National Library of Energy BETA

Sample records for wholesale electric rates

  1. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules » Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2015 KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 CU-CC-1-J Wholesale Power Rate Schedule Area: Duke Energy Progress, Western

  2. MISS-1-N Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    MISS-1-N Wholesale Power Rate Schedule MISS-1-N Wholesale Power Rate Schedule Area: South Mississippi Electric Power Association System: Georgia-Alabama-South Carolina This rate ...

  3. AP-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-B Wholesale Power Rate Schedule AP-3-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), PJM ...

  4. AP-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-B Wholesale Power Rate Schedule AP-1-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  5. AP-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-B Wholesale Power Rate Schedule AP-2-B Wholesale Power Rate Schedule Area: American ... American Electric Power Service Corporation (hereinafter called the Company), the ...

  6. AP-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-B Wholesale Power Rate Schedule AP-4-B Wholesale Power Rate Schedule Area: American ... of American Electric Power Service Corporation (hereinafter called the Company) and ...

  7. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Rate Schedules Wholesale Power Rate Schedules Wholesale Power Rate Schedules October 1, 2012 ALA-1-N Wholesale Power Rate Schedule Area: PowerSouth Energy Cooperative System:...

  8. NREL: Transmission Grid Integration - Wholesale Electricity Market...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wholesale Electricity Market Operations Researchers at NREL are studying wholesale electricity market operations to understand how they currently maximize competition, efficiency, ...

  9. Wholesale Power Rate Schedules | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Rate Schedules October 1, 2011 CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU October 1, 2011 CM-1-H Wholesale Power Rate...

  10. KP-AP-4-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    AP-4-C Wholesale Power Rate Schedule KP-AP-4-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public ...

  11. CK-1-H Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    quantities. Document Available for Download PDF icon CK-1-H Rate Schedule More Documents & Publications CBR-1-H Wholesale Power Rate Schedule CTV-1-H Wholesale Power Rate ...

  12. Replacement-2-A Wholesale Power Rate Schedule | Department of...

    Office of Environmental Management (EM)

    2-A Wholesale Power Rate Schedule Replacement-2-A Wholesale Power Rate Schedule Area: Replacement Energy System: Kerr-Philpott This rate schedule shall be available to public...

  13. Pump-2 Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    2 Wholesale Power Rate Schedule Pump-2 Wholesale Power Rate Schedule Area: Carters & ... Document Available for Download PDF icon Pump-2 Rate Schedule More Documents & ...

  14. Pump-1-A Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-A Wholesale Power Rate Schedule Pump-1-A Wholesale Power Rate Schedule Area: Carters & ... Document Available for Download PDF icon Pump-1-A Rate Schedule More Documents & ...

  15. Electric Wholesale Market Regimes in the United States: Implications...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Wholesale Market Regimes in the United States: Implications for Investment Electric Wholesale Market Regimes in the United States: Implications for Investment PowerPoint ...

  16. 1993 Wholesale Power and Transmission Rate Schedules.

    SciTech Connect (OSTI)

    US Bonneville Power Administration

    1993-10-01

    Bonneville Power Administration 1993 Wholesale Power Rate Schedules and General Rate Schedule Provisions and 1993 Transmission Rate Schedules and General Transmission Rate Schedule Provisions, contained herein, were approved on an interim basis effective October 1, 1993. These rate schedules and provisions were approved by the Federal Energy Commission, United States Department of Energy, in September, 1993. These rate schedules and provisions supersede the Administration`s Wholesale Power Rate Schedules and General Rate Schedule Provisions and Transmission Rate Schedules and General Transmission Rate Schedule Provisions effective October 1, 1991.

  17. October 1996 - September 2001 Wholesale Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    affecting a specific power purchase. For more specific information see: 1996 Final Wholesale Power and Transmission Rate Schedules: Power Rates (PDF, 84 pages, 188 kb) Ancillary...

  18. Electric Wholesale Market Regimes in the United States: Implications for

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Investment | Department of Energy Wholesale Market Regimes in the United States: Implications for Investment Electric Wholesale Market Regimes in the United States: Implications for Investment PowerPoint presentation to the Electricity Advisory Committee by Charles Whitmore, Senior Market Advisor at the Federal Energy Regulatory Commission on electric wholesale market regimes in the United States and the implications for investment in those markets. Electric Wholesale Market Regimes in the

  19. CSI-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSI-1-H Wholesale Power Rate Schedule CSI-1-H Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power ...

  20. CEK-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CEK-1-H Wholesale Power Rate Schedule CEK-1-H Wholesale Power Rate Schedule Area: East Kentucky System: CU This rate schedule shall be available to East Kentucky Power Cooperative ...

  1. CTV-1-H Wholesale Power Rate Schedule | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    TVA. Document Available for Download PDF icon CTV-1-H Rate Schedule More Documents & Publications CTVI-1-A Wholesale Power Rate Schedule CEK-1-H Wholesale Power Rate Schedule CM

  2. CBR-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBR-1-H Wholesale Power Rate Schedule CBR-1-H Wholesale Power Rate Schedule Area: Big Rivers and Henderson, KY System: CU This rate schedule shall be available to Big Rivers ...

  3. CM-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CM-1-H Wholesale Power Rate Schedule CM-1-H Wholesale Power Rate Schedule Area: MEAM, MDEA, and SMEPA System: CU This rate schedule shall be available to the South Mississippi ...

  4. CSI-1-H Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CSI-1-H Wholesale Power Rate Schedule CSI-1-H Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power...

  5. VA-3-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-B Wholesale Power Rate Schedule VA-3-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  6. NC-1-B Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    NC-1-B Wholesale Power Rate Schedule NC-1-B Wholesale Power Rate Schedule Area: Virginia PowerCP&L System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  7. VA-4-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-B Wholesale Power Rate Schedule VA-4-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  8. VA-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-B Wholesale Power Rate Schedule VA-1-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  9. VA-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    2-B Wholesale Power Rate Schedule VA-2-B Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and...

  10. JW-2-F Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-F Wholesale Power Rate Schedule JW-2-F Wholesale Power Rate Schedule Area: Florida Power Corporation System: Jim Woodruff This rate schedule shall be available to the Florida ...

  11. CC-1-I Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CC-1-I Wholesale Power Rate Schedule CC-1-I Wholesale Power Rate Schedule Area: Carolina Power & Light Company, Western Division System: CU This rate schedule shall be available to...

  12. SCE&G-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    2-E Wholesale Power Rate Schedule SCE&G-2-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be wheeled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of power

  13. SCE&G-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    3-E Wholesale Power Rate Schedule SCE&G-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina to whom power may be scheduled pursuant to contracts between the Government and the South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of

  14. SCE&G-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    4-E Wholesale Power Rate Schedule SCE&G-4-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available public bodies and cooperatives (any one of which is hereinafter called the Customer) in South Carolina served through the transmission facilities of South Carolina Electric & Gas Company (hereinafter called the Company). This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at

  15. KP-AP-3-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-C Wholesale Power Rate Schedule KP-AP-3-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be scheduled pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), PJM Interconnection LLC (hereinafter called PJM), and the Customer. This rate

  16. CU-CM-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CM-1-I Wholesale Power Rate Schedule CU-CM-1-I Wholesale Power Rate Schedule Area: MEAM, MDEA, and SMEPA System: CU This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency. This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such

  17. Santee-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    2-E Wholesale Power Rate Schedule Santee-2-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be wheeled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and

  18. Santee-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    3-E Wholesale Power Rate Schedule Santee-3-E Wholesale Power Rate Schedule Area: None System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina to whom power may be scheduled pursuant to contracts between the Government and South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and

  19. Santee-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    4-E Wholesale Power Rate Schedule Santee-4-E Wholesale Power Rate Schedule Area: Santee-Cooper System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter call the Customer) in South Carolina served through the transmission facilities of South Carolina Public Service Authority (hereinafter called the Authority). This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy

  20. KP-AP-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-C Wholesale Power Rate Schedule KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be transmitted and scheduled pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection

  1. KP-AP-2-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-C Wholesale Power Rate Schedule KP-AP-2-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be transmitted pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection LLC

  2. Duke-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  3. Duke-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  4. Duke-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  5. Duke-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This rate schedule shall be applicable to the sale at wholesale of power and accompanying energy generated at the Allatoona, Buford, J. Strom Thurmond, Walter F. George, Hartwell, ...

  6. CU-CC-1-J Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CC-1-J Wholesale Power Rate Schedule CU-CC-1-J Wholesale Power Rate Schedule Area: Duke Energy Progress, Western Division System: CU This rate schedule shall be available to public bodies and cooperatives served through the facilities of Duke Energy Progress (formerly known as Carolina Power & Light Company), Western Division (hereinafter called the Customers). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek,

  7. CU-CEK-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CEK-1-I Wholesale Power Rate Schedule CU-CEK-1-I Wholesale Power Rate Schedule Area: East Kentucky System: CU This rate schedule shall be available to East Kentucky Power Cooperative (hereinafter called the Customer). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the

  8. CU-CK-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CK-1-I Wholesale Power Rate Schedule CU-CK-1-I Wholesale Power Rate Schedule Area: Kentucky Utilities System: CU This rate schedule shall be available to public bodies served through the facilities of Kentucky Utilities Company, (hereinafter called the Customers.) This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being

  9. CU-CSI-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CSI-1-I Wholesale Power Rate Schedule CU-CSI-1-I Wholesale Power Rate Schedule Area: Southern Illinois System: CU This rate schedule shall be available to Southern Illinois Power Cooperative (hereinafter the Customer). This rate schedule shall be applicable to electric capacity and energy available from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereinafter called collectively the

  10. CU-CTV-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CTV-1-I Wholesale Power Rate Schedule CU-CTV-1-I Wholesale Power Rate Schedule Area: Tennessee Valley Authority System: CU This rate schedule shall be available to the Tennessee Valley Authority (hereinafter called TVA). This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland

  11. CU-CTVI-1-B Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    CTVI-1-B Wholesale Power Rate Schedule CU-CTVI-1-B Wholesale Power Rate Schedule Area: Former customers of TVA System: Cumberland This rate schedule shall be available to customers (hereinafter called the Customer) who are or were formerly in the Tennessee Valley Authority (hereinafter called TVA) service area. This rate schedule shall be applicable to electric capacity and energy generated at the Dale Hollow, Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell

  12. CM-1-H Wholesale Power Rate Schedule

    Office of Energy Efficiency and Renewable Energy (EERE)

    Availability:This rate schedule shall be available to the South Mississippi Electric Power Association, Municipal Energy Agency of Mississippi, and Mississippi Delta Energy Agency (hereinafter...

  13. Replacement-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    Replacement-1 Wholesale Power Rate Schedule Replacement-1 Wholesale Power Rate Schedule Area: Replacement Energy System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, Florida, South Carolina, or North Carolina to whom power is provided pursuant to contracts between the Government and the Customer. This rate schedule shall be applicable to the sale at

  14. SOCO-2-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    2-E Wholesale Power Rate Schedule SOCO-2-E Wholesale Power Rate Schedule Area: PowerSouth Off-System System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida to whom power may be transmitted pursuant to contracts between the Government and Southern Company Services, Incorporated (hereinafter called the Company) and the Customer. This rate

  15. SOCO-3-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    3-E Wholesale Power Rate Schedule SOCO-3-E Wholesale Power Rate Schedule Area: MEAG, Dalton System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida to whom power may be scheduled pursuant to contracts between the Government and Southern Company Services, Incorporated (hereinafter called the Company) and the Customer. This rate schedule shall be

  16. SOCO-4-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    4-E Wholesale Power Rate Schedule SOCO-4-E Wholesale Power Rate Schedule Area: OPC System: Georgia-Alabama-South Carolina This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Georgia, Alabama, Mississippi, and Florida served through the transmission facilities of Southern Company Services, Inc. (hereinafter called the Company) or the Georgia Integrated Transmission System. This rate schedule shall be applicable to the

  17. 2007 Wholesale Power Rate Case Initial Proposal : Revenue Requirement Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The purpose of this Study is to establish the level of revenues from wholesale power rates necessary to recover, in accordance with sound business principles, the Federal Columbia River Power System (FCRPS) costs associated with the production, acquisition, marketing, and conservation of electric power. The generation revenue requirement includes: recovery of the Federal investment in hydro generation, fish and wildlife and conservation costs; Federal agencies' operations and maintenance (O&M) expenses allocated to power; capitalized contract expenses associated with non-Federal power suppliers such as Energy Northwest (EN); other power purchase expenses, such as short-term power purchases; power marketing expenses; cost of transmission services necessary for the sale and delivery of FCRPS power; and all other generation-related costs incurred by the Administrator pursuant to law.

  18. EIS-0102: Bonneville Power Administration's 1983 Wholesale Power Rate

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration prepared this EIS to evaluate the potential environmental impacts associated with an increase in wholesale power rates that would become effective on November 1, 1983, including the effects of rate hikes in that year and the cumulative effects of previous rate hikes.

  19. 2007 Wholesale Power Rate Case Initial Proposal : Wholesale Power Rate Development Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2007-11-01

    The Wholesale Power Rate Development Study (WPRDS) calculates BPA proposed rates based on information either developed in the WPRDS or supplied by the other studies that comprise the BPA rate proposal. All of these studies, and accompanying documentation, provide the details of computations and assumptions. In general, information about loads and resources is provided by the Load Resource Study (LRS), WP-07-E-BPA-01, and the LRS Documentation, WP-07-E-BPA-01A. Revenue requirements information, as well as the Planned Net Revenues for Risk (PNNR), is provided in the Revenue Requirement Study, WP-07-E-BPA-02, and its accompanying Revenue Requirement Study Documentation, WP-07-E-BPA-02A and WP-07-E-BPA-02B. The Market Price Forecast Study (MPFS), WP-07-E-BPA-03, and the MPFS Documentation, WP-07-E-BPA-03A, provide the WPRDS with information regarding seasonal and diurnal differentiation of energy rates, as well information regarding monthly market prices for Demand Rates. In addition, this study provides information for the pricing of unbundled power products. The Risk Analysis Study, WP-07-E-BPA-04, and the Risk Analysis Study Documentation, WP-07-E-BPA-04A, provide short-term balancing purchases as well as secondary energy sales and revenue. The Section 7(b)(2) Rate Test Study, WP-07-E-BPA-06, and the Section 7(b)(2) Rate Test Study Documentation, WP-07-E-BPA-06A, implement Section 7(b)(2) of the Northwest Power Act to ensure that BPA preference customers firm power rates applied to their general requirements are no higher than rates calculated using specific assumptions in the Northwest Power Act.

  20. Wholesale electricity market design with increasing levels of renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generation: Revenue sufficiency and long-term reliability | Argonne National Laboratory Revenue sufficiency and long-term reliability Title Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability Publication Type Journal Article Year of Publication 2016 Authors Milligan, M, Frew, BA, Bloom, A, Ela, E, Botterud, A, Townsend, A, Levin, T Journal The Electricity Journal Volume 29 Start Page 26 Issue 2 Pagination 13 Date

  1. KP-VA-2-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-C Wholesale Power Rate Schedule KP-VA-2-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and ...

  2. KP-DEP-4-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-C Wholesale Power Rate Schedule KP-DEP-4-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  3. KP-VA-3-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-C Wholesale Power Rate Schedule KP-VA-3-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and ...

  4. KP-DEP-3-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3-C Wholesale Power Rate Schedule KP-DEP-3-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  5. KP-DEP-2-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-C Wholesale Power Rate Schedule KP-DEP-2-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  6. KP-DEP-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-C Wholesale Power Rate Schedule KP-DEP-1-C Wholesale Power Rate Schedule Area: Duke Energy Progress System: Kerr-Philpott This rate schedule shall be available to public bodies ...

  7. KP-NC-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    NC-1-C Wholesale Power Rate Schedule KP-NC-1-C Wholesale Power Rate Schedule Area: Virginia PowerDuke Energy Progress System: Kerr-Philpott This rate schedule shall be available ...

  8. KP-VA-1-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-C Wholesale Power Rate Schedule KP-VA-1-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and ...

  9. KP-VA-4-C Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4-C Wholesale Power Rate Schedule KP-VA-4-C Wholesale Power Rate Schedule Area: Virginia Power System: Kerr-Philpott This rate schedule shall be available to public bodies and ...

  10. CP&L-4-B Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    4-B Wholesale Power Rate Schedule CP&L-4-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available...

  11. CP&L-3-B Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    3-B Wholesale Power Rate Schedule CP&L-3-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available...

  12. CP&L-2-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2-B Wholesale Power Rate Schedule CP&L-2-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available...

  13. CP&L-1-B Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1-B Wholesale Power Rate Schedule CP&L-1-B Wholesale Power Rate Schedule Area: Carolina Power & Light, Eastern Division System: Kerr-Philpott This rate schedule shall be available...

  14. Wholesale service obligation of electric utilities

    SciTech Connect (OSTI)

    Norton, F.L. IV; Spivak, M.R.

    1985-01-01

    The basic concepts of public utility status and utility regulation intertwine the obligation to provide service to the public as reasonably demanded with rate regulation and shielding from competitive interference. While a common law service obligation was not part of the Federal Power Act, the Federal Energy Regulatory Commission has taken the position that service, once commenced, may not be terminated without its approval. This view of Commission authority may not be supported by the legislative history of the Federal Power Act or by judicial precedent. The requirement to serve apart from recognition of a right to serve may result in increased rates in the near term and insufficient capacity, or both, in the long run. A review by the Commission and the courts is examining ways to introduce competition and shift risks from ratepayers to shareholders.

  15. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The Federal Columbia River Power System (FCRPS), operated on behalf of the ratepayers of the PNW by BPA and other Federal agencies, faces many uncertainties during the FY 2007-2009 rate period. Among these uncertainties, the largest revolve around hydro conditions, market prices and river operations for fish recovery. In order to provide a high probability of making its U.S. Treasury payments, BPA performs a Risk Analysis as part of its rate-making process. In this Risk Analysis, BPA identifies key risks, models their relationships, and then analyzes their impacts on net revenues (total revenues less expenses). BPA subsequently evaluates in the ToolKit Model the Treasury Payment Probability (TPP) resulting from the rates, risks, and risk mitigation measures described here and in the Wholesale Power Rate Development Study (WPRDS). If the TPP falls short of BPA's standard, additional risk mitigation revenues, such as PNRR and CRAC revenues are incorporated in the modeling in ToolKit until the TPP standard is met. Increased wholesale market price volatility and six years of drought have significantly changed the profile of risk and uncertainty facing BPA and its stakeholders. These present new challenges for BPA in its effort to keep its power rates as low as possible while fully meeting its obligations to the U.S. Treasury. As a result, the risk BPA faces in not receiving the level of secondary revenues that have been credited to power rates before receiving those funds is greater. In addition to market price volatility, BPA also faces uncertainty around the financial impacts of operations for fish programs in FY 2006 and in the FY 2007-2009 rate period. A new Biological Opinion or possible court-ordered change to river operations in FY 2006 through FY 2009 may reduce BPA's net revenues included Initial Proposal. Finally, the FY 2007-2009 risk analysis includes new operational risks as well as a more comprehensive analysis of non-operating risks. Both the operational

  16. KP-Replacement-2-B Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    Replacement-2-B Wholesale Power Rate Schedule KP-Replacement-2-B Wholesale Power Rate Schedule Area: Replacement Energy System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in North Carolina and Virginia to whom power is provided pursuant to contracts between the Government and the customer from the John H. Kerr and Philpott Projects (or Kerr-Philpott System). This rate schedule shall be applicable to

  17. CU-Replacement-3 Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    Replacement-3 Wholesale Power Rate Schedule CU-Replacement-3 Wholesale Power Rate Schedule Area: Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky, southern Illinois System: CU This rate schedule shall be available to public bodies and cooperatives ( any one of whom is hereinafter called the Customer) in Virginia, North Carolina, Tennessee, Georgia, Alabama, Mississippi, Kentucky and southern Illinois to whom power is provided pursuant to contracts between the

  18. 2007 Wholesale Power Rate Case Initial Proposal : Risk Analysis Study Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2005-11-01

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-E-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-E-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-E-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-E-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-E-BPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the ToolKit Model

  19. 2007 Wholesale Power Rate Case Final Proposal : Risk Analysis Study Documentation.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    The RiskMod Model is comprised of a set of risk simulation models, collectively referred to as RiskSim; a set of computer programs that manages data referred to as Data Management Procedures; and RevSim, a model that calculates net revenues. RiskMod interacts with the AURORA Model, the RAM2007, and the ToolKit Model during the process of performing the Risk Analysis Study. AURORA is the computer model being used to perform the Market Price Forecast Study (see Market Price Forecast Study, WP-07-FS-BPA-03); the RAM2007 is the computer model being used to calculate rates (see Wholesale Power Rate Development Study, WP-07-FS-BPA-05); and the ToolKit is the computer model being used to develop the risk mitigation package that achieves BPA's 92.6 percent TPP standard (see Section 3 in the Risk Analysis Study, WP-07-FS-BPA-04). Variations in monthly loads, resources, natural gas prices, forward market electricity prices, transmission expenses, and aluminum smelter benefit payments are simulated in RiskSim. Monthly spot market electricity prices for the simulated loads, resources, and natural gas prices are estimated by the AURORA Model. Data Management Procedures facilitate the format and movement of data that flow to and/or from RiskSim, AURORA, and RevSim. RevSim estimates net revenues using risk data from RiskSim, spot market electricity prices from AURORA, loads and resources data from the Load Resource Study, WP-07-FS-BPA-01, various revenues from the Revenue Forecast component of the Wholesale Power Rate Development Study, WP-07-FSBPA-05, and rates and expenses from the RAM2007. Annual average surplus energy revenues, purchased power expenses, and section 4(h)(10)(C) credits calculated by RevSim are used in the Revenue Forecast and the RAM2007. Heavy Load Hour (HLH) and Light Load Hour (LLH) surplus and deficit energy values from RevSim are used in the Transmission Expense Risk Model. Net revenues estimated for each simulation by RevSim are input into the Tool

  20. Market Evolution: Wholesale Electricity Market Design for 21st Century Power Systems

    SciTech Connect (OSTI)

    Cochran, Jaquelin; Miller, Mackay; Milligan, Michael; Ela, Erik; Arent, Douglas; Bloom, Aaron; Futch, Matthew; Kiviluoma, Juha; Holtinnen, Hannele; Orths, Antje; Gomez-Lazaro, Emilio; Martin-Martinez, Sergio; Kukoda, S.; Garcia, Glycon; Mikkelsen, Kim M.; Yongqiang, Zhao; Sandholt, Kaare

    2013-10-01

    Demand for affordable, reliable, domestically sourced, and low-carbon electricity is on the rise. This growing demand is driven in part by evolving public policy priorities, especially reducing the health and environmental impacts of electricity service and expanding energy access to under-served customers. Consequently, variable renewable energy resources comprise an increasing share ofelectricity generation globally. At the same time, new opportunities for addressing the variability of renewables are being strengthened through advances in smart grids, communications, and technologies that enable dispatchable demand response and distributed generation to extend to the mass market. A key challenge of merging these opportunities is market design -- determining how to createincentives and compensate providers justly for attributes and performance that ensure a reliable and secure grid -- in a context that fully realizes the potential of a broad array of sources of flexibility in both the wholesale power and retail markets. This report reviews the suite of wholesale power market designs in use and under consideration to ensure adequacy, security, and flexibilityin a landscape of significant variable renewable energy. It also examines considerations needed to ensure that wholesale market designs are inclusive of emerging technologies, such as demand response, distributed generation, and storage.

  1. 2007 Wholesale Power Rate Case Final Proposal : Risk Analysis Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    BPA's operating environment is filled with numerous uncertainties, and thus the rate-setting process must take into account a wide spectrum of risks. The objective of the Risk Analysis is to identify, model, and analyze the impacts that key risks have on BPA's net revenue (total revenues less total expenses). This is carried out in two distinct steps: a risk analysis step, in which the distributions, or profiles, of operating and non operating risks are defined, and a risk mitigation step, in which different rate tools are tested to assess their ability to recover BPA's costs in the face of this uncertainty. Two statistical models are used in the risk analysis step for this rate proposal, the Risk Analysis Model (RiskMod), and the Non-Operating Risk Model (NORM), while a third model, the ToolKit, is used to test the effectiveness of rate tools options in the risk mitigation step. RiskMod is discussed in Sections 2.1 through 2.4, the NORM is discussed in Section 2.5, and the ToolKit is discussed in Section 3. The models function together so that BPA can develop rates that cover all of its costs and provide a high probability of making its Treasury payments on time and in full during the rate period. By law, BPA's payments to Treasury are the lowest priority for revenue application, meaning that payments to Treasury are the first to be missed if financial reserves are insufficient to pay all bills on time. For this reason, BPA measures its potential for recovering costs in terms of probability of being able to make Treasury payments on time (also known as Treasury Payment Probability or TPP).

  2. EIS-0031: Bonneville Power Administration 1979 Wholesale Rate Increase

    Broader source: Energy.gov [DOE]

    The Bonneville Power Administration (BPA) developed this statement to explain the reasons for BPA's proposed power rate schedule, to conduct an analysis of the impacts which the proposal or alternatives thereto could have on both physical and socioeconomic characteristics of the human environment and to identify methods for mitigating the effects of the proposal.

  3. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    SciTech Connect (OSTI)

    Ela, E.; Milligan, M.; Bloom, A.; Botterud, A.; Townsend, A.; Levin, T.

    2014-09-01

    Variable generation such as wind and photovoltaic solar power has increased substantially in recent years. Variable generation has unique characteristics compared to the traditional technologies that supply energy in the wholesale electricity markets. These characteristics create unique challenges in planning and operating the power system, and they can also influence the performance and outcomes from electricity markets. This report focuses on two particular issues related to market design: revenue sufficiency for long-term reliability and incentivizing flexibility in short-term operations. The report provides an overview of current design and some designs that have been proposed by industry or researchers.

