National Library of Energy BETA

Sample records for white light emitting

  1. White light-emitting organic electroluminescent devices

    DOE Patents [OSTI]

    Shiang, Joseph John; Duggal, Anil Raj; Parthasarathy, Gautam

    2006-06-20

    A light-emitting device comprises a light-emitting member, which comprises two electrodes, at least two organic electroluminescent ("EL") materials disposed between the electrodes, a charge blocking material disposed between the electrodes, and at least one photoluminescent ("PL") material. The light-emitting member emits electromagnetic ("EM") radiation having a first spectrum in response to a voltage applied across the two electrodes. The PL material absorbs a portion of the EM radiation emitted by the light-emitting member and emits EM radiation having second spectrum different than the first spectrum. Each of the organic EL materials emits EM radiation having a wavelength range selected from the group consisting of blue and red wavelength ranges.

  2. Light emitting device comprising phosphorescent materials for white light generation

    DOE Patents [OSTI]

    Thompson, Mark E.; Dapkus, P. Daniel

    2014-07-22

    The present invention relates to phosphors for energy downconversion of high energy light to generate a broadband light spectrum, which emit light of different emission wavelengths.

  3. Green Light-Emitting Diode Makes Highly Efficient White Light; The Spectrum of Clean Energy Innovation (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2010-06-01

    Fact sheet describing NREL's green light emitting diode that can lead to higher efficiency white light used in indoor lighting applications.

  4. Nanocluster-based white-light-emitting material employing surface tuning

    DOE Patents [OSTI]

    Wilcoxon, Jess P. (Albuquerque, NM); Abrams, Billie L. (Albuquerque, NM); Thoma, Steven G. (Albuquerque, NM)

    2007-06-26

    A method for making a nanocrystal-based material capable of emitting light over a sufficiently broad spectral range to appear white. Surface-modifying ligands are used to shift and broaden the emission of semiconductor nanocrystals to produce nanoparticle-based materials that emit white light.

  5. Synthesis and optical properties of cadmium selenide quantum dots for white light-emitting diode application

    SciTech Connect (OSTI)

    Xu, Xianmei; Wang, Yilin; Gule, Teri; Luo, Qiang [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Zhou, Liya, E-mail: zhouliyatf@163.com [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China); Gong, Fuzhong [School of Chemistry and Chemical Engineering, Guangxi University, Nanning 53000 (China)

    2013-03-15

    Highlights: ? Stable CdSe QDs were synthesized by the one-step and two-level process respectively. ? The fabricated white LEDs show good white balance. ? CdSe QDs present well green to yellow band luminescence. ? CdSe QDs displayed a broad excitation band. - Abstract: Yellow light-emitting cadmium selenide quantum dots were synthesized using one-step and two-step methods in an aqueous medium. The structural luminescent properties of these quantum dots were investigated. The obtained cadmium selenide quantum dots displayed a broad excitation band suitable for blue or near-ultraviolet light-emitting diode applications. White light-emitting diodes were fabricated by coating the cadmium selenide samples onto a 460 nm-emitting indium gallium nitrite chip. Both samples exhibited good white balance. Under a 20 mA working current, the white light-emitting diode fabricated via the one-step and two-step methods showed Commission Internationale de lclairage coordinates at (0.27, 0.23) and (0.27, 0.33), respectively, and a color rendering index equal to 41 and 37, respectively. The one-step approach was simpler, greener, and more effective than the two-step approach. The one-step approach can be enhanced by combining cadmium selenide quantum dots with proper phosphors.

  6. High-Efficiency and Stable White Organic Light-Emitting Diode Using a Single Emitter

    Broader source: Energy.gov [DOE]

    This project is demonstrating an efficient and stable white organic light-emitting diode (WOLED) using a single emitter on a planar glass substrate. Current WOLED technology requires the use of multiple emissive materials, which are expensive to manufacture and also generate color instability and color aging issues, affecting WOLED performance and operational lifetime.

  7. High-efficiency white organic light-emitting diodes using thermally activated delayed fluorescence

    SciTech Connect (OSTI)

    Nishide, Jun-ichi; Hiraga, Yasuhide; Nakanotani, Hajime; Adachi, Chihaya

    2014-06-09

    White organic light-emitting diodes (WOLEDs) have attracted much attention recently, aimed for next-generation lighting sources because of their high potential to realize high electroluminescence efficiency, flexibility, and low-cost manufacture. Here, we demonstrate high-efficiency WOLED using red, green, and blue thermally activated delayed fluorescence materials as emissive dopants to generate white electroluminescence. The WOLED has a maximum external quantum efficiency of over 17% with Commission Internationale de l'Eclairage coordinates of (0.30, 0.38).

  8. High performance flexible top-emitting warm-white organic light-emitting devices and chromaticity shift mechanism

    SciTech Connect (OSTI)

    Shi, Hongying; Deng, Lingling; Chen, Shufen E-mail: wei-huang@njupt.edu.cn; Xu, Ying; Zhao, Xiaofei; Cheng, Fan; Huang, Wei E-mail: wei-huang@njupt.edu.cn; Jiangsu-Singapore Joint Research Center for Organic/Bio- Electronics and Information Displays and Institute of Advanced Materials, Nanjing University of Technology, Nanjing 211816

    2014-04-15

    Flexible warm-white top-emitting organic light-emitting devices (TEOLEDs) are fabricated onto PET substrates with a simple semi-transparent cathode Sm/Ag and two-color phosphors respectively doped into a single host material TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest power/current efficiency of 8.07 lm/W and near 13 cd/A, with a correlated color temperature (CCT) of 4105 K and a color rendering index (CRI) of 70. In addition, a moderate chromaticity variation of (-0.025, +0.008) around warm white illumination coordinates (0.45, 0.44) is obtained over a large luminance range of 1000 to 10000 cd/m{sup 2}. The emission mechanism is discussed via delta-doping method and single-carrier device, which is summarized that the carrier trapping, the exciton quenching, the mobility change and the recombination zone alteration are negative to color stability while the energy transfer process and the blue/red/blue sandwiched structure are contributed to the color stability in our flexible white TEOLEDs.

  9. White light emitting Ho{sup 3+}-doped CdS nanocrystal ingrained glass nanocomposites

    SciTech Connect (OSTI)

    Dey, Chirantan; Karmakar, Basudeb; Goswami, Madhumita

    2015-02-23

    We report the generation of white light from Ho{sup 3+} ion doped CdS nanocrystal ingrained borosilicate glass nanocomposites prepared by the conventional melt-quench method. Near visible 405?nm diode laser excited white light emission is produced by tuning the blue emission from the Ho{sup 3+} ions, green band edge, and orange-red surface-state emissions of the nanocrystalline CdS, which are further controlled by the size of the nanocrystals. The absorption and emission spectra evidenced the excitation of Ho{sup 3+} ions by absorption of photons emitted by the CdS nanocrystals. The high color rendering index (CRI?=?8489) and befitting chromaticity coordinates (x?=?0.3080.309, y?=?0.3260.338) of white light emission, near visible harmless excitation wavelength (405?nm), and high absorbance values at excitation wavelength point out that these glass nanocomposites may serve as a prominent candidate for resin free high power white light emitting diodes.

  10. White-blue electroluminescence from a Si quantum dot hybrid light-emitting diode

    SciTech Connect (OSTI)

    Xin, Yunzi; Nishio, Kazuyuki; Saitow, Ken-ichi

    2015-05-18

    A silicon (Si) quantum dot (QD)-based hybrid inorganic/organic light-emitting diode (LED) was fabricated via solution processing. This device exhibited white-blue electroluminescence at a low applied voltage of 6?V, with 78% of the effective emission obtained from the Si QDs. This hybrid LED produced current and optical power densities 280 and 350 times greater than those previously reported for such device. The superior performance of this hybrid device was obtained by both the prepared Si QDs and the optimized layer structure and thereby improving carrier migration through the hybrid LED and carrier recombination in the homogeneous Si QD layer.

  11. Materials and architectures for efficient harvesting of singlet and triplet excitons for white light emitting OLEDs

    DOE Patents [OSTI]

    Thompson, Mark E; Forrest, Stephen

    2015-02-03

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters for the efficient utilization of all of the electrically generated excitons.

  12. Influences of wide-angle and multi-beam interference on the chromaticity and efficiency of top-emitting white organic light-emitting diodes

    SciTech Connect (OSTI)

    Deng, Lingling; Zhou, Hongwei; Chen, Shufen Liu, Bin; Wang, Lianhui; Shi, Hongying

    2015-02-28

    Wide-angle interference (WI) and multi-beam interference (MI) in microcavity are analyzed separately to improve chromaticity and efficiency of the top-emitting white organic light-emitting diodes (TWOLEDs). A classic electromagnetic theory is used to calculate the resonance intensities of WI and MI in top-emitting organic light-emitting diodes (TOLEDs) with influence factors (e.g., electrodes and exciton locations) being considered. The role of WI on the performances of TOLEDs is revealed through using ?-doping technology and comparing blue and red EML positions in top-emitting and bottom-emitting devices. The blue light intensity significantly increases and the chromaticity of TWOLEDs is further improved with the use of enhanced WI (the blue emitting layer moving towards the reflective electrode) in the case of a weak MI. In addition, the effect of the thicknesses of light output layer and carrier transport layers on WI and MI are also investigated. Apart from the microcavity effect, other factors, e.g., carrier balance and carrier recombination regions are considered to obtain TWOLEDs with high efficiency and improved chromaticity near white light equal-energy point.

  13. Full phosphorescent white-light organic light-emitting diodes with improved color stability and efficiency by fine tuning primary emission contributions

    SciTech Connect (OSTI)

    Hua, Wang, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Du, Xiaogang [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Su, Wenming, E-mail: wmsu2008@sinano.ac.cn, E-mail: wanghua001@tyut.edu.cn; Zhang, Dongyu [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)] [Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China); Lin, Wenjing [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China) [Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024 (China); Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024 (China); Printable Electronics Research Centre, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, suzhou 215123 (China)

    2014-02-15

    In this paper, a novel type of white-light organic light emitting diode (OLED) with high color stability was reported, in which the yellow-light emission layer of (4,4{sup ?}-N,N{sup ?}-dicarbazole)biphenyl (CBP) : tris(2-phenylquinoline-C2,N{sup ?})iridium(III) (Ir(2-phq){sub 3}) was sandwiched by double blue-light emission layers of 1,1-bis-[(di-4-tolylamino)pheny1]cyclohexane (TAPC) : bis[4,6-(di-fluorophenyl)-pyridinato-N,C2{sup ?}]picolinate (FIrpic) and tris[3-(3-pyridyl)mesityl]borane (3TPYMB):FIrpic. And, it exhibited the maximum current efficiency of 33.1 cd/A, the turn-on voltage at about 3 V and the maximum luminance in excess of 20000 cd/m{sup 2}. More important, it realized very stable white-light emission, and its CIE(x, y) coordinates only shift from (0.34, 0.37) to (0.33, 0.37) as applied voltage increased from 5 V to 12 V. It is believed that the new scheme in emission layer of white-light OLED can fine tune the contribution of primary emission with applied voltage changed, resulting in high quality white-light OLED.

  14. Phosphors for near UV-Emitting LED's for Efficacious Generation of White Light

    SciTech Connect (OSTI)

    McKittrick, Joanna

    2013-09-30

    1) We studied phosphors for near-UV (nUV) LED application as an alternative to blue LEDs currently being used in SSL systems. We have shown that nUV light sources could be very efficient at high current and will have significantly less binning at both the chip and phosphor levels. We identified phosphor blends that could yield 4100K lamps with a CRI of approximately 80 and LPWnUV,opt equal to 179 for the best performing phosphor blend. Considering the fact that the lamps were not optimized for light coupling, the results are quite impressive. The main bottleneck is an optimum blue phosphor with a peak near 440 nm with a full width half maximum of about 25 nm and a quantum efficiency of >95%. Unfortunately, that may be a very difficult task when we want to excite a phosphor at ~400 nm with a very small margin for Stokes shift. Another way is to have all the phosphors in the blend having the excitation peak at 400 nm or slightly shorter wavelength. This could lead to a white light source with no body color and optimum efficacy due to no self-absorption effects by phosphors in the blend. This is even harder than finding an ideal blue phosphor, but not necessarily impossible. 2) With the phosphor blends identified, light sources using nUV LEDs at high current could be designed with comparable efficacy to those using blue LEDs. It will allow us to design light sources with multiple wattages using the same chips and phosphor blends simply by varying the input current. In the case of blue LEDs, this is not currently possible because varying the current will lower the efficacy at high current and alter the color point. With improvement of phosphor blends, control over CRI could improve. Less binning at the chip level and also at the phosphor blend level could reduce the cost of SSL light sources. 3) This study provided a deeper understanding of phosphor characteristics needed for LEDs in general and nUV LEDs in particular. Two students received Ph.D. degrees and three undergraduates participated in this work. Two of the undergraduate students are now in graduate school. The results were widely disseminated 20 archival journal publications (published, accepted or in preparation) and three conference proceedings resulted. The students presented their work at 11 different national/international conferences (32 oral or poster presentations) and the PIs delivered 12 invited, keynote or plenary lectures.

  15. High performance flexible top-emitting warm-white organic light...

    Office of Scientific and Technical Information (OSTI)

    TCTA. By adjusting the relative position of the orange-red EML sandwiched between the blue emitting layers, the optimized device exhibits the highest powercurrent efficiency of...

  16. Exciting White Lighting

    Broader source: Energy.gov [DOE]

    Windows that emit light and are more energy efficient? Universal Display’s PHOLED technology enables windows that have transparent light-emitting diodes in them.

  17. Using interlayer step-wise triplet transfer to achieve an efficient white organic light-emitting diode with high color-stability

    SciTech Connect (OSTI)

    Wang, Qi; Ma, Dongge Ding, Junqiao; Wang, Lixiang; Leo, Karl; Qiao, Qiquan; Jia, Huiping; Gnade, Bruce E.

    2014-05-12

    An efficient phosphorescent white organic light emitting-diode with a red-green-blue tri-emitting-layer structure is reported. The host of the red dopant possesses a lower triplet-energy than the green dye. An interlayer step-wise triplet transfer via blue dye ? green dye ? red host ? red dye is achieved. This mechanism allows an efficient triplet harvesting by the three dopants, thus maintaining a balanced white light and reducing energy loss. Moreover, the color stability of the device is improved significantly. The white device not only achieves a peak external quantum efficiency of 21.1??0.8% and power efficiency of 37.5??1.4?lm/W but shows no color shift over a wide range of voltages.

  18. Light emitting ceramic device

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker, Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2010-05-18

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, is herein claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  19. Effective White Light Options for Parking Area Lighting | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Effective White Light Options for Parking Area Lighting Effective White Light Options for Parking Area Lighting Document details lighting technologies that provide low-maintenance alternatives to high-pressure sodium lighting. PDF icon white_light_parking_area..pdf More Documents & Publications LED Provides Effective and Efficient Parking Area Lighting at the NAVFAC Engineering Service Center Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report

  20. light-emitting diode

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    light-emitting diode - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced

  1. Bicolor Mn-doped CuInS{sub 2}/ZnS core/shell nanocrystals for white light-emitting diode with high color rendering index

    SciTech Connect (OSTI)

    Huang, Bo; Dai, Qian; Zhang, Huichao; Liao, Chen; Cui, Yiping; Zhang, Jiayu; Zhuo, Ningze; Jiang, Qingsong; Shi, Fenghua; Wang, Haibo

    2014-09-07

    We synthesized bicolor Mn-doped CuInS{sub 2} (CIS)/ZnS core/shell nanocrystals (NCs), in which Mn{sup 2+} ions and the CIS core were separated with a ZnS layer, and both Mn{sup 2+} ions and CIS cores could emit simultaneously. Transmission electron microscopy and powder X-ray diffraction measurements indicated the epitaxial growth of ZnS shell on the CuInS{sub 2} core, and electron paramagnetic resonance spectrum indicated that Mn{sup 2+} ions were on the lattice points of ZnS shell. By integrating these bicolor NCs with commercial InGaN-based blue-emitting diodes, tricolor white light-emitting diodes with color rendering index of 83 were obtained.

  2. Luminescent properties of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} and its potential application in white light emitting diodes

    SciTech Connect (OSTI)

    Wang, Zhijun; Li, Panlai; Li, Ting; Zhang, Xing; Li, Qingxuan; Yang, Zhiping; Guo, Qinglin

    2013-06-01

    Graphical abstract: Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} phosphor can be effectively excited by an ultraviolet and near-ultraviolet light, and produce a bright blue emission centered at 436 nm. The CIE chromaticity coordinations (x, y) of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+}(NSCE)/Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}(LSSE) vary with the molar ratio of the two constituents. When NSCE/LSSE is 1:3, the CIE chromaticity coordination is (0.332, 0.346), which is close to that of the natural sunlight (0.33, 0.33). The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a promising blue phosphor for UV chip-based multi-phosphor converted white light emitting diodes. Highlights: ? Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} shows the blue emission with a peak at 436 nm and broad excitation band in the UV/n-UV range. ? White light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor with the Li{sub 2}SrSiO{sub 4}:Eu{sup 2+} yellow phosphor. ? Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} would be a promising blue phosphor candidate for UV chip-based multi-phosphor converted white LEDs. - Abstract: A novel blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is synthesized by a high temperature solid-state reaction, and its luminescent properties are systematically studied. Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} can be effectively excited by the 354 nm radiation, and create blue emission (436 nm). The emission intensity of Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} is influenced by the Eu{sup 2+} doping content, and the optimal doping content is 1.5%, and the concentration quenching mechanism of Eu{sup 2+} in Na{sub 2}CaSiO{sub 4} can be attributed to the multipolar interaction. The white light with CIE coordinates (0.332, 0.346) is generated by mixing the blue phosphor Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} with the yellow phosphor Li{sub 2}SrSiO{sub 4}:Eu{sup 2+}. The results indicate that Na{sub 2}CaSiO{sub 4}:Eu{sup 2+} may be a potential blue emitting phosphor for UV chip-based multi-phosphor converted white light emitting diodes.

  3. SciTech Connect: "light emitting diode"

    Office of Scientific and Technical Information (OSTI)

    light emitting diode" Find + Advanced Search Term Search Semantic Search Advanced Search All Fields: "light emitting diode" Semantic Semantic Term Title: Full Text:...

  4. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1997-06-24

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  5. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J.

    1997-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  6. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, David J.

    1999-01-01

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s.

  7. White light velocity interferometer

    DOE Patents [OSTI]

    Erskine, D.J.

    1999-06-08

    The invention is a technique that allows the use of broadband and incoherent illumination. Although denoted white light velocimetry, this principle can be applied to any wave phenomenon. For the first time, powerful, compact or inexpensive sources can be used for remote target velocimetry. These include flash and arc lamps, light from detonations, pulsed lasers, chirped frequency lasers, and lasers operating simultaneously in several wavelengths. The technique is demonstrated with white light from an incandescent source to measure a target moving at 16 m/s. 41 figs.

  8. High color rendering index white light emitting diodes fabricated from a combination of carbon dots and zinc copper indium sulfide quantum dots

    SciTech Connect (OSTI)

    Sun, Chun; Liu, Wenyan; Zhang, Xiaoyu; Zhang, Yu E-mail: wyu6000@gmail.com; Wang, Yu; Kalytchuk, Sergii; Kershaw, Stephen V.; Rogach, Andrey L.; Zhang, Tieqiang; Zhao, Jun; Yu, William W. E-mail: wyu6000@gmail.com

    2014-06-30

    In a line with most recent trends in developing non-toxic fluorescent nanomaterials, we combined blue emissive carbon dots with green and red emissive zinc copper indium sulfide (ZCIS) core/shell quantum dots (QDs) to achieve white light-emitting diodes (WLEDs) with a high color rendering index of 93. This indicates that ZCIS QDs, with their broad emission bands, can be employed to effectively make up the emission of carbon dots in the yellow and red regions to produce WLEDs in the wide region of color temperature by tuning the volume ratio of these constituting luminophores. Their electroluminescence characteristics including color rendering index, Commission Internationale de l'Eclairage (CIE) color coordinates, and color temperatures were evaluated as a function of forward current. The CIE-1931 chromaticity coordinates of the as-prepared WLEDs, exhibiting good stability, were slightly shifted from (0.321, 0.312) at 10?mA to (0.351, 0.322) at 30?mA, which was mainly caused by the different thermal quenching coefficients of carbon dots and ZCIS QDs.

  9. Demonstration Assessment of Light-Emitting Diode Roadway Lighting...

    Office of Scientific and Technical Information (OSTI)

    Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting ... Country of Publication: United States Language: English Subject: LEDs; light-emitting diodes; ...

  10. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, I.J.; Klem, J.F.; Hafich, M.J.

    1998-07-14

    A broadband light-emitting diode is disclosed. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3--2 {micro}m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-divisionmultiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft. 10 figs.

  11. Broadband light-emitting diode

    DOE Patents [OSTI]

    Fritz, Ian J.; Klem, John F.; Hafich, Michael J.

    1998-01-01

    A broadband light-emitting diode. The broadband light-emitting diode (LED) comprises a plurality of III-V compound semiconductor layers grown on a semiconductor substrate, with the semiconductor layers including a pair of cladding layers sandwiched about a strained-quantum-well active region having a plurality of different energy bandgaps for generating light in a wavelength range of about 1.3-2 .mu.m. In one embodiment of the present invention, the active region may comprise a first-grown quantum-well layer and a last-grown quantum-well layer that are oppositely strained; whereas in another embodiment of the invention, the active region is formed from a short-period superlattice structure (i.e. a pseudo alloy) comprising alternating thin layers of InGaAs and InGaAlAs. The use a short-period superlattice structure for the active region allows different layers within the active region to be simply and accurately grown by repetitively opening and closing one or more shutters in an MBE growth apparatus to repetitively switch between different growth states therein. The broadband LED may be formed as either a surface-emitting LED or as an edge-emitting LED for use in applications such as chemical sensing, fiber optic gyroscopes, wavelength-division-multiplexed (WDM) fiber-optic data links, and WDM fiber-optic sensor networks for automobiles and aircraft.

  12. Porous light-emitting compositions

    DOE Patents [OSTI]

    Burrell, Anthony K.; McCleskey, Thomas Mark; Jia, Quanxi; Bauer, Eve; Mueller, Alexander H.

    2012-04-17

    Light-emitting devices are prepared by coating a porous substrate using a polymer-assisted deposition process. Solutions of metal precursor and soluble polymers having binding properties for metal precursor were coated onto porous substrates. The coated substrates were heated at high temperatures under a suitable atmosphere. The result was a substrate with a conformal coating that did not substantially block the pores of the substrate.

  13. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Keith Kahen

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m2, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  14. Quantum Dot Light Emitting Diode

    SciTech Connect (OSTI)

    Kahen, Keith

    2008-07-31

    The project objective is to create low cost coatable inorganic light emitting diodes, composed of quantum dot emitters and inorganic nanoparticles, which have the potential for efficiencies equivalent to that of LEDs and OLEDs and lifetime, brightness, and environmental stability between that of LEDs and OLEDs. At the end of the project the Recipient shall gain an understanding of the device physics and properties of Quantum-Dot LEDs (QD-LEDs), have reliable and accurate nanocrystal synthesis routines, and have formed green-yellow emitting QD-LEDs with a device efficiency greater than 3 lumens/W, a brightness greater than 400 cd/m{sup 2}, and a device operational lifetime of more than 1000 hours. Thus the aim of the project is to break the current cost-efficiency paradigm by creating novel low cost inorganic LEDs composed of inorganic nanoparticles.

  15. Low-Cost Light-Emitting Diode Luminaire for General Illumination

    Broader source: Energy.gov [DOE]

    This project is demonstrating an efficient and stable white organic light-emitting diode (WOLED) using a single emitter on a planar glass substrate.

  16. Bright three-band white light generated from CdSe/ZnSe quantum dot-assisted Sr{sub 3}SiO{sub 5}:Ce{sup 3+},Li{sup +}-based white light-emitting diode with high color rendering index

    SciTech Connect (OSTI)

    Jang, Ho Seong; Kwon, Byoung-Hwa; Jeon, Duk Young; Yang, Heesun

    2009-10-19

    In this study, bright three-band white light was generated from the CdSe/ZnSe quantum dot (QD)-assisted Sr{sub 3}SiO{sub 5}:Ce{sup 3+},Li{sup +}-based white light-emitting diode (WLED). The CdSe/ZnSe core/shell structure was confirmed by energy dispersive x-ray spectroscopy and x-ray photoelectron spectroscopy. The CdSe/ZnSe QDs showed high quantum efficiency (79%) and contributed to the high luminous efficiency ({eta}{sub L}) of the fabricated WLED. The WLED showed bright natural white with excellent color rendering property ({eta}{sub L}=26.8 lm/W, color temperature=6140 K, and color rendering index=85) and high stability against the increase in forward bias currents from 20 to 70 mA.

  17. Strong blue and white photoluminescence emission of BaZrO{sub 3} undoped and lanthanide doped phosphor for light emitting diodes application

    SciTech Connect (OSTI)

    Romero, V.H.; De la Rosa, E.; Salas, P.; Velazquez-Salazar, J.J.

    2012-12-15

    In this paper, we report the obtained strong broadband blue photoluminescence (PL) emission centered at 427 nm for undoped BaZrO{sub 3} observed after 266 nm excitation of submicron crystals prepared by hydrothermal/calcinations method. This emission is enhanced with the introduction of Tm{sup 3+} ions and is stronger than the characteristic PL blue emission of such lanthanide. The proposed mechanism of relaxation for host lattice emission is based on the presence of oxygen vacancies produced during the synthesis process and the charge compensation due to the difference in the electron valence between dopant and substituted ion in the host. Brilliant white light emission with a color coordinate of (x=0.29, y=0.32) was observed by combining the blue PL emission from the host with the green and red PL emission from Tb{sup 3+} and Eu{sup 3+} ions, respectively. The color coordinate can be tuned by changing the ratio between blue, green and red band by changing the concentration of lanthanides. - Graphical abstract: Strong blue emission from undoped BaZrO{sub 3} phosphor and white light emission by doping with Tb{sup 3+} (green) and Eu{sup 3+} (red) after 266 nm excitation. Highlights: Black-Right-Pointing-Pointer Blue emission from BaZrO{sub 3} phosphor. Black-Right-Pointing-Pointer Blue emission enhanced with Tm{sup 3+}. Black-Right-Pointing-Pointer White light from BaZrO{sup 3+} phosphor.

  18. Organic light emitting device structures for obtaining chromaticity stability

    DOE Patents [OSTI]

    Tung, Yeh-Jiun; Lu, Michael; Kwong, Raymond C.

    2005-04-26

    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  19. Organic light emitting device structure for obtaining chromaticity stability

    DOE Patents [OSTI]

    Tung, Yeh-Jiun; Ngo, Tan

    2007-05-01

    The present invention relates to organic light emitting devices (OLEDs). The devices of the present invention are efficient white or multicolored phosphorescent OLEDs which have a high color stability over a wide range of luminances. The devices of the present invention comprise an emissive region having at least two emissive layers, with each emissive layer comprising a different host and emissive dopant, wherein at least one of the emissive dopants emits by phosphorescence.

  20. Energy Savings Estimates of Light Emitting Diodes

    Office of Energy Efficiency and Renewable Energy (EERE)

    This report is an analysis of niche markets and applications for light emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy

  1. Demonstration Assessment of Light Emitting Diode (LED) Street...

    Energy Savers [EERE]

    Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report This ...

  2. Demonstration Assessment of Light-Emitting Diode (LED) Freezer...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting This document is a report ...

  3. Light emitting device having peripheral emissive region

    DOE Patents [OSTI]

    Forrest, Stephen R

    2013-05-28

    Light emitting devices are provided that include one or more OLEDs disposed only on a peripheral region of the substrate. An OLED may be disposed only on a peripheral region of a substantially transparent substrate and configured to emit light into the substrate. Another surface of the substrate may be roughened or include other features to outcouple light from the substrate. The edges of the substrate may be beveled and/or reflective. The area of the OLED(s) may be relatively small compared to the substrate surface area through which light is emitted from the device. One or more OLEDs also or alternatively may be disposed on an edge of the substrate about perpendicular to the surface of the substrate through which light is emitted, such that they emit light into the substrate. A mode expanding region may be included between each such OLED and the substrate.

  4. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting

    SciTech Connect (OSTI)

    Kinzey, B. R.; Myer, M. A.

    2009-11-01

    A U.S. Department of Energy Solid-State Lighting Gateway Report on a Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting in Lija Loop, Portland, Oregon.

  5. Organic light-emitting diodes from homoleptic square planar complexes

    DOE Patents [OSTI]

    Omary, Mohammad A

    2013-11-12

    Homoleptic square planar complexes [M(N.LAMBDA.N).sub.2], wherein two identical N.LAMBDA.N bidentate anionic ligands are coordinated to the M(II) metal center, including bidentate square planar complexes of triazolates, possess optical and electrical properties that make them useful for a wide variety of optical and electrical devices and applications. In particular, the complexes are useful for obtaining white or monochromatic organic light-emitting diodes ("OLEDs"). Improved white organic light emitting diode ("WOLED") designs have improved efficacy and/or color stability at high brightness in single- or two-emitter white or monochrome OLEDs that utilize homoleptic square planar complexes, including bis[3,5-bis(2-pyridyl)-1,2,4-triazolato]platinum(II) ("Pt(ptp).sub.2").

  6. Organic light emitting devices for illumination

    DOE Patents [OSTI]

    Hack, Michael; Lu, Min-Hao Michael; Weaver, Michael S.

    2012-01-24

    An organic light emitting device an a method of obtaining illumination from such a device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient than an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  7. Organic light emitting devices for illumination

    DOE Patents [OSTI]

    Hack, Michael; Lu, Min-Hao Michael; Weaver, Michael S.

    2010-02-16

    An organic light emitting device is provided. The device has a plurality of regions, each region having an organic emissive layer adapted to emit a different spectrum of light. The regions in combination emit light suitable for illumination purposes. The area of each region may be selected such that the device is more efficient that an otherwise equivalent device having regions of equal size. The regions may have an aspect ratio of at least about four. All parts of any given region may be driven at the same current.

  8. Blue light emitting thiogallate phosphor

    DOE Patents [OSTI]

    Dye, Robert C.; Smith, David C.; King, Christopher N.; Tuenge, Richard T.

    1998-01-01

    A crystalline blue emitting thiogallate phosphor of the formula RGa.sub.2 S.sub.4 :Ce.sub.x where R is selected from the group consisting of calcium, strontium, barium and zinc, and x is from about 1 to 10 atomic percent, the phosphor characterized as having a crystalline microstructure on the size order of from about 100 .ANG. to about 10,000 .ANG. is provided together with a process of preparing a crystalline blue emitting thiogallate phosphor by depositing on a substrate by CVD and resultant thin film electroluminescent devices including a layer of such deposited phosphor on an ordinary glass substrate.

  9. Stable blue phosphorescent organic light emitting devices

    DOE Patents [OSTI]

    Forrest, Stephen R.; Thompson, Mark; Giebink, Noel

    2014-08-26

    Novel combination of materials and device architectures for organic light emitting devices is provided. An organic light emitting device, is provided, having an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer includes a host and a phosphorescent emissive dopant having a peak emissive wavelength less than 500 nm, and a radiative phosphorescent lifetime less than 1 microsecond. Preferably, the phosphorescent emissive dopant includes a ligand having a carbazole group.

  10. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate Presenter: Arpan Chakraborty, Soraa Inc. This ...

  11. Wide Area Thermal Processing of Light Emitting Materials

    SciTech Connect (OSTI)

    Duty, Chad E; Joshi, Pooran C; Jellison Jr, Gerald Earle; Angelini, Joseph Attilio; Sabau, Adrian S

    2011-10-01

    Laboratory laser materials synthesis of wide bandgap materials has been successfully used to create white light emitting materials (LEMs). This technology development has progressed to the exploration on design and construction of apparatus for wide area doping and phase transformation of wide bandgap material substrates. The objective of this proposal is to develop concepts for wide area doping and phase transformation based on AppliCote Associates, LLC laser technology and ORNL high density pulsed plasma arc technology.

  12. Coherent white light amplification

    DOE Patents [OSTI]

    Jovanovic, Igor; Barty, Christopher P.

    2004-05-25

    A system for coherent simultaneous amplification of a broad spectral range of light that includes an optical parametric amplifier and a source of a seed pulse is described. A first angular dispersive element is operatively connected to the source of a seed pulse. A first imaging telescope is operatively connected to the first angular dispersive element and operatively connected to the optical parametric amplifier. A source of a pump pulse is operatively connected to the optical parametric amplifier. A second imaging telescope is operatively connected to the optical parametric amplifier and a second angular dispersive element is operatively connected to the second imaging telescope.

  13. A novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} for near UV white light-emitting diodes

    SciTech Connect (OSTI)

    Yang, Zhigang; Zhao, Zhengyan; Shi, Yurong; Wang, Yuhua

    2013-10-15

    Graphical abstract: - Highlights: Novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} was prepared by solid-state reaction. Excitation spectra suggested an obvious absorption in near-ultraviolet region. Under 392 nm excitation, the phosphors exhibited a red emission at 614 nm. Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} could be potentially applied in near UV white LEDs. - Abstract: A novel red phosphor Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} was synthesized using a solid-state reaction method, and its luminescence characteristics and charge compensators effect (Li{sup +}, Na{sup +}, K{sup +}) were investigated. The excitation spectra showed a obvious absorption in near-ultraviolet region. Under 392 nm excitation, the phosphors exhibited an intense red emission at 614 nm. The Commission Internationale de lEclairage (CIE) chromaticity coordinates and quantum efficiency (QE) were (0.65, 0.35) and 62.3%, respectively. The good color saturation, high quantum efficiency and small thermal-quenching properties indicate that Ca{sub 12}Al{sub 14}O{sub 32}Cl{sub 2}:Eu{sup 3+} could be potentially applied in near UV white light-emitting diodes.

  14. Organic light-emitting device with a phosphor-sensitized fluorescent emission layer

    DOE Patents [OSTI]

    Forrest, Stephen (Ann Arbor, MI); Kanno, Hiroshi (Osaka, JP)

    2009-08-25

    The present invention relates to organic light emitting devices (OLEDs), and more specifically to OLEDS that emit light using a combination of fluorescent emitters and phosphorescent emitters. The emissive region of the devices of the present invention comprise at least one phosphor-sensitized layer which has a combined emission from a phosphorescent emitter and a fluorescent emitter. In preferred embodiments, the invention relates to white-emitting OLEDS (WOLEDs).

  15. The site occupation and valence of Mn ions in the crystal lattice of Sr{sub 4}Al{sub 14}O{sub 25} and its deep red emission for high color-rendering white light-emitting diodes

    SciTech Connect (OSTI)

    Chen, Lei; Xue, Shaochan; Chen, Xiuling; Bahader, Ali; Deng, Xiaorong; Zhao, Erlong; Jiang, Yang; Chen, Shifu; Chan, Ting-Shan; Zhao, Zhi; Zhang, Wenhua

    2014-12-15

    Highlights: Different valences of Mn ions in Sr{sub 4}Al{sub 14}O{sub 25} were identified using XANES and EPR. Red luminescence was attributed to Mn{sup 4+} occupying the center of AlO{sub 6} octahedron. The Mn{sup 3+} incorporated in the center of AlO{sub 4} tetrahedron was non-luminescent. The bond-valence theory was used to analyze the effective valences of cations. A white LED device with CRI up to Ra 93.23 was packaged by using the red phosphor. - Abstract: The synthesis and component of red phosphor, Sr{sub 4}Al{sub 14}O{sub 25}: Mn, were optimized for application in white light-emitting diodes. The microstructure and morphology were investigated by the X-ray diffraction and scanning electron microscopy. Different valences of Mn ions in Sr{sub 4}Al{sub 14}O{sub 25} were discriminated using the electron paramagnetic resonance and X-ray absorption near-edge structure spectroscopy techniques. The bond-valence theory was used to analyze the effective valences of Sr{sup 2+} and Al{sup 3+} in Sr{sub 4}Al{sub 14}O{sub 25}. As a result, the strong covalence of Al{sup 3+} in the AlO{sub 4} tetrahedron other than in the AlO{sub 6} octahedron is disclosed. The deep red emission is attributed to Mn{sup 4+} occupying the center of AlO{sub 6} octahedron. The mechanism of energy transfer is mainly through dipoledipole interaction, revealed by the analyses of critical distance and concentration quench. A high color rendering white LED prototype with color-rendering index up to Ra 93.23 packaged by using the red phosphor demonstrates its applicability.

  16. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting

    Office of Scientific and Technical Information (OSTI)

    at U.S. Department of Labor Headquarters (Technical Report) | SciTech Connect Parking Structure Lighting at U.S. Department of Labor Headquarters Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which

  17. Method of making organic light emitting devices

    DOE Patents [OSTI]

    Shiang, Joseph John; Janora, Kevin Henry; Parthasarathy, Gautam; Cella, James Anthony; Chichak, Kelly Scott

    2011-03-22

    The present invention provides a method for the preparation of organic light-emitting devices comprising a bilayer structure made by forming a first film layer comprising an electroactive material and an INP precursor material, and exposing the first film layer to a radiation source under an inert atmosphere to generate an interpenetrating network polymer composition comprising the electroactive material. At least one additional layer is disposed on the reacted first film layer to complete the bilayer structure. The bilayer structure is comprised within an organic light-emitting device comprising standard features such as electrodes and optionally one or more additional layers serving as a bipolar emission layer, a hole injection layer, an electron injection layer, an electron transport layer, a hole transport layer, exciton-hole transporting layer, exciton-electron transporting layer, a hole transporting emission layer, or an electron transporting emission layer.

  18. Adoption of Light-Emitting Diodes in Common Lighting Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Adoption of Light-Emitting Diodes in Common Lighting Applications Prepared for the U.S. Department of Energy Solid-State Lighting Program July 2015 Prepared by Navigant This page intentionally left blank i | P a g e Disclaimer This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government, nor any agency thereof, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any

  19. Warm white light emitting ThO{sub 2}:Sm{sup 3+} nanorods: Cationic surfactant assisted reverse micellar synthesis and Photoluminescence properties

    SciTech Connect (OSTI)

    Gupta, Santosh K.; Gupta, Ruma; Natarajan, V.; Godbole, S.V.

    2014-01-01

    Graphical abstract: - Highlights: • ThO{sub 2}:Sm{sup 3+} nanoparticles have been synthesized using cationic surfactant assisted reverse micellar route. • HRTEM shows the formation of thoria nanorods. • Photoluminescence investigation shows host as well as samarium ion emission. • Time resolved fluorescence spectroscopy shows the presence of two types of samarium ion in thoria host. - Abstract: Sm{sup 3+} activated thorium oxide nanorods were synthesized by cationic surfactant assisted reverse micellar route. Phase purity, morphological and luminescent properties were investigated by X-ray diffraction, high resolution transmission electron microscopy and photoluminescence spectroscopy. Upon UV light excitation (245 nm), ThO{sub 2}:Sm{sup 3+} exhibited host emission at 447 nm, along with characteristic emission lines of Sm{sup 3+} at 569, 609, 662 and 716 nm. Lifetime spectroscopy shows the presence of two types of Sm{sup 3+} (τ = 1.1 ms and 4.9 ms) with different asymmetric ratios.

  20. Oxycarbonitride phosphors and light emitting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Romanelli, Michael D.; Tian, Yongchi

    2015-12-22

    A family of oxycarbonitride phosphor compositions is provided. Also provided are light emitting devices incorporating the oxycarbonitride phosphor compositions.

  1. Demonstration Assessment of Light-Emitting Diode (LED) Roadway...

    Office of Scientific and Technical Information (OSTI)

    ... Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; ROADS; LIGHTING SYSTEMS; LIGHT EMITTING ...

  2. Demonstration Assessment of Light-Emitting Diode Parking Structure...

    Office of Scientific and Technical Information (OSTI)

    lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) ...

  3. A micrometer-size movable light emitting area in a resonant tunneling light emitting diode

    SciTech Connect (OSTI)

    Pettinari, G., E-mail: giorgio.pettinari@cnr.it [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); National Research Council (CNR), Institute for Photonics and Nanotechnologies (IFN-CNR), Via Cineto Romano 42, 00156 Roma (Italy); Balakrishnan, N.; Makarovsky, O.; Campion, R. P.; Patan, A. [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom)] [School of Physics and Astronomy, University of Nottingham, Nottingham NG7 2RD (United Kingdom); Polimeni, A.; Capizzi, M. [CNISM-Dipartimento di Fisica, Sapienza Universit di Roma, P.le A. Moro 2, 00185 Roma (Italy)] [CNISM-Dipartimento di Fisica, Sapienza Universit di Roma, P.le A. Moro 2, 00185 Roma (Italy)

    2013-12-09

    We report on the fabrication of a micrometer-size movable light emitting area in a GaAs/AlAs quantum well resonant tunneling p-i-n diode. The spatial position of the micrometer-size light emitting area shifts linearly with increasing applied bias, up to 30??m for a bias increment of 0.2?V. Also, the simultaneous resonant tunneling injection of both electrons and holes into the quantum well states is achieved at specific positions of the diode, thus resulting in a tenfold increase of the electroluminescence intensity.

  4. Optical manifold for light-emitting diodes

    DOE Patents [OSTI]

    Chaves, Julio C.; Falicoff, Waqidi; Minano, Juan C.; Benitez, Pablo; Parkyn, Jr., William A.; Alvarez, Roberto; Dross, Oliver

    2008-06-03

    An optical manifold for efficiently combining a plurality of blue LED outputs to illuminate a phosphor for a single, substantially homogeneous output, in a small, cost-effective package. Embodiments are disclosed that use a single or multiple LEDs and a remote phosphor, and an intermediate wavelength-selective filter arranged so that backscattered photoluminescence is recycled to boost the luminance and flux of the output aperture. A further aperture mask is used to boost phosphor luminance with only modest loss of luminosity. Alternative non-recycling embodiments provide blue and yellow light in collimated beams, either separately or combined into white.

  5. Light emitting elastomer compositions and method of use

    DOE Patents [OSTI]

    McElhanon, James R.; Zifer, Thomas; Whinnery, LeRoy L.

    2004-11-23

    There is provided a light emitting device comprising a plurality of triboluminescent particles dispersed throughout an elastomeric body and activated by deforming the body in order to transfer mechanical energy to some portion of the particles. The light emitted by these mechanically excited particles is collected and directed into a light conduit and transmitted to a detector/indicator means.

  6. Demonstration Assessment of Light-Emitting Diode (LED) Parking...

    Office of Scientific and Technical Information (OSTI)

    Sponsoring Org: USDOE Country of Publication: United States Language: English Subject: 32 ENERGY CONSERVATION, CONSUMPTION, AND UTILIZATION; LIGHT EMITTING DIODES; OCCUPANTS; ...

  7. Light-Emitting Diodes on Semipolar Bulk Gallium Nitride Substrate

    Broader source: Energy.gov [DOE]

    This project is producing high-efficiency semipolar light-emitting diodes (LEDs) on low-defect bulk gallium nitride (GaN) substrates.

  8. Light collection optics for measuring flux and spectrum from light-emitting devices

    DOE Patents [OSTI]

    McCord, Mark A.; DiRegolo, Joseph A.; Gluszczak, Michael R.

    2016-05-24

    Systems and methods for accurately measuring the luminous flux and color (spectra) from light-emitting devices are disclosed. An integrating sphere may be utilized to directly receive a first portion of light emitted by a light-emitting device through an opening defined on the integrating sphere. A light collector may be utilized to collect a second portion of light emitted by the light-emitting device and direct the second portion of light into the integrating sphere through the opening defined on the integrating sphere. A spectrometer may be utilized to measure at least one property of the first portion and the second portion of light received by the integrating sphere.

  9. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, R.P.; Olbright, G.R.; Lott, J.A.; Schneider, R.P. Jr.

    1995-06-27

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of {lambda}/2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In{sub z}(Al{sub y}Ga{sub 1{minus}y}){sub 1{minus}z}P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m {lambda}/2n{sub eff} where m is an integer and n{sub eff} is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of {lambda}/n, typically within the green to red portion of the visible spectrum. 10 figs.

  10. Visible light emitting vertical cavity surface emitting lasers

    DOE Patents [OSTI]

    Bryan, Robert P. (Boulder, CO); Olbright, Gregory R. (Boulder, CO); Lott, James A. (Albuquerque, NM); Schneider, Jr., Richard P. (Albuquerque, NM)

    1995-01-01

    A vertical cavity surface emitting laser that emits visible radiation is built upon a substrate, then having mirrors, the first mirror on top of the substrate; both sets of mirrors being a distributed Bragg reflector of either dielectrics or other materials which affect the resistivity or of semiconductors, such that the structure within the mirror comprises a plurality of sets, each having a thickness of .lambda./2n where n is the index of refraction of each of the sets; each of the mirrors adjacent to spacers which are on either side of an optically active bulk or quantum well layer; and the spacers and the optically active layer are from one of the following material systems: In.sub.z (Al.sub.y Ga.sub.1-y).sub.1-z P, InAlGaAs, AlGaAs, InGaAs, or AlGaP/GaP, wherein the optically active region having a length equal to m .lambda./2n.sub.eff where m is an integer and n.sub.eff is the effective index of refraction of the laser cavity, and the spacer layer and one of the mirrors being transmissive to radiation having a wavelength of .lambda./n, typically within the green to red portion of the visible spectrum.

  11. DOE Science Showcase - Light-emitting Diode (LED) Lighting Research | OSTI,

    Office of Scientific and Technical Information (OSTI)

    US Dept of Energy, Office of Scientific and Technical Information Light-emitting Diode (LED) Lighting Research Light-emitting diode (LED) lighting is a type of solid-state lighting that uses a semiconductor to convert electricity to light. LED lighting products are beginning to appear in a wide variety of home, business, and industrial products such as holiday lighting, replacement bulbs for incandescent lamps, street lighting, outdoor area lighting and indoor ambient lighting. Over the past

  12. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, K.D.; Lear, K.L.; Schneider, R.P. Jr.

    1996-02-20

    A semiconductor light-emitting device and method are disclosed. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL). 12 figs.

  13. Efficient semiconductor light-emitting device and method

    DOE Patents [OSTI]

    Choquette, Kent D.; Lear, Kevin L.; Schneider, Jr., Richard P.

    1996-01-01

    A semiconductor light-emitting device and method. The semiconductor light-emitting device is provided with at least one control layer or control region which includes an annular oxidized portion thereof to channel an injection current into the active region, and to provide a lateral refractive index profile for index guiding the light generated within the device. A periodic composition grading of at least one of the mirror stacks in the device provides a reduced operating voltage of the device. The semiconductor light-emitting device has a high efficiency for light generation, and may be formed either as a resonant-cavity light-emitting diode (RCLED) or as a vertical-cavity surface-emitting laser (VCSEL).

  14. Layering Mismatched Lattices Creates Long-Sought-After Green Light-Emitting Diode (Fact Sheet), NREL Highlights, Science, NREL (National Renewable Energy Laboratory)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Scientists at the National Renewable Energy Laboratory (NREL) invent a deep green LED that can lead to higher-efficiency white light, lower electric bills. The white light light-emitting diode (LED) that promises to revolutionize indoor lighting while dramatically lowering electricity costs had been confounded by the so-called "green gap:" the inability to develop light in the green spectrum that can be combined with red and blue to produce white light. NREL researchers conceptualized

  15. Visible light surface emitting semiconductor laser

    DOE Patents [OSTI]

    Olbright, Gregory R.; Jewell, Jack L.

    1993-01-01

    A vertical-cavity surface-emitting laser is disclosed comprising a laser cavity sandwiched between two distributed Bragg reflectors. The laser cavity comprises a pair of spacer layers surrounding one or more active, optically emitting quantum-well layers having a bandgap in the visible which serve as the active optically emitting material of the device. The thickness of the laser cavity is m .lambda./2n.sub.eff where m is an integer, .lambda. is the free-space wavelength of the laser radiation and n.sub.eff is the effective index of refraction of the cavity. Electrical pumping of the laser is achieved by heavily doping the bottom mirror and substrate to one conductivity-type and heavily doping regions of the upper mirror with the opposite conductivity type to form a diode structure and applying a suitable voltage to the diode structure. Specific embodiments of the invention for generating red, green, and blue radiation are described.

