Sample records for wharton econometric forecasting

  1. Econometric model and futures markets commodity price forecasting

    E-Print Network [OSTI]

    Just, Richard E.; Rausser, Gordon C.

    1979-01-01T23:59:59.000Z

    Versus CCll1rnercial Econometric M:ldels." Uni- versity ofWorking Paper No. 72 ECONOMETRIC ! 'econometric forecasts with the futures

  2. Forecasting the monthly volume of orders for southern pine lumber - an econometric model

    E-Print Network [OSTI]

    Jackson, Ben Douglas

    1973-01-01T23:59:59.000Z

    the orders estimates should be minimal, and the benefits of forecasting should exceed the costs. Included in this matter of convenience is the mathematical simplicity of the computations and their evaluation. With these essential characteristics in mind... FORECASTING THE MONTHLY VOLUME OF ORDERS FOR SOUTHERN PINE LUMBER - AH ECONOMETRIC MODEL A Thesis by BEN DOUGLAS JACKSON Submitted to the Graduate College of Texas ASM University in Partial fulfillment of the requirement for the degree...

  3. An econometric analysis and forecasting of Seoul office market

    E-Print Network [OSTI]

    Kim, Kyungmin

    2011-01-01T23:59:59.000Z

    This study examines and forecasts the Seoul office market, which is going to face a big supply in the next few years. After reviewing several previous studies on the Dynamic model and the Seoul Office market, this thesis ...

  4. Agricultural commodity price forecasting accuracy: futures markets versus commercial econometric models

    E-Print Network [OSTI]

    Rausser, Gordon C.; Just, Richard E.

    1979-01-01T23:59:59.000Z

    versus commercial econometric models Gordon C. RausserMARKETS VERSUS COM4ERCIAL ECONOMETRIC IDDELS by Gordon C.Futures Markets, snd Econometric Models Deeember, 19'7'6,

  5. Econometric Models of Discrete/Continuous Supply Decisions under Uncertainty

    E-Print Network [OSTI]

    Hanemann, W. Michael; Tsur, Yacov

    1982-01-01T23:59:59.000Z

    357-382. XcFadden, D. "Econometric Net Supply Systems forpoint of view of the econometric investigator. the producerin New Directions in Econometric Modeling and Forecasting in

  6. Ghost in the shell : econometric forecast of Singapore's office market and where is architect in financial time

    E-Print Network [OSTI]

    Sun, Aoran Alex

    2012-01-01T23:59:59.000Z

    Inspired by Singapore's recent effort in building its new skyline in Maria Bay, the thesis intends to employ econometric structural modeling techniques to Singapore's office market for the period from 1975 to 2011. Using ...

  7. Approved Module Information for BS3336, 2014/5 Module Title/Name: Applied Econometrics and Forecasting Module Code: BS3336

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for BS3336, 2014/5 Module Title/Name: Applied Econometrics Introduction to Econometrics I AND BS2248 Introduction to Econometrics II Available to Exchange Students students undertake and advances their knowledge and skills to the methods of econometric and time

  8. Four essays in econometrics

    E-Print Network [OSTI]

    Lu, Xun (Sean)

    2010-01-01T23:59:59.000Z

    tional Moment Test,” Econometric Theory, 15, 710-718. [23]Specification Tests,” Econometric Theory, 25, 162-194. [54]Heckman, J. J. (2008), “Econometric Causality,” NBER Working

  9. Asset Values and Econometric Fundamentals

    E-Print Network [OSTI]

    Craine, Roger

    1988-01-01T23:59:59.000Z

    Robert E. , Jr. 1976. Econometric Policy Evaluation: ALucas'(l976) famous econometric critique that proper

  10. Econometric and Neural Network Analysis of the Labor Productivity and Average Gross Earnings Indices in the Romanian Industry

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Econometric and Neural Network Analysis of the Labor Productivity and Average Gross Earnings and models that were used consist of several lag econometric models, ARIMA processes, as well as feed forward AGEI and LPI. Key-Words: - labor productivity, econometric model, ARIMA, VAR, neural network, forecast

  11. Outline Sim econometric

    E-Print Network [OSTI]

    Siegen, Universität

    econometric e at some ra ate static pa ation of DPD ond (1991) (Event Stud s survival a ormatting nary summ

  12. Studies in Nonlinear Dynamics & Econometrics

    E-Print Network [OSTI]

    Studies in Nonlinear Dynamics & Econometrics Volume 8, Issue 3 2004 Article 1 The Long Memory in Nonlinear Dynamics & Econometrics is produced by The Berkeley Electronic Press (bepress). http

  13. Some Thoughts on Econometric Information Recovery

    E-Print Network [OSTI]

    Judge, George G.

    2013-01-01T23:59:59.000Z

    Paper 1135 Some Thoughts on Econometric Information Recoverys). Some Thoughts on Econometric Information Recovery GeorgeTheoretic Approach To Econometric Information Recovery

  14. Three essays on econometrics

    E-Print Network [OSTI]

    Lee, Joonhwan

    2014-01-01T23:59:59.000Z

    This thesis consists of three chapters that cover separate topics in econometrics. The first chapter demonstrate a negative result on the asymptotic sizes of subset Anderson- Rubin tests with weakly identified nuisance ...

  15. Forecasting model of the PEPCO service area economy. Volume 3

    SciTech Connect (OSTI)

    Not Available

    1984-03-01T23:59:59.000Z

    Volume III describes and documents the regional economic model of the PEPCO service area which was relied upon to develop many of the assumptions of future values of economic and demographic variables used in the forecast. The PEPCO area model is mathematically linked to the Wharton long-term forecast of the U.S. Volume III contains a technical discussion of the structure of the regional model and presents the regional economic forecast.

  16. The Econometrics of Financial Markets

    E-Print Network [OSTI]

    Landweber, Laura

    The Econometrics of Financial Markets John Y. Campbell, Andrew W. Lo, and A. Craig Mac, in a review of The Econometrics of Financial Markets, winner of TIAA-CREF's 1997 Paul A. Samuelson AwardKinlay's The Econometrics of Finan- cial Markets made a bold leap forward by integrating theory and empirical work

  17. Foundations and Trends R Econometrics

    E-Print Network [OSTI]

    Lansky, Joshua

    Foundations and Trends R in Econometrics Vol. 2, Nos. 1­2 (2006) 1­145 c 2008 A. Golan DOI: 10.1561/0800000004 Information and Entropy Econometrics -- A Review and Synthesis Amos Golan Department of Economics, American are to study the basics of information-theoretic methods in econometrics, to exam- ine the connecting theme

  18. Econometrics 26 223 554 01

    E-Print Network [OSTI]

    Lin, Xiaodong

    Econometrics 26 223 554 01 Fall 2014 (Thursdays, 1:00 - 3:50 pm) Instructor: Daniela Osterrieder Author Fumio Hayashi Book title Econometrics Year 2000 Publisher Princeton University Press ISBN-10 0 is designed to introduce the course participants to the use of Econometrics in the form of an empirical study

  19. Econometric analysis of imperfect competition and implications for trade research

    E-Print Network [OSTI]

    Perloff, Jeffrey M

    1991-01-01T23:59:59.000Z

    220. ROhlfs. Jeffrey. 'Econometric Analysis of Supply Inmodem studies use structural econometric models. parametercomplete structural econometric models based on formal

  20. Research Assistant (Econometrics Specialist) -Centro de Estudios Puertorriqueos Job Title: Research Assistant (Econometrics Specialist)

    E-Print Network [OSTI]

    Qiu, Weigang

    Research Assistant (Econometrics Specialist) - Centro de Estudios Puertorriqueños Job Title: Research Assistant (Econometrics Specialist) ­ Centro de Estudios Puertorriqueños Job ID: 10155 Location related field is preferred. Training in econometrics and experience in applying econometrics are required

  1. Wharton Undergraduate Class of 2007 Career Plans Survey Report

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    Annual Base Salary of Wharton Graduates #12;ANALYSIS OF EMPLOYED RESPONDENTS STARTING SALARIES AND BONUS an annual bonus, and 85.4% received a sign-on bonus. AVERAGE BASE SALARY BY SCHOOL AND GENDER (The figures listed below are salary only; they do not include bonus information.) SCHOOL/DEGREE Average Range

  2. An Econometric Model of the Demand for Food and Nutrition

    E-Print Network [OSTI]

    LaFrance, Jeffrey T.

    1999-01-01T23:59:59.000Z

    Holland, 1978. Blundell, R. “Econometric Approaches to theDemand Behavior. ” Econometric Reviews 5(1986): 89-146. . “Harvey, A. C. The Econometric Analysis of Time Series,

  3. Econometric Models of the Demand for Quality-Differentiated Goods

    E-Print Network [OSTI]

    Hanemann, W. Michael

    1983-01-01T23:59:59.000Z

    J. K. Whitaker (eds. ), Econometric analysis for nationalpoint of view of the econometric investigator. For example,the consumer, but for the econometric investigator it is a

  4. Nonmarket Valuation under Preference Uncertainty: Econometric Models and Estimation

    E-Print Network [OSTI]

    Hanemann, W. Michael; Kristrom, Bengt; Li, Chuan-Zhong

    1996-01-01T23:59:59.000Z

    3 The EconometricUNCERTAINTY: ECONOMETRIC MODELS AND ESTIMATION bY W. MichaelSection 3 introduces ihe econometric model. Section 4

  5. New methods for econometric inference

    E-Print Network [OSTI]

    Chetverikov, D. N. (Denis Nikolaevich)

    2013-01-01T23:59:59.000Z

    Monotonicity is a key qualitative prediction of a wide array of economic models derived via robust comparative statics. It is therefore important to design effective and practical econometric methods for testing this ...

  6. Wharton, New Jersey: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,Wetzel County, WestWharton, New Jersey:

  7. Econometrics and Data Analysis I Yale University

    E-Print Network [OSTI]

    Econometrics and Data Analysis I Yale University ECON S131 (ONLINE) ­ Summer Session B, 2013 July 8 microeconomics and familiarity with single variable calculus. In most econometrics classes, mathematical methods

  8. The Econometrics of Data Combination Geert Ridder

    E-Print Network [OSTI]

    Weaver, Harold A. "Hal"

    The Econometrics of Data Combination Geert Ridder Department of Economics, University of Southern University,Baltimore E-mail: moffitt@jhu.edu Chapter for the Handbook of Econometrics April 1, 2005 We thank

  9. AN ECONOMETRIC ANALYSIS OF NET INVESTMENT IN

    E-Print Network [OSTI]

    NOTES AN ECONOMETRIC ANALYSIS OF NET INVESTMENT IN GULF SHRIMP FISHING VESSELS1 The major capital to the Gulf shrimp fishery. The purpose of this study is to estimate an econometric model of annual real net

  10. Econometrics and Data Analysis I Yale University

    E-Print Network [OSTI]

    Econometrics and Data Analysis I Yale University ECON S131 (ONLINE) ­ Summer Session A, 2014 June 2 microeconomics and familiarity with single variable calculus. In most econometrics classes, mathematical methods textbook for this course is Introduction to Econometrics, 2nd or 3rd edition, by Stock and Watson (Addison

  11. Graphical models, causal inference, and econometric models

    E-Print Network [OSTI]

    Spirtes, Peter

    Graphical models, causal inference, and econometric models Peter Spirtes Abstract A graphical model modeling has historical ties to causal modeling in econometrics and other social sciences, there have been isolated from the econometric tradition. In this paper I will describe a number of recent developments

  12. Applied Econometrics University of British Columbia

    E-Print Network [OSTI]

    Farrell, Anthony P.

    FRE 528 Applied Econometrics University of British Columbia Fall, 2014 Instructor: Michael Johnson constraints and econometric challenges) along with potential solutions to these problems. Students. Textbook/References: R. Carter Hill, William E. Griffiths and Guay C. Lim, Principles of Econometrics

  13. Tier II Canada Research Chair Financial Econometrics

    E-Print Network [OSTI]

    Sinnamon, Gordon J.

    Tier II Canada Research Chair in Financial Econometrics The University of Western Ontario Research Chair in the area of Financial Econometrics, at the rank of probationary (tenure-track) Assistant: Labour Economics, Macroeconomics, Micro Theory and Econometrics. Quantitative Finance is an area

  14. An introduction to financial econometrics Jianqing Fan

    E-Print Network [OSTI]

    Wang, Lily

    An introduction to financial econometrics Jianqing Fan Department of Operation Research econometrics? This simple question does not have a simple answer. The boundary of such an interdisciplinary speaking, financial econometrics is to study quantitative problems arising from finance. It uses sta

  15. Efficient market model: within-sample fit versus out-of-sample forecasts

    E-Print Network [OSTI]

    Cheng, Chi

    1993-01-01T23:59:59.000Z

    has been the center of considerable attention in the applied econometric literature. The criterion Predictive Least Squares (PLS) based on actual postsample forecasting performance is proposed to identify a time series model. The criterion is applied...

  16. A selective overview of nonparametric methods in financial econometrics

    E-Print Network [OSTI]

    Fan, Jianqing

    A selective overview of nonparametric methods in financial econometrics Jianqing Fan Department a brief overview on the nonparametric techniques that are useful for financial econometric problems, securities regulation, proprietary trading, financial consulting and risk management. Financial econometrics

  17. The Farmer Looks at His Economic Security: A Study of Provisions Made for Old Age by Farm Families in Wharton County, Texas.

    E-Print Network [OSTI]

    Motheral, Joe R.; Adkins, William G.

    1954-01-01T23:59:59.000Z

    .................................................................................................................................................................................... The Farm Operator 6 Economic Security ............................................................................................................................................................................... 6 Net Worth of Wharton County Farm... Operators ................................................................................................................. 7 Types of Savings and Investments...

  18. 14.32 Econometrics, Spring 2003

    E-Print Network [OSTI]

    Angrist, Joshua David

    Introduction to econometric models and techniques, emphasizing regression. Advanced topics include instrumental variables, panel data methods, measurement error, and limited dependent variable models. Includes problem sets. ...

  19. The Daily Duration of Transportation: An Econometric and Sociological Approach

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    The Daily Duration of Transportation: An Econometric and Sociological Approach Karl Littlejohn. 2007Monte Verità / Ascona, September #12;#12;3 The Daily Duration of Transportation: An Econometric

  20. Essays on financial analysts' forecasts

    E-Print Network [OSTI]

    Rodriguez, Marius del Giudice

    2006-01-01T23:59:59.000Z

    3.5 Econometric Framework . . . . . . .under Asymmet- ric Loss,” Econometric Theory, 13, 808–817. CSection 3.5 lays out the econometric framework, adapted from

  1. ECON 502 Syllabus Syllabus for ECON 502: Econometric Methods

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    ECON 502 Syllabus Dr. Ghosh Syllabus for ECON 502: Econometric Methods Fall 2010 Instructor course in econometrics. "Econometrics is the application of statistical and mathematical methods and refuting them." So a course in econometrics ­ even this introductory one ­ involves both theory

  2. THE TJALLING C+ KOOPMANS ECONOMETRIC THEORY PRIZE: 19941996

    E-Print Network [OSTI]

    Davis, Richard A.

    THE TJALLING C+ KOOPMANS ECONOMETRIC THEORY PRIZE: 1994­1996 Econometric Theory is proud to announce the winning article for theTjalling C+ Koopmans Econometric Theory Prize over the period 1994 articles published in Econometric Theory ~1994­1996! were candidates for the prize, except those that were

  3. An Econometric Model of the Yield Curve With Macroeconomic Jump Effects

    E-Print Network [OSTI]

    Piazzesi, Monika

    2001-01-01T23:59:59.000Z

    Kenneth Singleton (1997). “An Econometric Model of the TermDiscretely-Sampled Data. ” Econometric Theory 4, pp. 231-An Econometric Model of the Yield Curve with Macroeconomic

  4. Regional Income Inequality in Post-1978 China: A Kaldorian Spatial Econometric Approach

    E-Print Network [OSTI]

    Jeon, Yongbok

    2007-01-01T23:59:59.000Z

    A Panel Data Approach”, Econometric Reviews, 22, pp.59-77Matter? A Spatial Econometric View of Kaldor’s Laws,”convergence: A spatial econometric perspective”, Regional

  5. The Econometric Analysis of Interval-valued Data and Adaptive Regression Splines

    E-Print Network [OSTI]

    Lin, Wei

    2013-01-01T23:59:59.000Z

    and Miller, D. (2000). Econometric Foundations. CambridgeRegression Models,” Econometric Reviews. Vol. 8, pp. 217-De- pendent Bootstrap,” Econometric Reviews. Vol. 23, pp.

  6. Industrial Conflict, Mass Demonstrations, and Economic and Political Change in Postwar France: An Econometric Model

    E-Print Network [OSTI]

    Borrel, Monique J

    2004-01-01T23:59:59.000Z

    Business Cycle: An Econometric Analysis. Oxford, Blackwell,in Postwar France: An Econometric Model Monique Borrel I.to political vagaries. The econometric model presented here

  7. Capturing the Impact of Fuel Price on Jet Aircraft Operating Costs with Engineering and Econometric Models

    E-Print Network [OSTI]

    Smirti Ryerson, Megan; Hansen, Mark

    2009-01-01T23:59:59.000Z

    with Engineering and Econometric Models Megan Smirti RyersonCosts with Engineering and Econometric Models Megan Smirtiforces. To this end, an econometric operating cost model (

  8. Estimation of Two Popular Econometric Models: Random Effects Panel Data Model and Simultaneous Equations Model

    E-Print Network [OSTI]

    Liu, Yue

    2013-01-01T23:59:59.000Z

    1994. [9] Greene, W. B. , Econometric Analysis, Pearson /and Semiparametric Panel Econometric Models: Estimation andDEPendent models. This econometric software package was

  9. Industrial Conflict, Mass Demonstrations, and Economic and Political Change in Postwar France: An Econometric Model

    E-Print Network [OSTI]

    Borrel, Monique J

    2002-01-01T23:59:59.000Z

    Business Cycle: An Econometric Analysis. Oxford, Blackwell,in Postwar France: An Econometric Model Monique Borrel I.to political vagaries. The econometric model presented here

  10. Working Paper --Department of Operations and Information Management, The Wharton School THE ENVIRONMENTAL PARADOX OF BICYCLING

    E-Print Network [OSTI]

    Handy, Susan L.

    and immediate benefit of reducing energy consumption, even accounting for the latent energy content of the food sedentary individuals increases their longevity, and therefore their overall energy consumption. #12 Hall Philadelphia, PA 19104 USA ulrich@wharton.upenn.edu First Version: May 2006 This Version: July

  11. High Dimensional Sparse Econometric Models: An Introduction

    E-Print Network [OSTI]

    Belloni, Alexandre

    2011-06-26T23:59:59.000Z

    In this chapter we discuss conceptually high dimensional sparse econometric models as well as estimation of these models using ?1-penalization and post-?1-penalization methods. Focusing on linear and nonparametric regression ...

  12. Guidelines for Stadium Application to Potato Tubers Willie Kirk (PSMS, MSU), David Ross (Syngenta crop Protection), Phillip Wharton

    E-Print Network [OSTI]

    Douches, David S.

    Guidelines for Stadium Application to Potato Tubers Willie Kirk (PSMS, MSU), David Ross (Syngenta crop Protection), Phillip Wharton and Nora Olsen (University of Idaho) Potatoes are susceptible leak (Pythium ultimum) and black dot (Colletotrichum coccodes). Current recommendations for potato

  13. Author's personal copy Journal of Econometrics 147 (2008) 336349

    E-Print Network [OSTI]

    LaFrance, Jeffrey T.

    2008-01-01T23:59:59.000Z

    Author's personal copy Journal of Econometrics 147 (2008) 336­349 Contents lists available at ScienceDirect Journal of Econometrics journal homepage: www.elsevier.com/locate/jeconom The structure

  14. Article No. ectj?????? Econometrics Journal (2008), volume 04, pp. 132.

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    2008-01-01T23:59:59.000Z

    Article No. ectj?????? Econometrics Journal (2008), volume 04, pp. 1­32. Realised Kernels is a Brownian motion, all adapted to some filtration F. For reviews of the econometrics of processes of the type

  15. Parallel Computation In Econometrics: A Simplified Approach Jurgen A. Doornik

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Parallel Computation In Econometrics: A Simplified Approach Jurgen A. Doornik , Neil Shephard Parallel computation has a long history in econometric computing, but is not at all wide spread. We believe optimization; Econometrics; High-performance computing; Matrix-programming language; Monte Carlo; MPI; Ox

  16. Python for Unified Research in Econometrics and Statistics Roseline Bilina

    E-Print Network [OSTI]

    Boyer, Edmond

    Python for Unified Research in Econometrics and Statistics Roseline Bilina Steve Lawford Cornell-alone applications in econometrics and statistics, and as a tool for gluing different applications together. (It methods and programming), C87 (Econometric software), C88 (Other computer software). Keywords: Object

  17. Some applications of functional data analysis to econometrics and finance

    E-Print Network [OSTI]

    Kokoszka, Piotr

    Some applications of functional data analysis to econometrics and finance Piotr Kokoszka Department of Statistics, Penn State University Piotr Kokoszka FDA in econometrics and finance #12;Outline Functional time Kokoszka FDA in econometrics and finance #12;Cumulative intraday returns on SP500; Lucca and Moench 2014

  18. Limit theorems for bipower variation in financial econometrics

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Limit theorems for bipower variation in financial econometrics Ole E. Barndorff-Nielsen Department econometrics. The analysis is carried out under some rather general Brownian semimartingale assumptions, which come from and how they sit within the econometrics literature. Our theoretical development is motivated

  19. Econometric Models of Asymmetric Ascending Auctions Department of Economics

    E-Print Network [OSTI]

    Niebur, Ernst

    Econometric Models of Asymmetric Ascending Auctions Han Hong Department of Economics Princeton econometric models of ascending (English) auctions which allow for both bid- der asymmetries as well as common an econometric model, thus extending the literature on structural estimation of auction models. Finally

  20. RANDOM SETS IN FINANCE AND ECONOMETRICS Ilya Molchanov

    E-Print Network [OSTI]

    Molchanov, Ilya

    1 RANDOM SETS IN FINANCE AND ECONOMETRICS Ilya Molchanov Department of Mathematical Statistics several examples where random sets appear in math- ematical finance and econometrics: trading with transaction costs, risk measures, option prices, and partially identified econometric models. 1.1 Introduction

  1. Integer-valued Levy processes and low latency financial econometrics

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Integer-valued L´evy processes and low latency financial econometrics Ole E. Barndorff Abstract Motivated by features of low latency data in financial econometrics we study in detail integer- valued L´evy processes as the basis of price processes for high frequency econometrics. We propose using

  2. Discussion on Agricultural Econometrics: Its History and Its Future

    E-Print Network [OSTI]

    McCarl, Bruce A.