  4. Market Evolution: Wholesale Electricity Market Design for 21st Century Power Systems

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1stCenturyPower.org Technical Report NREL/TP-6A20-57477 October 2013 Contract No. DE-AC36-08GO28308 Market Evolution: Wholesale Electricity Market Design for 21 st Century Power Systems Jaquelin Cochran, Mackay Miller, Michael Milligan, Erik Ela, Douglas Arent, and Aaron Bloom National Renewable Energy Laboratory Matthew Futch IBM Juha Kiviluoma and Hannele Holtinnen VTT Technical Research Centre of Finland Antje Orths Energinet.dk Emilio Gómez-Lázaro and Sergio Martín-Martínez Universidad

  5. Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Evolution of Wholesale Electricity Market Design with Increasing Levels of Renewable Generation E. Ela, 1 M. Milligan, 1 A. Bloom, 1 A. Botterud, 2 A. Townsend, 1 and T. Levin 2 1 National Renewable Energy Laboratory 2 Argonne National Laboratory Technical Report NREL/TP-5D00-61765 September 2014 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost

  6. 2007 Wholesale Power Rate Adjustment Proceeding (WP-07) : Administrator's Final Record of Decision.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    This Record of Decision (ROD) contains the decisions of the Bonneville Power Administration (BPA), based on the record compiled in this rate proceeding, with respect to the adoption of power rates for the three-year rate period commencing October 1, 2006, through September 30, 2009. This ''2007 Wholesale Power Rate Adjustment Proceeding'' is designed to establish replacement rate schedules and General Rate Schedule Provisions (GRSPs) for those that expire on September 30, 2006. This power rate case also establishes the General Transfer Agreement (GTA) Delivery Charge for the period of October 1, 2007, through September 30, 2009. BPA's Power Subscription Strategy and Record of Decision (Subscription Strategy), as well as other Agency processes, provide much of the policy context for this rate case and are described in Section 2. This ROD follows a full evidentiary hearing and briefing, including an Oral Argument before the BPA Administrator. Sections 3 through 18, including any appendices or attachments, present the issues raised by parties in this proceeding, the parties positions, BPA staff positions on the issues, BPA's evaluations of the positions, and the Administrator's decisions. Parties had the opportunity to file briefs on exceptions to the Draft ROD, before issuance of this Final Record of Decision.

  7. Customer response to day-ahead wholesale market electricity prices: Case study of RTP program experience in New York

    SciTech Connect (OSTI)

    Goldman, C.; Hopper, N.; Sezgen, O.; Moezzi, M.; Bharvirkar, R.; Neenan, B.; Boisvert, R.; Cappers, P.; Pratt, D.

    2004-07-01

    There is growing interest in policies, programs and tariffs that encourage customer loads to provide demand response (DR) to help discipline wholesale electricity markets. Proposals at the retail level range from eliminating fixed rate tariffs as the default service for some or all customer groups to reinstituting utility-sponsored load management programs with market-based inducements to curtail. Alternative rate designs include time-of-use (TOU), day-ahead real-time pricing (RTP), critical peak pricing, and even pricing usage at real-time market balancing prices. Some Independent System Operators (ISOs) have implemented their own DR programs whereby load curtailment capabilities are treated as a system resource and are paid an equivalent value. The resulting load reductions from these tariffs and programs provide a variety of benefits, including limiting the ability of suppliers to increase spot and long-term market-clearing prices above competitive levels (Neenan et al., 2002; Boren stein, 2002; Ruff, 2002). Unfortunately, there is little information in the public domain to characterize and quantify how customers actually respond to these alternative dynamic pricing schemes. A few empirical studies of large customer RTP response have shown modest results for most customers, with a few very price-responsive customers providing most of the aggregate response (Herriges et al., 1993; Schwarz et al., 2002). However, these studies examined response to voluntary, two-part RTP programs implemented by utilities in states without retail competition.1 Furthermore, the researchers had limited information on customer characteristics so they were unable to identify the drivers to price response. In the absence of a compelling characterization of why customers join RTP programs and how they respond to prices, many initiatives to modernize retail electricity rates seem to be stymied.

  8. Finance & Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    all of its costs in the rates it charges customers for wholesale electricity and transmission services. The agency is committed to careful cost management consistent with its...

  9. Price Responsive Demand in New York Wholesale Electricity Market using OpenADR

    SciTech Connect (OSTI)

    Kim, Joyce Jihyun; Kiliccote, Sila

    2012-06-01

    In New York State, the default electricity pricing for large customers is Mandatory Hourly Pricing (MHP), which is charged based on zonal day-ahead market price for energy. With MHP, retail customers can adjust their building load to an economically optimal level according to hourly electricity prices. Yet, many customers seek alternative pricing options such as fixed rates through retail access for their electricity supply. Open Automated Demand Response (OpenADR) is an XML (eXtensible Markup Language) based information exchange model that communicates price and reliability information. It allows customers to evaluate hourly prices and provide demand response in an automated fashion to minimize electricity costs. This document shows how OpenADR can support MHP and facilitate price responsive demand for large commercial customers in New York City.

  10. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Regional Wholesale Markets: May 2015 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  11. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wholesale Markets: August 2015 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  12. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Wholesale Markets: February 2014 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale...

  13. 2007 Wholesale Power Rate Case Final Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    This study presents BPA's market price forecasts for the Final Proposal, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's power rates. AURORA was used as the primary tool for (a) estimating the forward price for the IOU REP Settlement benefits calculation for fiscal years (FY) 2008 and 2009, (b) estimating the uncertainty surrounding DSI payments and IOU REP Settlements benefits, (c) informing the secondary revenue forecast and (d) providing a price input used for the risk analysis. For information about the calculation of the secondary revenues, uncertainty regarding the IOU REP Settlement benefits and DSI payment uncertainty, and the risk run, see Risk Analysis Study WP-07-FS-BPA-04.

  14. Wholesale electricity market design with increasing levels of renewable generation: Revenue sufficiency and long-term reliability

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Milligan, Michael; Frew, Bethany A.; Bloom, Aaron; Ela, Erik; Botterud, Audun; Townsend, Aaron; Levin, Todd

    2016-03-22

    This paper discusses challenges that relate to assessing and properly incentivizing the resources necessary to ensure a reliable electricity system with growing penetrations of variable generation (VG). The output of VG (primarily wind and solar generation) varies over time and cannot be predicted precisely. Therefore, the energy from VG is not always guaranteed to be available at times when it is most needed. This means that its contribution towards resource adequacy can be significantly less than the contribution from traditional resources. Variable renewable resources also have near-zero variable costs, and with production-based subsidies they may even have negative offer costs.more » Because variable costs drive the spot price of energy, this can lead to reduced prices, sales, and therefore revenue for all resources within the energy market. The characteristics of VG can also result in increased price volatility as well as the need for more flexibility in the resource fleet in order to maintain system reliability. Furthermore, we explore both traditional and evolving electricity market designs in the United States that aim to ensure resource adequacy and sufficient revenues to recover costs when those resources are needed for long-term reliability. We also investigate how reliability needs may be evolving and discuss how VG may affect future electricity market designs.« less

  15. Modeling and Analysis of Wholesale Electricity Market Design. Understanding the Missing Money Problem. December 2013 - January 2015

    SciTech Connect (OSTI)

    Papalexopoulos, A.; Hansen, C.; Perrino, D.; Frowd, R.

    2015-05-31

    This project examined the impact of renewable energy sources, which have zero incremental energy costs, on the sustainability of conventional generation. This “missing money” problem refers to market outcomes in which infra-marginal energy revenues in excess of operations and maintenance (O&M) costs are systematically lower than the amortized costs of new entry for a marginal generator. The problem is caused by two related factors: (1) conventional generation is dispatched less, and (2) the price that conventional generation receives for its energy is lower. This lower revenue stream may not be sufficient to cover both the variable and fixed costs of conventional generation. In fact, this study showed that higher wind penetrations in the Electric Reliability Council of Texas (ERCOT) system could cause many conventional generators to become uneconomic.

  16. 2012 Wholesale Power Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 - September 2015 RDS 11 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 B C D E F G H I J K L M N O...

  17. The Value of Distributed Generation and CHP Resources in Wholesale Power

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets, September 2005 | Department of Energy The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 The Value of Distributed Generation and CHP Resources in Wholesale Power Markets, September 2005 Distributed generation and combined heat and power (DG/CHP) projects are usually considered as resources for the benefit of the electricity consumer not the utility power system. This report evaluates DG/CHP as wholesale power resources, installed on the

  18. Paying for demand-side response at the wholesale level

    SciTech Connect (OSTI)

    Falk, Jonathan

    2010-11-15

    The recent FERC Notice of Public Rulemaking regarding the payment to demand-side resources in wholesale markets has engendered a great deal of comments including FERC's obligation to ensure just and reasonable rates in the wholesale market and criteria for what FERC should do (on grounds of economic efficiency) without any real focus on what that commitment would really mean if FERC actually pursued it. (author)

  19. REPORT TO CONGRESS ON COMPETITION IN WHOLESALE AND RETAIL MARKETS FOR

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ELECTRIC ENERGY | Department of Energy REPORT TO CONGRESS ON COMPETITION IN WHOLESALE AND RETAIL MARKETS FOR ELECTRIC ENERGY REPORT TO CONGRESS ON COMPETITION IN WHOLESALE AND RETAIL MARKETS FOR ELECTRIC ENERGY The enclosed report is submitted to Congress pursuant to section 1815 of the Energy Policy Act of 2005. Section 1815 of the Act established a five-member Electric Energy Market Competition Task Force. The Energy Policy Act of 2005 (EPAct 2005)1 was designed to provide a comprehensive

  20. REPORT TO CONGRESS ON COMPETITION IN WHOLESALE AND RETAIL MARKETS

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    REPORT TO CONGRESS ON COMPETITION IN WHOLESALE AND RETAIL MARKETS FOR ELECTRIC ENERGY Pursuant to Section 1815 of the Energy Policy Act of 2005 The Electric Energy Market Competition Task Force The Electric Energy Market Competition Task Force Members: J. Bruce McDonald, Department of Justice Michael Bardee, Federal Energy Regulatory Commission John H. Seesel, Federal Trade Commission David Meyer, Department of Energy Karen Larsen, Department of Agriculture Report Contributors: Robin Allen -

  1. Lincoln Electric System - Renewable Generation Rate (Nebraska...

    Open Energy Info (EERE)

    Applicable Sector Commercial, Industrial Eligible Technologies Solar Thermal Electric, Photovoltaics, Landfill Gas, Wind, Biomass, Hydroelectric, Anaerobic Digestion, Small...

  2. electricity rates for military bases | OpenEI Community

    Open Energy Info (EERE)

    electricity rates for military bases Home > Groups > Utility Rate Hi, I was hoping to find rates for military bases, but have been unable to find anything. Are they just charged as...

  3. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Update November 28, 2012 Map of Electric System Selected for Daily Peak Demand was replaced with the correct map showing Selected Wholesale Electricity and Natural Gas Locations....

  4. Supreme court agrees: FERC must regulate wholesale markets

    SciTech Connect (OSTI)

    Wolak, Frank A.

    2008-08-15

    The author believes that wholesale markets in the United States would have a greater likelihood of ultimately benefiting consumers if the Federal Energy Regulatory Commission did not have the mandate under the Federal Power Act (FPA) to ensure that wholesale prices are ''just and reasonable.'' However, he continues to believe that the FERC cannot avoid having an ex post criteria for asssessing whether market prices are just and reasonable. Moreover, changes in the design and regulatory oversight of U.S. wholesale electricity markets in recent years, including the recent Supreme Court decision, have caused him to believe even more strongly in the guardrails-for-market-outcomes approach. Finally, several questions are addressed which relate to the pricing of fixed-price, long-term contracts and the impact of these obligations on the behavior of suppliers in short-term wholesale markets that are directly relevant to answering the two major questions that the Supreme Court remanded to FERC in its recent decision.

  5. Clean Electricity Initiatives in California

    U.S. Energy Information Administration (EIA) Indexed Site

    Edward Randolph Director, Energy Division California Public Utilities Commission July 14, 2014 2014 EIA Energy Conference Clean Electricity Policy Initiatives In California (Partial) * Wholesale Renewables : - Renewables Portfolio Standard - Feet in Tariffs (RAM & ReMAT) - All source procurement (under development) * Customer Renewable Generation - California Solar Initiative - Net Energy Metering - Green Tariffs - Energy Efficiency - Demand Response - Rate Reform - Storage - Retirement of

  6. 2012 Wholesale Power and Transmission Rate

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    B - PF-02 Customer Percentages and Customer-Specific PF-02 Refunds Exhibit C - Renewable Energy Certificates and Carbon Attributes to IOUs Exhibit D - Illustrative Table for...

  7. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also shown are wholesale prices at trading hubs in Louisiana (into Entergy),...

  8. Impact of residential PV adoption on Retail Electricity Rates

    SciTech Connect (OSTI)

    Cai, DWH; Adlakha, S; Low, SH; De Martini, P; Chandy, KM

    2013-11-01

    The price of electricity supplied from home rooftop photo voltaic (PV) solar cells has fallen below the retail price of grid electricity in some areas. A number of residential households have an economic incentive to install rooftop PV systems and reduce their purchases of electricity from the grid. A significant portion of the costs incurred by utility companies are fixed costs which must be recovered even as consumption falls. Electricity rates must increase in order for utility companies to recover fixed costs from shrinking sales bases. Increasing rates will, in turn, result in even more economic incentives for customers to adopt rooftop PV. In this paper, we model this feedback between PV adoption and electricity rates and study its impact on future PV penetration and net-metering costs. We find that the most important parameter that determines whether this feedback has an effect is the fraction of customers who adopt PV in any year based solely on the money saved by doing so in that year, independent of the uncertainties of future years. These uncertainties include possible changes in rate structures such as the introduction of connection charges, the possibility of PV prices dropping significantly in the future, possible changes in tax incentives, and confidence in the reliability and maintainability of PV. (C) 2013 Elsevier Ltd. All rights reserved.

  9. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Regional Wholesale Markets: June 2016 The United States has many regional wholesale electricity markets. Below we look at monthly and annual ranges of on-peak, daily wholesale prices at selected pricing locations and daily peak demand for selected electricity systems in the Nation. The range of daily prices and demand data is shown for the report month and for the year ending with the report month. Prices and demand are shown for six Regional Transmission Operator (RTO) markets: ISO New England

  10. Electricity Markets Analysis (EMA) Model | Open Energy Information

    Open Energy Info (EERE)

    U.S. wholesale electricity markets designed to examine how mid- to long-term energy and environmental policies will influence electricity supply decisions, electricity generation...

  11. 2007-2009 Power Rate Adjustments (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Function Review (PFR) Firstgov FY 2007 2009 Power Rate Adjustments BPA's 2007-2009 Wholesale Power Rate Schedules and General Rate Schedule Provisions (GRSPs) took effect on...

  12. Dynamic Line Rating Oncor Electric Delivery Smart Grid Program

    SciTech Connect (OSTI)

    Johnson, Justin; Smith, Cale; Young, Mike; Donohoo, Ken; Owen, Ross; Clark, Eddit; Espejo, Raul; Aivaliotis, Sandy; Stelmak, Ron; Mohr, Ron; Barba, Cristian; Gonzalez, Guillermo; Malkin, Stuart; Dimitrova, Vessela; Ragsdale, Gary; Mitchem, Sean; Jeirath, Nakul; Loomis, Joe; Trevino, Gerardo; Syracuse, Steve; Hurst, Neil; Mereness, Matt; Johnson, Chad; Bivens, Carrie

    2013-05-04

    Electric transmission lines are the lifeline of the electric utility industry, delivering its product from source to consumer. This critical infrastructure is often constrained such that there is inadequate capacity on existing transmission lines to efficiently deliver the power to meet demand in certain areas or to transport energy from high-generation areas to high-consumption regions. When this happens, the cost of the energy rises; more costly sources of power are used to meet the demand or the system operates less reliably. These economic impacts are known as congestion, and they can amount to substantial dollars for any time frame of reference: hour, day or year. There are several solutions to the transmission constraint problem, including: construction of new generation, construction of new transmission facilities, rebuilding and reconductoring of existing transmission assets, and Dynamic Line Rating (DLR). All of these options except DLR are capital intensive, have long lead times and often experience strong public and regulatory opposition. The Smart Grid Demonstration Program (SGDP) project co-funded by the Department of Energy (DOE) and Oncor Electric Delivery Company developed and deployed the most extensive and advanced DLR installation to demonstrate that DLR technology is capable of resolving many transmission capacity constraint problems with a system that is reliable, safe and very cost competitive. The SGDP DLR deployment is the first application of DLR technology to feed transmission line real-time dynamic ratings directly into the system operation’s State Estimator and load dispatch program, which optimizes the matching of generation with load demand on a security, reliability and economic basis. The integrated Dynamic Line Rating (iDLR)1 collects transmission line parameters at remote locations on the lines, calculates the real-time line rating based on the equivalent conductor temperature, ambient temperature and influence of wind and solar

  13. October 2001 - September 2006 Wholesale Power Rates (rates/previous...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2002 - September 2002 (CRAC 2 period) October 2001 - March 2002 (CRAC 1 period) Final LB CRAC True-Ups for FY 2006 True-Up for CRAC 9 Period: June 14, 2006 Workshop True-Up for...

  14. Tips: Time-Based Electricity Rates | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Time-based electricity programs encourage you to use energy when the demand is low by giving you a lower price for electricity during those times. Time-based electricity programs...

  15. GGAM Electrical Services Ltd | Open Energy Information

    Open Energy Info (EERE)

    Name: GGAM Electrical Services Ltd Place: Limassol, Cyprus Zip: 3071 Product: An electronics wholesaler and installation company. Coordinates: 34.683338, 33.051109 Show Map...

  16. The Value of Distributed Generation and CHP Resources in Wholesale...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This report evaluates DGCHP as wholesale power resources, installed on the utility side of the customer meter. valueofdgandchpinwholesalepowermarkets.pdf (621 KB) More ...

  17. Understanding the Benefits of Dispersed Grid-Connected Photovoltaics: From Avoiding the Next Major Outage to Taming Wholesale Power Markets

    SciTech Connect (OSTI)

    Letendre, Steven E.; Perez, Richard

    2006-07-15

    Thanks to new solar resource assessment techniques using cloud cover data available from geostationary satellites, it is apparent that grid-connected PV installations can serve to enhance electric grid reliability, preventing or hastening recovery from major power outages and serving to mitigate extreme price spikes in wholesale energy markets. (author)

  18. Lighting Electricity Rates on OpenEI | OpenEI Community

    Open Energy Info (EERE)

    Lighting Electricity Rates on OpenEI Home > Groups > Utility Rate Sfomail's picture Submitted by Sfomail(48) Member 31 May, 2013 - 12:04 API Utility Rates I'm pleased to announce...

  19. Power Rate Cases (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Choices (2003-06) Power Function Review (PFR) Firstgov Power Rate Cases BPA's wholesale power rates are set to recover its costs and repay the U.S. Treasury for the Federal...

  20. FITCH RATES ENERGY NORTHWEST, WA'S ELECTRIC REV RFDG BONDS 'AA...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    debt (4.1 billion). KEY RATING DRIVERS BONNEVILLE'S OBLIGATION SECURES BONDS: The rating on the Energy Northwest bonds reflects the credit quality of Bonneville and its...

  1. The Impacts of Commercial Electric Utility Rate Structure Elements on the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Economics of Photovoltaic Systems | Department of Energy The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems The Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to better understand the impacts of different commercial rate structures on the

  2. Maximizing the Value of Photovoltaic Installations on Schools in California: Choosing the Best Electricity Rates

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.

    2011-07-01

    Schools in California often have a choice between multiple electricity rate options. For schools with photovoltaic (PV) installations, choosing the right rate is essential to maximize the value of PV generation. The rate option that minimizes a school?s electricity expenses often does not remain the most economical choice after the school installs a PV system. The complex interaction between PV generation, building load, and rate structure makes determining the best rate a challenging task. This report evaluates 22 rate structures across three of California?s largest electric utilities--Pacific Gas and Electric Co. (PG&E), Southern California Edison (SCE), and San Diego Gas and Electric (SDG&E)--in order to identify common rate structure attributes that are favorable to PV installations.

  3. UNITED STATES OF AMERICA BEFORE THE OFFICE OF ELECTRICITY DELIVERY...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... operate as a traditional market in relation to the trading of wholesale electricity. ... utilities that such transmission service would require cost prohibitive transmission investment. ...

  4. BPA proposes rate increase to bolster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposed a 9.6 percent average wholesale power rate increase to compensate for reduced revenue expectations from surplus power sales and to continue funding needed investments in...

  5. Incorporating a Time Horizon in Rate-of-Return Estimations: Discounted Cash Flow Model in Electric Transmission Rate Cases

    SciTech Connect (OSTI)

    Chatterjee, Bishu; Sharp, Peter A.

    2006-07-15

    Electric transmission and other rate cases use a form of the discounted cash flow model with a single long-term growth rate to estimate rates of return on equity. It cannot incorporate information about the appropriate time horizon for which analysts' estimates of earnings growth have predictive powers. Only a non-constant growth model can explicitly recognize the importance of the time horizon in an ROE calculation. (author)

  6. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's Energy Star Homes Program, which awards a rate discount to customers living in Energy Star homes. To...

  7. Duke Energy Carolinas (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy Carolinas encourages residential customers to buy energy-efficient homes through the utility's Energy Star Homes Program, which awards a rate discount to customers living in Energy Star...

  8. Duke Energy (Electric)- Energy Star Homes Rate Discount Program

    Broader source: Energy.gov [DOE]

    Duke Energy encourages residential customers to buy energy-efficient homes through the utility's Energy Star Homes Program, which awards a rate discount to customers living in Energy Star homes....

  9. Lifeline electric rates and alternative approaches to the problems of low-income ratepayers. Ten case studies of implemented programs

    SciTech Connect (OSTI)

    Not Available

    1980-07-01

    Program summaries, issue developments, governmental processes, and impacts are discussed for 10 case studies dealing with lifeline electric rates and alternative approaches to the problems of low-income ratepayers, namely; the Boston Edison rate freeze; the California lifeline; Florida Power and Light conservation rate; the Iowa-Illinois Gas and Electric small-use rate; the Maine demonstration lifeline program; the Massachusetts Electric Company A-65 rate; the Michigan optional senior citizen rate; the Narragansett Electric Company A-65 SSI rate; the Northern States Power Company conservation rate break; and the Potomac Electric Power Company rate freeze. (MCW)

  10. WP-96/TR-96 & TC-96 Power and Transmission Rate Case (rates/ratecases...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Of Decision (WP-96 ROD) Final Studies And Documentation (WP-96-FS) Loads and Resources Revenue Requirement Segmentation Marginal Cost Analysis Wholesale Power Rate Development...

  11. Estimating the Value of Electricity Storage Resources in Electricity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    value of electricity storage in a variety of regions or markets, 3) analyzing current and potential issues that can affect the valuation of storage by investors at the wholesale ...

  12. User's guide to SERICPAC: A computer program for calculating electric-utility avoided costs rates

    SciTech Connect (OSTI)

    Wirtshafter, R.; Abrash, M.; Koved, M.; Feldman, S.

    1982-05-01

    SERICPAC is a computer program developed to calculate average avoided cost rates for decentralized power producers and cogenerators that sell electricity to electric utilities. SERICPAC works in tandem with SERICOST, a program to calculate avoided costs, and determines the appropriate rates for buying and selling of electricity from electric utilities to qualifying facilities (QF) as stipulated under Section 210 of PURA. SERICPAC contains simulation models for eight technologies including wind, hydro, biogas, and cogeneration. The simulations are converted in a diversified utility production which can be either gross production or net production, which accounts for an internal electricity usage by the QF. The program allows for adjustments to the production to be made for scheduled and forced outages. The final output of the model is a technology-specific average annual rate. The report contains a description of the technologies and the simulations as well as complete user's guide to SERICPAC.

  13. CTVI-1-A Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    Center Hill, Wolf Creek, Old Hickory, Cheatham, Barkley, J. Percy Priest, and Cordell Hull Projects (all of such projects being hereafter called collectively the "Cumberland...

  14. 2012 Wholesale Power and Transmission Rate Adjustment Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    proposals for a balancing reserve capacity product that could be used to manage wind-related tail events but that would not necessarily be available at all hours of all days....

  15. JW-1-J Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    JOINT DEPARTMENT OF COMMERCE AND DEPARTMENT OF ENERGY SMART CITIES - SMART GROWTH BUSINESS DEVELOPMENT MISSION TO CHINA April 12-17, 2015 I. MISSION DESCRIPTION The United States Secretaries of Commerce Penny Pritzker and Energy Ernest Moniz will lead a Smart Cities - Smart Growth Business Development Mission to China from April 12-17, 2015. This mission was announced during President Obama's visit to China in November 2014. It will promote U.S. exports to China by supporting U.S. companies in

  16. Regulation-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Point, Robert F. Henry, Carters, and Richard B. Russell Projects (hereinafter called the Projects) and sold under appropriate contracts between the Government and the Customer. ...

  17. Replacement-3 Wholesale Power Rate Schedule | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    is hereinafter called the Customer) in Virginia, North Carolina, Tennessee, Georgia, ... from the Dale Hollow, Center Hill, Wolf Creek, Cheatham, Old Hickory, Barkley, J. ...