  16. Nanoscale engineering boosts performance of quantum dot light emitting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    diodes Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission color can be tuned by simply changing their dimensions. October 25, 2013 Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos National Laboratory optical laboratory. Postdoctoral researcher Young-Shin Park characterizing emission spectra of LEDs in the Los Alamos

  17. High extraction efficiency ultraviolet light-emitting diode

    DOE Patents [OSTI]

    Wierer, Jonathan; Montano, Ines; Allerman, Andrew A.

    2015-11-24

    Ultraviolet light-emitting diodes with tailored AlGaN quantum wells can achieve high extraction efficiency. For efficient bottom light extraction, parallel polarized light is preferred, because it propagates predominately perpendicular to the QW plane and into the typical and more efficient light escape cones. This is favored over perpendicular polarized light that propagates along the QW plane which requires multiple, lossy bounces before extraction. The thickness and carrier density of AlGaN QW layers have a strong influence on the valence subband structure, and the resulting optical polarization and light extraction of ultraviolet light-emitting diodes. At Al>0.3, thinner QW layers (<2.5 nm are preferred) result in light preferentially polarized parallel to the QW plane. Also, active regions consisting of six or more QWs, to reduce carrier density, and with thin barriers, to efficiently inject carriers in all the QWs, are preferred.

  18. 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting ...

  19. 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting ...

  20. Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at

    Office of Scientific and Technical Information (OSTI)

    the Field Museum in Chicago, IL (Technical Report) | SciTech Connect Accent Lighting at the Field Museum in Chicago, IL Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at the Field Museum in Chicago, IL This report reviews a demonstration of light-emitting diode (LED) accent lighting compared to halogen (typical) accent lighting in a gallery of the Field Museum in Chicago, IL. Authors: Myer, Michael ; Kinzey, Bruce R.

  1. Red phosphor Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} for potential application in field emission displays and white light-emitting diodes

    SciTech Connect (OSTI)

    Wang, Ting; Xu, Xuhui; Zhou, Dacheng; Qiu, Jianbei; Yu, Xue

    2014-12-15

    Abstract: A novel red emitting phosphor of Eu{sup 3+} doped Ca{sub 2}Ge{sub 7}O{sub 16} was prepared through the solid state reaction. The luminescence properties were studied in detail by photoluminescence excitation (PLE), emission (PL) spectra and cathodoluminescence (CL). Under the excitation of ultraviolet light, Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} phosphor shows the characteristic {sup 5}D{sub 0}-{sup 7}F{sub J}(J = 1, 2, 3, 4) transition of Eu{sup 3+} with two different emissions due to the two kinds of Eu{sup 3+} ions. The luminescent intensity could be improved by co-doping with the charge compensators R{sup +} (Li, Na, K) which partially substitute for Ca{sup 2+} crystal sites. CL spectra show that Eu{sup 3+} ions were excited by the plasma produced by the incident electrons and the CL properties of Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+}, Li{sup +} as a function of accelerating voltage and probe current were investigated. Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} phosphor offers higher thermal stability compared with the commercial red phosphor Y{sub 2}O{sub 3}:Eu{sup 3+}. The results indicate that Ca{sub 2}Ge{sub 7}O{sub 16}:Eu{sup 3+} can be a suitable red-emitting phosphor candidate for FEDs and w-LEDs.

  2. Scalable Light Module for Low-Cost, High-Efficiency Light- Emitting Diode Luminaires

    SciTech Connect (OSTI)

    Tarsa, Eric

    2015-08-31

    During this two-year program Cree developed a scalable, modular optical architecture for low-cost, high-efficacy light emitting diode (LED) luminaires. Stated simply, the goal of this architecture was to efficiently and cost-effectively convey light from LEDs (point sources) to broad luminaire surfaces (area sources). By simultaneously developing warm-white LED components and low-cost, scalable optical elements, a high system optical efficiency resulted. To meet program goals, Cree evaluated novel approaches to improve LED component efficacy at high color quality while not sacrificing LED optical efficiency relative to conventional packages. Meanwhile, efficiently coupling light from LEDs into modular optical elements, followed by optimally distributing and extracting this light, were challenges that were addressed via novel optical design coupled with frequent experimental evaluations. Minimizing luminaire bill of materials and assembly costs were two guiding principles for all design work, in the effort to achieve luminaires with significantly lower normalized cost ($/klm) than existing LED fixtures. Chief project accomplishments included the achievement of >150 lm/W warm-white LEDs having primary optics compatible with low-cost modular optical elements. In addition, a prototype Light Module optical efficiency of over 90% was measured, demonstrating the potential of this scalable architecture for ultra-high-efficacy LED luminaires. Since the project ended, Cree has continued to evaluate optical element fabrication and assembly methods in an effort to rapidly transfer this scalable, cost-effective technology to Cree production development groups. The Light Module concept is likely to make a strong contribution to the development of new cost-effective, high-efficacy luminaries, thereby accelerating widespread adoption of energy-saving SSL in the U.S.

  3. Synthesis and photoluminescence properties of Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} red phosphor for white light emitting diodes

    SciTech Connect (OSTI)

    Zhu, Ge; Ci, Zhipeng; Shi, Yurong; Wang, Yuhua

    2014-07-01

    Highlights: A novel red phosphor Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} was synthesized and investigated firstly. The structure and characteristic luminescence properties are discussed. The excellent thermal stability was found and investigated. It has good color saturation, the CIE is close to that of commercial Y{sub 2}O{sub 3}:Eu{sup 3+}. - Abstract: A series of Sm{sup 3+} doped Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14} red phosphors were successfully synthesized. X-ray diffraction analysis indicates that all the samples are single phased. The luminescence property is investigated in detail by measuring their photoluminescence excitation and emission spectra. Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} phosphors show strong absorption in 400410 nm region, which is suitable for application in LEDs. When excited at 403 nm, Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} phosphor can emit red emission with CIE chromaticity coordinates (0.615, 0.384). The optimal doping concentration of Sm{sup 3+} doped Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14} is measured to be 0.02. The thermal quenching property is also measured and compared with the commercial red phosphor Y{sub 2}O{sub 3}:Eu{sup 3+} (Topstar, TXC-RIA). The results indicate Ca{sub 19}Mg{sub 2}(PO{sub 4}){sub 14}:Sm{sup 3+} phosphors have potential to serve as a red phosphor for white LEDs.

  4. Amber light-emitting diode comprising a group III-nitride nanowire active region

    DOE Patents [OSTI]

    Wang, George T.; Li, Qiming; Wierer, Jr., Jonathan J.; Koleske, Daniel

    2014-07-22

    A temperature stable (color and efficiency) III-nitride based amber (585 nm) light-emitting diode is based on a novel hybrid nanowire-planar structure. The arrays of GaN nanowires enable radial InGaN/GaN quantum well LED structures with high indium content and high material quality. The high efficiency and temperature stable direct yellow and red phosphor-free emitters enable high efficiency white LEDs based on the RGYB color-mixing approach.

  5. Flip-chip light emitting diode with resonant optical microcavity

    DOE Patents [OSTI]

    Gee, James M.; Bogart, Katherine H.A.; Fischer, Arthur J.

    2005-11-29

    A flip-chip light emitting diode with enhanced efficiency. The device structure employs a microcavity structure in a flip-chip configuration. The microcavity enhances the light emission in vertical modes, which are readily extracted from the device. Most of the rest of the light is emitted into waveguided lateral modes. Flip-chip configuration is advantageous for light emitting diodes (LEDs) grown on dielectric substrates (e.g., gallium nitride LEDs grown on sapphire substrates) in general due to better thermal dissipation and lower series resistance. Flip-chip configuration is advantageous for microcavity LEDs in particular because (a) one of the reflectors is a high-reflectivity metal ohmic contact that is already part of the flip-chip configuration, and (b) current conduction is only required through a single distributed Bragg reflector. Some of the waveguided lateral modes can also be extracted with angled sidewalls used for the interdigitated contacts in the flip-chip configuration.

  6. Oxycarbonitride phosphors and light emitting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2013-10-08

    Disclosed herein is a novel family of oxycarbidonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbidonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  7. Oxycarbonitride phosphors and light emitting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Romanelli, Michael Dennis; Tian, Yongchi

    2014-07-08

    Disclosed herein is a novel family of oxycarbonitride phosphor compositions and light emitting devices incorporating the same. Within the sextant system of M--Al--Si--O--N--C--Ln and quintuplet system of M--Si--O--N--C--Ln (M=alkaline earth element, Ln=rare earth element), the phosphors are composed of either one single crystalline phase or two crystalline phases with high chemical and thermal stability. In certain embodiments, the disclosed phosphor of silicon oxycarbonitrides emits green light at wavelength between 530-550 nm. In further embodiments, the disclosed phosphor compositions emit blue-green to yellow light in a wavelength range of 450-650 nm under near-UV and blue light excitation.

  8. Light-emitting device with organic electroluminescent material and photoluminescent materials

    DOE Patents [OSTI]

    McNulty, Thomas Francis; Duggal, Anil Raj; Turner, Larry Gene; Shiang, Joseph John

    2005-06-07

    A light-emitting device comprises a light-emitting member, which comprises two electrodes and an organic electroluminescent material disposed between the electrodes, and at least one organic photoluminescent ("PL") material. The light-emitting member emits light having a first spectrum in response to a voltage applied across the two electrodes. The organic PL material absorbs a portion of the light emitted by the light-emitting member and emits light having second spectrum different than the first spectrum. The light-emitting device can include an inorganic PL material that absorbs another portion of the light emitted from the light-emitting member and emits light having a third spectrum different than both the first and the second spectra.

  9. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    SciTech Connect (OSTI)

    none,

    2011-01-01

    This report is an analysis of niche markets and applications for light-emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy.

  10. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    SciTech Connect (OSTI)

    None, None

    2008-09-01

    This report is an analysis of niche markets and applications for light-emitting diodes (LEDs), undertaken on behalf of the U.S. Department of Energy.

  11. Demonstration Assessment of Light-Emitting Diode (LED) Area Lights for a Commercial Garage

    SciTech Connect (OSTI)

    2008-11-01

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications.

  12. Laterally injected light-emitting diode and laser diode

    SciTech Connect (OSTI)

    Miller, Mary A.; Crawford, Mary H.; Allerman, Andrew A.

    2015-06-16

    A p-type superlattice is used to laterally inject holes into an III-nitride multiple quantum well active layer, enabling efficient light extraction from the active area. Laterally-injected light-emitting diodes and laser diodes can enable brighter, more efficient devices that impact a wide range of wavelengths and applications. For UV wavelengths, applications include fluorescence-based biological sensing, epoxy curing, and water purification. For visible devices, applications include solid state lighting and projection systems.

  13. Close-packed array of light emitting devices

    DOE Patents [OSTI]

    Ivanov, Ilia N.; Simpson, John T.

    2013-04-09

    A close-packed array of light emitting diodes includes a nonconductive substrate having a plurality of elongate channels extending therethrough from a first side to a second side, where each of the elongate channels in at least a portion of the substrate includes a conductive rod therein. The conductive rods have a density over the substrate of at least about 1,000 rods per square centimeter and include first conductive rods and second conductive rods. The close-packed array further includes a plurality of light emitting diodes on the first side of the substrate, where each light emitting diode is in physical contact with at least one first conductive rod and in electrical contact with at least one second conductive rod.

  14. Light-emitting block copolymers composition, process and use

    DOE Patents [OSTI]

    Ferraris, John P.; Gutierrez, Jose J.

    2006-11-14

    Generally, and in one form, the present invention is a composition of light-emitting block copolymer. In another form, the present invention is a process producing a light-emitting block copolymers that intends polymerizing a first di(halo-methyl) aromatic monomer compound in the presence of an anionic initiator and a base to form a polymer and contacting a second di(halo-methyl) aromatic monomer compound with the polymer to form a homopolymer or block copolymer wherein the block copolymer is a diblock, triblock, or star polymer. In yet another form, the present invention is an electroluminescent device comprising a light-emitting block copolymer, wherein the electroluminescent device is to be used in the manufacturing of optical and electrical devices.

  15. Light emitting ceramic device and method for fabricating the same

    DOE Patents [OSTI]

    Valentine, Paul; Edwards, Doreen D.; Walker Jr., William John; Slack, Lyle H.; Brown, Wayne Douglas; Osborne, Cathy; Norton, Michael; Begley, Richard

    2004-11-30

    A light-emitting ceramic based panel, hereafter termed "electroceramescent" panel, and alternative methods of fabrication for the same are claimed. The electroceramescent panel is formed on a substrate providing mechanical support as well as serving as the base electrode for the device. One or more semiconductive ceramic layers directly overlay the substrate, and electrical conductivity and ionic diffusion are controlled. Light emitting regions overlay the semiconductive ceramic layers, and said regions consist sequentially of a layer of a ceramic insulation layer and an electroluminescent layer, comprised of doped phosphors or the equivalent. One or more conductive top electrode layers having optically transmissive areas overlay the light emitting regions, and a multi-layered top barrier cover comprising one or more optically transmissive non-combustible insulation layers overlay said top electrode regions.

  16. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... flashlights, machine vision, museum or art gallery display lighting, architectural ... shaped neon-tube channel letter signs, reverse channel letters, and border lighting. ...

  17. Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Estimates of Light Emitting Diodes in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant Consulting Inc. 1801 K Street, NW Suite 500 Washington DC, 20006 September 2008 * Department of Energy Washington, DC 20585 Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications Released: September 2008 Revised: October 2008 This DOE report presents research

  18. Photon extraction from nitride ultraviolet light-emitting devices

    DOE Patents [OSTI]

    Schowalter, Leo J; Chen, Jianfeng; Grandusky, James R

    2015-02-24

    In various embodiments, a rigid lens is attached to a light-emitting semiconductor die via a layer of encapsulant having a thickness insufficient to prevent propagation of thermal expansion mismatch-induced strain between the rigid lens and the semiconductor die.

  19. Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host

    Office of Scientific and Technical Information (OSTI)

    Site: Lija Loop, Portland, Oregon (Technical Report) | SciTech Connect Street Lighting Host Site: Lija Loop, Portland, Oregon Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: Lija Loop, Portland, Oregon This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting

  20. High efficiency III-nitride light-emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary; Koleske, Daniel; Cho, Jaehee; Zhu, Di; Noemaun, Ahmed; Schubert, Martin F; Schubert, E. Fred

    2013-05-28

    Tailored doping of barrier layers enables balancing of the radiative recombination among the multiple-quantum-wells in III-Nitride light-emitting diodes. This tailored doping enables more symmetric carrier transport and uniform carrier distribution which help to reduce electron leakage and thus reduce the efficiency droop in high-power III-Nitride LEDs. Mitigation of the efficiency droop in III-Nitride LEDs may enable the pervasive market penetration of solid-state-lighting technologies in high-power lighting and illumination.

  1. Photoluminescent and thermal properties of (Sr{sub 0.995?x?y?z}Ca{sub x}Ba{sub y}Mg{sub z}){sub 2}SiO{sub 4}:0.01Eu{sup 2+} phosphors for warm white light-emitting diodes

    SciTech Connect (OSTI)

    Li, Yao; Ci, Zhipeng; Peng, Yingquan; Wang, Yuhua; Liu, Chunjuan

    2015-01-15

    Highlights: The photoluminescent property of Sr{sub 2}SiO{sub 4}:Eu{sup 2+} is improved by doping Ca{sup 2+} and Ba{sup 2+}. The emission spectra red-shift obviously by doping Ca{sup 2+} into Sr{sub 2}SiO{sub 4}:Eu{sup 2+}. The thermal stability is enhanced by doping Ba{sup 2+} into (Sr,Ca){sub 2}SiO{sub 4}:Eu{sup 2+}. The improved phosphors can combine blue-LED chips to generate warm white light. - Abstract: A series of phosphors (Sr{sub 0.995?x?y?z}Ca{sub x}Ba{sub y}Mg{sub z}){sub 2}SiO{sub 4}:0.01Eu{sup 2+} (0 ? x ? 0.45, 0 ? y ? 0.015, 0 ? z ? 0.35) were synthesized by solid state reaction. Their phase compositions and photoluminescent properties were investigated in detail. The X-ray diffraction analysis indicates the impurity phase of SrSiO{sub 3} is formed only when z ? 0.25. A photoluminescence investigation shows, with x increasing the emission spectra of the phosphors (0 ? x ? 0.45, 0 ? y ? 0.015, z = 0) obviously red-shift, the corresponding color tones shift from yellow to orangeyellow and their CCTs reduce from 2875 to 2237 K. All the results are beneficial for the phosphors to combining blue light-emitting diode chips to generate warm white light. Besides, the thermal stability of the phosphor (x = 0.36, y = z = 0) is enhanced by doping Ba{sup 2+}, due to the greater activation energy for the compounds containing barium.

  2. Adoption of Light-Emitting Diodes in Common Lighting Applications

    SciTech Connect (OSTI)

    Yamada, Mary; Chwastyk, Dan

    2013-05-01

    Report estimating LED energy savings in nine applications where LEDs compete with traditional lighting sources such as incandescent, halogen, high-pressure sodium, and certain types of fluorescent. The analysis includes indoor lamp, indoor luminaire, and outdoor luminaire applications.

  3. Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the

    Office of Scientific and Technical Information (OSTI)

    FDR Drive in New York, New York (Technical Report) | SciTech Connect Roadway Lighting on the FDR Drive in New York, New York Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode Roadway Lighting on the FDR Drive in New York, New York This a report about a field study of light-emitting diodes street lights by four different manufacturers installed on the FDR Drive in New York City, NY. Authors: Myer, Michael ; Hazra, Oindrila ; Kinzey, Bruce R.

  4. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting

    Office of Scientific and Technical Information (OSTI)

    in Leavenworth, KS (Technical Report) | SciTech Connect in Leavenworth, KS Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for

  5. Concave-hemisphere-patterned organic top-light emitting device

    DOE Patents [OSTI]

    Forrest, Stephen R; Slootsky, Michael; Lunt, Richard

    2014-01-21

    A first device is provided. The first device includes an organic light emitting device, which further comprises a first electrode, a second electrode, and an organic emissive layer disposed between the first and second electrode. Preferably, the second electrode is more transparent than the first electrode. The organic emissive layer has a first portion shaped to form an indentation in the direction of the first electrode, and a second portion shaped to form a protrusion in the direction of the second electrode. The first device may include a plurality of organic light emitting devices. The indentation may have a shape that is formed from a partial sphere, a partial cylinder, a pyramid, or a pyramid with a mesa, among others. The protrusions may be formed between adjoining indentations or between an indentation and a surface parallel to the substrate.

  6. Concave-hemisphere-patterned organic top-light emitting device

    DOE Patents [OSTI]

    Forrest, Stephen R.; Slootsky, Michael; Lunt, Richard

    2015-06-09

    A first device is provided. The first device includes an organic light emitting device, which further comprises a first electrode, a second electrode, and an organic emissive layer disposed between the first and second electrode. Preferably, the second electrode is more transparent than the first electrode. The organic emissive layer has a first portion shaped to form an indentation in the direction of the first electrode, and a second portion shaped to form a protrusion in the direction of the second electrode. The first device may include a plurality of organic light emitting devices. The indentation may have a shape that is formed from a partial sphere, a partial cylinder, a pyramid, or a pyramid with a mesa, among others. The protrusions may be formed between adjoining indentations or between an indentation and a surface parallel to the substrate.

  7. Phosphorescent organic light emitting diodes with high efficiency and brightness

    DOE Patents [OSTI]

    Forrest, Stephen R; Zhang, Yifan

    2015-11-12

    An organic light emitting device including a) an anode; b) a cathode; and c) an emissive layer disposed between the anode and the cathode, the emissive layer comprising an organic host compound and a phosphorescent compound exhibiting a Stokes Shift overlap greater than 0.3 eV. The organic light emitting device may further include a hole transport layer disposed between the emissive layer and the anode; and an electron transport layer disposed between the emissive layer and the cathode. In some embodiments, the phosphorescent compound exhibits a phosphorescent lifetime of less than 10 .mu.s. In some embodiments, the concentration of the phosphorescent compound ranges from 0.5 wt. % to 10 wt. %.

  8. Organic light emitting device having multiple separate emissive layers

    DOE Patents [OSTI]

    Forrest, Stephen R. (Ann Arbor, MI)

    2012-03-27

    An organic light emitting device having multiple separate emissive layers is provided. Each emissive layer may define an exciton formation region, allowing exciton formation to occur across the entire emissive region. By aligning the energy levels of each emissive layer with the adjacent emissive layers, exciton formation in each layer may be improved. Devices incorporating multiple emissive layers with multiple exciton formation regions may exhibit improved performance, including internal quantum efficiencies of up to 100%.

  9. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at

    Office of Scientific and Technical Information (OSTI)

    Central Park in New York City (Technical Report) | SciTech Connect (LED) Post-Top Lighting at Central Park in New York City Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy

  10. Organic light-emitting devices using spin-dependent processes

    DOE Patents [OSTI]

    Vardeny, Z. Valy; Wohlgenannt, Markus

    2010-03-23

    The maximum luminous efficiency of organic light-emitting materials is increased through spin-dependent processing. The technique is applicable to all electro-luminescent processes in which light is produced by singlet exciton decay, and all devices which use such effects, including LEDs, super-radiant devices, amplified stimulated emission devices, lasers, other optical microcavity devices, electrically pumped optical amplifiers, and phosphorescence (Ph) based light emitting devices. In preferred embodiments, the emissive material is doped with an impurity, or otherwise modified, to increase the spin-lattice relaxation rate (i.e., decrease the spin-lattice time), and hence raise the efficiency of the device. The material may be a polymer, oligomer, small molecule, single crystal, molecular crystal, or fullerene. The impurity is preferably a magnetic or paramagnetic substance. The invention is applicable to IR, UV, and other electromagnetic radiation generation and is thus not limited to the visible region of the spectrum. The methods of the invention may also be combined with other techniques used to improve device performance.

  11. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.

    1994-08-02

    Acetylene-containing poly(p-phenyleneacetylene) (PPA)-based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  12. Fabrication of poly(p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei

    1994-08-02

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as A1 or A1/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  13. Poly (p-phenyleneneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, Joseph; Swanson, Leland S.; Lu, Feng; Ding, Yiwei; Barton, Thomas J.; Vardeny, Zeev V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes.

  14. Poly (p-phenyleneacetylene) light-emitting diodes

    DOE Patents [OSTI]

    Shinar, J.; Swanson, L.S.; Lu, F.; Ding, Y.; Barton, T.J.; Vardeny, Z.V.

    1994-10-04

    Acetylene containing poly(p-phenyleneacetylene) (PPA) - based light-emitting diodes (LEDs) are provided. The LEDs are fabricated by coating a hole-injecting electrode, preferably an indium tin oxide (ITO) coated glass substrate, with a PPA polymer, such as a 2,5-dibutoxy or a 2,5-dihexoxy derivative of PPA, dissolved in an organic solvent. This is then followed by evaporating a layer of material capable of injecting electrons, such as Al or Al/Ca, onto the polymer to form a base electrode. This composition is then annealed to form efficient EL diodes. 8 figs.

  15. Organimetallic Fluorescent Complex Polymers For Light Emitting Applications

    DOE Patents [OSTI]

    Shi, Song Q.; So, Franky

    1997-10-28

    A fluorescent complex polymer with fluorescent organometallic complexes connected by organic chain spacers is utilized in the fabrication of light emitting devices on a substantially transparent planar substrate by depositing a first conductive layer having p-type conductivity on the planar surface of the substrate, depositing a layer of a hole transporting and electron blocking material on the first conductive layer, depositing a layer of the fluorescent complex polymer on the layer of hole transporting and electron blocking material as an electron transporting emissive layer and depositing a second conductive layer having n-type conductivity on the layer of fluorescent complex polymer.

  16. Assessing the Performance of 5mm White LED Light Sources forDeveloping-Country Applications

    SciTech Connect (OSTI)

    Mills, Evan

    2007-05-03

    Some white light-emitting diode (LED) light sources haverecently attained levels of efficiency and cost that allow them tocompete with fluorescent lighting for off-grid applications in thedeveloping world. Additional attributes (optics, size, ruggedness, andservice life) make them potentially superior products. Enormousreductions in energy use and greenhouse-gas emissions are thus possible,and system costs can be much lower given the ability to downsize thecharging and energy storage components compared to a fluorescentstrategy. However, there is a high risk of "market-spoiling" if inferiorproducts are introduced and result in user dissatisfaction. Completesystems involve the integration of light sources and optics, energysupply, and energy storage. A natural starting point for evaluatingproduct quality is to focus on the individual light sources. This reportdescribes testing results for batches of 10 5mm white LEDs from 26manufacturers. Efficacies and color properties are presented.

  17. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting

    2013-08-13

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  18. Light emitting diode with high aspect ratio submicron roughness for light extraction and methods of forming

    DOE Patents [OSTI]

    Li, Ting

    2011-04-26

    The surface morphology of an LED light emitting surface is changed by applying a reactive ion etch (RIE) process to the light emitting surface. High aspect ratio, submicron roughness is formed on the light emitting surface by transferring a thin film metal hard-mask having submicron patterns to the surface prior to applying a reactive ion etch process. The submicron patterns in the metal hard-mask can be formed using a low cost, commercially available nano-patterned template which is transferred to the surface with the mask. After subsequently binding the mask to the surface, the template is removed and the RIE process is applied for time duration sufficient to change the morphology of the surface. The modified surface contains non-symmetric, submicron structures having high aspect ratio which increase the efficiency of the device.

  19. Electroluminescence property of organic light emitting diode (OLED)

    SciTech Connect (OSTI)

    zdemir, Orhan; Kavak, Pelin; Saatci, A. Evrim; Gkdemir, F. P?nar; Menda, U. Deneb; Can, Nursel; Kutlu, Kubilay; Tekin, Emine; Pravadal?, Selin

    2013-12-16

    Transport properties of electrons and holes were investigated not only in a anthracene-containing poly(p-phenylene-ethynylene)- alt - poly(p-phenylene-vinylene) (PPE-PPV) polymer (AnE-PVstat) light emitting diodes (OLED) but also in an ITO/Ag/polymer/Ag electron and ITO/PEDOT:PSS/polymer/Au hole only devices. Mobility of injected carriers followed the Poole-Frenkel type conduction mechanism and distinguished in the frequency range due to the difference of transit times in admittance measurement. Beginning of light output took place at the turn-on voltage (or flat band voltage), 1.8 V, which was the difference of energy band gap of polymer and two barrier offsets between metals and polymer.

  20. Demonstration Assessment of Light-Emitting Diode (LED) Accent Lighting at the Field Museum in Chicago, IL

    SciTech Connect (OSTI)

    Myer, Michael; Kinzey, Bruce R.

    2010-12-10

    This report reviews a demonstration of light-emitting diode (LED) accent lighting compared to halogen (typical) accent lighting in a gallery of the Field Museum in Chicago, IL.

  1. Color tuning of light-emitting-diodes by modulating the concentration of red-emitting silicon nanocrystal phosphors

    SciTech Connect (OSTI)

    Barillaro, G. Strambini, L. M.

    2014-03-03

    Luminescent forms of nanostructured silicon have received significant attention in the context of quantum-confined light-emitting devices thanks to size-tunable emission wavelength and high-intensity photoluminescence, as well as natural abundance, low cost, and non-toxicity. Here, we show that red-emitting silicon nanocrystal (SiN) phosphors, obtained by electrochemical erosion of silicon, allow for effectively tuning the color of commercial light-emitting-diodes (LEDs) from blue to violet, magenta, and red, by coating the LED with polydimethylsiloxane encapsulating different SiN concentrations. High reliability of the tuning process, with respect to SiN fabrication and concentration, and excellent stability of the tuning color, with respect to LED bias current, is demonstrated through simultaneous electrical/optical characterization of SiN-modified commercial LEDs, thus envisaging exciting perspectives for silicon nanocrystals in the field of light-emitting applications.

  2. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting

    Office of Scientific and Technical Information (OSTI)

    at T.J.Maxx in Manchester, NH Phase I (Technical Report) | SciTech Connect at T.J.Maxx in Manchester, NH Phase I Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I A report describing the process and results of replacing existing parking lot lighting, looking at a LED option with occupancy sensors, and conventional alternates. Criteria include payback, light levels, occupant

  3. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at

    Office of Scientific and Technical Information (OSTI)

    the I-35W Bridge, Minneapolis, MN (Technical Report) | SciTech Connect Roadway Lighting at the I-35W Bridge, Minneapolis, MN Citation Details In-Document Search Title: Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, Minneapolis, MN This report describes the process and results of a demonstration of solid-state lighting (SSL) technology conducted in 2009 at the recently reconstructed I-35W bridge in Minneapolis, MN. The project was supported under

  4. Promising Technology: Retrofit Lights to Light-Emitting Diodes in Refrigerators

    Broader source: Energy.gov [DOE]

    LEDs increase in efficacy at lower temperatures, in contrast with conventional fluorescents. The low temperatures in display cases, therefore, make this an attractive application of LEDs to reduce energy consumption. In addition to saving lighting energy, an LED retrofit can potentially reduce the cooling load in a display case because LEDs emit less heat than do fluorescent bulbs.

  5. Recipient luminophoric mediums having narrow spectrum luminescent materials and related semiconductor light emitting devices and methods

    DOE Patents [OSTI]

    LeToquin, Ronan P; Tong, Tao; Glass, Robert C

    2014-12-30

    Light emitting devices include a light emitting diode ("LED") and a recipient luminophoric medium that is configured to down-convert at least some of the light emitted by the LED. In some embodiments, the recipient luminophoric medium includes a first broad-spectrum luminescent material and a narrow-spectrum luminescent material. The broad-spectrum luminescent material may down-convert radiation emitted by the LED to radiation having a peak wavelength in the red color range. The narrow-spectrum luminescent material may also down-convert radiation emitted by the LED into the cyan, green or red color range.

  6. Lighting Choices - White Background | Department of Energy

    Energy Savers [EERE]

    Choices - White Background Image icon All of these lightbulbs-CFLs, LEDs, and energy-saving incandescents-meet the new energy standards that take effect from 2012-2014. More...

  7. Method to generate high efficient devices which emit high quality light for illumination

    DOE Patents [OSTI]

    Krummacher, Benjamin C.; Mathai, Mathew; Choong, Vi-En; Choulis, Stelios A.

    2009-06-30

    An electroluminescent apparatus includes an OLED device emitting light in the blue and green spectrums, and at least one down conversion layer. The down conversion layer absorbs at least part of the green spectrum light and emits light in at least one of the orange spectra and red spectra.

  8. ITO-free white OLEDs on Flexible Substrates with Enhanced Light...

    Energy Savers [EERE]

    ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling Lead Performer: Princeton ...

  9. Broadband visible light source based on AllnGaN light emitting diodes

    DOE Patents [OSTI]

    Crawford, Mary H.; Nelson, Jeffrey S.

    2003-12-16

    A visible light source device is described based on a light emitting diode and a nanocluster-based film. The light emitting diode utilizes a semiconductor quantum well structure between n-type and p-type semiconductor materials on the top surface a substrate such as sapphire. The nanocluster-based film is deposited on the bottom surface of the substrate and can be derived from a solution of MoS.sub.2, MoSe.sub.2, WS.sub.2, and WSe.sub.2 particles of size greater than approximately 2 nm in diameter and less than approximately 15 nm in diameter, having an absorption wavelength greater than approximately 300 nm and less than approximately 650 nm.

  10. Advanced method for increasing the efficiency of white light quantum dot LEDs

    SciTech Connect (OSTI)

    Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

    2011-01-01

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which, respectively, diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal processing (PTP), reduces the number of point defects while maintaining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of theQD nanoparticles. The current research uses a thermal model to predict annealing temperatures during PTP and demonstrates up to a 300% increase in photoluminescence for QDs on passive substrates.

  11. 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting Diode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lamps; Supplemental Notice of Proposed Rulemaking | Department of Energy 16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-05-16 Issuance: Test Procedures for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking This document is a pre-publication Federal Register supplemental notice of proposed rulemaking regarding test procedures for integrated light-emitting diode lamps, as issued by the

  12. 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting Diode

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Lamps; Supplemental Notice of Proposed Rulemaking | Department of Energy 18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking 2014-06-18 Issuance: Test Procedure for Integrated Light-Emitting Diode Lamps; Supplemental Notice of Proposed Rulemaking This document is a pre-publication Federal Register Supplemental Notice of Proposed Rulemaking regarding Test Procedures for Integrated Light-Emitting Diode Lamps, as issued by the Deputy

  13. Low Voltage, Low Power Organic Light Emitting Transistors for AMOLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; Reynolds, J. R. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01

    Low voltage, low power dissipation, high aperture ratio organic light emitting transistors are demonstrated. The high level of performance is enabled by a carbon nanotube source electrode that permits integration of the drive transistor and the organic light emitting diode into an efficient single stacked device. Given the demonstrated performance, this technology could break the technical logjam holding back widespread deployment of active matrix organic light emitting displays at flat panel screen sizes.

  14. Low-Cost Light-Emitting Diode Luminaire for General Illumination...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Low-Cost Light-Emitting Diode Luminaire for General Illumination Presenter: Paul Fini, CREE Santa Barbara Technology Center This project is demonstrating an efficient and stable ...

  15. Environmental barrier material for organic light emitting device and method of making

    DOE Patents [OSTI]

    Graff, Gordon L [West Richland, WA; Gross, Mark E [Pasco, WA; Affinito, John D [Kennewick, WA; Shi, Ming-Kun [Richland, WA; Hall, Michael [West Richland, WA; Mast, Eric [Richland, WA

    2003-02-18

    An encapsulated organic light emitting device. The device includes a first barrier stack comprising at least one first barrier layer and at least one first polymer layer. There is an organic light emitting layer stack adjacent to the first barrier stack. A second barrier stack is adjacent to the organic light emitting layer stack. The second barrier stack has at least one second barrier layer and at least one second polymer layer. A method of making the encapsulated organic light emitting device is also provided.

  16. Simulation of mixed-host emitting layer based organic light emitting diodes

    SciTech Connect (OSTI)

    Riku, C.; Kee, Y. Y.; Ong, T. S.; Tou, T. Y.; Yap, S. S.

    2015-04-24

    ‘SimOLED’ simulator is used in this work to investigate the efficiency of the mixed-host organic light emitting devices (MH-OLEDs). Tris-(8-hydroxyquinoline) aluminum(3) (Alq{sub 3}) and N,N-diphenyl-N,N-Bis(3-methylphenyl)-1,1-diphenyl-4,4-diamine (TPD) are used as the electron transport layer (ETL) material and hole transport layer (HTL) material respectively, and the indium-doped tin oxide (ITO) and aluminum (Al) as anode and cathode. Three MH-OLEDs, A, B and C with the same structure of ITO / HTM (15 nm) / Mixed host (70 nm) / ETM (10 nm) /Al, are stimulated with ratios TPD:Alq{sub 3} of 3:5, 5:5, and 5:3 respectively. The Poole-Frenkel model for electron and hole mobilities is employed to compute the current density-applied voltage-luminance characteristics, distribution of the electric field, carrier concentrations and recombination rate.

  17. Simulated evolution of fluorophores for light emitting diodes

    SciTech Connect (OSTI)

    Shu, Yinan; Levine, Benjamin G.

    2015-03-14

    Organic light emitting diodes based on fluorophores with a propensity for thermally activated delayed fluorescence (TADF) are able to circumvent limitations imposed on device efficiency by spin statistics. Molecules with a propensity for TADF necessarily have two properties: a small gap between the lowest lying singlet and triplet excited states and a large transition dipole moment for fluorescence. In this work, we demonstrate the use of a genetic algorithm to search a region of chemical space for molecules with these properties. This algorithm is based on a flexible and intuitive representation of the molecule as a tree data structure, in which the nodes correspond to molecular fragments. Our implementation takes advantage of hybrid parallel graphics processing unit accelerated computer clusters to allow efficient sampling while retaining a reasonably accurate description of the electronic structure (in this case, CAM-B3LYP/6-31G{sup ??}). In total, we have identified 3792 promising candidate fluorophores from a chemical space containing 1.26 10{sup 6} molecules. This required performing electronic structure calculations on only 7518 molecules, a small fraction of the full space. Several novel classes of molecules which show promise as fluorophores are presented.

  18. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top...

    Office of Scientific and Technical Information (OSTI)

    Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City Citation Details In-Document Search Title: Demonstration Assessment of ...

  19. Red-Emitting Phosphors for Solid-State Lighting - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Industrial Technologies Industrial Technologies Electricity Transmission Electricity Transmission Advanced Materials Advanced Materials Find More Like This Return to Search Red-Emitting Phosphors for Solid-State Lighting Sandia National Laboratories Contact SNL About This Technology Publications: PDF Document Publication Market Sheet (851 KB) Technology Marketing SummarySandia has developed red-emitting phosphors that will help to transform the cold blue of many current light-emitting diodes

  20. Layering Mismatched Lattices Creates Long-Sought-After Green Light-Emitting Diode (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    Scientists at the National Renewable Energy Laboratory (NREL) invent a deep green LED that can lead to higher-efficiency white light, lower electric bills.

  1. Demonstration Assessment of Light-Emitting Diode Parking Structure...

    Office of Scientific and Technical Information (OSTI)

    Parking Structure Lighting at U.S. Department of Labor Headquarters Kinzey, Bruce R.; Myer, Michael solid-state lighting; LEDs; occupancy sensor controls; parking facility lighting...

  2. Organic Light-Emitting Devices (OLEDS) and Their Optically Detected Magnetic Resonance (ODMR)

    SciTech Connect (OSTI)

    Gang Li

    2003-12-12

    Organic Light-Emitting Devices (OLEDs), both small molecular and polymeric have been studied extensively since the first efficient small molecule OLED was reported by Tang and VanSlyke in 1987. Burroughes' report on conjugated polymer-based OLEDs led to another track in OLED development. These developments have resulted in full color, highly efficient (up to {approx} 20% external efficiency 60 lm/W power efficiency for green emitters), and highly bright (> 140,000 Cd/m{sup 2} DC, {approx}2,000,000 Cd/m{sup 2} AC), stable (>40,000 hr at 5 mA/cm{sup 2}) devices. OLEDs are Lambertian emitters, which intrinsically eliminates the view angle problem of liquid crystal displays (LCDs). Thus OLEDs are beginning to compete with the current dominant LCDs in information display. Numerous companies are now active in this field, including large companies such as Pioneer, Toyota, Estman Kodak, Philipps, DuPont, Samsung, Sony, Toshiba, and Osram, and small companies like Cambridge Display Technology (CDT), Universal Display Corporation (UDC), and eMagin. The first small molecular display for vehicular stereos was introduced in 1998, and polymer OLED displays have begun to appear in commercial products. Although displays are the major application for OLEDs at present, they are also candidates for nest generation solid-state lighting. In this case the light source needs to be white in most cases. Organic transistors, organic solar cells, etc. are also being developed vigorously.

  3. Carbonitride based phosphors and light emitting devices using the same

    DOE Patents [OSTI]

    Li, Yuanqiang; Tian, Yongchi; Romanelli, Michael Dennis

    2013-08-20

    Disclosed herein is a novel group of carbidonitride phosphors and light emitting devices which utilize these phosphors. In certain embodiments, the present invention is directed to a novel family of carbidonitride-based phosphors expressed as follows: Ca.sub.1-xAl.sub.x-xySi.sub.1-x+xyN.sub.2-x-xyC.sub.xy:A; (1) Ca.sub.1-x-zNa.sub.zM(III).sub.x-xy-zSi.sub.1-x+xy+zN.sub.2-x-xyC.sub.xy:- A; (2) M(II).sub.1-x-zM(I).sub.zM(III).sub.x-xy-zSi.sub.1-x+xy+zN.sub.2-x- -xyC.sub.xy:A; (3) M(II).sub.1-x-zM(I).sub.zM(III).sub.x-xy-zSi.sub.1-x+xy+zN.sub.2-x-xy-2w/- 3C.sub.xyO.sub.w-v/2H.sub.v:A; and (4) M(II).sub.1-x-zM(I).sub.zM(III).sub.x-xy-zSi.sub.1-x+xy+zN.sub.2-x-xy-2w/- 3-v/3C.sub.xyO.sub.wH.sub.v:A, (4a) wherein 0xy+z, and 0

  4. Ultrastrong light-matter coupling in electrically doped microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Mazzeo, M.; Genco, A.; Gambino, S.; Ballarini, D.; Mangione, F.; Sanvitto, D.; Di Stefano, O.; Patanè, S.; Savasta, S.; Gigli, G.

    2014-06-09

    The coupling of the electromagnetic field with an electronic transition gives rise, for strong enough light-matter interactions, to hybrid states called exciton-polaritons. When the energy exchanged between light and matter becomes a significant fraction of the material transition energy an extreme optical regime called ultrastrong coupling (USC) is achieved. We report a microcavity embedded p-i-n monolithic organic light emitting diode working in USC, employing a thin film of squaraine dye as active layer. A normalized coupling ratio of 30% has been achieved at room temperature. These USC devices exhibit a dispersion-less angle-resolved electroluminescence that can be exploited for the realization of innovative optoelectronic devices. Our results may open the way towards electrically pumped polariton lasers.

  5. Efficient Light Extraction from Organic Light-Emitting Diodes Using Plasmonic Scattering Layers

    SciTech Connect (OSTI)

    Rothberg, Lewis

    2012-11-30

    Our project addressed the DOE MYPP 2020 goal to improve light extraction from organic light-emitting diodes (OLEDs) to 75% (Core task 6.3). As noted in the 2010 MYPP, the greatest opportunity for improvement is in the extraction of light from [OLED] panels. There are many approaches to avoiding waveguiding limitations intrinsic to the planar OLED structure including use of textured substrates, microcavity designs and incorporating scattering layers into the device structure. We have chosen to pursue scattering layers since it addresses the largest source of loss which is waveguiding in the OLED itself. Scattering layers also have the potential to be relatively robust to color, polarization and angular distributions. We note that this can be combined with textured or microlens decorated substrates to achieve additional enhancement.

  6. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at the Lobby of the Bonneville Power Administration, Portland, OR

    SciTech Connect (OSTI)

    Miller, Naomi

    2011-07-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in the lobby of the Bonneville Power Administration (BPA) headquarters building in Portland, Oregon. The project involved a simple retrofit of 32 track lights used to illuminate historical black-and-white photos and printed color posters from the 1930s and 1940s. BPA is a federal power marketing agency in the Northwestern United States, and selected this prominent location to demonstrate energy efficient light-emitting diode (LED) retrofit options that not only can reduce the electric bill for their customers but also provide attractive alternatives to conventional products, in this case accent lighting for BPA's historical artwork.

  7. OLED Fundamentals: Materials, Devices, and Processing of Organic Light-Emitting Diodes

    SciTech Connect (OSTI)

    Blochwitz-Nimoth, Jan; Bhandari, Abhinav; Boesch, Damien; Fincher, Curtis R.; Gaspar, Daniel J.; Gotthold, David W.; Greiner, Mark T.; Kido, Junji; Kondakov, Denis; Korotkov, Roman; Krylova, Valentina A.; Loeser, Falk; Lu, Min-Hao; Lu, Zheng-Hong; Lussem, Bjorn; Moro, Lorenza; Padmaperuma, Asanga B.; Polikarpov, Evgueni; Rostovtsev, Vsevolod V.; Sasabe, Hisahiro; Silverman, Gary; Thompson, Mark E.; Tietze, Max; Tyan, Yuan-Sheng; Weaver, Michael; Xin , Xu; Zeng, Xianghui

    2015-05-26

    What is an organic light emitting diode (OLED)? Why should we care? What are they made of? How are they made? What are the challenges in seeing these devices enter the marketplace in various applications? These are the questions we hope to answer in this book, at a level suitable for knowledgeable non-experts, graduate students and scientists and engineers working in the field who want to understand the broader context of their work. At the most basic level, an OLED is a promising new technology composed of some organic material sandwiched between two electrodes. When current is passed through the device, light is emitted. The stack of layers can be very thin and has many variations, including flexible and/or transparent. The organic material can be polymeric or composed small molecules, and may include inorganic components. The electrodes may consist of metals, metal oxides, carbon nanomaterials, or other species, though of course for light to be emitted, one electrode must be transparent. OLEDs may be fabricated on glass, metal foils, or polymer sheets (though polymeric substrates must be modified to protect the organic material from moisture or oxygen). In any event, the organic material must be protected from moisture during storage and operation. A control circuit, the exact nature of which depends on the application, drives the OLED. Nevertheless, the control circuit should have very stable current control to generate uniform light emission. OLEDs can be designed to emit a single color of light, white light, or even tunable colors. The devices can be switched on and off very rapidly, which makes them suitable for displays or for general lighting. Given the amazing complexity of the technical and design challenges for practical OLED applications, it is not surprising that applications are still somewhat limited. Although organic electroluminescence is more than 50 years old, the modern OLED field is really only about half that age – with the first high-efficiency OLED demonstrated in 1987. Thus, we expect to see exciting advances in the science, technology and commercialization in the coming years. We hope that this book helps to advance the field in some small way. Contributors to this monograph are experts from top academic institutions, industry and national laboratories who provide comprehensive and up-to-date coverage of the rapidly evolving field of OLEDs. Furthermore, this monograph collects in one place, for the first time, key topics across the field of OLEDs, from fundamental chemistry and physics, to practical materials science and engineering topics, to aspects of design and manufacturing. The monograph synthesizes and puts into context information scattered throughout the literature for easy review in one book. The scope of the monograph reflects the necessity to focus on new technological challenges brought about by the transition to manufacturing. In the Section 1, all materials of construction of the OLED device are covered, from substrate to encapsulation. In Section 2, for the first time, additional challenges in devices and processing are addressed. This book is geared towards a broad audience, including materials scientists, device physicists, synthetic chemists and electrical engineers. Furthermore, this book makes a great introduction to scientists in industry and academia, as well as graduate students interested in applied aspects of photophysics and electrochemistry in organic thin films. This book is a comprehensive source for OLED R&D professionals from all backgrounds and institutions.

  8. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  9. Method and apparatus for improving the performance of light emitting diodes

    DOE Patents [OSTI]

    Lowery, Christopher H.; McElfresh, David K.; Burchet, Steve; Adolf, Douglas B.; Martin, James

    1996-01-01

    A method for increasing the resistance of a light emitting diode and other semiconductor devices to extremes of temperature is disclosed. During the manufacture of the light emitting diode, a liquid coating is applied to the light emitting die after the die has been placed in its lead frame. After the liquid coating has been placed on the die and its lead frames, a thermosetting encapsulant material is placed over the coating. The operation that cures the thermosetting material leaves the coating liquid intact. As the die and the encapsulant expand and contract at different rates with respect to changes in temperature, and as in known light emitting diodes the encapsulating material adheres to the die and lead frames, this liquid coating reduces the stresses that these different rates of expansion and contraction normally cause by eliminating the adherence of the encapsulating material to the die and frame.

  10. Adhesion in flexible organic and hybrid organic/inorganic light emitting device and solar cells

    SciTech Connect (OSTI)

    Yu, D.; Kwabi, D.; Akogwu, O.; Du, J.; Oyewole, O. K.; Tong, T.; Anye, V. C.; Rwenyagila, E.; Asare, J.; Fashina, A.; Soboyejo, W. O.

    2014-08-21

    This paper presents the results of an experimental study of the adhesion between bi-material pairs that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, organic bulk heterojunction solar cells, and hybrid organic/inorganic solar cells on flexible substrates. Adhesion between the possible bi-material pairs is measured using force microscopy (AFM) techniques. These include: interfaces that are relevant to organic light emitting devices, hybrid organic/inorganic light emitting devices, bulk heterojunction solar cells, and hybrid combinations of titanium dioxide (TiO{sub 2}) and poly(3-hexylthiophene). The results of AFM measurements are incorporated into the Derjaguin-Muller-Toporov model for the determination of adhesion energies. The implications of the results are then discussed for the design of robust organic and hybrid organic/inorganic electronic devices.

