National Library of Energy BETA

Sample records for wharton econometric forecasting

  1. Sandia National Laboratories: Global Insight, Inc. / Department...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    combining DRI (formerly Data Resources, Inc.) and WEFA (formerly Wharton Econometric Forecasting Associates). Due to copyrightdistribution laws being derived from a proprietary...

  2. Forecasting Flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecasting Flu March 6, 2016 Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara del Valle and her team from Los Alamos National Laboratory have developed a global disease-forecasting system that will improve the way we respond to epidemics. Using this model, individuals and public health officials can monitor

  3. RACORO Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hartsock CIMMS, University of Oklahoma  ARM AAF Wiki page  Weather Briefings  Observed Weather  Cloud forecasting models  BUFKIT forecast soundings + guidance from Norman NWS enhanced pages and discussions NAM-WRF updated twice/day (12Z and 00Z) Forecast out to 84-hours RUC (updated every 3 hours) Operational RUC forecast only goes out 12 hours (developmental out 24 hours)

  4. Acquisition Forecast

    Broader source: Energy.gov [DOE]

    It is the policy of the Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) to provide timely information to the public regarding DOE/NNSA’s forecast of future prime contracting opportunities and subcontracting opportunities which are available via the Department’s major site and facilities management contractors.

  5. Sandia National Laboratories: Global Insight, Inc. / Department of Labor

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Facebook Twitter YouTube Flickr RSS Working with Sandia Global Insight, Inc. / Department of Labor Global Insight, Inc. (GII), was created by combining DRI (formerly Data Resources, Inc.) and WEFA (formerly Wharton Econometric Forecasting Associates). Due to copyright/distribution laws being derived from a proprietary service that Sandia pays for, Sandia can no longer provide GII factor information at this website. However, Sandia will continue to supply the DOL and the "combined key

  6. Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    data Presentations BPA Super Forecast Methodology Related Links Near Real-time Wind Animation Meteorological Data Customer Supplied Generation Imbalance Dynamic Transfer Limits...

  7. Wind Power Forecasting Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Operations Call 2012 Retrospective Reports 2012 Retrospective Reports 2011 Smart Grid Wind Integration Wind Integration Initiatives Wind Power Forecasting Wind Projects Email...

  8. NREL: Transmission Grid Integration - Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generation output by using forecasts that incorporate meteorological data to predict production. Such systems typically provide forecasts at a number of timescales, ranging from...

  9. LED Lighting Forecast | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Publications Market Studies LED Lighting Forecast LED Lighting Forecast The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications ...

  10. The forecast calls for flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory found a way to forecast the flu season and even next week's sickness trends. ... Laboratory found a way to forecast the flu season and even next week's sickness trends. ...

  11. Solar Forecasting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Systems Integration » Solar Forecasting Solar Forecasting On December 7, 2012, DOE announced $8 million to fund two solar projects that are helping utilities and grid operators better forecast when, where, and how much solar power will be produced at U.S. solar energy plants. Part of the SunShot Systems Integration efforts, the Solar Forecasting projects will allow power system operators to integrate more solar energy into the electricity grid, and ensure the economic and reliable delivery of

  12. Econometric study of an oil-exporting country: the case of Iran

    SciTech Connect (OSTI)

    Heiat, A.

    1987-01-01

    The main objective of this study is to contribute toward an analytical and empirical work on the oil-based developing economy of Iran. It focuses on the aggregate behavior of the Iranian economy through a simple linear econometric model. After a survey of the literature on the theoretical framework of macroeconomic models for the developing countries in general, and for the oil-exporting developing countries in particular, a linear econometric model for the Iranian economy if formulated and its logical and economic aspects are explained. The proposed model consists of basic consumption, production, foreign trade, and employment relationship. Results obtained from the estimation of the consumption functions seem to indicate that the aggregate Iranian consumption behavior can be best explained by Fiedman's Permanent Income Hypothesis. In general, the results of this study demonstrate that the links between different sectors of the Iranian economy are very weak and the import-substitution strategy of the government during the period of study failed to establish a genuine domestic industrial base and to reduce its dependence on foreign resources.

  13. probabilistic energy production forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    probabilistic energy production forecasts - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Fuel Cycle Defense Waste Management

  14. Using Wikipedia to forecast diseases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using Wikipedia to forecast diseases Using Wikipedia to forecast diseases Scientists can now monitor and forecast diseases around the globe more effectively by analyzing views of Wikipedia articles. November 13, 2014 Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Del Valle and her team observe findings from their research on disease patterns from analyzing Wikipedia articles. Contact Nancy Ambrosiano Communications Office (505)

  15. Forecast Energy | Open Energy Information

    Open Energy Info (EERE)

    Zip: 94965 Region: Bay Area Sector: Services Product: Intelligent Monitoring and Forecasting Services Year Founded: 2010 Website: www.forecastenergy.net Coordinates:...

  16. UWIG Forecasting Workshop -- Albany (Presentation)

    SciTech Connect (OSTI)

    Lew, D.

    2011-04-01

    This presentation describes the importance of good forecasting for variable generation, the different approaches used by industry, and the importance of validated high-quality data.

  17. Using Wikipedia to forecast diseases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on today's forecast." Del Valle and her team were able to successfully monitor influenza in the United States, Poland, Japan and Thailand, dengue fever in Brazil and...

  18. Cyberspace Security Econometrics System (CSES) - U.S. Copyright TXu 1-901-039

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Schlicher, Bob G; Sheldon, Frederick T; Lantz, Margaret W; Hauser, Katie R

    2014-01-01

    Information security continues to evolve in response to disruptive changes with a persistent focus on information-centric controls and a healthy debate about balancing endpoint and network protection, with a goal of improved enterprise/business risk management. Economic uncertainty, intensively collaborative styles of work, virtualization, increased outsourcing and ongoing compliance pressures require careful consideration and adaptation. The Cyberspace Security Econometrics System (CSES) provides a measure (i.e., a quantitative indication) of reliability, performance, and/or safety of a system that accounts for the criticality of each requirement as a function of one or more stakeholders interests in that requirement. For a given stakeholder, CSES accounts for the variance that may exist among the stakes one attaches to meeting each requirement. The basis, objectives and capabilities for the CSES including inputs/outputs as well as the structural and mathematical underpinnings contained in this copyright.

  19. Intermediate future forecasting system

    SciTech Connect (OSTI)

    Gass, S.I.; Murphy, F.H.; Shaw, S.H.

    1983-12-01

    The purposes of the Symposium on the Department of Energy's Intermediate Future Forecasting System (IFFS) were: (1) to present to the energy community details of DOE's new energy market model IFFS; and (2) to have an open forum in which IFFS and its major elements could be reviewed and critiqued by external experts. DOE speakers discussed the total system, its software design, and the modeling aspects of oil and gas supply, refineries, electric utilities, coal, and the energy economy. Invited experts critiqued each of these topics and offered suggestions for modifications and improvement. This volume documents the proceedings (papers and discussion) of the Symposium. Separate abstracts have been prepared for each presentation for inclusion in the Energy Data Base.

  20. Solar Energy Market Forecast | Open Energy Information

    Open Energy Info (EERE)

    Market Forecast Jump to: navigation, search Tool Summary LAUNCH TOOL Name: Solar Energy Market Forecast AgencyCompany Organization: United States Department of Energy Sector:...

  1. Funding Opportunity Announcement for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex...

  2. Upcoming Funding Opportunity for Wind Forecasting Improvement...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    for Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am...

  3. Science on Tap - Forecasting illness

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science on Tap - Forecasting illness Science on Tap - Forecasting illness WHEN: Mar 17, 2016 5:30 PM - 7:00 PM WHERE: UnQuarked Wine Room 145 Central Park Square, Los Alamos, New Mexico 87544 USA CONTACT: Linda Anderman (505) 665-9196 CATEGORY: Bradbury INTERNAL: Calendar Login Event Description Mark your calendars for this event held every third Thursday from 5:30 to 7 p.m. A short presentation is followed by a lively discussion on a different subject each month. Forecasting the flu (and other

  4. Value of Wind Power Forecasting

    SciTech Connect (OSTI)

    Lew, D.; Milligan, M.; Jordan, G.; Piwko, R.

    2011-04-01

    This study, building on the extensive models developed for the Western Wind and Solar Integration Study (WWSIS), uses these WECC models to evaluate the operating cost impacts of improved day-ahead wind forecasts.

  5. Solar Forecast Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecast Improvement Project Solar Forecast Improvement Project NOAA.png For the Solar Forecast Improvement Project (SFIP), the Earth System Research Laboratory (ESRL) is partnering with the National Center for Atmospheric Research (NCAR) and IBM to develop more accurate methods for solar forecasts using their state-of-the-art weather models. APPROACH NOAA solar.png SFIP has three main goals: 1) to develop solar forecasting metrics tailored to the utility sector; 2) to improve solar

  6. Picture of the Week: Forecasting Flu

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    3 Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? March 6, 2016 flu epidemics modellled using social media Watch the video on YouTube. Forecasting Flu What if we could forecast infectious diseases the same way we forecast the weather, and predict how diseases like Dengue, Typhus or Zika were going to spread? Using real-time data from Wikipedia and social media, Sara del

  7. Forecasting Water Quality & Biodiversity

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Water Quality & Biodiversity March 25, 2015 Cross-cutting Sustainability Platform Review Principle Investigator: Dr. Henriette I. Jager Organization: Oak Ridge National Laboratory This presentation does not contain any proprietary, confidential, or otherwise restricted information 2015 DOE Bioenergy Technologies Office (BETO) Project Peer Review Goal Statement Addresses the following MYPP BETO goals:  Advance scientific methods and models for measuring and understanding

  8. Wind Forecasting Improvement Project | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Improvement Project Wind Forecasting Improvement Project October 3, 2011 - 12:12pm Addthis This is an excerpt from the Third Quarter 2011 edition of the Wind Program R&D Newsletter. In July, the Department of Energy launched a $6 million project with the National Oceanic and Atmospheric Administration (NOAA) and private partners to improve wind forecasting. Wind power forecasting allows system operators to anticipate the electrical output of wind plants and adjust the electrical

  9. Supply Forecast and Analysis (SFA)

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Matthew Langholtz Science Team Leader Oak Ridge National Laboratory DOE Bioenergy Technologies Office (BETO) 2015 Project Peer Review Supply Forecast and Analysis (SFA) 2 | Bioenergy Technologies Office Goal Statement * Provide timely and credible estimates of feedstock supplies and prices to support - the development of a bioeconomy; feedstock demand analysis of EISA, RFS2, and RPS mandates - the data and analysis of other projects in Analysis and Sustainability, Feedstock Supply and Logistics,

  10. ARM - CARES - Tracer Forecast for CARES

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    CampaignsCarbonaceous Aerosols and Radiative Effects Study (CARES)Tracer Forecast for CARES Related Links CARES Home AAF Home ARM Data Discovery Browse Data Post-Campaign Data Sets Field Updates CARES Wiki Campaign Images Experiment Planning Proposal Abstract and Related Campaigns Science Plan Operations Plan Measurements Forecasts News News & Press Backgrounder (PDF, 1.45MB) G-1 Aircraft Fact Sheet (PDF, 1.3MB) Contacts Rahul Zaveri, Lead Scientist Tracer Forecasts for CARES This webpage

  11. UPF Forecast | Y-12 National Security Complex

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UPF Forecast UPF Forecast UPF Procurement provides the following forecast of subcontracting opportunities. Keep in mind that these requirements may be revised or cancelled, depending on program budget funding or departmental needs. If you have questions or would like to express an interest in any of the opportunities listed below, contact UPF Procurement. Descriptiona Methodb NAICS Est. Dollar Range RFP release/ Award datec Buyer/ Phone Commodities Equipment Rental FOC 238910 TBD 3Q FY15/ 3Q

  12. Project Profile: Forecasting and Influencing Technological Progress...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Influencing Technological Progress in Solar Energy Project Profile: Forecasting and ... energy technologies based on estimates of future rates of progress and adoption. ...

  13. NREL: Resource Assessment and Forecasting Home Page

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    are used to plan and develop renewable energy technologies and support climate change research. Learn more about NREL's resource assessment and forecasting research:...

  14. Forecast and Funding Arrangements - Hanford Site

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Annual Waste Forecast and Funding Arrangements About Us Hanford Site Solid Waste Acceptance Program What's New Acceptance Criteria Acceptance Process Becoming a new Hanford...

  15. Material World: Forecasting Household Appliance Ownership in a Growing Global Economy

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2009-03-23

    Over the past years the Lawrence Berkeley National Laboratory (LBNL) has developed an econometric model that predicts appliance ownership at the household level based on macroeconomic variables such as household income (corrected for purchase power parity), electrification, urbanization and climate variables. Hundreds of data points from around the world were collected in order to understand trends in acquisition of new appliances by households, especially in developing countries. The appliances covered by this model are refrigerators, lighting fixtures, air conditioners, washing machines and televisions. The approach followed allows the modeler to construct a bottom-up analysis based at the end use and the household level. It captures the appliance uptake and the saturation effect which will affect the energy demand growth in the residential sector. With this approach, the modeler can also account for stock changes in technology and efficiency as a function of time. This serves two important functions with regard to evaluation of the impact of energy efficiency policies. First, it provides insight into which end uses will be responsible for the largest share of demand growth, and therefore should be policy priorities. Second, it provides a characterization of the rate at which policies affecting new equipment penetrate the appliance stock. Over the past 3 years, this method has been used to support the development of energy demand forecasts at the country, region or global level.

  16. Effects of the R and D tax credit on energy R and D expenditures: an econometric analysis

    SciTech Connect (OSTI)

    Moe, R.J.; Kee, J.R.; Lackey, K.C.; Cronin, F.J.

    1985-02-01

    Objective of the study was to estimate the effects on industrial energy research and development (R and D) expenditures of the R and D Tax Credit component of the Economic Recovery Tax Act of 1981. Two tasks were performed. The first task was to collect data on industrial R and D expenditures, sales, oil prices, and price deflators. The R and D expenditure data were obtained from the National Science Foundation; other data were collected from Commerce Department and Department of Energy publications. The second task was to perform an econometric analysis of the effects of the tax credit on industrial R and D expenditures. Equations relating: (1) total; and (2) energy-related R and D expenditures to sales, oil prices, and a variable representing the availability of the tax credit were estimated, using data for each of seven manufacturing industries and eleven years. The analysis showed that the tax credit caused real total industrial R and D expenditures to be 9.1% greater than they would have been without the credit, but caused real energy industrial R and D expenditures to be 13.8% less than they would have been without the tax credit.

  17. EIA lowers forecast for summer gasoline prices

    Gasoline and Diesel Fuel Update (EIA)

    EIA lowers forecast for summer gasoline prices U.S. gasoline prices are expected to be lower this summer than previously thought. The price for regular gasoline this summer is now expected to average $3.53 a gallon, according to the new monthly forecast from the U.S. Energy Information Administration. That's down 10 cents from last month's forecast and 16 cents cheaper than last summer. After reaching a weekly peak of $3.78 a gallon in late February, pump prices fell nine weeks in a row to $3.52

  18. Text-Alternative Version LED Lighting Forecast

    Broader source: Energy.gov [DOE]

    The DOE report Energy Savings Forecast of Solid-State Lighting in General Illumination Applications estimates the energy savings of LED white-light sources over the analysis period of 2013 to 2030....

  19. energy data + forecasting | OpenEI Community

    Open Energy Info (EERE)

    energy data + forecasting Home FRED Description: Free Energy Database Tool on OpenEI This is an open source platform for assisting energy decision makers and policy makers in...

  20. Offshore Lubricants Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Offshore Lubricants Market Forecast Home There are currently no posts in this category. Syndicate...

  1. Coal Fired Power Generation Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Coal Fired Power Generation Market Forecast Home There are currently no posts in this category. Syndicate...

  2. Distribution of Wind Power Forecasting Errors from Operational Systems (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Ela, E.; Milligan, M.

    2011-10-01

    This presentation offers new data and statistical analysis of wind power forecasting errors in operational systems.

  3. Metrics for Evaluating the Accuracy of Solar Power Forecasting (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Florita, A.; Lu, S.; Hamann, H.; Banunarayanan, V.

    2013-10-01

    This presentation proposes a suite of metrics for evaluating the performance of solar power forecasting.

  4. Nambe Pueblo Water Budget and Forecasting model.

    SciTech Connect (OSTI)

    Brainard, James Robert

    2009-10-01

    This report documents The Nambe Pueblo Water Budget and Water Forecasting model. The model has been constructed using Powersim Studio (PS), a software package designed to investigate complex systems where flows and accumulations are central to the system. Here PS has been used as a platform for modeling various aspects of Nambe Pueblo's current and future water use. The model contains three major components, the Water Forecast Component, Irrigation Scheduling Component, and the Reservoir Model Component. In each of the components, the user can change variables to investigate the impacts of water management scenarios on future water use. The Water Forecast Component includes forecasting for industrial, commercial, and livestock use. Domestic demand is also forecasted based on user specified current population, population growth rates, and per capita water consumption. Irrigation efficiencies are quantified in the Irrigated Agriculture component using critical information concerning diversion rates, acreages, ditch dimensions and seepage rates. Results from this section are used in the Water Demand Forecast, Irrigation Scheduling, and the Reservoir Model components. The Reservoir Component contains two sections, (1) Storage and Inflow Accumulations by Categories and (2) Release, Diversion and Shortages. Results from both sections are derived from the calibrated Nambe Reservoir model where historic, pre-dam or above dam USGS stream flow data is fed into the model and releases are calculated.

  5. 1994 Solid waste forecast container volume summary

    SciTech Connect (OSTI)

    Templeton, K.J.; Clary, J.L.

    1994-09-01

    This report describes a 30-year forecast of the solid waste volumes by container type. The volumes described are low-level mixed waste (LLMW) and transuranic/transuranic mixed (TRU/TRUM) waste. These volumes and their associated container types will be generated or received at the US Department of Energy Hanford Site for storage, treatment, and disposal at Westinghouse Hanford Company`s Solid Waste Operations Complex (SWOC) during a 30-year period from FY 1994 through FY 2023. The forecast data for the 30-year period indicates that approximately 307,150 m{sup 3} of LLMW and TRU/TRUM waste will be managed by the SWOC. The main container type for this waste is 55-gallon drums, which will be used to ship 36% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of 55-gallon drums is Past Practice Remediation. This waste will be generated by the Environmental Restoration Program during remediation of Hanford`s past practice sites. Although Past Practice Remediation is the primary generator of 55-gallon drums, most waste generators are planning to ship some percentage of their waste in 55-gallon drums. Long-length equipment containers (LECs) are forecasted to contain 32% of the LLMW and TRU/TRUM waste. The main waste generator forecasting the use of LECs is the Long-Length Equipment waste generator, which is responsible for retrieving contaminated long-length equipment from the tank farms. Boxes are forecasted to contain 21% of the waste. These containers are primarily forecasted for use by the Environmental Restoration Operations--D&D of Surplus Facilities waste generator. This waste generator is responsible for the solid waste generated during decontamination and decommissioning (D&D) of the facilities currently on the Surplus Facilities Program Plan. The remaining LLMW and TRU/TRUM waste volume is planned to be shipped in casks and other miscellaneous containers.

