print Network [OSTI]

    Liu, Jikai

    2013-01-01T23:59:59.000Z

    B 4.3 C before and after photocatalysis reaction (top) and BC 2 before and after photocatalysis reaction (bottom). PageB 4.3 C before and after photocatalysis reaction (top) and B

  1. Thanks to the random movements of agitated molecules, biological rubber allows clams to open wide and insects to fly efficiently.

    E-Print Network [OSTI]

    Denny, Mark

    Thanks to the random movements of agitated molecules, biological rubber allows clams to open wide into the shell's hinge. As the shell closes, this material (a protein rubber called abduction) deforms materials akin to the man-made rubber in automobile tires and rubber bands. The walls of mammalian arteries

  2. Sensitivity Analysis of the Gap Heat Transfer Model in BISON.

    SciTech Connect (OSTI)

    Swiler, Laura Painton; Schmidt, Rodney C.; Williamson, Richard (INL); Perez, Danielle (INL)

    2014-10-01T23:59:59.000Z

    This report summarizes the result of a NEAMS project focused on sensitivity analysis of the heat transfer model in the gap between the fuel rod and the cladding used in the BISON fuel performance code of Idaho National Laboratory. Using the gap heat transfer models in BISON, the sensitivity of the modeling parameters and the associated responses is investigated. The study results in a quantitative assessment of the role of various parameters in the analysis of gap heat transfer in nuclear fuel.

  3. Dipole Bands in {sup 196}Hg

    SciTech Connect (OSTI)

    Lawrie, J. J.; Lawrie, E. A.; Newman, R. T.; Sharpey-Schafer, J. F.; Smit, F. D. [iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Msezane, B. [iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Physics Department, University of Zululand, Private Bag X1001, Kwadlangezwa 3886 (South Africa); Benatar, M.; Mabala, G. K.; Mutshena, K. P. [iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Physics Department, University of Cape Town, Rondebosch 7700 (South Africa); Federke, M.; Mullins, S. M. [Physics Department, University of Cape Town, Rondebosch 7700 (South Africa); Ncapayi, N. J.; Vymers, P. [iThemba LABS, PO Box 722, Somerset West 7129 (South Africa); Physics Department, University of the Western Cape, Private Bag X17, Belleville 7535 (South Africa)

    2011-10-28T23:59:59.000Z

    High spin states in {sup 196}Hg have been populated in the {sup 198}Pt({alpha},6n) reaction at 65 MeV and the level scheme has been extended. A new dipole band has been observed and a previously observed dipole has been confirmed. Excitation energies, spins and parities of these bands were determined from DCO ratio and linear polarization measurements. Possible quasiparticle excitations responsible for these structures are discussed.

  4. Sandia National Laboratories: projected gap between western U...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    projected gap between western U.S. water supply and demand Sandia, the Atlantic Council, and NM Water Resource Research Institute Sponsor Roundtable on Western Water Scarcity On...

  5. Rapidity gaps in jet events at D0

    SciTech Connect (OSTI)

    Abbott, B. [New York Univ., NY (United States); Abolins, M. [Michigan State Univ., East Lansing, MI (United States); Acharya, B.S. [Delhi Univ. (India)] [and others; D0 Collaboration

    1997-07-01T23:59:59.000Z

    Preliminary results from the D0 experiment on jet production with rapidity gaps in p{anti p} collisions are presented. A class of dijet events with a forward rapidity gap is observed at center-of-mass energies {radical}s = 1800 GeV and 630 GeV. The number of events with rapidity gaps at both center-of-mass energies is significantly greater than the expectation from multiplicity fluctuations and is consistent with a hard diffractive process. A class of events with two forward gaps and central dijets is also observed at 1800 GeV. This topology is consistent with hard double pomeron exchange.

  6. alteration print gap: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Elihu, David Morad 2006-01-01 2 Bridging the Gap: Automated Steady Scaffoldings for 3D Printing Jrmie Dumas Computer Technologies and Information Sciences Websites Summary:...

  7. FAQS Gap Analysis Qualification Card – Fire Protection Engineering

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  8. FAQS Gap Analysis Qualification Card – Nuclear Explosive Safety Study

    Broader source: Energy.gov [DOE]

    Functional Area Qualification Standard Gap Analysis Qualification Cards outline the differences between the last and latest version of the FAQ Standard.

  9. Catalysis by Design: Bridging the Gap between Theory and Experiments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    between Theory and Experiments Catalysis by Design: Bridging the Gap between Theory and Experiments Poster presentation at the 2007 Diesel Engine-Efficiency & Emissions Research...

  10. Catalysis by Design: Bridging the Gap Between Theory and Experiments...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Between Theory and Experiments at Nanoscale Level Catalysis by Design: Bridging the Gap Between Theory and Experiments at Nanoscale Level Studies on a simple platinum-alumina...

  11. Behavioral/Systems/Cognitive Synchronous, Focally Modulated -Band Oscillations

    E-Print Network [OSTI]

    Graybiel, Ann M.

    , primarily synchronous -band voltage oscillations occur in the sensorimotor and frontal cortex of humansBehavioral/Systems/Cognitive Synchronous, Focally Modulated -Band Oscillations Characterize Local oscillations in the -frequency band ( 15­30Hz

  12. ISM band to U-NII band frequency transverter and method of frequency transversion

    DOE Patents [OSTI]

    Stepp, Jeffrey David (Grandview, MO); Hensley, Dale (Grandview, MO)

    2006-04-04T23:59:59.000Z

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz-6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  13. ISM band to U-NII band frequency transverter and method of frequency transversion

    SciTech Connect (OSTI)

    Stepp, Jeffrey David (Grandview, MO); Hensley, Dale (Grandview, MO)

    2006-09-12T23:59:59.000Z

    A frequency transverter (10) and method for enabling bi-frequency dual-directional transfer of digitally encoded data on an RF carrier by translating between a crowded or otherwise undesirable first frequency band, such as the 2.4 GHz ISM band, and a less-crowded or otherwise desirable second frequency band, such as the 5.0 GHz 6.0 GHz U-NII band. In a preferred embodiment, the transverter (10) connects between an existing data radio (11) and its existing antenna (30), and comprises a bandswitch (12); an input RF isolating device (14); a transmuter (16); a converter (18); a dual output local oscillator (20); an output RF isolating device (22); and an antenna (24) tuned to the second frequency band. The bandswitch (12) allows for bypassing the transverter (10), thereby facilitating its use with legacy systems. The transmuter (14) and converter (16) are adapted to convert to and from, respectively, the second frequency band.

  14. West Wide Programmatic Environmental Impact Statement Record...

    Open Energy Info (EERE)

    Reference LibraryAdd to library Legal Document- OtherOther: West Wide Programmatic Environmental Impact Statement Record of Decision (BLM)Legal Published NA Year Signed or Took...

  15. GWIDD: Genome-wide protein docking database

    E-Print Network [OSTI]

    Kundrotas, Petras J.; Zhu, Zhengwei; Vasker, Ilya A.

    2009-11-09T23:59:59.000Z

    Structural information on interacting proteins is important for understanding life processes at the molecular level. Genome-wide docking database is an integrated resource for structural studies of protein–protein interactions on the genome scale...

  16. Engineering integrated pure narrow-band photon sources

    E-Print Network [OSTI]

    Enrico Pomarico; Bruno Sanguinetti; Clara I. Osorio; Harald Herrmann; Rob Thew

    2011-08-29T23:59:59.000Z

    Engineering and controlling well defined states of light for quantum information applications is of increasing importance as the complexity of quantum systems grows. For example, in quantum networks high multi-photon interference visibility requires properly devised single mode sources. In this paper we propose a spontaneous parametric down conversion source based on an integrated cavity-waveguide, where single narrow-band, possibly distinct, spectral modes for the idler and the signal fields can be generated. This mode selection takes advantage of the clustering effect, due to the intrinsic dispersion of the nonlinear material. In combination with a CW laser and fast detection, our approach provides a means to engineer a source that can efficiently generate pure photons, without filtering, that is compatible with long distance quantum communication. Furthermore, it is extremely flexible and could easily be adapted to a wide variety of wavelengths and applications.

  17. Control Banding and Nanotechnology Synergist

    SciTech Connect (OSTI)

    Zalk, D; Paik, S

    2009-12-15T23:59:59.000Z

    The average Industrial Hygienist (IH) loves a challenge, right? Okay, well here is one with more than a few twists. We start by going through the basics of a risk assessment. You have some chemical agents, a few workers, and the makings of your basic exposure characterization. However, you have no occupational exposure limit (OEL), essentially no toxicological basis, and no epidemiology. Now the real handicap is that you cannot use sampling pumps, cassettes, tubes, or any of the media in your toolbox, and the whole concept of mass-to-dose is out the window, even at high exposure levels. Of course, by the title, you knew we were talking about nanomaterials (NM). However, we wonder how many IHs know that this topic takes everything you know about your profession and turns it upside down. It takes the very foundations that you worked so hard in college and in the field to master and pulls it out from underneath you. It even takes the gold standard of our profession, the quantitative science of exposure assessment, and makes it look pretty darn rusty. Now with NM there is the potential to get some aspect of quantitative measurements, but the instruments are generally very expensive and getting an appropriate workplace personal exposure measurement can be very difficult if not impossible. The potential for workers getting exposures, however, is very real, as evidenced by a recent publication reporting worker exposures to polyacrylate nanoparticles in a Chinese factory (Song et al. 2009). With something this complex and challenging, how does a concept as simple as Control Banding (CB) save the day? Although many IHs have heard of CB, most of their knowledge comes from its application in the COSHH Essentials toolkit. While there is conflicting published research on COSHH Essentials and its value for risk assessments, almost all of the experts agree that it can be useful when no OELs are available (Zalk and Nelson 2008). It is this aspect of CB, its utility with uncertainty, that attracted international NM experts to recommend this qualitative risk assessment approach for NM. However, since their CB recommendation was only in theory, we took on the challenge of developing a working toolkit, the CB Nanotool (see Zalk et al. 2009 and Paik et al. 2008), as a means to perform a risk assessment and protect researchers at the Lawrence Livermore National Laboratory. While it's been acknowledged that engineered NM have potentially endless benefits for society, it became clear to us that the very properties that make nanotechnology so useful to industry could also make them dangerous to humans and the environment. Among the uncertainties and unknowns with NM are: the contribution of their physical structure to their toxicity, significant differences in their deposition and clearance in the lungs when compared to their parent material (PM), a lack of agreement on the appropriate indices for exposure to NM, and very little background information on exposure scenarios or populations at risk. Part of this lack of background information can be traced to the lack of risk assessments historically performed in the industry, with a recent survey indicating that 65% of companies working with NM are not doing any kind of NM-specific risk assessment as they focus on traditional PM methods for IH (Helland et al. 2009). The good news is that the amount of peer-reviewed publications that address environmental, health and safety aspects of NM has been increasing over the last few years; however, the percentage of these that address practical methods to reduce exposure and protect workers is orders of magnitude lower. Our intent in developing the CB Nanotool was to create a simplified approach that would protect workers while unraveling the mysteries of NM for experts and non-experts alike. Since such a large part of the toxicological effects of both the physical and chemical properties of NM were unknown, not to mention changing logarithmically as new NM research continues growing, we needed to account for this lack of information as part of the CB Nano

  18. ALE3D Simulations of Gap Closure and Surface Ignition for Cookoff Modeling

    SciTech Connect (OSTI)

    Howard, W M; McClelland, M A; Nichols, A L

    2006-06-22T23:59:59.000Z

    We are developing ALE3D models to describe the thermal, chemical and mechanical behavior during the heating, ignition and explosive phases of various cookoff phenomena. The candidate models and numerical strategies are being evaluated using benchmark cookoff experiments. ALE3D is a three-dimensional computer code capable of solving the model equations in a coupled fashion through all the phases of the cookoff in a single calculation. For the cookoff experiments, we are interested in representing behavior on widely varying timescales. We have used an implicit hydrodynamics option during the heating phase and an explicit solution method during the explosive phase. To complicate the modeling problem, high heat fluxes cause rapid temperature increases in boundary layers and lead to the formation of gaps between energetic and structural materials and ignition on surfaces. The initially solid energetic and structural materials react to produce gases, which fill the gaps. These materials can also melt and flow. Since an implicit solution method is used, simple no-strength materials models can no longer be used for liquids and gases. In this paper, we discuss and demonstrate choices of materials models for solid/liquid/gas mixtures to be used in conjunction with the implicit solution method. In addition, results are given for mesh movement strategies applied to the opening, closing, and surface ignition within gaps.