    Discussion on Agricultural Econometrics: Its History and Its Future David A. Bessler Texas A&M UniversityTexas A&M University AAEA Session on History of Econometrics1 Denver, Colorado Tuesday, July 27 Concerns · Partial Answers (Instrumental Variables) · Cautions · Revolution in Econometrics · Mopping

  3. ISSN 1745-9648 Econometric Evidence on the Impacts of

    E-Print Network [OSTI]

    Feigon, Brooke

    ISSN 1745-9648 Econometric Evidence on the Impacts of Privatization, New Entry, and Independent and China) over the time period 1991-2006 under a 3-equation econometric framework. The estimation results regulator; mobile network; econometric analysis #12;Acknowledgements: I would like to thank Catherine

  4. Regression and Causation: A Critical Examination of Six Econometrics Textbooks

    E-Print Network [OSTI]

    California at Los Angeles, University of

    Regression and Causation: A Critical Examination of Six Econometrics Textbooks Bryant Chen-1596, USA (310) 825-3243 September 10, 2013 Abstract This report surveys six influential econometric acceptance of the causal content of econometric equations and, uniformly, fail to provide coherent

  5. Economics 397 Spring 1998 Macro-Econometrics Professor Miller

    E-Print Network [OSTI]

    Ahmad, Sajjad

    Economics 397 Spring 1998 Macro-Econometrics Professor Miller Ms. Pattanapanchai,however,itshouldbeinyourownwords.Also,pleaselistthenamesoftheothermembersofyourstudygrouponthefrontpageofyourhomework assignment. Textbooks: (All textbooks are available in the UConn Coop) 1. Applied Econometric Time Series (AETS), Walter Enders, Wiley, 1995. 2. RATS Handbook for Econometric Time Series (RHETS), by Walter

  6. Working Paper 03-24 Statistics and Econometrics Series 05

    E-Print Network [OSTI]

    Ortega, Esther Ruiz

    Working Paper 03-24 Statistics and Econometrics Series 05 April 2003 Departamento de Estadística y complex to be realistic, the Econometrics needed to estimate them are more difficult. Consequently, Statistics and Econometrics Department, University Carlos III of Madrid, C/ Madrid 126 28903 Getafe (Madrid

  7. Syllabus for Ec 122: Econometrics Room: 125 Baxter

    E-Print Network [OSTI]

    Low, Steven H.

    Syllabus for Ec 122: Econometrics Fall, 2013 Room: 125 Baxter Days and Times: Tuesdays and Thursdays, 1 - 2:30pm Required Text: Principles of Econometrics, 4th Edition, Hill, Griffiths, and Lim, Wiley, 2011. Recommended Text: Applied Econometrics in R, Kleiber and Zeileis, Springer, 2008

  8. Price and Non-Price Influences on Water Conservation: An Econometric Model of Aggregate Demand under Nonlinear Budget Constraint

    E-Print Network [OSTI]

    Corral, Leonardo; Fisher, Anthony C.; Hatch, Nile W.

    1999-01-01T23:59:59.000Z

    declining-block tarrifs: An econometric study using micro-ON WATER CONSERVATION: ECONOMETRIC AN MODEL OF AGGREGATEWater Conservation: An Econometric Model of Aggregate Demand

  9. Is Public R&D a Complement or Substitute for Private R&D? A Review of the Econometric Evidence

    E-Print Network [OSTI]

    David, Paul A.; Hall, Bronwyn H.; Toole, Andrew A.

    1999-01-01T23:59:59.000Z

    R & D and productivity: econometric results and measurementtheoretical analysis and econometric evidence (presentationR&D? A Review of the Econometric Evidence Paul A . David All

  10. Econometric Analysis of Discrete-Valued Irregularly-Spaced Financial Transactions Data Using a New Autoregressive Conditional Multinomial Model

    E-Print Network [OSTI]

    Russell, Jeffrey; Engle, Robert F

    1998-01-01T23:59:59.000Z

    Lancaster, T. , 1990, The Econometric Analysis of TransitionDEPARTMENT OF ECONOMICS ECONOMETRIC ANALYSIS OF DISCRETE-PAPER 98-10 APRIL 1998 Econometric analysis of discrete-

  11. The Multi-Stage Investment Timing Game in Offshore Petroleum Production: Preliminary results from an econometric model

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    2007-01-01T23:59:59.000Z

    robustness checks from the econometric model coefficients inPreliminary results from an econometric model C. -Y.paper uses a structural econometric model to analyze the

  12. Econometric methods in real estate appraisal

    E-Print Network [OSTI]

    Gilliland, Charles E.

    1979-01-01T23:59:59.000Z

    , therefore, reflects the type of car storage with each house. The age cycle (6ROUP) variable partitions the data set according to Ring's concept ot the cycle. To establish groupings, the properties are classif1ed accord1ng to s1milarity of development... in terms of time required and accuracy of market value estimates. In mass appraisal applica- tions, much of the available data on recent sale activity does not enter the appraisal procedure for a specific property. Econometric methods facilitate...

  13. Syllabus for SS-223A: Advanced Topics in Econometric Theory: Asymptotics of Optimization Estimators

    E-Print Network [OSTI]

    Low, Steven H.

    Syllabus for SS-223A: Advanced Topics in Econometric Theory: Asymptotics of Optimization Estimators: 123 Baxter Phone: 4228 Course Description: Almost all estimators (econometric or otherwise, Springer-Verlag 4. Amemiya (1985), Advanced Econometrics, Harvard University Press 5. Lehmann (2004

  14. Job Opportunity: Statistics/Econometrics Research Assistant Location: Hunter College, City University of New York

    E-Print Network [OSTI]

    Qiu, Weigang

    Job Opportunity: Statistics/Econometrics Research Assistant Location: Hunter College, City and between databases using statistical and/or econometric techniques Maintain and update quantitative candidates with bachelor's degrees and relevant skills will also be considered. Training in econometrics

  15. Descriptive and Critical Review of Multiregional Econometric Models of the United States

    E-Print Network [OSTI]

    Herman, Amy L.

    1984-01-01T23:59:59.000Z

    A Regional­ National Econometric Model of I taly . " PapersI m pact of the Regional Econometric Model on the Pol i cyG l ickman , N. J . "An Econometric Model of the P h i ladel

  16. Econometric Theory, 7, 1991,519-529. Printed in the United Statesof America. FROM CHARACTERISTICFUNCTION

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Econometric Theory, 7, 1991,519-529. Printed in the United Statesof America. FROM integral. The univariateinversionhasbeenusedextensivelyin econometrics; a short review is given in Phillips

  17. Improving urban transport performances by tendering lots : an econometric estimation of

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    - 1 - Improving urban transport performances by tendering lots : an econometric estimation, Christensen & Tretheway 1984), and a large number of econometric estimations had been realised on urban

  18. Investigating Causal Relations by Econometric Models and Cross-spectral Methods C. W. J. Granger

    E-Print Network [OSTI]

    Timmer, Jens

    Investigating Causal Relations by Econometric Models and Cross-spectral Methods C. W. J. Granger-9682%28196908%2937%3A3%3C424%3AICRBEM%3E2.0.CO%3B2-L Econometrica is currently published by The Econometric Society #12;Econometrics, Vol. 37, No. 3 (July, 1969) INVESTIGATING CAUSAL RELATIONS BY ECONOMETRIC MODELS

  19. The Impact of Global Warming on U.S. Agriculture: An Econometric Analysis of Optimal Growing Conditions

    E-Print Network [OSTI]

    Schlenker, Wolfram; Hanemann, W. Michael; Fisher, Anthony C.

    2004-01-01T23:59:59.000Z

    U.S. Agriculture: An Econometric Analysis of Optimal GrowingU.S. Agriculture: An Econometric Analysis of Optimal GrowingU.S. Agriculture: An Econometric Analysis of Optimal Growing

  20. Monday 16 June 09:30 Macroeconomics. 14:30 Advanced Econometrics 1 (2 hours).

    E-Print Network [OSTI]

    Oxford, University of

    Monday 16 June 09:30 Macroeconomics. 14:30 Advanced Econometrics 1 (2 hours). Tuesday 17 June 09 2 (2 hours). 14:30 Advanced Econometrics 2 (2 hours). Friday 20 June 09:30 Advanced Microeconomics 1

  1. Econometrica, Vol. 72, No. 3 (May, 2004), 885925 ECONOMETRIC ANALYSIS OF REALIZED COVARIATION: HIGH

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Econometrica, Vol. 72, No. 3 (May, 2004), 885­925 ECONOMETRIC ANALYSIS OF REALIZED COVARIATION by the UK's ESRC through the grant "High Frequency Financial Econometrics Based upon Power Variation." All

  2. Who Pays for Sudden Oak Death? An Econometric Investigation of the Impact

    E-Print Network [OSTI]

    Standiford, Richard B.

    465 Who Pays for Sudden Oak Death? An Econometric Investigation of the Impact of an Emerging estimate econometrically the partial equilibrium relationship between realized costs of P. ramorum control

  3. 1 Introduction The hedonic housing price model is a powerful econometric tool for capturing

    E-Print Network [OSTI]

    Wei, Yehua Dennis

    1 Introduction The hedonic housing price model is a powerful econometric tool for capturing to the advancement in spatial statistics and spatial econometrics (eg Anselin, 1988; Cliff and Ord, 1981; Griffith

  4. Variation, jumps, market frictions and high frequency data in financial econometrics

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Variation, jumps, market frictions and high frequency data in financial econometrics Ole E the econometrics of non-parametric estimation of the components of the variation of asset prices. This very active and order books. In our view the interaction of the new data sources with new econometric methodology

  5. Advanced Econometrics (26:223:655:01) Fall 2013 Professor Robert H. Patrick

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Econometrics (26:223:655:01) Fall 2013 Professor Robert H. Patrick Department of Finance://www.rci.rutgers.edu/~rpatrick/hp.html This course is a continuation and generalization of the material covered in Econometrics (26:223:554). The purpose of this course is to develop advanced econometric estimation and hypothesis testing tools

  6. Econometrics (26:223:554:01) Fall 2002 Professor Robert H. Patrick

    E-Print Network [OSTI]

    Lin, Xiaodong

    Econometrics (26:223:554:01) Fall 2002 Professor Robert H. Patrick Department of Finance and Economics Rutgers Business School - Newark and New Brunswick Econometrics will meet Thursdays, 10 AM-12:50 P econometric estimation and hypothesis testing tools necessary to analyze and interpret the empirical relevance

  7. Econometric Feedback for Runtime Risk Management in VoIP Architectures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Econometric Feedback for Runtime Risk Management in VoIP Architectures Oussema Dabbebi, R at automatically adapting these parameters based on an econometric feedback mechanism. We mathematically describe the configuration of such risk models, by refining at runtime the model parameters based on an econometric feedback

  8. The Econometrics of High Frequency Data Per A. Mykland and Lan Zhang

    E-Print Network [OSTI]

    Mykland, Per A.

    The Econometrics of High Frequency Data Per A. Mykland and Lan Zhang This version: February 12 Econometrics of High Frequency Data 1 1 Introduction 1.1 Overview This is a course on estimation in high frequency data. It is intended for an audience that includes people interested in finance, econometrics

  9. Impact of jumps on returns and realised variances: econometric analysis of time-deformed Levy processes

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Impact of jumps on returns and realised variances: econometric analysis of time-deformed L In order to assess the effect of jumps on realised variance calculations, we study some of the econometric econometric work on realised variance. Keywords: Kalman filter, L´evy process, Long-memory, Quasi

  10. Heavy subsidization reduces free-ridership: Evidence from an econometric study of the

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    No 50-2013 Heavy subsidization reduces free-ridership: Evidence from an econometric study subsidization reduces free-ridership: Evidence from an econometric study of the French dwelling insulation tax credit Abstract This econometric study assesses the efficiency of the tax credit implemented in France

  11. Center for Operations Research and Econometrics (CORE) Institut de statistique, biostatistique et sciences actuarielles (ISBA)

    E-Print Network [OSTI]

    Nesterov, Yurii

    Center for Operations Research and Econometrics (CORE) Institut de statistique, biostatistique et sciences actuarielles (ISBA) Vacancy PhD positions in statistics, econometrics and actuarial catholique de Louvain opens up to four PhD positions in statistics, econometrics or actuarial sciences

  12. A GIS-Assisted Rail Construction Econometric Model that Incorporates LlDAR Data

    E-Print Network [OSTI]

    Hodgson, Michael E.

    A GIS-Assisted Rail Construction Econometric Model that Incorporates LlDAR Data David J. Cowen employed a raster GIS econometric routing model for the exploration of potential routes using construction in the grid-based econometric model was obtained from Light Detection and Ranging (LIDAR)data with accurate 0

  13. The Econometrics of High Frequency Per. A. Mykland and Lan Zhang

    E-Print Network [OSTI]

    Mykland, Per A.

    CHAPTER 2 The Econometrics of High Frequency Data Per. A. Mykland and Lan Zhang Department that includes people interested in finance, econometrics, statistics, probability and financial engineering particularly active, with contributions including 109 #12;110 THE ECONOMETRICS OF HIGH FREQUENCY DATA Andersen

  14. The determinants for labour contract length A French micro-econometric study

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 The determinants for labour contract length A French micro-econometric study Mohamed Ali BEN for contract duration by means of econometric duration models. The estimates are carried out from French data (TDE). An econometric treatment of the endogeneity of the labour contract status and unobservable

  15. MARIE CURIE Research Training Network (RTN) Computational Optimization Methods in Statistics, Econometrics and Finance

    E-Print Network [OSTI]

    Nagurney, Anna

    in Statistics, Econometrics and Finance Dept. of Economics, Justus-Liebig-University, Giessen, Germany ­ Dept. of Econometrics, Université de Genève, Switzerland ­ Risk Analytics & Instruments, Deutsche Bank AG, Frankfurt. of Economics, Klagenfurt University, Austria ­ Dept. of Econometrics, University of Lodz, Poland 12

  16. ECONOMICS 220-507: ECONOMETRICS I Dr. Kusum Mundra Rutgers University, Newark

    E-Print Network [OSTI]

    Lin, Xiaodong

    1 ECONOMICS 220-507: ECONOMETRICS I Dr. Kusum Mundra Rutgers University, Newark Lectures: Th: 5 by appointment Phone: 973-353-5350 Email: kmundra@andromeda.rutgers.edu Aim Econometrics, literally "economic presents topics in econometrics including a review of the classical linear regression model and some

  17. A -moment approach to monotonic boundaries estimation: with applications in econometric and nuclear fields

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    A -moment approach to monotonic boundaries estimation: with applications in econometric and nuclear application concerns frontier estimation in econometrics : the data typically consist of input factors Xi R of outputs y. Econometric considerations lead to the natural assumption that the cost function is isotonic

  18. Journal of Econometrics 148 (2009) 162178 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Kahana, Michael J.

    2009-01-01T23:59:59.000Z

    Journal of Econometrics 148 (2009) 162­178 Contents lists available at ScienceDirect Journal of Econometrics journal homepage: www.elsevier.com/locate/jeconom Predictable returns and asset allocation: Should at the 2005 CIRANO-CIREQ Financial Econometrics Conference, the 2006 AFA meetings, the 2006 SED meetings

  19. An Econometrics Analysis of Freight Rail Demand Growth in Albert Wijeweera a, *

    E-Print Network [OSTI]

    1 An Econometrics Analysis of Freight Rail Demand Growth in Australia Albert Wijeweera a, * , Hong of non-bulk freight demand in Australia. The paper uses a simple but robust econometrics method this growth at about four per cent per year (BTRE, 2006). The econometric model used herein enables us

  20. The Econometrics of High Frequency Data Per A. Mykland and Lan Zhang

    E-Print Network [OSTI]

    Mykland, Per A.

    The Econometrics of High Frequency Data Per A. Mykland and Lan Zhang This version: 31 August, 2010 Nilsen, and B°ard Støve. #12;The Econometrics of High Frequency Data 1 1 Introduction 1.1 Overview interested in finance, econometrics, statistics, probability and financial engineering. There has in recent

  1. Journal of Econometrics 162 (2011) 225239 Contents lists available at ScienceDirect

    E-Print Network [OSTI]

    Zhao, Zhibiao

    2011-01-01T23:59:59.000Z

    Journal of Econometrics 162 (2011) 225­239 Contents lists available at ScienceDirect Journal of Econometrics journal homepage: www.elsevier.com/locate/jeconom Nonparametric model validations for hidden Markov models with applications in financial econometrics Zhibiao Zhao Department of Statistics, Penn

  2. Advanced Econometrics (26:223:655:01) Fall 2012 Professor Robert H. Patrick

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Econometrics (26:223:655:01) Fall 2012 Professor Robert H. Patrick Department of Finance of the material covered in Econometrics (26:223:554). The purpose of this course is to develop advanced econometric estimation and hypothesis testing tools to analyze and interpret the empirical relevance

  3. 721339S 805339A 805683S Ekonometrian tilastolliset perusteet (Statistical Foundations of Econometrics)

    E-Print Network [OSTI]

    Klemelä, Jussi

    of Econometrics) Laajuus: 6 op / 28 tuntia luentoja, 14 tuntia laskuharjoituksia Opetuskieli: Suomi. Ajoitus. Yhteydet muihin opintoihin: ei ole Oppimateriaali: J. M. Wooldridge: Econometric Analysis of Cross Section and Panel Data (The MIT Press), William H. Greene: Econometric Analysis (Prentice Hall) Suoritustavat

  4. Econometrics of testing for jumps in financial economics using bipower variation

    E-Print Network [OSTI]

    Wolfe, Patrick J.

    Econometrics of testing for jumps in financial economics using bipower variation Ole E. Barndorff management and asset allocation. A stream of recent papers in financial econometrics has addressed this issue of quadratic variation to the increments of the risk premium. The re- cent econometric work on this topic

  5. Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State Level, 19631997

    E-Print Network [OSTI]

    Growth and Technological Leadership in US Industries: A Spatial Econometric Analysis at the State, industry level, technological leadership, spatial econometrics JEL codes: C21, I23, O33, R12 Copyright 2007 spatial econometric techniques, and focus on capturing the geographical dimension of growth

  6. An Econometric Study Of Vine Copulas D. Guganand P.A. Maugis

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    An Econometric Study Of Vine Copulas D. Guéganand P.A. Maugis PSE, Université Paris 1 Panthéon. Both results are crucial to motivate any econometrical work based on vine copulas. We provide used in econometrics and finance. They became an essential tool for pricing complex products, managing

  7. ECON 466 -INTRODUCTION TO ECONOMETRICS Instructor: Kai Sun Class Room: Engineering Building N25

    E-Print Network [OSTI]

    Suzuki, Masatsugu

    ECON 466 - INTRODUCTION TO ECONOMETRICS Fall 2010 Instructor: Kai Sun Class Room: Engineering web page: blackboard.binghamton.edu (log in and select Intro To Econometrics-FALL10) TA: TBA, Introductory Econometrics: A Modern Approach, 4th edition, South-Western, 2008. Prerequisites: Grades of C

  8. Vine Copulas as a Way to Describe and Analyze Multi-Variate Dependence in Econometrics

    E-Print Network [OSTI]

    Kreinovich, Vladik

    Vine Copulas as a Way to Describe and Analyze Multi-Variate Dependence in Econometrics and analyzing multi-variate dependence in econometrics; see, e.g., [1­3, 7, 9­11, 13, 14, 21]. Our experience problems of econometrics, there is still a lot of confusion and misunderstanding related to vine copulas

  9. WORKING PAPER N 2008 -64 The econometrics of auctions with asymmetric

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    WORKING PAPER N° 2008 - 64 The econometrics of auctions with asymmetric anonymous bidders Laurent NORMALE SUPÉRIEURE halshs-00586039,version1-14Apr2011 #12;The Econometrics of Auctions with Asymmetric Perrigne, Quang Vuong, Frank Wolak and seminar participants at Stanford Econometric Seminar, at Stanford

  10. Causality in Economics and Econometrics An Entry for the New Palgrave Dictionary of Economics

    E-Print Network [OSTI]

    Fitelson, Branden

    Causality in Economics and Econometrics An Entry for the New Palgrave Dictionary of Economics Kevin;Causality in Economics and Econometrics K.D. Hoover 9 June 2006 Abstract of Causality in Economics and Econometrics An entry for the New Palgrave Dictionary of Economics. Traces the history of causality

  11. Simulation based Bayesian econometric inference: principles and some recent computational advances

    E-Print Network [OSTI]

    Nesterov, Yurii

    2007/15 Simulation based Bayesian econometric inference: principles and some recent computational/15 Simulation based Bayesian econometric inference: principles and some recent computational advances Lennart F aspects of simulation based Bayesian econometric inference. We start at an elementary level on basic

  12. Financial Econometrics (29:390:300:50) Fall 2008 Professor Robert H. Patrick

    E-Print Network [OSTI]

    Lin, Xiaodong

    1 Financial Econometrics (29:390:300:50) Fall 2008 Professor Robert H. Patrick Department requirement for students that have not taken Introduction to Econometrics already. Students who are double majors in Finance and Economics can take Introduction to Econometrics (220:322). References Course

  13. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    and forecasting of solar radiation data: a review,”forecasting of solar- radiation data,” Solar Energy, vol.sequences of global solar radiation data for isolated sites:

  14. Adapting state and national electricity consumption forecasting methods to utility service areas. Final report

    SciTech Connect (OSTI)

    Swift, M.A.

    1984-07-01T23:59:59.000Z

    This report summarizes the experiences of six utilities (Florida Power and Light Co., Municipal Electric Authority of Georgia, Philadelphia Electric Co., Public Service Co. of Colorado, Sacramento Municipal Utility District, and TVA) in adapting to their service territories models that were developed for forecasting loads on a national or regional basis. The models examined were of both end-use and econometric design and included the three major customer classes: residential, commercial, and industrial.

  15. Econometrics (26:223:554:01) Fall 2000 Meets Thursdays, 10 AM-12:50 PM, Eng. 213, Newark Campus

    E-Print Network [OSTI]

    Lin, Xiaodong

    Econometrics (26:223:554:01) Fall 2000 Meets Thursdays, 10 AM-12:50 PM, Eng. 213, Newark Campus://www.rci.rutgers.edu/~rpatrick/hp.html The purpose of this course is to develop basic econometric estimation and hypothesis testing tools necessary on the theoretical foundations of econometric analysis and strategies for applying these basic econometric methods

  16. Econometric Theory, 25, 2009, 14471448. Printed in the United States of America. doi:10.1017/S0266466609990028

    E-Print Network [OSTI]

    Shao, Xiaofeng

    Econometric Theory, 25, 2009, 1447­1448. Printed in the United States of America. doi:10.1017/S0266466609990028 THE 2006­2008 TJALLING C. KOOPMANS ECONOMETRIC THEORY PRIZE Wei Biao Wu Xiaofeng Shao Econometric Theory is proud to announce the winning article for The Tjalling C. Koopmans Econometric Theory Prize

  17. Fifth Italian Congress of Econometrics and Empirical Economics (ICEEE 2013) January 16-18, 2013 -Genova, Italy

    E-Print Network [OSTI]

    Robbiano, Lorenzo

    Fifth Italian Congress of Econometrics and Empirical Economics (ICEEE 2013) January 16-18, 2013 Econometria (SIdE, anche Italian Econometric Association). Oggi in particolare si vive un tempo di diffusa

  18. Econometrics of Models with Strategic Interaction Presenter: Elie Tamer (Northwestern) Fee: HE delegates: 90; other delegates: 720

    E-Print Network [OSTI]

    Saunders, Mark

    Econometrics of Models with Strategic Interaction Presenter: Elie Tamer (Northwestern) Fee: HE of the econometrics questions that arise when analyzing models with multiple decision makers interacting a set of econometric theorists, applied economists and economic theorists that will share their views

  19. Towards an Agent-Based Foundation of Financial Econometrics: An Approach Based on Genetic-Programming Arti cial Markets

    E-Print Network [OSTI]

    Fernandez, Thomas

    Towards an Agent-Based Foundation of Financial Econometrics: An Approach Based on Genetic-mail: g7258502@grad.cc.nccu.edu.tw Taipei, Taiwan 11623 Abstract Using a few nonlinear econometric tools econometrics. In partic- ular, the time series generated by the GP- based arti#12;cial markets are consistent

  20. Advanced Econometrics (26:223:655:01) Spring 2003 Meets Wednesdays, 1-3:50 PM, Global Financial Management Center

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Econometrics (26:223:655:01) Spring 2003 Meets Wednesdays, 1-3:50 PM, Global Financial of the material covered in Econometrics (26:223:554). The purpose of this course is to develop advanced econometric estimation and hypothesis testing tools to analyze and interpret the empirical relevance

  1. FISCAL FORESIGHT: ANALYTICS AND ECONOMETRICS ERIC M. LEEPER, TODD B. WALKER, AND SHU-CHUN SUSAN YANG

    E-Print Network [OSTI]

    Hickman, Mark

    FISCAL FORESIGHT: ANALYTICS AND ECONOMETRICS ERIC M. LEEPER, TODD B. WALKER, AND SHU-CHUN SUSAN policy process. This paper develops an analytical framework to study the econometric implications from statistical innovations in conventional ways. Econometric analyses that fail to align agents

  2. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    2.1.2 European Solar Radiation Atlas (ESRA)2.4 Evaluation of Solar Forecasting . . . . . . . . .2.4.1 Solar Variability . . . . . . . . . . . . .