  18. ALA-1-N Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    AEMC Northeast Regional Summit AEMC Northeast Regional Summit American Energy & Manufacturing Competitiveness Summit Comes to New York on May 12 American Energy & Manufacturing Competitiveness Summit Comes to New York on May 12 Register today! Read more Energy Department and Council on Competitiveness Host the 2016 AEMC Summit Energy Department and Council on Competitiveness Host the 2016 AEMC Summit Assistant Secretary Dr. David Danielson and Council on Competitiveness Deborah

  19. Regulation-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    Registration Registration Join over 800 members of the solar community at the 2014 SunShot Grand Challenge Summit and Peer Review. The registration fee is $350 for all attendees. Full conference registration includes access to the speaking events, plenary sessions, workshops and technology forum. Online registration is now closed. Limited onsite registration will be available. Contact sunshotsummit@sra.com with questions. Press Passes The 2014 SunShot Grand Challenge Summit and Peer Review

  20. SOCO-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    Department of Energy SNL Researchers Assess Wind Turbine Blade Inspection and Repair Methods SNL Researchers Assess Wind Turbine Blade Inspection and Repair Methods May 18, 2015 - 5:32pm Addthis A picture of several wind turbine blade panels set out on a table and held in place with metal clamps. Flaws in wind turbine blades emanating from the manufacturing process are an important factor in blade reliability. Blade failures can cause extensive down time and lead to expensive repairs, which

  1. Santee-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    Santa Ynez Chumash Strategic Energy Planning and Capacity Building Project Lars Davenport Environmental Specialist Santa Ynez Chumash Environmental Office March 24, 2014 137 Acre Reservation * Tribal government facilities * Casino, hotel, WWTP * 20 vehicles Off Reservation * 2 hotels, restaurant, 2 gas stations * 2 parking lots, business admin building * 7 acre fee-to-trust property * 1400 acre fee-to-trust Chumash Energy Overview Tribal Government Manages: Tribal government administration

  2. VANC-1 Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    Energy Project Financing » Utility Energy Service Contracts for Federal Agencies Utility Energy Service Contracts for Federal Agencies Utility Energy Service Contracts for Federal Agencies By participating in available incentive programs, federal agencies can leverage their utility budgets to implement energy, water, and renewable measures that are essential to meeting federal mandates, facility goals, and operations and maintenance objectives. Authorized by the Energy Policy Act of 1992,

  3. Wholesale electricity market design with increasing levels of renewable

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March) 1.102 1.131 1.239 1.287 1.309 1.263 2013-2016 East Coast (PADD 1) 1.101 1.124 1.238 1.281 1.300 1.255 2013-2016 New England (PADD 1A) 1.154 1.179 1.305 1.349 1.366 1.322 2013-2016 Connecticut 1.132 1.158 1.298 1.333 1.348 1.303 2013-2016 Maine 1.124 1.150 1.251 1.328 1.348 1.302 2013-2016 Massachusetts 1.190 1.214 1.349 1.389 1.406 1.364 2013-2016 New Hampshire 1.072 1.092 1.239 1.239 1.263 1.225 2013-2016 Rhode Island 1.110 1.138 1.250 1.309 1.331 1.285 2013-2016 Vermont 1.339 1.364

  4. Modeling and Analysis of Wholesale Electricity Market Design...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... NREL National Renewable Energy Laboratory O&M operations and maintenance VG variable generation iv This report is ... through their planning Web site. 2 It included generation and ...

  5. Residential electricity rates for the United States for Solcost Data Bank cities

    SciTech Connect (OSTI)

    Smith, L. E.

    1981-05-01

    Electricity rates are given for selected cities in each state, first of the Southern Solar Energy Center region and then of the rest of the US, for an average residence that uses 1000 kWh a month. (LEW)

  6. Electric trade in the United States 1994

    SciTech Connect (OSTI)

    1998-08-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1994, the wholesale trade market totaled 1.9 trillion kilowatthours, about 66% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1994 (ELECTRA), is the fifth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1994.

  7. 2007-2009 Power Rates Quarterly Updates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (PFR) Firstgov FY 2007 2009 Power Rates Quarterly Updates In BPAs 2007-2009 Wholesale Power Rate Case (WP-07), BPA agreed that it would post reports about BPAs power...

  8. Electric trade in the United States, 1996

    SciTech Connect (OSTI)

    1998-12-01

    Wholesale trade in electricity plays an important role for the US electric utility industry. Wholesale, or bulk power, transactions allow electric utilities to reduce power costs, increase power supply options, and improve reliability. In 1996, the wholesale trade market totaled 2.3 trillion kilowatthours, over 73% of total sales to ultimate consumers. This publication, Electric Trade in the United States 1996 (ELECTRA), is the sixth in a series of reports on wholesale power transactions prepared by the Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1996. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. 1 fig., 43 tabs.

  9. File:07FDDExemptWholesaleGeneratorStatusProcess.pdf | Open Energy...

    Open Energy Info (EERE)

    FDDExemptWholesaleGeneratorStatusProcess.pdf Jump to: navigation, search File File history File usage Metadata File:07FDDExemptWholesaleGeneratorStatusProcess.pdf Size of this...

  10. HEADLINE: BPA RAISES RATES TO BOLSTER FEDERAL POWER AND TRANSMISSION...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    high-voltage transmission lines that serve Northwest public utilities." For Bonneville's utility power customers, the wholesale rate increase will be an average of 9 percent...

  11. Estimating the Value of Electricity Storage Resources in Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Markets - EAC 2011 | Department of Energy Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 Estimating the Value of Electricity Storage Resources in Electricity Markets - EAC 2011 The purpose of this report is to assist the U.S. Department of Energy (DOE) in 1) establishing a framework for understanding the role electricity storage resources (storage) can play in wholesale and retail electricity markets, 2) assessing the value of electricity storage in a

  12. Rate impacts and key design elements of gas and electric utility decoupling: a comprehensive review

    SciTech Connect (OSTI)

    Lesh, Pamela G.

    2009-10-15

    Opponents of decoupling worry that customers will experience frequent and significant rate increases as a result of its adoption, but a review of 28 natural gas and 17 electric utilities suggests that decoupling adjustments are both refunds to customers as well as charges and tend to be small. (author)

  13. Northeastern Summer Electricity Market Alert

    Reports and Publications (EIA)

    2013-01-01

    The National Weather Service declared an excessive-heat warning for much of the Mid-Atlantic and northeastern United States, including major electric markets covering Philadelphia, Boston, Washington, D.C., and New York City. This report highlights the wholesale electricity market activity occurring in response to the higher-than-normal electricity demand caused by the heat wave.

  14. Impacts of Commercial Electric Utility Rate Structure Elements on the Economics of Photovoltaic Systems

    SciTech Connect (OSTI)

    Ong, S.; Denholm, P.; Doris, E.

    2010-06-01

    This analysis uses simulated building data, simulated solar photovoltaic (PV) data, and actual electric utility tariff data from 25 cities to understand better the impacts of different commercial rate structures on the value of solar PV systems. By analyzing and comparing 55 unique rate structures across the United States, this study seeks to identify the rate components that have the greatest effect on the value of PV systems. Understanding the beneficial components of utility tariffs can both assist decision makers in choosing appropriate rate structures and influence the development of rates that favor the deployment of PV systems. Results from this analysis show that a PV system's value decreases with increasing demand charges. Findings also indicate that time-of-use rate structures with peaks coincident with PV production and wide ranges between on- and off-peak prices most benefit the types of buildings and PV systems simulated. By analyzing a broad set of rate structures from across the United States, this analysis provides an insight into the range of impacts that current U.S. rate structures have on PV systems.

  15. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  16. Impacts of Western Area Power Administration`s power marketing alternatives on retail electricity rates and utility financial viability

    SciTech Connect (OSTI)

    Bodmer, E.; Fisher, R.E.; Hemphill, R.C.

    1995-03-01

    Changes in power contract terms for customers of Western`s Salt Lake City Area Office affect electricity rates for consumers of electric power in Arizona, Colorado, Nevada, New Mexico, Utah, and Wyoming. The impacts of electricity rate changes on consumers are studied by measuring impacts on the rates charged by individual utility systems, determining the average rates in regional areas, and conducting a detailed rate analysis of representative utility systems. The primary focus is an evaluation of the way retail electricity rates for Western`s preference customers vary with alternative pricing and power quantity commitment terms under Western`s long-term contracts to sell power (marketing programs). Retail rate impacts are emphasized because changes in the price of electricity are the most direct economic effect on businesses and residences arising from different Western contractual and operational policies. Retail rates are the mechanism by which changes in cost associated with Western`s contract terms are imposed on ultimate consumers, and rate changes determine the dollar level of payments for electric power incurred by the affected consumers. 41 figs., 9 tabs.

  17. The potential impacts of a competitive wholesale market in the midwest: A preliminary examination of centralized dispatch

    SciTech Connect (OSTI)

    Lesieutre, Bernard C.; Bartholomew, Emily; Eto, Joseph H.; Hale, Douglas; Luong, Thanh

    2004-07-01

    In March 2005, the Midwest Independent System Operator (MISO) will begin operating the first-ever wholesale market for electricity in the central and upper Midwestern portion of the United States. Region-wide, centralized, security-constrained, bid-based dispatch will replace the current system of decentralized dispatch by individual utilities and control areas. This report focuses on how the operation of generators may change under centralized dispatch. We analyze a stylized example of these changes by comparing a base case dispatch based on a ''snapshot'' taken from MISO's state estimator for an actual, historical dispatch (4 p.m., July 7, 2003) to a hypothetical, centralized dispatch that seeks to minimize the total system cost of production, using estimated cost data collected by the EIA. Based on these changes in dispatch, we calculate locational marginal prices, which in turn reveals the location of congestion within MISO's footprint, as well as the distribution of congestion revenues. We also consider two sensitivity scenarios that examine (1) the effect of changes in MISO membership (2003 vs. 2004 membership lists), and (2) different load and electrical data, based on a snapshot from a different date and time (1 p.m., Feb. 18, 2004). Although our analysis offers important insights into how the MISO market could operate when it opens, we do not address the question of the total benefits or costs of creating a wholesale market in the Midwest.

  18. Electric Fund (CDWR) | Open Energy Information

    Open Energy Info (EERE)

    Utility Location Yes Ownership S NERC Location WECC NERC WECC Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility Rate...

  19. Unbundling of services in a competitive wholesale market: Lessons from the UK

    SciTech Connect (OSTI)

    Evans, N.L.

    1996-03-01

    Since the beginning of operation of the electricity Pool in England and Wales in 1990, the energy and capacity components of Pool prices have only to a limited extent reflected changes in supply and demand in the wholesale market. To a greater extent, they have resulted from the specific bidding tactics adopted by dominant generators. These bidding tactics have, in turn, been influenced by the companies` contractual positions (with regard to fuel purchases and electricity sales), their relationship with the regulator, and their longer term strategic objectives. In recent years greater attention has focused on Uplift, the third component of Pool prices. Uplift represents the difference between the Pool Purchase Price (the price received by generators), and the Pool Selling Price (the price paid by suppliers). The costs of Uplift (against which most suppliers are unhedged) have increased considerably since the early years of operation of the Pool, and Uplift revenues have become an important source of profits for the major generators. In this paper the author describes the development of the three key price components in the electricity Pool in England and Wales since its establishment in 1990 and explain the reasons behind the principal price movements. The author focuses on Uplift and discusses the way in which increases in the level of Uplift have led to pressures for greater unbundling of the various Uplift components. This unbundling has been associated with moves to increase the extent to which various Pool services which contribute to Uplift are exposed to competition. The author concludes the paper with a discussion of the messages that emerge for the electricity market as a whole from England and Wales experiences with Uplift.

  20. Property:EIA/861/ActivityWholesaleMarketing | Open Energy Information

    Open Energy Info (EERE)

    engages in wholesale power marketing (Y or N) 1 References EIA Form EIA-861 Final Data File for 2008 - F861 File Layout-2008.doc Pages using the property "EIA861...

  1. Mergers, acquisitions, divestitures, and applications for market-based rates in a deregulating electric utility industry

    SciTech Connect (OSTI)

    Cox, A.J.

    1999-05-01

    In this article, the author reviews FERC's current procedures for undertaking competitive analysis. The current procedure for evaluating the competitive impact of transactions in the electric utility industry is described in Order 592, in particular Appendix A. These procedures effectively revised criteria that had been laid out in Commonwealth Edison and brought its merger policy in line with the EPAct and the provisions of Order 888. Order 592 was an attempt to provide more certainty and expedition in handling mergers. It established three criteria that had to be satisfied for a merger to be approved: Post-merger market power must be within acceptable thresholds or be satisfactorily mitigated, acceptable customer protections must be in place (to ensure that rates will not go up as a result of increased costs) and any adverse effect on regulation must be addressed. FERC states that its Order 592 Merger Policy Statement is based upon the Horizontal Merger Guidelines issued jointly by the Federal Trade Commission and the Antitrust Division Department of Justice (FTC/DOJ Merger Guidelines). While it borrows much of the language and basic concepts of the Merger Guidelines, FERC's procedures have been criticized as not following the methodology closely enough, leaving open the possibility of mistakes in market definition.

  2. Electric Utility Rate Design Study: economic theory of marginal-cost pricing and its application by electric utilities in France and Great Britain

    SciTech Connect (OSTI)

    Westfield, F.M.

    1980-08-12

    This report (1) reviews economic theory of marginal-cost pricing; and (2) examines its applications, going back to the 1960s and before, by electric utilities in France and Great Britain. An ideal pricing system for an economy is first reviewed to clarify fairly complicated ideas of economic theory for noneconomists - the industry specialist and state regulator. The concept of ideal marginal-cost pricing as applied to electricity is then developed. Next, an overview is provided of practical issues that need to be faced when the theory is implemented. Finally, the study turns to examine how the theory has actually been interpreted and applied to electricity rate design by the French and the British. Their methods of transforming theory into practice are reviewed, illustrative tariffs that incorporate their interpretation are provided.

  3. Customer-Economics of Residential Photovoltaic Systems: The Impact of High Renewable Energy Penetrations on Electricity Bill Savings with Net Metering

    Broader source: Energy.gov [DOE]

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. There is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. This article uses a production cost and capacity expansion model to project California hourly wholesale electricity market prices under a reference scenario and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, the article develops retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV are estimated for 226 California residential customers under two types of net metering, for each scenario. The article finds that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV.

  4. Configuring load as a resource for competitive electricity markets--Review of demand response programs in the U.S. and around the world

    SciTech Connect (OSTI)

    Heffner, Grayson C.

    2002-09-01

    The restructuring of regional and national electricity markets in the U.S. and around the world has been accompanied by numerous problems, including generation capacity shortages, transmission congestion, wholesale price volatility, and reduced system reliability. These problems have created new opportunities for technologies and business approaches that allow load serving entities and other aggregators to control and manage the load patterns of wholesale and retail end-users they serve. Demand Response Programs, once called Load Management, have re-emerged as an important element in the fine-tuning of newly restructured electricity markets. During the summers of 1999 and 2001 they played a vital role in stabilizing wholesale markets and providing a hedge against generation shortfalls throughout the U.S.A. Demand Response Programs include ''traditional'' capacity reservation and interruptible/curtailable rates programs as well as voluntary demand bidding programs offered by either Load Serving Entities (LSEs) or regional Independent System Operators (ISOs). The Lawrence Berkeley National Lab (LBNL) has been monitoring the development of new types of Demand Response Programs both in the U.S. and around the world. This paper provides a survey and overview of the technologies and program designs that make up these emerging and important new programs.

  5. Electric trade in the United States 1992

    SciTech Connect (OSTI)

    Not Available

    1994-09-01

    This publication, Electric Trade in the US 1992 (ELECTRA), is the fourth in a series of reports on wholesale power transactions prepared by the Electric Data Systems Branch, Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA). The electric trade data are published biennially. The first report presented 1986 data, and this report provides information on the electric power industry during 1992. The electric trade data collected and presented in this report furnish important information on the wholesale structure found within the US electric power industry. The patterns of interutility trade in the report support analyses of wholesale power transactions and provide input for a broader understanding of bulk power market issues that define the emerging national electric energy policies. The report includes information on the quantity of power purchased, sold, exchanged, and wheeled; the geographical locations of transactions and ownership classes involved; and the revenues and costs. Information on the physical transmission system are being included for the first time in this publication. Transmission data covering investor-owned electric utilities were shifted from the Financial Statistics of Selected Investor-Owned Electric Utilities to the ELECTRA publication. Some of the prominent features of this year`s report include information and data not published before on transmission lines for publicly owned utilities and transmission lines added during 1992 by investor-owned electric utilities.

  6. Customer Incentives for Energy Efficiency Through Electric and Natural Gas Rate Design

    SciTech Connect (OSTI)

    none,

    2009-09-01

    Summarizes the issues and approaches involved in motivating customers to reduce the total energy they consume through energy prices and rate design.

  7. Electricity rate effects of 150 MW shop assembled turbocharged boiler generating units

    SciTech Connect (OSTI)

    Drenker, S.; Fancher, R.

    1984-08-01

    Major upheavals in the environment in which electric utilities operate began in the 1960's. Modular construction, developed and perfected by process industry engineering firms, in conjuction with small turbocharged boiler power plants (currently under development), can respond to these forces by shortening construction time. Benefits from this approach, resulting from better matching of load growth and reducing planning horizon, can equal 15% to 60% of the capital cost of large pulverized coal plants.

  8. Overview of Western's Interconnected Bulk Electric System

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Western's Interconnected Bulk Electric System Western Area Power Admin. Objectives * Describe Western Area Power Administration Region and Facilities Overview * Explain Fundamentals of Electricity, Power Transformers and Transmission Lines * Discuss Overview of the Bulk Electric System (BES) * Objectives Review Western's Service Area Western marketing areas and offices 3 Wholesale Power Services * Markets 10,479 MW from 56 Federal hydropower projects owned by Bureau of Reclamation (BOR) , Army

  9. Regional economic impacts of changes in electricity rates resulting from Western Area Power Administration`s power marketing alternatives

    SciTech Connect (OSTI)

    Allison, T.; Griffes, P.; Edwards, B.K.

    1995-03-01

    This technical memorandum describes an analysis of regional economic impacts resulting from changes in retail electricity rates due to six power marketing programs proposed by Western Area Power Administration (Western). Regional economic impacts of changes in rates are estimated in terms of five key regional economic variables: population, gross regional product, disposable income, employment, and household income. The REMI (Regional Impact Models, Inc.) and IMPLAN (Impact Analysis for Planning) models simulate economic impacts in nine subregions in the area in which Western power is sold for the years 1993, 2000, and 2008. Estimates show that impacts on aggregate economic activity in any of the subregions or years would be minimal for three reasons. First, the utilities that buy power from Western sell only a relatively small proportion of the total electricity sold in any of the subregions. Second, reliance of Western customers on Western power is fairly low in each subregion. Finally, electricity is not a significant input cost for any industry or for households in any subregion.

  10. ELECTRIC

    Office of Legacy Management (LM)

    ELECTRIC cdrtrokArJclaeT 3 I+ &i, y$ \I &OF I*- j< t j,fci..- ir )(yiT !E-li, ( \-,v? Cl -p/4.4 RESEARCH LABORATORIES EAST PITTSBURGH, PA. 8ay 22, 1947 Mr. J. Carrel Vrilson General ?!!mager Atomic Qxzgy Commission 1901 Constitution Avenue Kashington, D. C. Dear Sir: In the course of OUT nuclenr research we are planning to study the enc:ri;y threshold anti cross section for fission. For thib program we require a s<>piAroted sample of metallic Uranium 258 of high purity. A

  11. New wholesale power market design using linked forward markets : a study for the DOE energy storage systems program.

    SciTech Connect (OSTI)

    Silva Monroy, Cesar Augusto; Loose, Verne William; Ellison, James F.; Elliott, Ryan Thomas; Byrne, Raymond Harry; Guttromson, Ross; Tesfatsion, Leigh S.

    2013-04-01

    This report proposes a reformulation of U.S. ISO/RTO-managed wholesale electric power mar- kets for improved reliability and e ciency of system operations. Current markets do not specify or compensate primary frequency response. They also unnecessarily limit the participation of new technologies in reserve markets and o er insu cient economic inducements for new capacity invest- ment. In the proposed market reformulation, energy products are represented as physically-covered rm contracts and reserve products as physically-covered call option contracts. Trading of these products is supported by a backbone of linked ISO/RTO-managed forward markets with planning horizons ranging from multiple years to minutes ahead. A principal advantage of this reformulation is that reserve needs can be speci ed in detail, and resources can o er the services for which they are best suited, without being forced to conform to rigid reserve product de nitions. This should improve the business case for electric energy storage and other emerging technologies to provide reserve. In addition, the facilitation of price discovery should help to ensure e cient energy/reserve procurement and adequate levels of new capacity investment.

  12. Factors Affecting the Rate of Penetration of Large-Scale Electricity Technologies: The Case of Carbon Sequestration

    SciTech Connect (OSTI)

    James R. McFarland; Howard J. Herzog

    2007-05-14

    This project falls under the Technology Innovation and Diffusion topic of the Integrated Assessment of Climate Change Research Program. The objective was to better understand the critical variables that affect the rate of penetration of large-scale electricity technologies in order to improve their representation in integrated assessment models. We conducted this research in six integrated tasks. In our first two tasks, we identified potential factors that affect penetration rates through discussions with modeling groups and through case studies of historical precedent. In the next three tasks, we investigated in detail three potential sets of critical factors: industrial conditions, resource conditions, and regulatory/environmental considerations. Research to assess the significance and relative importance of these factors involved the development of a microeconomic, system dynamics model of the US electric power sector. Finally, we implemented the penetration rate models in an integrated assessment model. While the focus of this effort is on carbon capture and sequestration technologies, much of the work will be applicable to other large-scale energy conversion technologies.

  13. Experimental investigation on the energy deposition and expansion rate under the electrical explosion of aluminum wire in vacuum

    SciTech Connect (OSTI)

    Shi, Zongqian; Wang, Kun; Shi, Yuanjie; Wu, Jian; Han, Ruoyu

    2015-12-28

    Experimental investigations on the electrical explosion of aluminum wire using negative polarity current in vacuum are presented. Current pulses with rise rates of 40 A/ns, 80 A/ns, and 120 A/ns are generated for investigating the influence of current rise rate on energy deposition. Experimental results show a significant increase of energy deposition into the wire before the voltage breakdown with the increase of current rise rate. The influence of wire dimension on energy deposition is investigated as well. Decreasing the wire length allows more energy to be deposited into the wire. The energy deposition of a 0.5 cm-long wire explosion is ∼2.5 times higher than the energy deposition of a 2 cm-long wire explosion. The dependence of the energy deposition on wire diameter demonstrates a maximum energy deposition of 2.7 eV/atom with a diameter of ∼18 μm. Substantial increase in energy deposition is observed in the electrical explosion of aluminum wire with polyimide coating. A laser probe is applied to construct the shadowgraphy, schlieren, and interferometry diagnostics. The morphology and expansion trajectory of exploding products are analyzed based on the shadowgram. The interference phase shift is reconstructed from the interferogram. Parallel dual wires are exploded to estimate the expansion velocity of the plasma shell.

  14. CU-CBR-1-I Wholesale Power Rate Schedule | Department of Energy

    Energy Savers [EERE]

    COOP - Personnel Accountability COOP - Personnel Accountability Documents Available for Download September 30, 2011 RingCentral User Guide This is the guide on the use of DOE's Personnel Accountability phone service called RingCentral. August 30, 2011 DOE Employee Accountability Reports These are the personnel accountability templates used to report employee status during a COOP event. December 8, 2009 Next of Kin and Emergency Contact Procedures DOE procedures for the maintenance of an

  15. SCE&G-1-E Wholesale Power Rate Schedule | Department of Energy

    Office of Environmental Management (EM)

    FCEV Systems | Department of Energy Phase 2 Awards Announced-Includes Hydrogen Production and FCEV Systems SBIR/STTR FY15 Phase 2 Awards Announced-Includes Hydrogen Production and FCEV Systems March 23, 2015 - 3:37pm Addthis The U.S. Department of Energy has announced the 2015 Small Business Innovation Research and Small Business Technology Transfer (SBIR/STTR) Phase 2 Release 1 Awards, including three Office of Science projects focusing on hydrogen production from electrolysis and hydrogen

  16. The performance of the US market for independent electricity generation

    SciTech Connect (OSTI)

    Comnes, G.A.; Kahn, E.P.; Belden, T.N. |

    1996-12-01

    The electric power industry has undergone a variety of experiments with greater reliance on market forces. A common theme is the liberalization of entry restrictions and the elimination or reduction of profit regulation. In the United States and the United Kingdom, the reliance on market forces has manifested itself via liberalized entry, competive bidding for long-term bulk power supplies, and a reduction in the use of rate-of-return regulation at the wholesale level. A sample of power purchase contracts for 26 independent power facilities is used as the basis of this assessment. Contracts were executed between 1987-94. The authors describe qualitative features of the contracts and standardize the price formulas. Because of residual price variation and an indication that buyer willingness-to-pay is highly correlated with price, the authors conclude that bulk power sold by independent power producers is a heterogeneous product, and evidence for competition in market prices is weak. 24 refs., 6 tabs.

  17. The status of electric industry restructuring

    SciTech Connect (OSTI)

    Morey, M.

    1996-12-31

    This presentation discusses current electric utility regulatory reform with a focus on the impacts of competition in the Midwest marketplace. Information and data are presented through 14 figures and 30 tables. Regulatory issues at the state and Federal levels are very briefly outlined, including reciprocity, unbundling, stranded cost recovery, and independent system operation. Graphical data on energy capacity by source, capacity additions, wholesale markets, electricity prices, and market development are also presented.

  18. Increases in electric rates in rural areas. Hearing before the Committee on Agriculture, House of Representatives, Ninety-Sixth Congress, Second Session, June 4, 1980

    SciTech Connect (OSTI)

    Not Available

    1980-01-01

    Seven witnesses representing rural electric utilities and cooperatives spoke at a June 4, 1980 hearing to discuss which inflationary factors are increasing rural electric rates. The Committee recognized that the problem is not unique to rural systems. In their testimony, the witnesses noted increasing urbanization of rural areas; the cost of generating plant construction, fuel, and operating expenses; general economic factors of inflation and high interest rates; and regulations as major contributing factors to utility requests for rate increases. The hearing record includes their testimony, additional material submitted for the record, and responses to questions from the subcommittee. (DCK)

  19. Fact #779: May 13, 2013 EPA's Top Ten Rated Vehicles List for Model Year 2013 is All Electric

    Broader source: Energy.gov [DOE]

    The 2013 model year marks the first time when the Environmental Protection Agency's (EPA's) top ten most fuel efficient vehicles list is comprised entirely of electric vehicles. Electric vehicles...

  20. EIS-0093: Bonneville Power Administration's 1982 Rate Proposal

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy's Bonneville Power Administration prepared this statement to evaluate the potential environmental impacts associated with an increase in wholesale power rates for calendar year 1982, including the effects of rate hikes in that year, the cumulative effects of rate hikes from 1979-1985, as well as alternative revenue scenarios.