  19. Anisotropic Energy Gaps of Iron-Based Superconductivity from Intraband Quasiparticle Interference in LiFeAs

    SciTech Connect (OSTI)

    Davis J. C.; Allan, M.P.; Rost, A.W.; Mackenzie, A.P.; Xie, Y.; Kihou, K.; Lee, C.H.; Iyo, A.; Eisaki, H.; Chuang, T.-M.

    2012-05-04T23:59:59.000Z

    If strong electron-electron interactions between neighboring Fe atoms mediate the Cooper pairing in iron-pnictide superconductors, then specific and distinct anisotropic superconducting energy gaps {Delta}{sub i}(k) should appear on the different electronic bands i. Here, we introduce intraband Bogoliubov quasiparticle scattering interference (QPI) techniques for determination of {Delta}{sub i}(k) in such materials, focusing on lithium iron arsenide (LiFeAs). We identify the three hole-like bands assigned previously as {gamma}, {alpha}{sub 2}, and {alpha}{sub 1}, and we determine the anisotropy, magnitude, and relative orientations of their {Delta}{sub i}(k). These measurements will advance quantitative theoretical analysis of the mechanism of Cooper pairing in iron-based superconductivity.

  20. Integrated, Multi-Scale Characterization of Imbibition and Wettability Phenomena Using Magnetic Resonance and Wide-Band Dielectric Measurements

    SciTech Connect (OSTI)

    Mukul M. Sharma; Steven L. Bryant; Carlos Torres-Verdin; George Hirasaki

    2007-09-30T23:59:59.000Z

    The petrophysical properties of rocks, particularly their relative permeability and wettability, strongly influence the efficiency and the time-scale of all hydrocarbon recovery processes. However, the quantitative relationships needed to account for the influence of wettability and pore structure on multi-phase flow are not yet available, largely due to the complexity of the phenomena controlling wettability and the difficulty of characterizing rock properties at the relevant length scales. This project brings together several advanced technologies to characterize pore structure and wettability. Grain-scale models are developed that help to better interpret the electric and dielectric response of rocks. These studies allow the computation of realistic configurations of two immiscible fluids as a function of wettability and geologic characteristics. These fluid configurations form a basis for predicting and explaining macroscopic behavior, including the relationship between relative permeability, wettability and laboratory and wireline log measurements of NMR and dielectric response. Dielectric and NMR measurements have been made show that the response of the rocks depends on the wetting and flow properties of the rock. The theoretical models can be used for a better interpretation and inversion of standard well logs to obtain accurate and reliable estimates of fluid saturation and of their producibility. The ultimate benefit of this combined theoretical/empirical approach for reservoir characterization is that rather than reproducing the behavior of any particular sample or set of samples, it can explain and predict trends in behavior that can be applied at a range of length scales, including correlation with wireline logs, seismic, and geologic units and strata. This approach can substantially enhance wireline log interpretation for reservoir characterization and provide better descriptions, at several scales, of crucial reservoir flow properties that govern oil recovery.

  1. Energy harvesting of random wide-band vibrations with applications to an electro-magnetic rotational energy harvester

    E-Print Network [OSTI]

    Trimble, A. Zachary

    2011-01-01T23:59:59.000Z

    In general, vibration energy harvesting is the scavenging of ambient vibration by transduction of mechanical kinetic energy into electrical energy. Many mechanical or electro-mechanical systems produce mechanical vibrations. ...

  2. A Capacitor-Less Wide-Band Power Supply Rejection Low Drop-Out Voltage Regulator with Capacitance Multiplier

    E-Print Network [OSTI]

    Wang, Mengde

    2014-05-22T23:59:59.000Z

    A Low Drop-Out (LDO) voltage regulator with both capacitor-less and high power supply rejection (PSR) bandwidth attributes is highly admired for an integrated power management system of mobile electronics. The capacitor-less feature is demanded...

  3. Design of a Wide Bandwidth Phase Modulator and Modeling of Polar Transmitters with Split-band Envelope Modulation

    E-Print Network [OSTI]

    Hameed, Sameed

    2013-01-01T23:59:59.000Z

    synthesizer and direct-conversion architecture,” Solid-Stateband (850/900/1800/1900 MHz) direct conversion GSM/GPRS RFHence a direct digital to phase conversion occurs which is

  4. Generalized parton distributions and rapidity gap survival in exclusive diffractive pp scattering

    SciTech Connect (OSTI)

    Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman; Christian Weiss

    2007-03-01T23:59:59.000Z

    We propose a new approach to the problem of rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, heavy quarkonium, Higgs boson) in double-gap exclusive diffractive pp scattering, pp-->p + (gap) + H + (gap) + p. It is based on the idea that hard and soft interactions proceed over widely different time- and distance scales and are thus approximately independent. The high-mass system is produced in a hard scattering process with exchange of two gluons between the protons. Its amplitude is calculable in terms of the gluon generalized parton distributions (GPDs) in the protons, which can be measured in J= production in exclusive ep scattering. The hard scattering process is modified by soft spectator interactions, which we calculate in a model-independent way in terms of the pp elastic scattering amplitude. Contributions from inelastic intermediate states are suppressed. A simple geometric picture of the interplay of hard and soft interactions in diffraction is obtained. The onset of the black-disk limit in pp scattering at TeV energies strongly suppresses diffraction at small impact parameters and is the main factor in determining the RGS probability. Correlations between hard and soft interactions (e.g. due to scattering from the long-range pion field of the proton, or due to possible short-range transverse correlations between partons) further decrease the RGS probability. We also investigate the dependence of the diffractive cross section on the transverse momenta of the final-state protons (''diffraction pattern''). By measuring this dependence one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton. Such studies appear to be feasible with the planned forward detectors at the LHC.

  5. System-level, Unified In-band and Out-of-band Dynamic Thermal Control

    E-Print Network [OSTI]

    of the decrease in computation capacity. Less studied are out-of-band techniques (e.g. CPU cooling fans [10]) that operate completely outside the critical performance path of an application. Out-of-band techniques cool system slowdowns or shutdowns. Techniques such as dynamically scaling down the voltage of the CPUs

  6. Energy Band Model Based on Effective Mass

    E-Print Network [OSTI]

    Viktor Ariel

    2012-09-06T23:59:59.000Z

    In this work, we demonstrate an alternative method of deriving an isotropic energy band model using a one-dimensional definition of the effective mass and experimentally observed dependence of mass on energy. We extend the effective mass definition to anti-particles and particles with zero rest mass. We assume an often observed linear dependence of mass on energy and derive a generalized non-parabolic energy-momentum relation. The resulting non-parabolicity leads to velocity saturation at high particle energies. We apply the energy band model to free relativistic particles and carriers in solid state materials and obtain commonly used dispersion relations and experimentally confirmed effective masses. We apply the model to zero rest mass particles in graphene and propose using the effective mass for photons. Therefore, it appears that the new energy band model based on the effective mass can be applied to relativistic particles and carriers in solid state materials.

  7. Band filling effects on temperature performance of intermediate band quantum wire solar cells

    SciTech Connect (OSTI)

    Kunets, Vas. P., E-mail: vkunets@uark.edu; Furrow, C. S.; Ware, M. E.; Souza, L. D. de; Benamara, M.; Salamo, G. J. [Institute for Nanoscience and Engineering, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Mortazavi, M. [Department of Chemistry and Physics, University of Arkansas at Pine Bluff, Pine Bluff, Arkansas 71601 (United States)

    2014-08-28T23:59:59.000Z

    Detailed studies of solar cell efficiency as a function of temperature were performed for quantum wire intermediate band solar cells grown on the (311)A plane. A remotely doped one-dimensional intermediate band made of self-assembled In{sub 0.4}Ga{sub 0.6}As quantum wires was compared to an undoped intermediate band and a reference p-i-n GaAs sample. These studies indicate that the efficiencies of these solar cells depend on the population of the one-dimensional band by equilibrium free carriers. A change in this population by free electrons under various temperatures affects absorption and carrier transport of non-equilibrium carriers generated by incident light. This results in different efficiencies for both the doped and undoped intermediate band solar cells in comparison with the reference GaAs p-i-n solar cell device.

  8. with transmission zeros near the passband are obtained. This dual band BPF shows the advantages including size and loss reduction

    E-Print Network [OSTI]

    Lee, Jong Duk

    -wide band (UWB); low noise amplifier (LNA);, Zeland Software, Fremont, CA, 1997. © 2008 Wiley Periodicals, Inc. LOW POWER SIZE-EFFICIENT CMOS UWB LOW-NOISE AMPLIFIER DESIGN Hee-Sauk Jhon, Ickhyun Song, Jongwook Jeon, MinSuk Koo, Byung-Gook Park, Jong Duk Lee

  9. Wide field imaging of distant clusters

    E-Print Network [OSTI]

    T. Treu

    2004-08-05T23:59:59.000Z

    Wide field imaging is key to understanding the build-up of distant clusters and their galaxy population. By focusing on the so far unexplored outskirts of clusters, where infalling galaxies first hit the cluster potential and the hot intracluster medium, we can help separate cosmological field galaxy evolution from that driven by environment. I present a selection of recent advancements in this area, with particular emphasis on Hubble Space Telescope wide field imaging, for its superior capability to deliver galaxy morphologies and precise shear maps of distant clusters.

  10. UNIDENTIFIED INFRARED EMISSION BANDS: PAHs or MAONs?

    SciTech Connect (OSTI)

    Sun Kwok; Yong Zhang, E-mail: sunkwok@hku.hk [Department of Physics, University of Hong Kong, Pokfulam Road, Hong Kong (Hong Kong)

    2013-07-01T23:59:59.000Z

    We suggest that the carrier of the unidentified infrared emission (UIE) bands is an amorphous carbonaceous solid with mixed aromatic/aliphatic structures, rather than free-flying polycyclic aromatic hydrocarbon molecules. Through spectral fittings of the astronomical spectra of the UIE bands, we show that a significant amount of the energy is emitted by the aliphatic component, implying that aliphatic groups are an essential part of the chemical structure. Arguments in favor of an amorphous, solid-state structure rather than a gas-phase molecule as a carrier of the UIE are also presented.

  11. Identifications of FIRST radio sources in the NOAO Deep-Wide Field Survey

    E-Print Network [OSTI]

    K. EL Bouchefry; C. M. Cress

    2007-02-05T23:59:59.000Z

    In this paper we present the results of an optical and near infrared identification of 514 radio sources from the FIRST survey (Faint Images of the Radio Sky Survey at Twenty centimeters) with a flux-density limit of 1 mJy in the NOAO Deep-Wide Field Survey (NDWFS) Bootes field. Using optical (Bw, R, I) and K band data with approximate limits of Bw ~ 25.5mag, R ~ 25.8 mag, I ~25.5 mag and K~19.4 mag, optical counterparts have been identified for 378 of 514 FIRST radio sources. This corresponds to an identification rate of 34% in four bands (BwRIK), 60% in optical bands (BwRI) and 74% in I band. Photometric redshifts for these sources have been computed using the hyperz code. The inclusion of quasar template spectra in hyperz is investigated. We note that the photometric data are, in many cases, best matched to templates with very short star-formation timescales and the inferred ages of identified galaxies depend strongly on the assumptions about the star-formation timescale. The redshifts obtained are fairly consistent with those expected from the K-z relation for brighter radio sources but there is more scatter in the K-z diagram at z<1.

  12. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, H.; Valenzuela, J.A.; Nutt, W.E.

    1991-07-23T23:59:59.000Z

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof. 6 figures.

  13. Wide temperature range seal for demountable joints

    DOE Patents [OSTI]

    Sixsmith, Herbert (Norwich, VT); Valenzuela, Javier A. (Grantham, NH); Nutt, William E. (Enfield, NH)

    1991-07-23T23:59:59.000Z

    The present invention is directed to a seal for demountable joints operating over a wide temperature range down to liquid helium temperatures. The seal has anti-extrusion guards which prevent extrusion of the soft ductile sealant material, which may be indium or an alloy thereof.

  14. British Academy (e-GAP2) Guide for Applicants The British Academy e-GAP2 applicant guide July 2012 Page 1

    E-Print Network [OSTI]

    British Academy (e-GAP2) Guide for Applicants The British Academy e-GAP2 applicant guide July 2012 Page 1 2012 INTERNAL USER GUIDE A Guide to the British Academy Electronic Submission System (e-GAP2) A Quick Guide for Applicants applying for funding using the e-GAP2 System The British Academy web page

  15. Pairing Gaps, Pseudogaps, and Phase Diagrams for Cuprate Superconductors

    E-Print Network [OSTI]

    Yang Sun; Mike Guidry; Cheng-Li Wu

    2007-02-21T23:59:59.000Z

    We use a symmetry-constrained variational procedure to construct a generalization of BCS to include Cooper pairs with non-zero momentum and angular momentum. The resulting gap equations are solved at zero and finite temperature, and the doping-dependent solutions are used to construct gap and phase diagrams. We find a pseudogap terminating at a critical doping that may be interpreted in terms of both competing order and preformed pairs. The strong similarity between observation and predicted gap and phase structure suggests that this approach may provide a unified description of the complex structure observed for cuprate superconductors.