  3. Technology Forecasting Scenario Development

    E-Print Network [OSTI]

    Technology Forecasting and Scenario Development Newsletter No. 2 October 1998 Systems Analysis was initiated on the establishment of a new research programme entitled Technology Forecasting and Scenario and commercial applica- tion of new technology. An international Scientific Advisory Panel has been set up

  4. Rainfall-River Forecasting

    E-Print Network [OSTI]

    US Army Corps of Engineers

    ;2Rainfall-River Forecasting Joint Summit II NOAA Integrated Water Forecasting Program · Minimize losses due management and enhance America's coastal assets · Expand information for managing America's Water Resources, Precipitation and Water Quality Observations · USACE Reservoir Operation Information, Streamflow, Snowpack

  5. Essays on exponential series estimation and application of copulas in financial econometrics

    E-Print Network [OSTI]

    Chui, Chin Man

    2009-05-15T23:59:59.000Z

    This dissertation contains three essays. They are related to the exponential series estimation of copulas and the application of parametric copulas in financial econometrics. Chapter II proposes a multivariate exponential series estimator (ESE...

  6. A comparison of structural and non-structural econometric models in the Toronto office market

    E-Print Network [OSTI]

    Gole, Kimberly

    2014-01-01T23:59:59.000Z

    This thesis aims to compare five systems of econometric equations to describe the Toronto office market. It compares four structural systems differing in their demand equations and a non-structural system that does not ...

  7. Probabilistic manpower forecasting

    E-Print Network [OSTI]

    Koonce, James Fitzhugh

    1966-01-01T23:59:59.000Z

    PROBABILISTIC MANPOWER FORECASTING A Thesis JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas ASSAM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May, 1966 Major Subject...: Computer Science and Statistics PROBABILISTIC MANPOWER FORECASTING A Thesis By JAMES FITZHUGH KOONCE Submitted to the Graduate College of the Texas A@M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May...

  8. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Uranium Processing Facility UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be...

  9. Long Term Forecast ofLong Term Forecast of TsunamisTsunamis

    E-Print Network [OSTI]

    : ImproveImprove NOAANOAA''ss understandingunderstanding and forecast capabilityand forecast capability inin

  10. Long-term Industrial Energy Forecasting (LIEF) model (18-sector version)

    SciTech Connect (OSTI)

    Ross, M.H. [Univ. of Michigan, Ann Arbor, MI (US). Dept. of Physics; Thimmapuram, P.; Fisher, R.E.; Maciorowski, W. [Argonne National Lab., IL (US)

    1993-05-01T23:59:59.000Z

    The new 18-sector Long-term Industrial Energy Forecasting (LIEF) model is designed for convenient study of future industrial energy consumption, taking into account the composition of production, energy prices, and certain kinds of policy initiatives. Electricity and aggregate fossil fuels are modeled. Changes in energy intensity in each sector are driven by autonomous technological improvement (price-independent trend), the opportunity for energy-price-sensitive improvements, energy price expectations, and investment behavior. Although this decision-making framework involves more variables than the simplest econometric models, it enables direct comparison of an econometric approach with conservation supply curves from detailed engineering analysis. It also permits explicit consideration of a variety of policy approaches other than price manipulation. The model is tested in terms of historical data for nine manufacturing sectors, and parameters are determined for forecasting purposes. Relatively uniform and satisfactory parameters are obtained from this analysis. In this report, LIEF is also applied to create base-case and demand-side management scenarios to briefly illustrate modeling procedures and outputs.

  11. Steam System Forecasting and Management

    E-Print Network [OSTI]

    Mongrue, D. M.; Wittke, D. O.

    1982-01-01T23:59:59.000Z

    '. This and the complex and integrated nature of the plants energy balance makes steam system forecasting and management essential for optimum use of the plant's energy. This paper discusses the method used by Union carbide to accomplish effective forecasting...

  12. Stat 509/CSSS 509/Econ 580: Intro to Mathematical Statistics: Econometrics This is a FLUID syllabus, so check frequently for changes in colors

    E-Print Network [OSTI]

    Marzban, Caren

    Stat 509/CSSS 509/Econ 580: Intro to Mathematical Statistics: Econometrics This is a FLUID syllabus things change. Look for colors . Text: A Course in Econometrics, by Arthur S. Goldberger. Probability

  13. Consensus Coal Production Forecast for

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production Forecast for West Virginia 2009-2030 Prepared for the West Virginia Summary 1 Recent Developments 2 Consensus Coal Production Forecast for West Virginia 10 Risks References 27 #12;W.Va. Consensus Coal Forecast Update 2009 iii List of Tables 1. W.Va. Coal Production

  14. Improving Inventory Control Using Forecasting

    E-Print Network [OSTI]

    Balandran, Juan

    2005-12-16T23:59:59.000Z

    EMGT 835 FIELD PROJECT: Improving Inventory Control Using Forecasting By Juan Mario Balandran jmbg@hotmail.com Master of Science The University of Kansas Fall Semester, 2005 An EMGT Field Project report submitted...............................................................................................................................................10 Current Inventory Forecast Process ...........................................................................................10 Development of Alternative Forecast Process...

  15. timber quality Modelling and forecasting

    E-Print Network [OSTI]

    Forest and timber quality in Europe Modelling and forecasting yield and quality in Europe Forest and timber quality in Europe Modelling and forecasting yield and quality in Europe M E F Y Q U E #12;Valuing and the UK ­ are working closely together to develop a model to help forecast timber growth, yield, quality

  16. Demand Forecast INTRODUCTION AND SUMMARY

    E-Print Network [OSTI]

    electricity demand forecast means that the region's electricity needs would grow by 5,343 average megawattsDemand Forecast INTRODUCTION AND SUMMARY A 20-year forecast of electricity demand is a required in electricity demand is, of course, crucial to determining the need for new electricity resources and helping

  17. METEOROLOGICAL Weather and Forecasting

    E-Print Network [OSTI]

    AMERICAN METEOROLOGICAL SOCIETY Weather and Forecasting EARLY ONLINE RELEASE This is a preliminary and interpretation of information from National Weather Service watches and warnings by10 decision makers such an outlier to the regional severe weather climatology. An analysis of the synoptic and13 mesoscale

  18. Fuel Price Forecasts INTRODUCTION

    E-Print Network [OSTI]

    Fuel Price Forecasts INTRODUCTION Fuel prices affect electricity planning in two primary ways and water heating, and other end-uses as well. Fuel prices also influence electricity supply and price because oil, coal, and natural gas are potential fuels for electricity generation. Natural gas

  19. Solar forecasting review

    E-Print Network [OSTI]

    Inman, Richard Headen

    2012-01-01T23:59:59.000Z

    Quantifying PV power output variability,” Solar Energy, vol.each solar sen at node i, P(t) the total power output of theSolar Forecasting Historically, traditional power generation technologies such as fossil and nu- clear power which were designed to run in stable output

  20. Approved Module Information for BS2248, 2014/5 Module Title/Name: Introduction to Econometrics 2 Module Code: BS2248

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for BS2248, 2014/5 Module Title/Name: Introduction to Econometrics 2 Dependancies Pre-requisites: Introduction to Econometrics 1 (BS2247). Co-requisites: None Specified Module Learning Information Module Aims: To introduce the fundamental econometric theories and techniques

  1. Advanced Econometrics (26:223:655:01) Fall 2010 Class meets Thursday 11:30-2:20 PM, 1 Washington Park 358

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Econometrics (26:223:655:01) Fall 2010 Class meets Thursday 11:30-2:20 PM, 1 Washington://www.rci.rutgers.edu/~rpatrick/hp.html This course is a continuation and generalization of the material covered in Econometrics (26:223:554). The purpose of this course is to develop advanced econometric estimation and hypothesis testing tools

  2. Approved Module Information for BS2247, 2014/5 Module Title/Name: Introduction to Econometrics 1 Module Code: BS2247

    E-Print Network [OSTI]

    Neirotti, Juan Pablo

    Approved Module Information for BS2247, 2014/5 Module Title/Name: Introduction to Econometrics 1 aims to provide the students with the most basic and important Econometrics knowledge, including simple and multiple linear regressions, and prepare them for BS2248 Introduction to Econometrics II. Pre

  3. Advanced Econometrics (26:223:655:01) Fall 2009 Class meets Thursday 1:00-3:40 PM, 1 Washington Park 202

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Econometrics (26:223:655:01) Fall 2009 Class meets Thursday 1:00-3:40 PM, 1 Washington://www.rci.rutgers.edu/~rpatrick/hp.html This course is a continuation and generalization of the material covered in Econometrics (26:223:554). The purpose of this course is to develop advanced econometric estimation and hypothesis testing tools

  4. Advanced Econometrics (26:223:655:01) Spring 2008 Meets Tuesdays, 2:30-5:20 PM, GFMC (Ackerson Hall 106)

    E-Print Network [OSTI]

    Lin, Xiaodong

    Advanced Econometrics (26:223:655:01) Spring 2008 Meets Tuesdays, 2:30-5:20 PM, GFMC (Ackerson Hall and generalization of the material covered in Econometrics (26:223:554). The purpose of this course is to develop advanced econometric estimation and hypothesis testing tools to analyze and interpret the empirical

  5. Advanced Numerical Weather Prediction Techniques for Solar Irradiance Forecasting : : Statistical, Data-Assimilation, and Ensemble Forecasting

    E-Print Network [OSTI]

    Mathiesen, Patrick James

    2013-01-01T23:59:59.000Z

    Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Edition, Editors:Forecasting and Resource Assessment, 1 st Ed.. Editor: Jan

  6. An econometric analysis and forecast of the Central London Office Market : single model versus aggregate submarket models

    E-Print Network [OSTI]

    Waisnor, Matthew E. (Matthew Edward)

    2013-01-01T23:59:59.000Z

    This paper examines and projects fundamental characteristics of the London Office rental market which is facing supply and demand issues in upcoming years despite being considered one of the few safe haven places for real ...

  7. Forecasting oilfield economic performance

    SciTech Connect (OSTI)

    Bradley, M.E. (Univ. of Chicago, IL (United States)); Wood, A.R.O. (BP Exploration, Anchorage, AK (United States))

    1994-11-01T23:59:59.000Z

    This paper presents a general method for forecasting oilfield economic performance that integrates cost data with operational, reservoir, and financial information. Practices are developed for determining economic limits for an oil field and its components. The economic limits of marginal wells and the role of underground competition receive special attention. Also examined is the influence of oil prices on operating costs. Examples illustrate application of these concepts. Categorization of costs for historical tracking and projections is recommended.

  8. A Spatial Econometric Approach to Measuring Pollution Externalities: An Application to Ozone Smog

    E-Print Network [OSTI]

    Lin, C.-Y. Cynthia

    to analyze air pollution externalities. State-by-state source-receptor transfer coefficients that can be used of the six cri- teria pollutants for which National Ambient Air Quali- ty Standards have been establishedA Spatial Econometric Approach to Measuring Pollution Externalities: An Application to Ozone Smog C

  9. Forecasting and Risk Simulation: Proposed Analytical Tool

    E-Print Network [OSTI]

    Datta, Shoumen

    2008-08-01T23:59:59.000Z

    Advances in econometrics and financial mathematics are still confined to use within the domains of stocks, bonds, shares, currency exchanges and derivatives markets. Extracting the principles (see paper by Datta & Granger) ...

  10. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01T23:59:59.000Z

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  11. ELECTRICITY DEMAND FORECAST COMPARISON REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ELECTRICITY DEMAND FORECAST COMPARISON REPORT STAFFREPORT June 2005.................................................................................................................................3 PACIFIC GAS & ELECTRIC PLANNING AREA ........................................................................................9 Commercial Sector

  12. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL

  13. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    Energy Commission's final forecasts for 2012­2022 electricity consumption, peak, and natural gas demand Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST Volume 2: Electricity Demand

  14. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    the California Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 1: Statewide Electricity Demand

  15. REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022

    E-Print Network [OSTI]

    Energy Commission staff's revised forecasts for 2012­2022 electricity consumption, peak, and natural Electricity, demand, consumption, forecast, weather normalization, peak, natural gas, self generation REVISED CALIFORNIA ENERGY DEMAND FORECAST 20122022 Volume 2: Electricity Demand by Utility

  16. NATIONAL AND GLOBAL FORECASTS WEST VIRGINIA PROFILES AND FORECASTS

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    · NATIONAL AND GLOBAL FORECASTS · WEST VIRGINIA PROFILES AND FORECASTS · ENERGY · HEALTHCARE Research West Virginia University College of Business and Economics P.O. Box 6527, Morgantown, WV 26506 EXPERT OPINION PROVIDED BY Keith Burdette Cabinet Secretary West Virginia Department of Commerce

  17. Conservation The Northwest ForecastThe Northwest Forecast

    E-Print Network [OSTI]

    & Resources Creating Mr. Toad's Wild Ride for the PNW's Energy Efficiency InCreating Mr. Toad's Wild RideNorthwest Power and Conservation Council The Northwest ForecastThe Northwest Forecast ­­ Energy EfficiencyEnergy Efficiency Dominates ResourceDominates Resource DevelopmentDevelopment Tom EckmanTom Eckman

  18. The Credibility Revolution in Empirical Economics: How Better Research Design is Taking the Con out of Econometrics

    E-Print Network [OSTI]

    Angrist, Joshua

    2010-01-01T23:59:59.000Z

    Just over a quarter century ago, Edward Leamer (1983) reflected on the state of empirical work in economics. He urged empirical researchers to “take the con out of econometrics” and memorably observed (p. 37): “Hardly ...

  19. ENERGY DEMAND FORECAST METHODS REPORT

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION ENERGY DEMAND FORECAST METHODS REPORT Companion Report to the California Energy Demand 2006-2016 Staff Energy Demand Forecast Report STAFFREPORT June 2005 CEC-400. Hall Deputy Director Energy Efficiency and Demand Analysis Division Scott W. Matthews Acting Executive

  20. Mathematical Forecasting Donald I. Good

    E-Print Network [OSTI]

    Boyer, Robert Stephen

    Mathematical Forecasting Donald I. Good Technical Report 47 September 1989 Computational Logic Inc the physical behavior of computer programs can reduce these risks for software engineering in the same way that it does for aerospace and other fields of engineering. Present forecasting capabilities for computer

  1. Regional-seasonal weather forecasting

    SciTech Connect (OSTI)

    Abarbanel, H.; Foley, H.; MacDonald, G.; Rothaus, O.; Rudermann, M.; Vesecky, J.

    1980-08-01T23:59:59.000Z

    In the interest of allocating heating fuels optimally, the state-of-the-art for seasonal weather forecasting is reviewed. A model using an enormous data base of past weather data is contemplated to improve seasonal forecasts, but present skills do not make that practicable. 90 references. (PSB)

  2. Econometrics (26:223:554:01) Spring 2012 Thursdays, 10:00 AM-12:50 P.M., 1 Washington Park 512, Newark Campus

    E-Print Network [OSTI]

    Lin, Xiaodong

    Econometrics (26:223:554:01) Spring 2012 Thursdays, 10:00 AM-12:50 P.M., 1 Washington Park 512://www.rci.rutgers.edu/~rpatrick/hp.html This is the first of two required econometrics courses for Ph.D. students in Finance and Economics. The purpose of this course is to develop basic econometric estimation and hypothesis testing tools necessary to analyze

  3. Econometrics (26:223:554:01) Spring 2013 Thursdays, 10:00 AM-12:50 P.M., 1 Washington Park 512, Newark Campus

    E-Print Network [OSTI]

    Econometrics (26:223:554:01) Spring 2013 Thursdays, 10:00 AM-12:50 P.M., 1 Washington Park 512://www.rci.rutgers.edu/~rpatrick/hp.html This is the first of two required econometrics courses for Ph.D. students in Finance and Economics. The purpose of this course is to develop basic econometric estimation and hypothesis testing tools necessary to analyze

  4. Econometrics (26:223:554:01) Spring 2011 Thursdays, 10:00 AM-12:50 P.M., 1 Washington Park 512, Newark

    E-Print Network [OSTI]

    Lin, Xiaodong

    Econometrics (26:223:554:01) Spring 2011 Thursdays, 10:00 AM-12:50 P.M., 1 Washington Park 512://www.rci.rutgers.edu/~rpatrick/hp.html This is the first of two required econometrics courses for Ph.D. students in Finance and Economics. The purpose of this course is to develop basic econometric estimation and hypothesis testing tools necessary to analyze

  5. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN with primary contributions in the area of decision support for reservoir planning and management Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project

  6. Arnold Schwarzenegger INTEGRATED FORECAST AND

    E-Print Network [OSTI]

    Arnold Schwarzenegger Governor INTEGRATED FORECAST AND RESERVOIR MANAGEMENT (INFORM) FOR NORTHERN: California Energy Commission Energy-Related Environmental Research Joseph O' Hagan Contract Manager Joseph O' Hagan Project Manager Kelly Birkinshaw Program Area Manager ENERGY-RELATED ENVIRONMENTAL RESEARCH Martha

  7. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01T23:59:59.000Z

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  8. Weather forecasting : the next generation : the potential use and implementation of ensemble forecasting

    E-Print Network [OSTI]

    Goto, Susumu

    2007-01-01T23:59:59.000Z

    This thesis discusses ensemble forecasting, a promising new weather forecasting technique, from various viewpoints relating not only to its meteorological aspects but also to its user and policy aspects. Ensemble forecasting ...

  9. Optimal combined wind power forecasts using exogeneous variables

    E-Print Network [OSTI]

    Optimal combined wind power forecasts using exogeneous variables Fannar ¨Orn Thordarson Kongens of the thesis is combined wind power forecasts using informations from meteorological forecasts. Lyngby, January

  10. Forecasting consumer products using prediction markets

    E-Print Network [OSTI]

    Trepte, Kai

    2009-01-01T23:59:59.000Z

    Prediction Markets hold the promise of improving the forecasting process. Research has shown that Prediction Markets can develop more accurate forecasts than polls or experts. Our research concentrated on analyzing Prediction ...

  11. Massachusetts state airport system plan forecasts.

    E-Print Network [OSTI]

    Mathaisel, Dennis F. X.

    This report is a first step toward updating the forecasts contained in the 1973 Massachusetts State System Plan. It begins with a presentation of the forecasting techniques currently available; it surveys and appraises the ...

  12. Management Forecast Quality and Capital Investment Decisions

    E-Print Network [OSTI]

    Goodman, Theodore H.

    Corporate investment decisions require managers to forecast expected future cash flows from potential investments. Although these forecasts are a critical component of successful investing, they are not directly observable ...

  13. Wind Power Forecasting andWind Power Forecasting and Electricity Market Operations

    E-Print Network [OSTI]

    Kemner, Ken

    forecasting methods and better integration of advanced wind power forecasts into system and plant operations and wind power plants) ­ Review and assess current practices Propose and test new and improved approachesWind Power Forecasting andWind Power Forecasting and Electricity Market Operations Audun Botterud

  14. 1995 shipment review & five year forecast

    SciTech Connect (OSTI)

    Fetherolf, D.J. Jr. [East Penn Manufacturing Co., Inc., Lyon Station, PA (United States)

    1996-01-01T23:59:59.000Z

    This report describes the 1995 battery shipment review and five year forecast for the battery market. Historical data is discussed.

  15. Consensus Coal Production And Price Forecast For

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    Consensus Coal Production And Price Forecast For West Virginia: 2011 Update Prepared for the West December 2011 © Copyright 2011 WVU Research Corporation #12;#12;W.Va. Consensus Coal Forecast Update 2011 i Table of Contents Executive Summary 1 Recent Developments 3 Consensus Coal Production And Price Forecast

  16. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST Volume 2: Electricity Demand The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 2: Electricity Demand by Utility Planning Area Energy Policy Report. The forecast includes three full scenarios: a high energy demand case, a low

  17. LOAD FORECASTING Eugene A. Feinberg

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    , regression, artificial intelligence. 1. Introduction Accurate models for electric power load forecasting to make important decisions including decisions on pur- chasing and generating electric power, load for different operations within a utility company. The natures 269 #12;270 APPLIED MATHEMATICS FOR POWER SYSTEMS

  18. Calculator simplifies field production forecasting

    SciTech Connect (OSTI)

    Bixler, B.

    1982-05-01T23:59:59.000Z

    A method of forecasting future field production from an assumed average well production schedule and drilling schedule has been programmed for the HP-41C hand-held programmable computer. No longer must tedious row summations be made by hand for staggered well production schedules. Details of the program are provided.

  19. Here at eXelate, we are looking to hire a data scientist to work with us in digital advertising technology. We are looking for someone comfortable at the intersection of computer science and statistics / econometrics to work on machine learning problems a

    E-Print Network [OSTI]

    / econometrics to work on machine learning problems at massive scale and help us build our analytics

  20. Cyberspace Security Econometrics System (CSES) - U.S. Copyright TXu 1-901-039

    SciTech Connect (OSTI)

    Abercrombie, Robert K [ORNL] [ORNL; Schlicher, Bob G [ORNL] [ORNL; Sheldon, Frederick T [ORNL] [ORNL; Lantz, Margaret W [ORNL] [ORNL; Hauser, Katie R [ORNL] [ORNL

    2014-01-01T23:59:59.000Z

    Information security continues to evolve in response to disruptive changes with a persistent focus on information-centric controls and a healthy debate about balancing endpoint and network protection, with a goal of improved enterprise/business risk management. Economic uncertainty, intensively collaborative styles of work, virtualization, increased outsourcing and ongoing compliance pressures require careful consideration and adaptation. The Cyberspace Security Econometrics System (CSES) provides a measure (i.e., a quantitative indication) of reliability, performance, and/or safety of a system that accounts for the criticality of each requirement as a function of one or more stakeholders interests in that requirement. For a given stakeholder, CSES accounts for the variance that may exist among the stakes one attaches to meeting each requirement. The basis, objectives and capabilities for the CSES including inputs/outputs as well as the structural and mathematical underpinnings contained in this copyright.