  6. Ramp Forecasting Performance from Improved Short-Term Wind Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Florita, A.; Hodge, B. M.; Freedman, J.

    2014-05-01

    The variable and uncertain nature of wind generation presents a new concern to power system operators. One of the biggest concerns associated with integrating a large amount of wind power into the grid is the ability to handle large ramps in wind power output. Large ramps can significantly influence system economics and reliability, on which power system operators place primary emphasis. The Wind Forecasting Improvement Project (WFIP) was performed to improve wind power forecasts and determine the value of these improvements to grid operators. This paper evaluates the performance of improved short-term wind power ramp forecasting. The study is performed for the Electric Reliability Council of Texas (ERCOT) by comparing the experimental WFIP forecast to the current short-term wind power forecast (STWPF). Four types of significant wind power ramps are employed in the study; these are based on the power change magnitude, direction, and duration. The swinging door algorithm is adopted to extract ramp events from actual and forecasted wind power time series. The results show that the experimental short-term wind power forecasts improve the accuracy of the wind power ramp forecasting, especially during the summer.

  7. A Systematic Comprehensive Computational Model for Stake Estimation in Mission Assurance: Applying Cyber Security Econometrics System (CSES) to Mission Assurance Analysis Protocol (MAAP)

    SciTech Connect (OSTI)

    Abercrombie, Robert K; Sheldon, Frederick T; Grimaila, Michael R

    2010-01-01

    In earlier works, we presented a computational infrastructure that allows an analyst to estimate the security of a system in terms of the loss that each stakeholder stands to sustain as a result of security breakdowns. In this paper, we discuss how this infrastructure can be used in the subject domain of mission assurance as defined as the full life-cycle engineering process to identify and mitigate design, production, test, and field support deficiencies of mission success. We address the opportunity to apply the Cyberspace Security Econometrics System (CSES) to Carnegie Mellon University and Software Engineering Institute s Mission Assurance Analysis Protocol (MAAP) in this context.

  8. Solar Forecasting Gets a Boost from Watson, Accuracy Improved...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM ...

  9. A Review of Variable Generation Forecasting in the West: July...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rely on an array of VG forecasts suited to different purposes. Some of the most common types of VG forecasts are defined below: 2 This report is available at no cost from the...

  10. PBL FY 2003 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the rate period (i.e., FY 2002-2006), a forecast of that end-of-year Accumulated Net Revenue (ANR) will be completed. If the ANR at the end of the forecast year falls below the...

  11. Issues in midterm analysis and forecasting, 1996

    SciTech Connect (OSTI)

    1996-08-01

    This document consists of papers which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1996. Topics include: The Potential Impact of Technological Progress on U.S. Energy Markets; The Outlook for U.S. Import Dependence; Fuel Economy, Vehicle Choice, and Changing Demographics, and Annual Energy Outlook Forecast Evaluation.

  12. NREL: Resource Assessment and Forecasting - Capabilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Capabilities Best Practices Handbook Helps Industry Collect and Interpret Solar Resource Data Read about this new comprehensive resource for the solar industry. NREL's resource assessment and forecasting research staff provides expertise in renewable energy measurement and instrumentation. Major capabilities include solar resource measurement, instrument calibration, instrument characterization, solar monitoring training, and standards development and information dissemination. Solar Resource

  13. Issues in midterm analysis and forecasting 1998

    SciTech Connect (OSTI)

    1998-07-01

    Issues in Midterm Analysis and Forecasting 1998 (Issues) presents a series of nine papers covering topics in analysis and modeling that underlie the Annual Energy Outlook 1998 (AEO98), as well as other significant issues in midterm energy markets. AEO98, DOE/EIA-0383(98), published in December 1997, presents national forecasts of energy production, demand, imports, and prices through the year 2020 for five cases -- a reference case and four additional cases that assume higher and lower economic growth and higher and lower world oil prices than in the reference case. The forecasts were prepared by the Energy Information Administration (EIA), using EIA`s National Energy Modeling System (NEMS). The papers included in Issues describe underlying analyses for the projections in AEO98 and the forthcoming Annual Energy Outlook 1999 and for other products of EIA`s Office of Integrated Analysis and Forecasting. Their purpose is to provide public access to analytical work done in preparation for the midterm projections and other unpublished analyses. Specific topics were chosen for their relevance to current energy issues or to highlight modeling activities in NEMS. 59 figs., 44 tabs.

  14. Wind Power Forecasting Error Distributions over Multiple Timescales (Presentation)

    SciTech Connect (OSTI)

    Hodge, B. M.; Milligan, M.

    2011-07-01

    This presentation presents some statistical analysis of wind power forecast errors and error distributions, with examples using ERCOT data.

  15. Wind power forecasting in U.S. electricity markets.

    SciTech Connect (OSTI)

    Botterud, A.; Wang, J.; Miranda, V.; Bessa, R. J.; Decision and Information Sciences; INESC Porto

    2010-04-01

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts.

  16. Wind power forecasting in U.S. Electricity markets

    SciTech Connect (OSTI)

    Botterud, Audun; Wang, Jianhui; Miranda, Vladimiro; Bessa, Ricardo J.

    2010-04-15

    Wind power forecasting is becoming an important tool in electricity markets, but the use of these forecasts in market operations and among market participants is still at an early stage. The authors discuss the current use of wind power forecasting in U.S. ISO/RTO markets, and offer recommendations for how to make efficient use of the information in state-of-the-art forecasts. (author)

  17. Combined Heat And Power Installation Market Forecast | OpenEI...

    Open Energy Info (EERE)

    Combined Heat And Power Installation Market Forecast Home There are currently no posts in this category. Syndicate...

  18. DOE Taking Wind Forecasting to New Heights | Department of Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Taking Wind Forecasting to New Heights DOE Taking Wind Forecasting to New Heights May 18, 2015 - 3:24pm Addthis A 2013 study conducted for the U.S. Department of Energy (DOE) by the National Oceanic and Atmospheric Administration (NOAA), AWS Truepower, and WindLogics in the Great Plains and Western Texas, demonstrated that wind power forecasts can be improved substantially using data collected from tall towers, remote sensors, and other devices, and incorporated into improved forecasting models

  19. Uncertainty Reduction in Power Generation Forecast Using Coupled

    Office of Scientific and Technical Information (OSTI)

    Wavelet-ARIMA (Conference) | SciTech Connect Conference: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA Citation Details In-Document Search Title: Uncertainty Reduction in Power Generation Forecast Using Coupled Wavelet-ARIMA In this paper, we introduce a new approach without implying normal distributions and stationarity of power generation forecast errors. In addition, it is desired to more accurately quantify the forecast uncertainty by reducing prediction

  20. ANL Software Improves Wind Power Forecasting | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ANL Software Improves Wind Power Forecasting ANL Software Improves Wind Power Forecasting May 1, 2012 - 3:19pm Addthis This is an excerpt from the Second Quarter 2012 edition of the Wind Program R&D Newsletter. Since 2008, Argonne National Laboratory and INESC TEC (formerly INESC Porto) have conducted a research project to improve wind power forecasting and better use of forecasting in electricity markets. One of the main results from the project is ARGUS PRIMA (PRediction Intelligent

  1. Today's Forecast: Improved Wind Predictions | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Today's Forecast: Improved Wind Predictions Today's Forecast: Improved Wind Predictions July 20, 2011 - 6:30pm Addthis Stan Calvert Wind Systems Integration Team Lead, Wind & Water Power Program What does this project do? It will increase the accuracy of weather forecast models for predicting substantial changes in winds at heights important for wind energy up to six hours in advance, allowing grid operators to predict expected wind power production. Accurate weather forecasts are critical

  2. The Wind Forecast Improvement Project (WFIP): A Public-Private Partnership Addressing Wind Energy Forecast Needs

    SciTech Connect (OSTI)

    Wilczak, J. M.; Finley, Cathy; Freedman, Jeff; Cline, Joel; Bianco, L.; Olson, J.; Djalaova, I.; Sheridan, L.; Ahlstrom, M.; Manobianco, J.; Zack, J.; Carley, J.; Benjamin, S.; Coulter, R. L.; Berg, Larry K.; Mirocha, Jeff D.; Clawson, K.; Natenberg, E.; Marquis, M.

    2015-10-11

    The Wind Forecast Improvement Project (WFIP) is a public-private research program, the goals of which are to improve the accuracy of short-term (0-6 hr) wind power forecasts for the wind energy industry and then to quantify the economic savings that accrue from more efficient integration of wind energy into the electrical grid. WFIP was sponsored by the U.S. Department of Energy (DOE), with partners that include the National Oceanic and Atmospheric Administration (NOAA), private forecasting companies (WindLogics and AWS Truepower), DOE national laboratories, grid operators, and universities. WFIP employed two avenues for improving wind power forecasts: first, through the collection of special observations to be assimilated into forecast models to improve model initial conditions; and second, by upgrading NWP forecast models and ensembles. The new observations were collected during concurrent year-long field campaigns in two high wind energy resource areas of the U.S. (the upper Great Plains, and Texas), and included 12 wind profiling radars, 12 sodars, 184 instrumented tall towers and over 400 nacelle anemometers (provided by private industry), lidar, and several surface flux stations. Results demonstrate that a substantial improvement of up to 14% relative reduction in power root mean square error (RMSE) was achieved from the combination of improved NOAA numerical weather prediction (NWP) models and assimilation of the new observations. Data denial experiments run over select periods of time demonstrate that up to a 6% relative improvement came from the new observations. The use of ensemble forecasts produced even larger forecast improvements. Based on the success of WFIP, DOE is planning follow-on field programs.

  3. Operational forecasting based on a modified Weather Research and Forecasting model

    SciTech Connect (OSTI)

    Lundquist, J; Glascoe, L; Obrecht, J

    2010-03-18

    Accurate short-term forecasts of wind resources are required for efficient wind farm operation and ultimately for the integration of large amounts of wind-generated power into electrical grids. Siemens Energy Inc. and Lawrence Livermore National Laboratory, with the University of Colorado at Boulder, are collaborating on the design of an operational forecasting system for large wind farms. The basis of the system is the numerical weather prediction tool, the Weather Research and Forecasting (WRF) model; large-eddy simulations and data assimilation approaches are used to refine and tailor the forecasting system. Representation of the atmospheric boundary layer is modified, based on high-resolution large-eddy simulations of the atmospheric boundary. These large-eddy simulations incorporate wake effects from upwind turbines on downwind turbines as well as represent complex atmospheric variability due to complex terrain and surface features as well as atmospheric stability. Real-time hub-height wind speed and other meteorological data streams from existing wind farms are incorporated into the modeling system to enable uncertainty quantification through probabilistic forecasts. A companion investigation has identified optimal boundary-layer physics options for low-level forecasts in complex terrain, toward employing decadal WRF simulations to anticipate large-scale changes in wind resource availability due to global climate change.

  4. Forecastability as a Design Criterion in Wind Resource Assessment: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.

    2014-04-01

    This paper proposes a methodology to include the wind power forecasting ability, or 'forecastability,' of a site as a design criterion in wind resource assessment and wind power plant design stages. The Unrestricted Wind Farm Layout Optimization (UWFLO) methodology is adopted to maximize the capacity factor of a wind power plant. The 1-hour-ahead persistence wind power forecasting method is used to characterize the forecastability of a potential wind power plant, thereby partially quantifying the integration cost. A trade-off between the maximum capacity factor and the forecastability is investigated.

  5. Forecasting hotspots using predictive visual analytics approach

    DOE Patents [OSTI]

    Maciejewski, Ross; Hafen, Ryan; Rudolph, Stephen; Cleveland, William; Ebert, David

    2014-12-30

    A method for forecasting hotspots is provided. The method may include the steps of receiving input data at an input of the computational device, generating a temporal prediction based on the input data, generating a geospatial prediction based on the input data, and generating output data based on the time series and geospatial predictions. The output data may be configured to display at least one user interface at an output of the computational device.

  6. Global disease monitoring and forecasting with Wikipedia

    SciTech Connect (OSTI)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: access logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.

  7. A survey on wind power ramp forecasting.

    SciTech Connect (OSTI)

    Ferreira, C.; Gama, J.; Matias, L.; Botterud, A.; Wang, J.

    2011-02-23

    The increasing use of wind power as a source of electricity poses new challenges with regard to both power production and load balance in the electricity grid. This new source of energy is volatile and highly variable. The only way to integrate such power into the grid is to develop reliable and accurate wind power forecasting systems. Electricity generated from wind power can be highly variable at several different timescales: sub-hourly, hourly, daily, and seasonally. Wind energy, like other electricity sources, must be scheduled. Although wind power forecasting methods are used, the ability to predict wind plant output remains relatively low for short-term operation. Because instantaneous electrical generation and consumption must remain in balance to maintain grid stability, wind power's variability can present substantial challenges when large amounts of wind power are incorporated into a grid system. A critical issue is ramp events, which are sudden and large changes (increases or decreases) in wind power. This report presents an overview of current ramp definitions and state-of-the-art approaches in ramp event forecasting.

  8. Global disease monitoring and forecasting with Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Generous, Nicholas; Fairchild, Geoffrey; Deshpande, Alina; Del Valle, Sara Y.; Priedhorsky, Reid; Salathé, Marcel

    2014-11-13

    Infectious disease is a leading threat to public health, economic stability, and other key social structures. Efforts to mitigate these impacts depend on accurate and timely monitoring to measure the risk and progress of disease. Traditional, biologically-focused monitoring techniques are accurate but costly and slow; in response, new techniques based on social internet data, such as social media and search queries, are emerging. These efforts are promising, but important challenges in the areas of scientific peer review, breadth of diseases and countries, and forecasting hamper their operational usefulness. We examine a freely available, open data source for this use: accessmore » logs from the online encyclopedia Wikipedia. Using linear models, language as a proxy for location, and a systematic yet simple article selection procedure, we tested 14 location-disease combinations and demonstrate that these data feasibly support an approach that overcomes these challenges. Specifically, our proof-of-concept yields models with up to 0.92, forecasting value up to the 28 days tested, and several pairs of models similar enough to suggest that transferring models from one location to another without re-training is feasible. Based on these preliminary results, we close with a research agenda designed to overcome these challenges and produce a disease monitoring and forecasting system that is significantly more effective, robust, and globally comprehensive than the current state of the art.« less

  9. Baseline and Target Values for PV Forecasts: Toward Improved Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, Jie; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Lehman, Brad; Simmons, Joseph; Campos, Edwin; Banunarayanan, Venkat

    2015-08-05

    Accurate solar power forecasting allows utilities to get the most out of the solar resources on their systems. To truly measure the improvements that any new solar forecasting methods can provide, it is important to first develop (or determine) baseline and target solar forecasting at different spatial and temporal scales. This paper aims to develop baseline and target values for solar forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output. forecasting metrics. These were informed by close collaboration with utility and independent system operator partners. The baseline values are established based on state-of-the-art numerical weather prediction models and persistence models. The target values are determined based on the reduction in the amount of reserves that must be held to accommodate the uncertainty of solar power output.

  10. Metrics for Evaluating the Accuracy of Solar Power Forecasting: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.; Lu, S.; Hamann, H. F.; Banunarayanan, V.

    2013-10-01

    Forecasting solar energy generation is a challenging task due to the variety of solar power systems and weather regimes encountered. Forecast inaccuracies can result in substantial economic losses and power system reliability issues. This paper presents a suite of generally applicable and value-based metrics for solar forecasting for a comprehensive set of scenarios (i.e., different time horizons, geographic locations, applications, etc.). In addition, a comprehensive framework is developed to analyze the sensitivity of the proposed metrics to three types of solar forecasting improvements using a design of experiments methodology, in conjunction with response surface and sensitivity analysis methods. The results show that the developed metrics can efficiently evaluate the quality of solar forecasts, and assess the economic and reliability impact of improved solar forecasting.

  11. Upcoming Funding Opportunity for Wind Forecasting Improvement Project in

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Complex Terrain | Department of Energy Wind Forecasting Improvement Project in Complex Terrain Upcoming Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain February 12, 2014 - 10:47am Addthis On February 11, 2014 the Wind Program announced a Notice of Intent to issue a funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex terrain, this funding would improve

  12. Module 6 - Metrics, Performance Measurements and Forecasting | Department

    Energy Savers [EERE]

    of Energy 6 - Metrics, Performance Measurements and Forecasting Module 6 - Metrics, Performance Measurements and Forecasting This module focuses on the metrics and performance measurement tools used in Earned Value. This module reviews metrics such as cost and schedule variance along with cost and schedule performance indices. In addition, this module will outline forecasting tools such as estimate to complete (ETC) and estimate at completion (EAC)

  13. Funding Opportunity Announcement for Wind Forecasting Improvement Project

    Office of Environmental Management (EM)

    in Complex Terrain | Department of Energy Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain Funding Opportunity Announcement for Wind Forecasting Improvement Project in Complex Terrain April 4, 2014 - 9:47am Addthis On April 4, 2014 the U.S. Department of Energy announced a $2.5 million funding opportunity entitled "Wind Forecasting Improvement Project in Complex Terrain." By researching the physical processes that take place in complex

  14. DOE Benefits Forecasts: Report of the External Peer Review Panel |

    Office of Environmental Management (EM)

    Department of Energy Benefits Forecasts: Report of the External Peer Review Panel DOE Benefits Forecasts: Report of the External Peer Review Panel A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts. PDF icon Report of the External Peer Review Panel More Documents & Publications Industrial Technologies Funding Profile by Subprogram Survey of Emissions Models for Distributed Combined Heat and Power

  15. NREL: Resource Assessment and Forecasting - Webmaster

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Webmaster Use this form to send us your comments and questions, report problems with the site, or ask for help finding information on the site. Please enter your name and email address in the boxes provided, then type your message below. When you are finished, click "Send Message." NOTE: If you enter your e-mail address incorrectly, we will be unable to reply. Your name: Your email address: Your message: Send Message Printable Version Resource Assessment & Forecasting Home

  16. Ensemble Solar Forecasting Statistical Quantification and Sensitivity Analysis: Preprint

    SciTech Connect (OSTI)

    Cheung, WanYin; Zhang, Jie; Florita, Anthony; Hodge, Bri-Mathias; Lu, Siyuan; Hamann, Hendrik F.; Sun, Qian; Lehman, Brad

    2015-12-08

    Uncertainties associated with solar forecasts present challenges to maintain grid reliability, especially at high solar penetrations. This study aims to quantify the errors associated with the day-ahead solar forecast parameters and the theoretical solar power output for a 51-kW solar power plant in a utility area in the state of Vermont, U.S. Forecasts were generated by three numerical weather prediction (NWP) models, including the Rapid Refresh, the High Resolution Rapid Refresh, and the North American Model, and a machine-learning ensemble model. A photovoltaic (PV) performance model was adopted to calculate theoretical solar power generation using the forecast parameters (e.g., irradiance, cell temperature, and wind speed). Errors of the power outputs were quantified using statistical moments and a suite of metrics, such as the normalized root mean squared error (NRMSE). In addition, the PV model's sensitivity to different forecast parameters was quantified and analyzed. Results showed that the ensemble model yielded forecasts in all parameters with the smallest NRMSE. The NRMSE of solar irradiance forecasts of the ensemble NWP model was reduced by 28.10% compared to the best of the three NWP models. Further, the sensitivity analysis indicated that the errors of the forecasted cell temperature attributed only approximately 0.12% to the NRMSE of the power output as opposed to 7.44% from the forecasted solar irradiance.