  11. Diffusion injected multi-quantum well light-emitting diode structure

    SciTech Connect (OSTI)

    Riuttanen, L. Nyknen, H.; Svensk, O.; Suihkonen, S.; Sopanen, M.; Kivisaari, P.; Oksanen, J.; Tulkki, J.

    2014-02-24

    The attention towards light-emitting diode (LED) structures based on nanowires, surface plasmon coupled LEDs, and large-area high-power LEDs has been increasing for their potential in increasing the optical output power and efficiency of LEDs. In this work we demonstrate an alternative way to inject charge carriers into the active region of an LED, which is based on completely different current transport mechanism compared to conventional current injection approaches. The demonstrated structure is expected to help overcoming some of the challenges related to current injection with conventional structures. A functioning III-nitride diffusion injected light-emitting diode structure, in which the light-emitting active region is located outside the pn-junction, is realized and characterized. In this device design, the charge carriers are injected into the active region by bipolar diffusion, which could also be utilized to excite otherwise challenging to realize light-emitting structures.

  12. NANOSTRUCTURED HIGH PERFORMANCE ULTRAVIOLET AND BLUE LIGHT EMITTING DIODES FOR SOLID STATE LIGHTING

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2004-10-01

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the first 12 month contract period include (1) new means of synthesizing zero- and one-dimensional GaN nanostructures, (2) establishment of the building blocks for making GaN-based microcavity devices, and (3) demonstration of top-down approach to nano-scale photonic devices for enhanced spontaneous emission and light extraction. These include a demonstration of eight-fold enhancement of the external emission efficiency in new InGaN QW photonic crystal structures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  13. Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Understanding Drooping Light Emitting Diodes CEEM Energy Frontier Research Centers (EFRCs) EFRCs Home Centers Research Science Highlights Highlight Archives News & Events Publications History Contact BES Home 04.27.12 Understanding Drooping Light Emitting Diodes CEEM Print Text Size: A A A FeedbackShare Page Scientific Achievement New calculations demonstrate that LED "droop" is dominated by multi-particle interactions. Droop occurs when increasing energy input

  14. High efficiency and brightness fluorescent organic light emitting diode by triplet-triplet fusion

    DOE Patents [OSTI]

    Forrest, Stephen; Zhang, Yifan

    2015-02-10

    A first device is provided. The first device further comprises an organic light emitting device. The organic light emitting device further comprises an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include an organic host compound and at least one organic emitting compound capable of fluorescent emission at room temperature. Various configurations are described for providing a range of current densities in which T-T fusion dominates over S-T annihilation, leading to very high efficiency fluorescent OLEDs.

  15. Green emitting phosphors and blends thereof

    DOE Patents [OSTI]

    Setlur, Anant Achyut; Siclovan, Oltea Puica; Nammalwar, Prasanth Kumar; Sathyanarayan, Ramesh Rao; Porob, Digamber G.; Chandran, Ramachandran Gopi; Heward, William Jordan; Radkov, Emil Vergilov; Briel, Linda Jane Valyou

    2010-12-28

    Phosphor compositions, blends thereof and light emitting devices including white light emitting LED based devices, and backlights, based on such phosphor compositions. The devices include a light source and a phosphor material as described. Also disclosed are phosphor blends including such a phosphor and devices made therefrom.

  16. Nanostructured High Performance Ultraviolet and Blue Light Emitting Diodes for Solid State Lighting

    SciTech Connect (OSTI)

    Arto V. Nurmikko; Jung Han

    2005-09-30

    We report on research results in this project which synergize advanced material science approaches with fundamental optical physics concepts pertaining to light-matter interaction, with the goal of solving seminal problems for the development of very high performance light emitting diodes (LEDs) in the blue and near ultraviolet for Solid State Lighting applications. Accomplishments in the second 12 month contract period include (i) new means of synthesizing AlGaN and InN quantum dots by droplet heteroepitaxy, (ii) synthesis of AlGaInN nanowires as building blocks for GaN-based microcavity devices, (iii) progress towards direct epitaxial alignment of the dense arrays of nanowires, (iv) observation and measurements of stimulated emission in dense InGaN nanopost arrays, (v) design and fabrication of InGaN photonic crystal emitters, and (vi) observation and measurements of enhanced fluorescence from coupled quantum dot and plasmonic nanostructures. The body of results is presented in this report shows how a solid foundation has been laid, with several noticeable accomplishments, for innovative research, consistent with the stated milestones.

  17. Highly efficient inverted top emitting organic light emitting diodes using a transparent top electrode with color stability on viewing angle

    SciTech Connect (OSTI)

    Kim, Jung-Bum; Lee, Jeong-Hwan; Moon, Chang-Ki; Kim, Jang-Joo, E-mail: jjkim@snu.ac.kr [Department of Materials Science and Engineering, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2014-02-17

    We report a highly efficient phosphorescent green inverted top emitting organic light emitting diode with excellent color stability by using the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile/indium zinc oxide top electrode and bis(2-phenylpyridine)iridium(III) acetylacetonate as the emitter in an exciplex forming co-host system. The device shows a high external quantum efficiency of 23.4% at 1000?cd/m{sup 2} corresponding to a current efficiency of 110?cd/A, low efficiency roll-off with 21% at 10?000?cd/m{sup 2} and low turn on voltage of 2.4?V. Especially, the device showed very small color change with the variation of ?x?=?0.02, ?y?=?0.02 in the CIE 1931 coordinates as the viewing angle changes from 0 to 60. The performance of the device is superior to that of the metal/metal cavity structured device.

  18. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top Lighting at Central Park in New York City

    SciTech Connect (OSTI)

    Myer, Michael; Goettel, Russell T.; Kinzey, Bruce R.

    2012-09-30

    A review of five post-top light-emitting diode (LED) pedestrian luminaires installed in New York City's Central Park for possible replacement to the existing metal halide post-top luminaire. This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires.

  19. Understanding Drooping Light Emitting Diodes CEEM | U.S. DOE...

    Office of Science (SC) Website

    Understanding "droop" may result in cheaper, more efficient LEDs; LEDs are more energy ... indium in Indium Gallium Nitride (InGaN) green LEDs caused a decrease in light intensity. ...

  20. Promising Technology: Parabolic Aluminized Reflector Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    Parabolic aluminized reflectors, or PARs, are directional lamps typically used in recessed lighting. In contrast to CFLs, LEDs offer additional advantages including no warm up time, improved dimming and control capabilities, and for some products much greater efficacy ratings.

  1. New red phosphor for near-ultraviolet light-emitting diodes with high color-purity

    SciTech Connect (OSTI)

    Wang, Zhengliang; He, Pei; Wang, Rui; Zhao, Jishou; Gong, Menglian

    2010-02-15

    New red phosphors, Na{sub 5}Eu(MoO{sub 4}){sub 4} doped with boron oxide were prepared by the solid-state reaction. Their structure and photo-luminescent properties were investigated. With the introduction of boron oxide, the red emission intensity of the phosphors under 395 nm excitation is strengthened, with high color-purity (x = 0.673, y = 0.327). The single red light-emitting diode was obtained by combining InGaN chip with the red phosphor, bright red light can be observed by naked eyes from the red light-emitting diodes under a forward bias of 20 mA.

  2. Enhancing the emission directionality of organic light-emitting diodes by using photonic microstructures

    SciTech Connect (OSTI)

    Zhang, Shuyu; Turnbull, Graham A., E-mail: gat@st-andrews.ac.uk, E-mail: idws@st-andrews.ac.uk; Samuel, Ifor D. W., E-mail: gat@st-andrews.ac.uk, E-mail: idws@st-andrews.ac.uk [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)] [Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, North Haugh, St Andrews, Fife KY16 9SS (United Kingdom)

    2013-11-18

    We report microstructured organic light-emitting diodes (OLEDs) with directional emission based on efficient solution-processable europium-OLEDs patterned by solvent assisted microcontact molding. The angle dependence of the light emission is characterized for OLEDs with square-array photonic crystals with periods between 275?nm and 335?nm. The microstructured devices have emission patterns strongly modified from the Lambertian emission of planar OLEDs and can approximately double the emitted power in a desired angle range in both s- and p-polarizations. The modified emission is attributed to light diffracted out of the waveguide modes of the OLEDs.

  3. Printed assemblies of ultrathin, microscale inorganic light emitting diodes for deformable and semitransparent displays

    DOE Patents [OSTI]

    Rogers, John A; Nuzzo, Ralph; Kim, Hoon-sik; Brueckner, Eric; Park, Sang Il; Kim, Rak Hwan

    2014-10-21

    Described herein are printable structures and methods for making, assembling and arranging electronic devices. A number of the methods described herein are useful for assembling electronic devices where one or more device components are embedded in a polymer which is patterned during the embedding process with trenches for electrical interconnects between device components. Some methods described herein are useful for assembling electronic devices by printing methods, such as by dry transfer contact printing methods. Also described herein are GaN light emitting diodes and methods for making and arranging GaN light emitting diodes, for example for display or lighting systems.

  4. Soft holographic interference lithography microlens for enhanced organic light emitting diode light extraction

    SciTech Connect (OSTI)

    Park, Joong-Mok; Gan, Zhengqing; Leung, Wai Y.; Liu, Rui; Ye, Zhuo; Constant, Kristen; Shinar, Joseph; Shinar, Ruth; Ho, Kai-Ming

    2011-06-06

    Very uniform 2 {micro}m-pitch square microlens arrays ({micro}LAs), embossed on the blank glass side of an indium-tin-oxide (ITO)-coated 1.1 mm-thick glass, are used to enhance light extraction from organic light-emitting diodes (OLEDs) by {approx}100%, significantly higher than enhancements reported previously. The array design and size relative to the OLED pixel size appear to be responsible for this enhancement. The arrays are fabricated by very economical soft lithography imprinting of a polydimethylsiloxane (PDMS) mold (itself obtained from a Ni master stamp that is generated from holographic interference lithography of a photoresist) on a UV-curable polyurethane drop placed on the glass. Green and blue OLEDs are then fabricated on the ITO to complete the device. When the {mu}LA is {approx}15 x 15 mm{sup 2}, i.e., much larger than the {approx}3 x 3 mm{sup 2} OLED pixel, the electroluminescence (EL) in the forward direction is enhanced by {approx}100%. Similarly, a 19 x 25 mm{sup 2} {mu}LA enhances the EL extracted from a 3 x 3 array of 2 x 2 mm{sup 2} OLED pixels by 96%. Simulations that include the effects of absorption in the organic and ITO layers are in accordance with the experimental results and indicate that a thinner 0.7 mm thick glass would yield a {approx}140% enhancement.

  5. Revolutionary Method for Increasing the Efficiency of White Light Quantum Dot LEDs

    SciTech Connect (OSTI)

    Duty, Chad E [ORNL; Bennett, Charlee J C [ORNL; Sabau, Adrian S [ORNL; Jellison Jr, Gerald Earle [ORNL; Boudreaux, Philip R [ORNL; Walker, Steven C [ORNL; Ott, Ronald D [ORNL

    2011-01-01

    Covering a light-emitting diode (LED) with quantum dots (QDs) can produce a broad spectrum of white light. However, current techniques for applying QDs to LEDs suffer from a high density of defects and a non-uniform distribution of QDs, which respec-tively diminish the efficiency and quality of emitted light. Oak Ridge National Laboratory (ORNL) has the unique capability to thermally anneal QD structures at extremely high power densities for very short durations. This process, called pulse thermal proc-essing (PTP), reduces the number of point defects while main-taining the size and shape of the original QD nanostructure. Therefore, the efficiency of the QD wavelength conversion layer is improved without altering the emission spectrum defined by the size distribution of the quantum dot nanoparticles. The cur-rent research uses a thermal model to predict annealing tempera-tures during PTP and demonstrates up to a 300% increase in pho-toluminescence for QDs on passive substrates

  6. Novel Low Cost Organic Vapor Jet Printing of Striped High Efficiency Phosphorescent OLEDs for White Lighting

    SciTech Connect (OSTI)

    Mike Hack

    2008-12-31

    In this program, Universal Display Corporation and University of Michigan proposed to integrate three innovative concepts to meet the DOE's Solid State Lighting (SSL) goals: (1) high-efficiency phosphorescent organic light emitting device (PHOLED{trademark}) technology, (2) a white lighting design that is based on a series of red, green and blue OLED stripes, and (3) the use of a novel cost-effective, high rate, mask-less deposition process called organic vapor jet printing (OVJP). Our PHOLED technology offers up to four-times higher power efficiency than other OLED approaches for general lighting. We believe that one of the most promising approaches to maximizing the efficiency of OLED lighting sources is to produce stripes of the three primary colors at such a pitch (200-500 {mu}m) that they appear as a uniform white light to an observer greater than 1 meter (m) away from the illumination source. Earlier work from a SBIR Phase 1 entitled 'White Illumination Sources Using Striped Phosphorescent OLEDs' suggests that stripe widths of less than 500 {mu}m appear uniform from a distance of 1m without the need for an external diffuser. In this program, we intend to combine continued advances in this PHOLED technology with the striped RGB lighting design to demonstrate a high-efficiency, white lighting source. Using this background technology, the team has focused on developing and demonstrating the novel cost-effective OVJP process to fabricate these high-efficiency white PHOLED light sources. Because this groundbreaking OVJP process is a direct printing approach that enables the OLED stripes to be printed without a shadow mask, OVJP offers very high material utilization and high throughput without the costs and wastage associated with a shadow mask (i.e. the waste of material that deposits on the shadow mask itself). As a direct printing technique, OVJP also has the potential to offer ultra-high deposition rates (> 1,000 Angstroms/second) for any size or shaped features. As a result, we believe that this work will lead to the development of a cost-effective manufacturing solution to produce very-high efficiency OLEDs. By comparison to more common ink-jet printing (IJP), OVJP can also produce well-defined patterns without the need to pattern the substrate with ink wells or to dry/anneal the ink. In addition, the material set is not limited by viscosity and solvent solubility. During the program we successfully demonstrated a 6-inch x 6-inch PHOLED lighting panel consisting of fine-featured red, green and blue (R-G-B) stripes (1mm width) using an OVJP deposition system that was designed, procured and installed into UDC's cleanroom as part of this program. This project will significantly accelerate the DOE's ability to meet its 2015 DOE SSL targets of 70-150 lumens/Watt and less than $10 per 1,000 lumens for high CRI lighting index (76-90). Coupled with a low cost manufacturing path through OVJP, we expect that this achievement will enable the DOE to achieve its 2015 performance goals by the year 2013, two years ahead of schedule. As shown by the technical work performed under this program, we believe that OVJP is a very promising technology to produce low cost, high efficacy, color tunable light sources. While we have made significant progress to develop OVJP technology and build a pilot line tool to study basic aspects of the technology and demonstrate a lighting panel prototype, further work needs to be performed before its full potential and commercial viability can be fully assessed.

  7. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting in Leavenworth, KS

    SciTech Connect (OSTI)

    Myer, Michael; Kinzey, Bruce R.; Curry, Ku'uipo

    2011-05-06

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a commercial parking lot lighting application, under the U.S. Department of Energy (DOE) Solid-State Lighting Technology GATEWAY Demonstration Program. The parking lot is for customers and employees of a Walmart Supercenter in Leavenworth, Kansas and this installation represents the first use of the LED Parking Lot Performance Specification developed by the DOE’s Commercial Building Energy Alliance. The application is a parking lot covering more than a half million square feet, lighted primarily by light-emitting diodes (LEDs). Metal halide wall packs were installed along the building facade. This site is new construction, so the installed baseline(s) were hypothetical designs. It was acknowledged early on that deviating from Walmart’s typical design would reduce the illuminance on the site. Walmart primarily uses 1000W pulse-start metal halide (PMH) lamps. In order to provide a comparison between both typical design and a design using conventional luminaires providing a lower illuminance, a 400W PMH design was also considered. As mentioned already, the illuminance would be reduced by shifting from the PMH system to the LED system. The Illuminating Engineering Society of North America (IES) provides recommended minimum illuminance values for parking lots. All designs exceeded the recommended illuminance values in IES RP-20, some by a wider margin than others. Energy savings from installing the LED system compared to the different PMH systems varied. Compared to the 1000W PMH system, the LED system would save 63 percent of the energy. However, this corresponds to a 68 percent reduction in illuminance as well. In comparison to the 400W PMH system, the LED system would save 44 percent of the energy and provide similar minimum illuminance values at the time of relamping. The LED system cost more than either of the PMH systems when comparing initial costs. However, when the life-cycle costs from energy and maintenance were factored into the scenario, the LED system had lower costs at the end of a 10-year analysis period. The LED system had a 6.1 year payback compared to the 1000W PMH system and a 7.5 year payback versus the 400W PMH system. The costs reflect high initial cost for the LED luminaire, plus more luminaires and (subsequently) more poles for the LED system. The other major issue affecting cost effectiveness was that Leavenworth, Kansas has very low electricity costs. The melded rate for this site was $0.056 per kWh for electricity. However, if the national electricity rate of $0.1022/kWh was used the payback would change to between four and five years for the LED system. This demonstration met the GATEWAY requirements of saving energy, matching or improving illumination, and being cost effective. The project also demonstrated that the Commercial Building Energy Alliance (CBEA) specification works in practice. Walmart appreciated having an entire site lighted by LEDs to gain more experience with the technology. Walmart is reviewing the results of the demonstration as they consider their entire real estate portfolio.

  8. Organic light emitting device architecture for reducing the number of organic materials

    DOE Patents [OSTI]

    D'Andrade, Brian; Esler, James

    2011-10-18

    An organic light emitting device is provided. The device includes an anode and a cathode. A first emissive layer is disposed between the anode and the cathode. The first emissive layer includes a first non-emitting organic material, which is an organometallic material present in the first emissive layer in a concentration of at least 50 wt %. The first emissive layer also includes a first emitting organic material. A second emissive layer is disposed between the first emissive layer and the cathode, preferably, in direct contact with the first emissive layer. The second emissive material includes a second non-emitting organic material and a second emitting organic material. The first and second non-emitting materials, and the first and second emitting materials, are all different materials. A first non-emissive layer is disposed between the first emissive layer and the anode, and in direct contact with the first emissive layer. The first non- emissive layer comprises the first non-emissive organic material.

  9. Photoionization of optically trapped ultracold atoms with a high-power light-emitting diode

    SciTech Connect (OSTI)

    Goetz, Simone; Hoeltkemeier, Bastian; Amthor, Thomas; Weidemueller, Matthias [Physikalisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 226, 69120 Heidelberg (Germany)

    2013-04-15

    Photoionization of laser-cooled atoms using short pulses of a high-power light-emitting diode (LED) is demonstrated. Light pulses as short as 30 ns have been realized with the simple LED driver circuit. We measure the ionization cross section of {sup 85}Rb atoms in the first excited state, and show how this technique can be used for calibrating efficiencies of ion detector assemblies.

  10. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOE Patents [OSTI]

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2012-01-03

    A semiconductor based Light Emitting Device (LED) can include a p-type nitride layer and a metal ohmic contact, on the p-type nitride layer. The metal ohmic contact can have an average thickness of less than about 25 .ANG. and a specific contact resistivity less than about 10.sup.-3 ohm-cm.sup.2.

  11. Advanced Epi Tools for Gallium Nitride Light Emitting Diode Devices

    SciTech Connect (OSTI)

    Patibandla, Nag; Agrawal, Vivek

    2012-12-01

    Over the course of this program, Applied Materials, Inc., with generous support from the United States Department of Energy, developed a world-class three chamber III-Nitride epi cluster tool for low-cost, high volume GaN growth for the solid state lighting industry. One of the major achievements of the program was to design, build, and demonstrate the world’s largest wafer capacity HVPE chamber suitable for repeatable high volume III-Nitride template and device manufacturing. Applied Materials’ experience in developing deposition chambers for the silicon chip industry over many decades resulted in many orders of magnitude reductions in the price of transistors. That experience and understanding was used in developing this GaN epi deposition tool. The multi-chamber approach, which continues to be unique in the ability of the each chamber to deposit a section of the full device structure, unlike other cluster tools, allows for extreme flexibility in the manufacturing process. This robust architecture is suitable for not just the LED industry, but GaN power devices as well, both horizontal and vertical designs. The new HVPE technology developed allows GaN to be grown at a rate unheard of with MOCVD, up to 20x the typical MOCVD rates of 3{micro}m per hour, with bulk crystal quality better than the highest-quality commercial GaN films grown by MOCVD at a much cheaper overall cost. This is a unique development as the HVPE process has been known for decades, but never successfully commercially developed for high volume manufacturing. This research shows the potential of the first commercial-grade HVPE chamber, an elusive goal for III-V researchers and those wanting to capitalize on the promise of HVPE. Additionally, in the course of this program, Applied Materials built two MOCVD chambers, in addition to the HVPE chamber, and a robot that moves wafers between them. The MOCVD chambers demonstrated industry-leading wavelength yield for GaN based LED wafers and industry-leading uptime enabled in part by a novel in-situ cleaning process developed in this program.

  12. Light emitting diode with porous SiC substrate and method for fabricating

    DOE Patents [OSTI]

    Li, Ting; Ibbetson, James; Keller, Bernd

    2005-12-06

    A method and apparatus for forming a porous layer on the surface of a semiconductor material wherein an electrolyte is provided and is placed in contact with one or more surfaces of a layer of semiconductor material. The electrolyte is heated and a bias is introduced across said electrolyte and the semiconductor material causing a current to flow between the electrolyte and the semiconductor material. The current forms a porous layer on the one or more surfaces of the semiconductor material in contact with the electrolyte. The semiconductor material with its porous layer can serve as a substrate for a light emitter. A semiconductor emission region can be formed on the substrate. The emission region is capable of emitting light omnidirectionally in response to a bias, with the porous layer enhancing extraction of the emitting region light passing through the substrate.

  13. Integrated porous-silicon light-emitting diodes: A fabrication process using graded doping profiles

    SciTech Connect (OSTI)

    Barillaro, G.; Diligenti, A.; Pieri, F.; Fuso, F.; Allegrini, M.

    2001-06-25

    A fabrication process, compatible with an industrial bipolar+complementary metal{endash}oxide{endash}semiconductor (MOS)+diffusion MOS technology, has been developed for the fabrication of efficient porous-silicon-based light-emitting diodes. The electrical contact is fabricated with a double n{sup +}/p doping, achieving a high current injection efficiency and thus lower biasing voltages. The anodization is performed as the last step of the process, thus reducing potential incompatibilities with industrial processes. The fabricated devices show yellow-orange electroluminescence, visible with the naked eye in room lighting. A spectral characterization of light emission is presented and briefly discussed. {copyright} 2001 American Institute of Physics.

  14. Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report

    Broader source: Energy.gov [DOE]

    This report summarizes an LED street lighting assessment project conducted to study the applicability of LED luminaires in a street lighting application.

  15. Structural, thermal, optical properties and simulation of white light of titanium-tungstate-tellurite glasses doped with dysprosium

    SciTech Connect (OSTI)

    Jyothi, L. [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Upender, G. [Glass Science and Technology Section, Glass Division, CSIR-CGCRI, Kolkata 700032 (India); Kuladeep, R. [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Rao, D. Narayana, E-mail: dnrsp@uohyd.ernet.in [School of Physics, University of Hyderabad, Hyderabad 500046 (India)

    2014-02-01

    Graphical abstract: CIE coordinate diagram of different concentrations of the Dy{sup 3+}-doped TTWD glasses with coordinates in the white light region. - Highlights: Radiative lifetime of {sup 4}F{sub 9/2} level of Dy{sup 3+} ions is longer in the tellurite glass. Quantum efficiency is found to be high. These glasses are suitable materials for generating white light. - Abstract: Structural, thermal, optical properties and simulation of white light of Dy{sup 3+}-doped tellurite glasses of composition TTWD: (75 ? x)TeO{sub 2} ? 10TiO{sub 2} ? 15WO{sub 3} ? xDy{sub 2}O{sub 3} (x = 0, 0.1, 0.5, 1.0 and 2.0 mol%) were investigated. Raman spectra revealed that the glass contains TeO{sub 4}, TeO{sub 3}, WO{sub 4} and WO{sub 6} units. Differential scanning calorimetry (DSC) measurements were carried out to measure the glass transition temperature of all the glasses. From the optical absorption spectra, luminescence spectra and using the JuddOfelt (JO) analysis, we estimated the radiative transition probabilities, emission cross-sections, branching ratios and radiative lifetimes. The decay curves at lower concentrations are exponential while they show a non-exponential behavior at higher concentrations (?0.5 mol%) due to energy transfer processes. The effective lifetime for the {sup 4}F{sub 9/2} level decreases with increase in Dy{sub 2}O{sub 3} concentration for the glasses under investigation. The non-exponential decay curves could fit well to the InokutiHirayama (IH) model with S = 6, indicating that the nature of interaction responsible for energy transfer is of dipoledipole type. Simulation of white light is examined with varying concentration and the results indicate that these glasses are suitable for white light emitting diode applications.

  16. (Lighting and) Solid-State Lighting: Science, Technology, Economic...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Topics cover the basics of light-emitting diode (LED) operation; a 200-year history of lighting technology; the importance of white light and color vision to the evolutionary ...

  17. Device Optimization and Transient Electroluminescence Studies of Organic light Emitting Devices

    SciTech Connect (OSTI)

    Lijuan Zou

    2003-08-05

    Organic light emitting devices (OLEDs) are among the most promising for flat panel display technologies. They are light, bright, flexible, and cost effective. And while they are emerging in commercial product, their low power efficiency and long-term degradation are still challenging. The aim of this work was to investigate their device physics and improve their performance. Violet and blue OLEDs were studied. The devices were prepared by thermal vapor deposition in high vacuum. The combinatorial method was employed in device preparation. Both continuous wave and transient electroluminescence (EL) were studied. A new efficient and intense UV-violet light emitting device was developed. At a current density of 10 mA/cm{sup 2}, the optimal radiance R could reach 0.38 mW/cm{sup 2}, and the quantum efficiency was 1.25%. using the delayed EL technique, electron mobilities in DPVBi and CBP were determined to be {approx} 10{sup -5} cm{sup 2}/Vs and {approx} 10{sup -4} cm{sup 2}/Vs, respectively. Overshoot effects in the transient El of blue light emitting devices were also observed and studied. This effect was attributed to the charge accumulation at the organic/organic and organic/cathode interfaces.

  18. Towards Truly White LED Lighting | U.S. DOE Office of Science...

    Office of Science (SC) Website

    different colors arranged in pixels of red, green and blue, combined to make white light. ... chain structure of the polymer alters the energy levels of the material and enables light ...

  19. Exciton quenching at PEDOT:PSS anode in polymer blue-light-emitting diodes

    SciTech Connect (OSTI)

    Abbaszadeh, D.; Wetzelaer, G. A. H.; Nicolai, H. T.

    2014-12-14

    The quenching of excitons at the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) anode in blue polyalkoxyspirobifluorene-arylamine polymer light-emitting diodes is investigated. Due to the combination of a higher electron mobility and the presence of electron traps, the recombination zone shifts from the cathode to the anode with increasing voltage. The exciton quenching at the anode at higher voltages leads to an efficiency roll-off. The voltage dependence of the luminous efficiency is reproduced by a drift-diffusion model under the condition that quenching of excitons at the PEDOT:PSS anode and metallic cathode is of equal strength. Experimentally, the efficiency roll-off at high voltages due to anode quenching is eliminated by the use of an electron-blocking layer between the anode and the light-emitting polymer.

  20. Horizontal molecular orientation in solution-processed organic light-emitting diodes

    SciTech Connect (OSTI)

    Zhao, L.; Inoue, M.; Komino, T.; Kim, J.-H.; Ribierre, J. C. E-mail: adachi@cstf.kyushu-u.ac.jp [Center for Organic Photonics and Electronics Research , Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395; Japan Science and Technology Agency , ERATO, Adachi Molecular Exciton Engineering Project, c and others

    2015-02-09

    Horizontal orientation of the emission transition dipole moments achieved in glassy vapor-deposited organic thin films leads to an enhancement of the light out-coupling efficiency in organic light-emitting diodes (OLEDs). Here, our combined study of variable angle spectroscopic ellipsometry and angle dependent photoluminescence demonstrates that such a horizontal orientation can be achieved in glassy spin-coated organic films based on a composite blend of a heptafluorene derivative as a dopant and a 4,4?-bis(N-carbazolyl)-1,1?-biphenyl as a host. Solution-processed fluorescent OLEDs with horizontally oriented heptafluorene emitters were then fabricated and emitted deep blue electroluminescence with an external quantum efficiency as high as 5.3%.

  1. LED Lights for All Occasions | Department of Energy

    Energy Savers [EERE]

    SSL Basics » LED Basics LED Basics Unlike incandescent lamps, LEDs are not inherently white light sources. Instead, LEDs emit nearly monochromatic light, making them highly efficient for colored light applications such as traffic lights and exit signs. However, to be used as a general light source, white light is needed. White light can be achieved with LEDs in three ways: Phosphor conversion, in which a phosphor is used on or near the LED to convert the colored light to white light RGB

  2. Metal-halide perovskites for photovoltaic and light-emitting devices* |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MIT-Harvard Center for Excitonics Metal-halide perovskites for photovoltaic and light-emitting devices* September 15, 2015 at 4:30 pm/36-428 Sam Stranks Massachusetts Institute of Technology stranks.02 Metal halide perovskites are exotic hybrid crystalline materials developed out of curiosity. Unexpectedly, solar cells incorporating these perovskites are rapidly emerging as serious contenders to rival the leading photovoltaic technologies. Power conversion efficiencies have jumped from 3% to

  3. Demonstration Assessment of Light-Emitting Diode (LED) Residential Downlights and Undercabinet Lights

    SciTech Connect (OSTI)

    Ton, M. K.; Richman, E. E.; Gilbride, T. L.

    2008-10-01

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) Solid-State Lighting (SSL) GATEWAY Demonstration Program.

  4. Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Phase III Continuation

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Johnson, Megan; Pang, Terrance

    2008-11-01

    This report summarizes the third phase of an LED street lighting assessment project in Oakland, California, conducted to study the applicability of LED luminaires in a street lighting application.

  5. Material system for tailorable white light emission and method for making thereof

    DOE Patents [OSTI]

    Smith, Christine A.; Lee, Howard W.

    2004-08-10

    A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.

  6. Material system for tailorable white light emission and method for making thereof

    DOE Patents [OSTI]

    Smith, Christine A.; Lee, Howard W. H.

    2009-05-19

    A method of processing a composite material to tailor white light emission of the resulting composite during excitation. The composite material is irradiated with a predetermined power and for a predetermined time period to reduce the size of a plurality of nanocrystals and the number of a plurality of traps in the composite material. By this irradiation process, blue light contribution from the nanocrystals to the white light emission is intensified and red and green light contributions from the traps are decreased.

  7. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting, Phase I

    SciTech Connect (OSTI)

    Myer, M. A.; Goettel, R. T.

    2010-06-22

    U.S. DOE Solid-State Lighting Technology Demonstration GATEWAY Program Report on the TJMaxx Demonstration.

  8. Enhancement in light emission and electrical efficiencies of a silicon nanocrystal light-emitting diode by indium tin oxide nanowires

    SciTech Connect (OSTI)

    Huh, Chul, E-mail: chuh@etri.re.kr; Kim, Bong Kyu; Ahn, Chang-Geun; Kim, Sang-Hyeob [IT Convergence Technology Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 305-350 (Korea, Republic of); Choi, Chel-Jong [Department of BIN Fusion Technology, Chonbuk National University, Jeonju 561-756 (Korea, Republic of)

    2014-07-21

    We report an enhancement in light emission and electrical efficiencies of a Si nanocrystal (NC) light-emitting diode (LED) by employing indium tin oxide (ITO) nanowires (NWs). The formed ITO NWs (diameter?light output power and wall-plug efficiency from the Si NC LED were enhanced by 45% and 38%, respectively. This was originated from an enhancement in the escape probability of the photons generated in the Si NCs due to multiple scatterings at the surface of ITO NWs acting as a light waveguide. We show here that the use of the ITO NWs can be very useful for realizing a highly efficient Si NC LED.

  9. Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting

    Broader source: Energy.gov [DOE]

    This document is a report of observations and results obtained from a lighting demonstration project conducted under a U.S. Department of Energy program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology for plant-wide improvement.

  10. Red light-emitting diodes based on InP/GaP quantum dots

    SciTech Connect (OSTI)

    Hatami, F.; Lordi, V.; Harris, J.S.; Kostial, H.; Masselink, W.T.

    2005-05-01

    The growth, fabrication, and device characterization of InP quantum-dot light-emitting diodes based on GaP are described and discussed. The diode structures are grown on gallium phosphide substrates using gas-source molecular-beam epitaxy and the active region of the diode consists of self-assembled InP quantum dots embedded in a GaP matrix. Red electroluminescence originating from direct band-gap emission from the InP quantum dots is observed at low temperatures.With increasing temperature, however, the emission line shifts to the longer wavelength. The emission light is measured to above room temperature.

  11. Photonic crystal light emitting diode based on Er and Si nanoclusters co-doped slot waveguide

    SciTech Connect (OSTI)

    Lo Savio, R.; Galli, M.; Liscidini, M.; Andreani, L. C.; Franz, G.; Iacona, F.; Miritello, M.; Irrera, A.; Sanfilippo, D.; Piana, A.; Priolo, F.

    2014-03-24

    We report on the design, fabrication, and electro-optical characterization of a light emitting device operating at 1.54??m, whose active layer consists of silicon oxide containing Er-doped Si nanoclusters. A photonic crystal (PhC) is fabricated on the top-electrode to enhance the light extraction in the vertical direction, and thus the external efficiency of the device. This occurs if a photonic mode of the PhC slab is resonant with the Er emission energy, as confirmed by theoretical calculations and experimental analyses. We measure an increase of the extraction efficiency by a factor of 3 with a high directionality of light emission in a narrow vertical cone. External quantum efficiency and power efficiency are among the highest reported for this kind of material. These results are important for the realization of CMOS-compatible efficient light emitters at telecom wavelengths.

  12. ISSUANCE 2015-06-25: Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Test Procedures for Integrated Light-Emitting Diode Lamps, Supplemental Notice of Proposed Rulemaking

  13. Semiconductor light-emitting devices having concave microstructures providing improved light extraction efficiency and method for producing same

    DOE Patents [OSTI]

    Tansu, Nelson; Gilchrist, James F; Ee, Yik-Khoon; Kumnorkaew, Pisist

    2013-11-19

    A conventional semiconductor LED is modified to include a microlens layer over its light-emitting surface. The LED may have an active layer including at least one quantum well layer of InGaN and GaN. The microlens layer includes a plurality of concave microstructures that cause light rays emanating from the LED to diffuse outwardly, leading to an increase in the light extraction efficiency of the LED. The concave microstructures may be arranged in a substantially uniform array, such as a close-packed hexagonal array. The microlens layer is preferably constructed of curable material, such as polydimethylsiloxane (PDMS), and is formed by soft-lithography imprinting by contacting fluid material of the microlens layer with a template bearing a monolayer of homogeneous microsphere crystals, to cause concave impressions, and then curing the material to fix the concave microstructures in the microlens layer and provide relatively uniform surface roughness.

  14. Demonstration Assessment of Light-Emitting Diode Parking Structure Lighting at U.S. Department of Labor Headquarters

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2013-03-01

    This report documents a solid-state lighting (SSL) technology demonstration at the parking structure of the U.S. Department of Labor (DOL) Headquarters in Washington, DC, in which light-emitting diode (LED) luminaires were substituted for the incumbent high-pressure sodium (HPS) luminaires and evaluated for relative light quantity and performance. The demonstration results show energy savings of 52% from the initial conversion of HPS to the LED product. These savings were increased to 88% by using occupancy sensor controls that were ultimately set to reduce power to 10% of high state operation after a time delay of 2.5 minutes. Because of the relatively high cost of the LED luminaires at their time of purchase for this project (2010), the simple payback periods were 6.5 years and 4.9 years for retrofit and new construction scenarios, respectively. Staff at DOL Headquarters reported high satisfaction with the operation of the LED product.

  15. White light generation from Dy{sup 3+}-doped ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5} glasses

    SciTech Connect (OSTI)

    Jayasimhadri, M.; Jang, Kiwan; Lee, Ho Sueb; Chen, Baojiu; Yi, Soung-Soo; Jeong, Jung-Hyun

    2009-07-01

    Dysprosium doped ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5} (ZBP) glasses were prepared by a conventional melt quenching technique in order to study the luminescent properties and their utility for white light emitting diodes (LEDs). X-ray diffraction spectra revealed the amorphous nature of the glass sample. The present glasses were characterized by infrared and Raman spectra to evaluate the vibrational features of the samples. The emission and excitation spectra were reported for the ZBP glasses. Strong blue (484 nm) and yellow (574 nm) emission bands were observed upon various excitations. These two emissions correspond to the {sup 4}F{sub 9/2}->{sup 6}H{sub 15/2} and {sup 4}F{sub 9/2}->{sup 6}H{sub 13/2} transitions of Dy{sup 3+} ions, respectively. Combination of these blue and yellow bands gives white light to the naked eye. First time, it was found that ZnO-B{sub 2}O{sub 3}-P{sub 2}O{sub 5} glasses efficiently emit white light under 400 and 454 nm excitations, which are nearly match with the emissions of commercial GaN blue LEDs and InGaN LED, respectively. CIE chromaticity coordinates also calculated for Dy{sup 3+}: ZBP glasses to evaluate the white light emission.

  16. Demonstration Assessment of Light-Emitting Diode (LED) Freezer Case Lighting

    SciTech Connect (OSTI)

    Rishman, E. E.; Tuenge, J. R.

    2009-10-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology combined with occupancy sensors in a set of upright grocery store freezer cases.

  17. Demonstration Assessment of Light-Emitting Diode (LED) Street Lighting Host Site: Lija Loop, Portland, Oregon

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2009-11-01

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology in a residential street lighting application, under the U.S. Department of Energy GATEWAY Solid-State Lighting Technology Demonstration Program. In this project, eight 100W (nominal) high-pressure sodium cobra head fixtures were replaced with a like number of LED street light luminaires manufactured by Leotek, Inc. The Leotek product achieved an estimated payback in the Lija Loop installation of about 20 years for replacement scenarios and a much shorter 7.6 years for new installations. Much of the associated energy savings (55%) supporting these payback periods, however, were achieved by reducing average horizontal photopic illuminance a similar amount (53%). Examined from a different perspective, the measured performance suggests that the Leotek product is at approximate parity with the HPS cobra head in terms of average delivered photopic illumination for a given power consumption. HPS comprises the second most efficacious street lighting technology available, exceeded only by low pressure sodium (LPS). LPS technology is not considered suitable for most street lighting applications due to its monochromatic spectral output and poor color rendering ability; therefore, this LED product is performing at an efficiency level comparable to its primary competition in this application.

  18. Tunnel-injection GaN quantum dot ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Verma, Jai; Kandaswamy, Prem Kumar; Protasenko, Vladimir; Verma, Amit; Grace Xing, Huili; Jena, Debdeep

    2013-01-28

    We demonstrate a GaN quantum dot ultraviolet light-emitting diode that uses tunnel injection of carriers through AlN barriers into the active region. The quantum dot heterostructure is grown by molecular beam epitaxy on AlN templates. The large lattice mismatch between GaN and AlN favors the formation of GaN quantum dots in the Stranski-Krastanov growth mode. Carrier injection by tunneling can mitigate losses incurred in hot-carrier injection in light emitting heterostructures. To achieve tunnel injection, relatively low composition AlGaN is used for n- and p-type layers to simultaneously take advantage of effective band alignment and efficient doping. The small height of the quantum dots results in short-wavelength emission and are simultaneously an effective tool to fight the reduction of oscillator strength from quantum-confined Stark effect due to polarization fields. The strong quantum confinement results in room-temperature electroluminescence peaks at 261 and 340 nm, well above the 365 nm bandgap of bulk GaN. The demonstration opens the doorway to exploit many varied features of quantum dot physics to realize high-efficiency short-wavelength light sources.

  19. Boron-Containing Red Light-Emitting Phosphors And Light Sources Incorporating The Same

    DOE Patents [OSTI]

    Srivastava, Alok Mani; Comanzo, Holly Ann; Manivannan, Venkatesan

    2006-03-28

    A boron-containing phosphor comprises a material having a formula of AD1-xEuxB9O16, wherein A is an element selected from the group consisting of Ba, Sr, Ca, Mg, and combinations thereof; D is at least an element selected from the group consisting of rare-earth metals other than europium; and x is in the range from about 0.005 to about 0.5. The phosphor is used in a blend with other phosphors in a light source for generating visible light with a high color rendering index.

  20. Temperature-dependent efficiency droop of blue InGaN micro-light emitting diodes

    SciTech Connect (OSTI)

    Tian, Pengfei; McKendry, Jonathan J. D.; Herrnsdorf, Johannes; Ferreira, Ricardo; Watson, Ian M.; Gu, Erdan Dawson, Martin D.; Watson, Scott; Kelly, Anthony E.

    2014-10-27

    Temperature-dependent trends in radiative and Auger recombination coefficients have been determined at different injection carrier concentrations using InGaN micro-light emitting diodes 40 ?m in diameter. The differential lifetime was obtained first from the measured modulation bandwidth and was then employed to calculate the carrier concentration in the quantum well active region. When the temperature increases, the carrier concentration increases, but both the radiative and Auger recombination coefficients decrease. In addition, the temperature dependence of radiative and Auger recombination coefficients is weaker at a higher injection carrier concentration, which is strongly related to phase space filling.

  1. New Efficiency Record Achieved for White OLED Device

    Broader source: Energy.gov [DOE]

    Osram Opto-Semiconductors, Inc. has successfully demonstrated a white organic light emitting diode (OLED) with a record efficiency of 25 lumens per watt, the highest known efficiency achieved to date for a polymer-based white OLED. The 25 LPW cool-white-emitting device was produced by applying a standard external inorganic phosphor to Osram's record-breaking blue-emitting phosphorescent polymer device with a peak luminous efficacy of 14 LPW.

  2. Charge injection and accumulation in organic light-emitting diode with PEDOT:PSS anode

    SciTech Connect (OSTI)

    Weis, Martin; Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2015-04-21

    Organic light-emitting diode (OLED) displays using flexible substrates have many attractive features. Since transparent conductive oxides do not fit the requirements of flexible devices, conductive polymer poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS) has been proposed as an alternative. The charge injection and accumulation in OLED devices with PEDOT:PSS anodes are investigated and compared with indium tin oxide anode devices. Higher current density and electroluminescence light intensity are achieved for the OLED device with a PEDOT:PSS anode. The electric field induced second-harmonic generation technique is used for direct observation of temporal evolution of electric fields. It is clearly demonstrated that the improvement in the device performance of the OLED device with a PEDOT:PSS anode is associated with the smooth charge injection and accumulation.

  3. A spin light emitting diode incorporating ability of electrical helicity switching

    SciTech Connect (OSTI)

    Nishizawa, N., E-mail: nishizawa@isl.titech.ac.jp; Nishibayashi, K.; Munekata, H. [Imaging Science and Engineering Laboratory, Tokyo Institute of Technology, 4259-J3-15 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2014-03-17

    Fabrication and optical characteristics of a spin light-emitting-diode (spin-LED) having dual spin-injection electrodes with anti-parallel magnetization configuration are reported. Alternating a current between the two electrodes using a computer-driven current source has led us to the observation of helicity switching of circular polarization at the frequency of 1 kHz. Neither external magnetic fields nor optical delay modulators were used. Sending dc-currents to both electrodes with appropriate ratio has resulted in continuous variation of circular polarization between the two opposite helicity, including the null polarization. These results suggest that the tested spin-LED has the feasibility of a monolithic light source whose circular polarization can be switched or continuously tuned all electrically.

  4. Green cubic GaInN/GaN light-emitting diode on microstructured silicon (100)

    SciTech Connect (OSTI)

    Stark, Christoph J. M.; Detchprohm, Theeradetch; Wetzel, Christian, E-mail: wetzel@ieee.org [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Future Chips Constellation, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180 (United States); Lee, S. C.; Brueck, S. R. J. [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States)] [Department of Electrical and Computer Engineering and Center for High Technology Materials, University of New Mexico, 1313 Goddard SE, Albuquerque, New Mexico 87106 (United States); Jiang, Y.-B. [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)] [Department of Earth and Planetary Science, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-02

    GaInN/GaN light-emitting diodes free of piezoelectric polarization were prepared on standard electronic-grade Si(100) substrates. Micro-stripes of GaN and GaInN/GaN quantum wells in the cubic crystal structure were grown on intersecting (111) planes of microscale V-grooved Si in metal-organic vapor phase epitaxy, covering over 50% of the wafer surface area. Crystal phases were identified in electron back-scattering diffraction. A cross-sectional analysis reveals a cubic structure virtually free of line defects. Electroluminescence over 20 to 100??A is found fixed at 487?nm (peak), 516?nm (dominant). Such structures therefore should allow higher efficiency, wavelength-stable light emitters throughout the visible spectrum.

  5. Light emitting diode package element with internal meniscus for bubble free lens placement

    DOE Patents [OSTI]

    Tarsa, Eric; Yuan, Thomas C.; Becerra, Maryanne; Yadev, Praveen

    2010-09-28

    A method for fabricating a light emitting diode (LED) package comprising providing an LED chip and covering at least part of the LED chip with a liquid encapsulant having a radius of curvature. An optical element is provided having a bottom surface with at least a portion having a radius of curvature larger than the liquid encapsulant. The larger radius of curvature portion of the optical element is brought into contact with the liquid encapsulant. The optical element is then moved closer to the LED chip, growing the contact area between said optical element and said liquid encapsulant. The liquid encapsulant is then cured. A light emitting diode comprising a substrate with an LED chip mounted to it. A meniscus ring is on the substrate around the LED chip with the meniscus ring having a meniscus holding feature. An inner encapsulant is provided over the LED chip with the inner encapsulant having a contacting surface on the substrate, with the meniscus holding feature which defines the edge of the contacting surface. An optical element is included having a bottom surface with at least a portion that is concave. The optical element is arranged on the substrate with the concave portion over the LED chip. A contacting encapsulant is included between the inner encapsulant and optical element.

  6. Analyzing degradation effects of organic light-emitting diodes via transient optical and electrical measurements

    SciTech Connect (OSTI)

    Schmidt, Tobias D. Jger, Lars; Brtting, Wolfgang; Noguchi, Yutaka; Ishii, Hisao

    2015-06-07

    Although the long-term stability of organic light-emitting diodes (OLEDs) under electrical operation made significant progress in recent years, the fundamental underlying mechanisms of the efficiency decrease during operation are not well understood. Hence, we present a comprehensive degradation study of an OLED structure comprising the well-known green phosphorescent emitter Ir(ppy){sub 3}. We use transient methods to analyze both electrical and optical changes during an accelerated aging protocol. Combining the results of displacement current measurements with time-resolved investigation of the excited states lifetimes of the emitter allows for a correlation of electrical (e.g., increase of the driving voltage due to trap formation) and optical (e.g., decrease of light-output) changes induced by degradation. Therewith, it is possible to identify two mechanisms resulting in the drop of the luminance: a decrease of the radiative quantum efficiency of the emitting system due to triplet-polaron-quenching at trapped charge carriers and a modified charge carrier injection and transport, as well as trap-assisted non-radiative recombination resulting in a deterioration of the charge carrier balance of the device.