  1. From Physics to Economics: An Econometric Example Using Maximum Relative Entropy

    E-Print Network [OSTI]

    Giffin, Adom

    2009-01-01T23:59:59.000Z

    Econophysics, is based on the premise that some ideas and methods from physics can be applied to economic situations. We intend to show in this paper how a physics concept such as entropy can be applied to an economic problem. In so doing, we demonstrate how information in the form of observable data and moment constraints are introduced into the method of Maximum relative Entropy (MrE). A general example of updating with data and moments is shown. Two specific econometric examples are solved in detail which can then be used as templates for real world problems. A numerical example is compared to a large deviation solution which illustrates some of the advantages of the MrE method.

  2. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy: Grid IntegrationReport AvailableForecasting NREL researchers use

  3. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    collects data on a variety of physical processes that impact the wind forecasts used by wind farms, system operators and other industry professionals. By having access to...

  4. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Broader source: Energy.gov (indexed) [DOE]

    collects data on a variety of physical processes that impact the wind forecasts used by wind farms, system operators and other industry professionals. By having access to...

  5. Solid low-level waste forecasting guide

    SciTech Connect (OSTI)

    Templeton, K.J.; Dirks, L.L.

    1995-03-01T23:59:59.000Z

    Guidance for forecasting solid low-level waste (LLW) on a site-wide basis is described in this document. Forecasting is defined as an approach for collecting information about future waste receipts. The forecasting approach discussed in this document is based solely on hanford`s experience within the last six years. Hanford`s forecasting technique is not a statistical forecast based upon past receipts. Due to waste generator mission changes, startup of new facilities, and waste generator uncertainties, statistical methods have proven to be inadequate for the site. It is recommended that an approach similar to Hanford`s annual forecasting strategy be implemented at each US Department of Energy (DOE) installation to ensure that forecast data are collected in a consistent manner across the DOE complex. Hanford`s forecasting strategy consists of a forecast cycle that can take 12 to 30 months to complete. The duration of the cycle depends on the number of LLW generators and staff experience; however, the duration has been reduced with each new cycle. Several uncertainties are associated with collecting data about future waste receipts. Volume, shipping schedule, and characterization data are often reported as estimates with some level of uncertainty. At Hanford, several methods have been implemented to capture the level of uncertainty. Collection of a maximum and minimum volume range has been implemented as well as questionnaires to assess the relative certainty in the requested data.

  6. Geothermal wells: a forecast of drilling activity

    SciTech Connect (OSTI)

    Brown, G.L.; Mansure, A.J.; Miewald, J.N.

    1981-07-01T23:59:59.000Z

    Numbers and problems for geothermal wells expected to be drilled in the United States between 1981 and 2000 AD are forecasted. The 3800 wells forecasted for major electric power projects (totaling 6 GWe of capacity) are categorized by type (production, etc.), and by location (The Geysers, etc.). 6000 wells are forecasted for direct heat projects (totaling 0.02 Quads per year). Equations are developed for forecasting the number of wells, and data is presented. Drilling and completion problems in The Geysers, The Imperial Valley, Roosevelt Hot Springs, the Valles Caldera, northern Nevada, Klamath Falls, Reno, Alaska, and Pagosa Springs are discussed. Likely areas for near term direct heat projects are identified.

  7. Online Forecast Combination for Dependent Heterogeneous Data

    E-Print Network [OSTI]

    Sancetta, Alessio

    the single individual forecasts. Several studies have shown that combining forecasts can be a useful hedge against structural breaks, and forecast combinations are often more stable than single forecasts (e.g. Hendry and Clements, 2004, Stock and Watson, 2004... in expectations. Hence, we have the following. Corollary 4 Suppose maxt?T kl (Yt, hwt,Xti)kr ? A taking expectation on the left hand side, adding 2A ? T and setting ? = 0 in mT (?), i.e. TX t=1 E [lt (wt)? lt (ut...

  8. The Value of Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Power Forecasting Preprint Debra Lew and Michael Milligan National Renewable Energy Laboratory Gary Jordan and Richard Piwko GE Energy Presented at the 91 st American...

  9. U-M Construction Forecast December 15, 2011 U-M Construction Forecast

    E-Print Network [OSTI]

    Kamat, Vineet R.

    U-M Construction Forecast December 15, 2011 U-M Construction Forecast Spring ­ Fall 2012 As of December 15, 2011 Prepared by AEC Preliminary & Advisory #12;U-M Construction Forecast December 15, 2011 Overview · Campus by campus · Snapshot in time ­ Not all projects · Construction coordination efforts

  10. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    has developed longterm forecasts of transportation energy demand as well as projected ranges of transportation fuel and crude oil import requirements. The transportation energy demand forecasts makeCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY

  11. Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting

    E-Print Network [OSTI]

    Plale, Beth

    Dynamic Filtering and Mining Triggers in Mesoscale Meteorology Forecasting Nithya N. Vijayakumar {rramachandran, xli}@itsc.uah.edu Abstract-- Mesoscale meteorology forecasting as a data driven application Triggers, Data Mining, Stream Processing, Meteorology Forecasting I. INTRODUCTION Mesoscale meteorologists

  12. 1992 five year battery forecast

    SciTech Connect (OSTI)

    Amistadi, D.

    1992-12-01T23:59:59.000Z

    Five-year trends for automotive and industrial batteries are projected. Topic covered include: SLI shipments; lead consumption; automotive batteries (5-year annual growth rates); industrial batteries (standby power and motive power); estimated average battery life by area/country for 1989; US motor vehicle registrations; replacement battery shipments; potential lead consumption in electric vehicles; BCI recycling rates for lead-acid batteries; US average car/light truck battery life; channels of distribution; replacement battery inventory end July; 2nd US battery shipment forecast.

  13. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnual SiteofEvaluating A PotentialJumpGermanFife Energy Park atFisiaFlorida:Forecast Energy Jump to:

  14. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Office of Environmental Management (EM)

    The Wind Forecast Improvement Project (WFIP): A PublicPrivate Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The...

  15. Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo

    E-Print Network [OSTI]

    Heinemann, Detlev

    Forecasting of Solar Radiation Detlev Heinemann, Elke Lorenz, Marco Girodo Oldenburg University have been presented more than twenty years ago (Jensenius, 1981), when daily solar radiation forecasts

  16. Alternative methods for forecasting GDP Dominique Gugan

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    analysis. Better forecast performance for macroeconomic variables will lead to Paris School of Economics the speed of computers that can develop search algorithms from appropriate selection criteria, Devroye. 1 Introduction Forecasting macroeconomic variables such as GDP and inflation play an important role

  17. A NEW APPROACH FOR EVALUATING ECONOMIC FORECASTS

    E-Print Network [OSTI]

    Vertes, Akos

    APPROACH FOR EVALUATING ECONOMIC FORECASTS Tara M. Sinclair , H.O. Stekler, and Warren Carnow Department of Economics The George Washington University Monroe Hall #340 2115 G Street NW Washington, DC 20052 JEL Codes, Mahalanobis Distance Abstract This paper presents a new approach to evaluating multiple economic forecasts

  18. 2013 Midyear Economic Forecast Sponsorship Opportunity

    E-Print Network [OSTI]

    de Lijser, Peter

    2013 Midyear Economic Forecast Sponsorship Opportunity Thursday, April 18, 2013, ­ Hyatt Regency Irvine 11:30 a.m. ­ 1:30 p.m. Dr. Anil Puri presents his annual Midyear Economic Forecast addressing and Economics at California State University, Fullerton, the largest accredited business school in California

  19. Dynamic Algorithm for Space Weather Forecasting System

    E-Print Network [OSTI]

    Fischer, Luke D.

    2011-08-08T23:59:59.000Z

    /effective forecasts, and we have performed preliminary benchmarks on this algorithm. The preliminary benchmarks yield surprisingly effective results thus far?forecasts have been made 8-16 hours into the future with significant magnitude and trend accuracy, which is a...

  20. Nonparametric models for electricity load forecasting

    E-Print Network [OSTI]

    Genève, Université de

    Electricity consumption is constantly evolving due to changes in people habits, technological innovations1 Nonparametric models for electricity load forecasting JANUARY 23, 2015 Yannig Goude, Vincent at University Paris-Sud 11 Orsay. His research interests are electricity load forecasting, more generally time

  1. CALIFORNIA ENERGY DEMAND 20142024 REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 REVISED FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency SEPTEMBER 2013 CEC2002013004SDV1REV CALIFORNIA The California Energy Demand 2014 ­ 2024 Revised Forecast, Volume 1: Statewide Electricity Demand and Methods

  2. 1993 Pacific Northwest Loads and Resources Study, Pacific Northwest Economic and Electricity Use Forecast, Technical Appendix: Volume 1.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1994-02-01T23:59:59.000Z

    This publication documents the load forecast scenarios and assumptions used to prepare BPA`s Whitebook. It is divided into: intoduction, summary of 1993 Whitebook electricity demand forecast, conservation in the load forecast, projection of medium case electricity sales and underlying drivers, residential sector forecast, commercial sector forecast, industrial sector forecast, non-DSI industrial forecast, direct service industry forecast, and irrigation forecast. Four appendices are included: long-term forecasts, LTOUT forecast, rates and fuel price forecasts, and forecast ranges-calculations.

  3. Material World: Forecasting Household Appliance Ownership in a Growing Global Economy

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2009-03-23T23:59:59.000Z

    Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

  4. Thailand's natural rubber economy in an international setting: an econometric investigation

    SciTech Connect (OSTI)

    Suwanakul, S.

    1986-01-01T23:59:59.000Z

    The Thai natural rubber economy is described in the context of the world rubber market. An econometric model is estimated for 15 structural equations; it includes the Thai, US, and rest-of-the-world rubber economies. Several simulation experiments are analyzed for the period from 1984 to 1995. Impact and dynamic multipliers are reported for major endogenous variables in response to changes in US GDP, world crude oil price, Thai replanting cess tax and Thai natural rubber production. A 1%, one-time increase in the US GDP has a positive effect on the Singapore natural rubber price. A world crude oil price decline shock has a negative effect in both the short-run and the long-run. The INRO buffer stock stabilization policy as well as alternative domestic Thai policies of market intervention are analyzed. The simulation results show that buffer stock management which allows a price band of +/-20% around the price target has the most stabilized price, compared to other band widths and no stock management. The outcome of the increase of the Thai replanting cess tax raises not only cess tax revenue, but also producer and export earning. Results showed that a decrease in rubber production positively affected producer and export earnings in the long-run.

  5. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF DRAFT FORECAST

    E-Print Network [OSTI]

    procurement process at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast models. Both the staff draft energy consumption and peak forecasts are slightly and commercial sectors. Keywords Electricity demand, electricity consumption, demand forecast, weather

  6. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    and water pumping sectors. Mark Ciminelli forecasted energy for transportation, communication and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption data at the California Public Utilities Commission. This forecast was produced with the Energy Commission demand forecast

  7. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01T23:59:59.000Z

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  8. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  9. Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will tak

    E-Print Network [OSTI]

    Islam, M. Saif

    Page 1 Solar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting QuestionnaireSolar Resource and Forecasting Questionnaire As someone who is familiar with solar energy issues, we hope that you will take a few moments to answer this short survey

  10. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Analysis of the Results of an On-line Wind Power Ensemble- forecasts for wind power (FU2101) a demo-application producing quantile forecasts of wind power correct) quantile forecasts of the wind power production are generated by the application. However

  11. 1993 Solid Waste Reference Forecast Summary

    SciTech Connect (OSTI)

    Valero, O.J.; Blackburn, C.L. [Westinghouse Hanford Co., Richland, WA (United States); Kaae, P.S.; Armacost, L.L.; Garrett, S.M.K. [Pacific Northwest Lab., Richland, WA (United States)

    1993-08-01T23:59:59.000Z

    This report, which updates WHC-EP-0567, 1992 Solid Waste Reference Forecast Summary, (WHC 1992) forecasts the volumes of solid wastes to be generated or received at the US Department of Energy Hanford Site during the 30-year period from FY 1993 through FY 2022. The data used in this document were collected from Westinghouse Hanford Company forecasts as well as from surveys of waste generators at other US Department of Energy sites who are now shipping or plan to ship solid wastes to the Hanford Site for disposal. These wastes include low-level and low-level mixed waste, transuranic and transuranic mixed waste, and nonradioactive hazardous waste.

  12. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    supervised data preparation. Steven Mac and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Cynthia Rogers generation, conservation, energy efficiency, climate zone, investorowned, public, utilities, additional

  13. Wind Speed Forecasting for Power System Operation 

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  14. STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION STAFF FORECAST: AVERAGE RETAIL ELECTRICITY PRICES 2005 TO 2018 Mignon Marks Principal Author Mignon Marks Project Manager David Ashuckian Manager ELECTRICITY ANALYSIS OFFICE Sylvia Bender Acting Deputy Director ELECTRICITY SUPPLY DIVISION B.B. Blevins Executive Director

  15. Wind Speed Forecasting for Power System Operation

    E-Print Network [OSTI]

    Zhu, Xinxin

    2013-07-22T23:59:59.000Z

    In order to support large-scale integration of wind power into current electric energy system, accurate wind speed forecasting is essential, because the high variation and limited predictability of wind pose profound challenges to the power system...

  16. Potential Economic Value of Seasonal Hurricane Forecasts

    E-Print Network [OSTI]

    Emanuel, Kerry Andrew

    This paper explores the potential utility of seasonal Atlantic hurricane forecasts to a hypothetical property insurance firm whose insured properties are broadly distributed along the U.S. Gulf and East Coasts. Using a ...

  17. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  18. Essays in International Macroeconomics and Forecasting

    E-Print Network [OSTI]

    Bejarano Rojas, Jesus Antonio

    2012-10-19T23:59:59.000Z

    This dissertation contains three essays in international macroeconomics and financial time series forecasting. In the first essay, I show, numerically, that a two-country New-Keynesian Sticky Prices model, driven by monetary and productivity shocks...

  19. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01T23:59:59.000Z

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  20. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    gas price forecasts with contemporaneous natural gas pricesreference-case natural gas price forecast, and that have notof AEO 2009 Natural Gas Price Forecast to NYMEX Futures

  1. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Gas Price Forecast W ith natural gas prices significantlyof AEO 2006 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

  2. Comparing Price Forecast Accuracy of Natural Gas Models and Futures Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-01-01T23:59:59.000Z

    to accurately forecast natural gas prices. Many policyseek alternative methods to forecast natural gas prices. Thethe accuracy of forecasts for natural gas prices as reported

  3. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    gas price forecasts with contemporaneous natural gas pricesreference-case natural gas price forecast, and that have notof AEO 2008 Natural Gas Price Forecast to NYMEX Futures

  4. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    the base-case natural gas price forecast, but to alsogas price forecasts with contemporaneous natural gas pricesof AEO 2010 Natural Gas Price Forecast to NYMEX Futures

  5. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Natural Gas Price Forecast Although natural gas prices areof AEO 2007 Natural Gas Price Forecast to NYMEX Futurescase long-term natural gas price forecasts from the AEO

  6. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01T23:59:59.000Z

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  7. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01T23:59:59.000Z

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  8. Macro-econometric model of the Nigerian economy: a simulated analysis of oil shocks in a development context

    SciTech Connect (OSTI)

    Usip, E.E.E.

    1984-01-01T23:59:59.000Z

    The precarious position of Nigeria in being a one-resource (oil) based economy in terms of revenue generation has become a major cause of concern for the experts and political pundits. In this study, the author seeks to explore further the empirical basis for this concern in two stages. First, a macro-econometric model of Nigeria was constructed and evaluated. The model highlights the various channels through which the oil sector influences the rest of the economy. Economic theory, econometric techniques, existing fund of knowledge in the practice, computer simulation, and the institutional framework of Nigeria were brought to bear upon the modeling process. In the second stage, the resulting simulation model was used to examine the sensitivity of the economy to the leading sector (oil) as well as the growth potential of Nigeria up to 1986. The crucial question that was addressed is: will the oil sector be able to support a continuing economic growth of Nigeria in the absence of policy initiatives to diversify the revenue base of the economy. Although the empirical findings are hypothetical, they do have far-reaching implications for Nigeria's growth prospects and political stability.

  9. Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix B: Economic Forecast Role of the Economic Forecast..................................................................................................................................... 2 Economic Growth Assumptions

  10. Viability, Development, and Reliability Assessment of Coupled Coastal Forecasting Systems

    E-Print Network [OSTI]

    Singhal, Gaurav

    2012-10-19T23:59:59.000Z

    disaster, Cook Inlet (CI) and Prince William Sound (PWS) are regions that suffer from a lack of accurate wave forecast information. This dissertation develops high- resolution integrated wave forecasting schemes for these regions in order to meet...

  11. Potential to Improve Forecasting Accuracy: Advances in Supply Chain Management

    E-Print Network [OSTI]

    Datta, Shoumen

    2008-07-31T23:59:59.000Z

    Forecasting is a necessity almost in any operation. However, the tools of forecasting are still primitive in view of the great strides made by research and the increasing abundance of data made possible by automatic ...

  12. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output Perturbation

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatistical Output. This is typically not feasible for mesoscale weather prediction carried out locally by organizations without by simulating realizations of the geostatistical model. The method is applied to 48-hour mesoscale forecasts

  13. The effect of multinationality on management earnings forecasts

    E-Print Network [OSTI]

    Runyan, Bruce Wayne

    2005-08-29T23:59:59.000Z

    This study examines the relationship between a firm??s degree of multinationality and its managers?? earnings forecasts. Firms with a high degree of multinationality are subject to greater uncertainty regarding earnings forecasts due...

  14. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01T23:59:59.000Z

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  15. Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1

    E-Print Network [OSTI]

    1 Weighted Parametric Operational Hydrology Forecasting Thomas E. Croley II1 1 Great Lakes forecasts in operational hydrology builds a sample of possibilities for the future, of climate series from-parametric method can be extended into a new weighted parametric hydrological forecasting technique to allow

  16. A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION

    E-Print Network [OSTI]

    Boyer, Edmond

    1 A BAYESIAN MODEL COMMITTEE APPROACH TO FORECASTING GLOBAL SOLAR RADIATION in the realm of solar radiation forecasting. In this work, two forecasting models: Autoregressive Moving. The very first results show an improvement brought by this approach. 1. INTRODUCTION Solar radiation

  17. FORECASTING SOLAR RADIATION PRELIMINARY EVALUATION OF AN APPROACH

    E-Print Network [OSTI]

    Perez, Richard R.

    FORECASTING SOLAR RADIATION -- PRELIMINARY EVALUATION OF AN APPROACH BASED UPON THE NATIONAL, and undertake a preliminary evaluation of, a simple solar radiation forecast model using sky cover predictions forecasts is 0.05o in latitude and longitude. Solar Radiation model: The model presented in this paper

  18. AUTOMATION OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S.

    E-Print Network [OSTI]

    Povinelli, Richard J.

    AUTOMATION OF ENERGY DEMAND FORECASTING by Sanzad Siddique, B.S. A Thesis submitted to the Faculty OF ENERGY DEMAND FORECASTING Sanzad Siddique, B.S. Marquette University, 2013 Automation of energy demand of the energy demand forecasting are achieved by integrating nonlinear transformations within the models

  19. Univariate Modeling and Forecasting of Monthly Energy Demand Time Series

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Univariate Modeling and Forecasting of Monthly Energy Demand Time Series Using Abductive and Neural dedicated models to forecast the 12 individual months directly. Results indicate better performance is superior to naïve forecasts based on persistence and seasonality, and is better than results quoted

  20. TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY

    E-Print Network [OSTI]

    requirements. The transportation energy demand forecasts make assumptions about fuel price forecastsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS FOR THE 2007 INTEGRATED ENERGY POLICY ENERGY COMMISSION Gordon Schremp, Jim Page, and Malachi Weng-Gutierrez Principal Authors Jim Page Project

  1. PSO (FU 2101) Ensemble-forecasts for wind power

    E-Print Network [OSTI]

    PSO (FU 2101) Ensemble-forecasts for wind power Wind Power Ensemble Forecasting Using Wind Speed the problems of (i) transforming the meteorological ensembles to wind power ensembles and, (ii) correcting) data. However, quite often the actual wind power production is outside the range of ensemble forecast

  2. Forecasting the Market Penetration of Energy Conservation Technologies: The Decision Criteria for Choosing a Forecasting Model

    E-Print Network [OSTI]

    Lang, K.

    1982-01-01T23:59:59.000Z

    capital requirements and research and development programs in the alum inum industry. : CONCLUSIONS Forecasting the use of conservation techndlo gies with a market penetration model provides la more accountable method of projecting aggrega...

  3. CALIFORNIA ENERGY DEMAND 20122022 FINAL FORECAST

    E-Print Network [OSTI]

    , Gary Occhiuzzo, and Keith O'Brien prepared the historical energy consumption data. Nahid Movassagh forecasted consumption for the agriculture and water pumping sectors. Don Schultz and Doug Kemmer developed. California Energy Commission, Electricity Supply Analysis Division. Publication Number: CEC2002012001CMFVI

  4. Facebook IPO updated valuation and user forecasting

    E-Print Network [OSTI]

    Facebook IPO ­ updated valuation and user forecasting Based on: Amendment No. 6 to Form S-1 (May 9. Peter Cauwels and Didier Sornette, Quis pendit ipsa pretia: facebook valuation and diagnostic Extreme Growth JPMPaper Cauwels and Sornette 840 1110 1820 S1- filing- May 9 2012 1006 1105 1371 Facebook

  5. Modeling of Uncertainty in Wind Energy Forecast

    E-Print Network [OSTI]

    regression and splines are combined to model the prediction error from Tunø Knob wind power plant. This data of the thesis is quantile regression and splines in the context of wind power modeling. Lyngby, February 2006Modeling of Uncertainty in Wind Energy Forecast Jan Kloppenborg Møller Kongens Lyngby 2006 IMM-2006

  6. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    NONE

    1998-07-01T23:59:59.000Z

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  7. Segmenting Time Series for Weather Forecasting

    E-Print Network [OSTI]

    Sripada, Yaji

    for generating textual summaries. Our algorithm has been implemented in a weather forecast generation system. 1 presentation, aid human understanding of the underlying data sets. SUMTIME is a research project aiming turbines. In the domain of meteorology, time series data produced by numerical weather prediction (NWP

  8. Forecasting sudden changes in environmental pollution patterns

    E-Print Network [OSTI]

    Olascoaga, Maria Josefina

    Forecasting sudden changes in environmental pollution patterns María J. Olascoagaa,1 and George of Mexico in 2010. We present a methodology to predict major short-term changes in en- vironmental River's mouth in the Gulf of Mexico. The resulting fire could not be extinguished and the drilling rig

  9. New Concepts in Wind Power Forecasting Models

    E-Print Network [OSTI]

    Kemner, Ken

    New Concepts in Wind Power Forecasting Models Vladimiro Miranda, Ricardo Bessa, João Gama, Guenter to the training of mappers such as neural networks to perform wind power prediction as a function of wind characteristics (mainly speed and direction) in wind parks connected to a power grid. Renyi's Entropy is combined

  10. CALIFORNIA ENERGY DEMAND 20142024 FINAL FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY DEMAND 2014­2024 FINAL FORECAST Volume 1: Statewide Electricity Demand, EndUser Natural Gas Demand, and Energy Efficiency DECEMBER 2013 CEC2002013004SFV1 CALIFORNIA and expertise of numerous California Energy Commission staff members in the Demand Analysis Office. In addition

  11. SIMULATION AND FORECASTING IN INTERMODAL CONTAINER TERMINAL

    E-Print Network [OSTI]

    Gambardella, Luca Maria

    SIMULATION AND FORECASTING IN INTERMODAL CONTAINER TERMINAL Luca Maria Gambardella1 , Gianluca@idsia.ch 2 LCST, La Spezia Container Terminal, La Spezia (IT) 3 DSP, Data System & Planning sa, Manno (CH working in intermodal container terminals. INTRODUCTION The amount of work a container terminal deals

  12. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    NONE

    1996-08-01T23:59:59.000Z

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  13. Forecast Technical Document Felling and Removals

    E-Print Network [OSTI]

    of local investment and business planning. Timber volume production will be estimated at sub. Planning of operations. Control of the growing stock. Wider reporting (under UKWAS). The calculation fellings and removals are handled in the 2011 Production Forecast system. Tom Jenkins Robert Matthews Ewan

  14. Forecasting Turbulent Modes with Nonparametric Diffusion Models

    E-Print Network [OSTI]

    Tyrus Berry; John Harlim

    2015-01-27T23:59:59.000Z

    This paper presents a nonparametric diffusion modeling approach for forecasting partially observed noisy turbulent modes. The proposed forecast model uses a basis of smooth functions (constructed with the diffusion maps algorithm) to represent probability densities, so that the forecast model becomes a linear map in this basis. We estimate this linear map by exploiting a previously established rigorous connection between the discrete time shift map and the semi-group solution associated to the backward Kolmogorov equation. In order to smooth the noisy data, we apply diffusion maps to a delay embedding of the noisy data, which also helps to account for the interactions between the observed and unobserved modes. We show that this delay embedding biases the geometry of the data in a way which extracts the most predictable component of the dynamics. The resulting model approximates the semigroup solutions of the generator of the underlying dynamics in the limit of large data and in the observation noise limit. We will show numerical examples on a wide-range of well-studied turbulent modes, including the Fourier modes of the energy conserving Truncated Burgers-Hopf (TBH) model, the Lorenz-96 model in weakly chaotic to fully turbulent regimes, and the barotropic modes of a quasi-geostrophic model with baroclinic instabilities. In these examples, forecasting skills of the nonparametric diffusion model are compared to a wide-range of stochastic parametric modeling approaches, which account for the nonlinear interactions between the observed and unobserved modes with white and colored noises.