  16. Carbon Monoxide bands in M dwarfs

    E-Print Network [OSTI]

    Yakiv V. Pavlenko; Hugh R. A. Jones

    2002-10-01T23:59:59.000Z

    We compare the observational and theoretical spectra of the $\\Delta v$ = 2 CO bands in a range of M dwarfs. We investigate the dependence of theoretical spectra on effective temperatures as well as carbon abundance. In general we find that the synthetic CO bands fit the observed data extremely well and are excellent diagnostics. In particular the synthetic spectra reasonably match observations and the best fit temperatures are similar to those found by empirical methods. We also examine the \\CDC isotopic ratio. We find that fundamental $^{13}$CO bands around 2.345 and 2.375 $\\mu$m are good discriminators for the \\CDC ratio in M dwarfs. The 2.375 $\\mu$m is more useful because it doesn't suffer such serious contamination by water vapour transitions. Our current dataset does not quite have the wavelength coverage to perform a reliable determination of the \\CDC ratio in M dwarfs. For this we recommend observing the region 2.31--2.40 $\\mu$m at a resolution of better than 1000. Alternatively the observational problems of contamination by water vapour at 2.345 $\\mu$m maybe solved by observing at resolutions of around 50000. We also investigated the possibility of using the $\\Delta v$ = 1 CO bands around 4.5 $\\mu$m. We find that the contamination due to water vapour is even more of a problem at these wavelengths.

  17. Shear banding in soft glassy materials

    E-Print Network [OSTI]

    Suzanne M. Fielding

    2014-08-20T23:59:59.000Z

    Many soft materials, including foams, dense emulsions, micro gel bead suspensions, star polymers, dense packing of surfactant onion micelles, and textured morphologies of liquid crystals, share the basic "glassy" features of structural disorder and metastability. These in turn give rise to several notable features in the low frequency shear rheology (deformation and flow properties) of these materials: in particular, the existence of a yield stress below which the material behaves like a solid, and above which it flows like a liquid. In the last decade, intense experimental activity has also revealed that these materials often display a phenomenon known as shear banding, in which the flow profile across the shear cell exhibits macroscopic bands of different viscosity. Two distinct classes of yield stress fluid have been identified: those in which the shear bands apparently persist permanently (for as long as the flow remains applied), and those in which banding arises only transiently during a process in which a steady flowing state is established out of an initial rest state (for example, in a shear startup or step stress experiment). After surveying the motivating experimental data, we describe recent progress in addressing it theoretically, using the soft glassy rheology model and a simple fluidity model. We also briefly place these theoretical approaches in the context of others in the literature, including elasto-plastic models, shear transformation zone theories, and molecular dynamics simulations. We discuss finally some challenges that remain open to theory and experiment alike.

  18. Kinematics analyses of Dodekapod Prakash Bande a

    E-Print Network [OSTI]

    Saha, Subir Kumar

    Kinematics analyses of Dodekapod Prakash Bande a , Martin Seibt b , Eckart Uhlmann b , S.K. Saha c. Tel.: +91 11 2659 1135; fax: +91 11 2658 2053. E-mail address: saha@mech.iitd.ernet.in (S.K. Saha

  19. Direction Dependent Effects In Wide-Field Wideband Full Stokes Radio Imaging

    E-Print Network [OSTI]

    Jagannathan, Preshanth; Rau, Urvashi; Taylor, Russ

    2014-01-01T23:59:59.000Z

    Synthesis imaging in radio astronomy is affected by instrumental and atmospheric effects which introduce direction-dependent (DD) gains.The antenna power pattern varies both as a function of time and frequency. The broad band time varying nature of the antenna power pattern when not corrected leads to gross errors in full Stokes imaging and flux estimation. In this poster we explore the errors that arise in image deconvolution while not accounting for the time and frequency dependence of the antenna power pattern. Simulations were conducted with the wide-band full Stokes power pattern of the Karl G. Jansky Very Large Array (VLA) antennas to demonstrate the level of errors arising from direction-dependent gains and their non-neglegible impact on upcoming sky surveys such as the VLASS. DD corrections through hybrid projection algorithms are computationally expensive to perform. A highly parallel implementation through high performance computing architectures is the only feasible way of applying these correction...

  20. Topological gap states of semiconducting armchair graphene ribbons

    E-Print Network [OSTI]

    Y. H. Jeong; S. C. Kim; S. -R. Eric Yang

    2015-05-18T23:59:59.000Z

    In semiconducting armchair graphene ribbons a chiral lattice deformation can induce pairs of topological gap states with opposite energies. Near the critical value of the deformation potential these kink and antikink states become almost degenerate with zero energy and have a fractional charge one-half. Such a semiconducting armchair ribbon represents a one-dimensional topological insulator with nearly zero energy end states. Using data collapse of numerical results we find that the shape of the kink displays an anomalous power-law dependence on the width of the local lattice deformation. We suggest that these gap states may be probed in optical measurements. However, "metallic" armchair graphene ribbons with a gap induced by many-electron interactions have no gap states and are not topological insulators.

  1. Gap generation and semimetal-insulator phase transition in graphene

    E-Print Network [OSTI]

    O. V. Gamayun; E. V. Gorbar; V. P. Gusynin

    2009-12-15T23:59:59.000Z

    The gap generation is studied in suspended clean graphene in the continuum model for quasiparticles with the Coulomb interaction. We solve the gap equation with the dynamical polarization function and show that, comparing to the case of the static polarization function, the critical coupling constant lowers to the value \\alpha_c=0.92, which is close to that obtained in lattice Monte Carlo simulations. It is argued that additional short-range four-fermion interactions should be included in the continuum model to account for the lattice simulation results. We obtain the critical line in the plane of electromagnetic and four-fermion coupling constants and find a second order phase transition separating zero gap and gapped phases with critical exponents close to those found in lattice calculations.

  2. Proper Sustainability: GAP Grant Proposal Work Plan Strategy Webinar

    Office of Energy Efficiency and Renewable Energy (EERE)

    In this webinar I will discuss the new GAP grant requirements for tribal environmental programs and strategies for crafting a work plan that focuses on capacity building activities.  My goal is to...

  3. Topological gap states of semiconducting armchair graphene ribbons

    E-Print Network [OSTI]

    Jeong, Y H; Yang, S -R Eric

    2015-01-01T23:59:59.000Z

    In semiconducting armchair graphene ribbons a chiral lattice deformation can induce pairs of topological gap states with opposite energies. Near the critical value of the deformation potential these kink and antikink states become almost degenerate with zero energy and have a fractional charge one-half. Such a semiconducting armchair ribbon represents a one-dimensional topological insulator with nearly zero energy end states. Using data collapse of numerical results we find that the shape of the kink displays an anomalous power-law dependence on the width of the local lattice deformation. We suggest that these gap states may be probed in optical measurements. However, "metallic" armchair graphene ribbons with a gap induced by many-electron interactions have no gap states and are not topological insulators.

  4. Topological gap states of semiconducting armchair graphene ribbons

    E-Print Network [OSTI]

    Y. H. Jeong; S. C. Kim; S. -R. Eric Yang

    2015-05-31T23:59:59.000Z

    In semiconducting armchair graphene ribbons a chiral lattice deformation can induce pairs of topological gap states with opposite energies. Near the critical value of the deformation potential these kink and antikink states become almost degenerate with zero energy and have a fractional charge one-half. Such a semiconducting armchair ribbon represents a one-dimensional topological insulator with nearly zero energy end states. Using data collapse of numerical results we find that the shape of the kink displays an anomalous power-law dependence on the width of the local lattice deformation. We suggest that these gap states may be probed in optical measurements. However, "metallic" armchair graphene ribbons with a gap induced by many-electron interactions have no gap states and are not topological insulators.

  5. Energy gap of Kronig-Penney-type hydrogenated graphene superlattices

    E-Print Network [OSTI]

    Lee, Joo-Hyoung

    The electronic structure of graphene-graphane superlattices with armchair interfaces is investigated with first-principles density-functional theory. By separately varying the widths, we find that the energy gap Eg is ...

  6. Combined Heat and Power: Connecting the Gap between Markets and...

    Broader source: Energy.gov (indexed) [DOE]

    801, Washington, D.C. 20036 (202) 429-8873 phone, (202) 429-2248 fax, http:aceee.org Web site CHP: Connecting the Gap, ACEEE Contents Acknowledgments......

  7. Combined Heat and Power: Connecting the Gap Between Markets and...

    Broader source: Energy.gov (indexed) [DOE]

    there seems to be very little new CHP. Instead, there are a large amount of photovoltaics in operation. Arizona is ideal for 22 CHP: Connecting the Gap (Part II), ACEEE...

  8. Plugging of intersubassembly gaps by downward flowing molten steel. [LMFBR

    SciTech Connect (OSTI)

    Sienicki, J.J.; Spencer, B.W.

    1984-01-01T23:59:59.000Z

    In the assessment of the meltout phase of an LMFBR hypothetical core disruptive accident, a pathway for the escape of molten fuel from the disrupted core is provided by the narrow channels separating adjacent subassemblies. However, the removal of fuel through intersubassembly gaps might be impeded by steel blockage formation, if molten steel is postulated to enter the gap network ahead of disrupted fuel. Reported here are the results of an analysis of the conduction freezing controlled penetration behavior of molten steel flowing downward through the voided (of sodium) gap channels nominally separating adjacent subassemblies below the active core region. The objective is to determine the range of conditions under which the steel is predicted to be deposited as a thin crust on the channel walls leaving an open pathway remaining for subsequent fuel flow instead of forming a complete plug which closes off the gap channel and obstructs fuel removal immediately thereafter.

  9. Perspective The MAHB, the Culture Gap, and Some Really

    E-Print Network [OSTI]

    Ford, James

    is a product of population size, per capita consumption, and the sorts of technologies and social and economic systems that supply the consumption. A vast ``culture gap'' has developed over the past century or so

  10. Vacuum gaps with small tunnel currents at large electric field...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Vacuum gaps with small tunnel currents at large electric field and its potential applications for energy storage, charge storage and power supplies. Friday, May 27, 2011 - 4:00pm...

  11. Permanent-magnet-less machine having an enclosed air gap

    DOE Patents [OSTI]

    Hsu, John S.

    2013-03-05T23:59:59.000Z

    A permanent magnet-less, brushless synchronous system includes a stator that generates a magnetic rotating field when sourced by an alternating current. An uncluttered rotor disposed within the magnetic rotating field is spaced apart from the stator to form an air gap relative to an axis of rotation. A stationary excitation core spaced apart from the uncluttered rotor by an axial air gap and a radial air gap substantially encloses the stationary excitation core. Some permanent magnet-less, brushless synchronous systems include stator core gaps to reduce axial flux flow. Some permanent magnet-less, brushless synchronous systems include an uncluttered rotor coupled to outer laminations. The quadrature-axis inductance may be increased in some synchronous systems. Some synchronous systems convert energy such as mechanical energy into electrical energy (e.g., a generator); other synchronous systems may convert any form of energy into mechanical energy (e.g., a motor).

  12. Excitonic gap, phase transition, and quantum Hall effect in graphene

    E-Print Network [OSTI]

    V. P. Gusynin; V. A. Miransky; S. G. Sharapov; I. A. Shovkovy

    2006-11-23T23:59:59.000Z

    We suggest that physics underlying the recently observed removal of sublattice and spin degeneracies in graphene in a strong magnetic field describes a phase transition connected with the generation of an excitonic gap. The experimental form of the Hall conductivity is reproduced and the main characteristics of the dynamics are described. Predictions of the behavior of the gap as a function of temperature and a gate voltage are made.

  13. Computation of radiative heat transport across a nanoscale vacuum gap

    SciTech Connect (OSTI)

    Budaev, Bair V., E-mail: bair@berkeley.edu; Bogy, David B., E-mail: dbogy@berkeley.edu [University of California, Etcheverry Hall, MC 1740, Berkeley, California 94720-1740 (United States)

    2014-02-10T23:59:59.000Z

    Radiation heat transport across a vacuum gap between two half-spaces is studied. By consistently applying only the fundamental laws of physics, we obtain an algebraic equation that connects the temperatures of the half-spaces and the heat flux between them. The heat transport coefficient generated by this equation for such structures matches available experimental data for nanoscale and larger gaps without appealing to any additional specific mechanisms of energy transfer.