  1. RFIRegReviewComments_EdisonElectricInstitute_03212011.pdf

    Office of Environmental Management (EM)

    REPORT TO CONGRESS ON COMPETITION IN WHOLESALE AND RETAIL MARKETS FOR ELECTRIC ENERGY Pursuant to Section 1815 of the Energy Policy Act of 2005 The Electric Energy Market Competition Task Force The Electric Energy Market Competition Task Force Members: J. Bruce McDonald, Department of Justice Michael Bardee, Federal Energy Regulatory Commission John H. Seesel, Federal Trade Commission David Meyer, Department of Energy Karen Larsen, Department of Agriculture Report Contributors: Robin Allen -

  2. Topic A and B Awardee: Electric Reliability Council of Texas

    Broader source: Energy.gov [DOE]

    The Electric Reliability Council of Texas (ERCOT) manages the flow of electric power to 22 million Texas customers - representing 85 percent of the state's electric load and 75 percent of the Texas land area. As the independent system operator for the region, ERCOT schedules power on an electric grid that connects 40,000 miles of transmission lines and more than 550 generation units. ERCOT also manages financial settlement for the competitive wholesale bulk-power market and administers customer switching for 6.5 million Texans in competitive choice areas.

  3. Kerr-Philpott | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Kerr-Philpott Kerr-Philpott October 1, 2015 KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott October 1, 2015 KP-AP-2-C Wholesale Power ...

  4. Electricity Market Manipulation: How Behavioral Modeling Can Help Market Design

    SciTech Connect (OSTI)

    Gallo, Giulia

    2015-12-18

    The question of how to best design electricity markets to integrate variable and uncertain renewable energy resources is becoming increasingly important as more renewable energy is added to electric power systems. Current markets were designed based on a set of assumptions that are not always valid in scenarios of high penetrations of renewables. In a future where renewables might have a larger impact on market mechanisms as well as financial outcomes, there is a need for modeling tools and power system modeling software that can provide policy makers and industry actors with more realistic representations of wholesale markets. One option includes using agent-based modeling frameworks. This paper discusses how key elements of current and future wholesale power markets can be modeled using an agent-based approach and how this approach may become a useful paradigm that researchers can employ when studying and planning for power systems of the future.

  5. DSM and electric utility competitiveness: An Illinois perspective

    SciTech Connect (OSTI)

    Jackson, P.W.

    1994-12-31

    A predominant theme in the current electric utility industry literature is that competitive forces have emerged and may become more prominent. The wholesale bulk power market is alreadly competitive, as non-utility energy service providers already have had a significant impact on that market; this trend was accelerated by the Energy Policy Act of 1992. Although competition at the retail level is much less pervasive, electric utility customers increasingly have greater choice in selecting energy services. These choices may include, depending on the customer, the ability to self-generate, switch fuels, move to a new location, or rely more heavily on demand-side management as a means of controlling electric energy use. This paper explores the subject of how demand-side management (DSM) programs, which are often developed by a utility to satisfy resource requirements as a part of its least-cost planning process, can affect the utility`s ability to compete in the energy services marketplace. In this context, the term `DSM` is used in this paper to refer to those demand-side services and programs which provide resources to the utility`s system. Depending on one`s perspective, DSM programs (so defined) can be viewed either as an enhancement to the competitive position of a utility by enabling it to provide its customers with a broader menu of energy services, simultaneously satisfying the objectives of the utility as well as those of the customers, or as a detractor to a utility`s ability to compete. In the latter case, the concern is with respect to the potential for adverse rate impacts on customers who are not participants in DSM programs. The paper consists of an identification of the pros and cons of DSM as a competitive strategy, the tradeoff which can occur between the cost impacts and rate impacts of DSM, and an examination of alternative strategies for maximizing the utilization of DSM both as a resource and as a competitive strategy.

  6. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    . Total Electricity Consumption and Expenditures, 2003" ,"All Buildings* Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  7. Informatics requirements for a restructured competitive electric power industry

    SciTech Connect (OSTI)

    Pickle, S.; Marnay, C.; Olken, F.

    1996-08-01

    The electric power industry in the United States is undergoing a slow but nonetheless dramatic transformation. It is a transformation driven by technology, economics, and politics; one that will move the industry from its traditional mode of centralized system operations and regulated rates guaranteeing long-run cost recovery, to decentralized investment and operational decisionmaking and to customer access to true spot market prices. This transformation will revolutionize the technical, procedural, and informational requirements of the industry. A major milestone in this process occurred on December 20, 1995, when the California Public Utilities Commission (CPUC) approved its long-awaited electric utility industry restructuring decision. The decision directed the three major California investor-owned utilities to reorganize themselves by the beginning of 1998 into a supply pool, at the same time selling up to a half of their thermal generating plants. Generation will be bid into this pool and will be dispatched by an independent system operator. The dispatch could potentially involve bidders not only from California but from throughout western North America and include every conceivable generating technology and scale of operation. At the same time, large customers and aggregated customer groups will be able to contract independently for their supply and the utilities will be required to offer a real-time pricing tariff based on the pool price to all their customers, including residential. In related proceedings concerning competitive wholesale power markets, the Federal Energy Regulatory Commission (FERC) has recognized that real-time information flows between buyers and sellers are essential to efficient equitable market operation. The purpose of this meeting was to hold discussions on the information technologies that will be needed in the new, deregulated electric power industry.

  8. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    End Use: June 2016 Retail rates/prices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based primarily on rates approved by state regulators. However, a number of states have allowed retail marketers to compete to serve customers and these competitive retail suppliers offer electricity at a market-based price. EIA does not directly collect retail electricity rates or prices. However, using data collected on

  9. WP-07-A-05A, Appendix A to the 2007 Supplemental Wholesale Power...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (rate) FY Fiscal Year (Oct-Sep) GAAP Generally Accepted Accounting Principles GEP Green Energy Premium GRSPs General Rate Schedule Provisions GSP Generation System Peak GTA...

  10. Using Electricity",,,"Electricity Consumption",,,"Electricity...

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Total Electricity Consumption and Expenditures for All Buildings, 2003" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of...

  11. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    C9. Total Electricity Consumption and Expenditures, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number of Buildings...

  12. Electricity",,,"Electricity Consumption",,,"Electricity Expenditures...

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Total Electricity Consumption and Expenditures by Census Division, 1999" ,"All Buildings Using Electricity",,,"Electricity Consumption",,,"Electricity Expenditures" ,"Number...

  13. Facilitating Wind Development: The Importance of Electric Industry Structure

    SciTech Connect (OSTI)

    Kirby, B.; Milligan, M.

    2008-05-01

    This paper evaluates which wholesale elecricity market-structure characteristics best accommodate wind energy development.

  14. Electric power monthly. June 1966 with data for March 1996

    SciTech Connect (OSTI)

    1996-06-01

    This publication presents monthly electricity statistics for a wide audience including Congress, Federal and state agencies, the electric utility industry, and the general public, with the purpose of providing energy decisionmakers with accurate, timely information that may be used in forming various perspectives on electric issues that lie ahead. EIA collected the information in this report to fulfill its data collection and dissemination responsibilities (Public Law 93-275). A section on upgrading transmission capacity for wholesale electric power trade is included. The tables include US electric power at a glance, utility net generation, utility consumption of fossil fuels, fossil-fuel stocks/receipts/cost at utilities, utility sales/revenue/revenue per kWh, and monthly plant aggregates.

  15. Updated Miscellaneous Electricity Loads and Appliance Energy Usage Profiles for Use in Home Energy Ratings, the Building America Benchmark Procedures and Related Calculations. Revised

    SciTech Connect (OSTI)

    Parker, Danny; Fairey, Philip; Hendron, Robert

    2011-06-10

    This report discusses how TIAX data, supplemented by the 2005 Residential Energy Consumption Survey (RECS)public use data set was used to make significant improvements in the prediction metods for estimating energy use of miscellaneous electric loads.

  16. Effects of Temporal Wind Patterns on the Value of Wind-Generated Electricity in California and the Northwest

    SciTech Connect (OSTI)

    Wiser, Ryan H; Wiser, Ryan H; Fripp, Matthias

    2008-05-01

    Wind power production is variable, but also has diurnal and seasonal patterns. These patterns differ between sites, potentially making electric power from some wind sites more valuable for meeting customer loads or selling in wholesale power markets. This paper investigates whether the timing of wind significantly affects the value of electricity from sites in California and the Northwestern United States. We use both measured and modeled wind data and estimate the time-varying value of wind power with both financial and load-based metrics. We find that the potential difference in wholesale market value between better-correlated and poorly correlated wind sites is modest, on the order of 5-10 percent. A load-based metric, power production during the top 10 percent of peak load hours, varies more strongly between sites, suggesting that the capacity value of different wind projects could vary by as much as 50 percent based on the timing of wind alone.

  17. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    SciTech Connect (OSTI)

    Fuller, Jason C.; Parker, Graham B.

    2012-12-31

    This report is the second in a series of three reports describing the potential of GE’s DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation. In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.

  18. Market power analysis in the EEX electricity market : an agent-based simulation approach.

    SciTech Connect (OSTI)

    Wang, J.; Botterud, A.; Conzelmann, G.; Koritarov, V.; Decision and Information Sciences

    2008-01-01

    In this paper, an agent-based modeling and simulation (ABMS) approach is used to model the German wholesale electricity market. The spot market prices in the European Energy Exchange (EEX) are studied as the wholesale market prices. Each participant in the market is modeled as an individual rationality-bounded agent whose objective is to maximize its own profit. By simulating the market clearing process, the interaction among agents is captured. The market clearing price formed by agentspsila production cost bidding is regarded as the reference marginal cost. The gap between the marginal cost and the real market price is measured as an indicator of possible market power exertion. Various bidding strategies such as physical withholding and economic withholding can be simulated to represent strategic bidding behaviors of the market participants. The preliminary simulation results show that some generation companies (GenCos) are in the position of exerting market power by strategic bidding.

  19. Estimating electricity storage power rating and discharge duration for utility transmission and distribution deferral :a study for the DOE energy storage program.

    SciTech Connect (OSTI)

    Eyer, James M. (Distributed Utility Associates, Livermore, CA); Butler, Paul Charles; Iannucci, Joseph J., Jr.

    2005-11-01

    This report describes a methodology for estimating the power and energy capacities for electricity energy storage systems that can be used to defer costly upgrades to fully overloaded, or nearly overloaded, transmission and distribution (T&D) nodes. This ''sizing'' methodology may be used to estimate the amount of storage needed so that T&D upgrades may be deferred for one year. The same methodology can also be used to estimate the characteristics of storage needed for subsequent years of deferral.

  20. Direct participation of electrical loads in the California independent system operator markets during the Summer of 2000

    SciTech Connect (OSTI)

    Marnay, Chris; Hamachi, Kristina S.; Khavkin, Mark; Siddiqui, Afzal S.

    2001-04-01

    California's restructured electricity markets opened on 1 April 1998. The former investor-owned utilities were functionally divided into generation, transmission, and distribution activities, all of their gas-fired generating capacity was divested, and the retail market was opened to competition. To ensure that small customers shared in the expected benefit of lower prices, the enabling legislation mandated a 10% rate cut for all customers, which was implemented in a simplistic way that fossilized 1996 tariff structures. Rising fuel and environmental compliance costs, together with a reduced ability to import electricity, numerous plant outages, and exercise of market power by generators drove up wholesale electricity prices steeply in 2000, while retail tariffs remained unchanged. One of the distribution/supply companies entered bankruptcy in April 2001, and another was insolvent. During this period, two sets of interruptible load programs were in place, longstanding ones organized as special tariffs by the distribution/supply companies and hastily established ones run directly by the California Independent System Operator (CAISO). The distribution/supply company programs were effective at reducing load during the summer of 2000, but because of the high frequency of outages required by a system on the brink of failure, customer response declined and many left the tariff. The CAISO programs failed to attract enough participation to make a significant difference to the California supply demand imbalance. The poor performance of direct load participation in California's markets reinforces the argument for accurate pricing of electricity as a stimulus to energy efficiency investment and as a constraint on market volatility.

  1. Electric power annual 1998. Volume 1

    SciTech Connect (OSTI)

    1999-04-01

    The purpose of this report, Electric Power Annual 1998 Volume 1 (EPAVI), is to provide a comprehensive overview of the electric power industry during the most recent year for which data have been collected, with an emphasis on the major changes that occurred. In response to the changes of 1998, this report has been expanded in scope. It begins with a general review of the year and incorporates new data on nonutility capacity and generation, transmission information, futures prices from the Commodity futures Trading commission, and wholesale spot market prices from the pennsylvania-new Jersey-Maryland Independent System Operator and the California Power Exchange. Electric utility statistics at the Census division and State levels on generation, fuel consumption, stocks, delivered cost of fossil fuels, sales to ultimate customers, average revenue per kilowatthour of electricity sold, and revenues from those retail sales can be found in Appendix A. The EPAVI is intended for a wide audience, including Congress, Federal and State agencies, the electric power industry, and the general public.

  2. Electric Vehicles

    Broader source: Energy.gov [DOE]

    This album contains a variety of all-electric, plug-in hybrid electric and fuel cell electric vehicles. For a full list of all electric vehicles visit the EV Everywhere website.

  3. Electricity prices in a competitive environment: Marginal cost pricing of generation services and financial status of electric utilities. A preliminary analysis through 2015

    SciTech Connect (OSTI)

    1997-08-01

    The emergence of competitive markets for electricity generation services is changing the way that electricity is and will be priced in the United States. This report presents the results of an analysis that focuses on two questions: (1) How are prices for competitive generation services likely to differ from regulated prices if competitive prices are based on marginal costs rather than regulated {open_quotes}cost-of-service{close_quotes} pricing? (2) What impacts will the competitive pricing of generation services (based on marginal costs) have on electricity consumption patterns, production costs, and the financial integrity patterns, production costs, and the financial integrity of electricity suppliers? This study is not intended to be a cost-benefit analysis of wholesale or retail competition, nor does this report include an analysis of the macroeconomic impacts of competitive electricity prices.

  4. UAI-96R Rate Adjustment (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    adjustment was to correct the level of the UAI to reflect the development of a robust wholesale power market and its associated price volatility. After final approval by the...

  5. Louisville Gas & Electric Co | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes...

  6. Glades Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes This article is a stub. You can help OpenEI by...

  7. Wisconsin Electric Power Co | Open Energy Information

    Open Energy Info (EERE)

    Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes...

  8. Arkansas Electric Coop Corp | Open Energy Information

    Open Energy Info (EERE)

    Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  9. Seminole Electric Cooperative Inc | Open Energy Information

    Open Energy Info (EERE)

    Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  10. Electricity Advisory Committee Meeting Presentations March 2016...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    High Penetration of Energy Storage Working Group - Chris Shelton Biennial Storage Assessment - Ramteen Sioshansi Panel- Interactions Between Public Policy and Wholesale Market ...

  11. Conserving Electric Energy

    Broader source: Energy.gov [DOE]

    A classroom activity whereby students participate in two experiments in which they gain an appreciation for their dependency on electricity, and learn how regulating the rate of energy consumption...

  12. Activity: Conserving Electric Energy

    Broader source: Energy.gov [DOE]

    Students participate in two experiments in which they (1) gain an appreciation for their dependency on electricity and (2) learn how regulating the rate of energy consumption makes the energy...

  13. Florida's electric industry and solar electric technologies

    SciTech Connect (OSTI)

    Camejo, N.

    1983-12-01

    The Florida Electric Industry is in a process of diversifying its generation technology and its fuel mix. This is being done in an effort to reduce oil consumption, which in 1981 accounted for 46.5% of the electric generation by fuel type. This does not compare well with the rest of the nation where oil use is lower. New coal and nuclear units are coming on line, and probably more will be built in the near future. However, eventhough conservation efforts may delay their construction, new power plants will have to be built to accomodate the growing demand for electricity. Other alternatives being considered are renewable energy resources. The purpose of this paper is to present the results of a research project in which 10 electric utilities in Florida and the Florida Electric Power Coordinating Group rated six Solar Electric options. The Solar Electric options considered are: 1) Wind, 2) P.V., 3) Solar thermal-electric, 4) OTEC, 5) Ocean current, and 6) Biomass. The questionaire involved rating the economic and technical feasibility, as well as, the potential environmental impact of these options in Florida. It also involved rating the difficulty in overcoming institutional barriers and assessing the status of each option. A copy of the questionaire is included after the references. The combined capacity of the participating utilities represent over 90% of the total generating capacity in Florida. A list of the participating utilities is also included. This research was done in partial fulfillment for the Mater's of Science Degree in Coastal Zone Management. This paper is complementary to another paper (in these condensed conference proceedings) titled COASTAL ZONE ENERGY MANAGEMENT: A multidisciplinary approach for the integration of Solar Electric Systems with Florida's power generation system, which present a summary of the Master's thesis.

  14. Construction, Qualification, and Low Rate Production Start-up...

    Broader source: Energy.gov (indexed) [DOE]

    More Documents & Publications Construction, Qualification, and Low Rate Production ... 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate ...

  15. Construction, Qualification, and Low Rate Production Start-up...

    Broader source: Energy.gov (indexed) [DOE]

    KB) More Documents & Publications Construction, Qualification, and Low Rate ... 100,000 Electric Drive Vehicles Construction, Qualification, and Low Rate ...

  16. Rate Information

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  17. Exhibit B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRD-15 1 WHOLESALE RATES FOR HYDRO POWER AND ENERGY SOLD TO SAM RAYBURN DAM ELECTRIC COOPERATIVE, INC. (CONTRACT NO. DE-PM75-92SW00215) 1 Supersedes Rate Schedule SRD-13 Effective: ...

  18. Exhibit B

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SRD-13 1 WHOLESALE RATES FOR HYDRO POWER AND ENERGY SOLD TO SAM RAYBURN DAM ELECTRIC COOPERATIVE, INC. (CONTRACT NO. DE-PM75-92SW00215) 1 Supersedes Rate Schedule SRD-08 Effective:...

  19. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company Information"

    U.S. Energy Information Administration (EIA) Indexed Site

    ,"Table 6. Existing and Proposed High-voltage Transmission Line Additions Filed For Calendar Year 2004, by North American Electric Reliability Council, 2004 Through 2009" ,"(Various)",,,,,,,,,,,," " ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company

  20. ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company Information"

    U.S. Energy Information Administration (EIA) Indexed Site

    Covering Calendar Year 2005, by North American Electric Reliability Council, 2006 Through 2011" ,"(Various)" ,"Geographic Area",,,"Voltage",,,"Capacity Rating (MVa)","In-Service Date","Electrical Connection Locations",,"Line Information",,,,"Conductor Characteristics",,,"Circuits",,"Company Information" ,"Country - with Total (T) for sub-regions","NERC Region"," NERC

  1. Unbundling of electric power and energy services

    SciTech Connect (OSTI)

    Keith, D.M.; Lewis, B.R.

    1996-12-31

    The world-wide movement to restructure the electric and power and energy industry is now well underway in the United States. The most recent thrust came this year, with the Federal Energy Regulatory Commission`s (FERC`s) issuance on April 24th of new regulations designed to open the interconnected transmission grid to all qualified wholesale users. Other movements have been in the many forms of earlier statutes and regulations promulgated in 1978 to make more efficient use of fuels burned; utility diversification efforts; utility creation of affiliate and subsidiary organizations and operations; introduction into the market of private non-utility power developers; utilities obtaining clearance from the Securities and Exchange Commission (SEC) to venture in international markets; massive mergers and acquisitions; bankruptcies; the entry into the market of nonutility power marketers and brokers, including entities from the gas and securities industries not previously involved in the electric power and energy industry; additional congressional consideration of outright repeal of Holding Company legislation dating back to 1935; some states entering into an era of abandoning the control past in favor of complete re-regulation of the industry on the basis of performance; the coming of Independent System Operators (ISO`s), Regional Transmission Groups (RTG`s), and the possible coming of Capacity Reservation Tariffs (CRT`s), to name a few.

  2. National Utility Rate Database: Preprint

    SciTech Connect (OSTI)

    Ong, S.; McKeel, R.

    2012-08-01

    When modeling solar energy technologies and other distributed energy systems, using high-quality expansive electricity rates is essential. The National Renewable Energy Laboratory (NREL) developed a utility rate platform for entering, storing, updating, and accessing a large collection of utility rates from around the United States. This utility rate platform lives on the Open Energy Information (OpenEI) website, OpenEI.org, allowing the data to be programmatically accessed from a web browser, using an application programming interface (API). The semantic-based utility rate platform currently has record of 1,885 utility rates and covers over 85% of the electricity consumption in the United States.

  3. Electric vehicles

    SciTech Connect (OSTI)

    Not Available

    1990-03-01

    Quiet, clean, and efficient, electric vehicles (EVs) may someday become a practical mode of transportation for the general public. Electric vehicles can provide many advantages for the nation's environment and energy supply because they run on electricity, which can be produced from many sources of energy such as coal, natural gas, uranium, and hydropower. These vehicles offer fuel versatility to the transportation sector, which depends almost solely on oil for its energy needs. Electric vehicles are any mode of transportation operated by a motor that receives electricity from a battery or fuel cell. EVs come in all shapes and sizes and may be used for different tasks. Some EVs are small and simple, such as golf carts and electric wheel chairs. Others are larger and more complex, such as automobile and vans. Some EVs, such as fork lifts, are used in industries. In this fact sheet, we will discuss mostly automobiles and vans. There are also variations on electric vehicles, such as hybrid vehicles and solar-powered vehicles. Hybrid vehicles use electricity as their primary source of energy, however, they also use a backup source of energy, such as gasoline, methanol or ethanol. Solar-powered vehicles are electric vehicles that use photovoltaic cells (cells that convert solar energy to electricity) rather than utility-supplied electricity to recharge the batteries. This paper discusses these concepts.

  4. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains bulleted highlights at the top and key indicators in a table and graphics - data you might be interested in at a glance. The right column is used for navigation. End-Use: Retail Rates/Prices and Consumption The second section presents statistics on end-use: retail rates/prices and consumption of electricity. End-use data

  5. Utility Rate | OpenEI Community

    Open Energy Info (EERE)

    Rate Home > Utility Rate > Posts by term > Utility Rate Content Group Activity By term Q & A Feeds Term: electric load data Type Term Title Author Replies Last Post sort icon...

  6. Electric Vehicles

    ScienceCinema (OSTI)

    Ozpineci, Burak

    2014-07-23

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  7. Electrical Engineer

    Broader source: Energy.gov [DOE]

    Transmission Field Services is responsible for field switching operation and maintenance of Bonneville Power Administration's high-voltage electrical transmission system to provide safe, reliable,...

  8. Electrical Safety

    Office of Environmental Management (EM)

    Handbook that was originally issued in 1998, and revised in 2004. DOE handbooks are ... the National Fire Protection Association (NFPA) 70, the National Electrical Code (NEC), ...

  9. Electric Vehicles

    SciTech Connect (OSTI)

    Ozpineci, Burak

    2014-05-02

    Burak Ozpineci sees a future where electric vehicles charge while we drive them down the road, thanks in part to research under way at ORNL.

  10. KRQE News: New Mexico scientists develop tiny, artificial lung

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1-C Wholesale Power Rate Schedule KP-AP-1-C Wholesale Power Rate Schedule Area: American Electric Power System: Kerr-Philpott This rate schedule shall be available to public bodies and cooperatives (any one of whom is hereinafter called the Customer) in Virginia to whom power may be transmitted and scheduled pursuant to contracts between the Government, American Electric Power Service Corporation (hereinafter called the Company), the Company's Transmission Operator, currently PJM Interconnection

  11. Antitrust policy in the new electricity industry

    SciTech Connect (OSTI)

    Pierce, R.J. Jr.

    1996-12-31

    The Federal Energy Regulatory Commission should encourage all potential consolidations of transmission assets. It should defer to the position of state Public Utility Commissions with respect to all proposed consolidations of distribution assets. It should take a conservative initial attitude toward all proposed changes in the structure of the wholesale market, both proposed consolidations and potential coerced divestitures. It should eliminate price controls on virtually all wholesales on an experimental basis and use the data made available by that experiment as the basis for a more refined set of policies applicable to the structure of the wholesale market in the dramatically new environment that it is in the process of creating.

  12. Roles of electricity: Electric steelmaking

    SciTech Connect (OSTI)

    Burwell, C.C.

    1986-07-01

    Electric steel production from scrap metal continues to grow both in total quantity and in market share. The economics of electric-steel production in general, and of electric minimills in particular, seem clearly established. The trend towards electric steelmaking provides significant economic and competitive advantages for producers and important overall economic, environmental, and energy advantages for the United States at large. Conversion to electric steelmaking offers up to a 4-to-1 advantage in terms of the overall energy used to produce a ton of steel, and s similar savings in energy cost for the producer. The amount of old scrap used to produce a ton of steel has doubled since 1967 because of the use of electric furnaces.

  13. Electric machine

    DOE Patents [OSTI]

    El-Refaie, Ayman Mohamed Fawzi; Reddy, Patel Bhageerath

    2012-07-17

    An interior permanent magnet electric machine is disclosed. The interior permanent magnet electric machine comprises a rotor comprising a plurality of radially placed magnets each having a proximal end and a distal end, wherein each magnet comprises a plurality of magnetic segments and at least one magnetic segment towards the distal end comprises a high resistivity magnetic material.

  14. Electric avenues

    SciTech Connect (OSTI)

    Stone, P.; Chang, A.

    1994-12-31

    Highly efficient electric drive technology developed originally for defense applications is being applied to the development of all electric shuttle buses for the San Jose International Airport. An innovative opportunity charging system using induction chargers will be incorporated to extend operation hours. The project, if successful, is expected to reduce pollution at the airport and generate jobs for displaced defense workers.

  15. A Review of Recent RTO Benefit-Cost Studies: Toward MoreComprehensive Assessments of FERC Electricity RestructuringPolicies

    SciTech Connect (OSTI)

    Eto, Joseph H.; Lesieutre, Bernard C.