  15. Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price forecast of the Fifth Northwest Power

    E-Print Network [OSTI]

    Wholesale Electricity Price Forecast This appendix describes the wholesale electricity price as traded on the wholesale, short-term (spot) market at the Mid-Columbia trading hub. This price represents noted. BASE CASE FORECAST The base case wholesale electricity price forecast uses the Council's medium

  16. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18T23:59:59.000Z

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  17. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01T23:59:59.000Z

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  18. Test application of a semi-objective approach to wind forecasting for wind energy applications

    SciTech Connect (OSTI)

    Wegley, H.L.; Formica, W.J.

    1983-07-01T23:59:59.000Z

    The test application of the semi-objective (S-O) wind forecasting technique at three locations is described. The forecasting sites are described as well as site-specific forecasting procedures. Verification of the S-O wind forecasts is presented, and the observed verification results are interpreted. Comparisons are made between S-O wind forecasting accuracy and that of two previous forecasting efforts that used subjective wind forecasts and model output statistics. (LEW)

  19. Forecasting hotspots using predictive visual analytics approach

    DOE Patents [OSTI]

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30T23:59:59.000Z

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  20. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-02-23T23:59:59.000Z

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  1. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01T23:59:59.000Z

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  2. Weather Forecast Data an Important Input into Building Management Systems

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01T23:59:59.000Z

    it can generate as much or more energy that it needs ? Building activities need N kWhrs per day (solar panels, heating, etc) ? Harvested from solar panels & passive solar. Amount depends on weather ? NWP models forecast DSWRF @ surface (MJ/m2...://collaboration.cmc.ec.gc.ca/cmc/cmoi/SolarScribe/SolarScribe/ CMC NWP datasets for Day 2 Forecasts ? Regional Deterministic Prediction System (RDPS) ? RDPS raw model data ? 10 km resolution, North America, 000-054 forecasts ? Data at: http...

  3. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01T23:59:59.000Z

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  4. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Environmental Management (EM)

    Project Southern Study Area Final Report Wind Forecast Improvement Project Southern Study Area Final Report.pdf More Documents & Publications Computational Advances in Applied...

  5. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Richard A. Berk; Brian Kriegler; Jong-Ho Baek

    2011-01-01T23:59:59.000Z

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  6. Forecasting Dangerous Inmate Misconduct: An Applications of Ensemble Statistical Procedures

    E-Print Network [OSTI]

    Berk, Richard; Kriegler, Brian; Baek, Jong-Ho

    2005-01-01T23:59:59.000Z

    Forecasting Dangerous Inmate Misconduct: An Applications ofof Term Length more dangerous than other inmates servingIV beds or moving less dangerous Level IV inmates to Level

  7. Forecasting the underlying potential governing climatic time series

    E-Print Network [OSTI]

    Livina, V N; Mudelsee, M; Lenton, T M

    2012-01-01T23:59:59.000Z

    We introduce a technique of time series analysis, potential forecasting, which is based on dynamical propagation of the probability density of time series. We employ polynomial coefficients of the orthogonal approximation of the empirical probability distribution and extrapolate them in order to forecast the future probability distribution of data. The method is tested on artificial data, used for hindcasting observed climate data, and then applied to forecast Arctic sea-ice time series. The proposed methodology completes a framework for `potential analysis' of climatic tipping points which altogether serves anticipating, detecting and forecasting climate transitions and bifurcations using several independent techniques of time series analysis.

  8. Sandia National Laboratories: Solar Energy Forecasting and Resource...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    & Events, Partnership, Photovoltaic, Renewable Energy, Solar, Systems Analysis The book, Solar Energy Forecasting and Resource Assessment, provides an authoritative voice on the...

  9. analytical energy forecasting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    COMMISSION Tom Gorin Lynn Marshall Principal Author Tom Gorin Project 11 Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Computer Technologies and...

  10. Optimization Online - Data Assimilation in Weather Forecasting: A ...

    E-Print Network [OSTI]

    M. Fisher

    2007-02-14T23:59:59.000Z

    Feb 14, 2007 ... Data Assimilation in Weather Forecasting: A Case Study in PDE-Constrained Optimization. M. Fisher(Mike.Fisher ***at*** ecmwf.int)

  11. Weather-based yield forecasts developed for 12 California crops

    E-Print Network [OSTI]

    Lobell, David; Cahill, Kimberly Nicholas; Field, Christopher

    2006-01-01T23:59:59.000Z

    RESEARCH ARTICLE Weather-based yield forecasts developed fordepend largely on the weather, measurements from existingpredictions. We developed weather-based models of statewide

  12. Using Customers' Reported Forecasts to Predict Future Sales

    E-Print Network [OSTI]

    Gordon, Geoffrey J.

    Using Customers' Reported Forecasts to Predict Future Sales Nihat Altintas , Alan Montgomery , Michael Trick Tepper School of Business, Carnegie Mellon University, Pittsburgh, PA 15213. nihat

  13. An Econometric Analysis of the Elasticity of Vehicle Travel with Respect to Fuel Cost per Mile Using RTEC Survey Data

    SciTech Connect (OSTI)

    Greene, D.L.; Kahn, J.; Gibson, R.

    1999-03-01T23:59:59.000Z

    This paper presents the results of econometric estimation of the ''rebound effect'' for household vehicle travel in the United States based on a comprehensive analysis of survey data collected by the U.S. Energy Information Administration (EIA) at approximately three-year intervals over a 15-year period. The rebound effect is defined as the percent change in vehicle travel for a percent change in fuel economy. It summarizes the tendency to ''take back'' potential energy savings due to fuel economy improvements in the form of increased vehicle travel. Separate vehicles use models were estimated for one-, two-, three-, four-, and five-vehicle households. The results are consistent with the consensus of recently published estimates based on national or state-level data, which show a long-run rebound effect of about +0.2 (a ten percent increase in fuel economy, all else equal, would produce roughly a two percent increase in vehicle travel and an eight percent reduction in fuel use). The hypothesis that vehicle travel responds equally to changes in fuel cost-per-mile whether caused by changes in fuel economy or fuel price per gallon could not be rejected. Recognizing the interdependency in survey data among miles of travel, fuel economy and price paid for fuel for a particular vehicle turns out to be crucial to obtaining meaningful results.

  14. Reducing the demand forecast error due to the bullwhip effect in the computer processor industry

    E-Print Network [OSTI]

    Smith, Emily (Emily C.)

    2010-01-01T23:59:59.000Z

    Intel's current demand-forecasting processes rely on customers' demand forecasts. Customers do not revise demand forecasts as demand decreases until the last minute. Intel's current demand models provide little guidance ...

  15. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01T23:59:59.000Z

    of two methods to forecast natural gas prices: using theof two methods to forecast natural gas prices is performed:accurate average forecast of natural gas prices than the

  16. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    Gas Price Forecast With natural gas prices significantlyto the EIA’s natural gas price forecasts in AEO 2004 and AEOon the AEO 2005 natural gas price forecasts will likely once

  17. Evaluation of forecasting techniques for short-term demand of air transportation

    E-Print Network [OSTI]

    Wickham, Richard Robert

    1995-01-01T23:59:59.000Z

    Forecasting is arguably the most critical component of airline management. Essentially, airlines forecast demand to plan the supply of services to respond to that demand. Forecasts of short-term demand facilitate tactical ...

  18. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2004-01-01T23:59:59.000Z

    revisions to the EIA’s natural gas price forecasts in AEOsolely on the AEO 2005 natural gas price forecasts willComparison of AEO 2005 Natural Gas Price Forecast to NYMEX

  19. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark A.

    2010-01-01T23:59:59.000Z

    to estimate the base-case natural gas price forecast, but toComparison of AEO 2010 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  20. Renewable Forecast Min-Max2020.xls

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's PossibleRadiation Protection Technical s o Freiberge s 3 c/)RenewableRenewable EnergyForecast of

  1. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office of Science (SC) Environmental Assessments (EA)Budget(DANCE) Target 1Annual Waste Forecast and Funding

  2. Modeling the Yield Curve Statistics Department, Wharton

    E-Print Network [OSTI]

    Stine, Robert A.

    makes it interesting and important? Examples Cash Commodities (primarily crude oil) Data analysis. Light crude oil, same date as prior slide 6 2 4 6 8 0.03 0.02 0.01 0.01 2008.16 #12;Questions What 9 2 4 6 8 10 3.0 3.5 4.0 4.5 5.0 5.5 6.0 #12;Plots: Light Crude Yields on crude over same 100 days

  3. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    to  predict daily solar radiation.   Agriculture and Forest and Chuo, S.   2008.  Solar radiation forecasting using Short?term forecasting of solar radiation:   A statistical 

  4. Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Etingov, Pavel V.; Makarov, Yuri V.; Samaan, Nader A.

    2014-10-27T23:59:59.000Z

    In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction intervals of forecasts. We use automatically coupled wavelet transform and autoregressive integrated moving-average (ARIMA) forecasting to reflect multi-scale variability of forecast errors. The proposed analysis reveals slow-changing “quasi-deterministic” components of forecast errors. This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals.

  5. Short term forecasting of solar radiation based on satellite data

    E-Print Network [OSTI]

    Heinemann, Detlev

    Short term forecasting of solar radiation based on satellite data Elke Lorenz, Annette Hammer University, D-26111 Oldenburg Forecasting of solar irradiance will become a major issue in the future integration of solar energy resources into existing energy supply structures. Fluctuations of solar irradiance

  6. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center

    E-Print Network [OSTI]

    Washington at Seattle, University of

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime meteorological data from sites upwind of wind farms can be efficiently used to improve short-term forecasts acknowledges the support of PPM Energy, Inc. The data used in this work were obtained from Oregon State

  7. Revised 1997 Retail Electricity Price Forecast Principal Author: Ben Arikawa

    E-Print Network [OSTI]

    Revised 1997 Retail Electricity Price Forecast March 1998 Principal Author: Ben Arikawa Electricity 1997 FORE08.DOC Page 1 CALIFORNIA ENERGY COMMISSION ELECTRICITY ANALYSIS OFFICE REVISED 1997 RETAIL ELECTRICITY PRICE FORECAST Introduction The Electricity Analysis Office of the California Energy Commission

  8. A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size

    E-Print Network [OSTI]

    Hansens, Jim

    A Transformed Lagged Ensemble Forecasting Technique for Increasing Ensemble Size Andrew. R.Lawrence@ecmwf.int #12;Abstract An ensemble-based data assimilation approach is used to transform old en- semble. The impact of the transformations are propagated for- ward in time over the ensemble's forecast period

  9. RESERVOIR INFLOW FORECASTING USING NEURAL NETWORKS CHANDRASHEKAR SUBRAMANIAN

    E-Print Network [OSTI]

    Manry, Michael

    a mixture of hydroelectric and non- hydroelectric power, the economics of the hydroelectric plants depend, and to economically allocate the load between various non-hydroelectric plants. Neural networks provide an attractive technology for inflow forecasting, because of (1) their success in power load forecasting 1- 6 , and (2

  10. Introducing the Canadian Crop Yield Forecaster Aston Chipanshi1

    E-Print Network [OSTI]

    Miami, University of

    for crop yield forecasting and risk analysis. Using the Census Agriculture Region (CAR) as the unit Climate Decision Support and Adaptation, Agriculture and Agri-Food Canada, 1011, Innovation Blvd, Saskatoon, SK S7V 1B7, Canada The Canadian Crop Yield Forecaster (CCYF) is a statistical modelling tool

  11. Wind-Wave Probabilistic Forecasting based on Ensemble

    E-Print Network [OSTI]

    have to be jointly taken into account in some decision-making problems, e.g. offshore wind farmWind-Wave Probabilistic Forecasting based on Ensemble Predictions Maxime FORTIN Kongens Lyngby 2012.imm.dtu.dk IMM-PhD-2012-86 #12;Summary Wind and wave forecasts are of a crucial importance for a number

  12. Wind Power Forecasting: State-of-the-Art 2009

    E-Print Network [OSTI]

    Kemner, Ken

    Wind Power Forecasting: State-of-the-Art 2009 ANL/DIS-10-1 Decision and Information Sciences about Argonne and its pioneering science and technology programs, see www.anl.gov. #12;Wind Power................................................ 14 2.2.3 Critical Processes for Wind Forecast

  13. PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022

    E-Print Network [OSTI]

    PRELIMINARY CALIFORNIA ENERGY DEMAND FORECAST 2012-2022 AUGUST 2011 CEC-200-2011-011-SD CALIFORNIA for electric vehicles. #12;ii #12;iii ABSTRACT The Preliminary California Energy Demand Forecast 2012 includes three full scenarios: a high energy demand case, a low energy demand case, and a mid energy demand

  14. CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2008-2018 STAFF REVISED FORECAST, and utilities. Mitch Tian prepared the peak demand forecast. Ted Dang prepared the historic energy consumption STAFFFINALREPORT NOVEMBER 2007 CEC-200-2007-015-SF2 Arnold Schwarzenegger, Governor #12;CALIFORNIA ENERGY

  15. CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST

    E-Print Network [OSTI]

    CALIFORNIA ENERGY COMMISSION CALIFORNIA ENERGY DEMAND 2006-2016 STAFF ENERGY DEMAND FORECAST Manager Kae Lewis Acting Manager Demand Analysis Office Valerie T. Hall Deputy Director Energy Efficiency Demand Forecast report is the product of the efforts of many current and former California Energy

  16. Distribution Based Data Filtering for Financial Time Series Forecasting

    E-Print Network [OSTI]

    Bailey, James

    recent past. In this paper, we address the challenge of forecasting the behavior of time series using@unimelb.edu.au Abstract. Changes in the distribution of financial time series, particularly stock market prices, can of stock prices, which aims to forecast the future values of the price of a stock, in order to obtain

  17. Managing Wind Power Forecast Uncertainty in Electric Brandon Keith Mauch

    E-Print Network [OSTI]

    i Managing Wind Power Forecast Uncertainty in Electric Grids Brandon Keith Mauch Co for the modeled wind- CAES system would not cover annualized capital costs. We also estimate market prices-ahead market is roughly $100, with large variability due to electric power prices. Wind power forecast errors

  18. Draft for Public Comment Appendix A. Demand Forecast

    E-Print Network [OSTI]

    in the planning process. Electricity demand is forecast to grow from 20,080 average megawatts in 2000 to 25 forecast of electricity demand is a required component of the Council's Northwest Regional Conservation and Electric Power Plan.1 Understanding growth in electricity demand is, of course, crucial to determining

  19. FORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS

    E-Print Network [OSTI]

    Keller, Arturo A.

    resources resulting in water stress. Effective water management ­ a solution Supply side management Demand side management #12;Developing a regression equation based on cluster analysis for forecasting waterFORECASTING WATER DEMAND USING CLUSTER AND REGRESSION ANALYSIS by Bruce Bishop Professor of Civil

  20. Forecasting Uncertainty Related to Ramps of Wind Power Production

    E-Print Network [OSTI]

    Boyer, Edmond

    - namic reserve quantification [8], for the optimal oper- ation of combined wind-hydro power plants [5, 1Forecasting Uncertainty Related to Ramps of Wind Power Production Arthur Bossavy, Robin Girard - The continuous improvement of the accuracy of wind power forecasts is motivated by the increasing wind power

  1. Impact of PV forecasts uncertainty in batteries management in microgrids

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    -- Photovoltaic systems, Batteries, Forecasting I. INTRODUCTION This paper presents first results of a study Energies and Energy Systems Sophia Antipolis, France andrea.michiorri@mines-paristech.fr Abstract production forecast algorithm is used in combination with a battery schedule optimisation algorithm. The size

  2. Forecasting Building Occupancy Using Sensor Network James Howard

    E-Print Network [OSTI]

    Hoff, William A.

    of the forecasting algorithm for the different conditions. 1. INTRODUCTION According to the U.S. Department of Energy could take advantage of times when electricity cost is lower, to chill a cold water storage tankForecasting Building Occupancy Using Sensor Network Data James Howard Colorado School of Mines

  3. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01T23:59:59.000Z

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  4. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01T23:59:59.000Z

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  5. Verification of hourly forecasts of wind turbine power output

    SciTech Connect (OSTI)

    Wegley, H.L.

    1984-08-01T23:59:59.000Z

    A verification of hourly average wind speed forecasts in terms of hourly average power output of a MOD-2 was performed for four sites. Site-specific probabilistic transformation models were developed to transform the forecast and observed hourly average speeds to the percent probability of exceedance of an hourly average power output. (This transformation model also appears to have value in predicting annual energy production for use in wind energy feasibility studies.) The transformed forecasts were verified in a deterministic sense (i.e., as continuous values) and in a probabilistic sense (based upon the probability of power output falling in a specified category). Since the smoothing effects of time averaging are very pronounced, the 90% probability of exceedance was built into the transformation models. Semiobjective and objective (model output statistics) forecasts were made compared for the four sites. The verification results indicate that the correct category can be forecast an average of 75% of the time over a 24-hour period. Accuracy generally decreases with projection time out to approx. 18 hours and then may increase due to the fairly regular diurnal wind patterns that occur at many sites. The ability to forecast the correct power output category increases with increasing power output because occurrences of high hourly average power output (near rated) are relatively rare and are generally not forecast. The semiobjective forecasts proved superior to model output statistics in forecasting high values of power output and in the shorter time frames (1 to 6 hours). However, model output statistics were slightly more accurate at other power output levels and times. Noticeable differences were observed between deterministic and probabilistic (categorical) forecast verification results.

  6. NatioNal aNd Global Forecasts West VirGiNia ProFiles aNd Forecasts

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    · NatioNal aNd Global Forecasts · West VirGiNia ProFiles aNd Forecasts · eNerGy · Healt Global Insight, paid for by the West Virginia Department of Revenue. 2013 WEST VIRGINIA ECONOMIC OUTLOOKWest Virginia Economic Outlook 2013 is published by: Bureau of Business & Economic Research West

  7. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J. (Decision and Information Sciences); (INESC Porto)

    2011-12-06T23:59:59.000Z

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  8. Incorporating Forecast Uncertainty in Utility Control Center

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Ma, Jian

    2014-07-09T23:59:59.000Z

    Uncertainties in forecasting the output of intermittent resources such as wind and solar generation, as well as system loads are not adequately reflected in existing industry-grade tools used for transmission system management, generation commitment, dispatch and market operation. There are other sources of uncertainty such as uninstructed deviations of conventional generators from their dispatch set points, generator forced outages and failures to start up, load drops, losses of major transmission facilities and frequency variation. These uncertainties can cause deviations from the system balance, which sometimes require inefficient and costly last minute solutions in the near real-time timeframe. This Chapter considers sources of uncertainty and variability, overall system uncertainty model, a possible plan for transition from deterministic to probabilistic methods in planning and operations, and two examples of uncertainty-based fools for grid operations.This chapter is based on work conducted at the Pacific Northwest National Laboratory (PNNL)

  9. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01T23:59:59.000Z

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  10. November 14, 2000 A Quarterly Forecast of U.S. Trade

    E-Print Network [OSTI]

    Shyy, Wei

    November 14, 2000 A Quarterly Forecast of U.S. Trade in Services and the Current Account, 2000 of Forecast*** We forecast that the services trade surplus, which declined from 1997 to 1998 and edged upward. That is, from a level of $80.6 billion in 1999, we forecast that the services trade surplus will be $80

  11. Smard Grid Software Applications for Distribution Network Load Forecasting Eugene A. Feinberg, Jun Fei

    E-Print Network [OSTI]

    Feinberg, Eugene A.

    of the distribution network. Keywords: load forecasting, feeder, transformer, load pocket, SmartGrid I. INTRODUCTION

  12. Solar irradiance forecasting at multiple time horizons and novel methods to evaluate uncertainty

    E-Print Network [OSTI]

    Marquez, Ricardo

    2012-01-01T23:59:59.000Z

    Solar irradiance data . . . . . . . . . . . . .Accuracy . . . . . . . . . . . . . . . . . Solar Resourcev Uncertainty In Solar Resource: Forecasting

  13. Wind Energy Technology Trends: Comparing and Contrasting Recent Cost and Performance Forecasts (Poster)

    SciTech Connect (OSTI)

    Lantz, E.; Hand, M.

    2010-05-01T23:59:59.000Z

    Poster depicts wind energy technology trends, comparing and contrasting recent cost and performance forecasts.

  14. USING BOX-JENKINS MODELS TO FORECAST FISHERY DYNAMICS: IDENTIFICATION, ESTIMATION, AND CHECKING

    E-Print Network [OSTI]

    ~ is illustrated by developing a model that makes monthly forecasts of skipjack tuna, Katsuwonus pelamis, catches

  15. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Broader source: Energy.gov [DOE]

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  16. ASSESSING THE QUALITY AND ECONOMIC VALUE OF WEATHER AND CLIMATE FORECASTS

    E-Print Network [OSTI]

    Katz, Richard

    INFORMATION SYSTEM · Forecast -- Conditional probability distribution for event Z = z indicates forecast tornado #12;(1.2) FRAMEWORK · Joint Distribution of Observations & Forecasts Observed Weather = Forecast probability p (e.g., induced by Z) · Reliability Diagram Observed weather: = 1 (Adverse weather occurs) = 0

  17. Weather Forecast Data an Important Input into Building Management Systems 

    E-Print Network [OSTI]

    Poulin, L.