  7. P-doping-free III-nitride high electron mobility light-emitting diodes and transistors

    SciTech Connect (OSTI)

    Li, Baikui; Tang, Xi; Chen, Kevin J.; Wang, Jiannong

    2014-07-21

    We report that a simple metal-AlGaN/GaN Schottky diode is capable of producing GaN band-edge ultraviolet emission at 3.4?eV at a small forward bias larger than ?2?V at room temperature. Based on the surface states distribution of AlGaN, a mature impact-ionization-induced Fermi-level de-pinning model is proposed to explain the underlying mechanism of the electroluminescence (EL) process. By experimenting with different Schottky metals, Ni/Au and Pt/Au, we demonstrated that this EL phenomenon is a universal property of metal-AlGaN/GaN Schottky diodes. Since this light-emitting Schottky diode shares the same active structure and fabrication processes as the AlGaN/GaN high electron mobility transistors, straight-forward and seamless integration of photonic and electronic functional devices has been demonstrated on doping-free III-nitride heterostructures. Using a semitransparent Schottky drain electrode, an AlGaN/GaN high electron mobility light-emitting transistor is demonstrated.

  8. ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling

    Energy Savers [EERE]

    | Department of Energy ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling ITO-free white OLEDs on Flexible Substrates with Enhanced Light Outcoupling Lead Performer: Princeton University - Princeton, NJ DOE Total Funding: $1,021,241 Cost Share: $255,661 Project Term: 9/10/2014 - 9/9/2016 Funding Opportunity: SSL R&D Funding Opportunity Announcement (FOA) (DE-FOA-0000973) Project Objective This project will integrate multiple aspects of outcoupling enhancement

  9. High-Throughput, High-Precision Hot Testing Tool for High-Brightness Light-Emitting Diode Testing

    Broader source: Energy.gov [DOE]

    This project is determining the requirements of the solid-state lighting industry for high-quality color coordination and flux characterization of high-brightness light-emitting diodes (HBLEDs) as well as demonstrating and testing a cost-effective hot test tool that meets the requirements.

  10. Low Power, Red, Green and Blue Carbon Nanotube Enabled Vertical Organic Light Emitting Transistors for Active Matrix OLED Displays

    SciTech Connect (OSTI)

    McCarthy, M. A. [University of Florida, Gainesville; Liu, B. [University of Florida, Gainesville; Donoghue, E. P. [University of Florida, Gainesville; Kravchenko, Ivan I [ORNL; Kim, D. Y. [University of Florida, Gainesville; So, Franky [University of Florida, Gainesville; Rinzler, A. G. [University of Florida, Gainesville

    2011-01-01

    Organic semiconductors are potential alternatives to polycrystalline silicon as the semiconductor used in the backplane of active matrix organic light emitting diode displays. Demonstrated here is a light-emitting transistor with an organic channel, operating with low power dissipation at low voltage, and high aperture ratio, in three colors: red, green and blue. The single-wall carbon nanotube network source electrode is responsible for the high level of performance demonstrated. A major benefit enabled by this architecture is the integration of the drive transistor, storage capacitor and light emitter into a single device. Performance comparable to commercialized polycrystalline-silicon TFT driven OLEDs is demonstrated.

  11. Quantum efficiency harmonic analysis of exciton annihilation in organic light emitting diodes

    SciTech Connect (OSTI)

    Price, J. S.; Giebink, N. C.

    2015-06-29

    Various exciton annihilation processes are known to impact the efficiency roll-off of organic light emitting diodes (OLEDs); however, isolating and quantifying their contribution in the presence of other factors such as changing charge balance continue to be a challenge for routine device characterization. Here, we analyze OLED electroluminescence resulting from a sinusoidal dither superimposed on the device bias and show that nonlinearity between recombination current and light output arising from annihilation mixes the quantum efficiency measured at different dither harmonics in a manner that depends uniquely on the type and magnitude of the annihilation process. We derive a series of analytical relations involving the DC and first harmonic external quantum efficiency that enable annihilation rates to be quantified through linear regression independent of changing charge balance and evaluate them for prototypical fluorescent and phosphorescent OLEDs based on the emitters 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran and platinum octaethylporphyrin, respectively. We go on to show that, in most cases, it is sufficient to calculate the needed quantum efficiency harmonics directly from derivatives of the DC light versus current curve, thus enabling this analysis to be conducted solely from standard light-current-voltage measurement data.

  12. Enhancement of efficiencies for tandem green phosphorescent organic light-emitting devices with a p-type charge generation layer

    SciTech Connect (OSTI)

    Yoo, Byung Soo; Jeon, Young Pyo; Lee, Dae Uk; Kim, Tae Whan

    2014-10-15

    The operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the organic light-emitting device with a molybdenum trioxide layer. The maximum brightness of the tandem green phosphorescent organic light-emitting device at 21.9 V was 26,540 cd/m{sup 2}. The dominant peak of the electroluminescence spectra for the devices was related to the fac-tris(2-phenylpyridine) iridium emission. - Highlights: Tandem OLEDs with CGL were fabricated to enhance their efficiency. The operating voltage of the tandem OLED with a HAT-CN layer was improved by 3%. The efficiency and brightness of the tandem OLED were 13.9 cd/A and 26,540 cd/m{sup 2}. Efficiency of the OLED with a HAT-CN layer was lower than that with a MoO{sub 3} layer. - Abstract: Tandem green phosphorescent organic light-emitting devices with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile or a molybdenum trioxide charge generation layer were fabricated to enhance their efficiency. Current densityvoltage curves showed that the operating voltage of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was improved by 3% over that of the corresponding organic light-emitting device with a molybdenum trioxide layer. The efficiency and the brightness of the tandem green phosphorescent organic light-emitting device were 13.9 cd/A and 26,540 cd/m{sup 2}, respectively. The current efficiency of the tandem green phosphorescent organic light-emitting device with a 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer was lower by 1.1 times compared to that of the corresponding organic light-emitting device with molybdenum trioxide layer due to the decreased charge generation and transport in the 1,4,5,8,9,11-hexaazatriphenylene-hexacarbonitrile layer resulting from triplettriplet exciton annihilation.

  13. Green route synthesis of high quality CdSe quantum dots for applications in light emitting devices

    SciTech Connect (OSTI)

    Bera, Susnata, E-mail: susnata.bera@gmail.com [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Singh, Shashi B. [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India); Ray, S.K., E-mail: physkr@phy.iitkgp.ernet.in [Department of Physics and Meteorology, Indian Institute of Technology Kharagpur, Kharagpur 721302 (India)

    2012-05-15

    Investigation was made on light emitting diodes fabricated using CdSe quantum dots. CdSe quantum dots were synthesized chemically using olive oil as the capping agent, instead of toxic phosphine. Room temperature photoluminescence investigation showed sharp 1st excitonic emission peak at 568 nm. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting devices were fabricated by solution process. The electroluminescence study showed low turn on voltage ({approx}2.2 V) .The EL peak intensity was found to increase by increasing the operating current. - Graphical abstract: Light emitting diode was fabricated using CdSe quantum dots using olive oil as the capping agent, instead of toxic phosphine. Bi-layer organic/inorganic (P3HT/CdSe) hybrid light emitting device shows strong electroluminescence in the range 630-661 nm. Highlights: Black-Right-Pointing-Pointer CdSe Quantum dots were synthesized using olive oil as the capping agent. Black-Right-Pointing-Pointer Light emitting device was fabricated using CdSe QDs/P3HT polymer heterojunction. Black-Right-Pointing-Pointer The I-V characteristics study showed low turn on voltage at {approx}2.2 V. Black-Right-Pointing-Pointer The EL peak intensity increases with increasing the operating current.

  14. Ultra-thin ohmic contacts for p-type nitride light emitting devices

    DOE Patents [OSTI]

    Raffetto, Mark; Bharathan, Jayesh; Haberern, Kevin; Bergmann, Michael; Emerson, David; Ibbetson, James; Li, Ting

    2014-06-24

    A flip-chip semiconductor based Light Emitting Device (LED) can include an n-type semiconductor substrate and an n-type GaN epi-layer on the substrate. A p-type GaN epi-layer can be on the n-type GaN epi-layer and a metal ohmic contact p-electrode can be on the p-type GaN epi-layer, where the metal ohmic contact p-electrode can have an average thickness less than about 25 .ANG.. A reflector can be on the metal ohmic contact p-electrode and a metal stack can be on the reflector. An n-electrode can be on the substrate opposite the n-type GaN epi-layer and a bonding pad can be on the n-electrode.

  15. Sidewall passivation for InGaN/GaN nanopillar light emitting diodes

    SciTech Connect (OSTI)

    Choi, Won Hyuck; Abraham, Michael; Yu, Shih-Ying [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); You, Guanjun; Liu, Jie; Wang, Li; Xu, Jian, E-mail: jianxu@engr.psu.edu [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Mohney, Suzanne E., E-mail: mohney@ems.psu.edu [Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802 (United States); Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2014-07-07

    We studied the effect of sidewall passivation on InGaN/GaN multiquantum well-based nanopillar light emitting diode (LED) performance. In this research, the effects of varying etch rate, KOH treatment, and sulfur passivation were studied for reducing nanopillar sidewall damage and improving device efficiency. Nanopillars prepared under optimal etching conditions showed higher photoluminescence intensity compared with starting planar epilayers. Furthermore, nanopillar LEDs with and without sulfur passivation were compared through electrical and optical characterization. Suppressed leakage current under reverse bias and four times higher electroluminescence (EL) intensity were observed for passivated nanopillar LEDs compared with unpassivated nanopillar LEDs. The suppressed leakage current and EL intensity enhancement reflect the reduction of non-radiative recombination at the nanopillar sidewalls. In addition, the effect of sulfur passivation was found to be very stable, and further insight into its mechanism was gained through transmission electron microscopy.

  16. Room-temperature spin-polarized organic light-emitting diodes with a single ferromagnetic electrode

    SciTech Connect (OSTI)

    Ding, Baofu, E-mail: b.ding@ecu.edu.au; Alameh, Kamal, E-mail: k.alameh@ecu.edu.au [Electron Science Research Institute, Edith Cowan University, 270 Joondalup Drive, Joondalup WA 6027 Australia (Australia); Song, Qunliang [Institute for Clean Energy and Advanced Materials, Southwest University, Chongqing 400715 (China)

    2014-05-19

    In this paper, we demonstrate the concept of a room-temperature spin-polarized organic light-emitting diode (Spin-OLED) structure based on (i) the deposition of an ultra-thin p-type organic buffer layer on the surface of the ferromagnetic electrode of the Spin-OLED and (ii) the use of oxygen plasma treatment to modify the surface of that electrode. Experimental results demonstrate that the brightness of the developed Spin-OLED can be increased by 110% and that a magneto-electroluminescence of 12% can be attained for a 150?mT in-plane magnetic field, at room temperature. This is attributed to enhanced hole and room-temperature spin-polarized injection from the ferromagnetic electrode, respectively.

  17. Fabrication and Characterization of New Hybrid Organic Light Emitting Diode (OLED): Europium-picrate-triethylene oxide Complex

    SciTech Connect (OSTI)

    Sarjidan, M. A. Mohd; Abu Zakaria, N. Z. A.; Abd. Majid, W. H. [Solid State Research Laboratory, Department of Physics, University of Malaya, 50603, Kuala Lumpur (Malaysia); Kusrini, Eny; Saleh, M. I. [School of Chemical Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia)

    2009-07-07

    Thin-film light emitting devices based on organic materials have attracted vast interest in applications such as light emitting diode (LED) and flat-panel display. The organic material can be attached with inorganic material to enhance the performance of the light emitting device. A hybrid OLED based on a new complex of europium picrate (Eu-pic) with triethylene oxide (EO3) ligand is fabricated. The OLED is fabricated by using spin coating technique with acetone as the solvent and aluminum as the top electrode. The optical, photoluminescence (PL) and electrical properties of the sample are carried out by UV-Vis spectroscopy (Jasco V-750), luminescence spectroscopy (Perkin Elmer LS-500) and source measure unit (SMU)(Keithly), respectively.

  18. Strong geometrical effects in submillimeter selective area growth and light extraction of GaN light emitting diodes on sapphire

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; Dayeh, Shadi A.

    2015-11-27

    Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO2. We show that the mask opening diameter leads to as much as 4 times increase inmore » the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.« less

  19. Strong geometrical effects in submillimeter selective area growth and light extraction of GaN light emitting diodes on sapphire

    SciTech Connect (OSTI)

    Tanaka, Atsunori; Chen, Renjie; Jungjohann, Katherine L.; Dayeh, Shadi A.

    2015-11-27

    Advanced semiconductor devices often utilize structural and geometrical effects to tailor their characteristics and improve their performance. Our detailed understanding of such geometrical effects in the epitaxial selective area growth of GaN on sapphire substrates is reported here, and we utilize them to enhance light extraction from GaN light emitting diodes. Systematic size and spacing effects were performed side-by-side on a single 2” sapphire substrate to minimize experimental sampling errors for a set of 144 pattern arrays with circular mask opening windows in SiO2. We show that the mask opening diameter leads to as much as 4 times increase in the thickness of the grown layers for 20 μm spacings and that spacing effects can lead to as much as 3 times increase in thickness for a 350 μm dot diameter. We also observed that the facet evolution in comparison with extracted Ga adatom diffusion lengths directly influences the vertical and lateral overgrowth rates and can be controlled with pattern geometry. Lastly, such control over the facet development led to 2.5 times stronger electroluminescence characteristics from well-faceted GaN/InGaN multiple quantum well LEDs compared to non-faceted structures.

  20. White luminescence from CdS nanocrystals under the blue light excitation

    SciTech Connect (OSTI)

    Li, Bo; Zhang, Xiaosong Li, Lan; Li, Mengzhen; Xu, Jianping; Hong, Yuan

    2014-06-01

    Trap-rich CdS nanocrystals were synthesized by employing CdSt{sub 2} and sulfur as precursors via thermal decomposition. Furthermore, X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), absorption and photoluminescence (PL) spectra were used to characterize structure, morphology and luminescence properties of CdS nanocrystals (NCs). CdS NCs have a broad emission across 500–700 nm under the excitation of blue light with 460 nm, consequently, white light can be produced by mixing broad emission from CdS NCs excited by blue light, with the remaining blue light. In addition, the broad emission generation is closely and inseparably related to surface defects. Moreover, LaMer model was used to explain the phenomenon that the intensity of the trap emission gradually decreases as the reaction time increases in contrast with that of the band-edge emission. - Graphical abstract: Trap-rich CdS nanocrystals were synthesized. Furthermore, white light is produced by mixing broad emission across 500–700 nm from CdS NCs excited by blue light, in combination with the remaining blue light. - Highlights: • Trap-rich CdS nanocrystals were synthesized. • CdS NCs have a broad emission across 500–700 nm under the excitation of blue light. • White light can be produced by mixing broad emission with the remaining blue light.

  1. Highly efficient greenish-blue platinum-based phosphorescent organic light-emitting diodes on a high triplet energy platform

    SciTech Connect (OSTI)

    Chang, Y. L. Gong, S. White, R.; Lu, Z. H.; Wang, X.; Wang, S.; Yang, C.

    2014-04-28

    We have demonstrated high-efficiency greenish-blue phosphorescent organic light-emitting diodes (PHOLEDs) based on a dimesitylboryl-functionalized C^N chelate Pt(II) phosphor, Pt(m-Bptrz)(t-Bu-pytrz-Me). Using a high triplet energy platform and optimized double emissive zone device architecture results in greenish-blue PHOLEDs that exhibit an external quantum efficiency of 24.0% and a power efficiency of 55.8?lm/W. This record high performance is comparable with that of the state-of-the-art Ir-based sky-blue organic light-emitting diodes.

  2. Development of substrate-removal-free vertical ultraviolet light-emitting diode (RefV-LED)

    SciTech Connect (OSTI)

    Kurose, N. Aoyagi, Y.; Shibano, K.; Araki, T.

    2014-02-15

    A vertical ultraviolet (UV) light-emitting diode (LED) that does not require substrate removal is developed. Spontaneous via holes are formed in n-AlN layer epitaxially grown on a high conductive n+Si substrate and the injected current flows directly from the p-electrode to high doped n{sup +} Si substrate through p-AlGaN, multi-quantum wells, n-AlGaN and spontaneous via holes in n-AlN. The spontaneous via holes were formed by controlling feeding-sequence of metal-organic gas sources and NH{sub 3} and growth temperature in MOCVD. The via holes make insulating n-AlN to be conductive. We measured the current-voltage, current-light intensity and emission characteristics of this device. It exhibited a built-in voltage of 3.8 V and emission was stated at 350 nm from quantum wells with successive emission centered at 400 nm. This UV LED can be produced, including formation of n and p electrodes, without any resist process.

  3. Stress-induced piezoelectric field in GaN-based 450-nm light-emitting diodes

    SciTech Connect (OSTI)

    Tawfik, Wael Z.; Hyeon, Gil Yong; Lee, June Key

    2014-10-28

    We investigated the influence of the built-in piezoelectric field induced by compressive stress on the characteristics of GaN-based 450-nm light-emitting diodes (LEDs) prepared on sapphire substrates of different thicknesses. As the sapphire substrate thickness was reduced, the compressive stress in the GaN layer was released, resulting in wafer bowing. The wafer bowing-induced mechanical stress altered the piezoelectric field, which in turn reduced the quantum confined Stark effect in the InGaN/GaN active region of the LED. The flat-band voltage was estimated by measuring the applied bias voltage that induced a 180° phase shift in the electro-reflectance (ER) spectrum. The piezoelectric field estimated by the ER spectra changed by ∼110 kV/cm. The electroluminescence spectral peak wavelength was blue-shifted, and the internal quantum efficiency was improved by about 22% at a high injection current of 100 mA. The LED on the 60-μm-thick sapphire substrate exhibited the highest light output power of ∼59 mW at an injection current of 100 mA, with the operating voltage unchanged.

  4. Optimized Phosphors for Warm White LED Light Engines

    SciTech Connect (OSTI)

    Setlur, Anant; Brewster, Megan; Garcia, Florencio; Hill, M. Christine; Lyons, Robert; Murphy, James; Stecher, Tom; Stoklosa, Stan; Weaver, Stan; Happek, Uwe; Aesram, Danny; Deshpande, Anirudha

    2012-07-30

    The objective of this program is to develop phosphor systems and LED light engines that have steady-state LED efficacies (using LEDs with a 60% wall-plug efficiency) of 105–120 lm/W with correlated color temperatures (CCT) ~3000 K, color rendering indices (CRI) >85, <0.003 distance from the blackbody curve (dbb), and <2% loss in phosphor efficiency under high temperature, high humidity conditions. In order to reach these goals, this involves the composition and processing optimization of phosphors previously developed by GE in combination with light engine package modification.

  5. Optimizing white light luminescence in Dy{sup 3+}-doped Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets

    SciTech Connect (OSTI)

    Haritha, P.; Linganna, K.; Venkatramu, V.; Martn, I. R.; Monteseguro, V.; Rodrguez-Mendoza, U. R.; Babu, P.; Len-Luis, S. F.; Jayasankar, C. K.; Lavn, V.

    2014-11-07

    Trivalent dysprosium-doped Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets have been prepared by sol-gel method and characterized by X-ray powder diffraction, high-resolution transmission electron microscopy, dynamic light scattering, and laser excited spectroscopy. Under a cw 457?nm laser excitation, the white luminescence properties of Lu{sub 3}Ga{sub 5}O{sub 12} nano-garnets have been studied as a function of the optically active Dy{sup 3+} ion concentration and at low temperature. Decay curves for the {sup 4}F{sub 9/2} level of Dy{sup 3+} ion exhibit non-exponential nature for all the Dy{sup 3+} concentrations, which have been well-fitted to a generalized energy transfer model for a quadrupole-quadrupole interaction between Dy{sup 3+} ions without diffusion. From these data, a simple rate-equations model can be applied to predict that intense white luminescence could be obtained from 1.8?mol% Dy{sup 3+} ions-doped nano-garnets, which is in good agreement with experimental results. Chromaticity color coordinates and correlated color temperatures have been determined as a function of temperature and are found to be within the white light region for all Dy{sup 3+} concentrations. These results indicate that 2.0?mol% Dy{sup 3+} ions doped nano-garnet could be useful for white light emitting device applications.

  6. Structurally Integrated Photoluminescence-Based Lactate Sensor Using Organic Light Emitting Devices (OLEDs) as the Light Source

    SciTech Connect (OSTI)

    Chengliang Qian

    2006-08-09

    Multianalyte bio(chemical) sensors are extensively researched for monitoring analytes in complex systems, such as blood serum. As a step towards developing such multianalyte sensors, we studied a novel, structurally integrated, organic light emitting device (OLED)-based sensing platform for detection of lactate. Lactate biosensors have attracted numerous research efforts, due to their wide applications in clinical diagnosis, athletic training and food industry. The OLED-based sensor is based on monitoring the oxidation reaction of lactate, which is catalyzed by the lactate oxidase (LOX) enzyme. The sensing component is based on an oxygen-sensitive dye, Platinum octaethyl porphyrin (PtOEP), whose photoluminescence (PL) lifetime {tau} decreases as the oxygen level increases. The PtOEP dye was embedded in a thin film polystyrene (PS) matrix; the LOX was dissolved in solution or immobilized in a sol-gel matrix. {tau} was measured as a function of the lactate concentration; as the lactate concentration increases, {tau} increases due to increased oxygen consumption. The sensors performance is discussed in terms of the detection sensitivity, dynamic range, and response time. A response time of {approx}32 sec was achieved when the LOX was dissolved in solution and kept in a closed cell. Steps towards development of a multianalyte sensor array using an array of individually addressable OLED pixels were also presented.

  7. Demonstration Assessment of Light Emitting Diode (LED) Commercial Garage Lights In the Providence Portland Medical Center, Portland, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-11

    This U.S. Department of Energy GATEWAY Demonstration project studied the applicability of light-emitting diode (LED) luminaires for commercial parking garage applications. High-pressure sodium (HPS) area luminaires were replaced with new LED area luminaires. The project was supported under the U.S. Department of Energy (DOE) Solid State Lighting Program. Other participants in the demonstration project included Providence Portland Medical Center in Portland, Oregon, the Energy Trust of Oregon, and Lighting Sciences Group (LSG) Inc. Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. PNNL manages GATEWAY demonstrations for DOE and represents their perspective in the conduct of the work. Quantitative and qualitative measurements of light and electrical power were taken at the site for both HPS and LED light sources. Economic costs were estimated and garage users’ responses to the new light sources were gauged with a survey. Six LED luminaires were installed in the below-ground parking level A, replacing six existing 150W HPS lamps spread out over two rows of parking spaces. Illuminance measurements were taken at floor level approximately every 4 ft on a 60-ft x 40-ft grid to measure light output of these LED luminaires which were termed the “Version 1” luminaires. PNNL conducted power measurements of the circuit in the garage to which the 6 luminaires were connected and determined that they drew an average of 82 W per lamp. An improved LED luminaire, Version 2, was installed in Level B of the parking garage. Illuminance measurements were not made of this second luminaire on site due to higher traffic conditions, but photometric measurements of this lamp and Version 1 were made in an independent testing laboratory and power usage for Version 2 was also measured. Version 1 was found to produce 3600 lumens and Version 2 was found to produce 4700 lumens of light and to consume 78 Watts. Maximum and minimum light levels were measured for the HPS and LED Version 1 luminaires and projected for the Version 2 luminaires. Maximum light levels were 23.51 foot candles, 20.54 fc, and 26.7 fc respectively and minimum light levels were 1.49 fc, 1.45 fc, and 1.88 fc. These results indicate very similar or even slightly higher light levels produced by the LED lamps, despite the higher lumen output of the HPS lamp. The LED lamps provide higher luminaire efficacy because all of the light is directed down and out. None of it is “lost” in the fixture. Also the HPS luminaire had poorly designed optics and a plastic covering that tended to get dirty and cracked, further decreasing the realized light output.[is this an accurate way to say this?] Consumer perceptions of the Version 2 LED were collected via a written survey form given to maintenance and security personnel. More than half felt the LED luminaires provided more light than the HPS lamps and a majority expressed a preference for the new lamps when viewing the relamped area through a security camera. Respondents commented that the LED luminaires were less glary, created less shadows, had a positive impact on visibility, and improved the overall appearance of the area. PNNL conducted an economic analysis and found that the Version 1 lamp produced annual energy savings of 955 kWh and energy cost savings of $76.39 per lamp at electricity rates of 6.5 cents per kWh and $105.03 at 11 cents per kWh. PNNL found that the Version 2 lamp produced annual energy savings of 991 kWh and energy cost savings of $79.26 per lamp at electricity rates of 6.5 cents per kWh and $108.98 at 11 cents per kWh. PNNL also calculated simple payback and found that Version 1 showed paybacks of 5.4 yrs at 6.5c/kWh and 4.1 yrs at 11c/kWh while Version 2 showed paybacks of 5.2 yrs at 6.5c/kWh and 3.9 yrs at 11c/kWh.

  8. White Roofs

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    Secretary Steven Chu discusses the benefits of switching to white roofs and light colored pavements.

  9. Dislocation-related trap levels in nitride-based light emitting diodes

    SciTech Connect (OSTI)

    Venturi, Giulia; Castaldini, Antonio; Cavallini, Anna

    2014-05-26

    Deep level transient spectroscopy was performed on InGaN/GaN multiple quantum well light emitting diodes (LEDs) in order to determine the effect of the dislocation density on the deep intragap electronic levels. The LEDs were grown by metalorganic vapor phase epitaxy on GaN templates with a high dislocation density of 8 10{sup 9} cm{sup ?2} and a low dislocation density of 3 10{sup 8} cm{sup ?2}. Three trapping levels for electrons were revealed, named A, A1, and B, with energies E{sub A}???0.04?eV, E{sub A1}???0.13?eV, and E{sub B}???0.54?eV, respectively. The trapping level A has a much higher concentration in the LEDs grown on the template with a high density of dislocations. The logarithmic dependence of the peak amplitude on the bias pulse width for traps A and A1 identifies the defects responsible for these traps as associated with linearly arranged defects. We conclude that traps A and A1 are dislocation-related intragap energy levels.

  10. Defect-Enabled Electrical Current Leakage in Ultraviolet Light-Emitting Diodes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Moseley, Michael William; Allerman, Andrew A.; Crawford, Mary H.; Wierer, Jonathan; Smith, Michael L.; Biedermann, Laura

    2015-04-13

    The AlGaN materials system offers a tunable, ultra-wide bandgap that is exceptionally useful for high-power electronics and deep ultraviolet optoelectronics. Moseley et al. (pp. 723–726) investigate a structural defect known as an open-core threading dislocation or ''nanopipe'' that is particularly detrimental to devices that employ these materials. Furthermore, an AlGaN thin film was synthesized using metal-organic chemical-vapor deposition. Electrical current leakage is detected at a discrete point using a conductive atomic-force microscope (CAFM). However, no physical feature or abnormality at this location was visible by an optical microscope. The AlGaN thin film was then etched in hot phosphoric acid, andmore » the same location that was previously analyzed was revisited with the CAFM. The point that previously exhibited electrical current leakage had been decorated with a 1.1 μm wide hexagonal pit, which identified the site of electrical current leakage as a nanopipe and allows these defects to be easily observed by optical microscopy. Moreover, with this nanopipe identification and quantification strategy, the authors were able to correlate decreasing ultraviolet light-emitting diode optical output power with increasing nanopipe density.« less

  11. Effect of heterostructure design on carrier injection and emission characteristics of 295?nm light emitting diodes

    SciTech Connect (OSTI)

    Mehnke, Frank Kuhn, Christian; Stellmach, Joachim; Rothe, Mark-Antonius; Reich, Christoph; Ledentsov, Nikolay; Pristovsek, Markus; Wernicke, Tim; Kolbe, Tim; Lobo-Ploch, Neysha; Rass, Jens; Kneissl, Michael

    2015-05-21

    The effects of the heterostructure design on the injection efficiency and external quantum efficiency of ultraviolet (UV)-B light emitting diodes (LEDs) have been investigated. It was found that the functionality of the Al{sub x}Ga{sub 1?x}N:Mg electron blocking layer is strongly influenced by its aluminum mole fraction x and its magnesium doping profile. By comparing LED electroluminescence, quantum well photoluminescence, and simulations of LED heterostructure, we were able to differentiate the contributions of injection efficiency and internal quantum efficiency to the external quantum efficiency of UV LEDs. For the optimized heterostructure using an Al{sub 0.7}Ga{sub 0.3}N:Mg electron blocking layer with a Mg to group III ratio of 4% in the gas phase the electron leakage currents are suppressed without blocking the injection of holes into the multiple quantum well active region. Flip chip mounted LED chips have been processed achieving a maximum output power of 3.5 mW at 290?mA and a peak external quantum efficiency of 0.54% at 30?mA.

  12. Anomalous hole injection deterioration of organic light-emitting diodes with a manganese phthalocyanine layer

    SciTech Connect (OSTI)

    Lee, Hyunbok; Lee, Jeihyun; Yi, Yeonjin; Cho, Sang Wan; Kim, Jeong Won

    2015-01-21

    Metal phthalocyanines (MPcs) are well known as an efficient hole injection layer (HIL) in organic devices. They possess a low ionization energy, and so the low-lying highest occupied molecular orbital (HOMO) gives a small hole injection barrier from an anode in organic light-emitting diodes. However, in this study, we show that the hole injection characteristics of MPc are not only determined by the HOMO position but also significantly affected by the wave function distribution of the HOMO. We show that even with the HOMO level of a manganese phthalocyanine (MnPc) HIL located between the Fermi level of an indium tin oxide anode and the HOMO level of a N,N?-bis(1-naphthyl)-N,N?-diphenyl-1,1?-biphenyl-4,4?-diamine hole transport layer the device performance with the MnPc HIL is rather deteriorated. This anomalous hole injection deterioration is due to the contracted HOMO wave function, which leads to small intermolecular electronic coupling. The origin of this contraction is the significant contribution of the Mn d-orbital to the MnPc HOMO.

  13. A hole modulator for InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Kyaw, Zabu; Liu, Wei; Ji, Yun; Wang, Liancheng; Tan, Swee Tiam; Sun, Xiao Wei E-mail: VOLKAN@stanfordalumni.org; Demir, Hilmi Volkan E-mail: VOLKAN@stanfordalumni.org

    2015-02-09

    The low p-type doping efficiency of the p-GaN layer has severely limited the performance of InGaN/GaN light-emitting diodes (LEDs) due to the ineffective hole injection into the InGaN/GaN multiple quantum well (MQW) active region. The essence of improving the hole injection efficiency is to increase the hole concentration in the p-GaN layer. Therefore, in this work, we have proposed a hole modulator and studied it both theoretically and experimentally. In the hole modulator, the holes in a remote p-type doped layer are depleted by the built-in electric field and stored in the p-GaN layer. By this means, the overall hole concentration in the p-GaN layer can be enhanced. Furthermore, the hole modulator is adopted in the InGaN/GaN LEDs, which reduces the effective valance band barrier height for the p-type electron blocking layer from ?332?meV to ?294?meV at 80?A/cm{sup 2} and demonstrates an improved optical performance, thanks to the increased hole concentration in the p-GaN layer and thus the improved hole injection into the MQWs.

  14. High-Efficiency and Stable White Organic Light-Emitting Diode...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Current WOLED technology requires the use of multiple emissive materials, which are expensive to manufacture and also generate color instability and color aging issues, affecting ...

  15. Stable, High-Efficiency White Electrophosphorescent Organic Light Emitting Devices by Reduced Molecular Dissociation

    Broader source: Energy.gov [DOE]

    Lead Performer: University of Michigan – Ann Arbor – Ann Arbor, MIPartners:  -   University of California – City, CA  -   Universal Display Corporation – Ewing, NJDOE Total Funding: $1,314,240Cost...

  16. Selective area epitaxy of monolithic white-light InGaN/GaN quantum well microstripes with dual color emission

    SciTech Connect (OSTI)

    Li, Yuejing; Tong, Yuying; Yang, Guofeng Yao, Chujun; Sun, Rui; Cai, Lesheng; Xu, Guiting; Wang, Jin; Zhang, Qing; Ye, Xuanchao; Wu, Mengting; Wen, Zhiqin

    2015-09-15

    Monolithic color synthesis is demonstrated using InGaN/GaN multiple quantum wells (QWs) grown on GaN microstripes formed by selective area epitaxy on SiO{sub 2} mask patterns. The striped microfacet structure is composed of (0001) and (11-22) planes, attributed to favorable surface polarity and surface energy. InGaN/GaN QWs on different microfacets contain spatially inhomogeneous compositions owing to the diffusion of adatoms among the facets. This unique property allows the microfacet QWs to emit blue light from the (11-22) plane and yellow light from the top (0001) plane, the mixing of which leads to the perception of white light emission.

  17. Angular distribution of polarized spontaneous emissions and its effect on light extraction behavior in InGaN-based light emitting diodes

    SciTech Connect (OSTI)

    Yuan, Gangcheng; Chen, Xinjuan; Yu, Tongjun, E-mail: tongjun@pku.edu.cn; Lu, Huimin; Chen, Zhizhong; Kang, Xiangning; Wu, Jiejun; Zhang, Guoyi [State Key Laboratory for Artificial Microstructure and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China)

    2014-03-07

    Angular intensity distributions of differently polarized light sources in multiple quantum wells (MQWs) and their effects on extraction behavior of spontaneous emission from light emitting diode (LED) chips have been studied. Theoretical calculation based on kp approximation, ray tracing simulation and angular electroluminescence measurement were applied in this work. It is found that the electron-hole recombination in the InGaN MQWs produces a spherical distribution of an s-polarized source and a dumbbell-shaped p-polarized source. Light rays from different polarized sources experience different extraction processes, determining the polarization degree of electro-luminescence and extraction efficiency of LEDs.

  18. Rapid Microwave Preparation of Highly Efficient Ce[superscript 3+]-Substituted Garnet Phosphors for Solid State White Lighting

    SciTech Connect (OSTI)

    Birkel, Alexander; Denault, Kristin A.; George, Nathan C.; Doll, Courtney E.; Hry, Bathylle; Mikhailovsky, Alexander A.; Birkel, Christina S.; Hong, Byung-Chul; Seshadri, Ram (UCSB); (Mitsubishi)

    2012-04-30

    Ce{sup 3+}-substituted aluminum garnet compounds of yttrium (Y{sub 3}Al{sub 5}O{sub 12}) and lutetium (Lu{sub 3}Al{sub 5}O{sub 12}) - both important compounds in the generation of (In,Ga)N-based solid state white lighting - have been prepared using a simple microwave heating technique involving the use of a microwave susceptor to provide the initial heat source. Carbon used as the susceptor additionally creates a reducing atmosphere around the sample that helps stabilize the desired luminescent compound. High quality, phase-pure materials are prepared within a fraction of the time and using a fraction of the energy required in a conventional ceramic preparation; the microwave technique allows for a reduction of about 95% in preparation time, making it possible to obtain phase pure, Ce{sup 3+}-substituted garnet compounds in under 20 min of reaction time. It is estimated that the overall reduction in energy compared with ceramic routes as practiced in the lab is close to 99%. Conventionally prepared material is compared with material prepared using microwave heating in terms of structure, morphology, and optical properties, including quantum yield and thermal quenching of luminescence. Finally, the microwave-prepared compounds have been incorporated into light-emitting diode 'caps' to test their performance characteristics in a real device, in terms of their photon efficiency and color coordinates.

  19. Moisture exposure to different layers in organic light-emitting diodes and the effect on electroluminescence characteristics

    SciTech Connect (OSTI)

    Liao, L. S.; Tang, C. W.

    2008-08-15

    Moisture effect on electroluminescence characteristics, including current density versus voltage, luminance versus voltage, luminous efficiency versus current density, dark spot formation, and operational stability of organic light-emitting diodes, has been systematically investigated by exposing each layer of the devices to moisture at room temperature. Moisture has a different effect on each of the interfaces or surfaces, and the influence increases as exposure time increases. There is a slight effect on the electroluminescence characteristics after the anode surface has been exposed to moisture. However, severe luminance decrease, dark spot formation, and operational stability degradation take place after the light-emitting layer or the electron-transporting layer is exposed to moisture. It is also demonstrated that the effect of moisture can be substantially reduced if the exposure to moisture is in a dark environment.

  20. The dynamic behavior of thin-film ionic transition metal complex-based light-emitting electrochemical cells

    SciTech Connect (OSTI)

    Meier, Sebastian B. E-mail: wiebke.sarfert@siemens.com; Hartmann, David; Sarfert, Wiebke E-mail: wiebke.sarfert@siemens.com; Winnacker, Albrecht

    2014-09-14

    Light-emitting electrochemical cells (LECs) have received increasing attention during recent years due to their simple architecture, based on solely air-stabile materials, and ease of manufacture in ambient atmosphere, using solution-based technologies. The LEC's active layer offers semiconducting, luminescent as well as ionic functionality resulting in device physical processes fundamentally different as compared with organic light-emitting diodes. During operation, electrical double layers (EDLs) form at the electrode interfaces as a consequence of ion accumulation and electrochemical doping sets in leading to the in situ development of a light-emitting p-i-n junction. In this paper, we comment on the use of impedance spectroscopy in combination with complex nonlinear squares fitting to derive key information about the latter events in thin-film ionic transition metal complex-based light-emitting electrochemical cells based on the model compound bis-2-phenylpyridine 6-phenyl-2,2´-bipyridine iridium(III) hexafluoridophosphate ([Ir(ppy)₂(pbpy)][PF₆]). At operating voltages below the bandgap potential of the ionic complex used, we obtain the dielectric constant of the active layer, the conductivity of mobile ions, the transference numbers of electrons and ions, and the thickness of the EDLs, whereas the transient thickness of the p-i-n junction is determined at voltages above the bandgap potential. Most importantly, we find that charge transport is dominated by the ions when carrier injection from the electrodes is prohibited, that ion movement is limited by the presence of transverse internal interfaces and that the width of the intrinsic region constitutes almost 60% of the total active layer thickness in steady state at a low operating voltage.

  1. Note: A portable, light-emitting diode-based ruby fluorescence spectrometer for high-pressure calibration

    SciTech Connect (OSTI)

    Feng Yejun [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2011-04-15

    Ruby (Al{sub 2}O{sub 3}, with {approx}0.5 wt. % Cr doping) is one of the most widely used manometers at the giga-Pascal scale. Traditionally, its fluorescence is excited with intense laser sources. Here, I present a simple, robust, and portable design that employs light-emitting diodes (LEDs) instead. This LED-based system is safer in comparison with laser-based ones.

  2. Development of Advanced Manufacturing Methods for Warm White LEDs for General Lighting

    SciTech Connect (OSTI)

    Deshpande, Anirudha; Kolodin, Boris; Jacob, Cherian; Chowdhury, Ashfaqul; Kuenzler, Glenn; Sater, Karen; Aesram, Danny; Glaettli, Steven; Gallagher, Brian; Langer, Paul; Setlur, Anant; Beers, Bill

    2012-03-31

    GE Lighting Solutions will develop precise and efficient manufacturing techniques for the remote phosphor platform of warm-white LED products. In volume, this will be demonstrated to drive significant materials, labor and capital productivity to achieve a maximum possible 53% reduction in overall cost. In addition, the typical total color variation for these white LEDs in production will be well within the ANSI bins and as low as a 4-step MacAdam ellipse centered on the black body curve. Achievement of both of these objectives will be demonstrated while meeting a performance target of > 75 lm/W for a warm-white LED and a reliability target of <30% lumen drop / <2-step MacAdam ellipse shift, estimated over 50,000 hrs.

  3. Discovery of a new class of coronal structures in white light eclipse images

    SciTech Connect (OSTI)

    Druckmller, Miloslav; Habbal, Shadia Rifai; Morgan, Huw

    2014-04-10

    White light images of the solar corona, taken during total solar eclipses, capture the complex dynamic relationship between the coronal plasma and the magnetic field. This relationship can be recorded on timescales of seconds to minutes, within a few solar radii above the solar surface. Rays, large-scale loops, and streamers, which are the brightest structures in these images, have shaped current models of the coronal magnetic field and solar wind flow. We show in this work how the application of novel image processing techniques to unique high-resolution white light eclipse images reveals the presence of a new class of structures, reminiscent of smoke rings, faint nested expanding loops, expanding bubbles, and twisted helical structures. These features are interpreted as snapshots of the dynamical evolution of instabilities developing at prominence-corona interfaces and propagating outward with the solar wind.

  4. Demonstration Assessment of Light-Emitting Diode Post-Top Lighting at Central Park in New York City

    SciTech Connect (OSTI)

    Myer, M. A.; Goettel, R. T.

    2012-09-01

    GATEWAY program report on a demonstration of LED post-top lighting in Central Park in New York City.

  5. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase II Report

    SciTech Connect (OSTI)

    Kinzey, B. R.; Davis, R. G.

    2014-09-30

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase II report documents longer-term performance of the LED lighting system that was installed in 2008, and is the first report on the longer-term performance of LED lighting in the field.

  6. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting, I-35W Bridge, Minneapolis, Minnesota, Phase I Report

    SciTech Connect (OSTI)

    Kinzey, B. R.; Myer, M. A.

    2009-08-01

    On the I-35W Bridge in Minneapolis, Minnesota, the GATEWAY program conducted a two-phase demonstration of LED roadway lighting on the main span, which is one of the country's oldest continuously operated exterior LED lighting installations. The Phase I report provides an overview of initial project results including lighting performance, economic performance, and potential energy savings.

  7. Direct periodic patterning of GaN-based light-emitting diodes by three-beam interference laser ablation

    SciTech Connect (OSTI)

    Kim, Jeomoh; Ji, Mi-Hee; Detchprohm, Theeradetch; Yuan, Dajun; Guo, Rui; Liu, Jianping; Asadirad, Mojtaba; Kwon, Min-Ki; Dupuis, Russell D.; Das, Suman; Ryou, Jae-Hyun

    2014-04-07

    We report on the direct patterning of two-dimensional periodic structures in GaN-based light-emitting diodes (LEDs) through laser interference ablation for the fast and reliable fabrication of periodic micro- and nano-structures aimed at enhancing light output. Holes arranged in a two-dimensional hexagonal lattice array having an opening size of 500?nm, depth of 50?nm, and a periodicity of 1??m were directly formed by three-beam laser interference without photolithography or electron-beam lithography processes. The laser-patterned LEDs exhibit an enhancement in light output power of 20% compared to conventional LEDs having a flat top surface without degradation of electrical and optical properties of the top p-GaN layer and the active region, respectively.

  8. Stacked white OLED having separate red, green and blue sub-elements

    DOE Patents [OSTI]

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2015-06-23

    The present invention relates to efficient organic light emitting devices (OLEDs). More specifically, the present invention relates to white-emitting OLEDs, or WOLEDs. The devices of the present invention employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. The sub-elements are separated by charge generating layers.

  9. InGaN/GaN tunnel junctions for hole injection in GaN light emitting diodes

    SciTech Connect (OSTI)

    Krishnamoorthy, Sriram E-mail: rajan@ece.osu.edu; Akyol, Fatih; Rajan, Siddharth E-mail: rajan@ece.osu.edu

    2014-10-06

    InGaN/GaN tunnel junction contacts were grown using plasma assisted molecular beam epitaxy (MBE) on top of a metal-organic chemical vapor deposition (MOCVD)-grown InGaN/GaN blue (450?nm) light emitting diode. A voltage drop of 5.3?V at 100?mA, forward resistance of 2 10{sup ?2} ? cm{sup 2}, and a higher light output power compared to the reference light emitting diodes (LED) with semi-transparent p-contacts were measured in the tunnel junction LED (TJLED). A forward resistance of 5??10{sup ?4} ? cm{sup 2} was measured in a GaN PN junction with the identical tunnel junction contact as the TJLED, grown completely by MBE. The depletion region due to the impurities at the regrowth interface between the MBE tunnel junction and the MOCVD-grown LED was hence found to limit the forward resistance measured in the TJLED.

  10. Confocal Microscopy on Light-emitting Nanostructures and X-ray Imaging Detectors Based on Color Centers in Lithium Fluoride

    SciTech Connect (OSTI)

    Bonfigli, F.; Almaviva, S.; Montereali, R. M.

    2010-10-06

    Confocal Laser Scanning Microscope (CLSM) is a versatile and powerful optical instrument which is gaining a strong increase of interest for biological investigations and also for the characterization of materials, microstructures and devices. We exploit its capability for the characterization of light-emitting micro and nano-structures based on color centers in lithium fluoride. CLSM was successfully used as an advanced optical reading system to detect X-ray micro-radiographies of biological specimens stored in LiF imaging detectors.

  11. Electrical spin injection using GaCrN in a GaN based spin light emitting diode

    SciTech Connect (OSTI)

    Banerjee, D.; Ganguly, S.; Saha, D.; Adari, R.; Sankaranarayan, S.; Kumar, A.; Aldhaheri, R. W.; Hussain, M. A.; Balamesh, A. S.

    2013-12-09

    We have demonstrated electrical spin-injection from GaCrN dilute magnetic semiconductor (DMS) in a GaN-based spin light emitting diode (spin-LED). The remanent in-plane magnetization of the thin-film semiconducting ferromagnet has been used for introducing the spin polarized electrons into the non-magnetic InGaN quantum well. The output circular polarization obtained from the spin-LED closely follows the normalized in-plane magnetization curve of the DMS. A saturation circular polarization of ?2.5% is obtained at 200?K.

  12. Ultra-thin titanium nanolayers for plasmon-assisted enhancement of bioluminescence of chloroplast in biological light emitting devices

    SciTech Connect (OSTI)

    Hsun Su, Yen; Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan ; Hsu, Chia-Yun; Chang, Chung-Chien; Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan ; Tu, Sheng-Lung; Shen, Yun-Hwei

    2013-08-05

    Ultra-thin titanium films were deposited via ultra-high vacuum ion beam sputter deposition. Since the asymmetric electric field of the metal foil plane matches the B-band absorption of chlorophyll a, the ultra-thin titanium nanolayers were able to generate surface plasmon resonance, thus enhancing the photoluminescence of chlorophyll a. Because the density of the states of plasmon resonance increases, the enhancement of photoluminescence also rises. Due to the biocompatibility and inexpensiveness of titanium, it can be utilized to enhance the bioluminescence of chloroplast in biological light emitting devices, bio-laser, and biophotonics.

  13. MoO3 as combined hole injection layer and tapered spacer in combinatorial multicolor microcavity organic light emitting diodes

    SciTech Connect (OSTI)

    Liu, R.; Xu, Chun; Biswas, Rana; Shinar, Joseph; Shinar, Ruth

    2011-09-01

    Multicolor microcavity ({mu}C) organic light-emitting diode (OLED) arrays were fabricated simply by controlling the hole injection and spacer MoO{sub 3} layer thickness. The normal emission was tunable from {approx}490 to 640 nm and can be further expanded. A compact, integrated spectrometer with two-dimensional combinatorial arrays of {mu}C OLEDs was realized. The MoO{sub 3} yields more efficient and stable devices, revealing a new breakdown mechanism. The pixel current density reaches {approx}4 A/cm{sup 2} and a maximal normal brightness {approx}140 000 Cd/m{sup 2}, which improves photoluminescence-based sensing and absorption measurements.

  14. White light emission from silicon oxycarbide films prepared by using atmospheric pressure microplasma jet

    SciTech Connect (OSTI)

    Ding Yi; Shirai, Hajime

    2009-02-15

    An atmospheric pressure microplasma jet was employed as a deposition tool to fabricate silicon oxycarbide films from tetraethoxysilane-argon (Ar) mixture gas at room temperature. Resultant films exhibit intense visible emission under a 325 nm excitation which appears white to naked eyes in the range from {approx}1.75 to {approx}3.5 eV at room temperature. The origin of photoluminescence is attributed to the electron-hole pair recombination through neutral oxygen vacancies (NOVs) in the film. The density of NOV defects was found in the range from 3.48x10{sup 15} to 2.23x10{sup 16} cm{sup -3}. The photoluminescence quantum efficiencies were estimated to be 1.48%-4.15%. Present experiment results demonstrate that the silicon oxycarbide films prepared by using atmospheric pressure microplasma jet would be a competitive candidate for the development of white light emission devices.