  17. Wind Power Forecasting Error Distributions: An International Comparison; Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.; Holttinen, H.; Sillanpaa, S.; Gomez-Lazaro, E.; Scharff, R.; Soder, L.; Larsen, X. G.; Giebel, G.; Flynn, D.; Dobschinski, J.

    2012-09-01

    Wind power forecasting is expected to be an important enabler for greater penetration of wind power into electricity systems. Because no wind forecasting system is perfect, a thorough understanding of the errors that do occur can be critical to system operation functions, such as the setting of operating reserve levels. This paper provides an international comparison of the distribution of wind power forecasting errors from operational systems, based on real forecast data. The paper concludes with an assessment of similarities and differences between the errors observed in different locations.

  18. The Wind Forecast Improvement Project (WFIP): A Public/Private...

    Broader source: Energy.gov (indexed) [DOE]

    research project whose overarching goals are to improve the accuracy of short-term wind energy forecasts, and to demonstrate the economic value of these improvements. WFIP Round...

  19. Improving the Accuracy of Solar Forecasting Funding Opportunity...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Opportunity, DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other stakeholders better forecast when, where, and how much...

  20. FY 2004 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bonneville Power Administration Power Business Line Generation (PBL) Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  1. PBL FY 2003 Third Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2003 Bonneville Power Administration Power Business Line Generation Accumulated Net Revenue Forecast for Financial-Based Cost Recovery Adjustment Clause (FB CRAC) and Safety-Net...

  2. Roel Neggers European Centre for Medium-range Weather Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    transition from shallow to deep convection using a dual mass flux boundary layer scheme Roel Neggers European Centre for Medium-range Weather Forecasts Introduction " " % % &...

  3. Voluntary Green Power Market Forecast through 2015

    SciTech Connect (OSTI)

    Bird, L.; Holt, E.; Sumner, J.; Kreycik, C.

    2010-05-01

    Various factors influence the development of the voluntary 'green' power market--the market in which consumers purchase or produce power from non-polluting, renewable energy sources. These factors include climate policies, renewable portfolio standards (RPS), renewable energy prices, consumers' interest in purchasing green power, and utilities' interest in promoting existing programs and in offering new green options. This report presents estimates of voluntary market demand for green power through 2015 that were made using historical data and three scenarios: low-growth, high-growth, and negative-policy impacts. The resulting forecast projects the total voluntary demand for renewable energy in 2015 to range from 63 million MWh annually in the low case scenario to 157 million MWh annually in the high case scenario, representing an approximately 2.5-fold difference. The negative-policy impacts scenario reflects a market size of 24 million MWh. Several key uncertainties affect the results of this forecast, including uncertainties related to growth assumptions, the impacts that policy may have on the market, the price and competitiveness of renewable generation, and the level of interest that utilities have in offering and promoting green power products.

  4. Comparison of Wind Power and Load Forecasting Error Distributions: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Orwig, K.; Lew, D.; Milligan, M.

    2012-07-01

    The introduction of large amounts of variable and uncertain power sources, such as wind power, into the electricity grid presents a number of challenges for system operations. One issue involves the uncertainty associated with scheduling power that wind will supply in future timeframes. However, this is not an entirely new challenge; load is also variable and uncertain, and is strongly influenced by weather patterns. In this work we make a comparison between the day-ahead forecasting errors encountered in wind power forecasting and load forecasting. The study examines the distribution of errors from operational forecasting systems in two different Independent System Operator (ISO) regions for both wind power and load forecasts at the day-ahead timeframe. The day-ahead timescale is critical in power system operations because it serves the unit commitment function for slow-starting conventional generators.

  5. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership

    Energy Savers [EERE]

    for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations | Department of Energy The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations The Wind Forecast Improvement

  6. Short-Term Energy Outlook Model Documentation: Macro Bridge Procedure to Update Regional Macroeconomic Forecasts with National Macroeconomic Forecasts

    Reports and Publications (EIA)

    2010-01-01

    The Regional Short-Term Energy Model (RSTEM) uses macroeconomic variables such as income, employment, industrial production and consumer prices at both the national and regional1 levels as explanatory variables in the generation of the Short-Term Energy Outlook (STEO). This documentation explains how national macroeconomic forecasts are used to update regional macroeconomic forecasts through the RSTEM Macro Bridge procedure.

  7. 3TIER Environmental Forecast Group Inc 3TIER | Open Energy Information

    Open Energy Info (EERE)

    TIER Environmental Forecast Group Inc 3TIER Jump to: navigation, search Name: 3TIER Environmental Forecast Group Inc (3TIER) Place: Seattle, Washington Zip: 98121 Sector: Renewable...

  8. Energy Savings Forecast of Solid-State Lighting in General Illuminatio...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecast of Solid-State Lighting in General Illumination Applications Energy Savings Forecast of Solid-State Lighting in General Illumination Applications PDF icon...

  9. Development and testing of improved statistical wind power forecasting methods.

    SciTech Connect (OSTI)

    Mendes, J.; Bessa, R.J.; Keko, H.; Sumaili, J.; Miranda, V.; Ferreira, C.; Gama, J.; Botterud, A.; Zhou, Z.; Wang, J.

    2011-12-06

    Wind power forecasting (WPF) provides important inputs to power system operators and electricity market participants. It is therefore not surprising that WPF has attracted increasing interest within the electric power industry. In this report, we document our research on improving statistical WPF algorithms for point, uncertainty, and ramp forecasting. Below, we provide a brief introduction to the research presented in the following chapters. For a detailed overview of the state-of-the-art in wind power forecasting, we refer to [1]. Our related work on the application of WPF in operational decisions is documented in [2]. Point forecasts of wind power are highly dependent on the training criteria used in the statistical algorithms that are used to convert weather forecasts and observational data to a power forecast. In Chapter 2, we explore the application of information theoretic learning (ITL) as opposed to the classical minimum square error (MSE) criterion for point forecasting. In contrast to the MSE criterion, ITL criteria do not assume a Gaussian distribution of the forecasting errors. We investigate to what extent ITL criteria yield better results. In addition, we analyze time-adaptive training algorithms and how they enable WPF algorithms to cope with non-stationary data and, thus, to adapt to new situations without requiring additional offline training of the model. We test the new point forecasting algorithms on two wind farms located in the U.S. Midwest. Although there have been advancements in deterministic WPF, a single-valued forecast cannot provide information on the dispersion of observations around the predicted value. We argue that it is essential to generate, together with (or as an alternative to) point forecasts, a representation of the wind power uncertainty. Wind power uncertainty representation can take the form of probabilistic forecasts (e.g., probability density function, quantiles), risk indices (e.g., prediction risk index) or scenarios (with spatial and/or temporal dependence). Statistical approaches to uncertainty forecasting basically consist of estimating the uncertainty based on observed forecasting errors. Quantile regression (QR) is currently a commonly used approach in uncertainty forecasting. In Chapter 3, we propose new statistical approaches to the uncertainty estimation problem by employing kernel density forecast (KDF) methods. We use two estimators in both offline and time-adaptive modes, namely, the Nadaraya-Watson (NW) and Quantilecopula (QC) estimators. We conduct detailed tests of the new approaches using QR as a benchmark. One of the major issues in wind power generation are sudden and large changes of wind power output over a short period of time, namely ramping events. In Chapter 4, we perform a comparative study of existing definitions and methodologies for ramp forecasting. We also introduce a new probabilistic method for ramp event detection. The method starts with a stochastic algorithm that generates wind power scenarios, which are passed through a high-pass filter for ramp detection and estimation of the likelihood of ramp events to happen. The report is organized as follows: Chapter 2 presents the results of the application of ITL training criteria to deterministic WPF; Chapter 3 reports the study on probabilistic WPF, including new contributions to wind power uncertainty forecasting; Chapter 4 presents a new method to predict and visualize ramp events, comparing it with state-of-the-art methodologies; Chapter 5 briefly summarizes the main findings and contributions of this report.

  10. U.S. Regional Demand Forecasts Using NEMS and GIS

    SciTech Connect (OSTI)

    Cohen, Jesse A.; Edwards, Jennifer L.; Marnay, Chris

    2005-07-01

    The National Energy Modeling System (NEMS) is a multi-sector, integrated model of the U.S. energy system put out by the Department of Energy's Energy Information Administration. NEMS is used to produce the annual 20-year forecast of U.S. energy use aggregated to the nine-region census division level. The research objective was to disaggregate this regional energy forecast to the county level for select forecast years, for use in a more detailed and accurate regional analysis of energy usage across the U.S. The process of disaggregation using a geographic information system (GIS) was researched and a model was created utilizing available population forecasts and climate zone data. The model's primary purpose was to generate an energy demand forecast with greater spatial resolution than what is currently produced by NEMS, and to produce a flexible model that can be used repeatedly as an add-on to NEMS in which detailed analysis can be executed exogenously with results fed back into the NEMS data flow. The methods developed were then applied to the study data to obtain residential and commercial electricity demand forecasts. The model was subjected to comparative and statistical testing to assess predictive accuracy. Forecasts using this model were robust and accurate in slow-growing, temperate regions such as the Midwest and Mountain regions. Interestingly, however, the model performed with less accuracy in the Pacific and Northwest regions of the country where population growth was more active. In the future more refined methods will be necessary to improve the accuracy of these forecasts. The disaggregation method was written into a flexible tool within the ArcGIS environment which enables the user to output the results in five year intervals over the period 2000-2025. In addition, the outputs of this tool were used to develop a time-series simulation showing the temporal changes in electricity forecasts in terms of absolute, per capita, and density of demand.

  11. Science and Engineering of an Operational Tsunami Forecasting System

    ScienceCinema (OSTI)

    Gonzalez, Frank

    2010-01-08

    After a review of tsunami statistics and the destruction caused by tsunamis, a means of forecasting tsunamis is discussed as part of an overall program of reducing fatalities through hazard assessment, education, training, mitigation, and a tsunami warning system. The forecast is accomplished via a concept called Deep Ocean Assessment and Reporting of Tsunamis (DART). Small changes of pressure at the sea floor are measured and relayed to warning centers. Under development is an international modeling network to transfer, maintain, and improve tsunami forecast models.

  12. Energy Forecasting Framework and Emissions Consensus Tool (EFFECT...

    Open Energy Info (EERE)

    Tool (EFFECT) EFFECT is an open, Excel-based modeling tool used to forecast greenhouse gas emissions from a range of development scenarios at the regional and national levels....

  13. Network Bandwidth Utilization Forecast Model on High Bandwidth Network

    SciTech Connect (OSTI)

    Yoo, Wucherl; Sim, Alex

    2014-07-07

    With the increasing number of geographically distributed scientific collaborations and the scale of the data size growth, it has become more challenging for users to achieve the best possible network performance on a shared network. We have developed a forecast model to predict expected bandwidth utilization for high-bandwidth wide area network. The forecast model can improve the efficiency of resource utilization and scheduling data movements on high-bandwidth network to accommodate ever increasing data volume for large-scale scientific data applications. Univariate model is developed with STL and ARIMA on SNMP path utilization data. Compared with traditional approach such as Box-Jenkins methodology, our forecast model reduces computation time by 83.2percent. It also shows resilience against abrupt network usage change. The accuracy of the forecast model is within the standard deviation of the monitored measurements.

  14. Solar Trackers Market Forecast | OpenEI Community

    Open Energy Info (EERE)

    Solar Trackers Market Forecast Home John55364's picture Submitted by John55364(100) Contributor 12 May, 2015 - 03:54 Solar Trackers Market - Global Industry Analysis, Size, Share,...

  15. Forecasting Crude Oil Spot Price Using OECD Petroleum Inventory Levels

    Reports and Publications (EIA)

    2003-01-01

    This paper presents a short-term monthly forecasting model of West Texas Intermediate crude oil spot price using Organization for Economic Cooperation and Development (OECD) petroleum inventory levels.

  16. Value of Improved Short-Term Wind Power Forecasting

    SciTech Connect (OSTI)

    Hodge, B. M.; Florita, A.; Sharp, J.; Margulis, M.; Mcreavy, D.

    2015-02-01

    This report summarizes an assessment of improved short-term wind power forecasting in the California Independent System Operator (CAISO) market and provides a quantification of its potential value.

  17. DOE Announces Webinars on Solar Forecasting Metrics, the DOE...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The Energy Department will present a live webinar titled "Solar Forecasting Metrics" on Thursday, February 13, from 3:00 p.m. to 5:00 p.m. Eastern Standard Time. During this ...

  18. Improving the Accuracy of Solar Forecasting Funding Opportunity

    Broader source: Energy.gov [DOE]

    Through the Improving the Accuracy ofSolar Forecasting Funding Opportunity,DOE is funding solar projects that are helping utilities, grid operators, solar power plant owners, and other...

  19. PBL FY 2002 Second Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slice true-ups, and actual expense levels. Any variation of these can change the net revenue situation. FY 2002 Forecasted Second Quarter Results 170 (418) FY 2002 Unaudited...

  20. World oil inventories forecast to grow significantly in 2016...

    U.S. Energy Information Administration (EIA) Indexed Site

    World oil inventories forecast to grow significantly in 2016 and 2017 Global oil inventories are expected to continue strong growth over the next two years which should keep oil ...

  1. Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

    Broader source: Energy.gov [DOE]

    Development and Demonstration of Advanced Forecasting, Power and Environmental Planning and Management Tools and Best Practices

  2. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Study forecasts disappearance of conifers due to climate change Study forecasts disappearance of conifers due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggest that global models may underestimate predictions of forest death. December 21, 2015 Los Alamos scientist Nate McDowell discusses how climate change is killing trees with PBS NewsHour reporter Miles O'Brien. Los Alamos scientist Nate McDowell discusses how climate change is

  3. Forecasting neutrino masses from combining KATRIN and the CMB observations:

    Office of Scientific and Technical Information (OSTI)

    Frequentist and Bayesian analyses (Journal Article) | SciTech Connect SciTech Connect Search Results Journal Article: Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses Citation Details In-Document Search Title: Forecasting neutrino masses from combining KATRIN and the CMB observations: Frequentist and Bayesian analyses We present a showcase for deriving bounds on the neutrino masses from laboratory experiments and cosmological

  4. Energy Department Forecasts Geothermal Achievements in 2015 | Department of

    Office of Environmental Management (EM)

    Energy Forecasts Geothermal Achievements in 2015 Energy Department Forecasts Geothermal Achievements in 2015 The 40th annual Stanford Geothermal Workshop in January featured speakers in the geothermal sector, including Jay Nathwani, Acting Director of the Energy Department's Geothermal Technologies Office. Nathwani shared achievements and challenges in the program's technical portfolio. The 40th annual Stanford Geothermal Workshop in January featured speakers in the geothermal sector,

  5. Expert Panel: Forecast Future Demand for Medical Isotopes | Department of

    Office of Environmental Management (EM)

    Energy Expert Panel: Forecast Future Demand for Medical Isotopes Expert Panel: Forecast Future Demand for Medical Isotopes The Expert Panel has concluded that the Department of Energy and National Institutes of Health must develop the capability to produce a diverse supply of radioisotopes for medical use in quantities sufficient to support research and clinical activities. Such a capability would prevent shortages of isotopes, reduce American dependence on foreign radionuclide sources and

  6. National Oceanic and Atmospheric Administration Provides Forecasting Support for CLASIC and CHAPS 2007

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NOAA Provides Forecasting Support for CLASIC and CHAPS 2007 Forecasting Challenge While weather experiments in the heart of Tornado Alley typically focus on severe weather, the CLASIC and CHAPS programs will have different emphases. Forecasters from the National Oceanic and Atmospheric Administration in Norman, Okla. will provide weather forecasting support to these two Department of Energy experiments based in the state. Forecasting support for meteorological research field programs usually

  7. AVLIS: a technical and economic forecast

    SciTech Connect (OSTI)

    Davis, J.I.; Spaeth, M.L.

    1986-01-01

    The AVLIS process has intrinsically large isotopic selectivity and hence high separative capacity per module. The critical components essential to achieving the high production rates represent a small fraction (approx.10%) of the total capital cost of a production facility, and the reference production designs are based on frequent replacement of these components. The specifications for replacement frequencies in a plant are conservative with respect to our expectations; it is reasonable to expect that, as the plant is operated, the specifications will be exceeded and production costs will continue to fall. Major improvements in separator production rates and laser system efficiencies (approx.power) are expected to occur as a natural evolution in component improvements. With respect to the reference design, such improvements have only marginal economic value, but given the exigencies of moving from engineering demonstration to production operations, we continue to pursue these improvements in order to offset any unforeseen cost increases. Thus, our technical and economic forecasts for the AVLIS process remain very positive. The near-term challenge is to obtain stable funding and a commitment to bring the process to full production conditions within the next five years. If the funding and commitment are not maintained, the team will disperse and the know-how will be lost before it can be translated into production operations. The motivation to preserve the option for low-cost AVLIS SWU production is integrally tied to the motivation to maintain a competitive nuclear option. The US industry can certainly survive without AVLIS, but our tradition as technology leader in the industry will certainly be lost.

  8. Forecasting the 2013–2014 influenza season using Wikipedia

    SciTech Connect (OSTI)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are applied to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.

  9. Forecasting the 2013–2014 influenza season using Wikipedia

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Hickmann, Kyle S.; Fairchild, Geoffrey; Priedhorsky, Reid; Generous, Nicholas; Hyman, James M.; Deshpande, Alina; Del Valle, Sara Y.; Salathé, Marcel

    2015-05-14

    Infectious diseases are one of the leading causes of morbidity and mortality around the world; thus, forecasting their impact is crucial for planning an effective response strategy. According to the Centers for Disease Control and Prevention (CDC), seasonal influenza affects 5% to 20% of the U.S. population and causes major economic impacts resulting from hospitalization and absenteeism. Understanding influenza dynamics and forecasting its impact is fundamental for developing prevention and mitigation strategies. We combine modern data assimilation methods with Wikipedia access logs and CDC influenza-like illness (ILI) reports to create a weekly forecast for seasonal influenza. The methods are appliedmore » to the 2013-2014 influenza season but are sufficiently general to forecast any disease outbreak, given incidence or case count data. We adjust the initialization and parametrization of a disease model and show that this allows us to determine systematic model bias. In addition, we provide a way to determine where the model diverges from observation and evaluate forecast accuracy. Wikipedia article access logs are shown to be highly correlated with historical ILI records and allow for accurate prediction of ILI data several weeks before it becomes available. The results show that prior to the peak of the flu season, our forecasting method produced 50% and 95% credible intervals for the 2013-2014 ILI observations that contained the actual observations for most weeks in the forecast. However, since our model does not account for re-infection or multiple strains of influenza, the tail of the epidemic is not predicted well after the peak of flu season has passed.« less

  10. Survey of Variable Generation Forecasting in the West: August 2011 - June 2012

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2012-04-01

    This report surveyed Western Interconnection Balancing Authorities regarding their implementation of variable generation forecasting, the lessons learned to date, and recommendations they would offer to other Balancing Authorities who are considering variable generation forecasting. Our survey found that variable generation forecasting is at an early implementation stage in the West. Eight of the eleven Balancing Authorities interviewed began forecasting in 2008 or later. It also appears that less than one-half of the Balancing Authorities in the West are currently utilizing variable generation forecasting, suggesting that more Balancing Authorities in the West will engage in variable generation forecasting should more variable generation capacity be added.