    2013-01-01T23:59:59.000Z

    GEPS 21 members ? Provides probabilistic forecasts ? Can give useful outlooks for longer term weather forecasts ? Scribe matrix from GDPS ? includes UMOS post processed model data ? Variables like Temperature, humidity post processed by UMOS ? See...://collaboration.cmc.ec.gc.ca/cmc/cmoi/cmc-prob-products/ ? Link to experimental 3-day outlook of REPS quilts ? http://collaboration.cmc.ec.gc.ca/cmc/cmoi/cmc-prob-products.reps Users can also make their own products from ensemble forecast data? Sample ascii matrix of 2m temperature could be fed...

  18. Natural Priors, CMSSM Fits and LHC Weather Forecasts

    E-Print Network [OSTI]

    Allanach, B C; Cranmer, Kyle; Lester, Christopher G; Weber, Arne M

    2007-08-07T23:59:59.000Z

    ar X iv :0 70 5. 04 87 v3 [ he p- ph ] 5 J ul 20 07 Preprint typeset in JHEP style - HYPER VERSION DAMTP-2007-18 Cavendish-HEP-2007-03 MPP-2007-36 Natural Priors, CMSSM Fits and LHC Weather Forecasts Benjamin C Allanach1, Kyle Cranmer2... ’s likely discoveries. There are big differences between nature of the questions answered by a forecast, and the ques- tions that will be answered by the experiments themselves when they have acquired compelling data. A weather forecast predicting “severe...

  19. Optimally controlling hybrid electric vehicles using path forecasting

    E-Print Network [OSTI]

    Katsargyri, Georgia-Evangelina

    2008-01-01T23:59:59.000Z

    Hybrid Electric Vehicles (HEVs) with path-forecasting belong to the class of fuel efficient vehicles, which use external sensory information and powertrains with multiple operating modes in order to increase fuel economy. ...

  20. Recently released EIA report presents international forecasting data

    SciTech Connect (OSTI)

    NONE

    1995-05-01T23:59:59.000Z

    This report presents information from the Energy Information Administration (EIA). Articles are included on international energy forecasting data, data on the use of home appliances, gasoline prices, household energy use, and EIA information products and dissemination avenues.

  1. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    G. Bel; C. P. Connaughton; M. Toots; M. M. Bandi

    2015-03-29T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  2. OCTOBER-NOVEMBER FORECAST FOR 2014 CARIBBEAN BASIN HURRICANE ACTIVITY

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    and hurricanes, but instead predicts both hurricane days and Accumulated Cyclone Energy (ACE). Typically, while) tropical cyclone (TC) activity. We have decided to issue this forecast, because Klotzbach (2011) has

  3. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07T23:59:59.000Z

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  4. A methodology for forecasting carbon dioxide flooding performance

    E-Print Network [OSTI]

    Marroquin Cabrera, Juan Carlos

    1998-01-01T23:59:59.000Z

    A methodology was developed for forecasting carbon dioxide (CO2) flooding performance quickly and reliably. The feasibility of carbon dioxide flooding in the Dollarhide Clearfork "AB" Unit was evaluated using the methodology. This technique is very...

  5. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01T23:59:59.000Z

    Agency: 1982-2005a, Annual Energy Outlook, EIA, Washington,Agency: 2004, Annual Energy Outlook Forecast Evaluation,Agency: 2005b, Annual Energy Outlook, EIA, Washington, D.C.

  6. The Rationality of EIA Forecasts under Symmetric and Asymmetric Loss

    E-Print Network [OSTI]

    Auffhammer, Maximilian

    2005-01-01T23:59:59.000Z

    2005a, Annual Energy Outlook, EIA, Washington, D.C. Energy2005b, Annual Energy Outlook, EIA, Washington, D.C. Granger,Paper ???? The Rationality of EIA Forecasts under Symmetric

  7. Forecasting and strategic inventory placement for gas turbine aftermarket spares

    E-Print Network [OSTI]

    Simmons, Joshua T. (Joshua Thomas)

    2007-01-01T23:59:59.000Z

    This thesis addresses the problem of forecasting demand for Life Limited Parts (LLPs) in the gas turbine engine aftermarket industry. It is based on work performed at Pratt & Whitney, a major producer of turbine engines. ...

  8. Optimally Controlling Hybrid Electric Vehicles using Path Forecasting

    E-Print Network [OSTI]

    Kolmanovsky, Ilya V.

    The paper examines path-dependent control of Hybrid Electric Vehicles (HEVs). In this approach we seek to improve HEV fuel economy by optimizing charging and discharging of the vehicle battery depending on the forecasted ...

  9. Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1

    E-Print Network [OSTI]

    Levinson, David M.

    Post-Construction Evaluation of Forecast Accuracy Pavithra Parthasarathi1 David Levinson 2 February, the assumed networks to the actual in-place networks and other travel behavior assumptions that went

  10. africa conditional forecasts: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts had the potential to improve resource management but instead played only a marginal role in real-world decision making. 1 A widespread perception that the quality of the...

  11. accident risk forecasting: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts had the potential to improve resource management but instead played only a marginal role in real-world decision making. 1 A widespread perception that the quality of the...

  12. Forecasting Volatility in Stock Market Using GARCH Models

    E-Print Network [OSTI]

    Yang, Xiaorong

    2008-01-01T23:59:59.000Z

    Forecasting volatility has held the attention of academics and practitioners all over the world. The objective for this master's thesis is to predict the volatility in stock market by using generalized autoregressive conditional heteroscedasticity(GARCH...

  13. Forecasting Returns and Volatilities in GARCH Processes Using the Bootstrap

    E-Print Network [OSTI]

    Romo, Juan

    Forecasting Returns and Volatilities in GARCH Processes Using the Bootstrap Lorenzo Pascual, Juan generated by GARCH processes. The main advantage over other bootstrap methods previously proposed for GARCH by having conditional heteroscedasticity. Generalized Autoregressive Conditionally Heteroscedastic (GARCH

  14. Adaptive sampling and forecasting with mobile sensor networks

    E-Print Network [OSTI]

    Choi, Han-Lim

    2009-01-01T23:59:59.000Z

    This thesis addresses planning of mobile sensor networks to extract the best information possible out of the environment to improve the (ensemble) forecast at some verification region in the future. To define the information ...

  15. Dispersion in analysts' forecasts: does it make a difference? 

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30T23:59:59.000Z

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  16. FINAL DEMAND FORECAST FORMS AND INSTRUCTIONS FOR THE 2007

    E-Print Network [OSTI]

    ......................................................................... 11 3. Demand Side Management (DSM) Program Impacts................................... 13 4. Demand Sylvia Bender Manager DEMAND ANALYSIS OFFICE Scott W. Matthews Chief Deputy Director B.B. Blevins Forecast Methods and Models ....................................................... 14 5. Demand-Side

  17. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy of Solar Forecasting Funding Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  18. Variable Selection and Inference for Multi-period Forecasting Problems

    E-Print Network [OSTI]

    Pesaran, M Hashem; Pick, Andreas; Timmermann, Allan

    Variable Selection and Inference for Multi-period Forecasting Problems? M. Hashem Pesaran Cambridge University and USC Andreas Pick De Nederlandsche Bank and Cambridge University, CIMF Allan Timmermann UC San Diego and CREATES January 26, 2009...

  19. Grid-scale Fluctuations and Forecast Error in Wind Power

    E-Print Network [OSTI]

    Bel, G; Toots, M; Bandi, M M

    2015-01-01T23:59:59.000Z

    The fluctuations in wind power entering an electrical grid (Irish grid) were analyzed and found to exhibit correlated fluctuations with a self-similar structure, a signature of large-scale correlations in atmospheric turbulence. The statistical structure of temporal correlations for fluctuations in generated and forecast time series was used to quantify two types of forecast error: a timescale error ($e_{\\tau}$) that quantifies the deviations between the high frequency components of the forecast and the generated time series, and a scaling error ($e_{\\zeta}$) that quantifies the degree to which the models fail to predict temporal correlations in the fluctuations of the generated power. With no $a$ $priori$ knowledge of the forecast models, we suggest a simple memory kernel that reduces both the timescale error ($e_{\\tau}$) and the scaling error ($e_{\\zeta}$).

  20. Dispersion in analysts' forecasts: does it make a difference?

    E-Print Network [OSTI]

    Adut, Davit

    2004-09-30T23:59:59.000Z

    Financial analysts are an important group of information intermediaries in the capital markets. Their reports, including both earnings forecasts and stock recommendations, are widely transmitted and have a significant impact on stock prices (Womack...

  1. Mesoscale predictability and background error convariance estimation through ensemble forecasting

    E-Print Network [OSTI]

    Ham, Joy L

    2002-01-01T23:59:59.000Z

    Over the past decade, ensemble forecasting has emerged as a powerful tool for numerical weather prediction. Not only does it produce the best estimate of the state of the atmosphere, it also could quantify the uncertainties associated with the best...

  2. Subhourly wind forecasting techniques for wind turbine operations

    SciTech Connect (OSTI)

    Wegley, H.L.; Kosorok, M.R.; Formica, W.J.

    1984-08-01T23:59:59.000Z

    Three models for making automated forecasts of subhourly wind and wind power fluctuations were examined to determine the models' appropriateness, accuracy, and reliability in wind forecasting for wind turbine operation. Such automated forecasts appear to have value not only in wind turbine control and operating strategies, but also in improving individual wind turbine control and operating strategies, but also in improving individual wind turbine operating strategies (such as determining when to attempt startup). A simple persistence model, an autoregressive model, and a generalized equivalent Markhov (GEM) model were developed and tested using spring season data from the WKY television tower located near Oklahoma City, Oklahoma. The three models represent a pure measurement approach, a pure statistical method and a statistical-dynamical model, respectively. Forecasting models of wind speed means and measures of deviations about the mean were developed and tested for all three forecasting techniques for the 45-meter level and for the 10-, 30- and 60-minute time intervals. The results of this exploratory study indicate that a persistence-based approach, using onsite measurements, will probably be superior in the 10-minute time frame. The GEM model appears to have the most potential in 30-minute and longer time frames, particularly when forecasting wind speed fluctuations. However, several improvements to the GEM model are suggested. In comparison to the other models, the autoregressive model performed poorly at all time frames; but, it is recommended that this model be upgraded to an autoregressive moving average (ARMA or ARIMA) model. The primary constraint in adapting the forecasting models to the production of wind turbine cluster power output forecasts is the lack of either actual data, or suitable models, for simulating wind turbine cluster performance.

  3. Streamflow forecasting for large-scale hydrologic systems

    E-Print Network [OSTI]

    Awwad, Haitham Munir

    1991-01-01T23:59:59.000Z

    STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Submitted to the Office of Graduate Studies of Texas AkM University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE May... 1991 Major Subject: Civil Engineering STREAMFLOW FORECASTING FOR LARGE-SCALE HYDROLOGIC SYSTEMS A Thesis by HAITHAM MUNIR AWWAD Approved as to style and content by: uan B. Valdes (Chair of Committee) alph A. Wurbs (Member) Marshall J. Mc...

  4. A model for short term electric load forecasting

    E-Print Network [OSTI]

    Tigue, John Robert

    1975-01-01T23:59:59.000Z

    A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE, III Submitted to the Graduate College of Texas ASM University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE May 1975 Major... Subject: Electrical Engineering A MODEL FOR SHORT TERM ELECTRIC LOAD FORECASTING A Thesis by JOHN ROBERT TIGUE& III Approved as to style and content by: (Chairman of Committee) (Head Depart t) (Member) ;(Me r (Member) (Member) May 1975 ABSTRACT...

  5. Comparison of Bottom-Up and Top-Down Forecasts: Vision Industry Energy Forecasts with ITEMS and NEMS

    E-Print Network [OSTI]

    Roop, J. M.; Dahowski, R. T

    Comparisons are made of energy forecasts using results from the Industrial module of the National Energy Modeling System (NEMS) and an industrial economic-engineering model called the Industrial Technology and Energy Modeling System (ITEMS), a model...

  6. Probabilistic wind power forecasting -European Wind Energy Conference -Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Probabilistic wind power forecasting - European Wind Energy Conference - Milan, Italy, 7-10 May 2007 Probabilistic short-term wind power forecasting based on kernel density estimators J´er´emie Juban jeremie.juban@ensmp.fr; georges.kariniotakis@ensmp.fr Abstract Short-term wind power forecasting tools

  7. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-01-01T23:59:59.000Z

    vs. AEO 2001 Price Forecast Natural Gas Price (nominal $/if forwards forecasts) or natural gas-fired generation (ifs reference case forecast of natural gas prices delivered to

  8. Essays in econometrics

    E-Print Network [OSTI]

    Oryshchenko, Vitaliy

    2011-03-15T23:59:59.000Z

    -varying quantiles of GARCH residuals. . . . . . . . . . . 60 2.5 Changing tail dispersion and skewness for GARCH residuals. . . . . . . . 61 2.6 ACFs and histogram of PITs of GARCH residuals. . . . . . . . . . . . . 61 2.7 Smoothed time-varying quantiles of NASDAQ... moving average FDI — foreign direct investment FE — fixed effects GARCH — generalised autoregressive heteroscedasticity GEL — generalised empirical likelihood GELKDE — generalised empirical likelihood-based kernel density estimator GLS — generalised least...

  9. Econometrics as Sorcery

    E-Print Network [OSTI]

    G. Innocenti; D. Materassi

    2008-01-19T23:59:59.000Z

    The paper deals with the problem of identifying the internal dependencies and similarities among a large number of random processes. Linear models are considered to describe the relations among the time series and the energy associated to the corresponding modeling error is the criterion adopted to quantify their similarities. Such an approach is interpreted in terms of graph theory suggesting a natural way to group processes together when one provides the best model to explain the other. Moreover, the clustering technique introduced in this paper will turn out to be the dynamical generalization of other multivariate procedures described in literature.

  10. Essays in Econometrics

    E-Print Network [OSTI]

    Poirier, Alexandre

    2013-01-01T23:59:59.000Z

    ? is compact; (d) (Differentiability and Global Lipschitz of? is compact; (d) (Differentiability and Global Lipschitz of

  11. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01T23:59:59.000Z

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  12. Short-term planning and forecasting for petroleum. Master's thesis

    SciTech Connect (OSTI)

    Elkins, R.D.

    1988-06-01T23:59:59.000Z

    The Defense Fuel Supply Center (DFSC) has, in recent past, been unable to adequately forecast for short-term petroleum requirements. This has resulted in inaccurate replenishment quantities and required short-notice corrections, which interrupted planned resupply methods. The relationship between the annual CINCLANTFLT DFM budget and sales from the the Norfolk Defense Fuel Support Point (DFSP) is developed and the past sales data from the Norfolk DFSP is used to construct seasonality indices. Finally, the budget/sales relationship is combined with the seasonality indices to provide a new forecasting model. The model is then compared with the current one for FY-88 monthly forecasts. The comparison suggests that the new model can provide accurate, timely requirements data and improve resupply of the Norfolk Defense Fuel Support Point.

  13. Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price Forecast

    E-Print Network [OSTI]

    Sixth Northwest Conservation and Electric Power Plan Appendix D: Wholesale Electricity Price.................................................................................................................................. 27 INTRODUCTION The Council prepares and periodically updates a 20-year forecast of wholesale to forecast wholesale power prices. AURORAxmp® provides the ability to inco

  14. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    and validation.   Solar Energy.   73:5, 307? Perez, R. , forecast database.   Solar Energy.   81:6, 809?812.  forecasts in the US.   Solar Energy.   84:12, 2161?2172.  

  15. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean...

  16. Application of the Stretched Exponential Production Decline Model to Forecast Production in Shale Gas Reservoirs

    E-Print Network [OSTI]

    Statton, James Cody

    2012-07-16T23:59:59.000Z

    . This study suggests a type curve is most useful when 24 months or less is available to forecast. The SEPD model generally provides more conservative forecasts and EUR estimates than Arps' model with a minimum decline rate of 5%....

  17. SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SHORT-TERM FORECASTING OF SOLAR RADIATION BASED ON SATELLITE DATA WITH STATISTICAL METHODS Annette governing the insolation, forecasting of solar radiation makes the description of development of the cloud

  18. Sixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast

    E-Print Network [OSTI]

    ............................................................................................................................... 12 Oil Price Forecast Range. The price of crude oil was $25 a barrel in January of 2000. In July 2008 it averaged $127, even approachingSixth Northwest Conservation and Electric Power Plan Appendix A: Fuel Price Forecast Introduction

  19. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01T23:59:59.000Z

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  20. Solar Variability and Forecasting Jan Kleissl, Chi Chow, Matt Lave, Patrick Mathiesen,

    E-Print Network [OSTI]

    Homes, Christopher C.

    Forecasting Benefits Use of state-of-art wind and solar forecasts reduces WECC operating costs by up to 14/MWh of wind and solar generation). WECC operating costs could be reduced by an additional $500 million

  1. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2008-01-01T23:59:59.000Z

    late January 2008, extend its natural gas futures strip anComparison of AEO 2008 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts from

  2. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2006-01-01T23:59:59.000Z

    Comparison of AEO 2007 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  3. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark; Wiser, Ryan

    2005-01-01T23:59:59.000Z

    Comparison of AEO 2006 Natural Gas Price Forecast to NYMEXs reference case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  4. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    E-Print Network [OSTI]

    Bolinger, Mark

    2009-01-01T23:59:59.000Z

    Comparison of AEO 2009 Natural Gas Price Forecast to NYMEXs reference-case long-term natural gas price forecasts fromAEO series to contemporaneous natural gas prices that can be

  5. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01T23:59:59.000Z

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  6. Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General Circulation Models

    E-Print Network [OSTI]

    Arumugam, Sankar

    Improving Groundwater Predictions Utilizing Seasonal Precipitation Forecasts from General. The research reported in this paper evaluates the potential in developing 6-month-ahead groundwater Surface Temperature forecasts. Ten groundwater wells and nine streamgauges from the USGS Groundwater

  7. Earnings Management Pressure on Audit Clients: Auditor Response to Analyst Forecast Signals

    E-Print Network [OSTI]

    Newton, Nathan J.

    2013-06-26T23:59:59.000Z

    This study investigates whether auditors respond to earnings management pressure created by analyst forecasts. Analyst forecasts create an important earnings target for management, and professional standards direct auditors to consider how...

  8. Forecasting the demand for electric vehicles: accounting for attitudes and perceptions

    E-Print Network [OSTI]

    Bierlaire, Michel

    prediction, transportation, attitudes and perceptions, hybrid choice models, fractional factorial design: survey design, model estimation and forecasting. We develop a stated preferences (SP) survey with issues related to the application of models designed to forecast demand for new alternatives, most

  9. Price forecasting for U.S. cattle feeders: which technique to apply?

    E-Print Network [OSTI]

    Hicks, Geoff Cody

    1997-01-01T23:59:59.000Z

    both feeder cattle costs and corn costs, and maximizing fed cattle prices. This research strives to evaluate the accuracy of six distinct price forecasting techniques over an eleven year period. The forecast techniques selected for this analysisare...

  10. Streamflow Forecasting Based on Statistical Applications and Measurements Made with Rain Gage and Weather Radar

    E-Print Network [OSTI]

    Hudlow, M.D.

    Techniques for streamflow forecasting are developed and tested for the Little Washita River in Oklahoma. The basic input for streamflow forecasts is rainfall. the rainfall amounts may be obtained from several sources; however, this study...

  11. Forecast of contracting and subcontracting opportunities. Fiscal year 1996

    SciTech Connect (OSTI)

    NONE

    1996-02-01T23:59:59.000Z

    This forecast of prime and subcontracting opportunities with the U.S. Department of Energy and its MAO contractors and environmental restoration and waste management contractors, is the Department`s best estimate of small, small disadvantaged and women-owned small business procurement opportunities for fiscal year 1996. The information contained in the forecast is published in accordance with Public Law 100-656. It is not an invitation for bids, a request for proposals, or a commitment by DOE to purchase products or services. Each procurement opportunity is based on the best information available at the time of publication and may be revised or cancelled.

  12. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  13. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01T23:59:59.000Z

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  14. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 15 SEPTEMBER 28, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  15. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 27 OCTOBER 10, 2013

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  16. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 16 AUGUST 29, 2013

    E-Print Network [OSTI]

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  17. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 3 AUGUST 16, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  18. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 12 OCTOBER 25, 2012

    E-Print Network [OSTI]

    Gray, William

    to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined This is the fourth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for individual event parameters such as named storms and hurricanes. We issue forecasts for ACE using three

  19. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 28 OCTOBER 11, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  20. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 13 SEPTEMBER 26, 2013

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  1. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 18 AUGUST 31, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  2. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 11 OCTOBER 24, 2013

    E-Print Network [OSTI]

    Gray, William

    to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for individual event parameters such as named storms and hurricanes. We issue forecasts for ACE using three

  3. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 2 AUGUST 15, 2013

    E-Print Network [OSTI]

    Gray, William

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index This is the fifth year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  4. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 31 SEPTEMBER 13, 2012

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  5. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 17 AUGUST 30, 2012

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fourth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  6. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 4 AUGUST 17, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  7. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 29 OCTOBER 12, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  8. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 11 SEPTEMBER 24, 2014

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the sixth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  9. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 30 SEPTEMBER 12, 2013

    E-Print Network [OSTI]

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the fifth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  10. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 31 SEPTEMBER 13, 2011

    E-Print Network [OSTI]

    Birner, Thomas

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the third year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  11. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM AUGUST 28 SEPTEMBER 10, 2014

    E-Print Network [OSTI]

    Collett Jr., Jeffrey L.

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the sixth year that we have issued shorter-term forecasts of tropical cyclone activity starting in early such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  12. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM OCTOBER 13 OCTOBER 26, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting such as named storms and hurricanes. We issue forecasts for ACE using three categories as defined in Table 1

  13. Large-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random Fields

    E-Print Network [OSTI]

    Kolter, J. Zico

    -Gaussian case using the copula transform. On a wind power forecasting task, we show that this probabilisticLarge-scale Probabilistic Forecasting in Energy Systems using Sparse Gaussian Conditional Random high-dimensional conditional Gaussian distributions to forecasting wind power and extend it to the non

  14. EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts

    E-Print Network [OSTI]

    EUROBRISA: A EURO-BRazilian Initiative for improving South American seasonal forecasts by Caio A. S. van Oldenborgh, 2006: Towards an integrated seasonal forecasting system for South America. J. Climate and promote exchange of expertise and information between European and South American seasonal forecasters

  15. Hourly Temperature Forecasting Using Abductive Networks R. E. Abdel-Aal

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    ANNGSF) and for forecasting the one-hour-ahead heat load for a district heat load network (Seppälä et al and network analysis functions in power utilities. Since high-low temperature forecasts are usually provided-Rohani & Maratukulam, 1998). In other agricultural and environmental applications, even high-low temperature forecasts

  16. Development, testing, and applications of site-specific tsunami inundation models for real-time forecasting

    E-Print Network [OSTI]

    can the forecasts completely cover the evolution of earthquake-generated tsunami waves: generationDevelopment, testing, and applications of site-specific tsunami inundation models for real and applications of site-specific tsunami inundation models (forecast models) for use in NOAA's tsunami forecast

  17. Forecast of the electricity consumption by aggregation of specialized experts; application to Slovakian and French

    E-Print Network [OSTI]

    Forecast of the electricity consumption by aggregation of specialized experts; application-term forecast of electricity consumption based on ensemble methods. That is, we use several possibly independent´erieure and CNRS. hal-00484940,version1-19May2010 #12;Forecast of the electricity consumption by aggregation

  18. 2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA

    E-Print Network [OSTI]

    Perez, Richard R.