    2005-12-01

    During the past three years, government and private organizations have issued more than a dozen studies of the benefits and costs of Regional Transmission Organizations (RTOs). Most of these studies have focused on benefits that can be readily estimated using traditional production-cost simulation techniques, which compare the cost of centralized dispatch under an RTO to dispatch in the absence of an RTO, and on costs associated with RTO start-up and operation. Taken as a whole, it is difficult to draw definitive conclusions from these studies because they have not examined potentially much larger benefits (and costs) resulting from the impacts of RTOs on reliability management, generation and transmission investment and operation, and wholesale electricity market operation. This report: (1) Describes the history of benefit-cost analysis of FERC electricity restructuring policies; (2)Reviews current practice by analyzing 11 RTO benefit-cost studies that were published between 2002 and 2004 and makes recommendations to improve the documentation of data and methods and the presentation of findings in future studies that focus primarily on estimating short-run economic impacts; and (3) Reviews important impacts of FERC policies that have been overlooked or incompletely treated by recent RTO benefit-cost studies and the challenges to crafting more comprehensive assessments of these impacts based on actual performance, including impacts on reliability management, generation and transmission investment and operation, and wholesale electricity market operation.

  16. Factors affecting expanded electricity trade in North America

    SciTech Connect (OSTI)

    Hill, L.J.

    1994-01-01

    The authors explore factors that affect electricity trade between enterprises in the US and Canada and the US and Mexico. They look to those underlying policy and institutional factors that affect the relative costs of producing electricity in the three countries. In particular, they consider six factors that appear to have a significant impact on electricity trade in North America: differences in the types of economic regulation of power leading to differences in cost recovery for wholesale and retail power and wheeling charges; changing regulatory attitudes, placing more emphasis on demand-side management and environmental concerns; differences in energy and economic policies; differences in national and subnational environmental policies; changing organization of electric power industries which may foster uncertainty, change historical relationships, and provide other potentially important sources of power for distribution utilities; and differences in the ability of enterprises to gain access to electric power markets because of restrictions placed on transmission access. In Section 2, the authors discuss the regulation of electricity trade in North America and provide an overview of the recent trading experience for electricity between Canada and the US and between Mexico and the US, including the volume of that trade over the past decade and existing transmission capacity between regions of the three countries. In Section 3, they look at the benefits that accrue to trading counties and what those benefits are likely to be for the three countries. The discussion in Section 4 centers on the relevant provisions of the Canada Free Trade Agreement and the proposed North American Free Trade Agreement. In Section 5, they set the stage for the discussion of policy and institutional differences presented in Section 6 by outlining differences in the organization of the electric power sectors of Canada, the US, and Mexico. The study is synthesized in Section 7.

  17. Rate Schedules

    Broader source: Energy.gov [DOE]

    One of the major responsibilities of Southeastern is to design, formulate, and justify rate schedules. Repayment studies prepared by the agency determine revenue requirements and appropriate rate...

  18. Electrical connector

    DOE Patents [OSTI]

    Dilliner, Jennifer L.; Baker, Thomas M.; Akasam, Sivaprasad; Hoff, Brian D.

    2006-11-21

    An electrical connector includes a female component having one or more receptacles, a first test receptacle, and a second test receptacle. The electrical connector also includes a male component having one or more terminals configured to engage the one or more receptacles, a first test pin configured to engage the first test receptacle, and a second test pin configured to engage the second test receptacle. The first test receptacle is electrically connected to the second test receptacle, and at least one of the first test pin and the second test pin is shorter in length than the one or more terminals.

  19. Electricity Monthly Update - Energy Information Administration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the month. November wholesale natural gas prices in New York City (9.25MMBtu) and New England (10.74MMBtu) increased significantly from the previous month as the country...

  20. People's Electric Corporation | Open Energy Information

    Open Energy Info (EERE)

    861 Data Utility Id 14788 Utility Location Yes Ownership W NERC Location SPP Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  1. Connecticut Municipal Electric Energy Cooperative | Open Energy...

    Open Energy Info (EERE)

    NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it....

  2. Dublin Municipal Electric Util | Open Energy Information

    Open Energy Info (EERE)

    Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  3. Electrical Safety

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Fig. 1-1. Flow down of Electrical AHJ and worker responsibility. 3 DOE-HDBK-1092-2013 2.0 ... When equipment contains storage batteries, workers should be protected from the various ...

  4. Rural electric cooperatives and the cost structure of the electric power industry: A multiproduct analysis

    SciTech Connect (OSTI)

    Berry, D.M.

    1992-01-01

    Since 1935, the federal government of the United States has administered a program designed to make electricity available to rural Americans. This dissertation traces the history of the rural electrification program, as well as its costs. While the Congress intended to simply provide help in building the capital structure of rural electric distribution systems, the program continues to flourish some 35 years after these systems first fully covered the countryside. Once the rural distribution systems were built, the government began to provide cooperatives with billions of dollars in subsidized loans for the generation of electric power. Although this program costs the taxpayers nearly $1 billion per year, no one has ever tested its efficacy. The coops' owner/members do not have the right to trade their individual ownership shares. The RECs do not fully exploit the scale and scope economies observed in the investor-owned sector of this industry. This dissertation compares the relative productive efficiencies of the RECs and the investor-owned electric utilities (IOUs) in the United States. Using multiproduct translog cost functions, the estimated costs of cooperatives are compared to those of IOUs in providing identical output bundles. Three separate products are considered as outputs: (1) wholesale power; (2) power sold to large industrial customers; and (3) power sold to residential and commercial customers. It is estimated that, were the RECs forced to pay market prices for their inputs, their costs would exceed those incurred by the IOUs by about 24 percent. Several policy recommendations are made: (1) the RECs should be converted to stockholder-owned, tax-paying corporations; (2) the government should discontinue its subsidized loan program; (3) the government should sell its hydroelectric power at market prices, nullifying the current preference given to cooperatives and municipal distributors in the purchase of this currently underpriced power.

  5. Electric generator

    DOE Patents [OSTI]

    Foster, Jr., John S.; Wilson, James R.; McDonald, Jr., Charles A.

    1983-01-01

    1. In an electrical energy generator, the combination comprising a first elongated annular electrical current conductor having at least one bare surface extending longitudinally and facing radially inwards therein, a second elongated annular electrical current conductor disposed coaxially within said first conductor and having an outer bare surface area extending longitudinally and facing said bare surface of said first conductor, the contiguous coaxial areas of said first and second conductors defining an inductive element, means for applying an electrical current to at least one of said conductors for generating a magnetic field encompassing said inductive element, and explosive charge means disposed concentrically with respect to said conductors including at least the area of said inductive element, said explosive charge means including means disposed to initiate an explosive wave front in said explosive advancing longitudinally along said inductive element, said wave front being effective to progressively deform at least one of said conductors to bring said bare surfaces thereof into electrically conductive contact to progressively reduce the inductance of the inductive element defined by said conductors and transferring explosive energy to said magnetic field effective to generate an electrical potential between undeformed portions of said conductors ahead of said explosive wave front.

  6. DOE National Power Grid recommendations: unreliable guides for the future organization of the bulk electric-power industry

    SciTech Connect (OSTI)

    Miller, J.T. Jr.

    1980-01-01

    The bulk electric power supply industry needs leadership to meet its problems effectively, economically, and with the least injury to the environment during the rest of the century. The industry's pluralistic character, which is one of its strengths, and the range of the federal antitrust laws have blunted industry response to the challenge of supplying adequate bulk power. DOE failed to recognize the leadership vacuum and to use the opportunity provided by its Final Report on the National Power Grid Study to adopt a more effective role. DOE can still recover and urge Congress to pass the necessary enabling legislation to establish a regional bulk power supply corporation that would generate and transmit electric power for sale to federally chartered, privately owned electric utilities having no corporate links to their wholesale customers. 87 references.

  7. GOODS CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    GOODS CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone (510) 486-4506 Email dtchen@lbl.gov Photographic Equipment and Supplies Merchant Wholesalers 423410 Computer and Computer Peripheral Equipment and Software Merchant Wholesalers 423430 Other Commercial Equipment Merchant Wholesalers 423440 Other Professional Equipment and Supplies Merchant Wholesalers 423490 Electrical Apparatus and Equipment, Wiring Supplies, and Related Equipment Merchant Wholesalers 423610 Electrical and

  8. Electric sales and revenue: 1993

    SciTech Connect (OSTI)

    Not Available

    1995-01-01

    The Electric Sales and Revenue is prepared by the Survey Management Division, Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. This publication provides information about sales of electricity, its associated revenue, and the average revenue per kilowatthour sold to residential, commercial, industrial, and other consumers throughout the United States. The sales, revenue, and average revenue per kilowatthour data provided in the Electric Sales and Revenue are based on annual data reported by electric utilities for the calendar year ending December 31, 1993. Operating revenue includes energy charges, demand charges, consumer service charges, environmental surcharges, fuel adjustments, and other miscellaneous charges. The revenue does not include taxes, such as sales and excise taxes, that are assessed on the consumer and collected through the utility. Average revenue per kilowatthour is defined as the cost per unit of electricity sold and is calculated by dividing retail sales into the associated electric revenue. Because electric rates vary based on energy usage, average revenue per kilowatthour are affected by changes in the volume of sales. The sales of electricity, associated revenue, and average revenue per kilowatthour data provided in this report are presented at the national, Census division, State, and electric utility levels.

  9. Electrically powered hand tool

    DOE Patents [OSTI]

    Myers, Kurt S.; Reed, Teddy R.

    2007-01-16

    An electrically powered hand tool is described and which includes a three phase electrical motor having a plurality of poles; an electrical motor drive electrically coupled with the three phase electrical motor; and a source of electrical power which is converted to greater than about 208 volts three-phase and which is electrically coupled with the electrical motor drive.

  10. Liberalization of the Japanese electricity market

    SciTech Connect (OSTI)

    Shimazaki, Masaki

    1994-12-31

    The Japanese electricity industry is shackled by more regulations than other domestic industries. Electricity liberalization, however, is one of the few areas in which discussion of deregulation has been making steady progress although the outcome of deregulation has become uncertain due to the turbulence of politics and bureaucratic resistance. This study examines the liberalization of the Japanese electricity market focusing on the characteristics of (1) entering the electricity generation business, (2) access to power companies` transmission facilities, (3) beginning an electricity retail business, and (4) reforming the electricity rating system. The article follows three themes. First, the background of the Japanese electricity liberalization can be explained from economic, political, and bureaucratic points of view. Second, international electricity price comparison should not only depend on exchange rates but should also take other factors into account. Finally, liberalization will increase fossil fuel consumption, which could have unwelcome consequences.

  11. Hybrid electric vehicle power management system

    SciTech Connect (OSTI)

    Bissontz, Jay E.

    2015-08-25

    Level voltage levels/states of charge are maintained among a plurality of high voltage DC electrical storage devices/traction battery packs that are arrayed in series to support operation of a hybrid electric vehicle drive train. Each high voltage DC electrical storage device supports a high voltage power bus, to which at least one controllable load is connected, and at least a first lower voltage level electrical distribution system. The rate of power transfer from the high voltage DC electrical storage devices to the at least first lower voltage electrical distribution system is controlled by DC-DC converters.

  12. Solar energy electric generating system

    SciTech Connect (OSTI)

    Anthony, J.

    1988-03-01

    A solar energy electric generating system is described comprising in combination: (a) an array of photocells; (b) means for gating the electrical direct current energy produced by the array of photocells; (c) means for transforming the electrical direct current energy at an output of the array of photocells whereby an alternating current at the output of the transforming means is produced, and which is controlled by a control device for controlling the rate and duty cycle of the gating means; and (d) a photosensitive sampler which samples light incident upon the photocell array and outputs a proportional signal.

  13. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Contact Information and Staff The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S....

  14. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics,...

  15. SBOT CALIFORNIA LAWRENCE BERKELEY LAB POC David Chen Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Equipment Merchant Wholesalers 423610 Electrical and Electronic Appliance, Television, and Radio Set Merchant Wholesalers 423620 Other Electronic Parts and Equipment...

  16. SBOT NEW YORK BROOKHAVEN LAB POC Jill Clough-Johnston Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Equipment Merchant Wholesalers 423610 Electrical and Electronic Appliance, Television, and Radio Set Merchant Wholesalers 423620 Other Electronic Parts and Equipment...

  17. SBOT IOWA AMES LAB POC Lisa Rodgers Telephone

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Related Equipment Merchant Wholesalers 423610 Electrical and Electronic Appliance, Television, and Radio Set Merchant Wholesalers 423620 Other Electronic Parts and Equipment...

  18. Electrical machine

    DOE Patents [OSTI]

    De Bock, Hendrik Pieter Jacobus; Alexander, James Pellegrino; El-Refaie, Ayman Mohamed Fawzi; Gerstler, William Dwight; Shah, Manoj Ramprasad; Shen, Xiaochun

    2016-06-21

    An apparatus, such as an electrical machine, is provided. The apparatus can include a rotor defining a rotor bore and a conduit disposed in and extending axially along the rotor bore. The conduit can have an annular conduit body defining a plurality of orifices disposed axially along the conduit and extending through the conduit body. The rotor can have an inner wall that at least partially defines the rotor bore. The orifices can extend through the conduit body along respective orifice directions, and the rotor and conduit can be configured to provide a line of sight along the orifice direction from the respective orifices to the inner wall.

  19. Electrical receptacle

    DOE Patents [OSTI]

    Leong, Robert

    1993-01-01

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  20. Electrical receptacle

    DOE Patents [OSTI]

    Leong, R.

    1993-06-22

    The invention is a receptacle for a three prong electrical plug which has either a tubular or U-shaped grounding prong. The inventive receptacle has a grounding prong socket which is sufficiently spacious to prevent the socket from significantly stretching when a larger, U-shaped grounding prong is inserted into the socket, and having two ridges to allow a snug fit when a smaller tubular shape grounding prong is inserted into the socket. The two ridges are made to prevent the socket from expanding when either the U-shaped grounding prong or the tubular grounding prong is inserted.

  1. Electrically conductive proppant and methods for detecting, locating and characterizing the electrically conductive proppant

    DOE Patents [OSTI]

    Cannan, Chad; Bartel, Lewis; Palisch, Terrence; Aldridge, David

    2015-01-13

    Electrically conductive proppants and methods for detecting, locating, and characterizing same are provided. The electrically conductive proppant can include a substantially uniform coating of an electrically conductive material having a thickness of at least 500 nm. The method can include injecting a hydraulic fluid into a wellbore extending into a subterranean formation at a rate and pressure sufficient to open a fracture therein, injecting into the fracture a fluid containing the electrically conductive proppant, electrically energizing the earth at or near the fracture, and measuring three dimensional (x, y, and z) components of electric and magnetic field responses at a surface of the earth or in an adjacent wellbore.

  2. Variable gas leak rate valve

    DOE Patents [OSTI]

    Eernisse, Errol P.; Peterson, Gary D.

    1976-01-01

    A variable gas leak rate valve which utilizes a poled piezoelectric element to control opening and closing of the valve. The gas flow may be around a cylindrical rod with a tubular piezoelectric member encircling the rod for seating thereagainst to block passage of gas and for reopening thereof upon application of suitable electrical fields.

  3. Optimal Electric Utility Expansion

    Energy Science and Technology Software Center (OSTI)

    1989-10-10

    SAGE-WASP is designed to find the optimal generation expansion policy for an electrical utility system. New units can be automatically selected from a user-supplied list of expansion candidates which can include hydroelectric and pumped storage projects. The existing system is modeled. The calculational procedure takes into account user restrictions to limit generation configurations to an area of economic interest. The optimization program reports whether the restrictions acted as a constraint on the solution. All expansionmore » configurations considered are required to pass a user supplied reliability criterion. The discount rate and escalation rate are treated separately for each expansion candidate and for each fuel type. All expenditures are separated into local and foreign accounts, and a weighting factor can be applied to foreign expenditures.« less

  4. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  5. Implications of Low Electricity Demand Growth

    U.S. Energy Information Administration (EIA) Indexed Site

    2014 EIA Energy Conference July 14, 2014 | Washington, DC Jim Diefenderfer, Director, Office of Electricity, Coal, Nuclear, & Renewables Analysis U.S. Energy Information Administration Implications of low electricity demand growth Growth in electricity use slows, but still increases by 29% from 2012 to 2040 -2% 0% 2% 4% 6% 8% 10% 12% 14% 1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 percent growth (3-year compounded annual growth rate) Source: EIA, Annual Energy Outlook 2014 Reference

  6. Evaluation of evolving residential electricity tariffs

    SciTech Connect (OSTI)

    Lai, Judy; DeForest, Nicholas; Kiliccote, Sila; Stadler, Michael; Marnay, Chris; Donadee, Jon

    2011-05-15

    Residential customers in California's Pacific Gas and Electric (PG&E) territory have seen several electricity rate structure changes in the past decade. This poster: examines the history of the residential pricing structure and key milestones; summarizes and analyzes the usage between 2006 and 2009 for different baseline/climate areas; discusses the residential electricity Smart Meter roll out; and compares sample bills for customers in two climates under the current pricing structure and also the future time of use (TOU) structure.

  7. Convergence of natural gas and electricity industries means change, opportunity for producers in the U. S

    SciTech Connect (OSTI)

    Dar, V.K. Jefferson Gas Systems Inc., Arlington, VA )

    1995-03-13

    The accelerating deregulation of natural gas and electricity distribution is the third and most powerful wave of energy deregulation coursing through North America. The first wave (1978--92) provided the impetus for sculpting competitive markets in energy production. The second (1986--95) is now breaking to fashion competitive bulk logistical and wholesale consumption markets through open access on and unbundling of gas pipeline and storage capacity and high voltage transmission capacity. The third wave, the deregulation of gas and electric retail markets through open access and nondiscriminatory, unbundled local gas and electric distribution tariffs, began in the early 1990s. It will gather momentum for the next 5 years and crest at the turn of the century, affecting and molding almost $300 billion/year in retail energy sales. The transformation will have these strategic implications: (1) the convergent evolution of the gas and electric industries; (2) severe margin compression along the energy value chain from wellhead to busbar to the distribution pipes and wires; and (3) the rapid emergency of cyberspace retailing of energy products and services. The paper discusses merchant plants, convergence and producers, capital flows, producer federations, issues of scale, and demand, margins, and value.

  8. Minority Utility Rate Design Assessment Model

    Energy Science and Technology Software Center (OSTI)

    2003-01-20

    Econometric model simulates consumer demand response to various user-supplied, two-part tariff electricity rate designs and assesses their economic welfare impact on black, hispanic, poor and majority households.

  9. Talquin Electric Coop, Inc | Open Energy Information

    Open Energy Info (EERE)

    by expanding it. Talquin Electric Cooperative, Inc. Smart Grid Project was awarded 8,100,000 Recovery Act Funding with a total project value of 16,200,000. Utility Rate...

  10. ORFIN: An electric utility financial and production simulator

    SciTech Connect (OSTI)

    Hadley, S.W.

    1996-03-01

    With the coming changes in the electrical industry, there is a broad need to understand the impacts of restructuring on customers, existing utilities, and other stakeholders. Retail wheeling; performance-based regulation; unbundling of generation, transmission, and distribution; and the impact of stranded commitments are all key issues in the discussions of the future of the industry. To quantify these issues, financial and production cost models are required. The authors have created a smaller and faster finance and operations model call the Oak Ridge Financial Model (ORFIN) to help analyze the ramifications of the issues identified above. It combines detailed pricing and financial analysis with an economic dispatch model over a multi-year period. Several types of ratemaking are modeled, as well as the wholesale market and retail wheeling. Multiple plants and purchased power contracts are modeled for economic dispatch, and separate financial accounts are kept for each. Transmission, distribution, and other functions are also broken out. Regulatory assets such as deferred tax credits and demand-side management (DSM) programs are also included in the income statement and balance sheet. This report describes some of the key features of the model. Examples of the financial reports are shown, with a description of their formulation. Some of the ways these results can be used in analyzing various issues are provided.

  11. Technology Roadmap - Electric and Plug-in Hybrid Electric Vehicles...

    Open Energy Info (EERE)

    Roadmap - Electric and Plug-in Hybrid Electric Vehicles Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Technology Roadmap - Electric and Plug-in Hybrid Electric...

  12. Electric and Hybrid Electric Vehicle Sales: December 2010 - June...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric and Hybrid Electric Vehicle Sales: December 2010 - June 2013 Sales data for various models of electric and hybrid electric vehicles from December 2010 through June 2013. ...

  13. Electric Drive Status and Challenges

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Leaf * 75 mile electric range * 80 kW electric drive * electric drive cost:1,600 Tesla Model S * 250 mile electric range * 270 kW electric drive * electric drive ...

  14. Final Report- National Database of Utility Rates and Rate Structure

    Broader source: Energy.gov [DOE]

    One of the key informational barriers for consumers, installers, regulators and policymakers, is the proper comparison cost of utility-supplied electricity that will be replaced with a Photovoltaic (PV) system. Oftentimes, these comparisons are made with national or statewide averages which results in inaccurate comparisons and conclusions. Illinois State University seeks to meet the need for accurate information about electricity costs and rate structure by building a national database of utility rates and rate structures. The database will build upon the excellent framework that was developed by the OpenEI.org initiative and extend it in several important ways. First, the data will be populated and monitored by a team of trained regulatory economists. Second, the database will be more comprehensive because it will be populated with data from newer competitive retail suppliers for states that have restructured their electricity markets to allow such suppliers. Third, the University and its Institute for Regulatory Policy Studies will maintain the database and ensure that it contains the most recent rate information.

  15. Rushmore Electric Pwr Coop Inc | Open Energy Information

    Open Energy Info (EERE)

    MRO NERC MRO Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes This article is a stub. You can help OpenEI by expanding it. Utility...

  16. DOE handbook electrical safety

    SciTech Connect (OSTI)

    1998-01-01

    Electrical Safety Handbook presents the Department of Energy (DOE) safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety guidance and information for DOE installations to effect a reduction or elimination of risks associated with the use of electrical energy. The objectives of this handbook are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  17. Electrical safety guidelines

    SciTech Connect (OSTI)

    Not Available

    1993-09-01

    The Electrical Safety Guidelines prescribes the DOE safety standards for DOE field offices or facilities involved in the use of electrical energy. It has been prepared to provide a uniform set of electrical safety standards and guidance for DOE installations in order to affect a reduction or elimination of risks associated with the use of electrical energy. The objectives of these guidelines are to enhance electrical safety awareness and mitigate electrical hazards to employees, the public, and the environment.

  18. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Electric Power Sector comprises electricity-only and combined heat and power (CHP) plants within the North American Industrial Classification System 22 category whose...

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    See all Electricity Reports Electricity Monthly Update With Data for November 2014 | Release Date: Jan. 26, 2015 | Next Release Date: Feb. 24, 2015 Previous Issues Issue:...

  20. Edison Electric Institute Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the Fall 2011 Federal Utility Partnership Working Group (FUPWG) meeting—discusses the Edison Electric Institute (EEI) and the current electricity landscape.

  1. Ohio Electricity Restructuring Active

    Gasoline and Diesel Fuel Update (EIA)

    Other Links Ohio Electricity Profile Ohio Energy Profile Ohio Web Sites Acronyms for the ... Consumer education programs were available on the Ohio Electric Choice web site, through ...

  2. National Drive Electric Week

    Office of Energy Efficiency and Renewable Energy (EERE)

    Celebrate National Drive Electric Week with ways to make your all-electric or plug-in hybrid cars even greener!

  3. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of electricity. End-use data is the first "data page" based on the assumption that information about retail electricity service is of greatest interest to a general...

  4. Electricity Restructuring by State

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Restructuring Status Status of Electricity Restructuring by State Data as of: September 2010 Next Release Date: None The map below shows information on the electric industry ...

  5. North Arkansas Electric Cooperative, Inc- Residential Energy Efficiency Loan Program

    Broader source: Energy.gov [DOE]

    North Arkansas Electric Cooperative (NAEC), a Touchstone Energy Cooperative, serves approximately 35,000 member accounts in seven different counties. The coop provides low interest rates for energy...

  6. Expected annual electricity bill savings for various PPA price...

    Open Energy Info (EERE)

    Expected annual electricity bill savings for various PPA price options Jump to: navigation, search Impact of Utility Rates on PV Economics Bill savings tables (main section): When...

  7. Oncor Electric Delivery - Solar Photovoltaic Standard Offer Program...

    Broader source: Energy.gov (indexed) [DOE]

    Summary Oncor Electric Delivery offers rebates to its customers that install photovoltaic (PV) systems on homes or other buildings.* Oncor customers of all rate classes...

  8. Office of the Assistant General Counsel for Electricity and Fossil...

    Office of Environmental Management (EM)

    Further, the office represents the consumer interests of the United States, including national laboratories, military bases, and certain NNSA facilities, in electric rate ...

  9. Integrated electrical connector (Patent) | DOEPatents

    Office of Scientific and Technical Information (OSTI)

    Integrated electrical connector Title: Integrated electrical connector An electrical ... The opening is also smaller than the diameter of an electrically conductive contact pin. ...

  10. Current BPA Power Rates (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and Workshops WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial...

  11. Power Rates Announcements (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    WP-10 Rate Case WP-07 Rate Case WP-07 Supplemental Rate Case ASC Methodology Adjustments (2007-2009) Adjustments (2002-2006) Previous Rate Cases Financial Choices (2003-06) Power...

  12. CASL - Westinghouse Electric Company

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Westinghouse Electric Company Cranberry Township, PA Westinghouse Electric Company provides fuel, services, technology, plant design and equipment for the commercial nuclear electric power industry. Westinghouse nuclear technology is helping to provide future generations with safe, clean and reliable electricity. Key Contributions Definition of CASL challenge problems Existing codes and expertise Data for validation Computatinoal fluid dynamics modeling and analysis Development of test stand for

  13. Model documentation: Electricity market module, electricity finance and pricing submodule

    SciTech Connect (OSTI)

    Not Available

    1994-04-07

    The purpose of this report is to define the objectives of the model, describe its basic approach, and provide detail on how it works. The EFP is a regulatory accounting model that projects electricity prices. The model first solves for revenue requirements by building up a rate base, calculating a return on rate base, and adding the allowed expenses. Average revenues (prices) are calculated based on assumptions regarding regulator lag and customer cost allocation methods. The model then solves for the internal cash flow and analyzes the need for external financing to meet necessary capital expenditures. Finally, the EFP builds up the financial statements. The EFP is used in conjunction with the National Energy Modeling System (NEMS). Inputs to the EFP include the forecast generating capacity expansion plans, operating costs, regulator environment, and financial data. The outputs include forecasts of income statements, balance sheets, revenue requirements, and electricity prices.