  15. Demonstration Assessment of Light-Emitting Diode (LED) Post-Top...

    Office of Scientific and Technical Information (OSTI)

    This report reviews the energy savings potential and lighting delivered by the LED post-top luminaires. Authors: Myer, Michael ; Goettel, Russell T. ; Kinzey, Bruce R. Publication ...

  16. Distinguishing triplet energy transfer and trap-assisted recombination in multi-color organic light-emitting diode with an ultrathin phosphorescent emissive layer

    SciTech Connect (OSTI)

    Xue, Qin, E-mail: xueqin19851202@163.com; Liu, Shouyin [Department of Physical Science and Technology, Central China Normal University, Wuhan 430079 (China); Xie, Guohua; Chen, Ping; Zhao, Yi; Liu, Shiyong [State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-03-21

    An ultrathin layer of deep-red phosphorescent emitter tris(1-phenylisoquinoline) iridium (III) (Ir(piq){sub 3}) is inserted within different positions of the electron blocking layer fac-tris (1-phenylpyrazolato-N,C{sup 2?})-iridium(III) (Ir(ppz){sub 3}) to distinguish the contribution of the emission from the triplet exciton energy transfer/diffusion from the adjacent blue phosphorescent emitter and the trap-assisted recombination from the narrow band-gap emitter itself. The charge trapping effect of the narrow band-gap deep-red emitter which forms a quantum-well-like structure also plays a role in shaping the electroluminescent characteristics of multi-color organic light-emitting diodes. By accurately controlling the position of the ultrathin sensing layer, it is considerably easy to balance the white emission which is quite challenging for full-color devices with multiple emission zones. There is nearly no energy transfer detectable if 7 nm thick Ir(ppz){sub 3} is inserted between the blue phosphorescent emitter and the ultrathin red emitter.

  17. Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes

    SciTech Connect (OSTI)

    Geyer, Ulf; Hauss, Julian; Riedel, Boris; Gleiss, Sebastian; Lemmer, Uli; Gerken, Martina

    2008-11-01

    We describe a cost-efficient and large area scalable production process of organic light-emitting diodes (OLEDs) with photonic crystals (PCs) as extraction elements for guided modes. Using laser interference lithography and physical plasma etching, we texture the indium tin oxide (ITO) electrode layer of an OLED with one- and two-dimensional PC gratings. By optical transmission measurements, the resonant mode of the grating is shown to have a drift of only 0.4% over the 5 mm length of the ITO grating. By changing the lattice constant between 300 and 600 nm, the OLED emission angle of enhanced light outcoupling is tailored from -24.25 deg. to 37 deg. At these angles, the TE emission is enhanced up to a factor of 2.14.

  18. Failure Mechanisms and Color Stability in Light-Emitting Diodes during Operation in High- Temperature Environments in Presence of Contamination

    SciTech Connect (OSTI)

    Lall, Pradeep; Zhang, Hao; Davis, J Lynn

    2015-05-26

    The energy efficiency of light-emitting diode (LED) technology compared to incandescent light bulbs has triggered an increased focus on solid state luminaries for a variety of lighting applications. Solid-state lighting (SSL) utilizes LEDs, for illumination through the process of electroluminescence instead of heating a wire filament as seen with traditional lighting. The fundamental differences in the construction of LED and the incandescent lamp results in different failure modes including lumen degradation, chromaticity shift and drift in the correlated color temperature. The use of LED-based products for safety-critical and harsh environment applications necessitates the characterization of the failure mechanisms and modes. In this paper, failure mechanisms and color stability has been studied for commercially available vertical structured thin film LED (VLED) under harsh environment conditions with and without the presence of contaminants. The VLED used for the study was mounted on a ceramic starboard in order to connect it to the current source. Contamination sources studied include operation in the vicinity of vulcanized rubber and adhesive epoxies in the presence of temperature and humidity. Performance of the VLEDs has been quantified using the measured luminous flux and color shift of the VLEDs subjected to both thermal and humidity stresses under a forward current bias of 350 mA. Results indicate that contamination can result in pre-mature luminous flux degradation and color shift in LEDs.

  19. Control of light polarization using optically spin-injected vertical external cavity surface emitting lasers

    SciTech Connect (OSTI)

    Frougier, J. Jaffrs, H.; Deranlot, C.; George, J.-M.; Baili, G.; Dolfi, D.; Alouini, M.; Sagnes, I.; Garnache, A.

    2013-12-16

    We fabricated and characterized an optically pumped (100)-oriented InGaAs/GaAsP multiple quantum well Vertical External Cavity Surface Emitting Laser (VECSEL). The structure is designed to allow the integration of a Metal-Tunnel-Junction ferromagnetic spin-injector for future electrical injection. We report here the control at room temperature of the electromagnetic field polarization using optical spin injection in the active medium of the VECSEL. The switching between two highly circular polarization states had been demonstrated using an M-shaped extended cavity in multi-modes lasing. This result witnesses an efficient spin-injection in the active medium of the LASER.

  20. Clean Cities Strategic Planning White Paper: Light Duty Vehicle Fuel Economy

    SciTech Connect (OSTI)

    Saulsbury, Bo; Hopson, Dr Janet L; Greene, David; Gibson, Robert

    2015-04-01

    Increasing the energy efficiency of motor vehicles is critical to achieving national energy goals of reduced petroleum dependence, protecting the global climate, and promoting continued economic prosperity. Even with fuel economy and greenhouse gas emissions standards and various economic incentives for clean and efficient vehicles, providing reliable and accurate fuel economy information to the public is important to achieving these goals. This white paper reviews the current status of light-duty vehicle fuel economy in the United States and the role of the Department of Energy (DOE) Clean Cities Program in disseminating fuel economy information to the public.

  1. Demonstration Assessment of Light Emitting Diode (LED) Walkway Lighting at the Federal Aviation Administration William J. Hughes Technical Center, in Atlantic City, New Jersey

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2008-03-18

    This report documents the results of a collaborative project to demonstrate a solid state lighting (SSL) general illumination product in an outdoor area walkway application. In the project, six light-emitting diode (LED) luminaires were installed to replace six existing high pressure sodium (HPS) luminaires mounted on 14-foot poles on a set of exterior walkways and stairs at the Federal Aviation Administration (FAA) William J. Hughes Technical Center in Atlantic City, New Jersey, during December, 2007. The effort was a U.S. Department of Energy (DOE) SSL Technology Gateway Demonstration that involved a collaborative teaming agreement between DOE, FAA and Ruud Lighting (and their wholly owned division, Beta LED). Pre- and post-installation power and illumination measurements were taken and used in calculations of energy savings and related economic payback, while personnel impacted by the new lights were provided questionnaires to gauge their perceptions and feedback. The SSL product demonstrated energy savings of over 25% while maintaining illuminance levels and improving illuminance uniformity. PNNL's economic analysis yielded a variety of potential payback results depending on the assumptions used. In the best case, replacing HPS with the LED luminaire can yield a payback as low as 3 years. The new lamps were quite popular with the affected personnel, who gave the lighting an average score of 4.46 out of 5 for improvement.

  2. Demonstration Assessment of Light-Emitting Diode (LED) Roadway Lighting at the I-35W Bridge, Minneapolis, MN

    SciTech Connect (OSTI)

    Kinzey, Bruce R.; Myer, Michael

    2009-08-31

    This report describes the process and results of a demonstration of solid-state lighting (SSL) technology conducted in 2009 at the recently reconstructed I-35W bridge in Minneapolis, MN. The project was supported under the U.S. Department of Energy (DOE) Solid-State Lighting GATEWAY Technology Demonstration Program. Other participants in the demonstration project included the Minnesota Department of Transportation (Mn/DOT), Federal Highways Administration (FHWA), and BetaLED™ (a division of Ruud Lighting). Pacific Northwest National Laboratory (PNNL) conducted the measurements and analysis of the results. DOE has implemented a three-year evaluation of the LED luminaires in this installation in order to develop new longitudinal field data on LED performance in a challenging, real-world environment. This document provides information through the initial phase of the I-35W bridge project, up to and including the opening of the bridge to the public and the initial feedback received on the LED lighting installation from bridge users. Initial findings of the evaluation are favorable, with minimum energy savings level of 13% for the LED installation relative to the simulated base case using 250W high-pressure sodium (HPS) fixtures. The LEDs had an average illuminance level of 0.91 foot candles compared to 1.29 fc for the HPS lamps. The LED luminaires cost $38,000 more than HPS lamps, yielding a lengthy payback period, however the bridge contractor had offered to include the LED luminaires as part of the construction package at no additional cost. One potentially significant benefit of the LEDs in this installation is avoiding rolling lane closures on the heavily-traveled interstate bridge for the purpose of relamping the HPS fixtures. Rolling lane closures involve multiple crew members and various maintenance and safety vehicles, diversion of traffic, as well as related administrative tasks (e.g., approvals, scheduling, etc.). Mn/DOT records show an average cost of relamping fixtures along interstate roadways of between $130-150 per pole. The previous bridge saw a lamp mortality rate of approximately 50% every two years, though the new bridge was designed to minimize many of the vibration issues. A voluntary Web-based feedback survey of nearly 500 self-described bridge users showed strong preference for the LED lighting - positive comments outnumbered negative ones by about five-to-one.

  3. Studies of solution-processed organic light-emitting diodes and their materials

    SciTech Connect (OSTI)

    Hellerich, Emily

    2013-05-15

    A hitherto unexplored approach is presented in which a small molecule is used as a host to polymer guests in solution-processed OLEDs. We find that the small molecule host results in much more efficient devices than the often-used alternative polymer host when used for the guests presented. It is likely that nano- and microstructural differences between the hosts contribute to the improvements, which highlights some interesting characteristics that can help to better understand the nature of these mixtures. A number of the guests used in this study were newly synthesized benzobisoxazole-based copolymers. New organic copolymers are presented that are based on the chemical structure of benzobisoxazoles, which have been shown in the past to have good electron transporting properties. The novel concept in this publication pertains to a change in the direction of polymerization, also known as the conjugation pathway, which we show increases the emission efficiency. This work highlights a unique and useful property of organic semiconducting materials in that they can be synthesized to create the desired characteristics. Earlier work is described that kick-started in our research group the use of small molecules in solution-processed OLEDs. Originally these devices were to be used in magnetoresistance studies, but the project took a different path when the devices were more efficient than expected. The efficient use of small molecules in solution-processed OLEDs is highlighted, which at the time was not often the case. Also, the important observation of the effect of solvent choice on the resultant film is emphasized, with discussion of the likely cause of these effects. Microcavity OLEDs are introduced in which the transparent anode ITO is replaced with semi-transparent thin silver, which creates an optical cavity within the devices. The goal was to expand a previous work that created an on-chip spectrometer covering wavelengths 493 to 639 nm. In this case, a spin-coated mixed emitting layer (EML) is used, consisting of a polymer and a small molecule that both emit in the near UV and blue. The resulting combined spectra gives a wide band that can be used to create narrow microcavity emission peaks of 373 to 469 nm, depending on the device thickness (i.e. the cavity’s optical length). In the process of this effort, the mixed EML presented interesting complexities that we attempt to explain via simulation and morphology study.

  4. Recoverable degradation of blue InGaN-based light emitting diodes submitted to 3?MeV proton irradiation

    SciTech Connect (OSTI)

    De Santi, C.; Meneghini, M. Trivellin, N.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Meneghesso, G.; Zanoni, E.

    2014-11-24

    This paper reports on the degradation and recovery of two different series of commercially available InGaN-based blue light emitting diodes submitted to proton irradiation at 3?MeV and various fluences (10{sup 11}, 10{sup 13}, and 10{sup 14}?p{sup +}/cm{sup 2}). After irradiation, we detected (i) an increase in the series resistance, in the sub-turn-on current and in the ideality factor, (ii) a spatially uniform drop of the output optical power, proportional to fluence, and (iii) a reduction of the capacitance of the devices. These results suggest that irradiation induced the generation of non-radiative recombination centers near the active region. This hypothesis is further confirmed by the results of the recovery tests carried out at low temperature (150?C)

  5. Spectrally resolved hyperfine interactions between polaron and nuclear spins in organic light emitting diodes: Magneto-electroluminescence studies

    SciTech Connect (OSTI)

    Crooker, S. A.; Kelley, M. R.; Martinez, N. J. D.; Nie, W.; Mohite, A.; Nayyar, I. H.; Tretiak, S.; Smith, D. L.; Liu, F.; Ruden, P. P.

    2014-10-13

    We use spectrally resolved magneto-electroluminescence (EL) measurements to study the energy dependence of hyperfine interactions between polaron and nuclear spins in organic light-emitting diodes. Using layered devices that generate bright exciplex emission, we show that the increase in EL emission intensity I due to small applied magnetic fields of order 100 mT is markedly larger at the high-energy blue end of the EL spectrum (ΔI/I ∼ 11%) than at the low-energy red end (∼4%). Concurrently, the widths of the magneto-EL curves increase monotonically from blue to red, revealing an increasing hyperfine coupling between polarons and nuclei and directly providing insight into the energy-dependent spatial extent and localization of polarons.

  6. Low-cost electrochemical treatment of indium tin oxide anodes for high-efficiency organic light-emitting diodes

    SciTech Connect (OSTI)

    Hui Cheng, Chuan, E-mail: chengchuanhui@dlut.edu.cn; Shan Liang, Ze; Gang Wang, Li; Dong Gao, Guo; Zhou, Ting; Ming Bian, Ji; Min Luo, Ying [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); Tong Du, Guo, E-mail: dugt@dlut.edu.cn [School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024 (China); State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2014-01-27

    We demonstrate a simple low-cost approach as an alternative to conventional O{sub 2} plasma treatment to modify the surface of indium tin oxide (ITO) anodes for use in organic light-emitting diodes. ITO is functionalized with F{sup ?} ions by electrochemical treatment in dilute hydrofluoric acid. An electrode with a work function of 5.2?eV is achieved following fluorination. Using this electrode, a maximum external quantum efficiency of 26.0% (91?cd/A, 102?lm/W) is obtained, which is 12% higher than that of a device using the O{sub 2} plasma-treated ITO. Fluorination also increases the transparency in the near-infrared region.

  7. Ultraviolet emission from a multi-layer graphene/MgZnO/ZnO light-emitting diode

    SciTech Connect (OSTI)

    Kang, Jang-Won; Choi, Yong-Seok; Goo Kang, Chang; Hun Lee, Byoung [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kim, Byeong-Hyeok [Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Tu, C. W. [Department of Electrical and Computer Engineering, University of California, San Diego, La Jolla, California 92093-0407 (United States); Park, Seong-Ju, E-mail: sjpark@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Department of Nanobio Materials and Electronics, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of)

    2014-02-03

    We report on ultraviolet emission from a multi-layer graphene (MLG)/MgZnO/ZnO light-emitting diodes (LED). The p-type MLG and MgZnO in the MLG/MgZnO/ZnO LED are used as transparent hole injection and electron blocking layers, respectively. The current-voltage characteristics of the MLG/MgZnO/ZnO LED show that current transport is dominated by tunneling processes in the MgZnO barrier layer under forward bias conditions. The holes injected from p-type MLG recombine efficiently with the electrons accumulated in ZnO, and the MLG/MgZnO/ZnO LED shows strong ultraviolet emission from the band edge of ZnO and weak red-orange emission from the deep levels of ZnO.

  8. Differential spectral responsivity measurement of photovoltaic detectors with a light-emitting-diode-based integrating sphere source

    SciTech Connect (OSTI)

    Zaid, Ghufron; Park, Seung-Nam; Park, Seongchong; Lee, Dong-Hoon

    2010-12-10

    We present an experimental realization of differential spectral responsivity measurement by using a light-emitting diode (LED)-based integrating sphere source. The spectral irradiance responsivity is measured by a Lambertian-like radiation field with a diameter of 40mm at the peak wavelengths of the 35 selectable LEDs covering a range from 280 to 1550nm. The systematic errors and uncertainties due to lock-in detection, spatial irradiance distribution, and reflection from the test detector are experimentally corrected or considered. In addition, we implemented a numerical procedure to correct the error due to the broad spectral bandwidth of the LEDs. The overall uncertainty of the DSR measurement is evaluated to be 2.2% (k=2) for Si detectors. To demonstrate its application, we present the measurement results of two Si photovoltaic detectors at different bias irradiance levels up to 120mW/cm{sup 2}.

  9. High efficiency single Ag nanowire/p-GaN substrate Schottky junction-based ultraviolet light emitting diodes

    SciTech Connect (OSTI)

    Wu, Y.; Li, X.; Xu, P.; Wang, Y.; Shen, X.; Liu, X.; Yang, Q.; Hasan, T.

    2015-02-02

    We report a high efficiency single Ag nanowire (NW)/p-GaN substrate Schottky junction-based ultraviolet light emitting diode (UV-LED). The device demonstrates deep UV free exciton electroluminescence at 362.5?nm. The dominant emission, detectable at ultralow (<1??A) forward current, does not exhibit any shifts when the forward current is increased. External quantum efficiency (EQE) as high as 0.9% is achieved at 25??A current at room temperature. Experiments and simulation analysis show that devices fabricated with thinner Ag NWs have higher EQE. However, for very thin Ag NWs (diameter?

  10. Comparison of light out-coupling enhancements in single-layer blue-phosphorescent organic light emitting diodes using small-molecule or polymer hosts

    SciTech Connect (OSTI)

    Chang, Yung-Ting; Liu, Shun-Wei; Yuan, Chih-Hsien; Lee, Chih-Chien; Ho, Yu-Hsuan; Wei, Pei-Kuen; Chen, Kuan-Yu; Lee, Yi-Ting; Wu, Min-Fei; Chen, Chin-Ti E-mail: chihiwu@cc.ee.ntu.edu.tw; Wu, Chih-I E-mail: chihiwu@cc.ee.ntu.edu.tw

    2013-11-07

    Single-layer blue phosphorescence organic light emitting diodes (OLEDs) with either small-molecule or polymer hosts are fabricated using solution process and the performances of devices with different hosts are investigated. The small-molecule device exhibits luminous efficiency of 14.7?cd/A and maximum power efficiency of 8.39?lm/W, which is the highest among blue phosphorescence OLEDs with single-layer solution process and small molecular hosts. Using the same solution process for all devices, comparison of light out-coupling enhancement, with brightness enhancement film (BEF), between small-molecule and polymer based OLEDs is realized. Due to different dipole orientation and anisotropic refractive index, polymer-based OLEDs would trap less light than small molecule-based OLEDs internally, about 37% better based simulation results. In spite of better electrical and spectroscopic characteristics, including ambipolar characteristics, higher carrier mobility, higher photoluminescence quantum yield, and larger triplet state energy, the overall light out-coupling efficiency of small molecule-based devices is worse than that of polymer-based devices without BEF. However, with BEF for light out-coupling enhancement, the improved ratio in luminous flux and luminous efficiency for small molecule based device is 1.64 and 1.57, respectively, which are significantly better than those of PVK (poly-9-vinylcarbazole) devices. In addition to the theoretical optical simulation, the experimental data also confirm the origins of differential light-outcoupling enhancement. The maximum luminous efficiency and power efficiency are enhanced from 14.7?cd/A and 8.39?lm/W to 23?cd/A and 13.2?lm/W, respectively, with laminated BEF, which are both the highest so far for single-layer solution-process blue phosphorescence OLEDs with small molecule hosts.

  11. The use of short-period InGaN/GaN superlattices in blue-region light-emitting diodes

    SciTech Connect (OSTI)

    Sizov, V. S., E-mail: vsizov@mail.ioffe.ru; Tsatsulnikov, A. F.; Sakharov, A. V.; Lundin, W. V.; Zavarin, E. E.; Cherkashin, N. A. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Hytch, M. J. [National Center for Scientific Research (CNRS), Center for Material Elaboration and Structural Studies (CEMES) (France); Nikolaev, A. E. [Russian Academy of Sciences, Ioffe Physical Technical Institute (Russian Federation); Mintairov, A. M.; He Yan; Merz, J. L. [University of Notre Dame, EE Department (United States)

    2010-07-15

    Optical and light-emitting diode structures with an active InGaN region containing short-period InGaN/GaN superlattices are studied. It is shown that short-period superlattices are thin two-dimensional layers with a relatively low In content that contain inclusions with a high In content 1-3 nm thick. Inclusions manifest themselves from the point of view of optical properties as a nonuniform array of quantum dots involved in a residual quantum well. The use of short-period superlattices in light-emitting diode structures allows one to decrease the concentration of nonradiative centers, as well as to increase the injection of carriers in the active region due to an increase in the effective height of the AlGaN barrier, which in general leads to an increase in the quantum efficiency of light-emitting diodes.

  12. Demonstration Assessment of Light Emitting Diode (LED) Residential Downlights and Undercabinet Lights in the Lane County Tour of Homes, Eugene, Oregon

    SciTech Connect (OSTI)

    Ton, My K.; Richman, Eric E.; Gilbride, Theresa L.

    2008-11-10

    In August 2008 the Pacific Northwest National Laboratory (PNNL) conducted a light emitting diode (LED) residential lighting demonstration project for the U.S. Department of Energy (DOE), Office of Building Technologies, as part of DOE’s Solid State Lighting (SSL) Technology Demonstration Gateway Program. Two lighting technologies, an LED replacement for downlight lamps (bulbs) and an LED undercabinet lighting fixture, were tested in the demonstration which was conducted in two homes built for the 2008 Tour of Homes in Eugene, Oregon. The homes were built by the Lane County Home Builders Association (HBA), and Future B Homes. The Energy Trust of Oregon (ETO) also participated in the demonstration project. The LED downlight product, the LR6, made by Cree LED Lighting Solutions acts as a screw-in replacement for incandescent and halogen bulbs in recessed can downlights. The second product tested is Phillips/Color Kinetics’ eW® Profile Powercore undercabinet fixture designed to mount under kitchen cabinets to illuminate the countertop and backsplash surfaces. Quantitative and qualitative measurements of light performance and electrical power usage were taken at each site before and after initially installed halogen and incandescent lamps were replaced with the LED products. Energy savings and simple paybacks were also calculated and builders who toured the homes were surveyed for their responses to the LED products. The LED downlight product drew 12 Watts of power, cutting energy use by 82% compared to the 65W incandescent lamp and by 84% compared to the 75W halogen lamp. The LED undercabinet fixture drew 10 watts, cutting energy use by 83% to 90% compared to the halogen product, which was tested at two power settings: a low power 60W setting and a high power 105W setting. The LED downlight consistently provided more light than the halogen and incandescent lamps in horizontal measurements at counter height and floor level. It also outperformed in vertical illuminance measurements taken on the walls, indicating better lateral dispersion of the light. The undercabinet fixture’s light output was midway between the low and high power halogen undercabinet fixture light outputs (35.8 foot candle versus 13.4 fc and 53.4 fc) but it produced a more uniform light (max/min ratio of 7.0 versus 10.8). The color correlated temperature (CCT, the blue or yellowness) of the LED light correlated well with the halogen and incandescent lights (2675 K vs 2700 K). The color rendering of the LED downlight also correlated well at 92 CRI compared to 100 CRI for the halogen and incandescent lamps. The LED undercabinet fixture had measures of 2880 K CCT and 71 CRI compared to the 2700 K and 100 CRI scores for the halogen undercabinet fixture. Builders who toured the homes were surveyed; they gave the LED downlight high marks for brightness, said the undercabinet improved shadows and glare and said both products improved overall visibility, home appearance, and home value. Paybacks on the LED downlight ranged from 7.6 years (assuming electricity cost of 11 c/kWh) to 13.5 years (at 5C/kWh). Paybacks on the LED undercabinet fixture in a new home ranged from 4.4 years (11c/kWh electricity) to 7.6 years (5c/kWh) based on product costs of $95 per LED downlight and $140 per LED undercabinet fixture at 3 hrs per day of usage for the downlight and 2 hrs per day for the undercabinet lighting.

  13. Characterization of electrically-active defects in ultraviolet light-emitting diodes with laser-based failure analysis techniques

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Miller, Mary A.; Tangyunyong, Paiboon; Edward I. Cole, Jr.

    2016-01-12

    In this study, laser-based failure analysis techniques demonstrate the ability to quickly and non-intrusively screen deep ultraviolet light-emitting diodes(LEDs) for electrically-active defects. In particular, two laser-based techniques, light-induced voltage alteration and thermally-induced voltage alteration, generate applied voltage maps (AVMs) that provide information on electrically-active defect behavior including turn-on bias, density, and spatial location. Here, multiple commercial LEDs were examined and found to have dark defect signals in the AVM indicating a site of reduced resistance or leakage through the diode. The existence of the dark defect signals in the AVM correlates strongly with an increased forward-bias leakage current. This increasedmore » leakage is not present in devices without AVM signals. Transmission electron microscopyanalysis of a dark defect signal site revealed a dislocation cluster through the pn junction. The cluster included an open core dislocation. Even though LEDs with few dark AVM defect signals did not correlate strongly with power loss, direct association between increased open core dislocation densities and reduced LED device performance has been presented elsewhere [M. W. Moseley et al., J. Appl. Phys. 117, 095301 (2015)].« less

  14. A novel theoretical model for broadband blue InGaN/GaN superluminescent light emitting diodes

    SciTech Connect (OSTI)

    Moslehi Milani, N.; Mohadesi, V.; Asgari, A.

    2015-02-07

    A broadband superluminescent light emitting diode with In{sub 0.2}Ga{sub 0.8}N/GaN multiple quantum wells (MQWs) active region is investigated. The investigation is based on a theoretical model which includes the calculation of electronic states of the structure, rate equations, and the spectral radiation power. Two rate equations corresponding to MQW active region and separate confinement heterostructures layer are solved self-consistently with no-k selection wavelength dependent gain and quasi-Fermi level functions. Our results show that the superluminescence started in a current of ?120?mA (?7.5?kA/Cm{sup 2}) at 300?K. The range of peak emission wavelengths for different currents is 423426?nm and the emission bandwidth is ?5?nm in the superluminescence regime. A maximum light output power of 7.59 mW is obtained at 600?mA and the peak modal gain as a function of current indicates logarithmic behavior. Also, the comparison of our calculated results with published experimental data is shown to be in good agreement.

  15. Organic Light-Emitting Diodes (OLEDs) and Optically-Detected Magnetic Resonance (ODMR) studies on organic materials

    SciTech Connect (OSTI)

    Cai, Min

    2011-11-30

    Organic semiconductors have evolved rapidly over the last decades and currently are considered as the next-generation technology for many applications, such as organic light-emitting diodes (OLEDs) in flat-panel displays (FPDs) and solid state lighting (SSL), and organic solar cells (OSCs) in clean renewable energy. This dissertation focuses mainly on OLEDs. Although the commercialization of the OLED technology in FPDs is growing and appears to be just around the corner for SSL, there are still several key issues that need to be addressed: (1) the cost of OLEDs is very high, largely due to the costly current manufacturing process; (2) the efficiency of OLEDs needs to be improved. This is vital to the success of OLEDs in the FPD and SSL industries; (3) the lifetime of OLEDs, especially blue OLEDs, is the biggest technical challenge. All these issues raise the demand for new organic materials, new device structures, and continued lower-cost fabrication methods. In an attempt to address these issues, we used solution-processing methods to fabricate highly efficient small molecule OLEDs (SMOLEDs); this approach is costeffective in comparison to the more common thermal vacuum evaporation. We also successfully made efficient indium tin oxide (ITO)-free SMOLEDs to further improve the efficiency of the OLEDs. We employed the spin-dependent optically-detected magnetic resonance (ODMR) technique to study the luminescence quenching processes in OLEDs and organic materials in order to understand the intrinsic degradation mechanisms. We also fabricated polymer LEDs (PLEDs) based on a new electron-accepting blue-emitting polymer and studied the effect of molecular weight on the efficiency of PLEDs. All these studies helped us to better understand the underlying relationship between the organic semiconductor materials and the OLEDs performance, and will subsequently assist in further enhancing the efficiency of OLEDs. With strongly improved device performance (in addition to other OLEDs' attributes such as mechanical flexibility and potential low cost), the OLED technology is promising to successfully compete with current technologies, such as LCDs and inorganic LEDs.

  16. Role of chemical reactions of arylamine hole transport materials in operational degradation of organic light-emitting diodes

    SciTech Connect (OSTI)

    Kondakov, Denis Y.

    2008-10-15

    We report that the representative arylamine hole transport materials undergo chemical transformations in operating organic light-emitting diode (OLED) devices. Although the underlying chemical mechanisms are too complex to be completely elucidated, structures of several identified degradation products point at dissociations of relatively weak carbon-nitrogen and carbon-carbon bonds in arylamine molecules as the initiating step. Considering the photochemical reactivities, the bond dissociation reactions of arylamines occur by the homolysis of the lowest singlet excited states formed by recombining charge carriers in the operating OLED device. The subsequent chemical reactions are likely to yield long-lived, stabilized free radicals capable of acting as deep traps--nonradiative recombination centers and fluorescence quenchers. Their presence in the hole transport layer results in irreversible hole trapping and manifests as a positive fixed charge. The extent and localization of chemical transformations in several exemplary devices suggest that the free radical reactions of hole transporting materials, arylamines, can be sufficient to account for the observed luminance efficiency loss and voltage rise in operating OLEDs. The relative bond strengths and excited state energies of OLED materials appear to have a determining effect on the operational stability of OLED devices.

  17. Highly transparent and conductive double-layer oxide thin films as anodes for organic light-emitting diodes

    SciTech Connect (OSTI)

    Yang Yu; Wang Lian; Yan He; Jin Shu; Marks, Tobin J.; Li Shuyou

    2006-07-31

    Double-layer transparent conducting oxide thin film structures containing In-doped CdO (CIO) and Sn-doped In{sub 2}O{sub 3} (ITO) layers were grown on glass by metal-organic chemical vapor deposition and ion-assisted deposition (IAD), respectively, and used as anodes for polymer light-emitting diodes (PLEDs). These films have a very low overall In content of 16 at. %. For 180-nm-thick CIO/ITO films, the sheet resistance is 5.6 {omega}/{open_square}, and the average optical transmittance is 87.1% in the 400-700 nm region. The overall figure of merit ({phi}=T{sup 10}/R{sub sheet}) of the double-layer CIO/ITO films is significantly greater than that of single-layer CIO, IAD-ITO, and commercial ITO films. CIO/ITO-based PLEDs exhibit comparable or superior device performance versus ITO-based control devices. CIO/ITO materials have a much lower sheet resistance than ITO, rendering them promising low In content electrode materials for large-area optoelectronic devices.

  18. The effect of the hole injection layer on the performance of single layer organic light-emitting diodes

    SciTech Connect (OSTI)

    Wenjin, Zeng; Ran, Bi; Hongmei, Zhang E-mail: iamwhuang@njupt.edu.cn; Wei, Huang E-mail: iamwhuang@njupt.edu.cn

    2014-12-14

    Efficient single-layer organic light-emitting diodes (OLEDs) were reported based on a green fluorescent dye 10-(2-benzothiazolyl)-2,3,6,7-tetrahydro-1,1,7,7tetramethyl-1H,5H,11H-(1) benzopyropyrano (6,7-8-I,j)quinolizin-11-one (C545T). Herein, poly(3,4-ethylenedioxy thiophene) poly(styrene sulfonate) were, respectively, applied as the injection layer for comparison. The hole transport properties of the emission layer with different hole injection materials are well investigated via current-voltage measurement. It was clearly found that the hole injection layers (HILs) play an important role in the adjustment of the electron/hole injection to attain transport balance of charge carriers in the single emission layer of OLEDs with electron-transporting host. The layer of tris-(8-hydroxyquinoline) aluminum played a dual role of host and electron-transporting materials within the emission layer. Therefore, appropriate selection of hole injection layer is a key factor to achieve high efficiency OLEDs with single emission layer.

  19. Edge electroluminescence of the effective silicon point-junction light-emitting diode in the temperature range 80-300 K

    SciTech Connect (OSTI)

    Emel'yanov, A. M. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)], E-mail: Emelyanov@mail.ioffe.ru

    2008-11-15

    The edge electroluminescence spectra of silicon point-junction light-emitting diodes with a p-n junction area of 0.008 mm{sup 2} are studied at temperatures ranging from 80 to 300 K. Unprecedentedly high stability of the position of the spectral peak is observed at temperatures in the range between 130 and 300 K. The spectral characteristics of the light emitting diodes are studied at 80 K at different current densities up to 25 kA/cm{sup 2}. In contrast to the earlier reported data obtained at 300 K, the data obtained at 80 K do not show any noticeable Augerrecombination-related decrease in the quantum efficiency. From an analysis of the electroluminescence spectra at 80 K in a wide range of currents, it follows that radiative annihilation of free excitons is not a governing mechanism of electroluminescence in the entire emitting region in the base of the point-junction light-emitting diode at all currents used in the experiment.

  20. A novel yellow-emitting SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} phosphor for solid state lighting: Synthesis, electronic structure and photoluminescence properties

    SciTech Connect (OSTI)

    Ruan, Jian; Xie, Rong-Jun; Funahashi, Shiro; Tanaka, Yoshinori; Takeda, Takashi; Suehiro, Takayuki; Hirosaki, Naoto; Li, Yuan-Qiang

    2013-12-15

    Ce{sup 3+}-doped and Ce{sup 3+}/Li{sup +}-codoped SrAlSi{sub 4}N{sub 7} phosphors were synthesized by gas pressure sintering of powder mixtures of Sr{sub 3}N{sub 2}, AlN, ?-Si{sub 3}N{sub 4}, CeN and Li{sub 3}N. The phase purity, electronic crystal structure, photoluminescence properties of SrAlSi{sub 4}N{sub 7}:Ce{sup 3+}(Ce{sup 3+}/Li{sup +}) were investigated in this work. The band structure calculated by the DMol{sup 3} code shows that SrAlSi{sub 4}N{sub 7} has a direct band gap of 3.87 eV. The single crystal analysis of Ce{sup 3+}-doped SrAlSi{sub 4}N{sub 7} indicates a disordered Si/Al distribution and nitrogen vacnacy defects. SrAlSi{sub 4}N{sub 7} was identified as a major phase of the fired powders, and Sr{sub 5}Al{sub 5}Si{sub 21}N{sub 35}O{sub 2} and AlN as minor phases. Both Ce{sup 3+} and Ce{sup 3+}/Li{sup +} doped SrAlSi{sub 4}N{sub 7} phosphors can be efficiently excited by near-UV or blue light and show a broadband yellow emission peaking around 565 nm. A highest external quantum efficiency of 38.3% under the 450 nm excitation was observed for the Ce{sup 3+}/Li{sup +}-doped SrAlSi{sub 4}N{sub 7} (5 mol%). A white light LED lamp with color temperature of 6300 K and color rendering index of Ra=78 was achieved by combining Sr{sub 0.97}Al{sub 1.03}Si{sub 3.997}N/94/maccounttest14=t0005{sub 1}8193 {sub 7}:Ce{sup 3+}{sub 0.03} with a commercial blue InGaN chip. It indicates that SrAlSi{sub 4}N{sub 7}:Ce{sup 3+} is a promising yellow emitting down-conversion phosphor for white LEDs. - Graphical abstract: One-phosphor converted white light-emitting diode (LED) was fabricated by combining a blue LED chip and a yellow-emitting SrAlSi4N7:Ce{sup 3+} phosphor (see inset), which has the color rendering index of 78 and color temperature of 6300 K. - Highlights: We reported a new yellow nitride phosphor suitable for solid state lighting. We solved the crystal structure and evidenced a disordered Si/Al distribution. We fabricated a high color rendering white LEDs by using a single SrAlSi4N7:Ce.

  1. Further reduction of efficiency droop effect by adding a lower-index dielectric interlayer in a surface plasmon coupled blue light-emitting diode with surface metal nanoparticles

    SciTech Connect (OSTI)

    Lin, Chun-Han; Su, Chia-Ying; Chen, Chung-Hui; Yao, Yu-Feng; Shih, Pei-Ying; Chen, Horng-Shyang; Hsieh, Chieh; Kiang, Yean-Woei Yang, C. C.; Kuo, Yang

    2014-09-08

    Further reduction of the efficiency droop effect and further enhancements of internal quantum efficiency (IQE) and output intensity of a surface plasmon coupled, blue-emitting light-emitting diode (LED) by inserting a dielectric interlayer (DI) of a lower refractive index between p-GaN and surface Ag nanoparticles are demonstrated. The insertion of a DI leads to a blue shift of the localized surface plasmon (LSP) resonance spectrum and increases the LSP coupling strength at the quantum well emitting wavelength in the blue range. With SiO{sub 2} as the DI, a thinner DI leads to a stronger LSP coupling effect, when compared with the case of a thicker DI. By using GaZnO, which is a dielectric in the optical range and a good conductor under direct-current operation, as the DI, the LSP coupling results in the highest IQE, highest LED output intensity, and weakest droop effect.

  2. Phosphor-Free Solid State Light Sources

    SciTech Connect (OSTI)

    Jeff E. Nause; Ian Ferguson; Alan Doolittle

    2007-02-28

    The objective of this work was to demonstrate a light emitting diode that emitted white light without the aid of a phosphor. The device was based on the combination of a nitride LED and a fluorescing ZnO substrate. The early portion of the work focused on the growth of ZnO in undoped and doped form. The doped ZnO was successfully engineered to emit light at specific wavelengths by incorporating various dopants into the crystalline lattice. Thereafter, the focus of the work shifted to the epitaxial growth of nitride structures on ZnO. Initially, the epitaxy was accomplished with molecular beam epitaxy (MBE). Later in the program, metallorganic chemical vapor deposition (MOCVD) was successfully used to grow nitrides on ZnO. By combining the characteristics of the doped ZnO substrate with epitaxially grown nitride LED structures, a phosphor-free white light emitting diode was successfully demonstrated and characterized.

  3. Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+}: A novel blue emitting phosphor for white LEDs

    SciTech Connect (OSTI)

    Li, Panlai Wang, Zhijun Yang, Zhiping; Guo, Qinglin

    2014-12-15

    Graphical abstract: Under the 350 nm radiation excitation, Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} has a broad blue emission band. When the temperature turned up to 150 C, the emission intensity of Ba{sub 1.97}B{sub 2}O{sub 5}:0.03Ce{sup 3+} is 63.4% of the initial value at room temperature. The activation energy ?E is calculated to be 0.25 eV, which prove the good thermal stability of Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+}. All the properties indicate that Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} may have potential application in white LEDs. - Highlights: Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} has a broad blue emission band under the 350 nm radiation excitation. Emission intensity of Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} is 63.4% (150 C) of the initial value (30 C). The activation energy ?E for thermal quenching is 0.25 eV. - Abstract: A novel blue emitting phosphor Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} is synthesized by a high temperature solid state method. The luminescent property and the thermal stability of Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} are investigated. Under the 350 nm radiation excitation, Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} has a broad blue emission band, and the peak locates at 417 nm which is assigned to the 5d{sup 1}4f{sup 1} transition of Ce{sup 3+}. It is further proved that the dipoledipole interaction results in the concentration quenching of Ce{sup 3+} in Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+}. When the temperature turned up to 150 C, the emission intensity of Ba{sub 1.97}B{sub 2}O{sub 5}:0.03Ce{sup 3+} is 63.4% of the initial value at room temperature. The activation energy ?E is calculated to be 0.25 eV, which prove the good thermal stability of Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+}. All the properties indicate that Ba{sub 2}B{sub 2}O{sub 5}:Ce{sup 3+} may have potential application in white LEDs.

  4. Measurement of the absorption coefficient for light laterally propagating in light-emitting diode structures with In{sub 0.2}Ga{sub 0.8}N/GaN quantum wells

    SciTech Connect (OSTI)

    Lelikov, Yu. S.; Bochkareva, N. I.; Gorbunov, R. I.; Martynov, I. A.; Rebane, Yu. T.; Tarkin, D. V.; Shreter, Yu. G. [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)], E-mail: YShreter@mail.ioffe.ru

    2008-11-15

    A procedure for measuring the absorption coefficient for light propagating parallel to the surface of a GaN-based light emitting diode chip on a sapphire substrate is suggested. The procedure implies the study of emission from one end face of the chip as the opposite end face is illuminated with a light emitting diode. The absorption coefficient is calculated from the ratio between the intensities of emission emerging from the end faces of the sapphire substrate and the epitaxial layer. From the measurements for chips based on p-GaN/In{sub 0.2}Ga{sub 0.8}N/n-GaN structures, the lateral absorption coefficient is determined at a level of (23 {+-} 3)cm{sup -1} at a wavelength of 465 nm. Possible causes for the discrepancy between the absorption coefficients determined in the study and those reported previously are analyzed.

  5. MOF Coating a Promising Path to White LEDs

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MOF Coating a Promising Path to White LEDs MOF Coating a Promising Path to White LEDs Print Friday, 27 February 2015 17:11 Hu et al. designed a new yellow phosphor with high quantum yield by immobilizing a preslected chromophore into the rigid framework of a metal-organic framework (MOF); the structure was determined at Beamline 11.3.1. Coating a blue light-emitting diode (LED) with this compound readily generates white light with high luminous efficacy. The new yellow phosphor demonstrates

  6. Thermally activated delayed fluorescence from {sup 3}n?* to {sup 1}n?* up-conversion and its application to organic light-emitting diodes

    SciTech Connect (OSTI)

    Li, Jie; Zhang, Qisheng; Nomura, Hiroko [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Miyazaki, Hiroshi [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Functional Materials Laboratory, Nippon Steel and Sumikin Chemical Co., Ltd, 4680 Nakabaru, Sakinohama, Tobata, Kitakyushu, Fukuoka 8048503 (Japan); Adachi, Chihaya, E-mail: adachi@cstf.kyushu-u.ac.jp [Department of Chemistry and Biochemistry, and Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan)

    2014-07-07

    Intense n?* fluorescence from a nitrogen-rich heterocyclic compound, 2,5,8-tris(4-fluoro-3-methylphenyl)-1,3,4,6,7,9,9b-heptaazaphenalene (HAP-3MF), is demonstrated. The overlap-forbidden nature of the n?* transition and the higher energy of the {sup 3}??* state than the {sup 3}n?* one lead to a small energy difference between the lowest singlet (S{sub 1}) and triplet (T{sub 1}) excited states of HAP-3MF. Green-emitting HAP-3MF has a moderate photoluminescence quantum yield of 0.26 in both toluene and doped film. However, an organic light-emitting diode containing HAP-3MF achieved a high external quantum efficiency of 6.0%, indicating that HAP-3MF harvests singlet excitons through a thermally activated T{sub 1} ? S{sub 1} pathway in the electroluminescent process.

  7. Temporal-contrast measurements of a white-light-seeded noncollinear optical parametric amplifier

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Bromage, J.; Dorrer, C.; Zuegel, J. D.

    2015-09-01

    Ultra-intense optical parametric chirped-pulse systems require front ends with broad bandwidth and high temporal contrast. Temporal cross-correlation measurements of a white-light–seeded noncollinear optical parametric amplifier (NOPA) show that its prepulse contrast exceeds the 120 dB dynamic range of the broadband NOPA-based cross-correlator.

  8. Quantum-dot light-emitting diodes utilizing CdSe/ZnS nanocrystals embedded in TiO{sub 2} thin film

    SciTech Connect (OSTI)

    Kang, Seung-Hee; Kumar, Ch. Kiran; Kim, Eui-Tae; Lee, Zonghoon; Kim, Kyung-Hyun; Huh, Chul

    2008-11-10

    Quantum-dot (QD) light-emitting diodes (LEDs) are demonstrated on Si wafers by embedding core-shell CdSe/ZnS nanocrystals in TiO{sub 2} thin films via plasma-enhanced metallorganic chemical vapor deposition. The n-TiO{sub 2}/QDs/p-Si LED devices show typical p-n diode current-voltage and efficient electroluminescence characteristics, which are critically affected by the removal of QD surface ligands. The TiO{sub 2}/QDs/Si system we presented can offer promising Si-based optoelectronic and electronic device applications utilizing numerous nanocrystals synthesized by colloidal solution chemistry.

  9. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Quan, Zhijue Wang, Li Zheng, Changda; Liu, Junlin; Jiang, Fengyi

    2014-11-14

    The roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well (MQW) light-emitting diodes are investigated by numerical simulation. The simulation results show that V-shaped pits cannot only screen dislocations, but also play an important role on promoting hole injection into the MQWs. It is revealed that the injection of holes into the MQW via the sidewalls of the V-shaped pits is easier than via the flat region, due to the lower polarization charge densities in the sidewall structure with lower In concentration and (1011)-oriented semi-polar facets.

  10. Suppression of roll-off characteristics of organic light-emitting diodes by narrowing current injection/transport area to 50?nm

    SciTech Connect (OSTI)

    Hayashi, Kyohei Inoue, Munetomo; Yoshida, Kou; Nakanotani, Hajime; Mikhnenko, Oleksandr; Nguyen, Thuc-Quyen E-mail: adachi@cstf.kyushu-u.ac.jp; Adachi, Chihaya E-mail: adachi@cstf.kyushu-u.ac.jp

    2015-03-02

    Using e-beam nanolithography, the current injection/transport area in organic light-emitting diodes (OLEDs) was confined into a narrow linear structure with a minimum width of 50?nm. This caused suppression of Joule heating and partial separation of polarons and excitons, so the charge density where the electroluminescent efficiency decays to the half of the initial value (J{sub 0}) was significantly improved. A device with a narrow current injection width of 50?nm exhibited a J{sub 0} that was almost two orders of magnitude higher compared with that of the unpatterned OLED.

  11. Origin of InGaN/GaN light-emitting diode efficiency improvements using tunnel-junction-cascaded active regions

    SciTech Connect (OSTI)

    Piprek, Joachim

    2014-02-03

    This Letter investigates the efficiency enhancement achieved by tunnel junction insertion into the InGaN/GaN multi-quantum well (MQW) active region of blue light emitting diodes (LEDs). The peak quantum efficiency of such LED exceeds 100%, but the maximum wall-plug efficiency (WPE) hardly changes. However, due to the increased bias, the WPE peaks at much higher input power, i.e., the WPE droop is significantly delayed, and the output power is strongly enhanced. The main physical reason for this improvement lies in the non-uniform vertical carrier distribution typically observed within InGaN MQWs.

  12. Inhibition of white light of sup 86 Rb sup + absorption in the root apex of corn. [Zea mays

    SciTech Connect (OSTI)

    McKendree, W.L.; Smith, R.C. )

    1990-06-01

    Measurements of cell lengths made at 0.5 millimeter intervals in median longitudinal sections of the primary roots of corn (Zea mays) were used to construct a growth curve. The region 1.5 to 4.0 millimeters from the apex contained the largest number of elongating cells. Absorption of {sup 86}Rb{sup +} was measured using intact, dark-grown corn seedlings. Following uptake and exchange, the terminal 8.0 millimeters of each root was cut into four 2.0 millimeter segments. Maximum {sup 86}Rb{sup +} uptake occurred in the region from 0.0 to 4.0 millimeter from the root tip. Washing the intact primary root in fresh 2.0 millimolar CaSO{sub 4} for 2 hours prior to uptake augmented the rate of {sup 86}Rb{sup +} uptake in all regions. Illumination with white light during washing caused a reduction of {sup 86}Rb{sup +} uptake as compared with controls washing in darkness, and the region of greatest light response was the region of elongation. Removal of the coleoptile prior to washing did not prevent the light inhibition of subsequent {sup 86}Rb{sup +} uptake. Removal of the root cap prior to washing in light partially reversed the light-induced inhibition of the washing response.