    2008 European PV Conference, Valencia, Spain COMPARISON OF SOLAR RADIATION FORECASTS FOR THE USA J models 1 INTRODUCTION Solar radiation and PV production forecasts are becoming increasingly important/) three teams of experts are benchmarking their solar radiation forecast against ground truth data

  19. Robust Pareto Optimum Routing of Ships Deterministic and Ensemble Weather Forecasts

    E-Print Network [OSTI]

    Berlin,Technische Universität

    Robust Pareto ­ Optimum Routing of Ships utilizing Deterministic and Ensemble Weather Forecasts the SEAROUTES project, who provided me with exquisite weather forecasts, and who inspired me to apply ensemble ship operation. The more reliable weather forecasts and performance simulation of ships in a seaway

  20. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  1. Forecasting potential project risks through leading indicators to project outcome

    E-Print Network [OSTI]

    Choi, Ji Won

    2007-09-17T23:59:59.000Z

    , the Construction Industry Institute (CII) formed a research team to develop a new tool that can forecast the potential risk of not meeting specific project outcomes based on assessing leading indicators. Thus, the leading indicators were identified and then the new...

  2. Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets

    E-Print Network [OSTI]

    Tesfatsion, Leigh

    1 Scenario Generation for Price Forecasting in Restructured Wholesale Power Markets Qun Zhou--In current restructured wholesale power markets, the short length of time series for prices makes are fitted between D&O and wholesale power prices in order to obtain price scenarios for a specified time

  3. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28T23:59:59.000Z

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  4. Classification of Commodity Price Forecast With Random Forests and Bayesian

    E-Print Network [OSTI]

    de Freitas, Nando

    economy. Commodity prices are key economical20 drivers in the market. Raw products such as oil, gold 15 1 Introduction16 17 1.1 Forecasting the commodities market18 The commodities market focuses of prices in both the short and long-term view25 point to help market participants gage a greater

  5. Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract

    E-Print Network [OSTI]

    Dalang, Robert C.

    Optimal Storage Policies with Wind Forecast Uncertainties [Extended Abstract] Nicolas Gast EPFL, IC generation. The use of energy storage compensates to some extent these negative effects; it plays a buffer role between demand and production. We revisit a model of real storage proposed by Bejan et al.[1]. We

  6. 1994 battery shipment review and five-year forecast report

    SciTech Connect (OSTI)

    Fetherolf, D. [East Penn Manufacturing Co., Lyon Station, PA (United States)

    1995-12-31T23:59:59.000Z

    This paper presents a 1994 battery shipment review and five year forecast report. Data is presented on replacement battery shipments, battery shipments, car and truck production, truck sales, original equipment, shipments for passenger cars and light commercial vehicles, and ten year battery service life trend.

  7. The Galactic Center Weather Forecast M. Moscibrodzka1

    E-Print Network [OSTI]

    Gammie, Charles F.

    The Galactic Center Weather Forecast M. Mo´scibrodzka1 , H. Shiokawa2 , C. F. Gammie2,3 , J*. The > 3M cloud will #12;­ 2 ­ interact strongly with gas near nominal pericenter at rp 300AU 8000GM/c2 transient phase while the flow circularizes-- accompanied by transient emission--it is natural to think

  8. GenForecast(26yr)(avg).PDF

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    SLCAIP Historical & Forecast Generation at Plant Total Range of Hydrology 0 2,000,000,000 4,000,000,000 6,000,000,000 8,000,000,000 10,000,000,000 12,000,000,000 1 9 7 0 1 9 7 2 1...

  9. WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1

    E-Print Network [OSTI]

    WIND POWER ENSEMBLE FORECASTING Henrik Aalborg Nielsen1 , Henrik Madsen1 , Torben Skov Nielsen1. In this paper we address the problems of (i) transforming the mete- orological ensembles to wind power ensembles the uncertainty which follow from historical (climatological) data. However, quite often the actual wind power

  10. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01T23:59:59.000Z

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  11. URBAN OZONE CONCENTRATION FORECASTING WITH ARTIFICIAL NEURAL NETWORK IN CORSICA

    E-Print Network [OSTI]

    Boyer, Edmond

    Perceptron; Ozone concentration. 1. Introduction Tropospheric ozone is a major air pollution problem, both, Ajaccio, France, e-mail: balu@univ-corse.fr Abstract: Atmospheric pollutants concentration forecasting is an important issue in air quality monitoring. Qualitair Corse, the organization responsible for monitoring air

  12. Navy Mobility Fuels Forecasting System. Phase I report

    SciTech Connect (OSTI)

    Davis, R.M.; Hadder, G.R.; Singh, S.P.N.; Whittle, C.

    1985-07-01T23:59:59.000Z

    The Department of the Navy (DON) requires an improved capability to forecast mobility fuel availability and quality. The changing patterns in fuel availability and quality are important in planning the Navy's Mobility Fuels R and D Program. These changes come about primarily because of the decline in the quality of crude oil entering world markets as well as the shifts in refinery capabilities domestically and worldwide. The DON requested ORNL's assistance in assembling and testing a methodology for forecasting mobility fuel trends. ORNL reviewed and analyzed domestic and world oil reserve estimates, production and price trends, and recent refinery trends. Three publicly available models developed by the Department of Energy were selected as the basis of the Navy Mobility Fuels Forecasting System. The system was used to analyze the availability and quality of jet fuel (JP-5) that could be produced on the West Coast of the United States under an illustrative business-as-usual and a world oil disruption scenario in 1990. Various strategies were investigated for replacing the lost JP-5 production. This exercise, which was strictly a test case for the forecasting system, suggested that full recovery of lost fuel production could be achieved by relaxing the smoke point specifications or by increasing the refiners' gate price for the jet fuel. A more complete analysis of military mobility fuel trends is currently under way.

  13. Probabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    the chance of winds high enough to pose dangers for boats or aircraft. In situations calling for a cost/loss analysis, the probabilities of different outcomes need to be known. For wind speed, this issue often arisesProbabilistic Wind Speed Forecasting Using Ensembles and Bayesian Model Averaging J. Mc

  14. Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems

    E-Print Network [OSTI]

    Shenoy, Prashant

    Cloudy Computing: Leveraging Weather Forecasts in Energy Harvesting Sensor Systems Navin Sharma,gummeson,irwin,shenoy}@cs.umass.edu Abstract--To sustain perpetual operation, systems that harvest environmental energy must carefully regulate their usage to satisfy their demand. Regulating energy usage is challenging if a system's demands

  15. Leveraging Weather Forecasts in Renewable Energy Navin Sharmaa,

    E-Print Network [OSTI]

    Shenoy, Prashant

    Leveraging Weather Forecasts in Renewable Energy Systems Navin Sharmaa, , Jeremy Gummesonb , David, Binghamton, NY 13902 Abstract Systems that harvest environmental energy must carefully regulate their us- age to satisfy their demand. Regulating energy usage is challenging if a system's demands are not elastic, since

  16. Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales

    E-Print Network [OSTI]

    Risk Forecasting with GARCH, Skewed t Distributions, and Multiple Timescales Alec N. Kercheval describe how the histori- cal data can first be GARCH filtered and then used to calibrate parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2 Data and Stylized Facts . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 GARCH Filter

  17. Forecasting Hospital Bed Availability Using Simulation and Neural Networks

    E-Print Network [OSTI]

    Kuhl, Michael E.

    Forecasting Hospital Bed Availability Using Simulation and Neural Networks Matthew J. Daniels, NY 14623 Elisabeth Hager Hager Consulting Pittsford, NY 14534 Abstract The availability of beds is a critical factor for decision-making in hospitals. Bed availability (or alternatively the bed occupancy

  18. Short-Term Solar Energy Forecasting Using Wireless Sensor Networks

    E-Print Network [OSTI]

    Cerpa, Alberto E.

    Short-Term Solar Energy Forecasting Using Wireless Sensor Networks Stefan Achleitner, Tao Liu an advantage for output power prediction. Solar Energy Prediction System Our prediction model is based variability of more then 100 kW per minute. For practical usage of solar energy, predicting times of high

  19. SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS

    E-Print Network [OSTI]

    Heinemann, Detlev

    SOLAR IRRADIANCE FORECASTING FOR THE MANAGEMENT OF SOLAR ENERGY SYSTEMS Detlev Heinemann Oldenburg.girodo@uni-oldenburg.de ABSTRACT Solar energy is expected to contribute major shares of the future global energy supply. Due to its and solar energy conversion processes has to account for this behaviour in respective operating strategies

  20. Development and Deployment of an Advanced Wind Forecasting Technique

    E-Print Network [OSTI]

    Kemner, Ken

    findings. Part 2 addresses how operators of wind power plants and power systems can incorporate advanced the output of advanced wind energy forecasts into decision support models for wind power plant and power and applications of power market simulation models around the world. Argonne's software tools are used extensively

  1. Integrating agricultural pest biocontrol into forecasts of energy biomass production

    E-Print Network [OSTI]

    Gratton, Claudio

    Analysis Integrating agricultural pest biocontrol into forecasts of energy biomass production T), University of Lome, 114 Rue Agbalepedogan, BP: 20679, Lome, Togo e Center for Agricultural & Energy Policy model of potential biomass supply that incorporates the effect of biological control on crop choice

  2. Radiation fog forecasting using a 1-dimensional model

    E-Print Network [OSTI]

    Peyraud, Lionel

    2001-01-01T23:59:59.000Z

    The importance of fog forecasting to the aviation community, to road transportation and to the public at large is irrefutable. The deadliest aviation accident in history was in fact partly a result of fog back on 27 March 1977. This has, along...

  3. Classification and forecasting of load curves Nolwen Huet

    E-Print Network [OSTI]

    Cuesta, Juan Antonio

    Classification and forecasting of load curves Nolwen Huet Abstract The load curve, which gives of electricity customer uses. This load curve is only available for customers with automated meter reading. For the others, EDF must estimate this curve. Usually a clustering of the load curves is performed, followed

  4. What constrains spread growth in forecasts ini2alized from

    E-Print Network [OSTI]

    Hamill, Tom

    1 What constrains spread growth in forecasts ini2alized from ensemble Kalman filters? Tom from manner in which ini2al condi2ons are generated, some due to the model (e.g., stochas2c physics as error; part of spread growth from manner in which ini2al condi2ons are generated, some due

  5. CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE -APRIL 2014

    E-Print Network [OSTI]

    de Lijser, Peter

    CSUF ECONOMIC OUTLOOK AND FORECASTS MIDYEAR UPDATE - APRIL 2014 Anil Puri, Ph.D. -- Director-year increase in the debt ceiling -- both of which proceeded without the usual drama. Second, the private sector, corporate coffers are flush with cash, and low US energy prices have dramatically improved the global

  6. Exploiting weather forecasts for sizing photovoltaic energy bids

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    1 Exploiting weather forecasts for sizing photovoltaic energy bids Antonio Giannitrapani, Simone for a photovoltaic (PV) power producer taking part into a competitive electricity market characterized by financial set from an Italian PV plant. Index Terms--Energy market, bidding strategy, photovoltaic power

  7. Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids

    E-Print Network [OSTI]

    Prasanna, Viktor K.

    1 Adaptive Energy Forecasting and Information Diffusion for Smart Power Grids Yogesh Simmhan, prasanna}@usc.edu I. INTRODUCTION Smart Power Grids exemplify an emerging class of Cyber Physical-on paradigm to support operational needs. Smart Grids are an outcome of instrumentation, such as Phasor

  8. TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009

    E-Print Network [OSTI]

    Page Manager FOSSIL FUELS OFFICE Mike Smith Deputy Director FUELS AND TRANSPORTATION DIVISION Melissa, Weights and Measurements/Gary Castro, Allan Morrison, John Mough, Ed Williams Clean Energy FuelsCALIFORNIA ENERGY COMMISSION TRANSPORTATION ENERGY FORECASTS AND ANALYSES FOR THE 2009 INTEGRATED

  9. Optimal Bidding Strategies for Wind Power Producers with Meteorological Forecasts

    E-Print Network [OSTI]

    Giannitrapani, Antonello

    bid is computed by exploiting the forecast energy price for the day ahead market, the historical wind renewable energy resources, such as wind and photovoltaic, has grown rapidly. It is well known the problem of optimizing energy bids for an independent Wind Power Producer (WPP) taking part

  10. Detecting and Forecasting Economic Regimes in Automated Exchanges

    E-Print Network [OSTI]

    Ketter, Wolfgang

    Detecting and Forecasting Economic Regimes in Automated Exchanges Wolfgang Ketter , John Collins. of Mgmt., Erasmus University Dept. of Computer Science and Engineering, University of Minnesota Dept,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu Abstract We present basic building blocks of an agent that can use observable market

  11. Detecting and Forecasting Economic Regimes in Automated Exchanges

    E-Print Network [OSTI]

    Ketter, Wolfgang

    Detecting and Forecasting Economic Regimes in Automated Exchanges Wolfgang Ketter # , John Collins, Rotterdam Sch. of Mgmt., Erasmus University + Dept. of Computer Science and Engineering, University wketter@rsm.nl, {jcollins,gini,schrater}@cs.umn.edu, agupta@csom.umn.edu Abstract We present basic

  12. THE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD

    E-Print Network [OSTI]

    energy-using devices in the average U.S. household that used over 4,700 kWh of electricity, natural gas-using devices to energy price, household income, and the cost of these devices. This analysis findsTHE DESIRE TO ACQUIRE: FORECASTING THE EVOLUTION OF HOUSEHOLD ENERGY SERVICES by Steven Groves BASc

  13. Probabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging

    E-Print Network [OSTI]

    Washington at Seattle, University of

    February 24, 2006 1J. McLean Sloughter is Graduate Research Assistant, Adrian E. Raftery is BlumsteinProbabilistic Quantitative Precipitation Forecasting Using Bayesian Model Averaging J. McLean Sloughter, Adrian E. Raftery and Tilmann Gneiting 1 Department of Statistics, University of Washington

  14. Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging

    E-Print Network [OSTI]

    Raftery, Adrian

    : J. McLean Sloughter, Department of Mathematics, Seattle University, 901 12th Ave., P.O. Box 222000Probabilistic Wind Vector Forecasting Using Ensembles and Bayesian Model Averaging J. MCLEAN SLOUGHTER Seattle University, Seattle, Washington TILMANN GNEITING Heidelberg University, Heidelberg

  15. air pollution forecast: Topics by E-print Network

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    air pollution forecast First Page Previous Page 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 Next Page Last Page Topic Index 1 ENVIRONMENTAL INFORMATION SYSTEM...

  16. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V. (Decision and Information Sciences); (INESC Porto)

    2011-11-29T23:59:59.000Z

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  17. EWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology The Anemos Wind Power Forecasting Platform Technology -

    E-Print Network [OSTI]

    Boyer, Edmond

    the fluctuating output from wind farms into power plant dispatching and energy trading, wind power predictionsEWEC 2006, Athens, The Anemos Wind Power Forecasting Platform Technology 1 The Anemos Wind Power a professional, flexible platform for operating wind power prediction models, laying the main focus on state

  18. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    SciTech Connect (OSTI)

    Das, S.

    1991-12-01T23:59:59.000Z

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  19. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatist...

    E-Print Network [OSTI]

    Raftery, Adrian

    permission. Calibrated Probabilistic Mesoscale Weather Field Forecasting: The Geostatist... Yulia Gel; Adrian

  20. Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill

    SciTech Connect (OSTI)

    Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.

    2012-08-15T23:59:59.000Z

    We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 days of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.

  1. Application of a medium-range global hydrologic probabilistic forecast scheme to the Ohio River Basin

    SciTech Connect (OSTI)

    Voisin, Nathalie; Pappenberger, Florian; Lettenmaier, D. P.; Buizza, Roberto; Schaake, John

    2011-08-15T23:59:59.000Z

    A 10-day globally applicable flood prediction scheme was evaluated using the Ohio River basin as a test site for the period 2003-2007. The Variable Infiltration Capacity (VIC) hydrology model was initialized with the European Centre for Medium Range Weather Forecasts (ECMWF) analysis temperatures and wind, and Tropical Rainfall Monitoring Mission Multi Satellite Precipitation Analysis (TMPA) precipitation up to the day of forecast. In forecast mode, the VIC model was then forced with a calibrated and statistically downscaled ECMWF ensemble prediction system (EPS) 10-day ensemble forecast. A parallel set up was used where ECMWF EPS forecasts were interpolated to the spatial scale of the hydrology model. Each set of forecasts was extended by 5 days using monthly mean climatological variables and zero precipitation in order to account for the effect of initial conditions. The 15-day spatially distributed ensemble runoff forecasts were then routed to four locations in the basin, each with different drainage areas. Surrogates for observed daily runoff and flow were provided by the reference run, specifically VIC simulation forced with ECMWF analysis fields and TMPA precipitation fields. The flood prediction scheme using the calibrated and downscaled ECMWF EPS forecasts was shown to be more accurate and reliable than interpolated forecasts for both daily distributed runoff forecasts and daily flow forecasts. Initial and antecedent conditions dominated the flow forecasts for lead times shorter than the time of concentration depending on the flow forecast amounts and the drainage area sizes. The flood prediction scheme had useful skill for the 10 following days at all sites.

  2. Pressure Normalization of Production Rates Improves Forecasting Results

    E-Print Network [OSTI]

    Lacayo Ortiz, Juan Manuel

    2013-08-07T23:59:59.000Z

    reservoir conditions, psi 2/cp ?wf Pseudopressure at flowing conditions, psi 2/cp ? Characteristic time parameter for SEPD model, D ?g Gas viscosity, cp ?o Oil viscosity, cp Acronyms BDF Boundary-Dominated Flow DCA Decline Curve Analysis EUR..., as the advanced analytical and numerical models depend on copious inputs, there is a high probability that different combinations of those parameters could generate equivalent and acceptable history matches, but different production forecasts and EUR...

  3. Hybrid methodology for hourly global radiation forecasting in Mediterranean area

    E-Print Network [OSTI]

    Voyant, Cyril; Paoli, Christophe; Nivet, Marie Laure

    2012-01-01T23:59:59.000Z

    The renewable energies prediction and particularly global radiation forecasting is a challenge studied by a growing number of research teams. This paper proposes an original technique to model the insolation time series based on combining Artificial Neural Network (ANN) and Auto-Regressive and Moving Average (ARMA) model. While ANN by its non-linear nature is effective to predict cloudy days, ARMA techniques are more dedicated to sunny days without cloud occurrences. Thus, three hybrids models are suggested: the first proposes simply to use ARMA for 6 months in spring and summer and to use an optimized ANN for the other part of the year; the second model is equivalent to the first but with a seasonal learning; the last model depends on the error occurred the previous hour. These models were used to forecast the hourly global radiation for five places in Mediterranean area. The forecasting performance was compared among several models: the 3 above mentioned models, the best ANN and ARMA for each location. In t...

  4. Towards a Science of Tumor Forecast for Clinical Oncology

    SciTech Connect (OSTI)

    Yankeelov, Tom [Vanderbilt University, Nashville; Quaranta, Vito [Vanderbilt University, Nashville; Evans, Katherine J [ORNL; Rericha, Erin [Vanderbilt University, Nashville

    2015-01-01T23:59:59.000Z

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.

  5. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01T23:59:59.000Z

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  6. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01T23:59:59.000Z

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  7. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    E-Print Network [OSTI]

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-01-01T23:59:59.000Z

    2 2. Annual Energy Outlook (Administration’s Annual Energy Outlook forecasted price (of Energy, Annual Energy Outlook 2004 with Projections to

  8. Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States

    E-Print Network [OSTI]

    Mathiesen, Patrick; Kleissl, Jan

    2011-01-01T23:59:59.000Z

    Downward surface solar radiation  data released at 12 UTC forecast shortwave radiation with data obtained from the radiation:   A statistical approach using satellite data.   

  9. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01T23:59:59.000Z

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  10. FAA (federal Aviation Administration) aviation forecasts - fiscal years 1983-1994

    SciTech Connect (OSTI)

    Not Available

    1983-02-01T23:59:59.000Z

    This report contains the Fiscal Years 1983-1994 Federal Aviation Administration (FAA) forecasts of aviation activity at FAA facilities. These include airports with FAA control towers, air route traffic control centers, and flight service stations. Detailed forecasts were made for the four major users of the national aviation system: air carriers, air taxi/commuters, general aviation and the military. The forecasts have been prepared to meet the budget and planning needs of the constituent units of the FAA and to provide information that can be used by state and local authorities, by the aviation industry and the general public. The overall outlook for the forecast period is for moderate economic growth, relatively stable real fuel prices, and decreasing inflation. Based upon these assumptions, aviation activity is forecast to increase by Fiscal Year 1994 by 97 percent at towered airports, 50 percent at air route traffic control centers, and 54 percent in flight services performed. Hours flown by general aviation is forecast to increase 56 percent and helicopter hours flown 80 percent. Scheduled domestic revenue passenger miles (RPM's) are forecast to increase 81 percent, with scheduled international RPM's forecast to increase by 80 percent and commuter RPM's forecast to increase by 220 percent.

  11. The Past as Prologue? Business Cycles and Forecasting since the 1960s

    E-Print Network [OSTI]

    Bardhan, Ashok Deo; Hicks, Daniel; Kroll, Cynthia A.; Yu, Tiffany

    2010-01-01T23:59:59.000Z

    a unique sampling of articles, we examine academic and mediaSample Articles Prediction Source Academic and Trade Totalshow that articles reporting on academic forecasts have

  12. Generating day-of-operation probabilistic capacity scenarios from weather forecasts

    E-Print Network [OSTI]

    Buxi, Gurkaran

    2012-01-01T23:59:59.000Z

    user needs for convective weather forecasts," in AmericanJ. Andrews M. Weber, "Weather Information Requirements forInt. Conf. on Aviation Weather, Paris, France. [5] NASDAC. (

  13. Continuous reservoir simulation model updating and forecasting using a markov chain monte carlo method

    E-Print Network [OSTI]

    Liu, Chang

    2009-05-15T23:59:59.000Z

    forecasts of well and reservoir performance, accessible at any time. It can be used to optimize long-term reservoir performance at field scale....

  14. Traffic congestion forecasting model for the INFORM System. Final report

    SciTech Connect (OSTI)

    Azarm, A.; Mughabghab, S.; Stock, D.

    1995-05-01T23:59:59.000Z

    This report describes a computerized traffic forecasting model, developed by Brookhaven National Laboratory (BNL) for a portion of the Long Island INFORM Traffic Corridor. The model has gone through a testing phase, and currently is able to make accurate traffic predictions up to one hour forward in time. The model will eventually take on-line traffic data from the INFORM system roadway sensors and make projections as to future traffic patterns, thus allowing operators at the New York State Department of Transportation (D.O.T.) INFORM Traffic Management Center to more optimally manage traffic. It can also form the basis of a travel information system. The BNL computer model developed for this project is called ATOP for Advanced Traffic Occupancy Prediction. The various modules of the ATOP computer code are currently written in Fortran and run on PC computers (pentium machine) faster than real time for the section of the INFORM corridor under study. The following summarizes the various routines currently contained in the ATOP code: Statistical forecasting of traffic flow and occupancy using historical data for similar days and time (long term knowledge), and the recent information from the past hour (short term knowledge). Estimation of the empirical relationships between traffic flow and occupancy using long and short term information. Mechanistic interpolation using macroscopic traffic models and based on the traffic flow and occupancy forecasted (item-1), and the empirical relationships (item-2) for the specific highway configuration at the time of simulation (construction, lane closure, etc.). Statistical routine for detection and classification of anomalies and their impact on the highway capacity which are fed back to previous items.