  14. WORLD WIDE WEB 2.3 Web

    E-Print Network [OSTI]

    Markatos, Evangelos P.

    H I2 C WORLD WIDE WEB 1996 #12; 1. 1.1 I2 Cnet 1.2 1.3 WWW 2 2.1 2.2 2.3 Web 2.4 3 O 3.1 3.2 3.3 3.4 O Web browsers. 4. 4.1 4.2 4 File System 9.6 10 A. Web browser HTT . B A #12

  15. World Wide Web( WWW ) Greenberg Web

    E-Print Network [OSTI]

    Shirai, Kiyoaki

    WWW 1 World Wide Web( WWW ) WWW Web Web Greenberg Web 30% [1] Web WWW Web WWW [2] [3] WWW 2 2.1 WWW Web 1 1: · 1 · 1 #12;· Web Web 2: 2 2 Web 2.2 Web Web URL URL .html / Yahoo http://headlines.yahoo.co.jp/hl?a=2 0011205-00000101-yom-soci URL onmouseover on- mouseout JavaScript 2.1 2.3 URL URL 1. Web HTML 2. 1

  16. Hydrogeologic Model for the Gable Gap Area, Hanford Site

    SciTech Connect (OSTI)

    Bjornstad, Bruce N.; Thorne, Paul D.; Williams, Bruce A.; Last, George V.; Thomas, Gregory S.; Thompson, Michael D.; Ludwig, Jami L.; Lanigan, David C.

    2010-09-30T23:59:59.000Z

    Gable Gap is a structural and topographic depression between Gable Mountain and Gable Butte within the central Hanford Site. It has a long and complex geologic history, which includes tectonic uplift synchronous with erosional downcutting associated with the ancestral Columbia River during both Ringold and Cold Creek periods, and by the later Ice Age (mostly glacial Lake Missoula) floods. The gap was subsequently buried and partially backfilled by mostly coarse-grained, Ice Age flood deposits (Hanford formation). Erosional remnants of both the Ringold Formation and Cold Creek unit locally underlie the high-energy flood deposits. A large window exists in the gap where confined basalt aquifers are in contact with the unconfined suprabasalt aquifer. Several paleochannels, of both Hanford and Ringold Formation age, were eroded into the basalt bedrock across Gable Gap. Groundwater from the Central Plateau presently moves through Gable Gap via one or more of these shallow paleochannels. As groundwater levels continue to decline in the region, groundwater flow may eventually be cut off through Gable Gap.

  17. Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides

    E-Print Network [OSTI]

    Pile, DFP; Gramotnev, D K

    2006-01-01T23:59:59.000Z

    wave vector of the gap plasmon generated by a line sourcean adaptor between two gap plasmon waveguides of the widthslosses for the focused plasmons, because they have to

  18. Integration of MEA Components-Status and Technology Gaps: A Stakeholde...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of MEA Components-Status and Technology Gaps: A Stakeholder's Perspective Integration of MEA Components-Status and Technology Gaps: A Stakeholder's Perspective...

  19. Investigating the book-tax income gap : factors which affect the gap and details regarding its most significant component

    E-Print Network [OSTI]

    Seidman, Jeri

    2008-01-01T23:59:59.000Z

    (cont.) In total, my thesis suggests that recent changes in the book-tax income gap may be exogenous and transitory, due to changes to the calculation of book income, general business conditions or other factors which ...

  20. Permanent magnet focused X-band photoinjector

    DOE Patents [OSTI]

    Yu, David U. L. (Rancho Palos Verdes, CA); Rosenzweig, James (Los Angeles, CA)

    2002-09-10T23:59:59.000Z

    A compact high energy photoelectron injector integrates the photocathode directly into a multicell linear accelerator with no drift space between the injection and the linac. High electron beam brightness is achieved by accelerating a tightly focused electron beam in an integrated, multi-cell, X-band rf linear accelerator (linac). The photoelectron linac employs a Plane-Wave-Transformer (PWT) design which provides strong cell-to-cell coupling, easing manufacturing tolerances and costs.

  1. The Zeeman effect in the G band

    E-Print Network [OSTI]

    H. Uitenbroek; E. Miller-Ricci; A. Asensio Ramos; J. Trujillo Bueno

    2004-01-22T23:59:59.000Z

    We investigate the possibility of measuring magnetic field strength in G-band bright points through the analysis of Zeeman polarization in molecular CH lines. To this end we solve the equations of polarized radiative transfer in the G band through a standard plane-parallel model of the solar atmosphere with an imposed magnetic field, and through a more realistic snapshot from a simulation of solar magneto-convection. This region of the spectrum is crowded with many atomic and molecular lines. Nevertheless, we find several instances of isolated groups of CH lines that are predicted to produce a measurable Stokes V signal in the presence of magnetic fields. In part this is possible because the effective Land\\'{e} factors of lines in the stronger main branch of the CH A$^{2}\\Delta$--X$^{2}\\Pi$ transition tend to zero rather quickly for increasing total angular momentum $J$, resulting in a Stokes $V$ spectrum of the G band that is less crowded than the corresponding Stokes $I$ spectrum. We indicate that, by contrast, the effective Land\\'{e} factors of the $R$ and $P$ satellite sub-branches of this transition tend to $\\pm 1$ for increasing $J$. However, these lines are in general considerably weaker, and do not contribute significantly to the polarization signal. In one wavelength location near 430.4 nm the overlap of several magnetically sensitive and non-sensitive CH lines is predicted to result in a single-lobed Stokes $V$ profile, raising the possibility of high spatial-resolution narrow-band polarimetric imaging. In the magneto-convection snapshot we find circular polarization signals of the order of 1% prompting us to conclude that measuring magnetic field strength in small-scale elements through the Zeeman effect in CH lines is a realistic prospect.

  2. Broad Band Photon Harvesting Biomolecules for Photovoltaics

    E-Print Network [OSTI]

    P. Meredith; B. J. Powell; J. Riesz; R. Vogel; D. Blake; I. Kartini; G. Will; S. Subianto

    2004-06-04T23:59:59.000Z

    We discuss the key principles of artificial photosynthesis for photovoltaic energy conversion. We demonstrate these principles by examining the operation of the so-called "dye sensitized solar cell" (DSSC) - a photoelectrochemical device which simulates the charge separation process across a nano-structured membrane that is characteristic of natural systems. These type of devices have great potential to challenge silicon semiconductor technology in the low cost, medium efficiency segment of the PV market. Ruthenium charge transfer complexes are currently used as the photon harvesting components in DSSCs. They produce a relatively broad band UV and visible response, but have long term stability problems and are expensive to manufacture. We suggest that a class of biological macromolecules called the melanins may be suitable replacements for the ruthenium complexes. They have strong, broad band absorption, are chemically and photochemically very stable, can be cheaply and easily synthesized, and are also bio-available and bio-compatible. We demonstrate a melanin-based regenerative solar cell, and discuss the key properties that are necessary for an effective broad band photon harvesting system.

  3. WIRELESS MINE-WIDE TELECOMMUNICATIONS TECHNOLOGY

    SciTech Connect (OSTI)

    Zvi H. Meiksin

    2004-03-01T23:59:59.000Z

    A comprehensive mine-wide, two-way wireless voice and data communication system for the underground mining industry was developed. The system achieves energy savings through increased productivity and greater energy efficiency in meeting safety requirements within mines. The mine-wide system is comprised of two interfaced subsystems: a through-the-earth communications system and an in-mine communications system. The mine-wide system permits two-way communication among underground personnel and between underground and surface personnel. The system was designed, built, and commercialized. Several systems are in operation in underground mines in the United States. The use of these systems has proven they result in considerable energy savings. A system for tracking the location of vehicles and people within the mine was also developed, built and tested successfully. Transtek's systems are being used by the National Institute of Occupational Safety and Health (NIOSH) in their underground mine rescue team training program. This project also resulted in a spin-off rescue team lifeline and communications system. Furthermore, the project points the way to further developments that can lead to a GPS-like system for underground mines allowing the use of autonomous machines in underground mining operations, greatly reducing the amount of energy used in these operations. Some products developed under this program are transferable to applications in fields other than mining. The rescue team system is applicable to use by first responders to natural, accidental, or terrorist-caused building collapses. The in-mine communications system can be installed in high-rise buildings providing in-building communications to security and maintenance personnel as well as to first responders.

  4. Modern testing meets wide range of objectives

    SciTech Connect (OSTI)

    Ehlig-Economides, C.A.; Hegeman, P. (Schlumberger Oilfield Services, Houston, TX (United States)); Clark, G. (Schlumberger Oilfield Services, Aberdeen (United Kingdom))

    1994-08-01T23:59:59.000Z

    Testing sequences in two very different wells illustrate the wide range of objectives that are met with modern testing procedures. The first example is a drill stem test in an exploration well. The second test is in an established producing well. The exploration well test incorporated tubing-conveyed perforating, fluid sampling, production logging, and matrix stimulation to evaluate and properly treat near-well bore damage, as well as to investigate reservoir volume and characterize boundaries. The test on the established producer evaluated whether a workover could remedy lower than expected productivity. Production logging was combined with stationary transient measurements.

  5. Concave nanomagnets with widely tunable anisotropy

    SciTech Connect (OSTI)

    Lambson, Brian; Gu, Zheng; Carlton, David; Bokor, Jeffrey

    2014-07-01T23:59:59.000Z

    A nanomagnet having widely tunable anisotropy is disclosed. The disclosed nanomagnet is a magnetic particle with a convex shape having a first magnetically easy axis. The convex shape is modified to include at least one concavity to urge a second magnetically easy axis to form substantially offset from the first magnetically easy axis. In at least one embodiment, the convex shape is also modified to include at least one concavity to urge a second magnetically easy axis to form with a magnetic strength substantially different from the first magnetically easy axis.

  6. Wide Bandgap Semiconductors: Pursuing the Promise

    Broader source: Energy.gov (indexed) [DOE]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOn AprilA group currentBradley NickellApril 16, 2008 TBD-0075 -In theWide Bandgap

  7. Draft Site-Wide Environmental Impact Statement

    Office of Environmental Management (EM)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 1112011AT&T,Office of Policy,Policy ActDetroit7471Site-Wide Environmental Impact Statement

  8. Wide Bandgap Semiconductors | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is a “Shut-down”Whole AlgaeRateWhy IsWhyWhyWide

  9. Wide Electrochemical Window Solvents - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron SpinPrincetonUsingWhat is a “Shut-down”Whole AlgaeRateWhyWide

  10. Lesson Learned by Environmental Management Complex-wide Activity...

    Broader source: Energy.gov (indexed) [DOE]

    Environmental Management Complex-wide Activity-level Work Planning and Control Lesson Learned by Environmental Management Complex-wide Activity-level Work Planning and Control...

  11. Networking and the Web World-Wide Web

    E-Print Network [OSTI]

    North Carolina at Chapel Hill, University of

    Networking and the Web #12;World-Wide Web · Wide use of computers Web · Key components of the web ­ Computer Communica8on Networks

  12. District Wide Geothermal Heating Conversion Blaine County School...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    District Wide Geothermal Heating Conversion Blaine County School District District Wide Geothermal Heating Conversion Blaine County School District This project will impact the...

  13. Mass Spectrometry Analysis of Proteome-wide Proteolytic Post...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Spectrometry Analysis of Proteome-wide Proteolytic Post-translational Degradation of Proteins. Mass Spectrometry Analysis of Proteome-wide Proteolytic Post-translational...

  14. Effective Community-Wide Policy Technical Assistance: The NREL...

    Open Energy Info (EERE)

    Wide Policy Technical Assistance: The NRELDOE Approach Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Effective Community-Wide Policy Technical Assistance: The NREL...

  15. Proposed Energy Transport Corridors: West-wide energy corridor...

    Broader source: Energy.gov (indexed) [DOE]

    Energy Transport Corridors: West-wide energy corridor programmatic EIS, Draft Corridors - September 2007. Proposed Energy Transport Corridors: West-wide energy corridor...

  16. Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronic...

    Broader source: Energy.gov (indexed) [DOE]

    Opportunities for Wide Bandgap Semiconductor Power Electronics for Hydrogen and Fuel Cell Applications Webinar: Opportunities for Wide Bandgap Semiconductor Power Electronics...