  13. ZnCuInS/ZnSe/ZnS Quantum Dot-Based Downconversion Light-Emitting Diodes and Their Thermal Effect

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Liu, Wenyan; Zhang, Yu; Ruan, Cheng; Wang, Dan; Zhang, Tieqiang; Feng, Yi; Gao, Wenzhu; Yin, Jingzhi; Wang, Yiding; Riley, Alexis P.; et al

    2015-01-01

    The quantum dot-based light-emitting diodes (QD-LEDs) were fabricated using blue GaN chips and red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. The power efficiencies were measured as 14.0 lm/W for red, 47.1 lm/W for yellow, and 62.4 lm/W for green LEDs at 2.6 V. The temperature effect of ZnCuInS/ZnSe/ZnS QDs on these LEDs was investigated using CIE chromaticity coordinates, spectral wavelength, full width at half maximum (FWHM), and power efficiency (PE). The thermal quenching induced by the increased surface temperature of the device was confirmed to be one of the important factors to decrease power efficiencies while the CIE chromaticity coordinates changed little due to themore » low emission temperature coefficients of 0.022, 0.050, and 0.068 nm/°C for red-, yellow-, and green-emitting ZnCuInS/ZnSe/ZnS QDs. These indicate that ZnCuInS/ZnSe/ZnS QDs are more suitable for downconversion LEDs compared to CdSe QDs.« less

  14. Tunnel-injection quantum dot deep-ultraviolet light-emitting diodes with polarization-induced doping in III-nitride heterostructures

    SciTech Connect (OSTI)

    Verma, Jai Islam, S. M.; Protasenko, Vladimir; Kumar Kandaswamy, Prem; Xing, Huili; Jena, Debdeep

    2014-01-13

    Efficient semiconductor optical emitters in the deep-ultraviolet spectral window are encountering some of the most deep rooted problems of semiconductor physics. In III-Nitride heterostructures, obtaining short-wavelength photon emission requires the use of wide bandgap high Al composition AlGaN active regions. High conductivity electron (n-) and hole (p-) injection layers of even higher bandgaps are necessary for electrical carrier injection. This approach requires the activation of very deep dopants in very wide bandgap semiconductors, which is a difficult task. In this work, an approach is proposed and experimentally demonstrated to counter the challenges. The active region of the heterostructure light emitting diode uses ultrasmall epitaxially grown GaN quantum dots. Remarkably, the optical emission energy from GaN is pushed from 365?nm (3.4?eV, the bulk bandgap) to below 240?nm (>5.2?eV) because of extreme quantum confinement in the dots. This is possible because of the peculiar bandstructure and band alignments in the GaN/AlN system. This active region design crucially enables two further innovations for efficient carrier injection: Tunnel injection of carriers and polarization-induced p-type doping. The combination of these three advances results in major boosts in electroluminescence in deep-ultraviolet light emitting diodes and lays the groundwork for electrically pumped short-wavelength lasers.

  15. 2015 DOE Solid-State Lighting Project Portfolio

    Energy Savers [EERE]

    PROJECT PORTFOLIO: SOLID-STATE LIGHTING January 2015 DOE Solid-State Lighting Project Portfolio January 2015 Executive Summary The U.S. Department of Energy (DOE) partners with businesses, universities, and national laboratories to accelerate improvements in solid-state lighting (SSL) technology. These collaborative, cost-shared efforts focus on developing highly energy-efficient, low cost, white light sources for general illumination. DOE supports SSL research for both light-emitting diode

  16. Will We Drive Less? A White Paper on U.S. Light Duty Travel ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    vehicle travel in the U.S. and other developed nations, with VMT likely stagnating or dropping in the future. This report examines a variety of issues surrounding light-duty travel...

  17. Enhanced optical power of GaN-based light-emitting diode with compound photonic crystals by multiple-exposure nanosphere-lens lithography

    SciTech Connect (OSTI)

    Zhang, Yonghui; Wei, Tongbo, E-mail: tbwei@semi.ac.cn; Xiong, Zhuo; Shang, Liang; Tian, Yingdong; Zhao, Yun; Zhou, Pengyu; Wang, Junxi; Li, Jinmin [Semiconductor Lighting Technology Research and Development Center, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083 (China)

    2014-07-07

    The light-emitting diodes (LEDs) with single, twin, triple, and quadruple photonic crystals (PCs) on p-GaN are fabricated by multiple-exposure nanosphere-lens lithography (MENLL) process utilizing the focusing behavior of polystyrene spheres. Such a technique is easy and economical for use in fabricating compound nano-patterns. The optimized tilted angle is decided to be 26.6 through mathematic calculation to try to avoid the overlay of patterns. The results of scanning electron microscopy and simulations reveal that the pattern produced by MENLL is a combination of multiple ovals. Compared to planar-LED, the light output power of LEDs with single, twin, triple, and quadruple PCs is increased by 14.78%, 36.03%, 53.68%, and 44.85% under a drive current 350?mA, respectively. Furthermore, all PC-structures result in no degradation of the electrical properties. The stimulated results indicate that the highest light extraction efficiency of LED with the clover-shape triple PC is due to the largest scattering effect on propagation of light from GaN into air.

  18. Demonstration Assessment of Light-Emitting Diode (LED) Parking Lot Lighting at T.J.Maxx in Manchester, NH Phase I

    SciTech Connect (OSTI)

    Myer, Michael; Goettel, Russell T.

    2010-06-29

    A report describing the process and results of replacing existing parking lot lighting, looking at a LED option with occupancy sensors, and conventional alternates. Criteria include payback, light levels, occupant satisfaction. This report is Phase I of II. Phase I deals with initial installation.

  19. Demonstration Assessment of Light-Emitting Diode (LED) Retrofit Lamps at Intercontinental Hotel in San Francisco, CA

    SciTech Connect (OSTI)

    Miller, Naomi J.; Curry, Ku'Uipo J.

    2010-11-01

    This document is a report of observations and results obtained from a lighting demonstration project conducted under the U.S. Department of Energy (DOE) GATEWAY Demonstration Program. The program supports demonstrations of high-performance solid-state lighting (SSL) products in order to develop empirical data and experience with in-the-field applications of this advanced lighting technology. The DOE GATEWAY Demonstration Program focuses on providing a source of independent, third-party data for use in decision-making by lighting users and professionals; this data should be considered in combination with other information relevant to the particular site and application under examination. Each GATEWAY Demonstration compares SSL products against the incumbent technologies used in that location. Depending on available information and circumstances, the SSL product may also be compared to alternate lighting technologies. Though products demonstrated in the GATEWAY program have been prescreened and tested to verify their actual performance, DOE does not endorse any commercial product or in any way guarantee that users will achieve the same results through use of these products.

  20. Efficacy of 45 lm/W Achieved in White OLED

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) successfully demonstrated an all phosphorescent white organic light emitting diode (WOLED™) with a power efficacy of 45 lm/W at 1,000 cd/m2. This high-efficacy device was enabled by lowering the device operating voltage, increasing the outcoupling efficiency to ~40% from ~20%, and by incorporating highly efficient phosphorescent emitters that are capable of converting nearly all current passing through a WOLED into light.

  1. Luminescent properties of Eu{sup 2+}-doped BaGdF{sub 5} glass ceramics a potential blue phosphor for ultra-violet light-emitting diode

    SciTech Connect (OSTI)

    Zhang, Weihuan; Zhang, Yuepin Ouyang, Shaoye; Zhang, Zhixiong; Wang, Qian; Xia, Haiping

    2015-01-14

    Eu{sup 2+} doped transparent oxyfluoride glass ceramics containing BaGdF{sub 5} nanocrystals were successfully fabricated by melt-quenching technique under a reductive atmosphere. The structure of the glass and glass ceramics were investigated by differential scanning calorimetry, X-ray diffraction (XRD), and transmission electron microscopy (TEM). The luminescent properties were investigated by transmission, excitation, and emission spectra. The decay time of the Gd{sup 3+} ions at 312?nm excited with 275?nm were also investigated. The results of XRD and TEM indicated the existence of BaGdF5 nanocrystals in the transparent glass ceramics. The excitation spectra of Eu{sup 2+} doped glass ceramics showed an excellent overlap with the main emission region of an ultraviolet light-emitting diode (UV-LED). Compared with the as-made glass, the emission of glass ceramics is much stronger by a factor of increasing energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions, the energy transfer efficiency from Gd{sup 3+} to Eu{sup 2+} ions was discussed. In addition, the chromaticity coordinates of glass and glass ceramics specimens were also discussed, which indicated that the Eu{sup 2+} doped BaGdF{sub 5} glass ceramics may be used as a potential blue-emitting phosphor for UV-LED.

  2. Characterization of the deep levels responsible for non-radiative recombination in InGaN/GaN light-emitting diodes

    SciTech Connect (OSTI)

    Meneghini, M. La Grassa, M.; Vaccari, S.; Meneghesso, G.; Zanoni, E.

    2014-03-17

    This paper presents an extensive investigation of the deep levels related to non-radiative recombination in InGaN/GaN light-emitting diodes (LEDs). The study is based on combined optical and deep-level transient spectroscopy measurements, carried out on LEDs with identical structure and with different values of the non-radiative recombination coefficient. Experimental data lead to the following, relevant, results: (i) LEDs with a high non-radiative recombination coefficient have a higher concentration of a trap (labeled as e{sub 2}) with an activation energy of 0.7 eV, which is supposed to be located close to/within the active region; (ii) measurements carried out with varying filling pulse duration suggest that this deep level behaves as a point-defect/dislocation complex. The Arrhenius plot of this deep level is critically compared with the previous literature reports, to identify its physical origin.

  3. A quantitative method for determination of carrier escape efficiency in GaN-based light-emitting diodes: A comparison of open- and short-circuit photoluminescence

    SciTech Connect (OSTI)

    Lim, Seung-Hyuk; Ko, Young-Ho; Cho, Yong-Hoon

    2014-03-03

    We propose a method to quantitatively analyze the internal quantum efficiency (IQE) as well as the efficiencies of non-radiative recombination in the active region (NRA) and carrier escape out of the active region (ESC) by comparing open-circuit (OC) to short-circuit (SC) conditions of InGaN-based light-emitting diodes (LEDs). First, the IQE was extracted from excitation-power dependent photoluminescence at low temperature, and the electron-hole wavefunction overlaps were calculated under OC and SC conditions. Then, the NRA and ESC efficiencies were quantitatively deduced and also compared with photocurrent data. The proposed method would be useful for assessing and designing quantum barriers and analyzing leakage current in LEDs.

  4. Analysis of different tunneling mechanisms of In{sub x}Ga{sub 1?x}As/AlGaAs tunnel junction light-emitting transistors

    SciTech Connect (OSTI)

    Wu, Cheng-Han; Wu, Chao-Hsin

    2014-10-27

    The electrical and optical characteristics of tunnel junction light-emitting transistors (TJLETs) with different indium mole fractions (x?=?5% and 2.5%) of the In{sub x}Ga{sub 1?x}As base-collector tunnel junctions have been investigated. Two electron tunneling mechanisms (photon-assisted or direct tunneling) provide additional currents to electrical output and resupply holes back to the base region, resulting in the upward slope of I-V curves and enhanced optical output under forward-active operation. The larger direct tunneling probability and stronger Franz-Keldysh absorption for 5% TJLET lead to higher collector current slope and less optical intensity enhancement when base-collector junction is under reverse-biased.

  5. Enhancement of hole injection and electroluminescence by ordered Ag nanodot array on indium tin oxide anode in organic light emitting diode

    SciTech Connect (OSTI)

    Jung, Mi E-mail: Dockha@kist.re.kr; Mo Yoon, Dang; Kim, Miyoung; Kim, Chulki; Lee, Taikjin; Hun Kim, Jae; Lee, Seok; Woo, Deokha E-mail: Dockha@kist.re.kr; Lim, Si-Hyung

    2014-07-07

    We report the enhancement of hole injection and electroluminescence (EL) in an organic light emitting diode (OLED) with an ordered Ag nanodot array on indium-tin-oxide (ITO) anode. Until now, most researches have focused on the improved performance of OLEDs by plasmonic effects of metal nanoparticles due to the difficulty in fabricating metal nanodot arrays. A well-ordered Ag nanodot array is fabricated on the ITO anode of OLED using the nanoporous alumina as an evaporation mask. The OLED device with Ag nanodot arrays on the ITO anode shows higher current density and EL enhancement than the one without any nano-structure. These results suggest that the Ag nanodot array with the plasmonic effect has potential as one of attractive approaches to enhance the hole injection and EL in the application of the OLEDs.

  6. Highly stable and efficient tandem organic light-emitting devices with intermediate connectors using lithium amide as n-type dopant

    SciTech Connect (OSTI)

    Zhou, Dong-Ying; Zu, Feng-Shuo; Shi, Xiao-Bo; Liao, Liang-Sheng E-mail: lsliao@suda.edu.cn; Zhang, Ying-Jie; Aziz, Hany E-mail: lsliao@suda.edu.cn

    2014-08-25

    In this work, we report thermally decomposable lithium amide (LiNH{sub 2}) feasible to function as an effective n-type dopant for intermediate connectors in tandem organic light-emitting devices (OLEDs). Metallic lithium, which is released from the decomposition process of LiNH{sub 2}, is proved by X-ray photoelectron spectroscopy and responsible for n-type electrical doping of electron transporting materials. We demonstrate that tandem OLEDs using LiNH{sub 2} and Cs{sub 2}CO{sub 3} as n-type dopants, respectively, give a comparable electroluminescence efficiency and, moreover, the device with LiNH{sub 2} has far longer operational lifetime. The results therefore highlight the significance of selecting suitable n-type dopant in intermediate connectors to fabricate high-stability tandem OLEDs.

  7. Top-emission Si-based phosphor organic light emitting diode with Au doped ultrathin n-Si film anode and bottom Al mirror

    SciTech Connect (OSTI)

    Li, Y. Z.; Xu, W. J.; Ran, G. Z. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Qin, G. G. [State Key Laboratory for Mesoscopic Physics, School of Physics, Peking University, Beijing 100871 (China); Key Lab of Semiconductor Materials, CAS, Beijing 100083 (China)

    2009-07-20

    We report a highly efficient top-emission Si-based phosphor organic light emitting diode (PhOLED) with an ultrathin polycrystalline n-Si:Au film anode and a bottom Al mirror. This anode is formed by magnetron sputtering followed by Ni induced crystallization and then Au diffusion. By optimizing the thickness of the n-Si:Au film anode, the Au diffusion temperature, and the other parameters of the PhOLED, the highest current and power efficiencies of the n-Si:Au film anode PhOLED reached 85{+-}9 cd/A and 80{+-}8 lm/W, respectively, corresponding to an external quantum efficiency of 21{+-}2% and a power conversion efficiency of 15{+-}2%, respectively, which are about 60% and 110% higher than those of the indium tin oxide anode counterpart and 70% and 50% higher than those of the bulk n{sup +}-Si:Au anode counterpart, respectively.

  8. p-doping-free InGaN/GaN light-emitting diode driven by three-dimensional hole gas

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Tiam Tan, Swee; Kyaw, Zabu; Liu, Wei; Ji, Yun; Ju, Zhengang; Zhang, Xueliang [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore) [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Wei Sun, Xiao, E-mail: EXWSUN@ntu.edu.sg [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electronics and Electrical Engineering, South University of Science and Technology of China, Shenzhen, Guangdong 518055 (China); Volkan Demir, Hilmi, E-mail: VOLKAN@stanfordalumni.org [LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); LUMINOUS Centre of Excellence for Semiconductor Lighting and Displays, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue, 639798 Singapore (Singapore); Department of Electrical and Electronics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey); Department of Physics, UNAM-Institute of Material Science and Nanotechnology, Bilkent University, Ankara TR-06800 (Turkey)

    2013-12-23

    Here, GaN/Al{sub x}Ga{sub 1-x}N heterostructures with a graded AlN composition, completely lacking external p-doping, are designed and grown using metal-organic-chemical-vapour deposition (MOCVD) system to realize three-dimensional hole gas (3DHG). The existence of the 3DHG is confirmed by capacitance-voltage measurements. Based on this design, a p-doping-free InGaN/GaN light-emitting diode (LED) driven by the 3DHG is proposed and grown using MOCVD. The electroluminescence, which is attributed to the radiative recombination of injected electrons and holes in InGaN/GaN quantum wells, is observed from the fabricated p-doping-free devices. These results suggest that the 3DHG can be an alternative hole source for InGaN/GaN LEDs besides common Mg dopants.

  9. Inversion by metalorganic chemical vapor deposition from N- to Ga-polar gallium nitride and its application to multiple quantum well light-emitting diodes

    SciTech Connect (OSTI)

    Hosalli, A. M.; Van Den Broeck, D. M.; Bedair, S. M. [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Electrical and Computer Engineering, NCSU, Raleigh, North Carolina 27695 (United States); Bharrat, D.; El-Masry, N. A. [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)] [Department of Material Science and Engineering, NCSU, Raleigh, North Carolina 27695 (United States)

    2013-12-02

    We demonstrate a metalorganic chemical vapor deposition growth approach for inverting N-polar to Ga-polar GaN by using a thin inversion layer grown with high Mg flux. The introduction of this inversion layer allowed us to grow p-GaN films on N-polar GaN thin film. We have studied the dependence of hole concentration, surface morphology, and degree of polarity inversion for the inverted Ga-polar surface on the thickness of the inversion layer. We then use this approach to grow a light emitting diode structure which has the MQW active region grown on the advantageous N-polar surface and the p-layer grown on the inverted Ga-polar surface.

  10. EMISSION HEIGHT AND TEMPERATURE DISTRIBUTION OF WHITE-LIGHT EMISSION OBSERVED BY HINODE/SOT FROM THE 2012 JANUARY 27 X-CLASS SOLAR FLARE

    SciTech Connect (OSTI)

    Watanabe, Kyoko; Shimizu, Toshifumi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Masuda, Satoshi [Solar-Terrestrial Environment Laboratory, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Ichimoto, Kiyoshi [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Ohno, Masanori, E-mail: watanabe.kyoko@isas.jaxa.jp [Department of Physical Sciences, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8516 (Japan)

    2013-10-20

    White-light emissions were observed from an X1.7 class solar flare on 2012 January 27, using three continuum bands (red, green, and blue) of the Solar Optical Telescope on board the Hinode satellite. This event occurred near the solar limb, and so differences in the locations of the various emissions are consistent with differences in heights above the photosphere of the various emission sources. Under this interpretation, our observations are consistent with the white-light emissions occurring at the lowest levels of where the Ca II H emission occurs. Moreover, the centers of the source regions of the red, green, and blue wavelengths of the white-light emissions are significantly displaced from each other, suggesting that those respective emissions are emanating from progressively lower heights in the solar atmosphere. The temperature distribution was also calculated from the white-light data, and we found the lower-layer emission to have a higher temperature. This indicates that high-energy particles penetrated down to near the photosphere, and deposited heat into the ambient lower layers of the atmosphere.

  11. Modulating emission intensity of GaN-based green light emitting diodes on c-plane sapphire

    SciTech Connect (OSTI)

    Du, Chunhua; Ma, Ziguang; Zhou, Junming; Lu, Taiping; Jiang, Yang; Jia, Haiqiang; Liu, Wuming; Chen, Hong

    2014-04-14

    The asymmetric dual-wavelength (green/blue) coupled InGaN/GaN multiple quantum wells were proposed to modulate the green emission intensity. Electroluminescent measurements demonstrate the conspicuous increment of the green light intensity by decreasing the coupled barrier thickness. This was partly attributed to capture of more carriers when holes tunnel across the thinner barrier from the blue quantum wells, as a hole reservoir, to the green quantum wells. While lower effective barrier height of the blue quantum wells benefits improved hole transportation from p-GaN to the active region. Efficiency droop of the green quantum wells was partially alleviated due to the enhanced injection efficiency of holes.

  12. Influence of PEDOT:PSS on the effectiveness of barrier layers prepared by atomic layer deposition in organic light emitting diodes

    SciTech Connect (OSTI)

    Wegler, Barbara; Schmidt, Oliver; Hensel, Bernhard

    2015-01-15

    Organic light emitting diodes (OLEDs) are well suited for energy saving lighting applications, especially when thinking about highly flexible and large area devices. In order to avoid the degradation of the organic components by water and oxygen, OLEDs need to be encapsulated, e.g., by a thin sheet of glass. As the device is then no longer flexible, alternative coatings are required. Atomic layer deposition (ALD) is a very promising approach in this respect. The authors studied OLEDs that were encapsulated by 100 nm Al{sub 2}O{sub 3} deposited by ALD. The authors show that this coating effectively protects the active surface area of the OLEDs from humidity. However, secondary degradation processes still occur at sharp edges of the OLED stack where the extremely thin encapsulation layer does not provide perfect coverage. Particularly, the swelling of poly(3,4-ethylenedioxythiophene) mixed with poly(styrenesulfonate), which is a popular choice for the planarization of the bottom electrode and at the same time acts as a hole injection layer, affects the effectiveness of the encapsulation layer.

  13. Nanoscale determinant to brighten up GaN:Eu red light-emitting diode: Local potential of Eu-defect complexes

    SciTech Connect (OSTI)

    Ishii, Masashi; Koizumi, Atsushi; Fujiwara, Yasufumi

    2015-04-21

    Emission sites in GaN:Eu red light-emitting diodes (LEDs) were investigated using a new spectroscopy technique, namely, site-selective pulse-driven emission spectroscopy (PDES). The PDES, in which the emission intensity of a pulse-driven LED is recorded with respect to the pulse frequency, revealed the charge-trapping dynamics of the Eu emission sites. We found that a determinant of the emission intensity of the sites was not their relative abundance, but rather the spatial extent of the local potential, which determines the effectiveness of the capture of injection charges. Minor sites with wider potentials enhanced the emission intensity of the LED, resulting in emission spectra that differ from those obtained using the photoluminescence of a GaN:Eu thin film. The potential curve is determined by the atomic structure of the complexes, which consist of a Eu dopant and nearby defects in the GaN host. The extent was characterized by a parameter, namely, cutoff frequency, and the emission sites with the wider and narrower potentials in the GaN:Eu LED were found to have cutoff frequencies of 400 kHz and 3 MHz, respectively. The cutoff frequency of 3 MHz was found to be the upper limit for emission sites in the LED. The emission site with the wider potential is useful for slower devices such as light fixtures, while the site with the narrower potential is useful for faster devices such as opto-isolators.

  14. Defect-Reduction Mechanism for Improving Radiative Efficiency in InGaN/GaN Light-Emitting Diodes using InGaN Underlayers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Armstrong, Andrew M.; Bryant, Benjamin N.; Crawford, Mary H.; Koleske, Daniel D.; Lee, Stephen R.; Wierer, Jr., Jonathan J.

    2015-04-01

    The influence of a dilute InxGa1-xN (x~0.03) underlayer (UL) grown below a single In0.16Ga0.84N quantum well (SQW), within a light-emitting diode(LED), on the radiative efficiency and deep level defect properties was studied using differential carrier lifetime (DCL) measurements and deep level optical spectroscopy (DLOS). DCL measurements found that inclusion of the UL significantly improved LED radiative efficiency. At low current densities, the non-radiative recombination rate of the LED with an UL was found to be 3.9 times lower than theLED without an UL, while the radiative recombination rates were nearly identical. This, then, suggests that the improved radiative efficiency resultedmore » from reduced non-radiative defect concentration within the SQW. DLOS measurement found the same type of defects in the InGaN SQWs with and without ULs. However, lighted capacitance-voltage measurements of the LEDs revealed a 3.4 times reduction in a SQW-related near-mid-gap defect state for the LED with an UL. Furthermore, quantitative agreement in the reduction of both the non-radiative recombination rate (3.9×) and deep level density (3.4×) upon insertion of an UL corroborates deep level defect reduction as the mechanism for improved LED efficiency.« less

  15. Study on copper phthalocyanine and perylene-based ambipolar organic light-emitting field-effect transistors produced using neutral beam deposition method

    SciTech Connect (OSTI)

    Kim, Dae-Kyu; Oh, Jeong-Do; Shin, Eun-Sol; Seo, Hoon-Seok; Choi, Jong-Ho

    2014-04-28

    The neutral cluster beam deposition (NCBD) method has been applied to the production and characterization of ambipolar, heterojunction-based organic light-emitting field-effect transistors (OLEFETs) with a top-contact, multi-digitated, long-channel geometry. Organic thin films of n-type N,N?-ditridecylperylene-3,4,9,10-tetracarboxylic diimide and p-type copper phthalocyanine were successively deposited on the hydroxyl-free polymethyl-methacrylate (PMMA)-coated SiO{sub 2} dielectrics using the NCBD method. Characterization of the morphological and structural properties of the organic active layers was performed using atomic force microscopy and X-ray diffraction. Various device parameters such as hole- and electron-carrier mobilities, threshold voltages, and electroluminescence (EL) were derived from the fits of the observed current-voltage and current-voltage-light emission characteristics of OLEFETs. The OLEFETs demonstrated good field-effect characteristics, well-balanced ambipolarity, and substantial EL under ambient conditions. The device performance, which is strongly correlated with the surface morphology and the structural properties of the organic active layers, is discussed along with the operating conduction mechanism.

  16. Electrical current leakage and open-core threading dislocations in AlGaN-based deep ultraviolet light-emitting diodes

    SciTech Connect (OSTI)

    Moseley, Michael Allerman, Andrew; Crawford, Mary; Wierer, Jonathan J.; Smith, Michael; Biedermann, Laura

    2014-08-07

    Electrical current transport through leakage paths in AlGaN-based deep ultraviolet (DUV) light-emitting diodes (LEDs) and their effect on LED performance are investigated. Open-core threading dislocations, or nanopipes, are found to conduct current through nominally insulating Al{sub 0.7}Ga{sub 0.3}N layers and limit the performance of DUV-LEDs. A defect-sensitive phosphoric acid etch reveals these open-core threading dislocations in the form of large, micron-scale hexagonal etch pits visible with optical microscopy, while closed-core screw-, edge-, and mixed-type threading dislocations are represented by smaller and more numerous nanometer-scale pits visible by atomic-force microscopy. The electrical and optical performances of DUV-LEDs fabricated on similar Si-doped Al{sub 0.7}Ga{sub 0.3}N templates are found to have a strong correlation to the density of these nanopipes, despite their small fraction (<0.1% in this study) of the total density of threading dislocations.

  17. Permanent polarization and charge distribution in organic light-emitting diodes (OLEDs): Insights from near-infrared charge-modulation spectroscopy of an operating OLED

    SciTech Connect (OSTI)

    Marchetti, Alfred P.; Haskins, Terri L.; Young, Ralph H.; Rothberg, Lewis J.

    2014-03-21

    Vapor-deposited Alq{sub 3} layers typically possess a strong permanent electrical polarization, whereas NPB layers do not. (Alq{sub 3} is tris(8-quinolinolato)aluminum(III); NPB is 4,4?-bis[N-(1-naphthyl)-N-phenylamino]biphenyl.) The cause is a net orientation of the Alq{sub 3} molecules with their large dipole moments. Here we report on consequences for an organic light-emitting diode (OLED) with an NPB hole-transport layer and Alq{sub 3} electron-transport layer. The discontinuous polarization at the NPB|Alq{sub 3} interface has the same effect as a sheet of immobile negative charge there. It is more than compensated by a large concentration of injected holes (NPB{sup +}) when the OLED is running. We discuss the implications and consequences for the quantum efficiency and the drive voltage of this OLED and others. We also speculate on possible consequences of permanent polarization in organic photovoltaic devices. The concentration of NPB{sup +} was measured by charge-modulation spectroscopy (CMS) in the near infrared, where the NPB{sup +} has a strong absorption band, supplemented by differential-capacitance and current-voltage measurements. Unlike CMS in the visible, this method avoids complications from modulation of the electroluminescence and electroabsorption.

  18. Investigation of surface-plasmon coupled red light emitting InGaN/GaN multi-quantum well with Ag nanostructures coated on GaN surface

    SciTech Connect (OSTI)

    Li, Yi; Liu, Bin E-mail: rzhang@nju.edu.cn; Zhang, Rong E-mail: rzhang@nju.edu.cn; Xie, Zili; Zhuang, Zhe; Dai, JiangPing; Tao, Tao; Zhi, Ting; Zhang, Guogang; Chen, Peng; Ren, Fangfang; Zhao, Hong; Zheng, Youdou

    2015-04-21

    Surface-plasmon (SP) coupled red light emitting InGaN/GaN multiple quantum well (MQW) structure is fabricated and investigated. The centre wavelength of 5-period InGaN/GaN MQW structure is about 620?nm. The intensity of photoluminescence (PL) for InGaN QW with naked Ag nano-structures (NS) is only slightly increased due to the oxidation of Ag NS as compared to that for the InGaN QW. However, InGaN QW with Ag NS/SiO{sub 2} structure can evidently enhance the emission efficiency due to the elimination of surface oxide layer of Ag NS. With increasing the laser excitation power, the PL intensity is enhanced by 25%53% as compared to that for the SiO{sub 2} coating InGaN QW. The steady-state electric field distribution obtained by the three-dimensional finite-difference time-domain method is different for both structures. The proportion of the field distributed in the Ag NS for the GaN/Ag NS/SiO{sub 2} structure is smaller as compared to that for the GaN/naked Ag NS structure. As a result, the energy loss of localized SP modes for the GaN/naked Ag NS structure will be larger due to the absorption of Ag layer.

  19. InGaN/GaN multiple-quantum-well light-emitting diodes with a grading InN composition suppressing the Auger recombination

    SciTech Connect (OSTI)

    Zhang, Zi-Hui; Liu, Wei; Ju, Zhengang; Tan, Swee Tiam; Ji, Yun; Kyaw, Zabu; Zhang, Xueliang; Wang, Liancheng; Sun, Xiao Wei E-mail: VOLKAN@stanfordalumni.org; Demir, Hilmi Volkan E-mail: VOLKAN@stanfordalumni.org

    2014-07-21

    In conventional InGaN/GaN light-emitting diodes (LEDs), thin InGaN quantum wells are usually adopted to mitigate the quantum confined Stark effect (QCSE), caused due to strong polarization induced electric field, through spatially confining electrons and holes in small recombination volumes. However, this inevitably increases the carrier density in quantum wells, which in turn aggravates the Auger recombination, since the Auger recombination scales with the third power of the carrier density. As a result, the efficiency droop of the Auger recombination severely limits the LED performance. Here, we proposed and showed wide InGaN quantum wells with the InN composition linearly grading along the growth orientation in LED structures suppressing the Auger recombination and the QCSE simultaneously. Theoretically, the physical mechanisms behind the Auger recombination suppression are also revealed. The proposed LED structure has experimentally demonstrated significant improvement in optical output power and efficiency droop, proving to be an effective solution to this important problem of Auger recombination.

  20. Nanospherical-lens lithographical Ag nanodisk arrays embedded in p-GaN for localized surface plasmon-enhanced blue light emitting diodes

    SciTech Connect (OSTI)

    Wei, Tongbo Wu, Kui; Sun, Bo; Zhang, Yonghui; Chen, Yu; Huo, Ziqiang; Hu, Qiang; Wang, Junxi; Zeng, Yiping; Li, Jinmin; Lan, Ding

    2014-06-15

    Large-scale Ag nanodisks (NDs) arrays fabricated using nanospherical-lens lithography (NLL) are embedded in p-GaN layer of an InGaN/GaN light-emitting diode (LED) for generating localized surface plasmon (LSP) coupling with the radiating dipoles in the quantum-well (QWs). Based on the Ag NDs with the controlled surface coverage, LSP leads to the improved crystalline quality of regrowth p-GaN, increased photoluminescence (PL) intensity, reduced PL decay time, and enhanced output power of LED. Compared with the LED without Ag NDs, the optical output power at a current of 350 mA of the LSP-enhanced LEDs with Ag NDs having a distance of 20 and 35 nm to QWs is increased by 26.7% and 31.1%, respectively. The electrical characteristics and optical properties of LEDs with embedded Ag NPs are dependent on the distance of between Ag NPs and QWs region. The LED with Ag NDs array structure is also found to exhibit reduced emission divergence, compared to that without Ag NDs.

  1. Comparison of the properties of AlGaInN light-emitting diode chips of vertical and flip-chip design using silicon as the a submount

    SciTech Connect (OSTI)

    Markov, L. K., E-mail: l.markov@mail.ioffe.ru; Smirnova, I. P.; Pavlyuchenko, A. S. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation); Kukushkin, M. V.; Vasil'eva, E. D. [ZAO Innovation 'Tetis' (Russian Federation); Chernyakov, A. E. [Russian Academy of Sciences, Science-and-Technology Microelectronics Center (Russian Federation); Usikov, A. S. [De Core Nanosemiconductors Ltd. (India)

    2013-03-15

    Vertical and flip-chip light-emitting diode (LED) chips are compared from the viewpoint of the behavior of current spreading in the active region and the distribution of local temperatures and thermal resistances of chips. AlGaInN LED chips of vertical design are fabricated using Si as a submount and LED flipchips were fabricated with the removal of a sapphire substrate. The latter are also mounted on a Si submount. The active regions of both chips are identical and are about 1 mm{sup 2} in size. It is shown that both the emittance of the crystal surface in the visible range and the distribution of local temperatures estimated from radiation in the infrared region are more uniform in crystals of vertical design. Heat removal from flip-chips is insufficient in regions of the n contact, which do not possess good thermal contact with the submount. As a result, the total thermal resistances between the p-n junction and the submount both for the vertical chips and for flip-chips are approximately 1 K/W. The total area of the flip-chips exceeds that of the vertical design chips by a factor of 1.4.

  2. Monte Carlo study of efficiency roll-off of phosphorescent organic light-emitting diodes: Evidence for dominant role of triplet-polaron quenching

    SciTech Connect (OSTI)

    Eersel, H. van, E-mail: h.v.eersel@tue.nl; Coehoorn, R. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, 5656 AE Eindhoven (Netherlands); Bobbert, P. A.; Janssen, R. A. J. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2014-10-06

    We present an advanced molecular-scale organic light-emitting diode (OLED) model, integrating both electronic and excitonic processes. Using this model, we can reproduce the measured efficiency roll-off for prototypical phosphorescent OLED stacks based on the green dye tris[2-phenylpyridine]iridium (Ir(ppy){sub 3}) and the red dye octaethylporphine platinum (PtOEP) and study the cause of the roll-off as function of the current density. Both the voltage versus current density characteristics and roll-off agree well with experimental data. Surprisingly, the results of the simulations lead us to conclude that, contrary to what is often assumed, not triplet-triplet annihilation but triplet-polaron quenching is the dominant mechanism causing the roll-off under realistic operating conditions. Simulations for devices with an optimized recombination profile, achieved by carefully tuning the dye trap depth, show that it will be possible to fabricate OLEDs with a drastically reduced roll-off. It is envisaged that J{sub 90}, the current density at which the efficiency is reduced to 90%, can be increased by almost one order of magnitude as compared to the experimental state-of-the-art.

  3. Metal-interconnection-free integration of InGaN/GaN light emitting diodes with AlGaN/GaN high electron mobility transistors

    SciTech Connect (OSTI)

    Liu, Chao; Cai, Yuefei; Liu, Zhaojun; Ma, Jun; Lau, Kei May

    2015-05-04

    We report a metal-interconnection-free integration scheme for InGaN/GaN light emitting diodes (LEDs) and AlGaN/GaN high electron mobility transistors (HEMTs) by combining selective epi removal (SER) and selective epitaxial growth (SEG) techniques. SER of HEMT epi was carried out first to expose the bottom unintentionally doped GaN buffer and the sidewall GaN channel. A LED structure was regrown in the SER region with the bottom n-type GaN layer (n-electrode of the LED) connected to the HEMTs laterally, enabling monolithic integration of the HEMTs and LEDs (HEMT-LED) without metal-interconnection. In addition to saving substrate real estate, minimal interface resistance between the regrown n-type GaN and the HEMT channel is a significant improvement over metal-interconnection. Furthermore, excellent off-state leakage characteristics of the driving transistor can also be guaranteed in such an integration scheme.

  4. White Light Creation Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    What's New Within the past week Financial Review: Annual 2015 May 13, 2016 This analysis focuses on the financial and operating trends of 77 global oil and natural gas companies (called the energy companies). Carbon dioxide emissions from electricity generation in 2015 were lowest since 1993 May 13, 2016 Carbon dioxide (CO2) emissions from electricity generation totaled 1,925 million metric tons in 2015, the lowest since 1993 and 21% below their 2005 level. A shift on the electricity generation

  5. White Light Creation Architectures

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy ... Hydrogen Infrastructure Hydrogen Production Market Transformation Fuel Cells ...

  6. Lighting Choices- White Background

    Broader source: Energy.gov [DOE]

    All of these lightbulbs—CFLs, LEDs, and energy-saving incandescents—meet the new energy standards that take effect from 2012–2014.

  7. Plasma physical parameters along coronal-mass-ejection-driven shocks. I. Ultraviolet and white-light observations

    SciTech Connect (OSTI)

    Bemporad, A.; Susino, R.; Lapenta, G.

    2014-04-01

    In this work, UV and white-light (WL) coronagraphic data are combined to derive the full set of plasma physical parameters along the front of a shock driven by a coronal mass ejection. Pre-shock plasma density, shock compression ratio, speed, and inclination angle are estimated from WL data, while pre-shock plasma temperature and outflow velocity are derived from UV data. The Rankine-Hugoniot (RH) equations for the general case of an oblique shock are then applied at three points along the front located between 2.2 and 2.6 R {sub ☉} at the shock nose and at the two flanks. Stronger field deflection (by ∼46°), plasma compression (factor ∼2.7), and heating (factor ∼12) occur at the nose, while heating at the flanks is more moderate (factor 1.5-3.0). Starting from a pre-shock corona where protons and electrons have about the same temperature (T{sub p} ∼ T{sub e} ∼ 1.5 × 10{sup 6} K), temperature increases derived with RH equations could better represent the proton heating (by dissipation across the shock), while the temperature increase implied by adiabatic compression (factor ∼2 at the nose, ∼1.2-1.5 at the flanks) could be more representative of electron heating: the transit of the shock causes a decoupling between electron and proton temperatures. Derived magnetic field vector rotations imply a draping of field lines around the expanding flux rope. The shock turns out to be super-critical (sub-critical) at the nose (at the flanks), where derived post-shock plasma parameters can be very well approximated with those derived by assuming a parallel (perpendicular) shock.

  8. Efficient White SSL Component for General Illumination

    SciTech Connect (OSTI)

    Sean Evans

    2011-01-31

    Cree has developed a new, high-efficiency, low-cost, light emitting diode (LED) module that should be capable of replacing standard, halogen, fluorescent and metal halide lamps based on the total cost of ownership. White LEDs are produced by combining one or more saturated color LEDs with a phosphor or other light down-converting media to achieve white broad-band illumination. This two year project addressed LED chip, package and phosphor efficiency improvements to establish a technology platform suitable for low-cost, high-efficiency commercial luminaires. New phosphor materials with improved quantum efficiency at 'real-life' operating conditions were developed along with new package technology to improve the efficiency of warm white LED modules compared to the baseline technology. Specifically, Cree has successfully demonstrated warm white LED modules providing 540 lumens at a correlated color temperature (CCT) of 3000 K. The LED module had an efficacy of 102.8 lumens per watt (LPW) using 1 mm2 chips biased at 350 mA - a 27% improvement over the technology at project start (81 LPW at 3000K). The white modules also delivered an efficacy of 88 LPW at elevated junction temperatures of 125 C. In addition, a proof-of-concept 4-inch downlight luminaire produced a flux of 1183 lumens at a CCT of 2827 K and a color rendering index (CRI) of 80 using this project's phosphor developments.

  9. TOPOS: A new topometric patient positioning and tracking system for radiation therapy based on structured white light

    SciTech Connect (OSTI)

    Lindl, Bastian L.; Mueller, Reinhold G.; Lang, Stephanie; Herraiz Lablanca, Maria D.; Kloeck, Stephan

    2013-04-15

    Purpose: A patient positioning system for radiation therapy based on structured white light and using off-the-shelf hardware components for flexibility and cost-effectiveness has been developed in house. Increased accuracy, patient comfort, abandonment of any skin marks, accelerated workflow, objective reading/recording, better usability and robust sensor design, compared to other positioning approaches, were the main goals of this work. Another aim was the application of a 6 degrees of freedom tracking system working without dose deposition. Methods: Two optical sensors are the main parts of the TOPOS Registered-Sign system (Topometrical Positioning, cyberTECHNOLOGIES, Germany). The components: cameras, projectors, and computers are commercial off-the-shelf products, allowing for low production costs. The black/white cameras of the prototype are capable of taking up to 240 frames per second (resolution: 640 Multiplication-Sign 488 pixels). The projector has a resolution of 1024 Multiplication-Sign 768 and a refresh rate of 120 Hz. The patient's body surface is measured continuously and registered to a reference surface, providing a transformation to superimpose the patient's surface to the reference (planning CT) surface as best as possible. The execution of the calculated transformation provides the correct patient position before the treatment starts. Due to the high-speed acquisition of the surfaces, a surveillance of the patient's (respiration) motion during treatment is also accomplished. The accuracy of the system was determined using a male mannequin. Two treatment sites were evaluated: one simulating a head and neck treatment and the other simulating a thoracic wall treatment. The mannequin was moved to predefined positions, and shift vectors given by the surface registration were evaluated. Additionally manual positioning using a color-coding system was evaluated. Results: Two prototypes have been developed, each allowing a continuous high density scan of a 500 Multiplication-Sign 500 Multiplication-Sign 400 mm{sup 3} (L Multiplication-Sign W Multiplication-Sign D) large volume with a refresh rate of 10 Hz (extendible to 20 Hz for a single sensor system). Surface and position correction display, as well as respiratory motion, is shown in real-time (delay < 200 ms) using present graphical hardware acceleration. For an intuitive view of the patient's misalignment, a fast surface registration algorithm has been developed and tested and a real-time color-coding technique is proposed and verified that allows the user to easily verify the position of the patient. Using first the surface registration and then the color coding the best results were obtained: for the head and neck case, the mean difference between the actual zero position and the final match was 0.1 {+-} 0.4, -0.2 {+-} 0.7, and -0.1 {+-} 0.3 mm in vertical, longitudinal, and lateral direction. For the thoracic case, the mean differences were 0.3 {+-} 0.5, -0.6 {+-} 1.9, 0.0 {+-} 0.4 mm. Conclusions: The presented system copes with the increasing demand for more accurate patient positioning due to more precise irradiation technologies and minimizes the preparation times for correct patient alignment, therefore optimizing the treatment workflow. Moreover, TOPOS is a versatile and cost effective image guided radiation therapy device. It allows an objective rating of the patient's position before and during the irradiation and could also be used for respiratory gating or tracking.

  10. Direct transparent electrode patterning on layered GaN substrate by screen printing of indium tin oxide nanoparticle ink for Eu-doped GaN red light-emitting diode

    SciTech Connect (OSTI)

    Kashiwagi, Y. Yamamoto, M.; Saitoh, M.; Takahashi, M.; Ohno, T.; Nakamoto, M.; Koizumi, A.; Fujiwara, Y.; Takemura, Y.; Murahashi, K.; Ohtsuka, K.; Furuta, S.

    2014-12-01

    Transparent electrodes were formed on Eu-doped GaN-based red-light-emitting diode (GaN:Eu LED) substrates by the screen printing of indium tin oxide nanoparticle (ITO np) inks as a wet process. The ITO nps with a mean diameter of 25?nm were synthesized by the controlled thermolysis of a mixture of indium complexes and tin complexes. After the direct screen printing of ITO np inks on GaN:Eu LED substrates and sintering at 850?C for 10?min under atmospheric conditions, the resistivity of the ITO film was 5.2?m??cm. The fabricated LED up to 3?mm square surface emitted red light when the on-voltage was exceeded.

  11. Voltage-induced electroluminescence characteristics of hybrid light-emitting diodes with CdSe/Cd/ZnS core-shell nanoparticles embedded in a conducting polymer on plastic substrates

    SciTech Connect (OSTI)

    Kwak, Kiyeol; Cho, Kyoungah, E-mail: chochem@korea.ac.kr, E-mail: sangsig@korea.ac.kr; Kim, Sangsig, E-mail: chochem@korea.ac.kr, E-mail: sangsig@korea.ac.kr [Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)] [Department of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2014-03-10

    We investigate the electroluminescence (EL) characteristics of a hybrid light-emitting diode (HyLED) with an emissive layer comprised of CdSe/Cd/ZnS core-shell nanoparticles (NPs) embedded in poly(9,9-di-n-octylfluorenyl-2,7-diyl) (PFO) on a plastic substrate. The EL characteristics change dramatically with increasing of the biased voltage. At low voltages, recombination of electrons and holes occurs only in the PFO film because of poor charge transfer in the PFO-CdSe/Cd/ZnS NPs composite film, while the color of the light-emitting from the HyLED changes from blue to red as the biased voltage increases from 7.5 to 17.5?V. We examine and discuss the mechanism of this color tunability.

  12. Luminescence properties of light-emitting diodes based on GaAs with the up-conversion Y{sub 2}O{sub 2}S:Er,Yb luminophor

    SciTech Connect (OSTI)

    Gruzintsev, A. N. [Russian Academy of Sciences, Institute of Problems of Microelectronics Technology (Russian Federation)], E-mail: gran@ipmt-hpm.ac.ru; Barthou, C.; Benalloul, P. [Institute des NanoSciences (France)

    2008-03-15

    Y{sub 2}O{sub 2}S luminophors doped with Er{sup 3+} and Yb{sup 3+} ions are produced by means of solid-phase synthesis and deposited onto standard AL123A infrared light-emitting diodes. When excited with 940 nm radiation from a light-emitting diode, the structures exhibit intense visible up-conversion luminescence. A maximal brightness of 2340 cd/m{sup 2} of green and red up-conversion luminescence at corresponding wavelengths around 550 and 600 nm is observed for the Y{sub 2}O{sub 2}S compound doped with 2 at % Er{sup 3+} ions and 6 at % Yb{sup 3+} ions. The ratio of the intensity of green (or red) up-conversion luminescence to the intensity of infrared Stokes luminescence increases with increasing applied voltage. The efficiency of visible emission of the light-emitting diode structures is {eta} = 1.2 lm/W at an applied voltage of 1.5 V.

  13. Stacked white OLED having separate red, green and blue sub-elements

    DOE Patents [OSTI]

    Forrest, Stephen; Qi, Xiangfei; Slootsky, Michael

    2014-07-01

    The present invention relates to efficient organic light emitting devices (OLEDs). The devices employ three emissive sub-elements, typically emitting red, green and blue, to sufficiently cover the visible spectrum. Thus, the devices may be white-emitting OLEDs, or WOLEDs. Each sub-element comprises at least one organic layer which is an emissive layer--i.e., the layer is capable of emitting light when a voltage is applied across the stacked device. The sub-elements are vertically stacked and are separated by charge generating layers. The charge-generating layers are layers that inject charge carriers into the adjacent layer(s) but do not have a direct external connection.

  14. A novel broadband emission phosphor Ca{sub 2}KMg{sub 2}V{sub 3}O{sub 12} for white light emitting diodes

    SciTech Connect (OSTI)

    Li, Junfu; Qiu, Kehui; Li, Junfeng; Li, Wei; Yang, Qian; Li, Junhan

    2010-05-15

    A novel broadband emission phosphor Ca{sub 2}KMg{sub 2}V{sub 3}O{sub 12} was first synthesized by solution combustion method. The X-ray diffraction showed that Ca{sub 2}KMg{sub 2}V{sub 3}O{sub 12} phase can be obtained at 600-900 {sup o}C through combustion route. The crystal structure of this material was refined by Rietveld method using powder X-ray diffraction. It crystallizes in cubic system and belongs to space group Ia3d with z = 8, a = 0.12500 nm. The excitation band of Ca{sub 2}KMg{sub 2}V{sub 3}O{sub 12} peaks at 320 nm in a region between 260 nm and 425 nm, and the emission spectrum exhibits an intense band centered at about 528 nm covering from 400 nm to 800 nm. The colour coordinates of samples prepared at different ignition temperatures are in a range of x = 0.323-0.339, y = 0.430-0.447.