  11. Cyberspace Security Econometrics System (CSES)

    Energy Science and Technology Software Center (OSTI)

    2012-07-27

    Information security continues to evolve in response to disruptive changes with a persistent focus on information-centric controls and a healthy debate about balancing endpoint and network protection, with a goal of improved enterprise/business risk management. Economic uncertainty, intensively collaborative styles of work, virtualization, increased outsourcing and ongoing complance pressures require careful consideration and adaption. The CSES provides a measure (i.e. a quantitative indication) of reliability, performance, and/or safety of a system that accounts for themore » criticality of each requirement as a function of one or more stakeholders' interests in that requirement. For a given stakeholder, CSES accounts for the variance that may exist among the stakes one attaches to meeting each requirement.« less

  12. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    2008-01-15

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  13. CCPP-ARM Parameterization Testbed Model Forecast Data

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Klein, Stephen

    Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are initialized at 00Z every day with the ECMWF reanalysis data (ERA-40), for the year 1997 and 2000 and initialized with both the NASA DAO Reanalyses and the NCEP GDAS data for the year 2004. The DOE CCPP-ARM Parameterization Testbed (CAPT) project assesses climate models using numerical weather prediction techniques in conjunction with high quality field measurements (e.g. ARM data).

  14. Impacts of Improved Day-Ahead Wind Forecasts on Power Grid Operations: September 2011

    SciTech Connect (OSTI)

    Piwko, R.; Jordan, G.

    2011-11-01

    This study analyzed the potential benefits of improving the accuracy (reducing the error) of day-ahead wind forecasts on power system operations, assuming that wind forecasts were used for day ahead security constrained unit commitment.

  15. DOE Releases Latest Report on Energy Savings Forecast of Solid-State Lighting

    Broader source: Energy.gov [DOE]

    DOE has published a new report forecasting the energy savings of LED white-light sources compared with conventional white-light sources. The sixth iteration of the Energy Savings Forecast of Solid...

  16. Status of Centralized Wind Power Forecasting in North America: May 2009-May 2010

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2010-04-01

    Report surveys grid wind power forecasts for all wind generators, which are administered by utilities or regional transmission organizations (RTOs), typically with the assistance of one or more wind power forecasting companies.

  17. EERE Success Story-Solar Forecasting Gets a Boost from Watson...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Forecasting Gets a Boost from Watson, Accuracy Improved by 30% EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am ...

  18. Weather forecast-based optimization of integrated energy systems.

    SciTech Connect (OSTI)

    Zavala, V. M.; Constantinescu, E. M.; Krause, T.; Anitescu, M.

    2009-03-01

    In this work, we establish an on-line optimization framework to exploit detailed weather forecast information in the operation of integrated energy systems, such as buildings and photovoltaic/wind hybrid systems. We first discuss how the use of traditional reactive operation strategies that neglect the future evolution of the ambient conditions can translate in high operating costs. To overcome this problem, we propose the use of a supervisory dynamic optimization strategy that can lead to more proactive and cost-effective operations. The strategy is based on the solution of a receding-horizon stochastic dynamic optimization problem. This permits the direct incorporation of economic objectives, statistical forecast information, and operational constraints. To obtain the weather forecast information, we employ a state-of-the-art forecasting model initialized with real meteorological data. The statistical ambient information is obtained from a set of realizations generated by the weather model executed in an operational setting. We present proof-of-concept simulation studies to demonstrate that the proposed framework can lead to significant savings (more than 18% reduction) in operating costs.

  19. Weather Research and Forecasting Model with the Immersed Boundary Method

    Energy Science and Technology Software Center (OSTI)

    2012-05-01

    The Weather Research and Forecasting (WRF) Model with the immersed boundary method is an extension of the open-source WRF Model available for wwww.wrf-model.org. The new code modifies the gridding procedure and boundary conditions in the WRF model to improve WRF's ability to simutate the atmosphere in environments with steep terrain and additionally at high-resolutions.

  20. Review of Wind Energy Forecasting Methods for Modeling Ramping Events

    SciTech Connect (OSTI)

    Wharton, S; Lundquist, J K; Marjanovic, N; Williams, J L; Rhodes, M; Chow, T K; Maxwell, R

    2011-03-28

    Tall onshore wind turbines, with hub heights between 80 m and 100 m, can extract large amounts of energy from the atmosphere since they generally encounter higher wind speeds, but they face challenges given the complexity of boundary layer flows. This complexity of the lowest layers of the atmosphere, where wind turbines reside, has made conventional modeling efforts less than ideal. To meet the nation's goal of increasing wind power into the U.S. electrical grid, the accuracy of wind power forecasts must be improved. In this report, the Lawrence Livermore National Laboratory, in collaboration with the University of Colorado at Boulder, University of California at Berkeley, and Colorado School of Mines, evaluates innovative approaches to forecasting sudden changes in wind speed or 'ramping events' at an onshore, multimegawatt wind farm. The forecast simulations are compared to observations of wind speed and direction from tall meteorological towers and a remote-sensing Sound Detection and Ranging (SODAR) instrument. Ramping events, i.e., sudden increases or decreases in wind speed and hence, power generated by a turbine, are especially problematic for wind farm operators. Sudden changes in wind speed or direction can lead to large power generation differences across a wind farm and are very difficult to predict with current forecasting tools. Here, we quantify the ability of three models, mesoscale WRF, WRF-LES, and PF.WRF, which vary in sophistication and required user expertise, to predict three ramping events at a North American wind farm.

  1. Wind Forecast Improvement Project Southern Study Area Final Report |

    Broader source: Energy.gov (indexed) [DOE]

    Department of Energy PDF icon Wind Forecast Improvement Project Southern Study Area Final Report.pdf More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER - Comment of Edison Electric Institute (EEI) 2

  2. Central Wind Power Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities

    SciTech Connect (OSTI)

    Porter, K.; Rogers, J.

    2009-12-01

    The report addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America.

  3. A Public-Private-Academic Partnership to Advance Solar Power Forecasting |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy A Public-Private-Academic Partnership to Advance Solar Power Forecasting A Public-Private-Academic Partnership to Advance Solar Power Forecasting UCAR logo2.jpg The University Corporation for Atmospheric Research (UCAR) will develop a solar power forecasting system that advances the state of the science through cutting-edge research. APPROACH UCAR value chain.png The team will develop a solar power forecasting system that advances the state of the science through

  4. Use of wind power forecasting in operational decisions.

    SciTech Connect (OSTI)

    Botterud, A.; Zhi, Z.; Wang, J.; Bessa, R.J.; Keko, H.; Mendes, J.; Sumaili, J.; Miranda, V.

    2011-11-29

    The rapid expansion of wind power gives rise to a number of challenges for power system operators and electricity market participants. The key operational challenge is to efficiently handle the uncertainty and variability of wind power when balancing supply and demand in ths system. In this report, we analyze how wind power forecasting can serve as an efficient tool toward this end. We discuss the current status of wind power forecasting in U.S. electricity markets and develop several methodologies and modeling tools for the use of wind power forecasting in operational decisions, from the perspectives of the system operator as well as the wind power producer. In particular, we focus on the use of probabilistic forecasts in operational decisions. Driven by increasing prices for fossil fuels and concerns about greenhouse gas (GHG) emissions, wind power, as a renewable and clean source of energy, is rapidly being introduced into the existing electricity supply portfolio in many parts of the world. The U.S. Department of Energy (DOE) has analyzed a scenario in which wind power meets 20% of the U.S. electricity demand by 2030, which means that the U.S. wind power capacity would have to reach more than 300 gigawatts (GW). The European Union is pursuing a target of 20/20/20, which aims to reduce greenhouse gas (GHG) emissions by 20%, increase the amount of renewable energy to 20% of the energy supply, and improve energy efficiency by 20% by 2020 as compared to 1990. Meanwhile, China is the leading country in terms of installed wind capacity, and had 45 GW of installed wind power capacity out of about 200 GW on a global level at the end of 2010. The rapid increase in the penetration of wind power into power systems introduces more variability and uncertainty in the electricity generation portfolio, and these factors are the key challenges when it comes to integrating wind power into the electric power grid. Wind power forecasting (WPF) is an important tool to help efficiently address this challenge, and significant efforts have been invested in developing more accurate wind power forecasts. In this report, we document our work on the use of wind power forecasting in operational decisions.

  5. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Gomez-Lazaro, E.; Lovholm, A. L.; Berge, E.; Miettinen, J.; Holttinen, H.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Dobschinski, J.

    2013-10-01

    One of the critical challenges of wind power integration is the variable and uncertain nature of the resource. This paper investigates the variability and uncertainty in wind forecasting for multiple power systems in six countries. An extensive comparison of wind forecasting is performed among the six power systems by analyzing the following scenarios: (i) wind forecast errors throughout a year; (ii) forecast errors at a specific time of day throughout a year; (iii) forecast errors at peak and off-peak hours of a day; (iv) forecast errors in different seasons; (v) extreme forecasts with large overforecast or underforecast errors; and (vi) forecast errors when wind power generation is at different percentages of the total wind capacity. The kernel density estimation method is adopted to characterize the distribution of forecast errors. The results show that the level of uncertainty and the forecast error distribution vary among different power systems and scenarios. In addition, for most power systems, (i) there is a tendency to underforecast in winter; and (ii) the forecasts in winter generally have more uncertainty than the forecasts in summer.

  6. Forecast of transportation energy demand through the year 2010

    SciTech Connect (OSTI)

    Mintz, M.M.; Vyas, A.D.

    1991-04-01

    Since 1979, the Center for Transportation Research (CTR) at Argonne National Laboratory (ANL) has produced baseline projections of US transportation activity and energy demand. These projections and the methodologies used to compute them are documented in a series of reports and research papers. As the lastest in this series of projections, this report documents the assumptions, methodologies, and results of the most recent projection -- termed ANL-90N -- and compares those results with other forecasts from the current literature, as well as with the selection of earlier Argonne forecasts. This current forecast may be used as a baseline against which to analyze trends and evaluate existing and proposed energy conservation programs and as an illustration of how the Transportation Energy and Emission Modeling System (TEEMS) works. (TEEMS links disaggregate models to produce an aggregate forecast of transportation activity, energy use, and emissions). This report and the projections it contains were developed for the US Department of Energy's Office of Transportation Technologies (OTT). The projections are not completely comprehensive. Time and modeling effort have been focused on the major energy consumers -- automobiles, trucks, commercial aircraft, rail and waterborne freight carriers, and pipelines. Because buses, rail passengers services, and general aviation consume relatively little energy, they are projected in the aggregate, as other'' modes, and used primarily as scaling factors. These projections are also limited to direct energy consumption. Projections of indirect energy consumption, such as energy consumed in vehicle and equipment manufacturing, infrastructure, fuel refining, etc., were judged outside the scope of this effort. The document is organized into two complementary sections -- one discussing passenger transportation modes, and the other discussing freight transportation modes. 99 refs., 10 figs., 43 tabs.

  7. NREL: Energy Analysis - Energy Forecasting and Modeling Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Energy Forecasting and Modeling The following includes summary bios of staff expertise and interests in analysis relating to energy economics, energy system planning, risk and uncertainty modeling, and energy infrastructure planning. Team Lead: Nate Blair Administrative Support: Elizabeth Torres Clayton Barrows Dave Bielen Aaron Bloom Greg Brinkman Brian W Bush Stuart Cohen Wesley Cole Paul Denholm Victor Diakov Nicholas DiOrio Aron Dobos Kelly Eurek Janine Freeman Bethany Frew Pieter Gagnon

  8. NREL: Resource Assessment and Forecasting - Data and Resources

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Data and Resources National Solar Radiation Database NREL resource assessment and forecasting research information is available from the following sources. Renewable Resource Data Center (RReDC) Provides information about biomass, geothermal, solar, and wind energy resources. Measurement and Instrumentation Data Center Provides irradiance and meteorological data from stations throughout the United States. Baseline Measurement System (BMS) Provides live solar radiation data from approximately 70

  9. Towards a Science of Tumor Forecast for Clinical Oncology

    SciTech Connect (OSTI)

    Yankeelov, Tom; Quaranta, Vito; Evans, Katherine J; Rericha, Erin

    2015-01-01

    We propose that the quantitative cancer biology community make a concerted effort to apply the methods of weather forecasting to develop an analogous theory for predicting tumor growth and treatment response. Currently, the time course of response is not predicted, but rather assessed post hoc by physical exam or imaging methods. This fundamental limitation of clinical oncology makes it extraordinarily difficult to select an optimal treatment regimen for a particular tumor of an individual patient, as well as to determine in real time whether the choice was in fact appropriate. This is especially frustrating at a time when a panoply of molecularly targeted therapies is available, and precision genetic or proteomic analyses of tumors are an established reality. By learning from the methods of weather and climate modeling, we submit that the forecasting power of biophysical and biomathematical modeling can be harnessed to hasten the arrival of a field of predictive oncology. With a successful theory of tumor forecasting, it should be possible to integrate large tumor specific datasets of varied types, and effectively defeat cancer one patient at a time.

  10. Assessment of the possibility of forecasting future natural gas curtailments

    SciTech Connect (OSTI)

    Lemont, S.

    1980-01-01

    This study provides a preliminary assessment of the potential for determining probabilities of future natural-gas-supply interruptions by combining long-range weather forecasts and natural-gas supply/demand projections. An illustrative example which measures the probability of occurrence of heating-season natural-gas curtailments for industrial users in the southeastern US is analyzed. Based on the information on existing long-range weather forecasting techniques and natural gas supply/demand projections enumerated above, especially the high uncertainties involved in weather forecasting and the unavailability of adequate, reliable natural-gas projections that take account of seasonal weather variations and uncertainties in the nation's energy-economic system, it must be concluded that there is little possibility, at the present time, of combining the two to yield useful, believable probabilities of heating-season gas curtailments in a form useful for corporate and government decision makers and planners. Possible remedial actions are suggested that might render such data more useful for the desired purpose in the future. The task may simply require the adequate incorporation of uncertainty and seasonal weather trends into modeling systems and the courage to report projected data, so that realistic natural gas supply/demand scenarios and the probabilities of their occurrence will be available to decision makers during a time when such information is greatly needed.

  11. Village of Wharton, Ohio (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    - File1a1 EIA Form 861 Data Utility Id 20471 Utility Location Yes Ownership M NERC Location RFC NERC RFC Yes Activity Distribution Yes Activity Retail Marketing Yes This...

  12. Economic Evaluation of Short-Term Wind Power Forecasts in ERCOT: Preliminary Results; Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Hodge, B. M.; Brinkman, G.; Ela, E.; Milligan, M.; Banunarayanan, V.; Nasir, S.; Freedman, J.

    2012-09-01

    Historically, a number of wind energy integration studies have investigated the value of using day-ahead wind power forecasts for grid operational decisions. These studies have shown that there could be large cost savings gained by grid operators implementing the forecasts in their system operations. To date, none of these studies have investigated the value of shorter-term (0 to 6-hour-ahead) wind power forecasts. In 2010, the Department of Energy and National Oceanic and Atmospheric Administration partnered to fund improvements in short-term wind forecasts and to determine the economic value of these improvements to grid operators, hereafter referred to as the Wind Forecasting Improvement Project (WFIP). In this work, we discuss the preliminary results of the economic benefit analysis portion of the WFIP for the Electric Reliability Council of Texas. The improvements seen in the wind forecasts are examined, then the economic results of a production cost model simulation are analyzed.

  13. Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technology | Department of Energy Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology Watt-Sun: A Multi-Scale, Multi-Model, Machine-Learning Solar Forecasting Technology IBM logo.png As part of this project, new solar forecasting technology will be developed that leverages big data processing, deep machine learning, and cloud modeling integrated in a universal platform with an open architecture. Similar to the Watson computer system, this proposed technology

  14. Central Wind Forecasting Programs in North America by Regional Transmission Organizations and Electric Utilities: Revised Edition

    SciTech Connect (OSTI)

    Rogers, J.; Porter, K.

    2011-03-01

    The report and accompanying table addresses the implementation of central wind power forecasting by electric utilities and regional transmission organizations in North America. The first part of the table focuses on electric utilities and regional transmission organizations that have central wind power forecasting in place; the second part focuses on electric utilities and regional transmission organizations that plan to adopt central wind power forecasting in 2010. This is an update of the December 2009 report, NREL/SR-550-46763.

  15. Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System

    Office of Environmental Management (EM)

    Operations | Department of Energy Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach to forecasting net utility load by taking into consideration the contribution of customer-sited PV energy generation. Tasks within the project are designed to integrate novel PV power

  16. The Value of Improved Short-Term Wind Power Forecasting

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Value of Improved Short- Term Wind Power Forecasting B.-M. Hodge and A. Florita National Renewable Energy Laboratory J. Sharp Sharply Focused, LLC M. Margulis and D. Mcreavy Lockheed Martin Technical Report NREL/TP-5D00-63175 February 2015 NREL is a national laboratory of the U.S. Department of Energy Office of Energy Efficiency & Renewable Energy Operated by the Alliance for Sustainable Energy, LLC This report is available at no cost from the National Renewable Energy Laboratory (NREL)

  17. Value of Improved Wind Power Forecasting in the Western Interconnection (Poster)

    SciTech Connect (OSTI)

    Hodge, B.

    2013-12-01

    Wind power forecasting is a necessary and important technology for incorporating wind power into the unit commitment and dispatch process. It is expected to become increasingly important with higher renewable energy penetration rates and progress toward the smart grid. There is consensus that wind power forecasting can help utility operations with increasing wind power penetration; however, there is far from a consensus about the economic value of improved forecasts. This work explores the value of improved wind power forecasting in the Western Interconnection of the United States.

  18. ARM - PI Product - CCPP-ARM Parameterization Testbed Model Forecast Data

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ProductsCCPP-ARM Parameterization Testbed Model Forecast Data ARM Data Discovery Browse Data Comments? We would love to hear from you! Send us a note below or call us at 1-888-ARM-DATA. Send PI Product : CCPP-ARM Parameterization Testbed Model Forecast Data Dataset contains the NCAR CAM3 (Collins et al., 2004) and GFDL AM2 (GFDL GAMDT, 2004) forecast data at locations close to the ARM research sites. These data are generated from a series of multi-day forecasts in which both CAM3 and AM2 are

  19. Report of the external expert peer review panel: DOE benefits forecasts

    SciTech Connect (OSTI)

    None, None

    2006-12-20

    A report for the FY 2007 GPRA methodology review, highlighting the views of an external expert peer review panel on DOE benefits forecasts.