  17. Highly Mismatched Alloys for Intermediate Band Solar Cells

    E-Print Network [OSTI]

    2005-01-01T23:59:59.000Z

    for Intermediate Band Solar Cells W. Walukiewicz 1 , K. M.single-junction intermediate band solar cells. Figure 5:conversion efficiency for a solar cell fabricated from a Zn

  18. FROM RUBBER BANDS TO RATIONAL MAPS RESEARCH REPORT

    E-Print Network [OSTI]

    Thurston, Dylan

    FROM RUBBER BANDS TO RATIONAL MAPS RESEARCH REPORT DYLAN P. THURSTON Dedicated to the memory-print, and surely has mistakes; please give comments! , elastic networks (rubber bands) at equilibrium within

  19. Wide Angle Effects in Galaxy Surveys

    E-Print Network [OSTI]

    Yoo, Jaiyul

    2013-01-01T23:59:59.000Z

    Current and future galaxy surveys cover a large fraction of the entire sky with a significant redshift range, and the recent theoretical development shows that general relativistic effects are present in galaxy clustering on very large scales. This trend has renewed interest in the wide angle effect in galaxy clustering measurements, in which the distant-observer approximation is often adopted. Using the full wide-angle formula for computing the redshift-space correlation function, we show that compared to the sample variance, the deviation in the redshift-space correlation function from the simple Kaiser formula with the distant-observer approximation is negligible in the SDSS and is completely irrelevant in future galaxy surveys such as Euclid and the BigBOSS, if the theoretical prediction from the Kaiser formula is averaged over the survey volume and the non-uniform distribution of cosine angle between the line-of-sight and the pair separation directions is properly considered. We also find small correctio...

  20. WIDE-FIELD ASTRONOMICAL MULTISCALE CAMERAS

    SciTech Connect (OSTI)

    Marks, Daniel L.; Brady, David J., E-mail: dbrady@ee.duke.edu [Department of Electrical and Computer Engineering and Fitzpatrick Institute for Photonics, Box 90291, Duke University, Durham, NC 27708 (United States)

    2013-05-15T23:59:59.000Z

    In order to produce sufficiently low aberrations with a large aperture, telescopes have a limited field of view. Because of this narrow field, large areas of the sky at a given time are unobserved. We propose several telescopes based on monocentric reflective, catadioptric, and refractive objectives that may be scaled to wide fields of view and achieve 1.''1 resolution, which in most locations is the practical seeing limit of the atmosphere. The reflective and Schmidt catadioptric objectives have relatively simple configurations and enable large fields to be captured at the expense of the obscuration of the mirror by secondary optics, a defect that may be managed by image plane design. The refractive telescope design does not have an obscuration but the objective has substantial bulk. The refractive design is a 38 gigapixel camera which consists of a single monocentric objective and 4272 microcameras. Monocentric multiscale telescopes, with their wide fields of view, may observe phenomena that might otherwise be unnoticed, such as supernovae, glint from orbital space debris, and near-earth objects.

  1. Simulating Interface Growth and Defect Generation in CZT – Simulation State of the Art and Known Gaps

    SciTech Connect (OSTI)

    Henager, Charles H.; Gao, Fei; Hu, Shenyang Y.; Lin, Guang; Bylaska, Eric J.; Zabaras, Nicholas

    2012-11-01T23:59:59.000Z

    This one-year, study topic project will survey and investigate the known state-of-the-art of modeling and simulation methods suitable for performing fine-scale, fully 3-D modeling, of the growth of CZT crystals at the melt-solid interface, and correlating physical growth and post-growth conditions with generation and incorporation of defects into the solid CZT crystal. In the course of this study, this project will also identify the critical gaps in our knowledge of modeling and simulation techniques in terms of what would be needed to be developed in order to perform accurate physical simulations of defect generation in melt-grown CZT. The transformational nature of this study will be, for the first time, an investigation of modeling and simulation methods for describing microstructural evolution during crystal growth and the identification of the critical gaps in our knowledge of such methods, which is recognized as having tremendous scientific impacts for future model developments in a wide variety of materials science areas.

  2. Quebec Recovery of White-Fronted Goose Banded in Greenland

    E-Print Network [OSTI]

    O. H. Hewitt Journal:  Bird Banding Volume:  19 Issue:  3 (July) Section:  General Notes Year:  1948 Pages:  124

  3. Arctic Tern Banded in Greenland, Recovered in Ontario

    E-Print Network [OSTI]

    T. M. Shortt Journal:  Bird Banding Volume:  20 Issue:  1 (January) Section:  General Notes Year:  1949 Pages:  50

  4. Impact on asteroseismic analyses of regular gaps in Kepler data

    E-Print Network [OSTI]

    Garc?a, R A; Pires, S; Regulo, C; Bellamy, B; Palle, P L; Ballot, J; Forteza, S Barcelo; Beck, P G; Bedding, T R; Ceillier, T; Cortes, T Roca; Salabert, D; Stello, D

    2014-01-01T23:59:59.000Z

    The NASA Kepler mission has observed more than 190,000 stars in the constellations of Cygnus and Lyra. Around 4 years of almost continuous ultra high-precision photometry have been obtained reaching a duty cycle higher than 90% for many of these stars. However, almost regular gaps due to nominal operations are present in the light curves at different time scales. In this paper we want to highlight the impact of those regular gaps in asteroseismic analyses and we try to find a method that minimizes their effect in the frequency domain. To do so, we isolate the two main time scales of quasi regular gaps in the data. We then interpolate the gaps and we compare the power density spectra of four different stars: two red giants at different stages of their evolution, a young F-type star, and a classical pulsator in the instability strip. The spectra obtained after filling the gaps in the selected solar-like stars show a net reduction in the overall background level, as well as a change in the background parameters....

  5. CV evolution: AM Her binaries and the period gap

    E-Print Network [OSTI]

    R. F. Webbink; D. T. Wickramasinghe

    2002-04-19T23:59:59.000Z

    AM Her variables -- synchronised magnetic cataclysmic variables (CVs) -- exhibit a different period distribution from other CVs across the period gap. We show that non-AM Her systems may infiltrate the longer-period end of the period gap if they are metal-deficient, but that the position and width of the gap in orbital period is otherwise insensitive to other binary parameters (excepting the normalisation of the braking rate). In AM Her binaries, magnetic braking is reduced as the wind from the secondary star may be trapped within the magnetosphere of the white dwarf primary. This reduced braking fills the period gap from its short-period end as the dipole magnetic moment of the white dwarf increases. The consistency of these models with the observed distribution of CVs, both AM Her and non-AM Her type, provides compelling evidence supporting magnetic braking as the agent of angular momentum loss among long-period CVs, and its disruption as the explanation of the 2 - 3 hour period gap among nonmagnetic CVs.

  6. Excitation of Banded Whistler Waves in the Magnetosphere

    SciTech Connect (OSTI)

    Gary, S. Peter [Los Alamos National Laboratory; Liu, Kaijun [Los Alamos National Laboratory; Winske, Dan [Los Alamos National Laboratory

    2012-07-13T23:59:59.000Z

    Banded whistler waves can be generated by the whistler anisotropy instability driven by two bi-Maxwellian electron components with T{sub {perpendicular}}/T{sub {parallel}} > 1 at different T{sub {parallel}} For typical magnetospheric condition of 1 < {omega}{sub e}/{Omega}{sub e} < 5 in regions associated with strong chorus, upper-band waves can be excited by anisotropic electrons below {approx} 1 keV, while lower-band waves are excited by anisotropic electrons above {approx} 10 keV. Lower-band waves are generally field-aligned and substantially electromagnetic, while upper-band waves propagate obliquely and have quasi-electrostatic fluctuating electric fields. The quasi-electrostatic feature of upper-band waves suggests that they may be more easily identified in electric field observations than in magnetic field observations. Upper-band waves are liable to Landau damping and the saturation level of upperband waves is lower than lower-band waves, consistent with observations that lower-band waves are stronger than upper-band waves on average. The oblique propagation, the lower saturation level, and the more severe Landau damping together would make upper-band waves more tightly confined to the geomagnetic equator (|{lambda}{sub m}| < {approx}10{sup o}) than lower-band waves.

  7. FROM RUBBER BANDS TO RATIONAL MAPS RESEARCH REPORT

    E-Print Network [OSTI]

    Thurston, Dylan

    FROM RUBBER BANDS TO RATIONAL MAPS RESEARCH REPORT DYLAN P. THURSTON Dedicated to the memory and conformal surfaces with boundary, that let us on the one hand tell when one rubber band network is looser a circle of ideas, relating: , elastic networks (rubber bands) at equilibrium within a graph, , extremal

  8. Anisotropy of strong pinning in multi-band superconductors

    E-Print Network [OSTI]

    Boyer, Edmond

    pinning in multi-band superconductors 2 1. Introduction The multi-band nature of superconductivity in iron the anisotropy of superconducting parameters in the iron-based superconductors. In particular, Kidzun et al. [23Anisotropy of strong pinning in multi-band superconductors C.J. van der Beek, M. Konczykowski

  9. absorption band profiles: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    absorption band profiles First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 Band profiles and band...

  10. Room temperature ferromagnetism in Co-doped amorphous carbon composites from the spin polarized semiconductor band

    SciTech Connect (OSTI)

    Hsu, H. S., E-mail: hshsu@mail.nptu.edu.tw; Chien, P. C.; Chang, Y. Y. [Department of Applied Physics, National Pingtung University, Pingtung 900, Taiwan (China); Sun, S. J. [Department of Applied Physics, National University of Kaohsiung, Kaohsiung 811, Taiwan (China); Lee, C. H. [Department of Engineering and System Science, National Tsing-Hua University, Hsinchu 300, Taiwan (China)

    2014-08-04T23:59:59.000Z

    This study provides conclusive evidence of room temperature ferromagnetism in Co-doped amorphous carbon (a-C) composites from the spin polarized semiconductor band. These composites are constructed from discontinuous [Co(3?nm)/a-C(d{sub c} nm)]{sub 5} multilayers with d{sub c}?=?3?nm and d{sub c}?=?6?nm. Only remnant circular dichroism (CD) was observed from the d{sub c}?=?3?nm sample but not when d{sub c}?=?6?nm. In addition, the remnant CD peaks at 5.5?eV, which is comparable with the absorption peak associated with the C ?-?* gap transition. We suggest that the possible mechanism for this coupling can be considered as a magnetic proximity effect in which a ferromagnetic moment in the C medium is induced by Co/C interfaces.

  11. Dual Band Electrodes in Generator-Collector Mode: Simultaneous Measurement of Two Species

    E-Print Network [OSTI]

    Barnes, Edward O; Dale, Sara E C; Marken, Frank; Compton, Richard G

    2013-01-01T23:59:59.000Z

    A computational model for the simulation of a double band collector-generator experiment is applied to the situation where two electrochemical reactions occur concurrently. It is shown that chronoamperometric measurements can be used to take advantage of differences in diffusion coefficients to measure the concentrations of both electroactive species simultaneously, by measuring the time at which the collection efficiency reaches a specific value. The separation of the electrodes is shown to not affect the sensitivity of the method (in terms of percentage changes in the measured time to reach the specified collection efficiency), but wider gaps can provide a greater range of (larger) absolute values of this characteristic time. It is also shown that measuring the time taken to reach smaller collection efficiencies can allow for the detection of smaller amounts of whichever species diffuses faster. The case of a system containing both ascorbic acid and opamine in water is used to exemplify the method, and it i...

  12. Band offsets of TiZnSnO/Si heterojunction determined by x-ray photoelectron spectroscopy

    SciTech Connect (OSTI)

    Sun, R. J.; Jiang, Q. J.; Yan, W. C.; Feng, L. S.; Lu, B.; Ye, Z. Z. [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Li, X. F. [Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072 (China); Li, X. D. [Xinyi PV Products (Anhui) Holdings LTD, Xinyi PV Glass Industrial Zone, No. 2 Xinyi Road, ETDZ, Wuhu 241009 (China); Lu, J. G., E-mail: lujianguo@zju.edu.cn [State Key Laboratory of Silicon Materials, Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027 (China); Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai 200072 (China)

    2014-09-28T23:59:59.000Z

    X-ray photoelectron spectroscopy (XPS) was utilized to measure the valence band offset (?E{sub V}) of the TiZnSnO (TZTO)/Si heterojunction. TZTO films were deposited on Si (100) substrates using magnetron sputtering at room temperature. By using the Zn 2p{sub 3/2} and Sn 3d{sub 5/2} energy levels as references, the value of ?E{sub V} was calculated to be 2.69 ± 0.1 eV. Combining with the experimental optical energy band gap of 3.98 eV for TZTO extracted from the UV-vis transmittance spectrum, the conduction band offset (?E{sub C}) was deduced to be 0.17 ± 0.1 eV at the interface. Hence, the energy band alignment of the heterojunction was determined accurately, showing a type-I form. This will be beneficial for the design and application of TZTO/Si hybrid devices.

  13. 2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Gaps in your Safety Program?