  14. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Methodology and Documentation General The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Data published in the Electricity Monthly Update are compiled from the following sources: U.S. Energy Information Administration, Form EIA-826,"Monthly Electric Utility Sales and Revenues with State Distributions Report," U.S. Energy

  15. Analysis of pure electrical and cogeneration steam power plants

    SciTech Connect (OSTI)

    Albar, A.F.

    1982-01-01

    General Electric's method of steam turbine performance was used with pure electrical and with cogeneration power plants at various flow rates. Comparisons were made for two cases: (1) the same amount of heat is added to each boiler and the amount of electrical power generated is compared; and (2) when each plant should produce the same amount of electric power and the amount of heat added to each boiler is compared. Cogeneration is energetically more efficient than pure electrical plant. Correlations for the dependence of heat rate, power generated, heat added to throttle flow ratio were obtained from this work.

  16. The Potential Economic Impact of Electricity Restructuring in the State of Oklahoma: Phase I Report

    SciTech Connect (OSTI)

    Hadley, SW

    2001-03-27

    unchanging transmission and distribution (T&D) component is added to both types of generation prices to determine the overall price of power to each customer class. A base case was established for the state as a whole, using the set of plants and customer demands from 1999 based on data from various industry and government sources. Energy demands from the different customer classes were defined, including wholesale sales outside the state. Plant ownership by specific utilities, whether investor-owned, government, or cooperatives, was not used as a factor in the analysis, except in the generic cost of capital for the different types of utilities. The results showed an average price increase of roughly one cent per kilowatt-hour under a restructured market. This is because in a regulated market each plant will earn just enough to pay all costs and earn a reasonable return on equity. In a restructured market, where prices are based on marginal costs of the most expensive plant operating at any given time, some plants may earn little or nothing over the year while others earn more than the regulated rate of return.

  17. Baltimore Gas & Electric Company (Electric) - Residential Energy...

    Broader source: Energy.gov (indexed) [DOE]

    AC: 30 Recycling RefrigeratorFreezer: 50 ACDehumidifier: 25 Summary The Baltimore Gas & Electric Company (BGE) offers rebates for residential customers to improve the...

  18. Current Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  19. Current Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  20. Previous Power Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  1. Previous Transmission Rates

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Current Power Rates Current Transmission Rates...

  2. Electric arc saw apparatus

    DOE Patents [OSTI]

    Deichelbohrer, Paul R [Richland, WA

    1986-01-01

    A portable, hand held electric arc saw has a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc to erode a workpiece. Electric current is supplied to the blade by biased brushes and a slip ring which are mounted in the frame. A pair of freely movable endless belts in the form of crawler treads stretched between two pulleys are used to facilitate movement of the electric arc saw. The pulleys are formed of dielectric material to electrically insulate the crawler treads from the frame.

  3. Tips: Time-Based Electricity Rates | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    SmartGrid.gov Follow Us followontwitter.png followonfacebook.png Appliance & Electronics Blogs Save Energy on Appliances this Holiday Season Choose the Right Advanced Power ...

  4. Rail Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    modes, the Coal Waybill Data is based only on rail shipments. Due to the different nature of the data sources, users should exercise caution when attempting to combine the two...

  5. Coal Transportation Rates to the Electric Power Sector

    Gasoline and Diesel Fuel Update (EIA)

    their confidential Carload Waybill Sample. While valuable, due to the statistical nature of the Waybill data, much of the information had to be withheld for confidentiality...

  6. The Impacts of Commercial Electric Utility Rate Structure Elements...

    Energy Savers [EERE]

    Photovoltaic Systems (567.66 KB) More Documents & Publications FERC Presendation: Demand Response as Power System Resources, October 29, 2010 Future Power Systems 21 - The Smart ...

  7. Unbundling power products, modifying rate design, and fixed cost coverage

    SciTech Connect (OSTI)

    Procter, R.J.

    1996-03-01

    In this paper, the author provides an overview of efforts currently underway at the Bonneville Power Administration (BPA) to respond to these various challenges to how BPA has traditionally managed the marketing of power at the wholesale level in the Pacific Northwest and to areas outside this region along the West Cast in general. The paper begins with an overview of the role of the BPA in the region, and trends in costs and revenues. The paper provides a general outline of BPA`s efforts to separate its business into three separate product lines (power, energy services, and transmission) as well as providing an overview of how BPA is unbundling power products. In addition, the paper provides an overview of some of the major changes BPA has proposed in its rate design. This is followed by an overview of the approach to the issue of stranded cost. You will see that it is their desire to as much as possible avoid a legislative solution to this issue and rely on marketing and working with customers as a way of dealing with this very contentious issue. The paper wraps up with an assessment of the potential for power product unbundling to significantly reduce potential stranded costs. You will see that at the present time, unbundling power products offers BPA little in the way of substantial reductions in potential stranded costs. Whereas, margins on the delivery of energy and capacity offer the greatest potential for covering fixed costs.

  8. S. 3047: A Bill to amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. Introduced in the Senate of the United States, One Hundredth First Congress, Second Session, September 13, 1990

    SciTech Connect (OSTI)

    Not Available

    1990-01-01

    This bill would amend the antitrust laws in order to preserve and promote wholesale and retail competition in the retail gasoline market. The bill defines limits on the purchases required of a retailer from the producer or refiner and defines the exceptions under which any large integrated refiner can operate any motor fuel service station in the US. The Federal Trade Commission is charged with the enforcement.

  9. Electricity Generation Cost Simulation Model

    Energy Science and Technology Software Center (OSTI)

    2003-04-25

    The Electricity Generation Cost Simulation Model (GENSIM) is a user-friendly, high-level dynamic simulation model that calculates electricity production costs for variety of electricity generation technologies, including: pulverized coal, gas combustion turbine, gas combined cycle, nuclear, solar (PV and thermal), and wind. The model allows the user to quickly conduct sensitivity analysis on key variables, including: capital, O&M, and fuel costs; interest rates; construction time; heat rates; and capacity factors. The model also includes consideration ofmore » a wide range of externality costs and pollution control options for carbon dioxide, nitrogen oxides, sulfur dioxide, and mercury. Two different data sets are included in the model; one from the U.S. Department of Energy (DOE) and the other from Platt's Research Group. Likely users of this model include executives and staff in the Congress, the Administration and private industry (power plant builders, industrial electricity users and electric utilities). The model seeks to improve understanding of the economic viability of various generating technologies and their emission trade-offs. The base case results using the DOE data, indicate that in the absence of externality costs, or renewable tax credits, pulverized coal and gas combined cycle plants are the least cost alternatives at 3.7 and 3.5 cents/kwhr, respectively. A complete sensitivity analysis on fuel, capital, and construction time shows that these results coal and gas are much more sensitive to assumption about fuel prices than they are to capital costs or construction times. The results also show that making nuclear competitive with coal or gas requires significant reductions in capital costs, to the $1000/kW level, if no other changes are made. For renewables, the results indicate that wind is now competitive with the nuclear option and is only competitive with coal and gas for grid connected applications if one includes the federal production tax

  10. PNCA-02 Rate Case (rates/ratecases)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proposed Adjustment to the Rate for Interchange Energy Imbalances Under the Pacific Northwest Coordination Agreement (PNCA-02 Rate Case) (updated on April 26, 2002) BPA has issued...

  11. Electric Efficiency Standard

    Broader source: Energy.gov [DOE]

    In December 2009, the Indiana Utility Regulatory Commission's (IURC) ordered utilities to establish demand-side management (DSM) electric savings goals leading to 2.0% reduction of electricity sa...

  12. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-09-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  13. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-11-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  14. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2013-04-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  15. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050.

  16. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    sales volumes are presented as a proxy for end-use electricity consumption. Average Revenue per kWh by state Percent Change Per KWh map showing U.S. electric industry percent...

  17. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    cheap price of natural gas reduced coals share of electricity production. Days of Burn Days of burn Coal capacity The average number of days of burn held at electric power...

  18. 2012 National Electricity Forum

    Broader source: Energy.gov [DOE]

    At the 2012 National Electricity Forum, held February 8-9, 2012 and jointly organized by DOE's Office of Electricity Delivery & Energy Reliability (OE) and the National Association of...

  19. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    End Use: August 2015 Retail ratesprices and consumption In this section, we look at what electricity costs and how much is purchased. Charges for retail electric service are based...

  20. Electric Power Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Monthly Data for January 2016 | Release Date: March 25, 2016 | Next ... Revisions made to the March 2016 Electric Power Monthly: March 30, 2016 Tables 2.8.A-B ...

  1. Table 2a. Electricity Consumption and Electricity Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Administration Home Page Home > Commercial Buildings Home > Sq Ft Tables > Table 2a. Electricity Consumption per Sq Ft Table 2a. Electricity Consumption and Electricity...

  2. Panasonic Electric Works Ltd formerly Matsushita Electric Works...

    Open Energy Info (EERE)

    Electric Works Ltd (formerly Matsushita Electric Works) Place: Kadoma-shi, Osaka, Japan Zip: 571-8686 Product: Japanese manufacturer of mainly electric appliances including...

  3. The changing structure of the electric power industry: Selected issues, 1998

    SciTech Connect (OSTI)

    1998-07-01

    More than 3,000 electric utilities in the United States provide electricity to sustain the Nation`s economic growth and promote the well-being of its inhabitants. At the end of 1996, the net generating capability of the electric power industry stood at more than 776,000 megawatts. Sales to ultimate consumers in 1996 exceeded 3.1 trillion kilowatthours at a total cost of more than $210 billion. In addition, the industry added over 9 million new customers during the period from 1990 through 1996. The above statistics provide an indication of the size of the electric power industry. Propelled by events of the recent past, the industry is currently in the midst of changing from a vertically integrated and regulated monopoly to a functionally unbundled industry with a competitive market for power generation. Advances in power generation technology, perceived inefficiencies in the industry, large variations in regional electricity prices, and the trend to competitive markets in other regulated industries have all contributed to the transition. Industry changes brought on by this movement are ongoing, and the industry will remain in a transitional state for the next few years or more. During the transition, many issues are being examined, evaluated, and debated. This report focuses on three of them: how wholesale and retail prices have changed since 1990; the power and ability of independent system operators (ISOs) to provide transmission services on a nondiscriminatory basis; and how issues that affect consumer choice, including stranded costs and the determination of retail prices, may be handled either by the US Congress or by State legislatures.

  4. Electric Power Research Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Technical Notes This appendix describes how the U.S. Energy Information Administration collects, estimates, and reports electric power data in the Electric Power Annual. Data Quality and Submission The Electric Power Annual (EPA) is prepared by the Office of Electricity, Renewables, and Uranium Statistics (ERUS), U.S. Energy Information Administration (EIA), U.S. Department of Energy (DOE). ERUS performs routine reviews of the data collection respondent frames, survey forms, and reviews

  5. EIA - Electricity Generating Capacity

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Generating Capacity Release Date: January 3, 2013 | Next Release: August 2013 Year Existing Units by Energy Source Unit Additions Unit Retirements 2011 XLS XLS XLS 2010 XLS XLS XLS 2009 XLS XLS XLS 2008 XLS XLS XLS 2007 XLS XLS XLS 2006 XLS XLS XLS 2005 XLS XLS XLS 2004 XLS XLS XLS 2003 XLS XLS XLS Source: Form EIA-860, "Annual Electric Generator Report." Related links Electric Power Monthly Electric Power Annual Form EIA-860 Source Data

  6. Electrical utilities relay settings

    SciTech Connect (OSTI)

    HACHE, J.M.

    1999-02-24

    This document contains the Hanford transmission and distribution system relay settings that are under the control of Electrical Utilities.

  7. Electric arc saw apparatus

    DOE Patents [OSTI]

    Deichelbohrer, P.R.

    1983-08-08

    A portable, hand-held electric arc saw apparatus comprising a small frame for supporting an electrically conducting rotary blade which serves as an electrode for generating an electric arc between the blade and a workpiece of opposite polarity. Electrically conducting means are provided on said frame for transmitting current to said blade. A pair of freely movable endless belts in the form of crawler treads are employed to facilitate movement of the apparatus relative to the workpiece.

  8. EIA Electric Power Forms

    U.S. Energy Information Administration (EIA) Indexed Site

    Electric Power Forms EIA Electric Power Forms Listing of Publicly Available and Confidential Data EIA's statistical surveys encompass each significant electric supply and demand activity in the United States. Most of the electric power survey forms resulting data elements are published, but respondent confidentiality is required. The chart below shows the data elements for each survey form and how each data element is treated in regard to confidentiality. Data Categories Data collection forms

  9. DOE Electricity Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Advisory Committee March 2015 1 MEMORANDUM TO: Honorable Patricia Hoffman, Assistant Secretary for Electricity Delivery and Energy Reliability, U.S. Department of Energy FROM: Electricity Advisory Committee (EAC) Richard Cowart, Chair DATE: March 27, 2015 RE: Recommendations on Smart Grid Research and Development Needs _________________________________________________________________________ Overview The Smart Grid is envisioned to provide the enhancements to ensure higher levels of

  10. Integrating Electricity Subsector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integrating Electricity Subsector Failure Scenarios into a Risk Assessment Methodology 3002001181 | DEC 2013 Program Leads Jason D. Christopher Technical Lead, Cyber Security Capabilities & Risk Management Department of Energy (DOE), Office of Electricity Delivery and Energy Reliability (OE) Annabelle Lee Senior Technical Executive, Cyber Security Electric Power Research Institute (EPRI) For more information on the DOE's cyber security risk management programs, please contact

  11. Coal Transportation Rate Sensitivity Analysis

    Reports and Publications (EIA)

    2005-01-01

    On December 21, 2004, the Surface Transportation Board (STB) requested that the Energy Information Administration (EIA) analyze the impact of changes in coal transportation rates on projected levels of electric power sector energy use and emissions. Specifically, the STB requested an analysis of changes in national and regional coal consumption and emissions resulting from adjustments in railroad transportation rates for Wyoming's Powder River Basin (PRB) coal using the National Energy Modeling System (NEMS). However, because NEMS operates at a relatively aggregate regional level and does not represent the costs of transporting coal over specific rail lines, this analysis reports on the impacts of interregional changes in transportation rates from those used in the Annual Energy Outlook 2005 (AEO2005) reference case.

  12. Epcot Electric | Open Energy Information

    Open Energy Info (EERE)

    Epcot Electric Jump to: navigation, search Name: Epcot Electric Place: Texas Facebook: https:www.facebook.compagesEpcot-Electric108882552477023 References: EIA Form EIA-861...

  13. Lincoln Electric | Open Energy Information

    Open Energy Info (EERE)

    Electric Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Lincoln Electric Developer Lincoln Electric Energy Purchaser Lincoln...

  14. EWEB- Solar Electric Program (Rebate)

    Broader source: Energy.gov [DOE]

    The Eugene Water & Electric Board's (EWEB) Solar Electric Program offers financial incentives for residential, nonprofit, and government customers that generate electricity solar photovoltaic...

  15. INTEGRATED ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND SIC BASED POWER CONVERTERS INTEGRATED ELECTRIC DRIVE WITH HV2 MODULAR ELECTRIC MACHINE AND SIC BASED POWER CONVERTERS The Ohio ...

  16. Utility experience with real time rates

    SciTech Connect (OSTI)

    Tabors, R.D.; Schweppe, F.C.; Caramanis, M.C.

    1989-05-01

    The structure of electric utility is undergoing dramatic changes as new and expanded service options are added. The concepts of unbundling or of priority service are expanding the options open to customers. Spot pricing, or real time pricing of electricity provides the economic structure for many of these new service options. It is frequently stated that customers can not adapt to real time prices. This paper identifies the dimensions of real time rates and identifies existing rate structures in the United States and other OECD countries which incorporate these dimensions.

  17. Rate Case Elements

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Proceeding Rate Information Residential Exchange Program Surplus Power Sales Reports Rate Case Elements BPA's rate cases are decided "on the record." That is, in making a decision...

  18. Rural electric cooperatives IRP survey

    SciTech Connect (OSTI)

    Garrick, C.

    1995-11-01

    This report summarizes the integrated resource planning (IRP) practices of US rural electric cooperatives and the IRP policies which influence these practices. It was prepared by the National Renewable Energy Laboratory (NREL) and its subcontractor Garrick and Associates to assist the US Department of Energy (DOE) in satisfying the reporting requirements of Title 1, Subtitle B, Section 111(e)(3) of the Energy Policy Act of 1992 (EPAct), which states: (e) Report--Not later than 2 years after the date of the enactment of this Act, the Secretary (of the US Department of Energy) shall transmit a report to the President and to the Congress containing--(the findings from several surveys and evaluations, including:); (3) a survey of practices and policies under which electric cooperatives prepare IRPs, submit such plans to REA, and the extent to which such integrated resource planning is reflected in rates charged to customers.

  19. Electricity 101 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Resources » Electricity 101 Electricity 101 FREQUENTLY ASKED QUESTIONS Why do other countries use different shaped plugs? Why do outlets have three holes? Why do we have AC electricity? Can we harness lightning as an energy source? Can we have wireless transmission of electricity? SYSTEM What is electricity? Where does electricity come from? What is the "grid"? How much electricity does a typical household use? How did the electric system evolve? What does the future look like? Who

  20. Benefits of Demand Response in Electricity Markets and Recommendations for Achieving Them. A report to the United States Congress Pursuant to Section 1252 of the Energy Policy Act of 2005 (February 2006)

    Broader source: Energy.gov [DOE]

    Most electricity customers see electricity rates that are based on average electricity costs and bear little relation to the true production costs of electricity as they vary over time. Demand...

  1. Electric Vehicle Supply Equipment (EVSE) Test Report: Schneider Electric

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Schneider Electric EVSE Features Charge Delay Option Power Light Indicator Eight-segment Progress Indicator Auto-restart EVSE Specifcations Grid connection Plug and cord NEMA 6-50 Connector type J1772 Test lab certifcations UL Listed Approximate size (H x W x D inches) 10 x 13 x 4 Charge level AC Level 2 Input voltage 240 VAC Maximum input current 30 Amp Circuit breaker rating 40 Amp Test Conditions 1 Test date 10/30/2012 Nominal supply voltage (Vrms) 209.04 Supply frequency (Hz) 59.99 Initial

  2. Small Solar Electric Systems | Department of Energy

    Energy Savers [EERE]

    Electricity & Fuel Buying & Making Electricity Small Solar Electric Systems Small Solar Electric Systems A small solar electric or photovoltaic system can be a reliable and ...

  3. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  4. Chlorite Dissolution Rates

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Carroll, Susan

    2013-07-01

    Spreadsheets provides measured chlorite rate data from 100 to 300C at elevated CO2. Spreadsheet includes derived rate equation.

  5. How do I Build Apps with Utility Rate Data (that is continuously...

    Open Energy Info (EERE)

    Rate Kch's picture Submitted by Kch(24) Member 23 April, 2012 - 10:31 utility rate web services There's a need among our users to incorporate the electricity rates from the...

  6. Electric power monthly

    SciTech Connect (OSTI)

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  7. Integrated electrical connector

    DOE Patents [OSTI]

    Benett, William J.; Ackler, Harold D.

    2005-05-24

    An electrical connector is formed from a sheet of electrically conductive material that lies in between the two layers of nonconducting material that comprise the casing of an electrical chip. The connector is electrically connected to an electrical element embedded within the chip. An opening in the sheet is concentrically aligned with a pair of larger holes respectively bored through the nonconducting layers. The opening is also smaller than the diameter of an electrically conductive contact pin. However, the sheet is composed flexible material so that the opening adapts to the diameter of the pin when the pin is inserted therethrough. The periphery of the opening applies force to the sides of the pin when the pin is inserted, and thus holds the pin within the opening and in contact with the sheet, by friction. The pin can be withdrawn from the connector by applying sufficient axial force.

  8. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1986-01-01

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  9. Electrical system architecture

    DOE Patents [OSTI]

    Algrain, Marcelo C.; Johnson, Kris W.; Akasam, Sivaprasad; Hoff, Brian D.

    2008-07-15

    An electrical system for a vehicle includes a first power source generating a first voltage level, the first power source being in electrical communication with a first bus. A second power source generates a second voltage level greater than the first voltage level, the second power source being in electrical communication with a second bus. A starter generator may be configured to provide power to at least one of the first bus and the second bus, and at least one additional power source may be configured to provide power to at least one of the first bus and the second bus. The electrical system also includes at least one power consumer in electrical communication with the first bus and at least one power consumer in electrical communication with the second bus.

  10. Thermoacoustic magnetohydrodynamic electrical generator

    DOE Patents [OSTI]

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1984-11-16

    A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.

  11. Electric Power Monthly

    U.S. Energy Information Administration (EIA) Indexed Site

    2015 U.S. Energy Information Administration | Electric Power Monthly Appendix C Technical notes This appendix describes how the U. S. Energy Information Administration (EIA) collects, estimates, and reports electric power data in the EPM. Data quality The EPM is prepared by the Office of Electricity, Renewables & Uranium Statistics (ERUS), Energy Information Administration (EIA), U. S. Department of Energy. Quality statistics begin with the collection of the correct data. To assure this,

  12. Electric Power Monthly

    Gasoline and Diesel Fuel Update (EIA)

    Electric Power Monthly > Electric Power Monthly Back Issues Electric Power Monthly Back Issues Monthly Excel files zipped 2010 January February March April May June July August September October November December 2009 January February March April May June July August September October November December 2008 January February March March Supplement April May June July August September October November December 2007 January February March April May June July August September October November

  13. Electricity Monthly Update

    Gasoline and Diesel Fuel Update (EIA)

    Contact Information and Staff The Electricity Monthly Update is prepared by the Electric Power Operations Team, Office of Electricity, Renewables and Uranium Statistics, U.S. Energy Information Administration (EIA), U.S. Department of Energy. Editorial Lead: Chris Cassar (christopher.cassar@eia.gov) Senior Adviser: Bill Booth Core Team: Paul McCardle, Glenn McGrath, Stephen Scott, Tim Shear, April Lee

  14. EIA - Electric Power Data

    U.S. Energy Information Administration (EIA) Indexed Site

    across forms) Contains electricity generation; fuel consumption; emissions; retail sales, ... and associated revenue by end-use sector, green pricing, net ...

  15. Electric power annual 1992

    SciTech Connect (OSTI)

    Not Available

    1994-01-06

    The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

  16. 2015 Electricity Form Proposals

    Gasoline and Diesel Fuel Update (EIA)

    Quarterly Electricity Imports and Exports Report (EIA-111) OMB Clearance Renewal in 2015 ... Report (EIA-111) survey on August 26, 2015. The initial proposals were announced to ...

  17. Energy 101: Electric Vehicles

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs.

  18. Electricity Advisory Committee

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Paula Carmody Maryland People's Council Paul Centolella Centolella and Associates LLC Carlos Coe Millennium Energy Phyllis Currie Pasadena Water and Power Clark Gellings Electric ...

  19. Electricity Distribution System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    ... the Electricity Transmission System (available online). ... or implied, or assumes any legal responsibility for the ... Workforce development and operator training are needed for ...

  20. Electrical Circuit Tester

    DOE Patents [OSTI]

    Love, Frank

    2006-04-18

    An electrical circuit testing device is provided, comprising a case, a digital voltage level testing circuit with a display means, a switch to initiate measurement using the device, a non-shorting switching means for selecting pre-determined electrical wiring configurations to be tested in an outlet, a terminal block, a five-pole electrical plug mounted on the case surface and a set of adapters that can be used for various multiple-pronged electrical outlet configurations for voltages from 100 600 VAC from 50 100 Hz.

  1. Electrical Utility Materials Handler

    Broader source: Energy.gov [DOE]

    Join the Bonneville Power Administration (BPA) for a challenging and rewarding career, while working, living, and playing in the Pacific Northwest. The Electrical Utility Material Handler (EUMH)...

  2. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    costs, of which fuel costs account for the lion's share. Therefore, we present below, electricity generation output by fuel type and generator type. Since the generatorfuel...

  3. Department of Energy - Electricity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    opportunities and challenges that lie ahead. Secretary Moniz headed down to Florida to talk about Grid Modernization. Learn more about our nation's electric grid in this fact...

  4. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Electricity Monthly Update Explained Highlights The Highlights page features in the center a short article about a major event or an informative topic. The left column contains...

  5. Electric Utility Industry Update

    Broader source: Energy.gov [DOE]

    Presentation—given at the April 2012 Federal Utility Partnership Working Group (FUPWG) meeting—covers significant electric industry trends and industry priorities with federal customers.

  6. Perforation patterned electrical interconnects

    DOE Patents [OSTI]

    Frey, Jonathan

    2014-01-28

    This disclosure describes systems and methods for increasing the usable surface area of electrical contacts within a device, such as a thin film solid state device, through the implementation of electrically conductive interconnects. Embodiments described herein include the use of a plurality of electrically conductive interconnects that penetrate through a top contact layer, through one or more multiple layers, and into a bottom contact layer. The plurality of conductive interconnects may form horizontal and vertical cross-sectional patterns. The use of lasers to form the plurality of electrically conductive interconnects from reflowed layer material further aids in the manufacturing process of a device.

  7. Renewable Electricity Generation

    SciTech Connect (OSTI)

    2012-09-01

    This document highlights DOE's Office of Energy Efficiency and Renewable Energy's advancements in renewable electricity generation technologies including solar, water, wind, and geothermal.

  8. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and fuel consumption In this section, we look at the resources used to produce electricity. Generating units are chosen to run primarily on their operating costs, of which...

  9. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    New York ISO (NYISO), PJM Interconnection (PJM), Midwest ISO (MISO), Electric Reliability Council of Texas (ERCOT), and two locations in the California ISO (CAISO). Also...