  15. A Kalman-filter bias correction of ozone deterministic, ensemble-averaged, and probabilistic forecasts

    SciTech Connect (OSTI)

    Monache, L D; Grell, G A; McKeen, S; Wilczak, J; Pagowski, M O; Peckham, S; Stull, R; McHenry, J; McQueen, J

    2006-03-20T23:59:59.000Z

    Kalman filtering (KF) is used to postprocess numerical-model output to estimate systematic errors in surface ozone forecasts. It is implemented with a recursive algorithm that updates its estimate of future ozone-concentration bias by using past forecasts and observations. KF performance is tested for three types of ozone forecasts: deterministic, ensemble-averaged, and probabilistic forecasts. Eight photochemical models were run for 56 days during summer 2004 over northeastern USA and southern Canada as part of the International Consortium for Atmospheric Research on Transport and Transformation New England Air Quality (AQ) Study. The raw and KF-corrected predictions are compared with ozone measurements from the Aerometric Information Retrieval Now data set, which includes roughly 360 surface stations. The completeness of the data set allowed a thorough sensitivity test of key KF parameters. It is found that the KF improves forecasts of ozone-concentration magnitude and the ability to predict rare events, both for deterministic and ensemble-averaged forecasts. It also improves the ability to predict the daily maximum ozone concentration, and reduces the time lag between the forecast and observed maxima. For this case study, KF considerably improves the predictive skill of probabilistic forecasts of ozone concentration greater than thresholds of 10 to 50 ppbv, but it degrades it for thresholds of 70 to 90 ppbv. Moreover, KF considerably reduces probabilistic forecast bias. The significance of KF postprocessing and ensemble-averaging is that they are both effective for real-time AQ forecasting. KF reduces systematic errors, whereas ensemble-averaging reduces random errors. When combined they produce the best overall forecast.

  16. A first large-scale flood inundation forecasting model

    SciTech Connect (OSTI)

    Schumann, Guy J-P; Neal, Jeffrey C.; Voisin, Nathalie; Andreadis, Konstantinos M.; Pappenberger, Florian; Phanthuwongpakdee, Kay; Hall, Amanda C.; Bates, Paul D.

    2013-11-04T23:59:59.000Z

    At present continental to global scale flood forecasting focusses on predicting at a point discharge, with little attention to the detail and accuracy of local scale inundation predictions. Yet, inundation is actually the variable of interest and all flood impacts are inherently local in nature. This paper proposes a first large scale flood inundation ensemble forecasting model that uses best available data and modeling approaches in data scarce areas and at continental scales. The model was built for the Lower Zambezi River in southeast Africa to demonstrate current flood inundation forecasting capabilities in large data-scarce regions. The inundation model domain has a surface area of approximately 170k km2. ECMWF meteorological data were used to force the VIC (Variable Infiltration Capacity) macro-scale hydrological model which simulated and routed daily flows to the input boundary locations of the 2-D hydrodynamic model. Efficient hydrodynamic modeling over large areas still requires model grid resolutions that are typically larger than the width of many river channels that play a key a role in flood wave propagation. We therefore employed a novel sub-grid channel scheme to describe the river network in detail whilst at the same time representing the floodplain at an appropriate and efficient scale. The modeling system was first calibrated using water levels on the main channel from the ICESat (Ice, Cloud, and land Elevation Satellite) laser altimeter and then applied to predict the February 2007 Mozambique floods. Model evaluation showed that simulated flood edge cells were within a distance of about 1 km (one model resolution) compared to an observed flood edge of the event. Our study highlights that physically plausible parameter values and satisfactory performance can be achieved at spatial scales ranging from tens to several hundreds of thousands of km2 and at model grid resolutions up to several km2. However, initial model test runs in forecast mode revealed that it is crucial to account for basin-wide hydrological response time when assessing lead time performances notwithstanding structural limitations in the hydrological model and possibly large inaccuracies in precipitation data.

  17. Residential Sector End-Use Forecasting with EPRI-REEPS 2.1: Summary Input Assumptions and Results

    E-Print Network [OSTI]

    Koomey, Jonathan G.

    2010-01-01T23:59:59.000Z

    End-Use Forecasting with EPRI-REEPS 2.1. Lawrence BerkeleyEnd-Use Forecasting with EPRI-REEPS 2.1. Lawrence BerkeleyPower Research Institute. EPRI Research Project Meier, Alan

  18. Error growth in poor ECMWF forecasts over the contiguous United States

    E-Print Network [OSTI]

    Modlin, Norman Ray

    1993-01-01T23:59:59.000Z

    are found to have the majority of RMS growth on day I while poor forecasts do not experience rapid error growth until days 3 and 4. For poor forecasts, the leading EOFs reveal a wave pattern down stream of the Rocky Mountains. This pattern evolves...

  19. Extendedrange seasonal hurricane forecasts for the North Atlantic with a hybrid dynamicalstatistical model

    E-Print Network [OSTI]

    Webster, Peter J.

    Extendedrange seasonal hurricane forecasts for the North Atlantic with a hybrid 20 September 2010; published 9 November 2010. [1] A hybrid forecast model for seasonal hurricane between the number of seasonal hurricane and the large scale variables from ECMWF hindcasts. The increase

  20. Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan

    E-Print Network [OSTI]

    Fowler, Hayley

    Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan D.R. Archer a of Pakistan. Seasonal forecasts of spring and summer flow provide the opportunity for planning and would of Control between In- dia and Pakistan. The Jhelum then flows through the plains of the Punjab, where

  1. Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime-Switching

    E-Print Network [OSTI]

    Genton, Marc G.

    Calibrated Probabilistic Forecasting at the Stateline Wind Energy Center: The Regime at a wind energy site and fits a conditional predictive model for each regime. Geographically dispersed was applied to 2-hour-ahead forecasts of hourly average wind speed near the Stateline wind energy center

  2. he long-term economic forecast calls for the continuation of the

    E-Print Network [OSTI]

    Hemmers, Oliver

    T he long-term economic forecast calls for the continuation of the economic recovery in 2014 predicts a steady economic recovery for Southern Nevada from 2014 onward. The Las Vegas economy-Term Economic Forecast Figure 1: Total Employment (1990-2050) Source: Center for Business and Economic Research

  3. Employment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support Services Industries

    E-Print Network [OSTI]

    Illinois at Chicago, University of

    that are outperforming the industry average. Additional research shows that the industry is reactive to manufacturingEmployment Forecasts for Ohio's Primary Metals Manufacturing and Administrative and Support, the primary metals manufacturing industry (NAICS 331000) employment in Ohio is forecasted to decline by 21

  4. Ensemble-based air quality forecasts: A multimodel approach applied to ozone

    E-Print Network [OSTI]

    Boyer, Edmond

    Ensemble-based air quality forecasts: A multimodel approach applied to ozone Vivien Mallet1 21 September 2006. [1] The potential of ensemble techniques to improve ozone forecasts ozone-monitoring networks. We found that several linear combinations of models have the potential

  5. Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Improvements in wind speed forecasts for wind power prediction purposes using Kalman filtering P : 10.1016/j.jweia.2008.03.013 #12;2 Abstract This paper studies the application of Kalman filtering forecasts. The application of Kalman filter to these data leads to the elimination of any possible

  6. Forecasting change of the magnetic field using core surface flows and ensemble Kalman filtering

    E-Print Network [OSTI]

    Forecasting change of the magnetic field using core surface flows and ensemble Kalman filtering C-based observatories. We therefore present a method using Ensemble Kalman Filtering (EnKF) to produce an optimal (2009), Forecasting change of the magnetic field using core surface flows and ensemble Kalman filtering

  7. Model bias correction for dust storm forecast using ensemble Kalman filter

    E-Print Network [OSTI]

    Model bias correction for dust storm forecast using ensemble Kalman filter Caiyan Lin,1,2 Jiang Zhu Kalman filter (EnKF) assimilation targeting heavy dust episodes during the period of 15­24 March 2002. Wang (2008), Model bias correction for dust storm forecast using ensemble Kalman filter, J. Geophys

  8. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-08-01T23:59:59.000Z

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. This information is then applied to stitch images together into largermore »views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  9. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 28 OCTOBER 11, 2011

    E-Print Network [OSTI]

    Gray, William

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index of tropical cyclone (TC) activity starting in early August. We have decided to discontinue our individual for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  10. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 1 SEPTEMBER 14, 2010

    E-Print Network [OSTI]

    Gray, William

    with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index, which is defined to be all are not developing any new tropical cyclones after Earl and Fiona. We expect Earl to generate large amounts of ACE This is the second year that we have issued shorter-term forecasts of tropical cyclone (TC) activity starting

  11. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 14 SEPTEMBER 27, 2011

    E-Print Network [OSTI]

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index of tropical cyclone activity starting in early August. We have decided to discontinue our individual monthly for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  12. COLORADO STATE UNIVERSITY FORECAST OF ATLANTIC HURRICANE ACTIVITY FROM SEPTEMBER 14 SEPTEMBER 27, 2012

    E-Print Network [OSTI]

    Gray, William

    that we are trying to predict with these two-week forecasts is the Accumulated Cyclone Energy (ACE) index of tropical cyclone activity starting in early August. We have decided to discontinue our individual monthly for ACE using three categories as defined in Table 1. Table 1: ACE forecast definition. Parameter

  13. An overview of global gold market and gold price forecasting Shahriar Shafiee a,n

    E-Print Network [OSTI]

    Boisvert, Jeff

    into the relationship between gold price and other key influencing variables, such as oil price and global inflationAn overview of global gold market and gold price forecasting Shahriar Shafiee a,n , Erkan Topal b classification: E31 O13 Q32 Keywords: Historical gold market Forecasting mineral prices Long-term trend reverting

  14. Biennial Assessment of the Fifth Power Plan Interim Report on Electric Price Forecasts

    E-Print Network [OSTI]

    because natural gas fired electric generating plants are on the margin much of the time in Western marketsBiennial Assessment of the Fifth Power Plan Interim Report on Electric Price Forecasts Electricity prices in the Council's Power Plan are forecast using the AURORATM Electricity Market Model of the entire

  15. Reprinted from: Proceedings, International Workshop on Observations/Forecasting of Meso-scale Severe Weather and

    E-Print Network [OSTI]

    Doswell III, Charles A.

    -scale Severe Weather and Technology of Reduction of Relevant Disasters (Tokyo, Japan), 22-26 February 1993, 181 technology and powerful workstation approaches in the forecasting workplace. Training and education leading to the weather events should form the basis for any scientific approaches to forecasting those

  16. Advanced statistical methods for shortterm wind power forecasting Research proposal draft

    E-Print Network [OSTI]

    Barnett, Alex

    Barnett July 2001 1 Background Over the last decade wind power has become a cost­effective alternative at a turbine) using linear or nonlinear time­series analysis (Alex­ iadis 1999), or 2) forecasting windAdvanced statistical methods for short­term wind power forecasting Research proposal draft Alex

  17. Volatility Forecasts in Financial Time Series with HMM-GARCH Models

    E-Print Network [OSTI]

    Chen, Yiling

    Volatility Forecasts in Financial Time Series with HMM-GARCH Models Xiong-Fei Zhuang and Lai {xfzhuang,lwchan}@cse.cuhk.edu.hk Abstract. Nowadays many researchers use GARCH models to generate of the two parameters G1 and A1[1], in GARCH models is usually too high. Since volatility forecasts in GARCH

  18. Forecasting the Hourly Ontario Energy Price by Multivariate Adaptive Regression Splines

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    1 Forecasting the Hourly Ontario Energy Price by Multivariate Adaptive Regression Splines H. In this paper, the MARS technique is applied to forecast the hourly Ontario energy price (HOEP). The MARS models values of the latest pre- dispatch price and demand information, made available by the Ontario

  19. 1 Ozone pollution forecasting 3 Herve Cardot, Christophe Crambes and Pascal Sarda.

    E-Print Network [OSTI]

    Crambes, Christophe

    Contents 1 Ozone pollution forecasting 3 Herv´e Cardot, Christophe Crambes and Pascal Sarda. 1;1 Ozone pollution forecasting using conditional mean and conditional quantiles with functional covariates Herv´e Cardot, Christophe Crambes and Pascal Sarda. 1.1 Introduction Prediction of Ozone pollution

  20. 6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO

    E-Print Network [OSTI]

    6.9 A NEW APPROACH TO FIRE WEATHER FORECASTING AT THE TULSA WFO Sarah J. Taylor* and Eric D. Howieson NOAA/National Weather Service Tulsa, Oklahoma 1. INTRODUCTION The modernization of the National then providesthemeteorologistanopportunitytoadjustmodel forecasts for local biases and terrain effects. The Tulsa, Oklahoma WFO has been a test office

  1. ANN-based Short-Term Load Forecasting in Electricity Markets

    E-Print Network [OSTI]

    Cañizares, Claudio A.

    ANN-based Short-Term Load Forecasting in Electricity Markets Hong Chen Claudio A. Ca~nizares Ajit1 Abstract--This paper proposes an Artificial Neu- ral Network (ANN)-based short-term load forecasting, electricity markets, spot prices, Artificial Neural Networks (ANN) I. Introduction Short

  2. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Optimization of an artificial neural network dedicated to the multivariate forecasting of daily Ajaccio, France Abstract. This paper presents an application of Artificial Neural Networks (ANNs Artificial Neural Networks (ANNs) which are a popular artificial intelligence technique in the forecasting

  3. Short Term Hourly Load Forecasting Using Abductive Networks R. E. Abdel-Aal

    E-Print Network [OSTI]

    Abdel-Aal, Radwan E.

    Physical Sciences, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran, Saudi for forecasting next-day hourly loads have been developed. Evaluated on data for the 6th year, the models give. INTRODUCTION Accurate load forecasting is a key requirement for the planning and economic and secure operation

  4. Products and Service of Center for Weather Forecast and Climate Studies

    E-Print Network [OSTI]

    LOG O Products and Service of Center for Weather Forecast and Climate Studies Simone Sievert da products Supercomputer Facilities DSA/CPTEC-INPE Monitoring products based on remote sensing Training products Numerical Forecast Products Weather discussion Colleting data platform #12;Atmospheric Chemistry

  5. THE PREV AIR SYSTEM, AN OPERATIONAL SYSTEM FOR LARGE SCALE AIR QUALITY FORECASTS OVER EUROPE; APPLICATIONS

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    THE PREV AIR SYSTEM, AN OPERATIONAL SYSTEM FOR LARGE SCALE AIR QUALITY FORECASTS OVER EUROPE Author ABSTRACT Since Summer 2003, the PREV'AIR system has been delivering through the Internet1 daily air quality forecasts over Europe. This is the visible part of a wider collaborative project

  6. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01T23:59:59.000Z

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  7. Impact of forecasting error on the performance of capacitated multi-item production systems

    E-Print Network [OSTI]

    Xie, Jinxing

    in manufacturing planning and control. The quality of the master production schedule (MPS) can significantly managers optimize their production plans by selecting more reasonable forecasting methods and scheduling forecasting, order entry and production planning activities on the one hand, and the detailed planning

  8. Development and Demonstration of a Relocatable Ocean OSSE System: Optimizing Ocean Observations for Hurricane Forecast

    E-Print Network [OSTI]

    forecasts for individual storms and improved seasonal forecast of the ocean thermal energy availableDevelopment and Demonstration of a Relocatable Ocean OSSE System: Optimizing Ocean Observations in the Gulf of Mexico is being extended to provide NOAA the ability to evaluate new ocean observing systems

  9. Navy Mobility Fuels Forecasting System Phase 4 report

    SciTech Connect (OSTI)

    Das, S.; Hadder, G.R.; Leiby, P.N.; Lee, R.; Davis, R.M.

    1988-09-01T23:59:59.000Z

    The Department of Navy's Maritime Strategy is designed to maintain military readiness and the ability to operate in all major theaters of the world. Mobility fuels required for sea, air, and land operations are vital components of the Navy's peacetime and wartime strategies. The purpose of the Navy's Mobility Fuels Technology Program is to understand fuel supply and fuel property impacts on Navy equipment performance and fleet readiness and operations. Oak Ridge National Laboratory (ORNL) has assisted the Department of Navy in developing and testing a methodology for forecasting mobility fuel availability, quality, and relative price, as well as evaluating options to increase fuel supplies during world oil supply disruptions. Publicly available models developed by the Energy Information Administration of the Department of Energy were selected as the foundation of the Navy Mobility Fuels Forecasting System (NMFFS). The NMFFS was enhanced as ORNL reviewed data on world oil reserves, production and prices, trends in crude oil and refined product quality, and changes in refinery process technology. The system was used to analyze the availability, quality, and relative price of military fuels that could be produced in several domestic and foreign refining regions under Business-As-Usual (BAU) and two hypothetical world crude oil disruption scenarios in the year 1995. 25 refs., 11 figs., 29 tabs.

  10. TOWARD RELIABLE BENCHMARKING OF SOLAR FLARE FORECASTING METHODS

    SciTech Connect (OSTI)

    Bloomfield, D. Shaun; Higgins, Paul A.; Gallagher, Peter T. [Astrophysics Research Group, School of Physics, Trinity College Dublin, College Green, Dublin 2 (Ireland); McAteer, R. T. James, E-mail: shaun.bloomfield@tcd.ie [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003-8001 (United States)

    2012-03-10T23:59:59.000Z

    Solar flares occur in complex sunspot groups, but it remains unclear how the probability of producing a flare of a given magnitude relates to the characteristics of the sunspot group. Here, we use Geostationary Operational Environmental Satellite X-ray flares and McIntosh group classifications from solar cycles 21 and 22 to calculate average flare rates for each McIntosh class and use these to determine Poisson probabilities for different flare magnitudes. Forecast verification measures are studied to find optimum thresholds to convert Poisson flare probabilities into yes/no predictions of cycle 23 flares. A case is presented to adopt the true skill statistic (TSS) as a standard for forecast comparison over the commonly used Heidke skill score (HSS). In predicting flares over 24 hr, the maximum values of TSS achieved are 0.44 (C-class), 0.53 (M-class), 0.74 (X-class), 0.54 ({>=}M1.0), and 0.46 ({>=}C1.0). The maximum values of HSS are 0.38 (C-class), 0.27 (M-class), 0.14 (X-class), 0.28 ({>=}M1.0), and 0.41 ({>=}C1.0). These show that Poisson probabilities perform comparably to some more complex prediction systems, but the overall inaccuracy highlights the problem with using average values to represent flaring rate distributions.

  11. Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

  12. FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev Heinemann*, Hashini Wickramarathne*, Hans Georg Beyer +

    E-Print Network [OSTI]

    Heinemann, Detlev

    FORECAST OF ENSEMBLE POWER PRODUCTION BY GRID-CONNECTED PV SYSTEMS Elke Lorenz*, Detlev HeinemannH, Spicherer Straße 48, D-86157 Augsburg, Germany ABSTRACT: The contribution of power production by PV systems and evaluate an approach to forecast regional PV power production. The forecast quality was investigated

  13. J2.6 A SPATIAL DATA MINING APPROACH FOR VERIFICATION AND UNDERSTANDING OF ENSEMBLE PRECIPITATION FORECASTING

    E-Print Network [OSTI]

    Gruenwald, Le

    FORECASTING Xuechao Yu* 1,2 and Ming Xue 2,3 1 NOAA/NWS/WDTB Cooperative Institute for Mesoscale is placed on meso- scale ensemble forecasting in recent years [e.g., the Storm and Mesoscale Ensemble complicated for mesoscale quantitative precipitation forecast (QPF), since QPF is a discontinuous field. Em

  14. Development and Evaluation of a Coupled Photosynthesis-Based Gas Exchange Evapotranspiration Model (GEM) for Mesoscale Weather Forecasting Applications

    E-Print Network [OSTI]

    Niyogi, Dev

    (GEM) for Mesoscale Weather Forecasting Applications DEV NIYOGI Department of Agronomy, and Department form 13 May 2008) ABSTRACT Current land surface schemes used for mesoscale weather forecast models use model (GEM) as a land surface scheme for mesoscale weather forecasting model applications. The GEM

  15. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01T23:59:59.000Z

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  16. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09T23:59:59.000Z

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  17. The Impact of Non-Gaussianity upon Cosmological Forecasts

    E-Print Network [OSTI]

    Repp, Andrew; Carron, Julien; Wolk, Melody

    2015-01-01T23:59:59.000Z

    The primary science driver for 3D galaxy surveys is their potential to constrain cosmological parameters. Forecasts of these surveys' effectiveness typically assume Gaussian statistics for the underlying matter density, despite the fact that the actual distribution is decidedly non-Gaussian. To quantify the effect of this assumption, we employ an analytic expression for the power spectrum covariance matrix to calculate the Fisher information for BAO-type model surveys. We find that for typical number densities, at $k_\\mathrm{max} = 0.5 h$ Mpc$^{-1}$, Gaussian assumptions significantly overestimate the information on all parameters considered, in some cases by up to an order of magnitude. However, after marginalizing over a six-parameter set, the form of the covariance matrix (dictated by $N$-body simulations) causes the majority of the effect to shift to the "amplitude-like" parameters, leaving the others virtually unaffected. We find that Gaussian assumptions at such wavenumbers can underestimate the dark en...

  18. Navy mobility fuels forecasting system. Phase II, report

    SciTech Connect (OSTI)

    Hadder, G.R.; Vineyard, T.A.; Das, S.; Lee, R.

    1986-06-01T23:59:59.000Z

    The Department of the Navy (DON) requires an improved capability to forecast mobility fuel availability and quality. The changing patterns in fuel availability and quality are important in planning the Navy's fuel use strategy and the Mobility Fuels Technology Program. Until recently, there has been a long-term decline in the quality of crude oil entering world markets and a shift in refinery capacities domestically and worldwide. Three publicly available models developed by the Energy Information Administration of the Department of Energy were selected as the basis of the Navy Mobility Fuels Forecasting System (NMFFS). The system was used to analyze the availability and quality of jet fuel (JP-5) and diesel fuel (F-76) that could be produced in several domestic and foreign refinery regions under business-as-usual and four hypothetical world crude oil disruption scenarios in 1990. The results from the study indicate that jet fuel availability could be reduced in some refinery regions under the disruptions studied. Various strategies were investigated for increasing JP-5 production during the disruptions. In general, the availability of JP-5 was more limited than F-76 under the disruption cases studied; however, in all cases one or more strategies were identified to increase refinery output of JP-5 in all study regions. Based on the four hypothetical disruption scenarios studied, the analysis suggested tat JP-5 production could be increased by relaxing the smoke point, freezing point, flash point, and by increasing the refiners' gate price for the jet fuel in the study regions. A more complete analysis of navy mobility fuel trends, as well as several changes in the models to make them easier to use in fuel planning and forecastig studies, are planned as part of the third phase of this program.

  19. Wharton Undergraduate Class of 2008 Career Plans Survey Report

    E-Print Network [OSTI]

    Plotkin, Joshua B.

    and Bonus Figures 431 students who accepted full-time employment provided salary data, which is the basis that they planned to receive an annual bonus, and 84.4% received a sign-on bonus. Average Base Salary by School and Gender (The figures listed below are salary only; they do not include bonus information.) SCHOOL

  20. Wharton County, Texas: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTown ofNationwideWTED JumpHills,2732°,Wetzel County, West