    Broader source: Energy.gov [DOE]

    2009 Voluntary Protection Programs Participants' Association (VPPPA) Presentation: Gaps in your Safety Program?

  14. Giant radiation heat transfer through the micron gaps

    E-Print Network [OSTI]

    Nefedov, Igor

    2011-01-01T23:59:59.000Z

    Near-field heat transfer between two closely spaced radiating media can exceed in orders radiation through the interface of a single black body. This effect is caused by exponentially decaying (evanescent) waves which form the photon tunnel between two transparent boundaries. However, in the mid-infrared range it holds when the gap between two media is as small as few tens of nanometers. We propose a new paradigm of the radiation heat transfer which makes possible the strong photon tunneling for micron thick gaps. For it the air gap between two media should be modified, so that evanescent waves are transformed inside it into propagating ones. This modification is achievable using a metamaterial so that the direct thermal conductance through the metamaterial is practically absent and the photovoltaic conversion of the transferred heat is not altered by the metamaterial.

  15. Finite-temperature lineshapes in gapped quantum spin chains

    E-Print Network [OSTI]

    Fabian H. L. Essler; Robert M. Konik

    2007-12-05T23:59:59.000Z

    We consider the finite-temperature dynamical structure factor (DSF) of gapped quantum spin chains such as the spin one Heisenberg model and the transverse field Ising model in the disordered phase. At zero temperature the DSF in these models is dominated by a delta-function line arising from the coherent propagation of single particle modes. Using methods of integrable quantum field theory we determine the evolution of the lineshape at low temperatures. We show that the line shape is in general asymmetric in energy and becomes Lorentzian only at temperatures far below the gap. We discuss the relevance of our results for the analysis of inelastic neutron scattering experiments on gapped spin chain systems such as CsNiCl_3 and YBaNiO_5.

  16. Prebreakdown and breakdown phenomena in large oil gaps under AC

    SciTech Connect (OSTI)

    Saker, A.; Gournay, P.; Lesaint, O.; Tobazeon, R. [CNRS, Grenoble (France). Lab. d`Electrostatique et de Materiaux Dielectriques; Trinh, N.G. [Inst. de Recherche d`Hydro-Quebec, Varennes, Quebec (Canada); Boisdon, C. [Jeumont-Schneider Transformateurs, Lyon (France)

    1996-12-31T23:59:59.000Z

    This paper presents a study of prebreakdown and breakdown phenomena under AC voltage in mineral oil in large gaps to 60 cm. The investigations presented concern the study of streamers and the measurement of breakdown voltages in rod-plane and sphere-plane gaps. Also, the influence of a contamination by solid particles in the oil has been considered. A specific breakdown mode under AC voltage is evidenced, where bursts of streamers lead to the lowest breakdown fields recorded. Numerical values of the mean field in oil required for direct or burst breakdown modes are derived from the experiments. As a consequence, the great sensitivity to the presence of particles on EHV transformers insulation with large oil gaps is pointed out.

  17. NGNP Project Regulatory Gap Analysis for Modular HTGRs

    SciTech Connect (OSTI)

    Wayne Moe

    2011-09-01T23:59:59.000Z

    The Next Generation Nuclear Plant (NGNP) Project Regulatory Gap Analysis (RGA) for High Temperature Gas-Cooled Reactors (HTGR) was conducted to evaluate existing regulatory requirements and guidance against the design characteristics specific to a generic modular HTGR. This final report presents results and identifies regulatory gaps concerning current Nuclear Regulatory Commission (NRC) licensing requirements that apply to the modular HTGR design concept. This report contains appendices that highlight important HTGR licensing issues that were found during the RGA study. The information contained in this report will be used to further efforts in reconciling HTGR-related gaps in the NRC licensing structure, which has to date largely focused on light water reactor technology.

  18. Vortex and gap generation in gauge models of graphene

    E-Print Network [OSTI]

    O. Oliveira; C. E. Cordeiro; A. Delfino; W. de Paula; T. Frederico

    2011-04-22T23:59:59.000Z

    Effective quantum field theoretical continuum models for graphene are investigated. The models include a complex scalar field and a vector gauge field. Different gauge theories are considered and their gap patterns for the scalar, vector, and fermion excitations are investigated. Different gauge groups lead to different relations between the gaps, which can be used to experimentally distinguish the gauge theories. In this class of models the fermionic gap is a dynamic quantity. The finite-energy vortex solutions of the gauge models have the flux of the "magnetic field" quantized, making the Bohm-Aharonov effect active even when external electromagnetic fields are absent. The flux comes proportional to the scalar field angular momentum quantum number. The zero modes of the Dirac equation show that the gauge models considered here are compatible with fractionalization.

  19. Narrow gap welding with the hot wire GTA process

    SciTech Connect (OSTI)

    Cook, G.E.; Levick, P.C.

    1985-08-01T23:59:59.000Z

    Narrow gap welding offers the promise of dramatically improved weld completion rates and reduced heat input for welding of butt joints in materials of 10 mm (0.4 in.) section thickness and larger. Techniques for successful welding of narrow gap joint preparations have been discussed in the literature for approximately twenty years, with the majority of these based on the consumable electrode processes. Gas tungsten arc welding with cold wire filler addition has been shown to be capable of narrow gap welding although limited deposition rate capability has not made this a competitive alternative. The GTAW process offers the advantages of superior penetration control for one-sided welding of butt joints, as well as the potential for reducing incomplete fusion defects. The addition of hot wire filler metal to the gas tungsten arc provides an attractive alternative that combines high deposition rate capability and independent control of heat input.

  20. The origin of 2.7 eV luminescence and 5.2 eV excitation band in hafnium oxide

    SciTech Connect (OSTI)

    Perevalov, T. V., E-mail: timson@isp.nsc.ru [A. V. Rzhanov Institute of Semiconductor Physics of SB RAS, 13 Lavrentieva Ave, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk (Russian Federation); Aliev, V. Sh.; Gritsenko, V. A. [A. V. Rzhanov Institute of Semiconductor Physics of SB RAS, 13 Lavrentieva Ave, 630090 Novosibirsk (Russian Federation); Saraev, A. A. [Boreskov Institute of Catalysis of SB RAS, 5 Lavrentieva Ave, 630090 Novosibirsk (Russian Federation); Kaichev, V. V. [Novosibirsk State University, 2 Pirogova St., 630090 Novosibirsk (Russian Federation); Boreskov Institute of Catalysis of SB RAS, 5 Lavrentieva Ave, 630090 Novosibirsk (Russian Federation); Ivanova, E. V.; Zamoryanskaya, M. V. [Ioffe Physicotechnical Institute of RAS, 26 Politechnicheskaya St., 194021 St. Petersburg (Russian Federation)

    2014-02-17T23:59:59.000Z

    The origin of a blue luminescence band at 2.7 eV and a luminescence excitation band at 5.2 eV of hafnia has been studied in stoichiometric and non-stoichiometric hafnium oxide films. Experimental and calculated results from the first principles valence band spectra showed that the stoichiometry violation leads to the formation of the peak density of states in the band gap caused by oxygen vacancies. Cathodoluminescence in the non-stoichiometric film exhibits a band at 2.65 eV that is excited at the energy of 5.2 eV. The optical absorption spectrum calculated for the cubic phase of HfO{sub 2} with oxygen vacancies shows a peak at 5.3?eV. Thus, it could be concluded that the blue luminescence band at 2.7?eV and HfO{sub x} excitation peak at 5.2?eV are due to oxygen vacancies. The thermal trap energy in hafnia was estimated.

  1. Wide range radioactive gas concentration detector

    DOE Patents [OSTI]

    Anderson, David F. (Los Alamos, NM)

    1984-01-01T23:59:59.000Z

    A wide range radioactive gas concentration detector and monitor which is capable of measuring radioactive gas concentrations over a range of eight orders of magnitude. The device of the present invention is designed to have an ionization chamber which is sufficiently small to give a fast response time for measuring radioactive gases but sufficiently large to provide accurate readings at low concentration levels. Closely spaced parallel plate grids provide a uniform electric field in the active region to improve the accuracy of measurements and reduce ion migration time so as to virtually eliminate errors due to ion recombination. The parallel plate grids are fabricated with a minimal surface area to reduce the effects of contamination resulting from absorption of contaminating materials on the surface of the grids. Additionally, the ionization chamber wall is spaced a sufficient distance from the active region of the ionization chamber to minimize contamination effects.

  2. Imaging spectrometer wide field catadioptric design

    DOE Patents [OSTI]

    Chrisp; Michael P. (Danville, CA)

    2008-08-19T23:59:59.000Z

    A wide field catadioptric imaging spectrometer with an immersive diffraction grating that compensates optical distortions. The catadioptric design has zero Petzval field curvature. The imaging spectrometer comprises an entrance slit for transmitting light, a system with a catadioptric lens and a dioptric lens for receiving the light and directing the light, an immersion grating, and a detector array. The entrance slit, the system for receiving the light, the immersion grating, and the detector array are positioned wherein the entrance slit transmits light to the system for receiving the light and the system for receiving the light directs the light to the immersion grating and the immersion grating receives the light and directs the light through the system for receiving the light to the detector array.

  3. Visible-light photoconductivity of Zn1-xCoxO and its dependence...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    on Co2+ concentration. Abstract: Many metal oxides investigated for solar photocatalysis or photoelectrochemistry have band gaps that are too wide to absorb a sufficient...

  4. The gender gap on concept inventories in physics: what is consistent, what is inconsistent, and what factors influence the gap?

    E-Print Network [OSTI]

    Madsen, Adrian; Sayre, Eleanor C

    2013-01-01T23:59:59.000Z

    We review the literature on the gender gap on concept inventories in physics. Across studies, men consistently score higher on pre-tests of the Force Concept Inventory (FCI) and Force and Motion Conceptual Evaluation (FMCE) by about 10%, and in most cases score higher on post-tests as well, also by about 10%. The average difference in normalized gain is about 6%. This difference is much smaller than the average difference in normalized gain between traditional lecture and interactive engagement (25%), but is large enough that it could impact the results of studies comparing the effectiveness of different teaching methods. Based on our analysis of 24 published articles comparing the impact of 34 factors that could potentially influence the gender gap, no single factor is sufficient to explain the gap. Several high-profile studies that have claimed to account for or reduce the gender gap have failed to be replicated, suggesting that isolated claims of explanations of the gender gap should be interpreted with ca...

  5. Semiconductor heterojunction band offsets and charge neutrality

    E-Print Network [OSTI]

    Lee, Chomsik

    1989-01-01T23:59:59.000Z

    = 33&Pb = 3 3&PAB = 35 1 . aI M 0 A 0. ? 1 2. 0. Energy(eV) 1 2. 0 0. ? 1 0. Energy(eV) 1 2. Figure 4. 4. Local density of states, parameters for this case are s, = ? 7, s?= 1, s, = l&sp 7~Pa = 4~A = 4)DAB ? .35. -12. 0. Energy(eV) 0... Signature of APS Member Roland E. Allen Department of Physics'- Texas A&M University ' College Station, TX 77843 s p ~ CX3 SEMICONDUCTOR HETEROJUNCTION BAND OFFSETS AND CHARGE NEUTRALITY A Thesis by CHOMSIK LEE Submitted to the Oflice of Graduate...

  6. Universal EUV in-band intensity detector

    DOE Patents [OSTI]

    Berger, Kurt W.

    2004-08-24T23:59:59.000Z

    Extreme ultraviolet light is detected using a universal in-band detector for detecting extreme ultraviolet radiation that includes: (a) an EUV sensitive photodiode having a diode active area that generates a current responsive to EUV radiation; (b) one or more mirrors that reflects EUV radiation having a defined wavelength(s) to the diode active area; and (c) a mask defining a pinhole that is positioned above the diode active area, wherein EUV radiation passing through the pinhole is restricted substantially to illuminating the diode active area.

  7. The role of the energy gap in protein folding dynamics

    E-Print Network [OSTI]

    Estelle Pitard; Henri Orland

    1998-11-17T23:59:59.000Z

    The dynamics of folding of proteins is studied by means of a phenomenological master equation. The energy distribution is taken as a truncated exponential for the misfolded states plus a native state sitting below the continuum. The influence of the gap on the folding dynamics is studied, for various models of the transition probabilities between the different states of the protein. We show that for certain models, the relaxation to the native state is accelerated by increasing the gap, whereas for others it is slowed down .