  15. Modifying the organic/electrode interface in Organic Solar Cells (OSCs) and improving the efficiency of solution-processed phosphorescent Organic Light-Emitting Diodes (OLEDs)

    SciTech Connect (OSTI)

    Xiao, Teng

    2012-04-27

    Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn increasing interest in recent decades. As organic materials are flexible, light weight, and potentially low-cost, organic semiconductor devices are considered to be an alternative to their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs. As a clean and renewable energy source, the development of OSCs is very promising. Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to < 8% two years ago. OSCs belong to the so-called third generation solar cells and are still under development. While OLEDs are a more mature and better studied field, with commercial products already launched in the market, there are still several key issues: (1) the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; (2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics models of the behavior of the devices are not satisfactory. All these limitations invoke the demand for new organic materials, improved device architectures, low-cost fabrication methods, and better understanding of device physics. For OSCs, we attempted to improve the PCE by modifying the interlayer between active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxythiophene): polystyrenesulfonate (PEDOT: PSS) improves hole collection at the metal/polymer interface, furthermore it also affects the growth of the poly(3- hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making the phase segregation more favorable for charge collection. We then studied organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin LiF layer serves typically as the electron injection layer in OLEDs and electron collection interlayer in the OSCs. However, several reports showed that it can also assist in holeinjection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, which is more obvious after air-plasma treatment, and explore this intriguing dual role. For OLEDs, we focus on solution processing methods to fabricate highly efficient phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and enhanced charge injection by adding hole- and electron-transport materials into the system. We also applied a hole-blocking and electron-transport material to prevent luminescence quenching by the cathode. Finally, we substituted the polymer host by a small molecule, to achieve more efficient solution processed small molecular OLEDs (SMOLEDs); this approach is cost-effective in comparison to the more common vacuum thermal evaporation. All these studies help us to better understand the underlying relationship between the organic semiconductor materials and the OSCs and OLEDs performance and will subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their inorganic counterparts.

  16. Rapid sintering of TiO{sub 2} photoelectrodes using intense pulsed white light for flexible dye-sensitized solar cells

    SciTech Connect (OSTI)

    Jin, Hwa-Young; Kim, Jae-Yup; Ah Lee, Jin; Lee, Kwangsoo; Yoo, Kicheon; Lee, Doh-Kwon; Kim, BongSoo; Young Kim, Jin; Kim, Honggon; Jung Son, Hae; Kim, Jihyun; Ah Lim, Jung E-mail: mjko@kist.re.kr; Jae Ko, Min E-mail: mjko@kist.re.kr

    2014-04-07

    Intense pulsed white light (IPWL) sintering was carried out at room temperature, which is suitable dye-sensitized solar cells (DSSCs) fabrication process on plastic substrates for the mass production. Five seconds irradiation of IPWL on TiO{sub 2} electrode significantly improves the photocurrent density and power conversion efficiency of DSSCs by more than 110% and 115%, respectively, compared to the DSSCs without IPWL treatment. These improvements were mainly attributed to the enhanced interconnection between the TiO{sub 2} nanoparticles induced by IPWL illumination, which is confirmed by the impedance spectra analysis.

  17. High Efficiency LED Lamp for Solid-State Lighting

    SciTech Connect (OSTI)

    James Ibbetson

    2006-12-31

    This report contains a summary of technical achievements during a three-year project to demonstrate high efficiency, solid-state lamps based on gallium nitride/silicon carbide light-emitting diodes. Novel chip designs and fabrication processes are described for a new type of nitride light-emitting diode with the potential for very high efficiency. This work resulted in the demonstration of blue light-emitting diodes in the one watt class that achieved up to 495 mW of light output at 350 mA drive current, corresponding to quantum and wall plug efficiencies of 51% and 45%, respectively. When combined with a phosphor in Cree's 7090 XLamp package, these advanced blue-emitting devices resulted in white light-emitting diodes whose efficacy exceeded 85 lumens per watt. In addition, up to 1040 lumens at greater than 85 lumens per watt was achieved by combining multiple devices to make a compact white lamp module with high optical efficiency.

  18. World Record White OLED Performance Exceeds 100 lm/W

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) has successfully demonstrated a record-breaking white organic light-emitting diode (WOLED) with a power efficacy of 102 lm/W at 1000 cd/m2 using its proprietary, high-efficiency phosphorescent OLED technology. This achievement represents a significant milestone for OLED technology, demonstrating performance that surpasses the power efficacy of incandescent bulbs with less than 15 lm/W and fluorescent lamps at 60-90 lm/W. Funded in part by DOE, UDC's achievement is a major step toward DOE's roadmap goal of a 150 lm/W commercial OLED light source by 2015.

  19. Blue-green phosphor for fluorescent lighting applications

    DOE Patents [OSTI]

    Srivastava, Alok; Comanzo, Holly; Manivannan, Venkatesan; Setlur, Anant Achyut

    2005-03-15

    A fluorescent lamp including a phosphor layer including Sr.sub.4 Al.sub.14 O.sub.25 :Eu.sup.2+ (SAE) and at least one of each of a red, green and blue emitting phosphor. The phosphor layer can optionally include an additional, deep red phosphor and a yellow emitting phosphor. The resulting lamp will exhibit a white light having a color rendering index of 90 or higher with a correlated color temperature of from 2500 to 10000 Kelvin. The use of SAE in phosphor blends of lamps results in high CRI light sources with increased stability and acceptable lumen maintenance over, the course of the lamp life.

  20. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, Steven R.; Biefeld, Robert M.; Dawson, L. Ralph; Howard, Arnold J.; Baucom, Kevin C.

    1997-01-01

    An infrared emitting device and method. The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns.

  1. Liquid-phase exfoliation of chemical vapor deposition-grown single layer graphene and its application in solution-processed transparent electrodes for flexible organic light-emitting devices

    SciTech Connect (OSTI)

    Wu, Chaoxing; Li, Fushan E-mail: gtl-fzu@hotmail.com; Wu, Wei; Chen, Wei; Guo, Tailiang E-mail: gtl-fzu@hotmail.com

    2014-12-15

    Efficient and low-cost methods for obtaining high performance flexible transparent electrodes based on chemical vapor deposition (CVD)-grown graphene are highly desirable. In this work, the graphene grown on copper foil was exfoliated into micron-size sheets through controllable ultrasonication. We developed a clean technique by blending the exfoliated single layer graphene sheets with conducting polymer to form graphene-based composite solution, which can be spin-coated on flexible substrate, forming flexible transparent conducting film with high conductivity (?8 ?/?), high transmittance (?81% at 550?nm), and excellent mechanical robustness. In addition, CVD-grown-graphene-based polymer light emitting diodes with excellent bendable performances were demonstrated.

  2. lighting in the library

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    lighting will be examined here: * replacing incandescent bulbs with compact fluorescent lamps * replacing incandescent exit signs with those lit by light emitting diodes (LED) * ...

  3. KOH based selective wet chemical etching of AlN, AlxGa1-xN, and GaN crystals: A way towards substrate removal in deep ultraviolet-light emitting diode

    SciTech Connect (OSTI)

    Guo, W; Kirste, R; Bryan, I; Bryan, Z; Hussey, L; Reddy, P; Tweedie, J; Collazo, R; Sitar, Z

    2015-02-23

    A controllable and smooth potassium hydroxide-based wet etching technique was developed for the AlGaN system. High selectivity between AlN and AlxGa1-xN (up to 12 x) was found to be critical in achieving effective substrate thinning or removal for AlGaN-based deep ultraviolet light emitting diodes, thus increasing light extraction efficiency. The mechanism of high selectivity of AlGaN as a function of Al composition can be explained as related to the formation and dissolution of oxide/hydroxide on top of N-polar surface. Cross-sectional transmission electron microscopic analysis served as ultimate proof that these hillocks were not related to underlying threading dislocations. (C) 2015 AIP Publishing LLC.

  4. Infrared emitting device and method

    DOE Patents [OSTI]

    Kurtz, S.R.; Biefeld, R.M.; Dawson, L.R.; Howard, A.J.; Baucom, K.C.

    1997-04-29

    The infrared emitting device comprises a III-V compound semiconductor substrate upon which are grown a quantum-well active region having a plurality of quantum-well layers formed of a ternary alloy comprising InAsSb sandwiched between barrier layers formed of a ternary alloy having a smaller lattice constant and a larger energy bandgap than the quantum-well layers. The quantum-well layers are preferably compressively strained to increase the threshold energy for Auger recombination; and a method is provided for determining the preferred thickness for the quantum-well layers. Embodiments of the present invention are described having at least one cladding layer to increase the optical and carrier confinement in the active region, and to provide for waveguiding of the light generated within the active region. Examples have been set forth showing embodiments of the present invention as surface- and edge-emitting light emitting diodes (LEDs), an optically-pumped semiconductor laser, and an electrically-injected semiconductor diode laser. The light emission from each of the infrared emitting devices of the present invention is in the midwave infrared region of the spectrum from about 2 to 6 microns. 8 figs.

  5. Blue light emitting SrSn(OH){sub 6} nano-rods doped with lanthanide ions (Eu{sup 3+}, Tb{sup 3+} and Dy{sup 3+})

    SciTech Connect (OSTI)

    Patel, D.K.; Nuwad, J.; Rajeswari, B.; Vishwanadh, B.; Sudarsan, V.; Vatsa, R.K.; Kadam, R.M.; Pillai, C.G.S.; Kulshreshtha, S.K.

    2013-02-15

    Graphical abstract: Display Omitted Highlights: ? Room temperature synthesis of blue light emitting SrSn(OH){sub 6} nano-rods. ? Blue light emission originates from the recombination of self trapped excitons. ? There exists energy transfer from host to lanthanide ions in SrSn(OH){sub 6}:Ln nano-rods. ? Solubility of Eu{sup 3+} ions in SrSn(OH){sub 6} nano-rods is around 1.5 at%. -- Abstract: Blue light emitting SrSn(OH){sub 6} nano-rods were prepared in aqueous medium at room temperature. Presence of lanthanide ions in reaction medium during synthesis of nano-rods, leads to significant changes in the morphology of the nano-rods. Based on luminescence studies emission in the blue region from SrSn(OH){sub 6} nano-rods has been attributed to radiative recombination of self trapped excitons in the lattice. SrSn(OH){sub 6} nano-rods were doped with lanthanide ions like Eu{sup 3+}, Tb{sup 3+} and Dy{sup 3+} and their luminescence studies revealed that there exists energy transfer from host to lanthanide ions. From the luminescence studies on Eu{sup 3+} doped samples, it is confirmed that up to 1.5 at%, Eu{sup 3+} ions get incorporated at Sr{sup 2+} site in SrSn(OH){sub 6} lattice and beyond which a separate Eu{sup 3+} containing phase is formed. Part of the europium ions also exists as Eu{sup 2+} species in the lattice as confirmed by electron paramagnetic resonance (EPR) studies.

  6. High efficiency light source using solid-state emitter and down-conversion material

    DOE Patents [OSTI]

    Narendran, Nadarajah; Gu, Yimin; Freyssinier, Jean Paul

    2010-10-26

    A light emitting apparatus includes a source of light for emitting light; a down conversion material receiving the emitted light, and converting the emitted light into transmitted light and backward transmitted light; and an optic device configured to receive the backward transmitted light and transfer the backward transmitted light outside of the optic device. The source of light is a semiconductor light emitting diode, a laser diode (LD), or a resonant cavity light emitting diode (RCLED). The down conversion material includes one of phosphor or other material for absorbing light in one spectral region and emitting light in another spectral region. The optic device, or lens, includes light transmissive material.

  7. Nanoscale engineering boosts performance of quantum dot light...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Quantum dot light emitting diodes Nanoscale engineering boosts performance of quantum dot light emitting diodes Quantum dots are nano-sized semiconductor particles whose emission...

  8. Comparative study of field-dependent carrier dynamics and emission kinetics of InGaN/GaN light-emitting diodes grown on (112{sup }2) semipolar versus (0001) polar planes

    SciTech Connect (OSTI)

    Ji, Yun; Liu, Wei; Chen, Rui; Tiam Tan, Swee; Zhang, Zi-Hui; Ju, Zhengang; Zhang, Xueliang; Sun, Handong; Wei Sun, Xiao; Erdem, Talha; Zhao, Yuji; DenBaars, Steven P. E-mail: volkan@stanfordalumni.org; Nakamura, Shuji; Volkan Demir, Hilmi E-mail: volkan@stanfordalumni.org

    2014-04-07

    The characteristics of electroluminescence (EL) and photoluminescence (PL) emission from GaN light-emitting diodes (LEDs) grown on (112{sup }2) semipolar plane and (0001) polar plane have been comparatively investigated. Through different bias-dependent shifting trends observed from the PL and time-resolved PL spectra (TRPL) for the two types of LEDs, the carrier dynamics within the multiple quantum wells (MQWs) region is systematically analyzed and the distinct field-dependent emission kinetics are revealed. Moreover, the polarization induced internal electric field has been deduced for each of the LEDs. The relatively stable emission behavior observed in the semipolar LED is attributed to the smaller polarization induced internal electric field. The study provides meaningful insight for the design of quantum well (QW) structures with high radiative recombination rates.

  9. GaInN light-emitting diodes using separate epitaxial growth for the p-type region to attain polarization-inverted electron-blocking layer, reduced electron leakage, and improved hole injection

    SciTech Connect (OSTI)

    Meyaard, David S., E-mail: meyaad@rpi.edu; Lin, Guan-Bo; Ma, Ming; Fred Schubert, E. [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)] [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Cho, Jaehee [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States) [Future Chips Constellation, Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States); Semiconductor Physics Research Center, School of Semiconductor and Chemical Engineering, Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Han, Sang-Heon; Kim, Min-Ho; Shim, HyunWook; Sun Kim, Young [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)] [LED Business, Samsung Electronics, Yongin 446-920 (Korea, Republic of)

    2013-11-11

    A GaInN light-emitting diode (LED) structure is analyzed that employs a separate epitaxial growth for the p-type region, i.e., the AlGaN electron-blocking layer (EBL) and p-type GaN cladding layer, followed by wafer or chip bonding. Such LED structure has a polarization-inverted EBL and allows for uncompromised epitaxial-growth optimization of the p-type region, i.e., without the need to consider degradation of the quantum-well active region during p-type region growth. Simulations show that such an LED structure reduces electron leakage, reduces the efficiency droop, improves hole injection, and has the potential to extend high efficiencies into the green spectral region.

  10. Sandia Energy - Four-color laser white illuminant demonstrating...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    laser white illuminant demonstrating high color-rendering quality Home Solid-State Lighting News Four-color laser white illuminant demonstrating high color-rendering quality...

  11. Side-emitting fiber optic position sensor

    DOE Patents [OSTI]

    Weiss, Jonathan D. (Albuquerque, NM)

    2008-02-12

    A side-emitting fiber optic position sensor and method of determining an unknown position of an object by using the sensor. In one embodiment, a concentrated beam of light source illuminates the side of a side-emitting fiber optic at an unknown axial position along the fiber's length. Some of this side-illuminated light is in-scattered into the fiber and captured. As the captured light is guided down the fiber, its intensity decreases due to loss from side-emission away from the fiber and from bulk absorption within the fiber. By measuring the intensity of light emitted from one (or both) ends of the fiber with a photodetector(s), the axial position of the light source is determined by comparing the photodetector's signal to a calibrated response curve, look-up table, or by using a mathematical model. Alternatively, the side-emitting fiber is illuminated at one end, while a photodetector measures the intensity of light emitted from the side of the fiber, at an unknown position. As the photodetector moves further away from the illuminated end, the detector's signal strength decreases due to loss from side-emission and/or bulk absorption. As before, the detector's signal is correlated to a unique position along the fiber.

  12. Non-contact pumping of light emitters via non-radiative energy transfer

    DOE Patents [OSTI]

    Klimov, Victor I.; Achermann, Marc

    2010-01-05

    A light emitting device is disclosed including a primary light source having a defined emission photon energy output, and, a light emitting material situated near to said primary light source, said light emitting material having an absorption onset equal to or less in photon energy than the emission photon energy output of the primary light source whereby non-radiative energy transfer from said primary light source to said light emitting material can occur yielding light emission from said light emitting material.

  13. GATEWAY Demonstrations: LED Street Lighting

    SciTech Connect (OSTI)

    Cook, Tyson; Shackelford, Jordan; Pang, Terrance Pang

    2008-12-01

    This report summarizes an assessment project conducted to study the performance of light emitting diode (LED) luminaires in a street lighting application in San Francisco, CA.

  14. Lighting Controls | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    fluorescent lighting fixtures rather than replace them. Dimmers and LEDs Some light-emitting diode (LED) lightbulbs can be used with dimmers. LED bulbs and fixtures must be...

  15. Detroit Street Lighting Report | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    2015restoring-detroit.pdf More Documents & Publications LED Roadway Lighting OCTOBER 2015 POSTINGS Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final ...

  16. White House | National Nuclear Security Administration

    National Nuclear Security Administration (NNSA)

    White House

  17. White Papers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Papers White Papers This page contains a collection of white papers on IS&T topics and presentations about ISTI. Contact Institute Director Stephan Eidenbenz (505) 667-3742 Email Professional Staff Assistant Nickole Aguilar Garcia (505) 665-3048 Email What is ISTI? Slide deck, Author: S. Eidenbenz, November 2015

  18. USING COORDINATED OBSERVATIONS IN POLARIZED WHITE LIGHT AND FARADAY ROTATION TO PROBE THE SPATIAL POSITION AND MAGNETIC FIELD OF AN INTERPLANETARY SHEATH

    SciTech Connect (OSTI)

    Xiong, Ming; Feng, Xueshang; Liu, Ying D.; Davies, Jackie A.; Harrison, Richard A.; Owens, Mathew J.; Davis, Chris J.

    2013-11-01

    Coronal mass ejections (CMEs) can be continuously tracked through a large portion of the inner heliosphere by direct imaging in visible and radio wavebands. White light (WL) signatures of solar wind transients, such as CMEs, result from Thomson scattering of sunlight by free electrons and therefore depend on both viewing geometry and electron density. The Faraday rotation (FR) of radio waves from extragalactic pulsars and quasars, which arises due to the presence of such solar wind features, depends on the line-of-sight magnetic field component B{sub ?} and the electron density. To understand coordinated WL and FR observations of CMEs, we perform forward magnetohydrodynamic modeling of an Earth-directed shock and synthesize the signatures that would be remotely sensed at a number of widely distributed vantage points in the inner heliosphere. Removal of the background solar wind contribution reveals the shock-associated enhancements in WL and FR. While the efficiency of Thomson scattering depends on scattering angle, WL radiance I decreases with heliocentric distance r roughly according to the expression I?r {sup 3}. The sheath region downstream of the Earth-directed shock is well viewed from the L4 and L5 Lagrangian points, demonstrating the benefits of these points in terms of space weather forecasting. The spatial position of the main scattering site r{sub sheath} and the mass of plasma at that position M{sub sheath} can be inferred from the polarization of the shock-associated enhancement in WL radiance. From the FR measurements, the local B{sub ?sheath} at r{sub sheath} can then be estimated. Simultaneous observations in polarized WL and FR can not only be used to detect CMEs, but also to diagnose their plasma and magnetic field properties.

  19. Initiation and early evolution of the coronal mass ejection on 2009 May 13 from extreme-ultraviolet and white-light observations

    SciTech Connect (OSTI)

    Reva, A. A.; Ulyanov, A. S.; Bogachev, S. A.; Kuzin, S. V.

    2014-10-01

    We present the results of the observations of a coronal mass ejection (CME) that occurred on 2009 May 13. The most important feature of these observations is that the CME was observed from the very early stage (the solar surface) up to a distance of 15 solar radii (R {sub ?}). Below 2 R {sub ?}, we used the data from the TESIS extreme-ultraviolet telescopes obtained in the Fe 171 and He 304 lines, and above 2 R {sub ?}, we used the observations of the LASCO C2 and C3 coronagraphs. The CME was formed at a distance of 0.2-0.5R {sub ?} from the Sun's surface as a U-shaped structure, which was observed both in the 171 images and in the white light. Observations in the He 304 line showed that the CME was associated with an erupting prominence, which was not located aboveas the standard model predictsbut rather in the lowest part of the U-shaped structure close to the magnetic X point. The prominence location can be explained with the CME breakout model. Estimates showed that CME mass increased with time. The CME trajectory was curvedits heliolatitude decreased with time. The CME started at a latitude of 50 and reached the ecliptic plane at distances of 2.5 R {sub ?}. The CME kinematics can be divided into three phases: initial acceleration, main acceleration, and propagation with constant velocity. After the CME, onset GOES registered a sub-A-class flare.

  20. Cathode encapsulation of organic light emitting diodes by atomic layer deposited Al{sub 2}O{sub 3} films and Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks

    SciTech Connect (OSTI)

    Keuning, W.; Weijer, P. van de; Lifka, H.; Kessels, W. M. M.; Creatore, M. [Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Philips Research Laboratories, High Tech Campus 4, P.O. Box WAG12, 5656 AE Eindhoven (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)

    2012-01-15

    Al{sub 2}O{sub 3} thin films synthesized by plasma-enhanced atomic layer deposition (ALD) at room temperature (25 deg. C) have been tested as water vapor permeation barriers for organic light emitting diode devices. Silicon nitride films (a-SiN{sub x}:H) deposited by plasma-enhanced chemical vapor deposition served as reference and were used to develop Al{sub 2}O{sub 3}/a-SiN{sub x}:H stacks. On the basis of Ca test measurements, a very low intrinsic water vapor transmission rate of {<=} 2 x 10{sup -6} g m{sup -2} day{sup -1} and 4 x 10{sup -6} g m{sup -2} day{sup -1} (20 deg. C/50% relative humidity) were found for 20-40 nm Al{sub 2}O{sub 3} and 300 nm a-SiN{sub x}:H films, respectively. The cathode particle coverage was a factor of 4 better for the Al{sub 2}O{sub 3} films compared to the a-SiN{sub x}:H films and an average of 0.12 defects per cm{sup 2} was obtained for a stack consisting of three barrier layers (Al{sub 2}O{sub 3}/a-SiN{sub x}:H/Al{sub 2}O{sub 3}).

  1. High-Efficiency Nitride-Based Photonic Crystal Light Sources

    Broader source: Energy.gov [DOE]

    The University of California Santa Barbara (UCSB) is maximizing the efficiency of a white LED by enhancing the external quantum efficiency using photonic crystals to extract light that would normally be confined in a conventional structure. Ultimate efficiency can only be achieved by looking at the internal structure of light. To do this, UCSB is focusing on maximizing the light extraction efficiency and total light output from light engines driven by Gallium Nitride (GaN)-based LEDs. The challenge is to engineer large overlap (interaction) between modes and photonic crystals. The project is focused on achieving high extraction efficiency in LEDs, controlled directionality of emitted light, integrated design of vertical device structure, and nanoscale patterning of lateral structure.

  2. Organic light emitting diodes with structured electrodes

    DOE Patents [OSTI]

    Mao, Samuel S.; Liu, Gao; Johnson, Stephen G.

    2012-12-04

    A cathode that contain nanostructures that extend into the organic layer of an OLED has been described. The cathode can have an array of nanotubes or a layer of nanoclusters extending out from its surface. In another arrangement, the cathode is patterned and etched to form protruding nanostructures using a standard lithographic process. Various methods for fabricating these structures are provided, all of which are compatible with large-scale manufacturing. OLEDs made with these novel electrodes have greatly enhanced electron injection, have good environmental stability.

  3. Organic light emitting device with conducting cover

    DOE Patents [OSTI]

    Silvernail, Jeffrey; Paynter, Jason; Rajan, Kamala

    2014-07-01

    The claimed invention was made by, on behalf of, and/or in connection with one or more of the following parties to a joint university corporation research agreement: Princeton University, The University of Southern California, The University of Michigan and Universal Display Corporation. The agreement was in effect on and before the date the claimed invention was made, and the claimed invention was made as a result of activities undertaken within the scope of the agreement.

  4. Department of Energy Office of Energy Efficiency and Renewable Energy Solid Lighting Core Technologies

    SciTech Connect (OSTI)

    Jiangeng Xue; Elliot Douglas

    2011-03-31

    The overall objective of this project is to demonstrate an ultra-effective light extraction mechanism that can be universally applied to all top-emitting white OLEDs (TE-WOLEDs) and can be integrated with thin film encapsulation techniques. The scope of work proposed in this project includes four major areas: (1) optical modeling; (2) microlens and array fabrication; (3) fabrication, encapsulation, and characterization of TE-WOLEDs; and (4) full device integration and characterization. First, the light extraction efficiency in a top-emitting OLED with or without a microlens array are modeled using wave optics. Second, individual microlenses and microlens arrays are fabricated by inkjet printing of microdroplets of a liquid thiol-ene monomer with high refractive index followed by photopolymerization. Third, high efficiency top-emitting white OLEDs are fabricated, and fully characterized. Finally, optimized microlens arrays are fabricated on TE-WOLEDs with dielectric barrier layers. The overall light extraction efficiency of these devices, as well as its wavelength and angular dependencies, are measured by comparing the efficiencies of devices with and without microlens arrays. In conclusion, we have demonstrated the feasibility of applying inkjet printed microlens arrays to enhance the light extraction efficiency of top-emitting white OLEDs. We have shown that the geometry (contact angle) of the printed microlenses can be controlled by controlling the surface chemistry prior to printing the lenses. A 90% enhancement in the light extraction efficiency has been achieved with printed microlens array on a top-emitting white OLED, which can be further improved to 140% using a more close-packed microlens array fabricated from a molding process. Future work will focus on improvement of the microlens fabrication process to improve the array fill factor and the contact angle, as well as use transparent materials with a higher index of refraction. We will also further optimize the procedures for integrating the microlenses on the top-emitting white OLEDs and characterize the overall light extraction enhancement factor when the microlens array is attached.

  5. High-temperature luminescence in an n-GaSb/n-InGaAsSb/p-AlGaAsSb light-emitting heterostructure with a high potential barrier

    SciTech Connect (OSTI)

    Petukhov, A. A., E-mail: andrey-rus29@rambler.ru; Zhurtanov, B. E.; Kalinina, K. V.; Stoyanov, N. D.; Salikhov, H. M.; Mikhailova, M. P.; Yakovlev, Yu. P. [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)] [Russian Academy of Sciences, Ioffe Physical-Technical Institute (Russian Federation)

    2013-09-15

    The electroluminescent properties of an n-GaSb/n-InGaAsSb/p-AlGaAsSb heterostructure with a high potential barrier in the conduction band (large conduction-band offset) at the n-GaSb/n-InGaAsSb type-II heterointerface ({Delta}E{sub c} = 0.79 eV) are studied. Two bands with peaks at 0.28 and 0.64 eV at 300 K, associated with radiative recombination in n-InGaAsSb and n-GaSb, respectively, are observed in the electroluminescence (EL) spectrum. In the entire temperature range under study, T = 290-480 K, additional electron-hole pairs are formed in the n-InGaAsSb active region by impact ionization with hot electrons heated as a result of the conduction-band offset. These pairs contribute to radiative recombination, which leads to a nonlinear increase in the EL intensity and output optical power with increasing pump current. A superlinear increase in the emission power of the long-wavelength band is observed upon heating in the temperature range T = 290-345 K, and a linear increase is observed at T > 345 K. This work for the first time reports an increase in the emission power of a light-emitting diode structure with increasing temperature. It is shown that this rise is caused by a decrease in the threshold energy of the impact ionization due to narrowing of the band gap of the active region.

  6. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting...

  7. Energy Department Offers $10 Million for Energy-Saving Lighting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    manufacturing of solid-state lighting (SSL) technologies. This funding will help accelerate the development of high-quality light-emitting diode (LED) and organic light-emitting ...

  8. White Paper

    Broader source: Energy.gov (indexed) [DOE]

    Baker Fellow Howard H. Baker Jr. Center for Public Policy January 2015 White Paper 1:15 Baker Center Board Cynthia Baker Media Consultant Washington, DC The Honorable Howard H. ...

  9. Another Side of Light - D

    Office of Scientific and Technical Information (OSTI)

    D. Three quantum phenomena In fluorescence, matter absorbs light waves of a high frequency and then emits light of the same or lower frequency. This process was studied and named by George Gabriel Stokes in the mid-19th century. Today, fluorescence is familiar to us from fluorescent light bulbs. A fluorescent bulb's filament produces ultraviolet light, which is absorbed by the bulb's inner coating, which then emits lower-frequency visible light-more visible light than an incandescent bulb

  10. Energy 101: Lighting Choices | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Upgrading 15 of the inefficient incandescent light bulbs in your home to energy-saving incandescent, compact fluorescent lamp (CFL), or light emitting diode (LED) bulbs could save ...

  11. Types of Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    selection. Types of lighting include: Fluorescent Incandescent Outdoor solar Light-emitting diode (LED) Also learn how energy-efficient lightbulbs compare to traditional...

  12. Portland Street Lighting Report (August 2015) | Department of...

    Energy Savers [EERE]

    More Documents & Publications OCTOBER 2015 POSTINGS Detroit Street Lighting Report Demonstration Assessment of Light Emitting Diode (LED) Street Lighting, Final Report

  13. DOE Solid-State Lighting Program: Modest Investments, Extraordinary...

    Energy Savers [EERE]

    Modest Investments, Extraordinary Impacts DOE Solid-State Lighting Program Shaping the Future of Solid-State Lighting Today, LED (light-emitting diode) technologies illuminate ...

  14. High Efficiency Organic Light Emitting Devices for Lighting

    SciTech Connect (OSTI)

    So, Franky; Tansu, Nelson; Gilchrist, James

    2013-06-30

    Incorporate internal scattering layers and microlens arrays in high efficiency OLED to achieve up to 70% EQE.

  15. Solid-State Lighting — Using Light-Emitting Diodes

    SciTech Connect (OSTI)

    2011-12-16

    This section includes general guidelines for buying LED products and addresses how these products perform in specific applications.

  16. Enhanced Light Extraction from Organic Light Emitting Diodes - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Systems » Enhanced Geothermal Systems Demonstration Projects Enhanced Geothermal Systems Demonstration Projects A significant long-term opportunity for widespread power production from new geothermal sources lies in Enhanced Geothermal Systems (EGS), where innovative technology development and deployment could facilitate access to 100+ GW of energy, exponentially more than today's current geothermal capacity. With EGS, we can tap otherwise inaccessible resources in areas that lack traditional

  17. Demonstration Assessment of Light-Emitting Diode Roadway Lighting...

    Office of Scientific and Technical Information (OSTI)

    Authors: Myer, Michael ; Hazra, Oindrila ; Kinzey, Bruce R. Publication Date: 2011-12-01 OSTI Identifier: 1074332 Report Number(s): PNNL-21022 BT0301000 DOE Contract Number: ...

  18. Prospects for LED lighting.

    SciTech Connect (OSTI)

    Tsao, Jeffrey Yeenien; Gee, James Martin; Simmons, Jerry Alvon

    2003-08-01

    Solid-state lighting using light-emitting diodes (LEDs) has the potential to reduce energy consumption for lighting by 50% while revolutionizing the way we illuminate our homes, work places, and public spaces. Nevertheless, substantial technical challenges remain in order for solid-state lighting to significantly displace the well-developed conventional lighting technologies. We review the potential of LED solid-state lighting to meet the long-term cost goals.

  19. Monolithic integration of InGaN segments emitting in the blue, green, and red spectral range in single ordered nanocolumns

    SciTech Connect (OSTI)

    Albert, S.; Bengoechea-Encabo, A.; Sanchez-Garcia, M. A.; Calleja, E.

    2013-05-06

    This work reports on the selective area growth by plasma-assisted molecular beam epitaxy and characterization of InGaN/GaN nanocolumnar heterostructures. The optimization of the In/Ga and total III/V ratios, as well as the growth temperature, provides control on the emission wavelength, either in the blue, green, or red spectral range. An adequate structure tailoring and monolithic integration in a single nanocolumnar heterostructure of three InGaN portions emitting in the red-green-blue colors lead to white light emission.

  20. Flexible liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Kross, B.J.; Majewski, S.; Zorn, C.J.; Majewski, L.A.

    1997-11-04

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. 12 figs.

  1. Flexible liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Kross, Brian J.; Majewski, Stanislaw; Zorn, Carl J.; Majewski, Lukasz A.

    1997-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures.

  2. LED Lighting: Applying Lessons Learned from the CFL Experience

    SciTech Connect (OSTI)

    McCullough, Jeffrey J.; Gilbride, Theresa L.; Gordon, Kelly L.; Ledbetter, Marc R.; Sandahl, Linda J.; Ton, My K.

    2008-08-20

    Light emitting diode (LED) technology has emerged as an exciting new lighting alternative with the potential for significant energy savings. There is concern, however, that white light LEDs for general illumination could take a long, bumpy course similar to another energy-efficient lighting technology – compact fluorescent lights (CFLs). Recognizing the significant potential energy-efficient lighting has to reduce U.S. energy consumption, Congress mandated in the Energy Policy Act of 2005 that the U.S. Department of Energy (DOE) develop Solid State Lighting (SSL) through a Next Generation Lighting Initiative. DOE’s first step was to analyze the market introduction of compact fluorescent lighting to determine what lessons could be learned to smooth the introduction of SSL in the United States (Sandahl et al. 2006). This paper summarizes applicable lessons learned from the market introduction of CFLs and describe how DOE and others are applying those lessons to speed the development and market introduction of energy-efficient LED lighting for general illumination applications. A description of the current state of LED technology and compares LEDs to incandescent, fluorescent, and halogen lights is also provided.

  3. Jonathan White

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management Programs Advanced Nuclear Energy

  4. Daniel White

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Daniel White About ESnet Our Mission The Network ESnet History Governance & Policies Career Opportunities ESnet Staff & Org Chart Administration Advanced Network Technologies Cybersecurity Infrastructure, Identity & Collaboration Network Engineering Network Planning Operational Enhancements Office of the CTO Science Engagement Tools Team Contact Us Contact Us Technical Assistance: 1 800-33-ESnet (Inside US) 1 800-333-7638 (Inside US) 1 510-486-7600 (Globally) 1 510-486-7607

  5. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    are directional, focusing light in ways that are useful in homes and commercial settings. The light-emitting diode (LED) is one of today's most energy-efficient and...

  6. Solid state lighting component

    DOE Patents [OSTI]

    Yuan, Thomas; Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald

    2010-10-26

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  7. Solid state lighting component

    DOE Patents [OSTI]

    Keller, Bernd; Ibbetson, James; Tarsa, Eric; Negley, Gerald; Yuan, Thomas

    2012-07-10

    An LED component comprising an array of LED chips mounted on a planar surface of a submount with the LED chips capable of emitting light in response to an electrical signal. The LED chips comprise respective groups emitting at different colors of light, with each of the groups interconnected in a series circuit. A lens is included over the LED chips. Other embodiments can comprise thermal spreading structures included integral to the submount and arranged to dissipate heat from the LED chips.

  8. Development of Advanced LED Phosphors by Spray-based Processes for Solid State Lighting

    SciTech Connect (OSTI)

    Cabot Corporation

    2007-09-30

    The overarching goal of the project was to develop luminescent materials using aerosol processes for making improved LED devices for solid state lighting. In essence this means improving white light emitting phosphor based LEDs by improvement of the phosphor and phosphor layer. The structure of these types of light sources, displayed in Figure 1, comprises of a blue or UV LED under a phosphor layer that converts the blue or UV light to a broad visible (white) light. Traditionally, this is done with a blue emitting diode combined with a blue absorbing, broadly yellow emitting phosphor such as Y{sub 3}Al{sub 5}O{sub 12}:Ce (YAG). A similar result may be achieved by combining a UV emitting diode and at least three different UV absorbing phosphors: red, green, and blue emitting. These emitted colors mix to make white light. The efficiency of these LEDs is based on the combined efficiency of the LED, phosphor, and the interaction between the two. The Cabot SSL project attempted to improve the over all efficiency of the LED light source be improving the efficiency of the phosphor and the interaction between the LED light and the phosphor. Cabot's spray based process for producing phosphor powders is able to improve the brightness of the powder itself by increasing the activator (the species that emits the light) concentration without adverse quenching effects compared to conventional synthesis. This will allow less phosphor powder to be used, and will decrease the cost of the light source; thus lowering the barrier of entry to the lighting market. Cabot's process also allows for chemical flexibility of the phosphor particles, which may result in tunable emission spectra and so light sources with improved color rendering. Another benefit of Cabot's process is the resulting spherical morphology of the particles. Less light scattering results when spherical particles are used in the phosphor layer (Figure 1) compared to when conventional, irregular shaped phosphor particles are used. This spherical morphology will result in better light extraction and so an improvement of efficiency in the overall device. Cabot is a 2.5 billion dollar company that makes specialized materials using propriety spray based technologies. It is a core competency of Cabot's to exploit the spray based technology and resulting material/morphology advantages. Once a business opportunity is clearly identified, Cabot is positioned to increase the scale of the production to meet opportunity's need. Cabot has demonstrated the capability to make spherical morphology micron-sized phosphor powders by spray based routes for PDP and CRT applications, but the value proposition is still unproven for LED applications. Cabot believes that the improvements in phosphor powders yielded by their process will result in a commercial advantage over existing technologies. Through the SSL project, Cabot has produced a number of different compositions in a spherical morphology that may be useful for solid state lights, as well as demonstrated processes that are able to produce particles from 10 nanometers to 3 micrometers. Towards the end of the project we demonstrated that our process produces YAG:Ce powder that has both higher internal quantum efficiency (0.6 compared to 0.45) and external quantum efficiency (0.85 compared to 0.6) than the commercial standard (see section 3.4.4.3). We, however, only produced these highly bright materials in research and development quantities, and were never able to produce high quantum efficiency materials in a reproducible manner at a commercial scale.

  9. Save Money with LED Holiday Light Strings

    Broader source: Energy.gov [DOE]

    LED (or light emitting diode) light strings can use 90% less energy than regular incandescent light strings. They also last about ten times longer, are cooler than incandescents (reducing fire hazards), and are more durable.

  10. EECBG Success Story: Lighting Retrofit Improving Visibility,...

    Broader source: Energy.gov (indexed) [DOE]

    New LED lighting fixtures (right) emit a whiter light than existing high-pressure sodium cobra head streetlights (left) and don't spill light onto nearby houses. | Photos courtesy ...

  11. DOE Announces Winners of Lighting for Tomorrow 2010 Competition...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2004. This year, the SSL competition was expanded beyond fixtures to include light-emitting diode (LED) replacement bulbs as well as lighting control devices that are compatible...

  12. Atmospheric Emitted Radiance Interferometer

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gero, Jonathan; Ermold, Brian; Gaustad, Krista; Koontz, Annette; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth’s atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols. The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3–19.2 μm (520–3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3–25.0 μm (400–3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.

  13. LED Lighting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Electricity & Fuel » Lighting » LED Lighting LED Lighting LED Lighting The light-emitting diode (LED) is one of today's most energy-efficient and rapidly-developing lighting technologies. Quality LED light bulbs last longer, are more durable, and offer comparable or better light quality than other types of lighting. Check out the top 8 things you didn't know about LEDs to learn more. Energy Savings LED is a highly energy efficient lighting technology, and has the potential to fundamentally

  14. A monolithic white LED with an active region based on InGaN QWs separated by short-period InGaN/GaN superlattices

    SciTech Connect (OSTI)

    Tsatsulnikov, A. F. Lundin, W. V.; Sakharov, A. V.; Zavarin, E. E.; Usov, S. O.; Nikolaev, A. E.; Kryzhanovskaya, N. V.; Synitsin, M. A.; Sizov, V. S.; Zakgeim, A. L.; Mizerov, M. N.

    2010-06-15

    A new approach to development of effective monolithic white-light emitters is described based on using a short-period InGaN/GaN superlattice as a barrier layer in the active region of LED structures between InGaN quantum wells emitting in the blue and yellow-green spectral ranges. The optical properties of structures of this kind have been studied, and it is demonstrated that the use of such a superlattice makes it possible to obtain effective emission from the active region.

  15. Lighting Choices - White Background | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Image icon All of these lightbulbs-CFLs, LEDs, and energy-saving incandescents-meet the new energy standards that take effect from 2012-2014....

  16. Solid-State Lighting Consortia

    Broader source: Energy.gov [DOE]

    Most potential users of light-emitting diode (LED) lighting do not have large training budgets to independently educate themselves; participation in the Solid-State Lighting (SSL) Consortia is a low-cost–low-risk way to benefit from the knowledge and experience of others.

  17. Light-storing photocatalyst

    SciTech Connect (OSTI)

    Zhang Junying; Pan Feng; Hao Weichang; Ge Qi; Wang Tianmian

    2004-12-06

    Light-storing photocatalyst was prepared by coating light-storing phosphor and TiO{sub 2} photocatalyst in sequence on ceramic. The light-storing photocatalyst can store light irradiation and emit slowly. Consequently, the photocatalyst remains active when the irradiation source is cut off. Rhodamine B (RhB) can be decomposed efficiently by this photocatalyst in the dark after it absorbs light irradiation. This photocatalyst is photoreactive in an outdoor environment or can save energy by supplying irradiation intermittently for the photocatalyst.

  18. High-Power Warm-White Hybrid LED Package for Illumination

    SciTech Connect (OSTI)

    Soer, Wouter

    2013-09-19

    In this project, an integrated warm-white hybrid light engine was developed. The hybrid approach involves combining phosphor-converted off-white InGaN LEDs and direct-emitting red AlInGaP LEDs in a single light engine to achieve high efficacy together with high color rendering index. We developed and integrated technology improvements in InGaN and AlInGaP die technology, phosphor technology, package architecture and encapsulation, to realize a hybrid warm-white LED package with an efficacy of 140 lm/W at a correlated color temperature of 3000K and a color rendering index of 90, measured under representative operating conditions. This efficacy is 26% higher than the best warm-white LEDs of similar specification that are commercially available at the end of the project. Since the InGaN- and AlInGaP-based LEDs used in the hybrid engine show different behavior as a function of current and temperature, a control system needs to be in place to ensure a stable color point over all operating conditions. In this project, we developed an electronic control circuit that is fully integrated into the light engine in such a way that the module can simply be driven by a conventional single-channel driver. The integrated control circuit uses a switch-mode boost converter topology to control the LED drive currents based on the temperature and the input current of the light engine. A color control performance of 5 SDCM was demonstrated, and improvement to 3 SDCM is considered well within reach. The combination of high efficacy and ease of integration with existing single-channel drivers is expected to facilitate the adoption of the hybrid technology and accelerate the energy savings associated with solid-state lighting. In the product commercialization plan, downlights and indirect-lit troffers have been selected as the first target applications for this product concept. Fully functional integrated prototypes have been developed for both applications, and the business case evaluation is ongoing as of the end of the project.

  19. Doing Business with DOE's Solid-State Lighting Program

    Energy Savers [EERE]

    Doing Business with DOE's Solid-State Lighting Program Solid-state lighting (SSL) is an emerging technology that promises to make a significant impact on solving our nation's energy and environmental challenges. With the promise of being more than ten times as effcient as incandescent lighting and twice as effcient as fuorescent light- ing, SSL products using light-emitting diodes (LEDs) and organic light-emitting diodes (OLEDs) will mean "greener" homes and businesses that use

  20. Healthcare Energy: Spotlight on Lighting and Other Electric Loads |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Lighting and Other Electric Loads Healthcare Energy: Spotlight on Lighting and Other Electric Loads Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 Compact fluorescent, light-emitting diode, and energy-saving incandescent light bulbs. | Image by Dennis Schroeder/NREL 19469 The Building Technologies Office conducted a healthcare energy end-use monitoring project in partnership with two

  1. Effective White Light Options for Parking Area Lighting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    However, high-pressure sodium technology is not without its drawbacks, such as low color rendition, a result of its narrow spectral distribution and low color temperature-sometimes ...

  2. High Efficiency, Illumination Quality OLEDs for Lighting

    SciTech Connect (OSTI)

    Joseph Shiang; James Cella; Kelly Chichak; Anil Duggal; Kevin Janora; Chris Heller; Gautam Parthasarathy; Jeffery Youmans; Joseph Shiang

    2008-03-31

    The goal of the program was to demonstrate a 45 lumen per watt white light device based upon the use of multiple emission colors through the use of solution processing. This performance level is a dramatic extension of the team's previous 15 LPW large area illumination device. The fundamental material system was based upon commercial polymer materials. The team was largely able to achieve these goals, and was able to deliver to DOE a 90 lumen illumination source that had an average performance of 34 LPW a 1000 cd/m{sup 2} with peak performances near 40LPW. The average color temperature is 3200K and the calculated CRI 85. The device operated at a brightness of approximately 1000cd/m{sup 2}. The use of multiple emission colors particularly red and blue, provided additional degrees of design flexibility in achieving white light, but also required the use of a multilayered structure to separate the different recombination zones and prevent interconversion of blue emission to red emission. The use of commercial materials had the advantage that improvements by the chemical manufacturers in charge transport efficiency, operating life and material purity could be rapidly incorporated without the expenditure of additional effort. The program was designed to take maximum advantage of the known characteristics of these material and proceeded in seven steps. (1) Identify the most promising materials, (2) assemble them into multi-layer structures to control excitation and transport within the OLED, (3) identify materials development needs that would optimize performance within multilayer structures, (4) build a prototype that demonstrates the potential entitlement of the novel multilayer OLED architecture (5) integrate all of the developments to find the single best materials set to implement the novel multilayer architecture, (6) further optimize the best materials set, (7) make a large area high illumination quality white OLED. A photo of the final deliverable is shown. In 2003, a large area, OLED based illumination source was demonstrated that could provide light with a quality, quantity, and efficiency on par with what can be achieved with traditional light sources. The demonstration source was made by tiling together 16 separate 6-inch x 6-inch blue-emitting OLEDs. The efficiency, total lumen output, and lifetime of the OLED based illumination source were the same as what would be achieved with an 80 watt incandescent bulb. The devices had an average efficacy of 15 LPW and used solution-processed OLEDs. The individual 6-inch x 6-inch devices incorporated three technology strategies developed specifically for OLED lighting -- downconversion for white light generation, scattering for outcoupling efficiency enhancement, and a scalable monolithic series architecture to enable large area devices. The downconversion approach consists of optically coupling a blue-emitting OLED to a set of luminescent layers. The layers are chosen to absorb the blue OLED emission and then luminescence with high efficiency at longer wavelengths. The composition and number of layers are chosen so that the unabsorbed blue emission and the longer wavelength re-emission combine to make white light. A downconversion approach has the advantage of allowing a wide variety of colors to be made from a limited set of blue emitters. In addition, one does not have to carefully tune the emission wavelength of the individual electro-luminescent species within the OLED device in order to achieve white light. The downconversion architecture used to develop the 15LPW large area light source consisted of a polymer-based blue-emitting OLED and three downconversion layers. Two of the layers utilized perylene based dyes from BASF AG of Germany with high quantum efficiency (>98%) and one of the layers consisted of inorganic phosphor particles (Y(Gd)AG:Ce) with a quantum efficiency of {approx}85%. By independently varying the optical density of the downconversion layers, the overall emission spectrum could be adjusted to maximize performance for lighting (e.g. blackbody temperature, color rendering and luminous efficacy) while keeping the properties of the underlying blue OLED constant. The success of the downconversion approach is ultimately based upon the ability to produce efficient emission in the blue. Table 1 presents a comparison of the current performance of the conjugated polymer, dye-doped polymer, and dendrimer approaches to making a solution-processed blue OLED as 2006. Also given is the published state of the art performance of a vapor-deposited blue OLED. One can see that all the approaches to a blue OLED give approximately the same external quantum efficiency at 500 cd/m{sup 2}. However, due to its low operating voltage, the fluorescent conjugated polymer approach yields a superior power efficiency at the same brightness.

  3. Light source comprising a common substrate, a first led device and a second led device

    DOE Patents [OSTI]

    Choong, Vi-En

    2010-02-23

    At least one stacked organic or polymeric light emitting diode (PLEDs) devices to comprise a light source is disclosed. At least one of the PLEDs includes a patterned cathode which has regions which transmit light. The patterned cathodes enable light emission from the PLEDs to combine together. The light source may be top or bottom emitting or both.

  4. Today LED Holiday Lights, Tomorrow the World?

    SciTech Connect (OSTI)

    Gordon, Kelly L.