  20. The Wind Forecast Improvement Project (WFIP). A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations -- the Northern Study Area

    SciTech Connect (OSTI)

    Finley, Cathy

    2014-04-30

    This report contains the results from research aimed at improving short-range (0-6 hour) hub-height wind forecasts in the NOAA weather forecast models through additional data assimilation and model physics improvements for use in wind energy forecasting. Additional meteorological observing platforms including wind profilers, sodars, and surface stations were deployed for this study by NOAA and DOE, and additional meteorological data at or near wind turbine hub height were provided by South Dakota State University and WindLogics/NextEra Energy Resources over a large geographical area in the U.S. Northern Plains for assimilation into NOAA research weather forecast models. The resulting improvements in wind energy forecasts based on the research weather forecast models (with the additional data assimilation and model physics improvements) were examined in many different ways and compared with wind energy forecasts based on the current operational weather forecast models to quantify the forecast improvements important to power grid system operators and wind plant owners/operators participating in energy markets. Two operational weather forecast models (OP_RUC, OP_RAP) and two research weather forecast models (ESRL_RAP, HRRR) were used as the base wind forecasts for generating several different wind power forecasts for the NextEra Energy wind plants in the study area. Power forecasts were generated from the wind forecasts in a variety of ways, from very simple to quite sophisticated, as they might be used by a wide range of both general users and commercial wind energy forecast vendors. The error characteristics of each of these types of forecasts were examined and quantified using bulk error statistics for both the local wind plant and the system aggregate forecasts. The wind power forecast accuracy was also evaluated separately for high-impact wind energy ramp events. The overall bulk error statistics calculated over the first six hours of the forecasts at both the individual wind plant and at the system-wide aggregate level over the one year study period showed that the research weather model-based power forecasts (all types) had lower overall error rates than the current operational weather model-based power forecasts, both at the individual wind plant level and at the system aggregate level. The bulk error statistics of the various model-based power forecasts were also calculated by season and model runtime/forecast hour as power system operations are more sensitive to wind energy forecast errors during certain times of year and certain times of day. The results showed that there were significant differences in seasonal forecast errors between the various model-based power forecasts. The results from the analysis of the various wind power forecast errors by model runtime and forecast hour showed that the forecast errors were largest during the times of day that have increased significance to power system operators (the overnight hours and the morning/evening boundary layer transition periods), but the research weather model-based power forecasts showed improvement over the operational weather model-based power forecasts at these times.

  1. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  2. Analysis of Variability and Uncertainty in Wind Power Forecasting: An International Comparison (Presentation)

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B.; Miettinen, J.; Holttinen, H.; Gomez-Lozaro, E.; Cutululis, N.; Litong-Palima, M.; Sorensen, P.; Lovholm, A.; Berge, E.; Dobschinski, J.

    2013-10-01

    This presentation summarizes the work to investigate the uncertainty in wind forecasting at different times of year and compare wind forecast errors in different power systems using large-scale wind power prediction data from six countries: the United States, Finland, Spain, Denmark, Norway, and Germany.

  3. Energy Savings Forecast of Solid-State Lighting in General Illumination

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Applications | Department of Energy Forecast of Solid-State Lighting in General Illumination Applications Energy Savings Forecast of Solid-State Lighting in General Illumination Applications PDF icon energysavingsforecast14.pdf More Documents & Publications Energy Savings Potential of Solid-State Lighting in General Illumination Applications - Report LED ADOPTION REPORT Solid-State Lighting R&D

  4. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect (OSTI)

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  5. Natural Gas Prices Forecast Comparison--AEO vs. Natural Gas Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Lekov, Alex; Dale, Larry

    2005-02-09

    This paper evaluates the accuracy of two methods to forecast natural gas prices: using the Energy Information Administration's ''Annual Energy Outlook'' forecasted price (AEO) and the ''Henry Hub'' compared to U.S. Wellhead futures price. A statistical analysis is performed to determine the relative accuracy of the two measures in the recent past. A statistical analysis suggests that the Henry Hub futures price provides a more accurate average forecast of natural gas prices than the AEO. For example, the Henry Hub futures price underestimated the natural gas price by 35 cents per thousand cubic feet (11.5 percent) between 1996 and 2003 and the AEO underestimated by 71 cents per thousand cubic feet (23.4 percent). Upon closer inspection, a liner regression analysis reveals that two distinct time periods exist, the period between 1996 to 1999 and the period between 2000 to 2003. For the time period between 1996 to 1999, AEO showed a weak negative correlation (R-square = 0.19) between forecast price by actual U.S. Wellhead natural gas price versus the Henry Hub with a weak positive correlation (R-square = 0.20) between forecasted price and U.S. Wellhead natural gas price. During the time period between 2000 to 2003, AEO shows a moderate positive correlation (R-square = 0.37) between forecasted natural gas price and U.S. Wellhead natural gas price versus the Henry Hub that show a moderate positive correlation (R-square = 0.36) between forecast price and U.S. Wellhead natural gas price. These results suggest that agencies forecasting natural gas prices should consider incorporating the Henry Hub natural gas futures price into their forecasting models along with the AEO forecast. Our analysis is very preliminary and is based on a very small data set. Naturally the results of the analysis may change, as more data is made available.

  6. Thirty-Year Solid Waste Generation Maximum and Minimum Forecast for SRS

    SciTech Connect (OSTI)

    Thomas, L.C.

    1994-10-01

    This report is the third phase (Phase III) of the Thirty-Year Solid Waste Generation Forecast for Facilities at the Savannah River Site (SRS). Phase I of the forecast, Thirty-Year Solid Waste Generation Forecast for Facilities at SRS, forecasts the yearly quantities of low-level waste (LLW), hazardous waste, mixed waste, and transuranic (TRU) wastes generated over the next 30 years by operations, decontamination and decommissioning and environmental restoration (ER) activities at the Savannah River Site. The Phase II report, Thirty-Year Solid Waste Generation Forecast by Treatability Group (U), provides a 30-year forecast by waste treatability group for operations, decontamination and decommissioning, and ER activities. In addition, a 30-year forecast by waste stream has been provided for operations in Appendix A of the Phase II report. The solid wastes stored or generated at SRS must be treated and disposed of in accordance with federal, state, and local laws and regulations. To evaluate, select, and justify the use of promising treatment technologies and to evaluate the potential impact to the environment, the generic waste categories described in the Phase I report were divided into smaller classifications with similar physical, chemical, and radiological characteristics. These smaller classifications, defined within the Phase II report as treatability groups, can then be used in the Waste Management Environmental Impact Statement process to evaluate treatment options. The waste generation forecasts in the Phase II report includes existing waste inventories. Existing waste inventories, which include waste streams from continuing operations and stored wastes from discontinued operations, were not included in the Phase I report. Maximum and minimum forecasts serve as upper and lower boundaries for waste generation. This report provides the maximum and minimum forecast by waste treatability group for operation, decontamination and decommissioning, and ER activities.

  7. Weather Research and Forecasting Model with Vertical Nesting Capability

    Energy Science and Technology Software Center (OSTI)

    2014-08-01

    The Weather Research and Forecasting (WRF) model with vertical nesting capability is an extension of the WRF model, which is available in the public domain, from www.wrf-model.org. The new code modifies the nesting procedure, which passes lateral boundary conditions between computational domains in the WRF model. Previously, the same vertical grid was required on all domains, while the new code allows different vertical grids to be used on concurrently run domains. This new functionality improvesmore » WRF's ability to produce high-resolution simulations of the atmosphere by allowing a wider range of scales to be efficiently resolved and more accurate lateral boundary conditions to be provided through the nesting procedure.« less

  8. Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

    Broader source: Energy.gov [DOE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability

  9. An Optimized Autoregressive Forecast Error Generator for Wind and Load Uncertainty Study

    SciTech Connect (OSTI)

    De Mello, Phillip; Lu, Ning; Makarov, Yuri V.

    2011-01-17

    This paper presents a first-order autoregressive algorithm to generate real-time (RT), hour-ahead (HA), and day-ahead (DA) wind and load forecast errors. The methodology aims at producing random wind and load forecast time series reflecting the autocorrelation and cross-correlation of historical forecast data sets. Five statistical characteristics are considered: the means, standard deviations, autocorrelations, and cross-correlations. A stochastic optimization routine is developed to minimize the differences between the statistical characteristics of the generated time series and the targeted ones. An optimal set of parameters are obtained and used to produce the RT, HA, and DA forecasts in due order of succession. This method, although implemented as the first-order regressive random forecast error generator, can be extended to higher-order. Results show that the methodology produces random series with desired statistics derived from real data sets provided by the California Independent System Operator (CAISO). The wind and load forecast error generator is currently used in wind integration studies to generate wind and load inputs for stochastic planning processes. Our future studies will focus on reflecting the diurnal and seasonal differences of the wind and load statistics and implementing them in the random forecast generator.

  10. Review of Variable Generation Forecasting in the West: July 2013 - March 2014

    SciTech Connect (OSTI)

    Widiss, R.; Porter, K.

    2014-03-01

    This report interviews 13 operating entities (OEs) in the Western Interconnection about their implementation of wind and solar forecasting. The report updates and expands upon one issued by NREL in 2012. As in the 2012 report, the OEs interviewed vary in size and character; the group includes independent system operators, balancing authorities, utilities, and other entities. Respondents' advice for other utilities includes starting sooner rather than later as it can take time to plan, prepare, and train a forecast; setting realistic expectations; using multiple forecasts; and incorporating several performance metrics.

  11. Energy Department Announces $2.5 Million to Improve Wind Forecasting |

    Office of Environmental Management (EM)

    Department of Energy .5 Million to Improve Wind Forecasting Energy Department Announces $2.5 Million to Improve Wind Forecasting January 8, 2015 - 12:00pm Addthis The Energy Department today announced $2.5 million for a new project to research the atmospheric processes that generate wind in mountain-valley regions. This in-depth research, conducted by Vaisala of Louisville, Colorado, will be used to improve the wind industry's weather models for short-term wind forecasts, especially for

  12. Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM Youtube Video | Courtesy of IBM Remember when IBM's super computer Watson defeated Jeopardy! champions Ken Jennings and Brad Rutter? With funding from the U.S. Department of Energy SunShot Initiative, IBM researchers are using Watson-like technology to improve solar forecasting accuracy by as much

  13. Resource Information and Forecasting Group; Electricity, Resources, & Building Systems Integration (ERBSI) (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2009-11-01

    Researchers in the Resource Information and Forecasting group at NREL provide scientific, engineering, and analytical expertise to help characterize renewable energy resources and facilitate the integration of these clean energy sources into the electricity grid.

  14. Integration of Behind-the-Meter PV Fleet Forecasts into Utility...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Integration of Behind-the-Meter PV Fleet Forecasts into Utility Grid System Operations Clean Power Research logo.jpg This project will address the need for a more accurate approach ...

  15. Examining Information Entropy Approaches as Wind Power Forecasting Performance Metrics: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Orwig, K.; Milligan, M.

    2012-06-01

    In this paper, we examine the parameters associated with the calculation of the Renyi entropy in order to further the understanding of its application to assessing wind power forecasting errors.

  16. Analysis and Synthesis of Load Forecasting Data for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Steckler, N.; Florita, A.; Zhang, J.; Hodge, B. M.

    2013-11-01

    As renewable energy constitutes greater portions of the generation fleet, the importance of modeling uncertainty as part of integration studies also increases. In pursuit of optimal system operations, it is important to capture not only the definitive behavior of power plants, but also the risks associated with systemwide interactions. This research examines the dependence of load forecast errors on external predictor variables such as temperature, day type, and time of day. The analysis was utilized to create statistically relevant instances of sequential load forecasts with only a time series of historic, measured load available. The creation of such load forecasts relies on Bayesian techniques for informing and updating the model, thus providing a basis for networked and adaptive load forecast models in future operational applications.

  17. Short-Term Load Forecasting Error Distributions and Implications for Renewable Integration Studies: Preprint

    SciTech Connect (OSTI)

    Hodge, B. M.; Lew, D.; Milligan, M.

    2013-01-01

    Load forecasting in the day-ahead timescale is a critical aspect of power system operations that is used in the unit commitment process. It is also an important factor in renewable energy integration studies, where the combination of load and wind or solar forecasting techniques create the net load uncertainty that must be managed by the economic dispatch process or with suitable reserves. An understanding of that load forecasting errors that may be expected in this process can lead to better decisions about the amount of reserves necessary to compensate errors. In this work, we performed a statistical analysis of the day-ahead (and two-day-ahead) load forecasting errors observed in two independent system operators for a one-year period. Comparisons were made with the normal distribution commonly assumed in power system operation simulations used for renewable power integration studies. Further analysis identified time periods when the load is more likely to be under- or overforecast.

  18. Ramping Effect on Forecast Use: Integrated Ramping as a Mitigation Strategy; NREL (National Renewable Energy Laboratory)

    SciTech Connect (OSTI)

    Diakov, Victor; Barrows, Clayton; Brinkman, Gregory; Bloom, Aaron; Denholm, Paul

    2015-06-23

    Power generation ramping between forecasted (net) load set-points shift the generation (MWh) from its scheduled values. The Integrated Ramping is described as a method that mitigates this problem.

  19. U.S. Crude Oil Production Forecast-Analysis of Crude Types

    U.S. Energy Information Administration (EIA) Indexed Site

    of Energy Washington, DC 20585 U.S. Energy Information Administration | U.S. Crude Oil Production Forecast-Analysis of Crude Types i This report was prepared by the U.S....

  20. U.S. diesel fuel price forecast to be 1 penny lower this summer...

    U.S. Energy Information Administration (EIA) Indexed Site

    That's down 12 percent from last summer's record exports. Biodiesel production, which averaged 68,000 barrels a day last summer, is forecast to jump to 82,000 barrels a day this ...

  1. NOAA Teams Up with Department of Energy & Industry to Improve Wind Forecasts

    Broader source: Energy.gov [DOE]

    The growth of wind-generated power in the United States  is creating greater demand for improved wind forecasts. To address this need, the Department of Energy is working with NOAA and industry on...

  2. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE: Preprint

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B. M.

    2014-09-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This study examines the value of improved solar power forecasting for the Independent System Operator-New England system. The results show how 25% solar power penetration reduces net electricity generation costs by 22.9%.

  3. Forecasting Wind and Solar Generation: Improving System Operations, Greening the Grid

    SciTech Connect (OSTI)

    2016-01-01

    This document discusses improving system operations with forecasting and solar generation. By integrating variable renewable energy (VRE) forecasts into system operations, power system operators can anticipate up- and down-ramps in VRE generation in order to cost-effectively balance load and generation in intra-day and day-ahead scheduling. This leads to reduced fuel costs, improved system reliability, and maximum use of renewable resources.

  4. Investigating the Correlation Between Wind and Solar Power Forecast Errors in the Western Interconnection: Preprint

    SciTech Connect (OSTI)

    Zhang, J.; Hodge, B. M.; Florita, A.

    2013-05-01

    Wind and solar power generations differ from conventional energy generation because of the variable and uncertain nature of their power output. This variability and uncertainty can have significant impacts on grid operations. Thus, short-term forecasting of wind and solar generation is uniquely helpful for power system operations to balance supply and demand in an electricity system. This paper investigates the correlation between wind and solar power forecasting errors.

  5. Nuclear Theory Helps Forecast Neutron Star Temperatures | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Nuclear Theory Helps Forecast Neutron Star Temperatures Nuclear Physics (NP) NP Home About Research Facilities Science Highlights Benefits of NP Funding Opportunities Nuclear Science Advisory Committee (NSAC) Community Resources Contact Information Nuclear Physics U.S. Department of Energy SC-26/Germantown Building 1000 Independence Ave., SW Washington, DC 20585 P: (301) 903-3613 F: (301) 903-3833 E: Email Us More Information » 05.01.14 Nuclear Theory Helps Forecast Neutron

  6. U.S. Department of Energy Workshop Report: Solar Resources and Forecasting

    SciTech Connect (OSTI)

    Stoffel, T.

    2012-06-01

    This report summarizes the technical presentations, outlines the core research recommendations, and augments the information of the Solar Resources and Forecasting Workshop held June 20-22, 2011, in Golden, Colorado. The workshop brought together notable specialists in atmospheric science, solar resource assessment, solar energy conversion, and various stakeholders from industry and academia to review recent developments and provide input for planning future research in solar resource characterization, including measurement, modeling, and forecasting.

  7. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  8. Solar energy conversion: Technological forecasting. (Latest citations from the Aerospace database). Published Search

    SciTech Connect (OSTI)

    1995-01-01

    The bibliography contains citations concerning current forecasting of Earth surface-bound solar energy conversion technology. Topics consider research, development and utilization of this technology in relation to electric power generation, heat pumps, bioconversion, process heat and the production of renewable gaseous, liquid, and solid fuels for industrial, commercial, and domestic applications. Some citations concern forecasts which compare solar technology with other energy technologies. (Contains 250 citations and includes a subject term index and title list.)

  9. Impact of Improved Solar Forecasts on Bulk Power System Operations in ISO-NE (Presentation)

    SciTech Connect (OSTI)

    Brancucci Martinez-Anido, C.; Florita, A.; Hodge, B.M.

    2014-11-01

    The diurnal nature of solar power is made uncertain by variable cloud cover and the influence of atmospheric conditions on irradiance scattering processes. Its forecasting has become increasingly important to the unit commitment and dispatch process for efficient scheduling of generators in power system operations. This presentation is an overview of a study that examines the value of improved solar forecasts on Bulk Power System Operations.

  10. DOE Announces Webinars on Solar Forecasting Metrics, the DOE Wind Vision,

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    and More | Department of Energy Solar Forecasting Metrics, the DOE Wind Vision, and More DOE Announces Webinars on Solar Forecasting Metrics, the DOE Wind Vision, and More February 12, 2014 - 7:38pm Addthis EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars

  11. Wind Power Forecasting Error Frequency Analyses for Operational Power System Studies: Preprint

    SciTech Connect (OSTI)

    Florita, A.; Hodge, B. M.; Milligan, M.

    2012-08-01

    The examination of wind power forecasting errors is crucial for optimal unit commitment and economic dispatch of power systems with significant wind power penetrations. This scheduling process includes both renewable and nonrenewable generators, and the incorporation of wind power forecasts will become increasingly important as wind fleets constitute a larger portion of generation portfolios. This research considers the Western Wind and Solar Integration Study database of wind power forecasts and numerical actualizations. This database comprises more than 30,000 locations spread over the western United States, with a total wind power capacity of 960 GW. Error analyses for individual sites and for specific balancing areas are performed using the database, quantifying the fit to theoretical distributions through goodness-of-fit metrics. Insights into wind-power forecasting error distributions are established for various levels of temporal and spatial resolution, contrasts made among the frequency distribution alternatives, and recommendations put forth for harnessing the results. Empirical data are used to produce more realistic site-level forecasts than previously employed, such that higher resolution operational studies are possible. This research feeds into a larger work of renewable integration through the links wind power forecasting has with various operational issues, such as stochastic unit commitment and flexible reserve level determination.