  8. Bridging the Gap between Crisis Response Operations and Systems

    E-Print Network [OSTI]

    Khalil, Khaled M; Nazmy, Taymour T; Salem, Abdel-Badeeh M

    2009-01-01T23:59:59.000Z

    There exist huge problems in the current practice of crisis response operations. Response problems are projected as a combination of failure in communication, failure in technology, failure in methodology, failure of management, and finally failure of observation. In this paper we compare eight crisis response systems namely: DrillSim [2, 13], DEFACTO [12, 17], ALADDIN [1, 6], RoboCup Rescue [11, 15], FireGrid [3, 8, 18], WIPER [16], D-AESOP [4], and PLAN C [14]. Comparison results will disclose the cause of failure of current crisis response operations (the response gap). Based on comparison results; we provide recommendations for bridging this gap between response operations and systems.

  9. Rapidity gap survival in the black-disk regime

    SciTech Connect (OSTI)

    Leonid Frankfurt; Charles Hyde; Mark Strikman; Christian Weiss

    2007-04-16T23:59:59.000Z

    We summarize how the approach to the black-disk regime (BDR) of strong interactions at TeV energies influences rapidity gap survival in exclusive hard diffraction pp -> p + H + p (H = dijet, Qbar Q, Higgs). Employing a recently developed partonic description of such processes, we discuss (a) the suppression of diffraction at small impact parameters by soft spectator interactions in the BDR; (b) further suppression by inelastic interactions of hard spectator partons in the BDR; (c) correlations between hard and soft interactions. Hard spectator interactions substantially reduce the rapidity gap survival probability at LHC energies compared to previously reported estimates.

  10. Multi-gap high impedance plasma opening switch

    DOE Patents [OSTI]

    Mason, R.J.

    1996-10-22T23:59:59.000Z

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode is disclosed. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources. 12 figs.

  11. Multi-gap high impedance plasma opening switch

    DOE Patents [OSTI]

    Mason, Rodney J. (Los Alamos, NM)

    1996-01-01T23:59:59.000Z

    A high impedance plasma opening switch having an anode and a cathode and at least one additional electrode placed between the anode and cathode. The presence of the additional electrodes leads to the creation of additional plasma gaps which are in series, increasing the net impedance of the switch. An equivalent effect can be obtained by using two or more conventional plasma switches with their plasma gaps wired in series. Higher impedance switches can provide high current and voltage to higher impedance loads such as plasma radiation sources.

  12. Hybrid Band effects program (Lockheed Martin shared vision CRADA)

    SciTech Connect (OSTI)

    Bacon, L. D.

    2012-03-01T23:59:59.000Z

    Hybrid Band{trademark} (H-band) is a Lockheed Martin Missiles and Fire Control (LMMFC) designation for a specific RF modulation that causes disruption of select electronic components and circuits. H-Band enables conventional high-power microwave (HPM) effects (with a center frequency of 1 to 2 GHz, for example) using a higher frequency carrier signal. The primary technical objective of this project was to understand the fundamental physics of Hybrid Band{trademark} Radio Frequency effects on electronic systems. The follow-on objective was to develop and validate a Hybrid Band{trademark} effects analysis process.

  13. IMAGING OF A TRANSITIONAL DISK GAP IN REFLECTED LIGHT: INDICATIONS OF PLANET FORMATION AROUND THE YOUNG SOLAR ANALOG LkCa 15

    SciTech Connect (OSTI)

    Thalmann, C.; Goto, M.; Henning, T.; Carson, J.; Brandner, W.; Feldt, M. [Max Planck Institute for Astronomy, Heidelberg (Germany); Grady, C. A. [Eureka Scientific and Goddard Space Flight Center, Greenbelt (United States); Wisniewski, J. P. [University of Washington, Seattle, Washington (United States); Janson, M. [University of Toronto, Toronto (Canada); Fukagawa, M. [Osaka University, Osaka (Japan); Honda, M. [Faculty of Science, Kanagawa University, Kanagawa (Japan); Mulders, G. D. [Astronomical Institute 'Anton Pannekoek', University of Amsterdam, Amsterdam (Netherlands); Min, M. [Astronomical Institute, University of Utrecht, Utrecht (Netherlands); Moro-MartIn, A. [Department of Astrophysics, CAB-CSIC/INTA, Madrid (Spain); McElwain, M. W. [Department of Astrophysical Sciences, Princeton University, Princeton (United States); Hodapp, K. W. [Institute for Astronomy, University of Hawai'i, Hilo, Hawaii (United States); Abe, L. [Laboratoire Hippolyte Fizeau, Nice (France); Egner, S.; Golota, T. [Subaru Telescope, Hilo, Hawaii (United States); Fukue, T., E-mail: thalmann@mpia.d [National Astronomical Observatory of Japan, Tokyo (Japan)

    2010-08-01T23:59:59.000Z

    We present H- and K{sub s}-band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disk's optically thick bulk. We note that forward scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions of such systems, comprising an optically thick disk with an inner truncation radius of {approx}46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21 M{sub Jup} on companions at separations outside of 0.''1 and of 13 M{sub Jup} outside of 0.''2. Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture.

  14. GaN0.011P0.989–GaP Double-Heterostructure Red Light-Emitting Diodes Directly Grown on GaP Substrates

    E-Print Network [OSTI]

    Tu, Charles W

    2000-01-01T23:59:59.000Z

    and C. W. Tu, GaN diodes on GaP substrates, 2000. [7] J. W.on a GaN directly grown on a GaP substrate was successfullyDH) directly a GaN grown on a (100) GaP substrate. Fig. 1(a)

  15. Puzzling Phenomenon of Diffuse Interstellar Bands

    E-Print Network [OSTI]

    B. Wszolek

    2007-12-10T23:59:59.000Z

    The discovery of the first diffuse interstellar bands (DIBs) dates back to the pioneering years of stellar spectroscopy. Today, we know about 300 absorption structures of this kind. There exists a great variety of the profiles and intensities of DIBs, so they can not be readily described, classified or characterized. To the present day no reliable identification of the DIBs' carriers has been found. Many carriers of DIBs have been proposed over the years. They ranged from dust grains to free molecules of different kinds, and to more exotic specimens, like hydrogen negative ion. Unfortunately, none of them is responsible for observed DIBs. Furthermore, it was shown that a single carrier cannot be responsible for all known DIBs. It is hard to estimate how many carriers can participate in producing these bands. The problem is further complicated by the fact that to this day it is still impossible to find any laboratory spectrum of any substance which would match the astrophysical spectra. Here, a historical outline concerning DIBs is followed by a brief description of their whole population. Then, a special attention is focused on the procedures trying to extract spectroscopic families within the set of all known DIBs.

  16. Envelope density pattern around wide binary AGB stars: a dynamical model

    E-Print Network [OSTI]

    J. H. He

    2007-03-26T23:59:59.000Z

    The goal is to build up a simple dynamical model for the out-flowing circumstellar envelope around AGB stars in a wide binary system to explore the parameter dependence of the geometrical characteristics of column density patterns. An AGB star in a wide binary system is considered as a 3-D piston model that can induce a 3-D quasi-spherical density structure in the circumstellar envelope by orbital motion of the AGB star. The column density pattern only depends on two parameters: eccentricity of the orbit e and the terminal outflow velocity to mean orbital velocity ratio gamma. When viewed perpendicular to the orbital plane, spiral, broken spiral, and incomplete concentric shell patterns can be seen, while when viewed along the orbital plane, alternative concentric half-shell, egg-shell, and half-shell half-gap patterns will develop. Non-zero eccentricity causes asymmetry, while larger gamma makes a weaker pattern and helps bring out asymmetry. A spiral pattern may becomes broken when e > 0.4. The spiral center is always less than 12% of spiral pitch away from the orbit center. One should have more chances (~ 80%) seeing spiral-like patterns than seeing concentric shells (~ 20%) in the circumstellar envelope of wide binary AGB stars.

  17. Red Band Needle Blight Programme Red Band Needle Blight of Pine Programme Group

    E-Print Network [OSTI]

    and that the private 1 | Paper 1 - Minutes | Debbie Erskine | 23/01/2009 #12;Red Band Needle Blight Programme Group Group England Working Group Wales Working Group RBNB Operational GB Working Group (including private Groups would only meet on an ad hoc basis and the structure was agreed. Action: Jim/Roddie to re

  18. Thermal resistance gaps for solid breeder blankets using packed beds

    SciTech Connect (OSTI)

    Gorbis, Z.R.; Raffray, A.R.; Tillack, M.S.; Abdou, M.A.

    1989-03-01T23:59:59.000Z

    The main design features of a new concept for solid breeder blanket thermal resistance gaps are described and analysis is shown for the blanket thermal characteristics. The effective thermal conductivity of a helium-beryllium packed bed configuration is studied, including the effect of a purge stream. Possible applications of this concept to ITER blanket designs are stressed.

  19. mctau: Bridging the Gap between Modest and UPPAAL

    E-Print Network [OSTI]

    David, Alexandre

    mctau: Bridging the Gap between Modest and UPPAAL Jonathan Bogdoll2 , Alexandre David1 , Arnd Saarland University ­ Computer Science, Saarbrücken, Germany Abstract. Modest is a high-level compositional of Modest is to make use of existing analysis techniques and tools in a single-formalism, multiple- solution

  20. The CSU Graduation Initiative Closing the Achievement Gap

    E-Print Network [OSTI]

    Su, Xiao

    Graduation Initiative is part of the nationwide Access to Success project of the National Association to Graduation 7 #12;Tracking and Reporting Consistent evaluation of project results is a critical componentThe CSU Graduation Initiative Closing the Achievement Gap Executive Vice Chancellor Jeri Echeverria

  1. "Charter and Code" Gap Analysis ANALYSIS FOR NORWAY

    E-Print Network [OSTI]

    Johansen, Tom Henning

    "Charter and Code" ­ Gap Analysis ANALYSIS FOR NORWAY The European Charter for Researchers: Acceptable. The principle of research freedom is well-established in Norway. The committee refers for Research Ethics in Norway. #12;In recent years, issues of research ethics have received increasing

  2. Topology of Local Health Officials' Advice Networks: Mind the Gaps

    E-Print Network [OSTI]

    Sadeh, Norman M.

    , evidence-based programs, and service delivery, and health care reform are innovations Author AffiliationsTopology of Local Health Officials' Advice Networks: Mind the Gaps Jacqueline Merrill, RN, MPH: To determine how a health officials' advice network might contribute to a high-performing public health systems

  3. Finding and Mending Barrier Gaps in Wireless Sensor Networks

    E-Print Network [OSTI]

    Liu, Benyuan

    Finding and Mending Barrier Gaps in Wireless Sensor Networks Anwar Saipulla Benyuan Liu Jie Wang--Constructing sensing barriers using wireless sensor networks has important applications in military operations results show that our algorithms can effectively improve the barrier coverage of a wireless sensor network

  4. An alternative route for efficient optical indirect-gap excitation in Ge

    SciTech Connect (OSTI)

    Sakamoto, Tetsuya; Hayashi, Shuhei; Fukatsu, Susumu, E-mail: cfkatz@mail.ecc.u-tokyo.ac.jp [Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Yasutake, Yuhsuke [Graduate School of Arts and Sciences, The University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); PRESTO, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012 (Japan)

    2014-07-28T23:59:59.000Z

    We explored optical excitation pathways in the multivalley semiconductor Ge in an attempt to expedite selective electron injection into the indirect L-band-edge. An off-peak resonant excitation route was developed, which offers the pumping efficiency outperforming the phonon-assisted near-indirect-edge absorption by more than six orders of magnitude. The valley selectivity results from the intra-valley relaxation that separates electrons and holes in momentum space following excitation. Fortuitously, the widely used green laser, 532?nm, is found to be nearly ideally suited to the efficient L-valley-selective excitation in Ge. Such valley-specific pumping may help clarify the otherwise complicated electron dynamics involving intervalley processes.