  10. Electricity Advisory Committee

    Office of Environmental Management (EM)

    Indians Robert Gramlich American Wind Energy Association The Honorable Dian Grueneich California Public Utilities Commission Michael Heyeck American Electric Power Hunter Hunt ...

  11. 2013 Electricity Form Proposals

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Form EIA-861, "Annual Electric Power Industry Report" The EIA-861 survey has historically collected retail sales, revenue, and a variety of information related to demand response ...

  12. Integrating Electricity Subsector

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... gangs Recreational Criminals Hackers 4 http:www.safetyissues.comsitecybercrimeciarevealshackerattacksonutilities.html?print 4-6 Table 4-1 (Continued) Electric Sector ...

  13. Electrically conductive cellulose composite

    DOE Patents [OSTI]

    Evans, Barbara R.; O'Neill, Hugh M.; Woodward, Jonathan

    2010-05-04

    An electrically conductive cellulose composite includes a cellulose matrix and an electrically conductive carbonaceous material incorporated into the cellulose matrix. The electrical conductivity of the cellulose composite is at least 10 .mu.S/cm at 25.degree. C. The composite can be made by incorporating the electrically conductive carbonaceous material into a culture medium with a cellulose-producing organism, such as Gluconoacetobacter hansenii. The composites can be used to form electrodes, such as for use in membrane electrode assemblies for fuel cells.

  14. Electric Storage Water Heaters

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  15. EIA - Electric Power Data

    Gasoline and Diesel Fuel Update (EIA)

    and customer counts, peak load, electric purchases, and energy efficiency and demand-side management programs, green pricing and net metering programs, and distributed ...

  16. 2012 National Electricity Forum

    Energy Savers [EERE]

    and Planning, Arizona Public Service * Jan Strack, Grid Planning, Regulatory & Economics Manager, San Diego Gas & Electric * Mario Villar, Vice President, Transmission, NV ...

  17. Tri-County Electric Cooperative- Energy Efficient Water Heater Rebate Program

    Broader source: Energy.gov [DOE]

    Tri-County Electric Cooperative offers a $75 rebate on the purchase of energy-efficient electric water heaters. The rebate is valid for new or replacement units which have an Energy Factor Rating...

  18. Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity | Department of Energy 9: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity Fact #659: January 24, 2011 Fuel Economy Ratings for Vehicles Operating on Electricity The Environmental Protection Agency has developed a new methodology for determining how fuel economy information will be displayed on the window sticker of a vehicle that operates on electricity. The fuel economy will be displayed in miles per gallon equivalent (MPGequivalent), so that

  19. Power Sales to Electric Utilities

    SciTech Connect (OSTI)

    1989-02-01

    The Public Utilities Regulatory Policies Act (PURPA) of 1979 requires that electrical utilities interconnect with qualifying facilities and purchase electricity at a rate based upon their full avoided costs (i.e., costs of providing both capacity and energy). Qualifying facilities (QF) include solar or geothermal electric units, hydropower, municipal solid waste or biomass-fired power plants, and cogeneration projects that satisfy maximum size, fuel use, ownership, location, and/or efficiency criteria. In Washington State, neither standard power purchase prices based upon a proxy ''avoided plant'', standard contracts, or a standard offer process have been used. Instead, a variety of power purchase contracts have been negotiated by developers of qualifying facilities with investor-owned utilities, public utility districts, and municipally-owned and operated utilities. With a hydro-based system, benefits associated with resource acquisition are determined in large part by how compatible the resource is with a utility's existing generation mix. Power purchase rates are negotiated and vary according to firm energy production, guarantees, ability to schedule maintenance or downtime, rights of refusal, power plant purchase options, project start date and length of contract; front-loading or levelization provisions; and the ability of the project to provide ''demonstrated'' capacity. Legislation was also enacted which allows PURPA to work effectively. Initial laws established ownership rights and provided irrigation districts, PUDs, and municipalities with expanded enabling powers. Financial processes were streamlined and, in some cases, simplified. Finally, laws were passed which are designed to ensure that development proceeds in an environmentally acceptable manner. In retrospect, PURPA has worked well within Washington. In the state of Washington, 20 small-scale hydroelectric projects with a combined generating capacity of 77 MW, 3 solid waste-to-energy facilities

  20. Alternative Fuels Data Center: Electricity

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Electricity Printable Version Share this resource Send a link to Alternative Fuels Data Center: Electricity to someone by E-mail Share Alternative Fuels Data Center: Electricity on Facebook Tweet about Alternative Fuels Data Center: Electricity on Twitter Bookmark Alternative Fuels Data Center: Electricity on Google Bookmark Alternative Fuels Data Center: Electricity on Delicious Rank Alternative Fuels Data Center: Electricity on Digg Find More places to share Alternative Fuels Data Center:

  1. Electrical Circuit Simulation Code

    Energy Science and Technology Software Center (OSTI)

    2001-08-09

    Massively-Parallel Electrical Circuit Simulation Code. CHILESPICE is a massively-arallel distributed-memory electrical circuit simulation tool that contains many enhanced radiation, time-based, and thermal features and models. Large scale electronic circuit simulation. Shared memory, parallel processing, enhance convergence. Sandia specific device models.

  2. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.; Mai, T.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in an Union of Concerned Scientists webinar on June 12, 2012.

  3. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. This presentation was presented in a Wind Powering America webinar on August 15, 2012 and is now available through the Wind Powering America website.

  4. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M. M.

    2012-08-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a webinar given by the California Energy Commission.

  5. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Mai, T.

    2012-08-01

    This presentation summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It was presented in a Power Systems Engineering Research Center webinar on September 4, 2012.

  6. Renewable Electricity Futures (Presentation)

    SciTech Connect (OSTI)

    Hand, M.

    2012-10-01

    This presentation library summarizes findings of NREL's Renewable Electricity Futures study, published in June 2012. RE Futures investigated the challenges and impacts of achieving very high renewable electricity generation levels in the contiguous United States by 2050. It is being presented at the Utility Variable-Generation Integration Group Fall Technical Workshop on October 24, 2012.

  7. Hawaii electric system reliability.

    SciTech Connect (OSTI)

    Silva Monroy, Cesar Augusto; Loose, Verne William

    2012-09-01

    This report addresses Hawaii electric system reliability issues; greater emphasis is placed on short-term reliability but resource adequacy is reviewed in reference to electric consumers' views of reliability %E2%80%9Cworth%E2%80%9D and the reserve capacity required to deliver that value. The report begins with a description of the Hawaii electric system to the extent permitted by publicly available data. Electrical engineering literature in the area of electric reliability is researched and briefly reviewed. North American Electric Reliability Corporation standards and measures for generation and transmission are reviewed and identified as to their appropriateness for various portions of the electric grid and for application in Hawaii. Analysis of frequency data supplied by the State of Hawaii Public Utilities Commission is presented together with comparison and contrast of performance of each of the systems for two years, 2010 and 2011. Literature tracing the development of reliability economics is reviewed and referenced. A method is explained for integrating system cost with outage cost to determine the optimal resource adequacy given customers' views of the value contributed by reliable electric supply. The report concludes with findings and recommendations for reliability in the State of Hawaii.

  8. Electrically conductive diamond electrodes

    DOE Patents [OSTI]

    Swain, Greg; Fischer, Anne ,; Bennett, Jason; Lowe, Michael

    2009-05-19

    An electrically conductive diamond electrode and process for preparation thereof is described. The electrode comprises diamond particles coated with electrically conductive doped diamond preferably by chemical vapor deposition which are held together with a binder. The electrodes are useful for oxidation reduction in gas, such as hydrogen generation by electrolysis.

  9. Energy 101: Electric Vehicles

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 highlights the benefits of electric vehicles, including improved fuel efficiency, reduced emissions, and lower maintenance costs. For more information on electric vehicles from the Office of Energy Efficiency and Renewable Energy, visit the Vehicle Technologies Program website: http://www1.eere.energy.gov/vehiclesandfuels/

  10. Impact of Rate Design Alternatives on Residential Solar Customer Bills. Increased Fixed Charges, Minimum Bills and Demand-based Rates

    SciTech Connect (OSTI)

    Bird, Lori; Davidson, Carolyn; McLaren, Joyce; Miller, John

    2015-09-01

    With rapid growth in energy efficiency and distributed generation, electric utilities are anticipating stagnant or decreasing electricity sales, particularly in the residential sector. Utilities are increasingly considering alternative rates structures that are designed to recover fixed costs from residential solar photovoltaic (PV) customers with low net electricity consumption. Proposed structures have included fixed charge increases, minimum bills, and increasingly, demand rates - for net metered customers and all customers. This study examines the electricity bill implications of various residential rate alternatives for multiple locations within the United States. For the locations analyzed, the results suggest that residential PV customers offset, on average, between 60% and 99% of their annual load. However, roughly 65% of a typical customer's electricity demand is non-coincidental with PV generation, so the typical PV customer is generally highly reliant on the grid for pooling services.

  11. Electric power monthly

    SciTech Connect (OSTI)

    Smith, Sandra R.; Johnson, Melvin; McClevey, Kenneth; Calopedis, Stephen; Bolden, Deborah

    1992-05-01

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the national, Census division, and State levels for net generation, fuel consumption, fuel stocks, quantity and quality of fuel, cost of fuel, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fuel are also displayed for the North American Electric Reliability Council (NERC) regions. Additionally, statistics by company and plant are published in the EPM on capability of new plants, new generation, fuel consumption, fuel stocks, quantity and quality of fuel, and cost of fuel.

  12. Unbundling electricity: Ancillary services

    SciTech Connect (OSTI)

    Kirby, B.; Hirst, E.

    1996-06-01

    The US electricity industry, dominated by vertically integrated, retail-monopoly, regulated utilities, is undergoing enormous changes. The industry, within the next few years, will evolve into a deintegrated, competitive-market dominated, less regulated industry. Part of this process involves unbundling electric generation from transmission, which raises the issue of ancillary services. Since the Federal Energy Regulatory Commission (FERC) published its March 1995 proposed rule on open-access transmission, ancillary services have been an important topic. Ancillary services are those functions performed by the equipment and people that generate, control, transmit, and distribute electricity to support the basic services of generating capacity, energy supply, and power delivery. These services cost US electricity consumers about $12 billion a year. This article examines the functions performed by the equipment and people that generate, control, transmit, and distribute electricity to support the basic services of generating capacity, energy supply, and power delivery.

  13. Electric turbocompound control system

    DOE Patents [OSTI]

    Algrain, Marcelo C.

    2007-02-13

    Turbocompound systems can be used to affect engine operation using the energy in exhaust gas that is driving the available turbocharger. A first electrical device acts as a generator in response to turbocharger rotation. A second electrical device acts as a motor to put mechanical power into the engine, typically at the crankshaft. Apparatus, systems, steps, and methods are described to control the generator and motor operations to control the amount of power being recovered. This can control engine operation closer to desirable parameters for given engine-related operating conditions compared to actual. The electrical devices can also operate in "reverse," going between motor and generator functions. This permits the electrical device associated with the crankshaft to drive the electrical device associated with the turbocharger as a motor, overcoming deficient engine operating conditions such as associated with turbocharger lag.

  14. Electric chiller handbook. Final report

    SciTech Connect (OSTI)

    1998-02-01

    Electric chillers have dominated the market for large commercial cooling systems due to their history of reliable, economical operation. The phaseout of CFCs and deregulation of the utility industry are two factors that significantly impact the chiller market. The CFC phaseout is resulting in the upgrading or replacement of thousands of electric chillers nationwide. In a deregulated environment, utilities are finding increasing need to provide services that can win and retain new customers. Utility representatives need current information on applying and selecting cost-effective chiller systems. The objective of this report was to develop a comprehensive handbook that helps utility technical and marketing staff, their customers, and design professionals evaluate and select the best options for chilled-water systems in commercial buildings. Investigators used a variety of industry data sources to develop market-share information for electric and gas chiller systems and to determine applications according to building age, type, and region. Discussions with chiller manufacturers provided information on product availability, performance, and ownership cost. Using EPRI`s COMTECH software, investigators performed comprehensive cost analyses for placement of large and small chillers in three representative cities. Case studies of actual installations support these analyses. Electric Chiller Handbook provides a single source of current information on all major issues associated with chiller selection and application. Key issues include chiller availability and markets, rated performance, future viability of various refrigerant options, the cost-effectiveness of alternative chillers, and chilled-water system optimization. The Handbook also describes available hardware, outlines the features and costs of gas-fired competitive systems, and provides methods and comparisons of life-cycle costing of various chiller system options. Analyses of chiller features and economics show

  15. Electric Resistance Heating Basics | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electric Resistance Heating Basics Electric Resistance Heating Basics August 16, 2013 - 3:10pm Addthis Electric resistance heat can be supplied by centralized forced-air electric furnaces or by heaters in each room. Electric resistance heating converts nearly all of the energy in the electricity to heat. Types of Electric Resistance Heaters Electric resistance heat can be provided by electric baseboard heaters, electric wall heaters, electric radiant heat, electric space heaters, electric

  16. Tax Credits, Rebates & Savings | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Department (WMGLD), in cooperation with the Massachusetts Municipal Wholesale Electric Company (MMWEC), offers the "Incentive Rebate Program" to encourage... Eligibility:...

  17. NREL: Transmission Grid Integration - Hawaii Solar Integration...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wholesale Electricity Market Operations Energy Imbalance Markets FESTIV Model Active Power Controls Generator Modeling Forecasting Grid Simulation Transmission Planning & Analysis

  18. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Municipal Wholesale Electric Company (MMWEC) provides the Home Energy Loss Prevention Services (HELPS) Program to eighteen municipal utilities in Massachusetts....

  19. North Dakota: EERE-Funded Project Recycles Energy, Generates Electricity

    Broader source: Energy.gov [DOE]

    This SEP-funded project in Williston, North Dakota, places generators at oil production well sites to transform wellhead flare gas into high-quality, three-phase electricity,which is then sold to the local rural electric cooperatives. The modern, natural gas-fueled generators burn cleanly with ultra-low emissions ratings that exceed state and federal emissions standards.

  20. BP-18 Rate Proceeding

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  1. BP-12 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  2. BP-16 Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Skip navigation links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings...

  3. Before a Rate Case

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    links Financial Information Financial Public Processes Asset Management Cost Verification Process Rate Cases BP-18 Rate Case Related Publications Meetings and Workshops Customer...

  4. Rating Agency Reports

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Liabilities Financial Plan Financial Public Processes Asset Management Cost Verification Process Rate Cases Rate Information Residential Exchange Program Surplus Power Sales...

  5. 2012 Transmission Rate Schedules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2014 Transmission, Ancillary, and Control Area Service Rate Schedules and General Rate Schedule Provisions (FY 2014-2015) October 2013 United States Department of Energy...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arkansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Arkansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,754 30 Electric utilities 11,526 23 IPP & CHP 3,227 29 Net generation (megawatthours) 61,592,137 24 Electric utilities 48,752,895 18 IPP & CHP 12,839,241 28 Emissions Sulfur dioxide (short tons) 89,528 15 Nitrogen oxide (short tons) 47,048 20 Carbon dioxide (thousand metric tons) 37,289 23 Sulfur dioxide (lbs/MWh) 2.9 9 Nitrogen oxide

  7. Chapter 5 - Electricity

    Gasoline and Diesel Fuel Update (EIA)

    1 U.S. Energy Information Administration | International Energy Outlook 2016 Chapter 5 Electricity Overview In the International Energy Outlook 2016 (IEO2016) Reference case, world net electricity generation increases 69% by 2040, from 21.6 trillion kilowatthours (kWh) in 2012 to 25.8 trillion kWh in 2020 and 36.5 trillion kWh in 2040. Electricity is the world's fastest-growing form of end-use energy consumption, as it has been for many decades. Power systems have continued to evolve from

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  17. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  18. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  20. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  1. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  3. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Oregon Electricity Profile 2014 Table 1. 2014 Summary statistics (Oregon) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 15,884 27 Electric utilities 11,175 25 IPP & CHP 4,709 19 Net generation (megawatthours) 60,119,907 26 Electric utilities 44,565,239 24 IPP & CHP 15,554,668 21 Emissions Sulfur dioxide (short tons) 10,595 39 Nitrogen oxide (short tons) 14,313 42 Carbon dioxide (thousand metric tons) 8,334 40 Sulfur dioxide (lbs/MWh) 0.4 42 Nitrogen

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Rhode Island Electricity Profile 2014 Table 1. 2014 Summary statistics (Rhode Island) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 1,810 49 Electric utilities 8 50 IPP & CHP 1,803 38 Net generation (megawatthours) 6,281,748 49 Electric utilities 10,670 48 IPP & CHP 6,271,078 36 Emissions Sulfur dioxide (short tons) 100 49 Nitrogen oxide (short tons) 1,224 49 Carbon dioxide (thousand metric tons) 2,566 48 Sulfur dioxide (lbs/MWh) 0.0 48 Nitrogen oxide

  6. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    South Dakota Electricity Profile 2014 Table 1. 2014 Summary statistics (South Dakota) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 3,948 45 Electric utilities 3,450 36 IPP & CHP 499 48 Net generation (megawatthours) 10,995,240 45 Electric utilities 9,344,872 38 IPP & CHP 1,650,368 48 Emissions Sulfur dioxide (short tons) 13,852 35 Nitrogen oxide (short tons) 10,638 44 Carbon dioxide (thousand metric tons) 3,093 47 Sulfur dioxide (lbs/MWh) 2.5 15

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    Washington Electricity Profile 2014 Table 1. 2014 Summary statistics (Washington) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 30,949 10 Electric utilities 27,376 5 IPP & CHP 3,573 26 Net generation (megawatthours) 116,334,363 11 Electric utilities 102,294,256 5 IPP & CHP 14,040,107 24 Emissions Sulfur Dioxide (short tons) 13,716 36 Nitrogen Oxide (short tons) 18,316 40 Carbon Dioxide (thousand metric tons) 12,427 398 Sulfur Dioxide (lbs/MWh) 0.2 44

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    West Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (West Virginia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,276 25 Electric utilities 11,981 21 IPP & CHP 4,295 21 Net generation (megawatthours) 81,059,577 19 Electric utilities 63,331,833 15 IPP & CHP 17,727,743 17 Emissions Sulfur Dioxide (short tons) 102,406 12 Nitrogen Oxide (short tons) 72,995 11 Carbon Dioxide (thousand metric tons) 73,606 9 Sulfur Dioxide (lbs/MWh) 2.5 14

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Alaska Electricity Profile 2014 Table 1. 2014 Summary statistics (Alaska) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 2,464 48 Electric utilities 2,313 39 IPP & CHP 151 50 Net generation (megawatthours) 6,042,830 50 Electric utilities 5,509,991 40 IPP & CHP 532,839 50 Emissions Sulfur dioxide (short tons) 4,129 43 Nitrogen oxide (short tons) 19,281 38 Carbon dioxide (thousand metric tons) 3,558 44 Sulfur dioxide (lbs/MWh) 1.4 28 Nitrogen oxide

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Arizona Electricity Profile 2014 Table 1. 2014 Summary statistics (Arizona) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 28,249 13 Electric utilities 21,311 11 IPP & CHP 6,938 17 Net generation (megawatthours) 112,257,187 13 Electric utilities 94,847,135 8 IPP & CHP 17,410,053 19 Emissions Sulfur dioxide (short tons) 22,597 32 Nitrogen oxide (short tons) 56,726 17 Carbon dioxide (thousand metric tons) 53,684 16 Sulfur dioxide (lbs/MWh) 0.4 41 Nitrogen oxide

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    California Electricity Profile 2014 Table 1. 2014 Summary statistics (California) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 74,646 2 Electric utilities 28,201 4 IPP & CHP 46,446 2 Net generation (megawatthours) 198,807,622 5 Electric utilities 71,037,135 14 IPP & CHP 127,770,487 4 Emissions Sulfur dioxide (short tons) 3,102 46 Nitrogen oxide (short tons) 98,348 5 Carbon dioxide (thousand metric tons) 57,223 14 Sulfur dioxide (lbs/MWh) 0.0 49

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Colorado Electricity Profile 2014 Table 1. 2014 Summary statistics (Colorado) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,933 29 Electric utilities 10,204 28 IPP & CHP 4,729 18 Net generation (megawatthours) 53,847,386 30 Electric utilities 43,239,615 26 IPP & CHP 10,607,771 30 Emissions Sulfur dioxide (short tons) 28,453 30 Nitrogen oxide (short tons) 44,349 24 Carbon dioxide (thousand metric tons) 38,474 22 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Connecticut Electricity Profile 2014 Table 1. 2014 Summary statistics (Connecticut) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 8,832 35 Electric utilities 161 45 IPP & CHP 8,671 12 Net generation (megawatthours) 33,676,980 38 Electric utilities 54,693 45 IPP & CHP 33,622,288 11 Emissions Sulfur dioxide (short tons) 1,897 47 Nitrogen oxide (short tons) 8,910 45 Carbon dioxide (thousand metric tons) 7,959 41 Sulfur dioxide (lbs/MWh) 0.1 46 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Delaware Electricity Profile 2014 Table 1. 2014 Summary statistics (Delaware) Item Value U.S. rank Primary energy source Natural gas Net summer capacity (megawatts) 3,086 46 Electric utilities 102 46 IPP & CHP 2,984 31 Net generation (megawatthours) 7,703,584 47 Electric utilities 49,050 46 IPP & CHP 7,654,534 35 Emissions Sulfur dioxide (short tons) 824 48 Nitrogen oxide (short tons) 2,836 48 Carbon dioxide (thousand metric tons) 4,276 43 Sulfur dioxide (lbs/MWh) 0.2 45 Nitrogen oxide

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    District of Columbia Electricity Profile 2014 Table 1. 2014 Summary statistics (District of Columbia) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 9 51 Electric utilities IPP & CHP 9 51 Net generation (megawatthours) 67,612 51 Electric utilities IPP & CHP 67,612 51 Emissions Sulfur dioxide (short tons) 0 51 Nitrogen oxide (short tons) 147 51 Carbon dioxide (thousand metric tons) 48 50 Sulfur dioxide (lbs/MWh) 0.0 51 Nitrogen oxide (lbs/MWh) 4.3 3

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Florida Electricity Profile 2014 Table 1. 2014 Summary statistics (Florida) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 59,440 3 Electric utilities 51,775 1 IPP & CHP 7,665 15 Net generation (megawatthours) 230,015,937 2 Electric utilities 211,970,587 1 IPP & CHP 18,045,350 15 Emissions Sulfur dioxide (short tons) 126,600 10 Nitrogen oxide (short tons) 91,356 6 Carbon dioxide (thousand metric tons) 111,549 2 Sulfur dioxide (lbs/MWh) 1.1 30 Nitrogen

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Georgia Electricity Profile 2014 Table 1. 2014 Summary statistics (Georgia) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 38,250 7 Electric utilities 28,873 3 IPP & CHP 9,377 10 Net generation (megawatthours) 125,837,224 10 Electric utilities 109,523,336 4 IPP & CHP 16,313,888 20 Emissions Sulfur dioxide (short tons) 105,998 11 Nitrogen oxide (short tons) 58,144 14 Carbon dioxide (thousand metric tons) 62,516 12 Sulfur dioxide (lbs/MWh) 1.7 24 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hawaii Electricity Profile 2014 Table 1. 2014 Summary statistics (Hawaii) Item Value Rank Primary energy source Petroleum Net summer capacity (megawatts) 2,672 47 Electric utilities 1,732 40 IPP & CHP 939 45 Net generation (megawatthours) 10,204,158 46 Electric utilities 5,517,389 39 IPP & CHP 4,686,769 40 Emissions Sulfur dioxide (short tons) 21,670 33 Nitrogen oxide (short tons) 26,928 31 Carbon dioxide (thousand metric tons) 7,313 42 Sulfur dioxide (lbs/MWh) 4.2 4 Nitrogen oxide

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Idaho Electricity Profile 2014 Table 1. 2014 Summary statistics (Idaho) Item Value Rank Primary energy source Hydroelectric Net summer capacity (megawatts) 4,944 42 Electric utilities 3,413 37 IPP & CHP 1,531 39 Net generation (megawatthours) 15,184,417 43 Electric utilities 9,628,016 37 IPP & CHP 5,556,400 39 Emissions Sulfur dioxide (short tons) 5,777 42 Nitrogen oxide (short tons) 20,301 37 Carbon dioxide (thousand metric tons) 1,492 49 Sulfur dioxide (lbs/MWh) 0.8 36 Nitrogen oxide

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Illinois Electricity Profile 2014 Table 1. 2014 Summary statistics (Illinois) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 44,727 4 Electric utilities 5,263 35 IPP & CHP 39,464 4 Net generation (megawatthours) 202,143,878 4 Electric utilities 10,457,398 36 IPP & CHP 191,686,480 3 Emissions Sulfur dioxide (short tons) 187,536 6 Nitrogen oxide (short tons) 58,076 15 Carbon dioxide (thousand metric tons) 96,624 6 Sulfur dioxide (lbs/MWh) 1.9 20 Nitrogen

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Indiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Indiana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 27,499 14 Electric utilities 23,319 7 IPP & CHP 4,180 23 Net generation (megawatthours) 115,395,392 12 Electric utilities 100,983,285 6 IPP & CHP 14,412,107 22 Emissions Sulfur dioxide (short tons) 332,396 3 Nitrogen oxide (short tons) 133,412 3 Carbon dioxide (thousand metric tons) 103,391 3 Sulfur dioxide (lbs/MWh) 5.8 1 Nitrogen oxide

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Iowa Electricity Profile 2014 Table 1. 2014 Summary statistics (Iowa) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 16,507 24 Electric utilities 12,655 20 IPP & CHP 3,852 25 Net generation (megawatthours) 56,853,282 28 Electric utilities 43,021,954 27 IPP & CHP 13,831,328 25 Emissions Sulfur dioxide (short tons) 74,422 19 Nitrogen oxide (short tons) 41,793 25 Carbon dioxide (thousand metric tons) 39,312 21 Sulfur dioxide (lbs/MWh) 2.6 13 Nitrogen oxide