  12. Wind power forecasting : state-of-the-art 2009.

    SciTech Connect (OSTI)

    Monteiro, C.; Bessa, R.; Miranda, V.; Botterud, A.; Wang, J.; Conzelmann, G.; Decision and Information Sciences; INESC Porto

    2009-11-20

    Many countries and regions are introducing policies aimed at reducing the environmental footprint from the energy sector and increasing the use of renewable energy. In the United States, a number of initiatives have been taken at the state level, from renewable portfolio standards (RPSs) and renewable energy certificates (RECs), to regional greenhouse gas emission control schemes. Within the U.S. Federal government, new energy and environmental policies and goals are also being crafted, and these are likely to increase the use of renewable energy substantially. The European Union is pursuing implementation of its ambitious 20/20/20 targets, which aim (by 2020) to reduce greenhouse gas emissions by 20% (as compared to 1990), increase the amount of renewable energy to 20% of the energy supply, and reduce the overall energy consumption by 20% through energy efficiency. With the current focus on energy and the environment, efficient integration of renewable energy into the electric power system is becoming increasingly important. In a recent report, the U.S. Department of Energy (DOE) describes a model-based scenario, in which wind energy provides 20% of the U.S. electricity demand in 2030. The report discusses a set of technical and economic challenges that have to be overcome for this scenario to unfold. In Europe, several countries already have a high penetration of wind power (i.e., in the range of 7 to 20% of electricity consumption in countries such as Germany, Spain, Portugal, and Denmark). The rapid growth in installed wind power capacity is expected to continue in the United States as well as in Europe. A large-scale introduction of wind power causes a number of challenges for electricity market and power system operators who will have to deal with the variability and uncertainty in wind power generation when making their scheduling and dispatch decisions. Wind power forecasting (WPF) is frequently identified as an important tool to address the variability and uncertainty in wind power and to more efficiently operate power systems with large wind power penetrations. Moreover, in a market environment, the wind power contribution to the generation portofolio becomes important in determining the daily and hourly prices, as variations in the estimated wind power will influence the clearing prices for both energy and operating reserves. With the increasing penetration of wind power, WPF is quickly becoming an important topic for the electric power industry. System operators (SOs), generating companies (GENCOs), and regulators all support efforts to develop better, more reliable and accurate forecasting models. Wind farm owners and operators also benefit from better wind power prediction to support competitive participation in electricity markets against more stable and dispatchable energy sources. In general, WPF can be used for a number of purposes, such as: generation and transmission maintenance planning, determination of operating reserve requirements, unit commitment, economic dispatch, energy storage optimization (e.g., pumped hydro storage), and energy trading. The objective of this report is to review and analyze state-of-the-art WPF models and their application to power systems operations. We first give a detailed description of the methodologies underlying state-of-the-art WPF models. We then look at how WPF can be integrated into power system operations, with specific focus on the unit commitment problem.

  13. The Wind Forecast Improvement Project (WFIP): A Public/Private Partnership for Improving Short Term Wind Energy Forecasts and Quantifying the Benefits of Utility Operations. The Southern Study Area, Final Report

    SciTech Connect (OSTI)

    Freedman, Jeffrey M.; Manobianco, John; Schroeder, John; Ancell, Brian; Brewster, Keith; Basu, Sukanta; Banunarayanan, Venkat; Hodge, Bri-Mathias; Flores, Isabel

    2014-04-30

    This Final Report presents a comprehensive description, findings, and conclusions for the Wind Forecast Improvement Project (WFIP) -- Southern Study Area (SSA) work led by AWS Truepower (AWST). This multi-year effort, sponsored by the Department of Energy (DOE) and National Oceanographic and Atmospheric Administration (NOAA), focused on improving short-term (15-minute - 6 hour) wind power production forecasts through the deployment of an enhanced observation network of surface and remote sensing instrumentation and the use of a state-of-the-art forecast modeling system. Key findings from the SSA modeling and forecast effort include: 1. The AWST WFIP modeling system produced an overall 10 - 20% improvement in wind power production forecasts over the existing Baseline system, especially during the first three forecast hours; 2. Improvements in ramp forecast skill, particularly for larger up and down ramps; 3. The AWST WFIP data denial experiments showed mixed results in the forecasts incorporating the experimental network instrumentation; however, ramp forecasts showed significant benefit from the additional observations, indicating that the enhanced observations were key to the model systems’ ability to capture phenomena responsible for producing large short-term excursions in power production; 4. The OU CAPS ARPS simulations showed that the additional WFIP instrument data had a small impact on their 3-km forecasts that lasted for the first 5-6 hours, and increasing the vertical model resolution in the boundary layer had a greater impact, also in the first 5 hours; and 5. The TTU simulations were inconclusive as to which assimilation scheme (3DVAR versus EnKF) provided better forecasts, and the additional observations resulted in some improvement to the forecasts in the first 1 - 3 hours.

  14. Optimization Based Data Mining Approah for Forecasting Real-Time Energy Demand

    SciTech Connect (OSTI)

    Omitaomu, Olufemi A; Li, Xueping; Zhou, Shengchao

    2015-01-01

    The worldwide concern over environmental degradation, increasing pressure on electric utility companies to meet peak energy demand, and the requirement to avoid purchasing power from the real-time energy market are motivating the utility companies to explore new approaches for forecasting energy demand. Until now, most approaches for forecasting energy demand rely on monthly electrical consumption data. The emergence of smart meters data is changing the data space for electric utility companies, and creating opportunities for utility companies to collect and analyze energy consumption data at a much finer temporal resolution of at least 15-minutes interval. While the data granularity provided by smart meters is important, there are still other challenges in forecasting energy demand; these challenges include lack of information about appliances usage and occupants behavior. Consequently, in this paper, we develop an optimization based data mining approach for forecasting real-time energy demand using smart meters data. The objective of our approach is to develop a robust estimation of energy demand without access to these other building and behavior data. Specifically, the forecasting problem is formulated as a quadratic programming problem and solved using the so-called support vector machine (SVM) technique in an online setting. The parameters of the SVM technique are optimized using simulated annealing approach. The proposed approach is applied to hourly smart meters data for several residential customers over several days.

  15. Comparison of AEO 2010 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A.; Wiser, Ryan H.

    2010-01-04

    On December 14, 2009, the reference-case projections from Annual Energy Outlook 2010 were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in itigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings.

  16. Gasoline price forecast to stay below 3 dollar a gallon in 2015

    Gasoline and Diesel Fuel Update (EIA)

    Gasoline price forecast to stay below $3 a gallon in 2015 The national average pump price of gasoline is expected to stay below $3 per gallon during 2015. In its new monthly forecast, the U.S. Energy Information Administration said the retail price for regular gasoline should average $2.33 per gallon this year. The price of gasoline increased in early February after falling for 17 weeks in a row. But gasoline prices will continue to remain low in 2015 when compared with pump prices in recent

  17. EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy

    Office of Environmental Management (EM)

    Improved by 30% | Department of Energy Forecasting Gets a Boost from Watson, Accuracy Improved by 30% EERE Success Story-Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% October 27, 2015 - 11:48am Addthis IBM Youtube Video | Courtesy of IBM Remember when IBM's super computer Watson defeated Jeopardy! champions Ken Jennings and Brad Rutter? With funding from the U.S. Department of Energy SunShot Initiative, IBM researchers are using Watson-like technology to improve solar

  18. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2003 THRU FY2046 VERSION 2003.1 VOLUME 2 [SEC 1 & 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2003-12-01

    This report includes data requested on September 10, 2002 and includes radioactive solid waste forecasting updates through December 31, 2002. The FY2003.0 request is the primary forecast for fiscal year FY 2003.

  19. Enhanced Short-Term Wind Power Forecasting and Value to Grid Operations: Preprint

    SciTech Connect (OSTI)

    Orwig, K.; Clark, C.; Cline, J.; Benjamin, S.; Wilczak, J.; Marquis, M.; Finley, C.; Stern, A.; Freedman, J.

    2012-09-01

    The current state of the art of wind power forecasting in the 0- to 6-hour time frame has levels of uncertainty that are adding increased costs and risk on the U.S. electrical grid. It is widely recognized within the electrical grid community that improvements to these forecasts could greatly reduce the costs and risks associated with integrating higher penetrations of wind energy. The U.S. Department of Energy has sponsored a research campaign in partnership with the National Oceanic and Atmospheric Administration (NOAA) and private industry to foster improvements in wind power forecasting. The research campaign involves a three-pronged approach: 1) a 1-year field measurement campaign within two regions; 2) enhancement of NOAA's experimental 3-km High-Resolution Rapid Refresh (HRRR) model by assimilating the data from the field campaign; and 3) evaluation of the economic and reliability benefits of improved forecasts to grid operators. This paper and presentation provides an overview of the regions selected, instrumentation deployed, data quality and control, assimilation of data into HRRR, and preliminary results of HRRR performance analysis.

  20. Ecological Forecasting in Chesapeake Bay: Using a Mechanistic-Empirical Modelling Approach

    SciTech Connect (OSTI)

    Brown, C. W.; Hood, Raleigh R.; Long, Wen; Jacobs, John M.; Ramers, D. L.; Wazniak, C.; Wiggert, J. D.; Wood, R.; Xu, J.

    2013-09-01

    The Chesapeake Bay Ecological Prediction System (CBEPS) automatically generates daily nowcasts and three-day forecasts of several environmental variables, such as sea-surface temperature and salinity, the concentrations of chlorophyll, nitrate, and dissolved oxygen, and the likelihood of encountering several noxious species, including harmful algal blooms and water-borne pathogens, for the purpose of monitoring the Bay's ecosystem. While the physical and biogeochemical variables are forecast mechanistically using the Regional Ocean Modeling System configured for the Chesapeake Bay, the species predictions are generated using a novel mechanistic empirical approach, whereby real-time output from the coupled physical biogeochemical model drives multivariate empirical habitat models of the target species. The predictions, in the form of digital images, are available via the World Wide Web to interested groups to guide recreational, management, and research activities. Though full validation of the integrated forecasts for all species is still a work in progress, we argue that the mechanisticempirical approach can be used to generate a wide variety of short-term ecological forecasts, and that it can be applied in any marine system where sufficient data exist to develop empirical habitat models. This paper provides an overview of this system, its predictions, and the approach taken.

  1. A Distributed Modeling System for Short-Term to Seasonal Ensemble Streamflow Forecasting in Snowmelt Dominated Basins

    SciTech Connect (OSTI)

    Wigmosta, Mark S.; Gill, Muhammad K.; Coleman, Andre M.; Prasad, Rajiv; Vail, Lance W.

    2007-12-01

    This paper describes a distributed modeling system for short-term to seasonal water supply forecasts with the ability to utilize remotely-sensed snow cover products and real-time streamflow measurements. Spatial variability in basin characteristics and meteorology is represented using a raster-based computational grid. Canopy interception, snow accumulation and melt, and simplified soil water movement are simulated in each computational unit. The model is run at a daily time step with surface runoff and subsurface flow aggregated at the basin scale. This approach allows the model to be updated with spatial snow cover and measured streamflow using an Ensemble Kalman-based data assimilation strategy that accounts for uncertainty in weather forecasts, model parameters, and observations used for updating. Model inflow forecasts for the Dworshak Reservoir in northern Idaho are compared to observations and to April-July volumetric forecasts issued by the Natural Resource Conservation Service (NRCS) for Water Years 2000 2006. October 1 volumetric forecasts are superior to those issued by the NRCS, while March 1 forecasts are comparable. The ensemble spread brackets the observed April-July volumetric inflows in all years. Short-term (one and three day) forecasts also show excellent agreement with observations.

  2. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    SciTech Connect (OSTI)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability. The downside is costs are higher. In organized electricity markets, units that are committed for reliability reasons are paid their offer price even when prevailing market prices are lower. Often, these uplift charges are allocated to market participants that caused the inefficient dispatch in the first place. Thus, wind energy facilities are burdened with their share of costs proportional to their forecast errors. For Xcel Energy, wind energy uncertainty costs manifest depending on specific market structures. In the Public Service of Colorado (PSCo), inefficient commitment and dispatch caused by wind uncertainty increases fuel costs. Wind resources participating in the Midwest Independent System Operator (MISO) footprint make substantial payments in the real-time markets to true-up their day-ahead positions and are additionally burdened with deviation charges called a Revenue Sufficiency Guarantee (RSG) to cover out of market costs associated with operations. Southwest Public Service (SPS) wind plants cause both commitment inefficiencies and are charged Southwest Power Pool (SPP) imbalance payments due to wind uncertainty and variability. Wind energy forecasting helps mitigate these costs. Wind integration studies for the PSCo and Northern States Power (NSP) operating companies have projected increasing costs as more wind is installed on the system due to forecast error. It follows that reducing forecast error would reduce these costs. This is echoed by large scale studies in neighboring regions and states that have recommended adoption of state-of-the-art wind forecasting tools in day-ahead and real-time planning and operations. Further, Xcel Energy concluded reduction of the normalized mean absolute error by one percent would have reduced costs in 2008 by over $1 million annually in PSCo alone. The value of reducing forecast error prompted Xcel Energy to make substantial investments in wind energy forecasting research and development.

  3. A Processor to get UV-A and UV-B Radiation Products from the ECMWF Forecast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    System A Processor to get UV-A and UV-B Radiation Products from the ECMWF Forecast System Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Category: Radiation A new processor for evaluating the UV-B and UV-A radiation at the surface, based on modifications to the current shortwave radiation scheme of the ECMWF forecast system is described. Sensitivity studies of the UV surface irradiance and Erythemal Dose Rate to spectral resolution, representation and atmospheric

  4. Oxygenate Supply/Demand Balances in the Short-Term Integrated Forecasting Model (Released in the STEO March 1998)

    Reports and Publications (EIA)

    1998-01-01

    The blending of oxygenates, such as fuel ethanol and methyl tertiary butyl ether (MTBE), into motor gasoline has increased dramatically in the last few years because of the oxygenated and reformulated gasoline programs. Because of the significant role oxygenates now have in petroleum product markets, the Short-Term Integrated Forecasting System (STIFS) was revised to include supply and demand balances for fuel ethanol and MTBE. The STIFS model is used for producing forecasts in the Short-Term Energy Outlook. A review of the historical data sources and forecasting methodology for oxygenate production, imports, inventories, and demand is presented in this report.

  5. EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day

    Gasoline and Diesel Fuel Update (EIA)

    EIA revises up forecast for U.S. 2013 crude oil production by 70,000 barrels per day The forecast for U.S. crude oil production keeps going higher. The U.S. Energy Information Administration revised upward its projection for crude oil output in 2013 by 70,000 barrels per day and for next year by 190,000 barrels per day. U.S. oil production is now on track to average 7.5 million barrels per day this year and rise to 8.4 million barrels per day in 2014, according to EIA's latest monthly forecast.

  6. Comparison of AEO 2006 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2005-12-19

    On December 12, 2005, the reference case projections from ''Annual Energy Outlook 2006'' (AEO 2006) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past five years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past five years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2006. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past five AEO releases (AEO 2001-AEO 2005), we once again find that the AEO 2006 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEX-AEO 2006 reference case comparison yields by far the largest premium--$2.3/MMBtu levelized over five years--that we have seen over the last six years. In other words, on average, one would have had to pay $2.3/MMBtu more than the AEO 2006 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  7. Comparison of AEO 2007 Natural Gas Price Forecast to NYMEX FuturesPrices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2006-12-06

    On December 5, 2006, the reference case projections from 'Annual Energy Outlook 2007' (AEO 2007) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk (see, for example, http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf). As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past six years, forward natural gas contracts (with prices that can be locked in--e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past six years at least, levelized cost comparisons of fixed-price renewable generation with variable-price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are 'biased' in favor of gas-fired generation, presuming that long-term price stability is valued. In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2007. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past six AEO releases (AEO 2001-AEO 2006), we once again find that the AEO 2007 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. Specifically, the NYMEX-AEO 2007 premium is $0.73/MMBtu levelized over five years. In other words, on average, one would have had to pay $0.73/MMBtu more than the AEO 2007 reference case natural gas price forecast in order to lock in natural gas prices over the coming five years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation (or other forms of generation whose costs are not tied to the price of natural gas). Fixed-price generation (like certain forms of renewable generation) obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of five years.

  8. Integration of Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Etingov, Pavel V.; Huang, Zhenyu; Ma, Jian; Chakrabarti, Bhujanga B.; Subbarao, Krishnappa; Loutan, Clyde; Guttromson, Ross T.

    2010-04-20

    In this paper, a new approach to evaluate the uncertainty ranges for the required generation performance envelope, including the balancing capacity, ramping capability and ramp duration is presented. The approach includes three stages: statistical and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence intervals. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis incorporating all sources of uncertainty and parameters of a continuous (wind forecast and load forecast errors) and discrete (forced generator outages and failures to start up) nature. Preliminary simulations using California Independent System Operator (CAISO) real life data have shown the effectiveness and efficiency of the proposed approach.

  9. 2007 Wholesale Power Rate Case Final Proposal : Market Price Forecast Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    2006-07-01

    This study presents BPA's market price forecasts for the Final Proposal, which are based on AURORA modeling. AURORA calculates the variable cost of the marginal resource in a competitively priced energy market. In competitive market pricing, the marginal cost of production is equivalent to the market-clearing price. Market-clearing prices are important factors for informing BPA's power rates. AURORA was used as the primary tool for (a) estimating the forward price for the IOU REP Settlement benefits calculation for fiscal years (FY) 2008 and 2009, (b) estimating the uncertainty surrounding DSI payments and IOU REP Settlements benefits, (c) informing the secondary revenue forecast and (d) providing a price input used for the risk analysis. For information about the calculation of the secondary revenues, uncertainty regarding the IOU REP Settlement benefits and DSI payment uncertainty, and the risk run, see Risk Analysis Study WP-07-FS-BPA-04.

  10. Comparison of AEO 2005 natural gas price forecast to NYMEX futures prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2004-12-13

    On December 9, the reference case projections from ''Annual Energy Outlook 2005 (AEO 2005)'' were posted on the Energy Information Administration's (EIA) web site. As some of you may be aware, we at LBNL have in the past compared the EIA's reference case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables play in mitigating such risk. As such, we were curious to see how the latest AEO gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. As a refresher, our past work in this area has found that over the past four years, forward natural gas contracts (e.g., gas futures, swaps, and physical supply) have traded at a premium relative to contemporaneous long-term reference case gas price forecasts from the EIA. As such, we have concluded that, over the past four years at least, levelized cost comparisons of fixed-price renewable generation with variable price gas-fired generation that have been based on AEO natural gas price forecasts (rather than forward prices) have yielded results that are ''biased'' in favor of gas-fired generation (presuming that long-term price stability is valued). In this memo we simply update our past analysis to include the latest long-term gas price forecast from the EIA, as contained in AEO 2005. For the sake of brevity, we do not rehash information (on methodology, potential explanations for the premiums, etc.) contained in our earlier reports on this topic; readers interested in such information are encouraged to download that work from http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or, more recently (and briefly), http://eetd.lbl.gov/ea/ems/reports/54751.pdf. As was the case in the past four AEO releases (AEO 2001-AE0 2004), we once again find that the AEO 2005 reference case gas price forecast falls well below where NYMEX natural gas futures contracts were trading at the time the EIA finalized its gas price forecast. In fact, the NYMEXAEO 2005 reference case comparison yields by far the largest premium--$1.11/MMBtu levelized over six years--that we have seen over the last five years. In other words, on average, one would have to pay $1.11/MMBtu more than the AEO 2005 reference case natural gas price forecast in order to lock in natural gas prices over the coming six years and thereby replicate the price stability provided intrinsically by fixed-price renewable generation. Fixed-price renewables obviously need not bear this added cost, and moreover can provide price stability for terms well in excess of six years.