    2004-12-20

    This article for The APEM Advantage, the quarterly newsletter of the Association of Professional Energy Managers (APEM) describes the recent increase in the popularity of light emitting diode (LED) lighting and compares LED light output with that of incandescent and compact fluorescent lighting.

  5. Low Voltage White Phosphorescent OLED Achievements

    Broader source: Energy.gov [DOE]

    Universal Display Corporation (UDC) and its research partners at Princeton University and the University of Southern California have succeeded in developing a white phosphorescent OLED (PHOLED™) that achieved a record efficiency of 20 lumens per watt. This achievement is the result of the team's collaborative efforts to increase the efficiency of PHOLED lighting by focusing on two critical factors: lowering the drive voltages and increasing the amount of light extracted.

  6. Text-Alternative Version LED Lighting Forecast

    Office of Energy Efficiency and Renewable Energy (EERE)

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  7. Polymer and small molecule based hybrid light source

    DOE Patents [OSTI]

    Choong, Vi-En; Choulis, Stelios; Krummacher, Benjamin Claus; Mathai, Mathew; So, Franky

    2010-03-16

    An organic electroluminescent device, includes: a substrate; a hole-injecting electrode (anode) coated over the substrate; a hole injection layer coated over the anode; a hole transporting layer coated over the hole injection layer; a polymer based light emitting layer, coated over the hole transporting layer; a small molecule based light emitting layer, thermally evaporated over the polymer based light emitting layer; and an electron-injecting electrode (cathode) deposited over the electroluminescent polymer layer.

  8. Device structure for OLED light device having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Antoniadis; Homer , Krummacher; Benjamin Claus

    2008-01-22

    An apparatus such as a light source has a multi-element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  9. OLED lighting devices having multi element light extraction and luminescence conversion layer

    DOE Patents [OSTI]

    Krummacher, Benjamin Claus; Antoniadis, Homer

    2010-11-16

    An apparatus such as a light source has a multi element light extraction and luminescence conversion layer disposed over a transparent layer of the light source and on the exterior of said light source. The multi-element light extraction and luminescence conversion layer includes a plurality of light extraction elements and a plurality of luminescence conversion elements. The light extraction elements diffuses the light from the light source while luminescence conversion elements absorbs a first spectrum of light from said light source and emits a second spectrum of light.

  10. Application Assessment of Bi-Level LED Parking Lot Lighting

    SciTech Connect (OSTI)

    Johnson, Megan; Cook, Tyson; Shackelford, Jordan; Pang, Terrance

    2009-02-01

    This report summarizes an assessment project conducted to evaluate light-emitting diode (LED) luminaires with bi-level operation in an outdoor parking lot application.

  11. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, R.P.; Lott, J.A.

    1994-09-27

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors. 5 figs.

  12. Electrically injected visible vertical cavity surface emitting laser diodes

    DOE Patents [OSTI]

    Schneider, Richard P.; Lott, James A.

    1994-01-01

    Visible laser light output from an electrically injected vertical cavity surface emitting laser (VSCEL) diode is enabled by the addition of phase-matching spacer layers on either side of the active region to form the optical cavity. The spacer layers comprise InAlP which act as charge carrier confinement means. Distributed Bragg reflector layers are formed on either side of the optical cavity to act as mirrors.

  13. Demonstration Assessment of Light-Emitting Diode (LED) Street...

    Office of Scientific and Technical Information (OSTI)

    monochromatic spectral output and poor color rendering ability; therefore, this LED ... Subject: 72 PHYSICS OF ELEMENTARY PARTICLES AND FIELDS; COLOR; DEMONSTRATION PROGRAMS; ...

  14. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, Jerry M.; Kurtz, Sarah R.

    1992-01-01

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect.

  15. Tunnel junction multiple wavelength light-emitting diodes

    DOE Patents [OSTI]

    Olson, J.M.; Kurtz, S.R.

    1992-11-24

    A multiple wavelength LED having a monolithic cascade cell structure comprising at least two p-n junctions, wherein each of said at least two p-n junctions have substantially different band gaps, and electrical connector means by which said at least two p-n junctions may be collectively energized; and wherein said diode comprises a tunnel junction or interconnect. 5 figs.

  16. Demonstration Assessment of Light-Emitting Diode (LED) Parking...

    Office of Scientific and Technical Information (OSTI)

    In comparison to the 400W PMH system, the LED system would save 44 percent of the energy ... This demonstration met the GATEWAY requirements of saving energy, matching or improving ...

  17. Intermediate connector for stacked organic light emitting devices

    DOE Patents [OSTI]

    D'Andrade, Brian

    2013-02-12

    A device is provided, having an anode, a cathode, and an intermediate connector disposed between the anode and the cathode. A first organic layer including an emissive sublayer is disposed between the anode and the intermediate connector, and a second including an emissive sublayer is disposed between the intermediate connector and the cathode. The intermediate connector includes a first metal having a work function lower than 4.0 eV and a second metal having a work function lower than 5.0 eV. The work function of the first metal is at least 0.5 eV less than the work function of the second metal. The first metal is in contact with a sublayer of the second organic layer that includes a material well adapted to receive holes from a low work function metal.

  18. Demonstration Assessment of Light-Emitting Diode (LED) Accent...

    Office of Scientific and Technical Information (OSTI)

    Authors: Myer, Michael ; Kinzey, Bruce R. Publication Date: 2010-12-10 OSTI Identifier: 1004825 Report Number(s): PNNL-20005 BT0301000; TRN: US201105%%110 DOE Contract Number: ...

  19. Demonstration Assessment of Light-Emitting Diode Parking Structure...

    Office of Scientific and Technical Information (OSTI)

    Staff at DOL Headquarters reported high satisfaction with the operation of the LED product. Authors: Kinzey, Bruce R. ; Myer, Michael Publication Date: 2013-03-01 OSTI Identifier: ...

  20. Demonstration of Light-Emitting Diode (LED) Retrofit Lamps

    SciTech Connect (OSTI)

    Miller, N.

    2011-09-01

    GATEWAY program report on a demonstration of LED retrofit lamps at the Jordan Schnitzer Museum of art in Eugene, OR

  1. Promising Technology: High Bay Light-Emitting Diodes

    Broader source: Energy.gov [DOE]

    High bay LEDs offer several advantages over conventional high intensity discharge (HID) luminaires including longer lifetimes, reduced maintenance costs, and lower energy consumption.

  2. Promising Technology: Parking Lot Light-Emitting Diodes with Controls

    Broader source: Energy.gov [DOE]

    LEDs offer several advantages over conventional high intensity discharge (HID) luminaires. LEDs have longer life times, reduced maintenance and operating costs, superior color rendition, and lower energy consumption.

  3. DOE Releases Latest Report on Energy Savings Forecast of Solid-State Lighting

    Broader source: Energy.gov [DOE]

    DOE has published a new report forecasting the energy savings of LED white-light sources compared with conventional white-light sources. The sixth iteration of the Energy Savings Forecast of Solid...

  4. BPA White Book (generation/planning)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White Book 2011 White Book 2010 White Book 2009 White Book 2008 White Book The 2008 White Book was not formally published due to work load constraints associated with completion of...

  5. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, R.F.; Majewski, S.; Zorn, C.J.; Kross, B.

    1999-04-20

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs. 19 figs.

  6. Flexible, liquid core light guide with focusing and light shaping attachments

    DOE Patents [OSTI]

    Wojcik, Randolph Frank; Majewski, Stanislaw; Zorn, Carl John; Kross, Brian

    1999-01-01

    A liquid light guide system for ultraviolet light is disclosed that has a light shaping arrangement for the emitted light, a stable liquid core and sheath and reliable and effective end closures. The end closures include a metal crimping arrangement that utilizes two layers of deformable materials to prevent cracking of endplugs.

  7. Green Light Pulse Oximeter

    DOE Patents [OSTI]

    Scharf, John Edward

    1998-11-03

    A reflectance pulse oximeter that determines oxygen saturation of hemoglobin using two sources of electromagnetic radiation in the green optical region, which provides the maximum reflectance pulsation spectrum. The use of green light allows placement of an oximetry probe at central body sites (e.g., wrist, thigh, abdomen, forehead, scalp, and back). Preferably, the two green light sources alternately emit light at 560 nm and 577 nm, respectively, which gives the biggest difference in hemoglobin extinction coefficients between deoxyhemoglobin, RHb, and oxyhemoglobin, HbO.sub.2.

  8. White Tail | Open Energy Information

    Open Energy Info (EERE)

    Tail Jump to: navigation, search Name White Tail Facility White Tail Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Exelon Wind Developer...

  9. LED intense headband light source for fingerprint analysis

    DOE Patents [OSTI]

    Villa-Aleman, Eliel

    2005-03-08

    A portable, lightweight and high-intensity light source for detecting and analyzing fingerprints during field investigation. On-site field analysis requires long hours of mobile analysis. In one embodiment, the present invention comprises a plurality of light emitting diodes; a power source; and a personal attachment means; wherein the light emitting diodes are powered by the power source, and wherein the power source and the light emitting diodes are attached to the personal attachment means to produce a personal light source for on-site analysis of latent fingerprints. The present invention is available for other applications as well.

  10. Shedding new light on LEDs | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    thing they aren't very good at: efficiently emitting light in the yellow-green spectrum. ... of LED lights in order to build highly efficient LEDs in the yellow-green spectrum. ...

  11. New DOE Report Estimates LED Savings in Common Lighting Applications

    Broader source: Energy.gov [DOE]

    The U.S. Department of Energy (DOE) has released its latest report in a series analyzing markets where LEDs compete with traditional lighting sources. The new report, Adoption of Light-Emitting...

  12. When to Turn Off Your Lights | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    are not already factored into the rate. LED Lighting The operating life of a light emitting diode (LED) is unaffected by turning it on and off. While lifetime is reduced for...

  13. EcoSense Lighting Inc | Open Energy Information

    Open Energy Info (EERE)

    New York Zip: 10002-2434 Product: New York City-based developer of energy efficient, solid-state lighting products., including light emitting diodes. References: EcoSense...

  14. Keeping Light in Tune | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Keeping Light in Tune Much like being slightly off the frequency of a radio station destroys radio reception, the quality of light-emitting technologies has, until now, been severely limited by random fluctuations in the frequency of the emitted photons. Scientists demonstrated how this photon detuning can be suppressed using a series of short, controlled pulses applied to the emitter. The elegant solution is robust and applicable for many quantum systems, removing a major roadblock on the way

  15. Development of bottom-emitting 1300 nm vertical-cavity surface-emitting

    Office of Scientific and Technical Information (OSTI)

    lasers. (Journal Article) | SciTech Connect Journal Article: Development of bottom-emitting 1300 nm vertical-cavity surface-emitting lasers. Citation Details In-Document Search Title: Development of bottom-emitting 1300 nm vertical-cavity surface-emitting lasers. No abstract prepared. Authors: Fish, M. A. [1] ; Serkland, Darwin Keith ; Guilfoyle, Peter S. [1] ; Stone, Richard V. [1] ; Klem, John Frederick ; Louderback, Duane A. [1] ; Choquette, Kent D. [2] ; Pickrell, G. W. [1] + Show Author

  16. Photoluminescence of titanium-doped zinc spinel blue-emitting nanophosphors

    SciTech Connect (OSTI)

    Tsai, Mu-Tsun; Chang, Yee-Shin; Chou, You-Hsin; Tsai, Kai-Min

    2014-06-01

    A blue-emitting phosphor of titanium-doped zinc spinel (ZnAl{sub 2}O{sub 4}:Ti; Ti=06.0 mol% in relation to Al) nanopowders was prepared by a simple solgel method. On annealing at 1000 C, single-phase ZnAl{sub 2}O{sub 4}:Ti powders had primary particles of 2530 nm in size and most Ti ions in the form of Ti{sup 4+}. Under UV excitation at 280 nm, a strong and broad blue emission centered at 435 nm was observed. The sources of the excitation and emission were assigned to the charge-transfer excitation and recombination between O{sup 2}Ti{sup 4+} and Ti{sup 3+}O{sup } ion pairs. Optimum brightness occurred at a doping of 2.0 mol% Ti. The decay lifetime of ZnAl{sub 2}O{sub 4}:2%Ti was calculated to be 3.0 ms for the blue emission with CIE coordinates of x=0.168 and y=0.153. The results suggest that ZnAl{sub 2}O{sub 4}:Ti is a promising candidate for application as a blue component phosphor for UV-converting white light-emitting diodes. - Graphical abstract: The absorption band around 270 nm is associated with the charge-transfer processes between octahedral Ti{sup 4+} and O{sup 2?} ions. The excitation band around 280 nm corresponds to the charge-transfer excitations from O{sup 2}(2p){sup 6} electrons to Ti{sup 4+} (3d{sup 0}). Under 280 nm excitation, the PL spectrum shows a strong blue emission with a peak at around 435 nm. - Highlights: Single-phase ZnAl{sub 2}O{sub 4}:Ti nanocrystals have been synthesized by a solgel process. Under UV excitation at 280 nm, the blue emission centered at 435 nm is observed. Blue emission is attributed to a charge-transfer transition involving the Ti{sup 4+} ions.

  17. White House Meeting Honors New Superior Energy Performance Members |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Superior Energy Performance » White House Meeting Honors New Superior Energy Performance Members White House Meeting Honors New Superior Energy Performance Members December 13, 2013 - 11:39am Addthis New Superior Energy Performance (SEP) members 3M Company, Cummins Inc., General Dynamics OTS, Nissan, Schneider Electric, and Volvo Group North America from industry, and the Bonneville Power Administration, Efficiency Vermont, and Northeast Utilities (Connecticut Light

  18. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, Scott; Walko, Robert J.; Ashley, Carol S.; Brinker, C. Jeffrey

    1994-01-01

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light.

  19. Inorganic volumetric light source excited by ultraviolet light

    DOE Patents [OSTI]

    Reed, S.; Walko, R.J.; Ashley, C.S.; Brinker, C.J.

    1994-04-26

    The invention relates to a composition for the volumetric generation of radiation. The composition comprises a porous substrate loaded with a component capable of emitting radiation upon interaction with an exciting radiation. Preferably, the composition is an aerogel substrate loaded with a component, e.g., a phosphor, capable of interacting with exciting radiation of a first energy, e.g., ultraviolet light, to produce radiation of a second energy, e.g., visible light. 4 figures.

  20. Strategy Guideline: High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    The Strategy Guideline: High Performance Residential Lighting has been developed to provide a tool for the understanding and application of high performance lighting in the home. The high performance lighting strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner's expectations for high quality lighting.

  1. Saving Energy in Altoona Where it Counts: City Lights | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Downtown sure looks different with all of that white LED light," says Lee Slusser, the city's deputy director and planning administrator. "The light color coming off is so much ...

  2. White House Tribal Nations Conference

    Broader source: Energy.gov [DOE]

    The White House will host the seventh annual Tribal Nations Conference to allow tribal leaders to engage with the President, cabinet officials, and the White House Council on Native America Affairs about key issues facing tribes.

  3. White House Tribal Youth Gathering

    Broader source: Energy.gov [DOE]

    The White House will host the first-ever White House Tribal Youth Gathering to provide American Indian and Alaska Native youth from across the country the opportunity to interact directly with senior Administration officials and the White House Council on Native American Affairs. Registration is due May 8, 2015.

  4. Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Quantico Achieves 85% Savings in Parking Lighting Marine Corps Base Quantico Achieves 85% Savings in Parking Lighting Marine Corps Base Quantico (MCBQ) in Virginia Marine Corps Base Quantico (MCBQ) in Virginia Document provides an overview of how the Marine Corps Base Quantico (MCBQ) achieved 85% energy savings in parking lighting at one of its parking lots as part of a major overhaul of its outdoor lighting (replacing 2,000 fixtures with light-emitting diode lights),

  5. Electroluminescent device having improved light output

    DOE Patents [OSTI]

    Tyan; Yuan-Sheng; Preuss, Donald R.; Farruggia, Giuseppe; Kesel, Raymond A.; Cushman, Thomas R.

    2011-03-22

    An OLED device including a transparent substrate having a first surface and a second surface, a transparent electrode layer disposed over the first surface of the substrate, a short reduction layer disposed over the transparent electrode layer, an organic light-emitting element disposed over the short reduction layer and including at least one light-emitting layer and a charge injection layer disposed over the light emitting layer, a reflective electrode layer disposed over the charge injection layer and a light extraction enhancement structure disposed over the first or second surface of the substrate; wherein the short reduction layer is a transparent film having a through-thickness resistivity of 10.sup.-9 to 10.sup.2 ohm-cm.sup.2; wherein the reflective electrode layer includes Ag or Ag alloy containing more than 80% of Ag; and the total device size is larger than 10 times the substrate thickness.

  6. Light extraction block with curved surface

    DOE Patents [OSTI]

    Levermore, Peter; Krall, Emory; Silvernail, Jeffrey; Rajan, Kamala; Brown, Julia J.

    2016-03-22

    Light extraction blocks, and OLED lighting panels using light extraction blocks, are described, in which the light extraction blocks include various curved shapes that provide improved light extraction properties compared to parallel emissive surface, and a thinner form factor and better light extraction than a hemisphere. Lighting systems described herein may include a light source with an OLED panel. A light extraction block with a three-dimensional light emitting surface may be optically coupled to the light source. The three-dimensional light emitting surface of the block may includes a substantially curved surface, with further characteristics related to the curvature of the surface at given points. A first radius of curvature corresponding to a maximum principal curvature k.sub.1 at a point p on the substantially curved surface may be greater than a maximum height of the light extraction block. A maximum height of the light extraction block may be less than 50% of a maximum width of the light extraction block. Surfaces with cross sections made up of line segments and inflection points may also be fit to approximated curves for calculating the radius of curvature.

  7. DOE Publishes CALiPER Report on the Photometric Testing of White...

    Broader source: Energy.gov (indexed) [DOE]

    The main goal of the new study was to understand the amount of testing required to characterize a white-tunable LED lighting product. In this case, determining a sufficient ...

  8. Erick A. White | Bioenergy | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Erick A. White Erick A. White Research Engineer Erick.White@nrel.gov | 303-384-6238 Research Interests Electrochemical and thermochemical conversion of biomass-derived compounds to chemicals and fuels Numeric modeling of chemical reaction kinetics and reactor hydrodynamics Process modeling to assist techno-economic analyses Electrochemical impedance spectroscopy techniques for the characterization of electrochemical systems Developing and characterizing reactors and systems for energy generation

  9. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron...

    Office of Scientific and Technical Information (OSTI)

    the public from the National Technical Information Service, Springfield, VA at www.ntis.gov. We describe a beam profile monitor design based on Cherenkov light emitted from a ...

  10. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron...

    Office of Scientific and Technical Information (OSTI)

    We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers ...

  11. Electrically pumped edge-emitting photonic bandgap semiconductor laser

    DOE Patents [OSTI]

    Lin, Shawn-Yu; Zubrzycki, Walter J.

    2004-01-06

    A highly efficient, electrically pumped edge-emitting semiconductor laser based on a one- or two-dimensional photonic bandgap (PBG) structure is described. The laser optical cavity is formed using a pair of PBG mirrors operating in the photonic band gap regime. Transverse confinement is achieved by surrounding an active semiconductor layer of high refractive index with lower-index cladding layers. The cladding layers can be electrically insulating in the passive PBG mirror and waveguide regions with a small conducting aperture for efficient channeling of the injection pump current into the active region. The active layer can comprise a quantum well structure. The quantum well structure can be relaxed in the passive regions to provide efficient extraction of laser light from the active region.

  12. Energy Savings Forecast of Solid-State Lighting in General Illumination

    Energy Savers [EERE]

    Estimates of Light Emitting Diodes in Niche Lighting Applications Prepared for: Building Technologies Program Office of Energy Efficiency and Renewable Energy U.S. Department of Energy Prepared by: Navigant Consulting Inc. 1801 K Street, NW Suite 500 Washington DC, 20006 September 2008 * Department of Energy Washington, DC 20585 Energy Savings Estimates of Light Emitting Diodes in Niche Lighting Applications Released: September 2008 Revised: October 2008 This DOE report presents research

  13. Strategy Guideline. High Performance Residential Lighting

    SciTech Connect (OSTI)

    Holton, J.

    2012-02-01

    This report has been developed to provide a tool for the understanding and application of high performance lighting in the home. The strategies featured in this guide are drawn from recent advances in commercial lighting for application to typical spaces found in residential buildings. This guide offers strategies to greatly reduce lighting energy use through the application of high quality fluorescent and light emitting diode (LED) technologies. It is important to note that these strategies not only save energy in the home but also serve to satisfy the homeowner’s expectations for high quality lighting.

  14. What's Next for Solid-State Lighting?

    Energy Savers [EERE]

    - 2 1 Photo 1: LEDs can be designed to mimic skylights or windows. Photo ©The Sky Factory, Community North Hospital, Indianapolis Photo 2: LEDs can be color tuned to maximize plant growth for indoor agriculture. Photo courtesy of GE Lighting What's Next for Solid-State Lighting? A s we stand on the brink of a lighting revolution spearheaded by light-emitting diode (LED) technology, one question on everyone's minds is: what's next for solid-state lighting (SSL)? Formerly just an intriguing

  15. The June 11, 2015, issue of DOE's Solid-State Lighting Postings...

    Energy Savers [EERE]

    16, 2015 The Prospects for Creating Efficient Color-Mixed White LEDs The efficacy of LED lighting products has already surpassed that of traditional technologies for most...

  16. Commercial Lighting

    Broader source: Energy.gov [DOE]

    Commercial lighting accounts for more than 20 percent of total commercial building energy use. The Energy Department works to reduce lighting energy use through research and deployment.

  17. THE WHITE HOUSE | Department of Energy

    Energy Savers [EERE]

    THE WHITE HOUSE THE WHITE HOUSE PDF icon THE WHITE HOUSE More Documents & Publications FACT SHEET: U.S.-China Clean Energy Cooperation Announcements US-China Clean Energy Cooperation Progress Report on U.S.-China Energy Cooperation

    THE WHITE HOUSE THE WHITE HOUSE PDF icon THE WHITE HOUSE More Documents & Publications Audit Report: IG-0473 Lapse Documents Inspection Report: IG-0397

  18. Restoring Detroit's Street Lighting System

    SciTech Connect (OSTI)

    Kinzey, Bruce R.

    2015-10-21

    The City of Detroit is undertaking a comprehensive restoration of its street lighting system that includes transitioning the existing high-pressure sodium (HPS) sources to light-emitting diode (LED). Detroit’s well-publicized financial troubles over the last several years have added many hurdles and constraints to this process. Strategies to overcome these issues have largely been successful, but have also brought some mixed results. This document provides an objective review of the circumstances surrounding the system restoration, the processes undertaken and decisions made, and the results so far.

  19. White Energy Ltd | Open Energy Information

    Open Energy Info (EERE)

    White Energy Ltd Place: Dallas, Texas Zip: 75240 Product: White Energy plans to invest in the development, acquisition and construction of biofuel plants in the USA. Coordinates:...

  20. Whites Renewable Energy | Open Energy Information

    Open Energy Info (EERE)

    Whites Renewable Energy Jump to: navigation, search Name: Whites Renewable Energy Place: United Kingdom Zip: YO8 8EF Sector: Biomass, Renewable Energy Product: UK based company...

  1. Nondestructive Evaluation and Monitoring Projects NASA White...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) Nondestructive Evaluation and Monitoring Projects NASA White Sands Test Facility (WSTF) ...

  2. Science and Technology of Future Light Sources: A White Paper

    SciTech Connect (OSTI)

    Bergmann, Uwe; Corlett, John; Dierker, Steve; Falcone, Roger; Galayda, John; Gibson, Murray; Hastings, Jerry; Hettel, Bob; Hill, John; Hussain, Zahid; Kao, Chi-Chang; Kirz, a= Janos; Long, Gabrielle; McCurdy, Bill; Raubenheimer, Tor; Sannibale, Fernando; Seeman, John; Shen, Z.-X.; Shenoy, Gopal; Schoenlein, Bob; Shen, Qun; /Argonne /Brookhaven /LBL, Berkeley /SLAC, SSRL

    2009-02-03

    Many of the important challenges facing humanity, including developing alternative sources of energy and improving health, are being addressed by advances that demand the improved understanding and control of matter. While the visualization, exploration, and manipulation of macroscopic matter have long been technological goals, scientific developments in the twentieth century have focused attention on understanding matter on the atomic scale through the underlying framework of quantum mechanics. Of special interest is matter that consists of natural or artificial nanoscale building blocks defined either by atomic structural arrangements or by electron or spin formations created by collective correlation effects (Figure 1.1). The essence of the challenge to the scientific community has been expressed in five grand challenges for directing matter and energy recently formulated by the Basic Energy Sciences Advisory Committee [1]. These challenges focus on increasing our understanding of, and ultimately control of, matter at the level of atoms, electrons. and spins, as illustrated in Figure 1.1, and serve the entire range of science from advanced materials to life sciences. Meeting these challenges will require new tools that extend our reach into regions of higher spatial, temporal, and energy resolution. X-rays with energies above 10 keV offer capabilities extending beyond the nanoworld shown in Figure 1.1 due to their ability to penetrate into optically opaque or thick objects. This opens the door to combining atomic level information from scattering studies with 3D information on longer length scales from real space imaging with a resolution approaching 1 nm. The investigation of multiple length scales is important in hierarchical structures, providing knowledge about function of living organisms, the atomistic origin of materials failure, the optimization of industrial synthesis, or the working of devices. Since the fundamental interaction that holds matter together is of electromagnetic origin, it is intuitively clear that electromagnetic radiation is the critical tool in the study of material properties. On the level of atoms, electrons, and spins, x-rays have proved especially valuable. Future advanced x-ray sources and instrumentation will extend the power of x-ray methods to reach greater spatial resolution, increased sensitivity, and unexplored temporal domains. The purpose of this document is threefold: (1) summarize scientific opportunities that are beyond the reach of today's x-ray sources and instrumentation; (2) summarize the requirements for advanced x-ray sources and instrumentation needed to realize these scientific opportunities, as well as potential methods of achieving them; and (3) outline the R&D required to establish the technical feasibility of these advanced x-ray sources and instrumentation.

  3. Quiz: Test Your Lighting IQ | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Quiz: Test Your Lighting IQ Quiz: Test Your Lighting IQ Quiz: Test Your Lighting IQ How bright are you when it comes to lighting trivia? Test your knowledge with this fun quiz! 1. How do LEDs generate light? By heating up filament By moving electrons in compound semiconductors By ionizing mercury vapor in a glass tube By moving electric current through a tube containing gas A light-emitting diode, or LED, is a type of solid-state lighting that uses a semiconductor to convert electricity into

  4. Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams

    Office of Scientific and Technical Information (OSTI)

    (Journal Article) | SciTech Connect Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams Citation Details In-Document Search Title: Cherenkov Light-based Beam Profiling for Ultrarelativistic Electron Beams We describe a beam profile monitor design based on Cherenkov light emitted from a charged particle beam in an air gap. The main components of the profile monitor are silicon wafers used to reflect Cherenkov light onto a camera lens system. The design allows for

  5. White House honors Los Alamos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    White House honors Los Alamos physicist's early career work July 10, 2009 Los Alamos, New Mexico, July 10, 2009-The White House today announced that Los Alamos National Laboratory physicist Ivan Vitev has received a prestigious Presidential Early Career Award for Scientists and Engineers (PECASE). The honor is the highest bestowed by the U.S. government to outstanding scientists early in their careers. Vitev joined Los Alamos National Laboratory in 2004 as a J. Robert Oppenheimer Postdoctoral

  6. Alumni: Claire White, Princeton University

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Claire White, Princeton University Alumni Link: Opportunities, News and Resources for Former Employees Latest Issue:September 2015 all issues All Issues » submit Alumni: Claire White, Princeton University Reducing air emissions with new ways to make concrete May 1, 2015 The site offers a variety of Los Alamos-developed biosurveillance tools that can be used for decision support in disease surveillance. The site offers a variety of Los Alamos-developed biosurveillance tools that can be used for

  7. Follow the Light | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Follow the Light Just like watching boats in the night, seeing movement at the nanoscale is easier when the object you are watching has a beacon.Dynamic three-dimensional tracking with high precision is possible with nanoscale light emitting particles known as quantum dots at better resolution than 10 nanometers in the vertical direction. This opens up the possibility for understanding three dimensional movement in nanoscale structures and biological systems. The quantum dots are followed using

  8. Entangled Light Emission From a Diode

    SciTech Connect (OSTI)

    Stevenson, R. M.; Shields, A. J. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Salter, C. L. [Toshiba Research Europe Limited, 208 Cambridge Science Park, Cambridge CB4 0GZ (United Kingdom); Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Farrer, I.; Nicoll, C. A.; Ritchie, D. A. [Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE (United Kingdom)

    2011-12-23

    Electrically-driven entangled photon generation is demonstrated for the first time using a single semiconductor quantum dot embedded in a light emitting diode structure. The entanglement fidelity is shown to be of sufficient quality for applications such as quantum key distribution.

  9. Red-emitting manganese-doped aluminum nitride phosphor

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Cherepy, Nerine J.; Payne, Stephen A.; Harvey, Nicholas M.; Aberg, Daniel; Seeley, Zachary M.; Holliday, Kiel S.; Tran, Ich C.; Zhou, Fei; Martinez, H. Paul; Demeyer, Jessica M.; et al

    2016-02-10

    Here, we report high efficiency luminescence with a manganese-doped aluminum nitride red-emitting phosphor under 254 nm excitation, as well as its excellent lumen maintenance in fluorescent lamp conditions, making it a candidate replacement for the widely deployed europium-doped yttria red phosphor. Solid-state reaction of aluminum nitride powders with manganese metal at 1900 °C, 10 atm N2 in a reducing environment results in nitrogen deficiency, as revealed diffuse reflectance spectra. When these powders are subsequently annealed in flowing nitrogen at 1650 °C, higher nitrogen content is recovered, resulting in white powders. Silicon was added to samples as an oxygen getter tomore » improve emission efficiency. NEXAFS spectra and DFT calculations indicate that the Mn dopant is divalent. From DFT calculations, the UV absorption band is proposed to be due to an aluminum vacancy coupled with oxygen impurity dopants, and Mn2+ is assumed to be closely associated with this site. In contrast with some previous reports, we find that the highest quantum efficiency with 254 nm excitation (Q.E. = 0.86 ± 0.14) is obtained in aluminum nitride with a low manganese doping level of 0.06 mol.%. The principal Mn2+ decay of 1.25 ms is assigned to non-interacting Mn sites, while additional components in the microsecond range appear with higher Mn doping, consistent with Mn clustering and resultant exchange coupling. Slower components are present in samples with low Mn doping, as well as strong afterglow, assigned to trapping on shallow traps followed by detrapping and subsequent trapping on Mn.« less

  10. Tunable, superconducting, surface-emitting teraherz source

    DOE Patents [OSTI]

    Welp, Ulrich; Koshelev, Alexei E.; Gray, Kenneth E.; Kwok, Wai-Kwong; Vlasko-Vlasov, Vitalii

    2010-05-11

    A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.

  11. Tunable, superconducting, surface-emitting teraherz source

    DOE Patents [OSTI]

    Welp, Ulrich; Koshelev, Alexei E.; Gray, Kenneth E.; Kwok, Wai-Kwong; Vlasko-Vlasov, Vitalii

    2009-10-27

    A compact, solid-state THz source based on the driven Josephson vortex lattice in a highly anisotropic superconductor such as Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 that allows cw emission at tunable frequency. A second order metallic Bragg grating is used to achieve impedance matching and to induce surface emission of THz-radiation from a Bi.sub.2Sr.sub.2CaCu.sub.2O.sub.8 sample. Steering of the emitted THz beam is accomplished by tuning the Josephson vortex spacing around the grating period using a superimposed magnetic control field.

  12. Long wavelength vertical cavity surface emitting laser

    DOE Patents [OSTI]

    Choquette, Kent D.; Klem, John F.

    2005-08-16

    Selectively oxidized vertical cavity lasers emitting near 1300 nm using InGaAsN quantum wells are reported for the first time which operate continuous wave below, at and above room temperature. The lasers employ two n-type Al.sub.0.94 Ga.sub.0.06 As/GaAs distributed Bragg reflectors each with a selectively oxidized current aperture adjacent to the active region, and the top output mirror contains a tunnel junction to inject holes into the active region. Continuous wave single mode lasing is observed up to 55.degree. C.

  13. MOCVD synthesis of group III-nitride heterostructure nanowires for solid-state lighting.

    SciTech Connect (OSTI)

    Wang, George T.; Creighton, James Randall; Talin, Albert Alec

    2006-11-01

    Solid-state lighting (SSL) technologies, based on semiconductor light emitting devices, have the potential to reduce worldwide electricity consumption by more than 10%, which could significantly reduce U.S. dependence on imported energy and improve energy security. The III-nitride (AlGaInN) materials system forms the foundation for white SSL and could cover a wide spectral range from the deep UV to the infrared. For this LDRD program, we have investigated the synthesis of single-crystalline III-nitride nanowires and heterostructure nanowires, which may possess unique optoelectronic properties. These novel structures could ultimately lead to the development of novel and highly efficient SSL nanodevice applications. GaN and III-nitride core-shell heterostructure nanowires were successfully synthesized by metal organic chemical vapor deposition (MOCVD) on two-inch wafer substrates. The effect of process conditions on nanowire growth was investigated, and characterization of the structural, optical, and electrical properties of the nanowires was also performed.

  14. Photonic crystal surface-emitting lasers

    DOE Patents [OSTI]

    Chua, Song Liang; Lu, Ling; Soljacic, Marin

    2015-06-23

    A photonic-crystal surface-emitting laser (PCSEL) includes a gain medium electromagnetically coupled to a photonic crystal whose energy band structure exhibits a Dirac cone of linear dispersion at the center of the photonic crystal's Brillouin zone. This Dirac cone's vertex is called a Dirac point; because it is at the Brillouin zone center, it is called an accidental Dirac point. Tuning the photonic crystal's band structure (e.g., by changing the photonic crystal's dimensions or refractive index) to exhibit an accidental Dirac point increases the photonic crystal's mode spacing by orders of magnitudes and reduces or eliminates the photonic crystal's distributed in-plane feedback. Thus, the photonic crystal can act as a resonator that supports single-mode output from the PCSEL over a larger area than is possible with conventional PCSELs, which have quadratic band edge dispersion. Because output power generally scales with output area, this increase in output area results in higher possible output powers.

  15. Electron emitting filaments for electron discharge devices

    DOE Patents [OSTI]

    Leung, K.N.; Pincosy, P.A.; Ehlers, K.W.

    1983-06-10

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600/sup 0/C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for nonuniform current distribution along the filament due to the emission of electrons from the filament.

  16. Electron emitting filaments for electron discharge devices

    DOE Patents [OSTI]

    Leung, Ka-Ngo; Pincosy, Philip A.; Ehlers, Kenneth W.

    1988-01-01

    Electrons are copiously emitted by a device comprising a loop-shaped filament made of lanthanum hexaboride. The filament is directly heated by an electrical current produced along the filament by a power supply connected to the terminal legs of the filament. To produce a filament, a diamond saw or the like is used to cut a slice from a bar made of lanthanum hexaboride. The diamond saw is then used to cut the slice into the shape of a loop which may be generally rectangular, U-shaped, hairpin-shaped, zigzag-shaped, or generally circular. The filaments provide high electron emission at a relatively low operating temperature, such as 1600.degree. C. To achieve uniform heating, the filament is formed with a cross section which is tapered between the opposite ends of the filament to compensate for non-uniform current distribution along the filament due to the emission of electrons from the filament.

  17. Light redirective display panel and a method of making a light redirective display panel

    DOE Patents [OSTI]

    Veligdan, James T.

    2002-01-01

    An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.

  18. Light Redirective Display Panel And A Method Of Making A Light Redirective Display Panel

    DOE Patents [OSTI]

    Veligdan, James T.

    2005-07-26

    An optical display panel which provides improved light intensity at a viewing angle by redirecting light emitting from the viewing screen, and a method of making a light redirective display panel, are disclosed. The panel includes an inlet face at one end for receiving light, and an outlet screen at an opposite end for displaying the light. The inlet face is defined at one end of a transparent body, which body may be formed by a plurality of waveguides, and the outlet screen is defined at an opposite end of the body. The screen includes light redirective elements at the outlet screen for re-directing light emitting from the outlet screen. The method includes stacking a plurality of glass sheets, with a layer of adhesive or epoxy between each sheet, curing the adhesive to form a stack, placing the stack against a saw and cutting the stack at two opposite ends to form a wedge-shaped panel having an inlet face and an outlet face, and forming at the outlet face a plurality of light redirective elements which direct light incident on the outlet face into a controlled light cone.

  19. White Paper on Energy Efficiency Status of Energy-Using Products in China (2011)

    SciTech Connect (OSTI)

    Zhou, Nan; Romankiewicz, John; Fridley, David

    2012-06-01

    This White Paper focuses on the areas and products involved in the above tasks, based on the White Paper - Energy Efficiency Status of Energy-Using Products in China (2010), here referred to as White Paper 2010, which analyzed the energy efficiency status of 21 typical energy-using products in five sectors: household appliances, office equipment, commercial equipment, industrial equipment, and lighting equipment. Table 1 illustrates the detailed product coverage for this years paper, noting the addition of three household appliance items (automatic electric rice cooker, AC electric fan, and household induction cooktop) and one industrial sector item (three-phase distribution transformer).

  20. {gamma}-ray emitting radionuclide production in a multidimensional

    Office of Scientific and Technical Information (OSTI)

    supernovae model (Journal Article) | SciTech Connect {gamma}-ray emitting radionuclide production in a multidimensional supernovae model Citation Details In-Document Search Title: {gamma}-ray emitting radionuclide production in a multidimensional supernovae model We examine the effects of multidimensional hydrodynamics on {gamma}-ray emitting radionuclide yields from massive star progenitor supernovae. Significant differences are expected between explosive nucleosynthesis product yields from

  1. {gamma}-ray emitting radionuclide production in a multidimensional

    Office of Scientific and Technical Information (OSTI)

    supernovae model (Journal Article) | SciTech Connect {gamma}-ray emitting radionuclide production in a multidimensional supernovae model Citation Details In-Document Search Title: {gamma}-ray emitting radionuclide production in a multidimensional supernovae model We examine the effects of multidimensional hydrodynamics on {gamma}-ray emitting radionuclide yields from massive star progenitor supernovae. Significant differences are expected between explosive nucleosynthesis product yields from

  2. Cerenkov Light

    SciTech Connect (OSTI)

    Slifer, Karl

    2013-06-13

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  3. Light Show

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    9 Lightning - Nature's Light Show Lightning provides one of nature's most spectacular displays of energy. Though fascinating to observe, lightning can be dangerous and deadly....

  4. Residential Lighting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events Expand News & Events Skip navigation links Residential Residential Lighting Energy Star Appliances Consumer Electronics Heat Pump Water Heaters Electric Storage Water...

  5. Lighting Renovations

    Broader source: Energy.gov [DOE]

    When undertaking a lighting renovation in a Federal building, daylighting is the primary renewable energy opportunity. Photovoltaics (PV) also present an excellent opportunity. While this guide...

  6. Cerenkov Light

    ScienceCinema (OSTI)

    Slifer, Karl

    2014-05-22

    The bright blue glow from nuclear reactors is Cerenkov light. Karl Slifer describes how nuclear physicists can use this phenomenon to study the nucleus of the atom.

  7. Nanoengineering for solid-state lighting.

    SciTech Connect (OSTI)

    Schubert, E. Fred; Koleske, Daniel David; Wetzel, Christian; Lee, Stephen Roger; Missert, Nancy A.; Lin, Shawn-Yu; Crawford, Mary Hagerott; Fischer, Arthur Joseph

    2009-09-01

    This report summarizes results from a 3-year Laboratory Directed Research and Development project performed in collaboration with researchers at Rensselaer Polytechnic Institute. Our collaborative effort was supported by Sandia's National Institute for Nanoengineering and focused on the study and application of nanoscience and nanoengineering concepts to improve the efficiency of semiconductor light-emitting diodes for solid-state lighting applications. The project explored LED efficiency advances with two primary thrusts: (1) the study of nanoscale InGaN materials properties, particularly nanoscale crystalline defects, and their impact on internal quantum efficiency, and (2) nanoscale engineering of dielectric and metal materials and integration with LED heterostructures for enhanced light extraction efficiency.

  8. Apply: Solid-State Lighting Advanced Technology R&D - 2014

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    (DE-FOA-0000973) | Department of Energy Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) Apply: Solid-State Lighting Advanced Technology R&D - 2014 (DE-FOA-0000973) December 6, 2013 - 4:27pm Addthis This funding opportunity is closed. Through research and development of solid-state lighting (SSL),including both light-emitting diode (LED) and organic light emitting diode (OLED) technologies, the objectives of this opportunity are to: Maximize the

  9. Sandia Energy - White House Business Council Roundtable on Water

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Protected: White House Business Council Roundtable on Water Home Climate Water Security Protected: White House Business Council Roundtable on Water Previous Next Protected: White...

  10. Report 23: Photometric Testing of White Tunable LED Luminaires...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Report 23: Photometric Testing of White Tunable LED Luminaires Report 23: Photometric Testing of White Tunable LED Luminaires PDF icon caliper23white-tunable-led-luminaires.pdf ...

  11. White Sturgeon Bibliography, 1985 Final Report.

    SciTech Connect (OSTI)

    Fickeisen, Duane H.

    1986-03-01

    This bibliography presents citations to the majority of published materials on white sturgeon (Acipenser transmontanus). The purpose was to assist in planning and implementing research on white sturgeon in the Columbia River system. (ACR)

  12. White Papers | OpenEI Community

    Open Energy Info (EERE)

    Alaska analysis appropriations Categorical Exclusions Coordinating Permit Office Cost Mechanisms Cost Recovery geothermal Hawaii NEPA permitting quarterly meeting White...

  13. Inside the White House: Solar Panels

    Broader source: Energy.gov [DOE]

    Go inside the White House and learn about the installation of solar panels on the roof of the residence.

  14. White House Energy Security Stakeholders Forum

    Broader source: Energy.gov [DOE]

    U.S. Deputy Secretary of Energy Daniel Poneman's remarks at the White House Energy Security Stakeholders Forum.

  15. Women @ Energy: Karen White | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Karen White Women @ Energy: Karen White August 28, 2015 - 10:51am Addthis Karen S. White is controls group leader and data operations manager at the Spallation Neutron Source at Oak Ridge National Laboratory. She attended Old Dominion University, where she earned a bachelor's degree in computer engineering and master's degree in computer science, and George Washington University, where she earned an M.E. in engineering management. Karen S. White is controls group leader and data operations

  16. 100 LPW 800 Lm Warm White LED

    SciTech Connect (OSTI)

    Sun, Decai

    2010-10-31

    An illumination grade warm white (WW) LED, having correlated color temperature (CCT) between 2800 K and 3500K and capable of producing 800 lm output at 100 lm/W, has been developed in this program. The high power WW LED is an ideal source for use as replacement for incandescent, and Halogen reflector and general purpose lamps of similar lumen value. Over the two year period, we have made following accomplishments: developed a high power warm white LED product and made over 50% improvements in light output and efficacy. The new high power WW LED product is a die on ceramic surface mountable LED package. It has four 1x1 mm{sup 2} InGaN pump dice flip chip attached to a ceramic submount in 2x2 array, covered by warm white phosphor ceramic platelets called Lumiramica and an overmolded silicone lens encapsulating the LED array. The performance goal was achieved through breakthroughs in following key areas: (1) High efficiency pump LED development through pump LED active region design and epi growth quality improvement (funded by internal programs). (2) Increase in injection efficiency (IE) represented by reduction in forward voltage (V{sub f}) through the improvement of the silver-based p-contact and a reduction in spreading resistance. The injection efficiency was increased from 80% at the start of the program to 96% at the end of the program at 700 mA/mm{sup 2}. (3) Improvement in thermal design as represented by reduction in thermal resistance from junction to case, through improvement of the die to submount connection in the thin film flip chip (TFFC) LED and choosing the submount material of high thermal conductivity. A thermal resistance of 1.72 K/W was demonstrated for the high power LED package. (4) Improvement in extraction efficiency from the LED package through improvement of InGaN die level and package level optical extraction efficiency improvement. (5) Improvement in phosphor system efficiency by improving the lumen equivalent (LE) and phosphor package efficiency (PPE) through improvement in phosphor-package interactions. Another achievement in the development of the phosphor integration technology is the demonstration of tight color control. The high power WW LED product developed has been proven to have good reliability. The manufacturing of the product will be done in Philips Lumileds LUXEON Rebel production line which has produced billions of high power LEDs. The first high power WW LED product will be released to the market in 2011.

  17. Effects of emitted electron temperature on the plasma sheath

    SciTech Connect (OSTI)

    Sheehan, J. P.; Kaganovich, I. D.; Wang, H.; Raitses, Y.; Sydorenko, D.; Hershkowitz, N.

    2014-06-15

    It has long been known that electron emission from a surface significantly affects the sheath surrounding that surface. Typical fluid theory of a planar sheath with emitted electrons assumes that the plasma electrons follow the Boltzmann relation and the emitted electrons are emitted with zero energy and predicts a potential drop of 1.03T{sub e}/e across the sheath in the floating condition. By considering the modified velocity distribution function caused by plasma electrons lost to the wall and the half-Maxwellian distribution of the emitted electrons, it is shown that ratio of plasma electron temperature to emitted electron temperature significantly affects the sheath potential when the plasma electron temperature is within an order of magnitude of the emitted electron temperature. When the plasma electron temperature equals the emitted electron temperature the emissive sheath potential goes to zero. One dimensional particle-in-cell simulations corroborate the predictions made by this theory. The effects of the addition of a monoenergetic electron beam to the Maxwellian plasma electrons were explored, showing that the emissive sheath potential is close to the beam energy only when the emitted electron flux is less than the beam flux.

  18. INTERACTIVE: How Much Carbon Do Countries Emit? | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    INTERACTIVE: How Much Carbon Do Countries Emit? INTERACTIVE: How Much Carbon Do Countries Emit? This interactive map is not viewable in your browser. Please view it in a modern browser. If you are using IE9, you can also view the interactive here

  19. Studies of light collection in depolished inorganic scintillators using Monte Carlo Simulations

    SciTech Connect (OSTI)

    Altamirano, A.; Salinas, C. J. Solano; Wahl, D.

    2009-04-30

    Scintillators are materials which emit light when energetic particles deposit energy in their volume. It is a quasi-universal requirement that the light detected in scintillator setups be maximised. The following project aims to study how the light collection is affected by surface depolishing using the simulation programs GEANT4 and LITRANI.

  20. Atmospheric Emitted Radiance Interferometer (AERI) Handbook

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Gero, Jonathan; Hackel, Denny; Garcia, Raymond

    2005-01-01

    The atmospheric emitted radiance interferometer (AERI) is a ground-based instrument that measures the downwelling infrared radiance from the Earth’s atmosphere. The observations have broad spectral content and sufficient spectral resolution to discriminate among gaseous emitters (e.g., carbon dioxide and water vapor) and suspended matter (e.g., aerosols, water droplets, and ice crystals). These upward-looking surface observations can be used to obtain vertical profiles of tropospheric temperature and water vapor, as well as measurements of trace gases (e.g., ozone, carbon monoxide, and methane) and downwelling infrared spectral signatures of clouds and aerosols.The AERI is a passive remote sounding instrument, employing a Fourier transform spectrometer operating in the spectral range 3.3–19.2 μm (520–3020 cm-1) at an unapodized resolution of 0.5 cm-1 (max optical path difference of 1 cm). The extended-range AERI (ER-AERI) deployed in dry climates, like in Alaska, have a spectral range of 3.3–25.0 μm (400–3020 cm-1) that allow measurements in the far-infrared region. Typically, the AERI averages views of the sky over a 16-second interval and operates continuously.