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kansas Electricity Profile 2014 Table 1. 2014 Summary statistics (Kansas) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 14,227 31 Electric utilities 11,468 24 IPP & CHP 2,759 33 Net generation (megawatthours) 49,728,363 31 Electric utilities 39,669,629 29 IPP & CHP 10,058,734 31 Emissions Sulfur dioxide (short tons) 31,550 29 Nitrogen oxide (short tons) 29,014 29 Carbon dioxide (thousand metric tons) 31,794 29 Sulfur dioxide (lbs/MWh) 1.3 29 Nitrogen oxide

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Kentucky Electricity Profile 2014 Table 1. 2014 Summary statistics (Kentucky) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,878 21 Electric utilities 19,473 15 IPP & CHP 1,405 40 Net generation (megawatthours) 90,896,435 17 Electric utilities 90,133,403 10 IPP & CHP 763,032 49 Emissions Sulfur dioxide (short tons) 204,873 5 Nitrogen oxide (short tons) 89,253 7 Carbon dioxide (thousand metric tons) 85,795 7 Sulfur dioxide (lbs/MWh) 4.5 3 Nitrogen oxide

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Louisiana Electricity Profile 2014 Table 1. 2014 Summary statistics (Louisiana) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 26,657 15 Electric utilities 18,120 16 IPP & CHP 8,537 13 Net generation (megawatthours) 104,229,402 15 Electric utilities 58,518,271 17 IPP & CHP 45,711,131 8 Emissions Sulfur dioxide (short tons) 96,240 14 Nitrogen oxide (short tons) 83,112 8 Carbon dioxide (thousand metric tons) 57,137 15 Sulfur dioxide (lbs/MWh) 1.8 21

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maine Electricity Profile 2014 Table 1. 2014 Summary statistics (Maine) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 4,470 43 Electric utilities 10 49 IPP & CHP 4,460 20 Net generation (megawatthours) 13,248,710 44 Electric utilities 523 49 IPP & CHP 13,248,187 27 Emissions Sulfur dioxide (short tons) 10,990 38 Nitrogen oxide (short tons) 8,622 46 Carbon dioxide (thousand metric tons) 3,298 46 Sulfur dioxide (lbs/MWh) 1.7 25 Nitrogen oxide (lbs/MWh)

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Maryland Electricity Profile 2014 Table 1. 2014 Summary statistics (Maryland) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 12,264 33 Electric utilities 85 47 IPP & CHP 12,179 8 Net generation (megawatthours) 37,833,652 35 Electric utilities 20,260 47 IPP & CHP 37,813,392 9 Emissions Sulfur dioxide (short tons) 41,370 26 Nitrogen oxide (short tons) 20,626 35 Carbon dioxide (thousand metric tons) 20,414 34 Sulfur dioxide (lbs/MWh) 2.2 18 Nitrogen oxide

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Massachusetts Electricity Profile 2014 Table 1. 2014 Summary statistics (Massachusetts) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 13,128 32 Electric utilities 971 42 IPP & CHP 12,157 9 Net generation (megawatthours) 31,118,591 40 Electric utilities 679,986 43 IPP & CHP 30,438,606 12 Emissions Sulfur dioxide (short tons) 6,748 41 Nitrogen oxide (short tons) 13,831 43 Carbon dioxide (thousand metric tons) 12,231 39 Sulfur dioxide (lbs/MWh) 0.4 40

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Michigan Electricity Profile 2014 Table 1. 2014 Summary statistics (Michigan) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,435 12 Electric utilities 22,260 9 IPP & CHP 8,175 14 Net generation (megawatthours) 106,816,991 14 Electric utilities 84,075,322 12 IPP & CHP 22,741,669 13 Emissions Sulfur dioxide (short tons) 173,521 7 Nitrogen oxide (short tons) 77,950 9 Carbon dioxide (thousand metric tons) 64,062 11 Sulfur dioxide (lbs/MWh) 3.2 7 Nitrogen oxide

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Minnesota Electricity Profile 2014 Table 1. 2014 Summary statistics (Minnesota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 15,621 28 Electric utilities 11,557 22 IPP & CHP 4,064 24 Net generation (megawatthours) 56,998,330 27 Electric utilities 45,963,271 22 IPP & CHP 11,035,059 29 Emissions Sulfur dioxide (short tons) 39,272 27 Nitrogen oxide (short tons) 38,373 28 Carbon dioxide (thousand metric tons) 32,399 28 Sulfur dioxide (lbs/MWh) 1.4 27 Nitrogen

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mississippi Electricity Profile 2014 Table 1. 2014 Summary statistics (Mississippi) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 16,090 26 Electric utilities 13,494 19 IPP & CHP 2,597 34 Net generation (megawatthours) 55,127,092 29 Electric utilities 47,084,382 21 IPP & CHP 8,042,710 34 Emissions Sulfur dioxide (short tons) 101,093 13 Nitrogen oxide (short tons) 23,993 32 Carbon dioxide (thousand metric tons) 24,037 33 Sulfur dioxide (lbs/MWh) 3.7 5

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Missouri Electricity Profile 2014 Table 1. 2014 Summary statistics (Missouri) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 21,790 19 Electric utilities 20,538 13 IPP & CHP 1,252 42 Net generation (megawatthours) 87,834,468 18 Electric utilities 85,271,253 11 IPP & CHP 2,563,215 46 Emissions Sulfur dioxide (short tons) 149,842 9 Nitrogen oxide (short tons) 77,749 10 Carbon dioxide (thousand metric tons) 75,735 8 Sulfur dioxide (lbs/MWh) 3.4 6 Nitrogen oxide

  14. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Montana Electricity Profile 2014 Table 1. 2014 Summary statistics (Montana) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,330 41 Electric utilities 3,209 38 IPP & CHP 3,121 30 Net generation (megawatthours) 30,257,616 41 Electric utilities 12,329,411 35 IPP & CHP 17,928,205 16 Emissions Sulfur dioxide (short tons) 14,426 34 Nitrogen oxide (short tons) 20,538 36 Carbon dioxide (thousand metric tons) 17,678 36 Sulfur dioxide (lbs/MWh) 1.0 34 Nitrogen oxide

  15. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nebraska Electricity Profile 2014 Table 1. 2014 Summary statistics (Nebraska) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,732 36 Electric utilities 7,913 30 IPP & CHP 819 46 Net generation (megawatthours) 39,431,291 34 Electric utilities 36,560,960 30 IPP & CHP 2,870,331 45 Emissions Sulfur dioxide (short tons) 63,994 22 Nitrogen oxide (short tons) 27,045 30 Carbon dioxide (thousand metric tons) 26,348 31 Sulfur dioxide (lbs/MWh) 3.2 8 Nitrogen oxide

  16. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Nevada Electricity Profile 2014 Table 1. 2014 Summary statistics (Nevada) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 10,485 34 Electric utilities 8,480 29 IPP & CHP 2,006 35 Net generation (megawatthours) 36,000,537 37 Electric utilities 27,758,728 33 IPP & CHP 8,241,809 33 Emissions Sulfur dioxide (short tons) 10,229 40 Nitrogen oxide (short tons) 18,606 39 Carbon dioxide (thousand metric tons) 16,222 37 Sulfur dioxide (lbs/MWh) 0.4 38 Nitrogen

  17. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Hampshire Electricity Profile 2013 Table 1. 2013 Summary statistics (New Hampshire) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 4,413 44 Electric utilities 1,121 41 IPP & CHP 3,292 30 Net generation (megawatthours) 19,778,520 42 Electric utilities 2,266,903 41 IPP & CHP 17,511,617 20 Emissions Sulfur dioxide (short tons) 3,733 44 Nitrogen oxide (short tons) 5,057 47 Carbon dioxide (thousand metric tons) 3,447 46 Sulfur dioxide (lbs/MWh) 0.4 45 Nitrogen

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Jersey Electricity Profile 2014 Table 1. 2014 Summary statistics (New Jersey) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 19,399 22 Electric utilities 544 43 IPP & CHP 18,852 7 Net generation (megawatthours) 68,051,086 23 Electric utilities -117,003 50 IPP & CHP 68,168,089 7 Emissions Sulfur dioxide (short tons) 3,369 44 Nitrogen oxide (short tons) 15,615 41 Carbon dioxide (thousand metric tons) 17,905 35 Sulfur dioxide (lbs/MWh) 0.1 47 Nitrogen oxide

  19. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Mexico Electricity Profile 2014 Table 1. 2014 Summary statistics (New Mexico) Item Value U.S. Rank Primary energy source Coal Net summer capacity (megawatts) 8,072 39 Electric utilities 6,094 33 IPP & CHP 1,978 37 Net generation (megawatthours) 32,306,210 39 Electric utilities 26,422,867 34 IPP & CHP 5,883,343 38 Emissions Sulfur dioxide (short tons) 12,064 37 Nitrogen oxide (short tons) 46,192 22 Carbon dioxide (thousand metric tons) 24,712 32 Sulfur dioxide (lbs/MWh) 0.7 37 Nitrogen

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    York Electricity Profile 2014 Table 1. 2014 Summary statistics (New York) Item Value Rank Primary energy source Natural Gas Net summer capacity (megawatts) 40,404 6 Electric utilities 10,989 27 IPP & CHP 29,416 5 Net generation (megawatthours) 137,122,202 7 Electric utilities 34,082 31 IPP & CHP 103,039,347 5 Emissions Sulfur dioxide (short tons) 31,878 28 Nitrogen oxide (short tons) 46,971 21 Carbon dioxide (thousand metric tons) 33,240 26 Sulfur dioxide (lbs/MWh) 0.5 39 Nitrogen oxide

  1. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2013 Table 1. 2013 Summary statistics (North Carolina) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 30,048 12 Electric utilities 26,706 6 IPP & CHP 3,342 29 Net generation (megawatthours) 125,936,293 9 Electric utilities 116,317,050 2 IPP & CHP 9,619,243 31 Emissions Sulfur dioxide (short tons) 71,293 20 Nitrogen oxide (short tons) 62,397 12 Carbon dioxide (thousand metric tons) 56,940 14 Sulfur dioxide (lbs/MWh) 1.1 32 Nitrogen

  2. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Dakota Electricity Profile 2013 Table 1. 2013 Summary statistics (North Dakota) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 6,566 40 Electric utilities 5,292 34 IPP & CHP 1,274 41 Net generation (megawatthours) 35,021,673 39 Electric utilities 31,044,374 32 IPP & CHP 3,977,299 42 Emissions Sulfur dioxide (short tons) 56,854 23 Nitrogen oxide (short tons) 48,454 22 Carbon dioxide (thousand metric tons) 30,274 28 Sulfur dioxide (lbs/MWh) 3.2 11 Nitrogen oxide

  3. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Ohio Electricity Profile 2014 Table 1. 2014 Summary statistics (Ohio) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 31,507 9 Electric utilities 11,134 26 IPP & CHP 20,372 6 Net generation (megawatthours) 134,476,405 8 Electric utilities 43,290,512 25 IPP & CHP 91,185,893 7 Emissions Sulfur dioxide (short tons) 355,108 1 Nitrogen oxide (short tons) 105,688 4 Carbon dioxide (thousand metrictons) 98,650 5 Sulfur dioxide (lbs/MWh) 5.3 2 Nitrogen oxide (lbs/MWh)

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Oklahoma Electricity Profile 2014 Table 1. 2014 Summary statistics (Oklahoma) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 24,048 17 Electric utilities 17,045 17 IPP & CHP 7,003 16 Net generation (megawatthours) 70,155,504 22 Electric utilities 48,096,026 19 IPP & CHP 22,059,478 14 Emissions Sulfur dioxide 78,556 18 Nitrogen oxide 44,874 23 Carbon dioxide (thousand metric tons) 43,994 18 Sulfur dioxide (lbs/MWh) 2.2 17 Nitrogen oxide (lbs/MWh) 1.3 26

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Pennsylvania Electricity Profile 2014 Table 1. 2014 Summary statistics (Pennsylvania) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 42,723 5 Electric utilities 39 48 IPP & CHP 42,685 3 Net generation (megawatthours) 221,058,365 3 Electric utilities 90,994 44 IPP & CHP 220,967,371 2 Emissions Sulfur dioxide (short tons) 297,598 4 Nitrogen oxide (short tons) 141,486 2 Carbon dioxide (thousand metric tons) 101,361 4 Sulfur dioxide (lbs/MWh) 2.7 11 Nitrogen oxide

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Carolina Electricity Profile 2014 Table 1. 2014 Summary statistics (South Carolina) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 22,824 18 Electric utilities 20,836 12 IPP & CHP 1,988 36 Net generation (megawatthours) 97,158,465 16 Electric utilities 93,547,004 9 IPP & CHP 3,611,461 43 Emissions Sulfur dioxide (short tons) 43,659 25 Nitrogen oxide (short tons) 21,592 34 Carbon dioxide (thousand metric tons) 33,083 27 Sulfur dioxide (lbs/MWh) 0.9 35

  7. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Tennessee Electricity Profile 2014 Table 1. 2014 Summary statistics (Tennessee) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 20,998 20 Electric utilities 20,490 14 IPP & CHP 508 47 Net generation (megawatthours) 79,506,886 20 Electric utilities 76,986,629 13 IPP & CHP 2,520,257 47 Emissions Sulfur dioxide (short tons) 89,357 16 Nitrogen oxide (short tons) 23,913 33 Carbon dioxide (thousand metric tons) 41,405 20 Sulfur dioxide (lbs/MWh) 2.2 16 Nitrogen oxide

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Texas Electricity Profile 2014 Table 1. 2014 Summary statistics (Texas) Item Value Rank Primary energy source Natural gas Net summer capacity (megawatts) 112,914 1 Electric utilities 29,113 2 IPP & CHP 83,800 1 Net generation (megawatthours) 437,629,668 1 Electric utilities 94,974,953 7 IPP & CHP 342,654,715 1 Emissions Sulfur Dioxide (short tons) 349,245 2 Nitrogen Oxide short tons) 229,580 1 Carbon Dioxide (thousand metric tons) 254,488 1 Sulfur Dioxide (lbs/MWh) 1.6 26 Nitrogen Oxide

  9. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Utah Electricity Profile 2014 Table 1. 2014 Summary statistics (Utah) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,325 38 Electric utilities 7,296 31 IPP & CHP 1,029 44 Net generation (megawatthours) 43,784,526 33 Electric utilities 40,741,425 28 IPP & CHP 3,043,101 44 Emissions Sulfur Dioxide (short tons) 23,646 31 Nitrogen Oxide (short tons) 57,944 16 Carbon Dioxide (thousand metric tons) 35,179 24 Sulfur Dioxide (lbs/MWh) 1.1 31 Nitrogen Oxide (lbs/MWh)

  10. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Vermont Electricity Profile 2014 Table 1. 2014 Summary statistics (Vermont) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 650 50 Electric utilities 337 44 IPP & CHP 313 49 Net generation (megawatthours) 7,031,394 48 Electric utilities 868,079 42 IPP & CHP 6,163,315 37 Emissions Sulfur Dioxide (short tons) 71 50 Nitrogen Oxide (short tons) 737 50 Carbon Dioxide (thousand metric tons) 14 51 Sulfur Dioxide (lbs/MWh) 0.0 50 Nitrogen Oxide (lbs/MWh) 0.2 51

  11. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Virginia Electricity Profile 2014 Table 1. 2014 Summary statistics (Virginia) Item Value Rank Primary energy source Nuclear Net summer capacity (megawatts) 26,292 16 Electric utilities 22,062 10 IPP & CHP 4,231 22 Net generation (megawatthours) 77,137,438 21 Electric utilities 62,966,914 16 IPP & CHP 14,170,524 23 Emissions Sulfur Dioxide (short tons) 68,550 20 Nitrogen Oxide (short tons) 40,656 26 Carbon Dioxide (thousand metric tons) 33,295 25 Sulfur Dioxide (lbs/MWh) 1.8 23 Nitrogen

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wisconsin Electricity Profile 2014 Table 1. 2014 Summary statistics (Wisconsin) Item Value Rank Primary Energy Source Coal Net summer capacity (megawatts) 17,166 23 Electric utilities 14,377 18 IPP & CHP 2,788 32 Net generation (megawatthours) 61,064,796 25 Electric utilities 47,301,782 20 IPP & CHP 13,763,014 26 Emissions Sulfur Dioxide (short tons) 81,239 17 Nitrogen Oxide (short tons) 39,597 27 Carbon Dioxide (thousand metric tons) 43,750 19 Sulfur Dioxide (lbs/MWh) 2.7 12 Nitrogen

  13. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    Wyoming Electricity Profile 2014 Table 1. 2014 Summary statistics (Wyoming) Item Value Rank Primary energy source Coal Net summer capacity (megawatts) 8,458 37 Electric utilities 7,233 32 IPP & CHP 1,225 43 Net generation (megawatthours) 49,696,183 32 Electric utilities 45,068,982 23 IPP & CHP 4,627,201 41 Emissions Sulfur Dioxide (short tons) 45,704 24 Nitrogen Oxide (short tons) 49,638 18 Carbon Dioxide (thousand metric tons) 47,337 17 Sulfur Dioxide (lbs/MWh) 1.8 22 Nitrogen Oxide

  14. BEEST: Electric Vehicle Batteries

    SciTech Connect (OSTI)

    2010-07-01

    BEEST Project: The U.S. spends nearly a $1 billion per day to import petroleum, but we need dramatically better batteries for electric and plug-in hybrid vehicles (EV/PHEV) to truly compete with gasoline-powered cars. The 10 projects in ARPA-E’s BEEST Project, short for “Batteries for Electrical Energy Storage in Transportation,” could make that happen by developing a variety of rechargeable battery technologies that would enable EV/PHEVs to meet or beat the price and performance of gasoline-powered cars, and enable mass production of electric vehicles that people will be excited to drive.

  15. INNOVATIVE HYBRID GAS/ELECTRIC CHILLER COGENERATION

    SciTech Connect (OSTI)

    Todd Kollross; Mike Connolly

    2004-06-30

    Engine-driven chillers are quickly gaining popularity in the market place (increased from 7,000 tons in 1994 to greater than 50,000 tons in 1998) due to their high efficiency, electric peak shaving capability, and overall low operating cost. The product offers attractive economics (5 year pay back or less) in many applications, based on areas cooling requirements and electric pricing structure. When heat is recovered and utilized from the engine, the energy resource efficiency of a natural gas engine-driven chiller is higher than all competing products. As deregulation proceeds, real time pricing rate structures promise high peak demand electric rates, but low off-peak electric rates. An emerging trend with commercial building owners and managers who require air conditioning today is to reduce their operating costs by installing hybrid chiller systems that combine gas and electric units. Hybrid systems not only reduce peak electric demand charges, but also allow customers to level their energy load profiles and select the most economical energy source, gas or electricity, from hour to hour. Until recently, however, all hybrid systems incorporated one or more gas-powered chillers (engine driven and/or absorption) and one or more conventional electric units. Typically, the cooling capacity of hybrid chiller plants ranges from the hundreds to thousands of refrigeration tons, with multiple chillers affording the user a choice of cooling systems. But this flexibility is less of an option for building operators who have limited room for equipment. To address this technology gap, a hybrid chiller was developed by Alturdyne that combines a gas engine, an electric motor and a refrigeration compressor within a single package. However, this product had not been designed to realize the full features and benefits possible by combining an engine, motor/generator and compressor. The purpose of this project is to develop a new hybrid chiller that can (1) reduce end-user energy

  16. Primer on electricity futures and other derivatives

    SciTech Connect (OSTI)

    Stoft, S.; Belden, T.; Goldman, C.; Pickle, S.

    1998-01-01

    Increased competition in bulk power and retail electricity markets is likely to lower electricity prices, but will also result in greater price volatility as the industry moves away from administratively determined, cost-based rates and encourages market-driven prices. Price volatility introduces new risks for generators, consumers, and marketers. Electricity futures and other derivatives can help each of these market participants manage, or hedge, price risks in a competitive electricity market. Futures contracts are legally binding and negotiable contracts that call for the future delivery of a commodity. In most cases, physical delivery does not take place, and the futures contract is closed by buying or selling a futures contract on or near the delivery date. Other electric rate derivatives include options, price swaps, basis swaps, and forward contracts. This report is intended as a primer for public utility commissioners and their staff on futures and other financial instruments used to manage price risks. The report also explores some of the difficult choices facing regulators as they attempt to develop policies in this area.

  17. Plug-In Electric Vehicle Handbook for Electrical Contractors (Brochure)

    SciTech Connect (OSTI)

    Not Available

    2012-04-01

    This handbook answers basic questions about plug-in electric vehicles, charging stations, charging equipment, charging equipment installation, and training for electrical contractors.

  18. March 2012 Electrical Safety Occurrences

    Energy Savers [EERE]

    - Electrical Wiring 08J--OSHA ReportableIndustrial Hygiene - Near Miss (Electrical) 11G--Other - Subcontractor 12C--EH Categories - Electrical Safety 14D--Quality Assurance -...

  19. Electric Vehicles | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 Chevrolet Spark EV 2015 Kia Soul Electric 2014 BMW i3 BEV 2014 Smart Electric Drive 2013 Ford Focus Electric 2013 Nissan Leaf SV 2012 Mitsubishi I-MiEV 2012 Nissan Leaf ...

  20. EV Everywhere: All-Electric and Plug-in Hybrid Electric Cars...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and Plug-in Hybrid Electric Cars Find Electric Vehicle Models Vehicle Charging Saving Fuel & Vehicle Costs Electric Vehicle Stories Benefits of Electric Vehicles Electric ...

  1. Generating electricity from viruses

    SciTech Connect (OSTI)

    Lee, Seung-Wuk

    2013-10-31

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  2. Electricity Monthly Update

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    California (CAISO) due to very low natural gas prices. Hawaii's retail electricity revenue per kilowatthour fell the most of any state for the fifth month in a row, down 24%...

  3. Micromachined electrical cauterizer

    DOE Patents [OSTI]

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  4. Generating electricity from viruses

    ScienceCinema (OSTI)

    Lee, Seung-Wuk

    2014-06-23

    Berkeley Lab's Seung-Wuk Lee discusses "Generating electricity from viruses" in this Oct. 28, 2013 talk, which is part of a Science at the Theater event entitled Eight Big Ideas.

  5. Electricity Monthly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Sector Coal Stocks: February 2014 Stocks Extreme cold throughout the winter continued in February, leading to a 13.4 million ton decline in coal inventories from...

  6. Biomass for Electricity Generation

    Reports and Publications (EIA)

    2002-01-01

    This paper examines issues affecting the uses of biomass for electricity generation. The methodology used in the National Energy Modeling System to account for various types of biomass is discussed, and the underlying assumptions are explained.

  7. Solar Electric Incentive Program

    Broader source: Energy.gov [DOE]

    Energy Trust of Oregon’s Solar Electric Incentive Program, launched in May 2003, is available to customers of Pacific Power and PGE who install new photovoltaic (PV) systems on new or existing...

  8. Electric Transmission System Workshop

    Broader source: Energy.gov (indexed) [DOE]

    Lauren Azar Senior Advisor to Secretary Chu November 2, 2012 Electric Transmission System ... Can we agree on several key design attributes for the future grid? Taking Action in the ...

  9. Electricity Transmission, A Primer

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... the power from low-cost, mine- mouth coal power plants and wind generators in Wyoming. ... As a result, the transmission system helps to insulate electricity consumers from the ...

  10. Annual Power Electric

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    Electric Power Annual Update Revision Data for 2014 updated: February 16, 2016 February ... Table 8.11.A. U.S. Transmission Circuit Outages by Type and NERC region Table 8.11.B. ...

  11. Micromachined electrical cauterizer

    DOE Patents [OSTI]

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen

    1999-01-01

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  12. Electrically conductive material

    DOE Patents [OSTI]

    Singh, Jitendra P.; Bosak, Andrea L.; McPheeters, Charles C.; Dees, Dennis W.

    1993-01-01

    An electrically conductive material for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO.sub.2 as a matrix and 6-19 wt. % monoclinic ZrO.sub.2 formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO.sub.2 as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns.

  13. Electrically conductive material

    DOE Patents [OSTI]

    Singh, J.P.; Bosak, A.L.; McPheeters, C.C.; Dees, D.W.

    1993-09-07

    An electrically conductive material is described for use in solid oxide fuel cells, electrochemical sensors for combustion exhaust, and various other applications possesses increased fracture toughness over available materials, while affording the same electrical conductivity. One embodiment of the sintered electrically conductive material consists essentially of cubic ZrO[sub 2] as a matrix and 6-19 wt. % monoclinic ZrO[sub 2] formed from particles having an average size equal to or greater than about 0.23 microns. Another embodiment of the electrically conductive material consists essentially at cubic ZrO[sub 2] as a matrix and 10-30 wt. % partially stabilized zirconia (PSZ) formed from particles having an average size of approximately 3 microns. 8 figures.

  14. Electric current locator

    DOE Patents [OSTI]

    King, Paul E.; Woodside, Charles Rigel

    2012-02-07

    The disclosure herein provides an apparatus for location of a quantity of current vectors in an electrical device, where the current vector has a known direction and a known relative magnitude to an input current supplied to the electrical device. Mathematical constants used in Biot-Savart superposition equations are determined for the electrical device, the orientation of the apparatus, and relative magnitude of the current vector and the input current, and the apparatus utilizes magnetic field sensors oriented to a sensing plane to provide current vector location based on the solution of the Biot-Savart superposition equations. Description of required orientations between the apparatus and the electrical device are disclosed and various methods of determining the mathematical constants are presented.

  15. Electricity | Department of Energy

    Energy Savers [EERE]

    And we see how the city of Hoboken, New Jersey is preparing for electric emergencies. March 17, 2016 Dr. Imre Gyuk -- pictured speaking at a Green Mountain Power energy storage ...

  16. National Electricity Delivery Division

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity Delivery Division Julie Ann Smith, PhD September 24, 2015 The Federal Indian ... Tradition Thank you Julie Ann Smith, PhD U.S. Department of Energy ...

  17. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    538,800 35 Average retail price (centskWh) 33.43 1 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  18. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    684,481 33 Average retail price (centskWh) 8.68 39 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  19. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    20,316,681 2 Average retail price (centskWh) 8.09 46 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  20. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    28,310 49 Average retail price (centskWh) 15.41 5 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...