  11. Unit commitment with wind power generation: integrating wind forecast uncertainty and stochastic programming.

    SciTech Connect (OSTI)

    Constantinescu, E. M.; Zavala, V. M.; Rocklin, M.; Lee, S.; Anitescu, M.

    2009-10-09

    We present a computational framework for integrating the state-of-the-art Weather Research and Forecasting (WRF) model in stochastic unit commitment/energy dispatch formulations that account for wind power uncertainty. We first enhance the WRF model with adjoint sensitivity analysis capabilities and a sampling technique implemented in a distributed-memory parallel computing architecture. We use these capabilities through an ensemble approach to model the uncertainty of the forecast errors. The wind power realizations are exploited through a closed-loop stochastic unit commitment/energy dispatch formulation. We discuss computational issues arising in the implementation of the framework. In addition, we validate the framework using real wind speed data obtained from a set of meteorological stations. We also build a simulated power system to demonstrate the developments.

  12. The impact of forecasted energy price increases on low-income consumers

    SciTech Connect (OSTI)

    Eisenberg, Joel F.

    2005-10-31

    The Department of Energys Energy Information Administration (EIA) recently released its short term forecast for residential energy prices for the winter of 2005-2006. The forecast indicates significant increases in fuel costs, particularly for natural gas, propane, and home heating oil, for the year ahead. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nations low-income households by primary heating fuel type, nationally and by Census Region. The statistics are intended for the use of policymakers in the Department of Energys Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2006 fiscal year.

  13. Are there Gains from Pooling Real-Time Oil Price Forecasts?

    Gasoline and Diesel Fuel Update (EIA)

    Are there Gains from Pooling Real- Time Oil Price Forecasts? Christiane Baumeister, Bank of Canada Lutz Kilian, University of Michigan Thomas K. Lee, U.S. Energy Information Administration February 12, 2014 Independent Statistics & Analysis www.eia.gov U.S. Energy Information Administration Washington, DC 20585 This paper is released to encourage discussion and critical comment. The analysis and conclusions expressed here are those of the authors and not necessarily those of the U.S. Energy

  14. Validation of Global Weather Forecast and Climate Models Over the North

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Slope of Alaska Validation of Global Weather Forecast and Climate Models Over the North Slope of Alaska Xie, Shaocheng Lawrence Livermore National Laboratory Klein, Stephen Lawrence Livermore National Laboratory Boyle, Jim Lawrence Livermore National Laboratory Fiorino, Michael DOE/Lawrence Livermore National Laboratory Hnilo, Justin DOE/Lawrence Livermore National Laboratory Phillips, Thomas PCMDI/LLNL Potter, Gerald Lawrence Livermore National Laboratory Beljaars, Anton ECMWF Category:

  15. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    5060 Sargent & Lundy LLC Consulting Group Chicago, Illinois Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute * Battelle * Bechtel Contract No. DE-AC36-99-GO10337 October 2003 * NREL/SR-550-35060 Executive Summary: Assessment of Parabolic Trough and Power Tower

  16. New Forecasting Tools Enhance Wind Energy Integration In Idaho and Oregon

    Office of Environmental Management (EM)

    New Forecasting Tools Enhance Wind Energy Integration in Idaho and Oregon Page 1 Under the American Recovery and Reinvestment Act of 2009, the U.S. Department of Energy and the electricity industry have jointly invested over $7.9 billion in 99 cost-shared Smart Grid Investment Grant projects to modernize the electric grid, strengthen cybersecurity, improve interoperability, and collect an unprecedented level of data on smart grid and customer operations. 1. Summary Idaho Power Company (IPC)

  17. Forecasting the Magnitude of Sustainable Biofeedstock Supplies: the Challenges and the Rewards

    SciTech Connect (OSTI)

    Graham, Robin Lambert

    2007-01-01

    Forecasting the magnitude of sustainable biofeedstock supplies is challenging because of 1) the myriad of potential feedstock types and their management 2) the need to account for the spatial variation of both the supplies and their environmental and economic consequences, and 3) the inherent challenges of optimizing across economic and environmental considerations. Over the last two decades U.S. biomass forecasts have become increasingly complex and sensitive to environmental and economic considerations. More model development and research is needed however, to capture the landscape and regional tradeoffs of differing biofeedstock supplies especially with regards water quality concerns and wildlife/biodiversity. Forecasts need to be done in the context of the direction of change and what the probable land use and attendant environmental and economic outcomes would be if biofeedstocks were not being produced. To evaluate sustainability, process-oriented models need to be coupled or used to inform sector models and more work needs to be done on developing environmental metrics that are useful for evaluating economic and environmental tradeoffs. These challenges are exciting and worthwhile as they will enable the bioenergy industry to capture environmental and social benefits of biofeedstock production and reduce risks.

  18. Why Models Don%3CU%2B2019%3Et Forecast.

    SciTech Connect (OSTI)

    McNamara, Laura A.

    2010-08-01

    The title of this paper, Why Models Don't Forecast, has a deceptively simple answer: models don't forecast because people forecast. Yet this statement has significant implications for computational social modeling and simulation in national security decision making. Specifically, it points to the need for robust approaches to the problem of how people and organizations develop, deploy, and use computational modeling and simulation technologies. In the next twenty or so pages, I argue that the challenge of evaluating computational social modeling and simulation technologies extends far beyond verification and validation, and should include the relationship between a simulation technology and the people and organizations using it. This challenge of evaluation is not just one of usability and usefulness for technologies, but extends to the assessment of how new modeling and simulation technologies shape human and organizational judgment. The robust and systematic evaluation of organizational decision making processes, and the role of computational modeling and simulation technologies therein, is a critical problem for the organizations who promote, fund, develop, and seek to use computational social science tools, methods, and techniques in high-consequence decision making.

  19. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equationsmore » at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.« less

  20. Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL and ECMWF Models

    SciTech Connect (OSTI)

    Hannay, C; Williamson, D L; Hack, J J; Kiehl, J T; Olson, J G; Klein, S A; Bretherton, C S; K?hler, M

    2008-01-24

    We examine forecasts of Southeast Pacific stratocumulus at 20S and 85W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3 days to determine the differences with the EPIC field data. Observations during the EPIC cruise show a stable and well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the four models is that the forecasted planetary boundary layer (PBL) height is too low when compared to EPIC observations. All the models produce a strong diurnal cycle in the Liquid Water Path (LWP) but there are large differences in the amplitude and the phase compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface. There is a large spread in the surface energy budget terms amongst the models and large discrepancies with observational estimates. Single Column Model (SCM) experiments with the CAM show that the vertical pressure velocity has a large impact on the PBL height and LWP. Both the amplitude of the vertical pressure velocity field and its vertical structure play a significant role in the collapse or the maintenance of the PBL.

  1. Turbulence-driven coronal heating and improvements to empirical forecasting of the solar wind

    SciTech Connect (OSTI)

    Woolsey, Lauren N.; Cranmer, Steven R.

    2014-06-01

    Forecasting models of the solar wind often rely on simple parameterizations of the magnetic field that ignore the effects of the full magnetic field geometry. In this paper, we present the results of two solar wind prediction models that consider the full magnetic field profile and include the effects of Alfvn waves on coronal heating and wind acceleration. The one-dimensional magnetohydrodynamic code ZEPHYR self-consistently finds solar wind solutions without the need for empirical heating functions. Another one-dimensional code, introduced in this paper (The Efficient Modified-Parker-Equation-Solving Tool, TEMPEST), can act as a smaller, stand-alone code for use in forecasting pipelines. TEMPEST is written in Python and will become a publicly available library of functions that is easy to adapt and expand. We discuss important relations between the magnetic field profile and properties of the solar wind that can be used to independently validate prediction models. ZEPHYR provides the foundation and calibration for TEMPEST, and ultimately we will use these models to predict observations and explain space weather created by the bulk solar wind. We are able to reproduce with both models the general anticorrelation seen in comparisons of observed wind speed at 1 AU and the flux tube expansion factor. There is significantly less spread than comparing the results of the two models than between ZEPHYR and a traditional flux tube expansion relation. We suggest that the new code, TEMPEST, will become a valuable tool in the forecasting of space weather.

  2. Decreasing the temporal complexity for nonlinear, implicit reduced-order models by forecasting

    SciTech Connect (OSTI)

    Carlberg, Kevin; Ray, Jaideep; van Bloemen Waanders, Bart

    2015-02-14

    Implicit numerical integration of nonlinear ODEs requires solving a system of nonlinear algebraic equations at each time step. Each of these systems is often solved by a Newton-like method, which incurs a sequence of linear-system solves. Most model-reduction techniques for nonlinear ODEs exploit knowledge of system's spatial behavior to reduce the computational complexity of each linear-system solve. However, the number of linear-system solves for the reduced-order simulation often remains roughly the same as that for the full-order simulation. We propose exploiting knowledge of the model's temporal behavior to (1) forecast the unknown variable of the reduced-order system of nonlinear equations at future time steps, and (2) use this forecast as an initial guess for the Newton-like solver during the reduced-order-model simulation. To compute the forecast, we propose using the Gappy POD technique. As a result, the goal is to generate an accurate initial guess so that the Newton solver requires many fewer iterations to converge, thereby decreasing the number of linear-system solves in the reduced-order-model simulation.

  3. National forecast for geothermal resource exploration and development with techniques for policy analysis and resource assessment

    SciTech Connect (OSTI)

    Cassel, T.A.V.; Shimamoto, G.T.; Amundsen, C.B.; Blair, P.D.; Finan, W.F.; Smith, M.R.; Edeistein, R.H.

    1982-03-31

    The backgrund, structure and use of modern forecasting methods for estimating the future development of geothermal energy in the United States are documented. The forecasting instrument may be divided into two sequential submodels. The first predicts the timing and quality of future geothermal resource discoveries from an underlying resource base. This resource base represents an expansion of the widely-publicized USGS Circular 790. The second submodel forecasts the rate and extent of utilization of geothermal resource discoveries. It is based on the joint investment behavior of resource developers and potential users as statistically determined from extensive industry interviews. It is concluded that geothermal resource development, especially for electric power development, will play an increasingly significant role in meeting US energy demands over the next 2 decades. Depending on the extent of R and D achievements in related areas of geosciences and technology, expected geothermal power development will reach between 7700 and 17300 Mwe by the year 2000. This represents between 8 and 18% of the expected electric energy demand (GWh) in western and northwestern states.

  4. Modeling and forecasting the distribution of Vibrio vulnificus in Chesapeake Bay

    SciTech Connect (OSTI)

    Jacobs, John M.; Rhodes, M.; Brown, C. W.; Hood, Raleigh R.; Leight, A.; Long, Wen; Wood, R.

    2014-11-01

    The aim is to construct statistical models to predict the presence, abundance and potential virulence of Vibrio vulnificus in surface waters. A variety of statistical techniques were used in concert to identify water quality parameters associated with V. vulnificus presence, abundance and virulence markers in the interest of developing strong predictive models for use in regional oceanographic modeling systems. A suite of models are provided to represent the best model fit and alternatives using environmental variables that allow them to be put to immediate use in current ecological forecasting efforts. Conclusions: Environmental parameters such as temperature, salinity and turbidity are capable of accurately predicting abundance and distribution of V. vulnificus in Chesapeake Bay. Forcing these empirical models with output from ocean modeling systems allows for spatially explicit forecasts for up to 48 h in the future. This study uses one of the largest data sets compiled to model Vibrio in an estuary, enhances our understanding of environmental correlates with abundance, distribution and presence of potentially virulent strains and offers a method to forecast these pathogens that may be replicated in other regions.

  5. Short-Term Energy Outlook Supplement: Uncertainties in the Short-Term Global Petroleum and Other Liquids Supply Forecast

    Gasoline and Diesel Fuel Update (EIA)

    Uncertainties in the Short-Term Global Petroleum and Other Liquids Supply Forecast February 2014 Independent Statistics & Analysis www.eia.gov U.S. Department of Energy Washington, DC 20585 U.S. Energy Information Administration | STEO Supplement: Uncertainties in the Global Petroleum and Other Liquids Supply Forecast i This report was prepared by the U.S. Energy Information Administration (EIA), the statistical and analytical agency within the U.S. Department of Energy. By law, EIA's data,

  6. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    SciTech Connect (OSTI)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.

  7. Use of Data Denial Experiments to Evaluate ESA Forecast Sensitivity Patterns

    SciTech Connect (OSTI)

    Zack, J; Natenberg, E J; Knowe, G V; Manobianco, J; Waight, K; Hanley, D; Kamath, C

    2011-09-13

    The overall goal of this multi-phased research project known as WindSENSE is to develop an observation system deployment strategy that would improve wind power generation forecasts. The objective of the deployment strategy is to produce the maximum benefit for 1- to 6-hour ahead forecasts of wind speed at hub-height ({approx}80 m). In this phase of the project the focus is on the Mid-Columbia Basin region which encompasses the Bonneville Power Administration (BPA) wind generation area shown in Figure 1 that includes Klondike, Stateline, and Hopkins Ridge wind plants. The Ensemble Sensitivity Analysis (ESA) approach uses data generated by a set (ensemble) of perturbed numerical weather prediction (NWP) simulations for a sample time period to statistically diagnose the sensitivity of a specified forecast variable (metric) for a target location to parameters at other locations and prior times referred to as the initial condition (IC) or state variables. The ESA approach was tested on the large-scale atmospheric prediction problem by Ancell and Hakim 2007 and Torn and Hakim 2008. ESA was adapted and applied at the mesoscale by Zack et al. (2010a, b, and c) to the Tehachapi Pass, CA (warm and cools seasons) and Mid-Colombia Basin (warm season only) wind generation regions. In order to apply the ESA approach at the resolution needed at the mesoscale, Zack et al. (2010a, b, and c) developed the Multiple Observation Optimization Algorithm (MOOA). MOOA uses a multivariate regression on a few select IC parameters at one location to determine the incremental improvement of measuring multiple variables (representative of the IC parameters) at various locations. MOOA also determines how much information from each IC parameter contributes to the change in the metric variable at the target location. The Zack et al. studies (2010a, b, and c), demonstrated that forecast sensitivity can be characterized by well-defined, localized patterns for a number of IC variables such as 80-m wind speed and vertical temperature difference. Ideally, the data assimilation scheme used in the experiments would have been based upon an ensemble Kalman filter (EnKF) that was similar to the ESA method used to diagnose the Mid-Colombia Basin sensitivity patterns in the previous studies. However, the use of an EnKF system at high resolution is impractical because of the very high computational cost. Thus, it was decided to use the three-dimensional variational analysis data assimilation that is less computationally intensive and more economically practical for generating operational forecasts. There are two tasks in the current project effort designed to validate the ESA observational system deployment approach in order to move closer to the overall goal: (1) Perform an Observing System Experiment (OSE) using a data denial approach which is the focus of this task and report; and (2) Conduct a set of Observing System Simulation Experiments (OSSE) for the Mid-Colombia basin region. The results of this task are presented in a separate report. The objective of the OSE task involves validating the ESA-MOOA results from the previous sensitivity studies for the Mid-Columbia Basin by testing the impact of existing meteorological tower measurements on the 0- to 6-hour ahead 80-m wind forecasts at the target locations. The testing of the ESA-MOOA method used a combination of data assimilation techniques and data denial experiments to accomplish the task objective.

  8. Validation of a 20-year forecast of US childhood lead poisoning: Updated prospects for 2010

    SciTech Connect (OSTI)

    Jacobs, David E. . E-mail: dejacobs@starpower.net; Nevin, Rick

    2006-11-15

    We forecast childhood lead poisoning and residential lead paint hazard prevalence for 1990-2010, based on a previously unvalidated model that combines national blood lead data with three different housing data sets. The housing data sets, which describe trends in housing demolition, rehabilitation, window replacement, and lead paint, are the American Housing Survey, the Residential Energy Consumption Survey, and the National Lead Paint Survey. Blood lead data are principally from the National Health and Nutrition Examination Survey. New data now make it possible to validate the midpoint of the forecast time period. For the year 2000, the model predicted 23.3 million pre-1960 housing units with lead paint hazards, compared to an empirical HUD estimate of 20.6 million units. Further, the model predicted 498,000 children with elevated blood lead levels (EBL) in 2000, compared to a CDC empirical estimate of 434,000. The model predictions were well within 95% confidence intervals of empirical estimates for both residential lead paint hazard and blood lead outcome measures. The model shows that window replacement explains a large part of the dramatic reduction in lead poisoning that occurred from 1990 to 2000. Here, the construction of the model is described and updated through 2010 using new data. Further declines in childhood lead poisoning are achievable, but the goal of eliminating children's blood lead levels {>=}10 {mu}g/dL by 2010 is unlikely to be achieved without additional action. A window replacement policy will yield multiple benefits of lead poisoning prevention, increased home energy efficiency, decreased power plant emissions, improved housing affordability, and other previously unrecognized benefits. Finally, combining housing and health data could be applied to forecasting other housing-related diseases and injuries.

  9. Climatic Forecasting of Net Infiltration at Yucca Montain Using Analogue Meteororological Data

    SciTech Connect (OSTI)

    B. Faybishenko

    2006-09-11

    At Yucca Mountain, Nevada, future changes in climatic conditions will most likely alter net infiltration, or the drainage below the bottom of the evapotranspiration zone within the soil profile or flow across the interface between soil and the densely welded part of the Tiva Canyon Tuff. The objectives of this paper are to: (a) develop a semi-empirical model and forecast average net infiltration rates, using the limited meteorological data from analogue meteorological stations, for interglacial (present day), and future monsoon, glacial transition, and glacial climates over the Yucca Mountain region, and (b) corroborate the computed net-infiltration rates by comparing them with the empirically and numerically determined groundwater recharge and percolation rates through the unsaturated zone from published data. In this paper, the author presents an approach for calculations of net infiltration, aridity, and precipitation-effectiveness indices, using a modified Budyko's water-balance model, with reference-surface potential evapotranspiration determined from the radiation-based Penman (1948) formula. Results of calculations show that net infiltration rates are expected to generally increase from the present-day climate to monsoon climate, to glacial transition climate, and then to the glacial climate. The forecasting results indicate the overlap between the ranges of net infiltration for different climates. For example, the mean glacial net-infiltration rate corresponds to the upper-bound glacial transition net infiltration, and the lower-bound glacial net infiltration corresponds to the glacial transition mean net infiltration. Forecasting of net infiltration for different climate states is subject to numerous uncertainties-associated with selecting climate analogue sites, using relatively short analogue meteorological records, neglecting the effects of vegetation and surface runoff and runon on a local scale, as well as possible anthropogenic climate changes.

  10. FY 1996 solid waste integrated life-cycle forecast container summary volume 1 and 2

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-04-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the containers expected to be used for these waste shipments from 1996 through the remaining life cycle of the Hanford Site. In previous years, forecast data have been reported for a 30-year time period; however, the life-cycle approach was adopted this year to maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to the more detailed report on waste volumes: WHC-EP0900, FY 1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary. Both of these documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on the types of containers that will be used for packaging low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major waste generators for each waste category and container type are also discussed. Containers used for low-level waste (LLW) are described in Appendix A, since LLW requires minimal treatment and storage prior to onsite disposal in the LLW burial grounds. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste are expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters.