  5. Interfacial band alignment and structural properties of nanoscale TiO{sub 2} thin films for integration with epitaxial crystallographic oriented germanium

    SciTech Connect (OSTI)

    Jain, N.; Zhu, Y.; Hudait, M. K., E-mail: mantu.hudait@vt.edu [Advanced Devices and Sustainable Energy Laboratory (ADSEL), Bradley Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, Virginia 24061 (United States); Maurya, D.; Varghese, R.; Priya, S. [Center for Energy Harvesting Materials and Systems (CEHMS), Virginia Tech, Blacksburg, Virginia 24061 (United States)

    2014-01-14T23:59:59.000Z

    We have investigated the structural and band alignment properties of nanoscale titanium dioxide (TiO{sub 2}) thin films deposited on epitaxial crystallographic oriented Ge layers grown on (100), (110), and (111)A GaAs substrates by molecular beam epitaxy. The TiO{sub 2} thin films deposited at low temperature by physical vapor deposition were found to be amorphous in nature, and high-resolution transmission electron microscopy confirmed a sharp heterointerface between the TiO{sub 2} thin film and the epitaxially grown Ge with no traceable interfacial layer. A comprehensive assessment on the effect of substrate orientation on the band alignment at the TiO{sub 2}/Ge heterointerface is presented by utilizing x-ray photoelectron spectroscopy and spectroscopic ellipsometry. A band-gap of 3.33?±?0.02?eV was determined for the amorphous TiO{sub 2} thin film from the Tauc plot. Irrespective of the crystallographic orientation of the epitaxial Ge layer, a sufficient valence band-offset of greater than 2?eV was obtained at the TiO{sub 2}/Ge heterointerface while the corresponding conduction band-offsets for the aforementioned TiO{sub 2}/Ge system were found to be smaller than 1?eV. A comparative assessment on the effect of Ge substrate orientation revealed a valence band-offset relation of ?E{sub V}(100)?>??E{sub V}(111)?>??E{sub V}(110) and a conduction band-offset relation of ?E{sub C}(110) >??E{sub C}(111)?>??E{sub C}(100). These band-offset parameters are of critical importance and will provide key insight for the design and performance analysis of TiO{sub 2} for potential high-? dielectric integration and for future metal-insulator-semiconductor contact applications with next generation of Ge based metal-oxide field-effect transistors.

  6. A Compact X-Band Linac for an X-Ray FEL

    SciTech Connect (OSTI)

    Adolphsen, Chris; Huang, Zhirong; Bane, Karl L.F.; Li, Zenghai; Zhou, Feng; Wang, Faya; Nantista, Christopher D.; /SLAC

    2011-09-12T23:59:59.000Z

    With the growing demand for FEL light sources, cost issues are being reevaluated. To make the machines more compact, higher frequency room temperature linacs are being considered, specifically ones using C-band (5.7 GHz) rf technology, for which 40 MV/m gradients are achievable. In this paper, we show that an X-band (11.4 GHz) linac using the technology developed for NLC/GLC can provide an even lower cost solution. In particular, stable operation is possible at gradients of 100 MV/m for single bunch operation and 70 MV/m for multibunch operation. The concern, of course, is whether the stronger wakefields will lead to unacceptable emittance dilution. However, we show that the small emittances produced in a 250 MeV, low bunch charge, LCLS-like S-band injector and bunch compressor can be preserved in a multi-GeV X-band linac with reasonable alignment tolerances. The successful lasing and operation of the LCLS [1] has generated world-wide interest in X-ray FELs. The demand for access to such a light source by researchers eager to harness the capabilities of this new tool far exceeds the numbers that can be accommodated, spurring plans for additional facilities. Along with cost, spatial considerations become increasingly important for a hard X-ray machine driven by a multi-GeV linac. The consequent need for high acceleration gradient focuses attention on higher frequency normal conducting accelerator technology, rather than the superconducting technology of a soft X-ray facility like FLASH. C-band technology, such as used by Spring-8, is a popular option, capable of providing 40 MV/m. However, more than a decade of R&D toward an X-band linear collider, centered at SLAC and KEK, has demonstrated that this frequency option can extend the gradient reach to the 70-100 MV/m range. The following design and beam dynamics calculations show an X-band linac to be an attractive choice on which to base an X-ray FEL.

  7. Band terminations in density functional theory

    E-Print Network [OSTI]

    A. V. Afanasjev

    2009-02-01T23:59:59.000Z

    The analysis of the terminating bands has been performed in the relativistic mean field framework. It was shown that nuclear magnetism provides an additional binding to the energies of the specific configuration and this additional binding increases with spin and has its {\\it maximum} exactly at the terminating state. This suggests that the terminating states can be an interesting probe of the time-odd mean fields {\\it provided that other effects can be reliably isolated.} Unfortunately, a reliable isolation of these effects is not that simple: many terms of the density functional theories contribute into the energies of the terminating states and the deficiencies in the description of those terms affect the result. The recent suggestion \\cite{ZSW.05} that the relative energies of the terminating states in the $N \

  8. Eastern Band of Cherokee Strategic Energy Plan

    SciTech Connect (OSTI)

    Souther Carolina Institute of energy Studies-Robert Leitner

    2009-01-30T23:59:59.000Z

    The Eastern Band of Cherokee Indians was awarded a grant under the U.S. Department of Energy Tribal Energy Program (TEP) to develop a Tribal Strategic Energy Plan (SEP). The grant, awarded under the “First Steps” phase of the TEP, supported the development of a SEP that integrates with the Tribe’s plans for economic development, preservation of natural resources and the environment, and perpetuation of Tribal heritage and culture. The Tribe formed an Energy Committee consisting of members from various departments within the Tribal government. This committee, together with its consultant, the South Carolina Institute for Energy Studies, performed the following activities: • Develop the Tribe’s energy goals and objectives • Establish the Tribe’s current energy usage • Identify available renewable energy and energy efficiency options • Assess the available options versus the goals and objectives • Create an action plan for the selected options

  9. Template strand scrunching during DNA gap repair synthesis by human polymerase [lamda

    SciTech Connect (OSTI)

    Garcia-Diaz, Miguel; Bebenek, Katarzyna; Larrea, Andres A.; Havener, Jody M.; Perera, Lalith; Krahn, Joseph M.; Pedersen, Lars C.; Ramsden, Dale A.; Kunkel, Thomas A.; (NIH); (UNC)

    2009-09-25T23:59:59.000Z

    Family X polymerases such as DNA polymerase {lambda}(Pol {lambda}) are well suited for filling short gaps during DNA repair because they simultaneously bind both the 5{prime} and 3{prime} ends of short gaps. DNA binding and gap filling are well characterized for 1-nucleotide (nt) gaps, but the location of yet-to-be-copied template nucleotides in longer gaps is unknown. Here we present crystal structures revealing that, when bound to a 2-nt gap, Pol {lambda} scrunches the template strand and binds the additional uncopied template base in an extrahelical position within a binding pocket that comprises three conserved amino acids. Replacing these amino acids with alanine results in less processive gap filling and less efficient NHEJ when 2-nt gaps are involved. Thus, akin to scrunching by RNA polymerase during transcription initiation, scrunching occurs during gap filling DNA synthesis associated with DNA repair.

  10. Wide Area Security Region Final Report

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Lu, Shuai; Guo, Xinxin; Gronquist, James; Du, Pengwei; Nguyen, Tony B.; Burns, J. W.

    2010-03-31T23:59:59.000Z

    This report develops innovative and efficient methodologies and practical procedures to determine the wide-area security region of a power system, which take into consideration all types of system constraints including thermal, voltage, voltage stability, transient and potentially oscillatory stability limits in the system. The approach expands the idea of transmission system nomograms to a multidimensional case, involving multiple system limits and parameters such as transmission path constraints, zonal generation or load, etc., considered concurrently. The security region boundary is represented using its piecewise approximation with the help of linear inequalities (so called hyperplanes) in a multi-dimensional space, consisting of system parameters that are critical for security analyses. The goal of this approximation is to find a minimum set of hyperplanes that describe the boundary with a given accuracy. Methodologies are also developed to use the security hyperplanes, pre-calculated offline, to determine system security margins in real-time system operations, to identify weak elements in the system, and to calculate key contributing factors and sensitivities to determine the best system controls in real time and to assist in developing remedial actions and transmission system enhancements offline . A prototype program that automates the simulation procedures used to build the set of security hyperplanes has also been developed. The program makes it convenient to update the set of security hyperplanes necessitated by changes in system configurations. A prototype operational tool that uses the security hyperplanes to assess security margins and to calculate optimal control directions in real time has been built to demonstrate the project success. Numerical simulations have been conducted using the full-size Western Electricity Coordinating Council (WECC) system model, and they clearly demonstrated the feasibility and the effectiveness of the developed technology. Recommendations for the future work have also been formulated.

  11. Neutron spin resonance as a probe of superconducting gap anisotropy...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Resources U.S. Science Information - Science.gov Global Science Information - WorldWideScience.org - Energy Technology Data Exchange - International Nuclear Information System...

  12. Fully Integrated Frequency and Phase Generation for a 6-18GHz Tunable Multi-Band Phased-Array Receiver in CMOS

    E-Print Network [OSTI]

    Hajimiri, Ali

    control, phase locked loops, phase noise, phased arrays, radio receivers I. INTRODUCTION Very large-scale phased-arrays covering a wide range of frequencies can provide exciting new opportunities for increasedFully Integrated Frequency and Phase Generation for a 6-18GHz Tunable Multi-Band Phased

  13. Smoothness of the Gap Function in the BCS-Bogoliubov Theory of Superconductivity

    E-Print Network [OSTI]

    Shuji Watanabe

    2010-06-07T23:59:59.000Z

    We deal with the gap equation in the BCS-Bogoliubov theory of superconductivity, where the gap function is a function of the temperature $T$ only. We show that the squared gap function is of class $C^2$ on the closed interval $[\\,0,\\,T_c\\,]$. Here, $T_c$ stands for the transition temperature. Furthermore, we show that the gap function is monotonically decreasing on $[0,\\,T_c]$ and obtain the behavior of the gap function at $T=T_c$. We mathematically point out some more properties of the gap function.

  14. Comparison with traditional calibration Wide Area Camera Calibration Using

    E-Print Network [OSTI]

    Stanford University

    Comparison with traditional calibration Wide Area Camera Calibration Using Virtual Calibration Objects Xing Chen, James Davis, Philipp Slusallek Goal Calibrate many cameras arranged to cover a wide area working volume. Building a large physical calibration object is impractical. Solution Build

  15. Benefits of Site-wide NEPA National Environmental Policy Act...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Benefits of Site-wide NEPA National Environmental Policy Act Review (1994) Benefits of Site-wide NEPA National Environmental Policy Act Review (1994) The purpose of this guidance...

  16. automated wide field: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Summary: , for example, Zhang and Zhao used data from the optical, X-ray, and infrared bands to classify active galactic the problem of imbalanced data sets. 12;Figure 1:...

  17. Engineering the Electronic Band Structure for Multiband Solar Cells

    SciTech Connect (OSTI)

    Lopez, N.; Reichertz, L.A.; Yu, K.M.; Campman, K.; Walukiewicz, W.

    2010-07-12T23:59:59.000Z

    Using the unique features of the electronic band structure of GaNxAs1-x alloys, we have designed, fabricated and tested a multiband photovoltaic device. The device demonstrates an optical activity of three energy bands that absorb, and convert into electrical current, the crucial part of the solar spectrum. The performance of the device and measurements of electroluminescence, quantum efficiency and photomodulated reflectivity are analyzed in terms of the Band Anticrossing model of the electronic structure of highly mismatched alloys. The results demonstrate the feasibility of using highly mismatched alloys to engineer the semiconductor energy band structure for specific device applications.

  18. World Wide Web Internet and Web Information Systems

    E-Print Network [OSTI]

    Cao, Longbing

    1 23 World Wide Web Internet and Web Information Systems ISSN 1386-145X World Wide Web DOI 10's request, provided it is not made publicly available until 12 months after publication. #12;World Wide Web worlds. Its detection is a typical use case of the broad-based Wisdom Web of Things (W2T) methodology

  19. Valley pair qubits in double quantum dots of gapped graphene

    E-Print Network [OSTI]

    G. Y. Wu; N. -Y. Lue; L. Chang

    2011-07-03T23:59:59.000Z

    The rise of graphene opens a new door to qubit implementation, as discussed in the recent proposal of valley pair qubits in double quantum dots of gapped graphene (Wu et al., arXiv: 1104.0443 [cond-mat.mes-hall]). The work here presents the comprehensive theory underlying the proposal. It discusses the interaction of electrons with external magnetic and electric fields in such structures. Specifically, it examines a strong, unique mechanism, i.e., the analogue of the 1st-order relativistic effect in gapped graphene. This mechanism is state mixing free and allows, together with the electrically tunable exchange coupling, a fast, all-electric manipulation of qubits via electric gates, in the time scale of ns. The work also looks into the issue of fault tolerance in a typical case, yielding at 10oK a long qubit coherence time (~O(ms)).

  20. The imaginary part of the gap function in color superconductivity

    E-Print Network [OSTI]

    Bo Feng; Defu Hou; Jiarong Li; Hai-cang Ren

    2006-09-16T23:59:59.000Z

    We clarify general properties of the energy gap regarding its functional dependence on the energy-momentum dictated by the invariance under a space inversion or a time reversal. Then we derive perturbatively the equation of the imaginary part of the gap function for dense QCD in weak coupling and generalize our results from 2SC case to CFL case. We confirm that the imaginary part is down by $g$ relative to the real part in weak coupling. The numerical results show that, up to the leading order, the imaginary part is no larger than one MeV at extremely large densities and can be as large as several MeV the densities are of physical interest.