  11. Energy Savings Forecast of Solid-State Lighting in General Illumination Applications

    SciTech Connect (OSTI)

    none,

    2014-08-29

    With declining production costs and increasing technical capabilities, LED adoption has recently gained momentum in general illumination applications. This is a positive development for our energy infrastructure, as LEDs use significantly less electricity per lumen produced than many traditional lighting technologies. The U.S. Department of Energy’s Energy Savings Forecast of Solid-State Lighting in General Illumination Applications examines the expected market penetration and resulting energy savings of light-emitting diode, or LED, lamps and luminaires from today through 2030.

  12. U.S. oil production forecast update reflects lower rig count

    Gasoline and Diesel Fuel Update (EIA)

    U.S. oil production forecast update reflects lower rig count Lower oil prices and fewer rigs drilling for crude oil are expected to slow U.S. oil production growth this year and in 2016. U.S. crude oil production is still expected to average 9.2 million barrels per day this year. That's up half a million barrels per day from last year and the highest output level in more than four decades. A substantial part of the year-over-year increase reflects rapid production growth throughout 2014.

  13. A hybrid procedure for MSW generation forecasting at multiple time scales in Xiamen City, China

    SciTech Connect (OSTI)

    Xu, Lilai; Gao, Peiqing; Cui, Shenghui; Liu, Chun

    2013-06-15

    Highlights: ? We propose a hybrid model that combines seasonal SARIMA model and grey system theory. ? The model is robust at multiple time scales with the anticipated accuracy. ? At month-scale, the SARIMA model shows good representation for monthly MSW generation. ? At medium-term time scale, grey relational analysis could yield the MSW generation. ? At long-term time scale, GM (1, 1) provides a basic scenario of MSW generation. - Abstract: Accurate forecasting of municipal solid waste (MSW) generation is crucial and fundamental for the planning, operation and optimization of any MSW management system. Comprehensive information on waste generation for month-scale, medium-term and long-term time scales is especially needed, considering the necessity of MSW management upgrade facing many developing countries. Several existing models are available but of little use in forecasting MSW generation at multiple time scales. The goal of this study is to propose a hybrid model that combines the seasonal autoregressive integrated moving average (SARIMA) model and grey system theory to forecast MSW generation at multiple time scales without needing to consider other variables such as demographics and socioeconomic factors. To demonstrate its applicability, a case study of Xiamen City, China was performed. Results show that the model is robust enough to fit and forecast seasonal and annual dynamics of MSW generation at month-scale, medium- and long-term time scales with the desired accuracy. In the month-scale, MSW generation in Xiamen City will peak at 132.2 thousand tonnes in July 2015 1.5 times the volume in July 2010. In the medium term, annual MSW generation will increase to 1518.1 thousand tonnes by 2015 at an average growth rate of 10%. In the long term, a large volume of MSW will be output annually and will increase to 2486.3 thousand tonnes by 2020 2.5 times the value for 2010. The hybrid model proposed in this paper can enable decision makers to develop integrated policies and measures for waste management over the long term.

  14. Waste generation forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1995-FY 2002, September 1994 revision

    SciTech Connect (OSTI)

    Not Available

    1994-12-01

    A comprehensive waste-forecasting task was initiated in FY 1991 to provide a consistent, documented estimate of the volumes of waste expected to be generated as a result of U.S. Department of Energy-Oak Ridge Operations (DOE-ORO) Environmental Restoration (ER) OR-1 Project activities. Continual changes in the scope and schedules for remedial action (RA) and decontamination and decommissioning (D&D) activities have required that an integrated data base system be developed that can be easily revised to keep pace with changes and provide appropriate tabular and graphical output. The output can then be analyzed and used to drive planning assumptions for treatment, storage, and disposal (TSD) facilities. The results of this forecasting effort and a description of the data base developed to support it are provided herein. The initial waste-generation forecast results were compiled in November 1991. Since the initial forecast report, the forecast data have been revised annually. This report reflects revisions as of September 1994.

  15. Solid waste integrated forecast technical (SWIFT) report: FY1997 to FY 2070, Revision 1

    SciTech Connect (OSTI)

    Valero, O.J.; Templeton, K.J.; Morgan, J.

    1997-01-07

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons with previous forecasts and with other national data sources. This web site does not include: liquid waste (current or future generation); waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); or waste that has been received by the WM Project to date (i.e., inventory waste). The focus of this web site is on low-level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this web site is reporting data th at was requested on 10/14/96 and submitted on 10/25/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program's life cycle. Therefore, these data represent revisions from the previous FY97.0 Data Version, due primarily to revised estimates from PNNL. There is some useful information about the structure of this report in the SWIFT Report Web Site Overview.

  16. Crude oil and alternate energy production forecasts for the twenty-first century: The end of the hydrocarbon era

    SciTech Connect (OSTI)

    Edwards, J.D.

    1997-08-01

    Predictions of production rates and ultimate recovery of crude oil are needed for intelligent planning and timely action to ensure the continuous flow of energy required by the world`s increasing population and expanding economies. Crude oil will be able to supply increasing demand until peak world production is reached. The energy gap caused by declining conventional oil production must then be filled by expanding production of coal, heavy oil and oil shales, nuclear and hydroelectric power, and renewable energy sources (solar, wind, and geothermal). Declining oil production forecasts are based on current estimated ultimate recoverable conventional crude oil resources of 329 billion barrels for the United States and close to 3 trillion barrels for the world. Peak world crude oil production is forecast to occur in 2020 at 90 million barrels per day. Conventional crude oil production in the United States is forecast to terminate by about 2090, and world production will be close to exhaustion by 2100.

  17. Regional Short-Term Energy Model (RSTEM) Overview

    Reports and Publications (EIA)

    2009-01-01

    The Regional Short-Term Energy Model (RSTEM) utilizes estimated econometric relationships for demand, inventories and prices to forecast energy market outcomes across key sectors and selected regions throughout the United States.

  18. Department of Energy award DE-SC0004164 Climate and National Security: Securing Better Forecasts

    SciTech Connect (OSTI)

    Reno Harnish

    2011-08-16

    The Climate and National Security: Securing Better Forecasts symposium was attended by senior policy makers and distinguished scientists. The juxtaposition of these communities was creative and fruitful. They acknowledged they were speaking past each other. Scientists were urged to tell policy makers about even improbable outcomes while articulating clearly the uncertainties around the outcomes. As one policy maker put it, we are accustomed to making these types of decisions. These points were captured clearly in an article that appeared on the New York Times website and can be found with other conference materials most easily on our website, www.scripps.ucsd.edu/cens/. The symposium, generously supported by the NOAA/JIMO, benefitted the public by promoting scientifically informed decision making and by the transmission of objective information regarding climate change and national security.

  19. Updated Eastern Interconnect Wind Power Output and Forecasts for ERGIS: July 2012

    SciTech Connect (OSTI)

    Pennock, K.

    2012-10-01

    AWS Truepower, LLC (AWST) was retained by the National Renewable Energy Laboratory (NREL) to update wind resource, plant output, and wind power forecasts originally produced by the Eastern Wind Integration and Transmission Study (EWITS). The new data set was to incorporate AWST's updated 200-m wind speed map, additional tall towers that were not included in the original study, and new turbine power curves. Additionally, a primary objective of this new study was to employ new data synthesis techniques developed for the PJM Renewable Integration Study (PRIS) to eliminate diurnal discontinuities resulting from the assimilation of observations into mesoscale model runs. The updated data set covers the same geographic area, 10-minute time resolution, and 2004?2006 study period for the same onshore and offshore (Great Lakes and Atlantic coast) sites as the original EWITS data set.

  20. A comparison of water vapor quantities from model short-range forecasts and ARM observations

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-03-17

    Model evolution and improvement is complicated by the lack of high quality observational data. To address a major limitation of these measurements the Atmospheric Radiation Measurement (ARM) program was formed. For the second quarter ARM metric we will make use of new water vapor data that has become available, and called the 'Merged-sounding' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Darwin Australia (DAR) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both DAR and NSA. The merged-sounding data have been interpolated to 37 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3 hourly data for direct comparison to our model output.

  1. A comparison of model short-range forecasts and the ARM Microbase data

    SciTech Connect (OSTI)

    Hnilo, J J

    2006-09-22

    For the fourth quarter ARM metric we will make use of new liquid water data that has become available, and called the 'Microbase' value added product (referred to as OBS, within the text) at three sites: the North Slope of Alaska (NSA), Tropical West Pacific (TWP) and the Southern Great Plains (SGP) and compare these observations to model forecast data. Two time periods will be analyzed March 2000 for the SGP and October 2004 for both TWP and NSA. The Microbase data have been averaged to 35 pressure levels (e.g., from 1000hPa to 100hPa at 25hPa increments) and time averaged to 3hourly data for direct comparison to our model output.

  2. Solid Waste Integrated Forecast Technical (SWIFT) Report FY2001 to FY2046 Volume 1

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2000-08-31

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the WM Project; program-level and waste class-specific estimates; background information on waste sources; and comparisons to previous forecasts and other national data sources. This report does not include: waste to be managed by the Environmental Restoration (EM-40) contractor (i.e., waste that will be disposed of at the Environmental Restoration Disposal Facility (ERDF)); waste that has been received by the WM Project to date (i.e., inventory waste); mixed low-level waste that will be processed and disposed by the River Protection Program; and liquid waste (current or future generation). Although this report currently does not include liquid wastes, they may be added as information becomes available.

  3. HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST

    National Nuclear Security Administration (NNSA)

    HONEYWELL - KANSAS CITY PLANT FISCAL YEARS 2009 THRU 2015 SMALL BUSINESS PROGRAM RESULTS & FORECAST CATEGORY Total Procurement Total SB Small Disad. Bus Woman-Owned SB Hub-Zone SB Veteran-Owned SB Service Disabled Vet. SB FY 2009 Dollars Goal (projected) $183,949,920 $82,690,000 $4,550,000 $8,829,596 $3,370,000 $5,025,000 $460,000 FY 2009 Dollars Accomplished $143,846,731 $68,174,398 $9,247,214 $11,333,905 $4,979,858 $6,713,791 $1,612,136 FY 2009 % Goal 45.0% 2.5% 4.8% 1.8% 2.7% 0.25% FY

  4. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    SciTech Connect (OSTI)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; Lancaster, Nick; Marani, Marco; Merritts, Dorothy J.; Moore, Laura J.; Pederson, Joel L.; Poulos, Michael J.; Rittenour, Tammy M.; Rowland, Joel C.; Ruggiero, Peter; Ward, Dylan J.; Wickert, Andrew D.; Yager, Elowyn M.

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we have the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.

  5. Forecasting the response of Earth's surface to future climatic and land use changes: A review of methods and research needs

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Pelletier, Jon D.; Murray, A. Brad; Pierce, Jennifer L.; Bierman, Paul R.; Breshears, David D.; Crosby, Benjamin T.; Ellis, Michael; Foufoula-Georgiou, Efi; Heimsath, Arjun M.; Houser, Chris; et al

    2015-07-14

    In the future, Earth will be warmer, precipitation events will be more extreme, global mean sea level will rise, and many arid and semiarid regions will be drier. Human modifications of landscapes will also occur at an accelerated rate as developed areas increase in size and population density. We now have gridded global forecasts, being continually improved, of the climatic and land use changes (C&LUC) that are likely to occur in the coming decades. However, besides a few exceptions, consensus forecasts do not exist for how these C&LUC will likely impact Earth-surface processes and hazards. In some cases, we havemore » the tools to forecast the geomorphic responses to likely future C&LUC. Fully exploiting these models and utilizing these tools will require close collaboration among Earth-surface scientists and Earth-system modelers. This paper assesses the state-of-the-art tools and data that are being used or could be used to forecast changes in the state of Earth's surface as a result of likely future C&LUC. We also propose strategies for filling key knowledge gaps, emphasizing where additional basic research and/or collaboration across disciplines are necessary. The main body of the paper addresses cross-cutting issues, including the importance of nonlinear/threshold-dominated interactions among topography, vegetation, and sediment transport, as well as the importance of alternate stable states and extreme, rare events for understanding and forecasting Earth-surface response to C&LUC. Five supplements delve into different scales or process zones (global-scale assessments and fluvial, aeolian, glacial/periglacial, and coastal process zones) in detail.« less

  6. Wind Energy Management System EMS Integration Project: Incorporating Wind Generation and Load Forecast Uncertainties into Power Grid Operations

    SciTech Connect (OSTI)

    Makarov, Yuri V.; Huang, Zhenyu; Etingov, Pavel V.; Ma, Jian; Guttromson, Ross T.; Subbarao, Krishnappa; Chakrabarti, Bhujanga B.

    2010-01-01

    The power system balancing process, which includes the scheduling, real time dispatch (load following) and regulation processes, is traditionally based on deterministic models. Since the conventional generation needs time to be committed and dispatched to a desired megawatt level, the scheduling and load following processes use load and wind and solar power production forecasts to achieve future balance between the conventional generation and energy storage on the one side, and system load, intermittent resources (such as wind and solar generation), and scheduled interchange on the other side. Although in real life the forecasting procedures imply some uncertainty around the load and wind/solar forecasts (caused by forecast errors), only their mean values are actually used in the generation dispatch and commitment procedures. Since the actual load and intermittent generation can deviate from their forecasts, it becomes increasingly unclear (especially, with the increasing penetration of renewable resources) whether the system would be actually able to meet the conventional generation requirements within the look-ahead horizon, what the additional balancing efforts would be needed as we get closer to the real time, and what additional costs would be incurred by those needs. To improve the system control performance characteristics, maintain system reliability, and minimize expenses related to the system balancing functions, it becomes necessary to incorporate the predicted uncertainty ranges into the scheduling, load following, and, in some extent, into the regulation processes. It is also important to address the uncertainty problem comprehensively by including all sources of uncertainty (load, intermittent generation, generators forced outages, etc.) into consideration. All aspects of uncertainty such as the imbalance size (which is the same as capacity needed to mitigate the imbalance) and generation ramping requirement must be taken into account. The latter unique features make this work a significant step forward toward the objective of incorporating of wind, solar, load, and other uncertainties into power system operations. Currently, uncertainties associated with wind and load forecasts, as well as uncertainties associated with random generator outages and unexpected disconnection of supply lines, are not taken into account in power grid operation. Thus, operators have little means to weigh the likelihood and magnitude of upcoming events of power imbalance. In this project, funded by the U.S. Department of Energy (DOE), a framework has been developed for incorporating uncertainties associated with wind and load forecast errors, unpredicted ramps, and forced generation disconnections into the energy management system (EMS) as well as generation dispatch and commitment applications. A new approach to evaluate the uncertainty ranges for the required generation performance envelope including balancing capacity, ramping capability, and ramp duration has been proposed. The approach includes three stages: forecast and actual data acquisition, statistical analysis of retrospective information, and prediction of future grid balancing requirements for specified time horizons and confidence levels. Assessment of the capacity and ramping requirements is performed using a specially developed probabilistic algorithm based on a histogram analysis, incorporating all sources of uncertainties of both continuous (wind and load forecast errors) and discrete (forced generator outages and start-up failures) nature. A new method called the flying brick technique has been developed to evaluate the look-ahead required generation performance envelope for the worst case scenario within a user-specified confidence level. A self-validation algorithm has been developed to validate the accuracy of the confidence intervals.

  7. Comparison of AEO 2009 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan

    2009-01-28

    On December 17, 2008, the reference-case projections from Annual Energy Outlook 2009 (AEO 2009) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof), differences in capital costs and O&M expenses, or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired or nuclear generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers; and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal, uranium, and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  8. Comparison of AEO 2008 Natural Gas Price Forecast to NYMEX Futures Prices

    SciTech Connect (OSTI)

    Bolinger, Mark A; Bolinger, Mark; Wiser, Ryan

    2008-01-07

    On December 12, 2007, the reference-case projections from Annual Energy Outlook 2008 (AEO 2008) were posted on the Energy Information Administration's (EIA) web site. We at LBNL have, in the past, compared the EIA's reference-case long-term natural gas price forecasts from the AEO series to contemporaneous natural gas prices that can be locked in through the forward market, with the goal of better understanding fuel price risk and the role that renewables can play in mitigating such risk. As such, we were curious to see how the latest AEO reference-case gas price forecast compares to the NYMEX natural gas futures strip. This brief memo presents our findings. Note that this memo pertains only to natural gas fuel price risk (i.e., the risk that natural gas prices might differ over the life of a gas-fired generation asset from what was expected when the decision to build the gas-fired unit was made). We do not take into consideration any of the other distinct attributes of gas-fired and renewable generation, such as dispatchability (or lack thereof) or environmental externalities. A comprehensive comparison of different resource types--which is well beyond the scope of this memo--would need to account for differences in all such attributes, including fuel price risk. Furthermore, our analysis focuses solely on natural-gas-fired generation (as opposed to coal-fired generation, for example), for several reasons: (1) price volatility has been more of a concern for natural gas than for other fuels used to generate power; (2) for environmental and other reasons, natural gas has, in recent years, been the fuel of choice among power plant developers (though its appeal has diminished somewhat as prices have increased); and (3) natural gas-fired generators often set the market clearing price in competitive wholesale power markets throughout the United States. That said, a more-complete analysis of how renewables mitigate fuel price risk would also need to consider coal and other fuel prices. Finally, we caution readers about drawing inferences or conclusions based solely on this memo in isolation: to place the information contained herein within its proper context, we strongly encourage readers interested in this issue to read through our previous, more-detailed studies, available at http://eetd.lbl.gov/ea/EMS/reports/53587.pdf or http://eetd.lbl.gov/ea/ems/reports/54751.pdf.

  9. Comparing Price Forecast Accuracy of Natural Gas Models andFutures Markets

    SciTech Connect (OSTI)

    Wong-Parodi, Gabrielle; Dale, Larry; Lekov, Alex

    2005-06-30

    The purpose of this article is to compare the accuracy of forecasts for natural gas prices as reported by the Energy Information Administration's Short-Term Energy Outlook (STEO) and the futures market for the period from 1998 to 2003. The analysis tabulates the existing data and develops a statistical comparison of the error between STEO and U.S. wellhead natural gas prices and between Henry Hub and U.S. wellhead spot prices. The results indicate that, on average, Henry Hub is a better predictor of natural gas prices with an average error of 0.23 and a standard deviation of 1.22 than STEO with an average error of -0.52 and a standard deviation of 1.36. This analysis suggests that as the futures market continues to report longer forward prices (currently out to five years), it may be of interest to economic modelers to compare the accuracy of their models to the futures market. The authors would especially like to thank Doug Hale of the Energy Information Administration for supporting and reviewing this work.

  10. Demand forecasting and revenue requirements, with implications for consideration in British Columbia

    SciTech Connect (OSTI)

    Acton, J.P.

    1983-05-01

    This paper was filed as an exhibit on behalf of The Consumers' Association of Canada (B.C. Branch), The Federated Anti-Poverty Groups of B.C., The Sierra Club of Western Canada, and the B.C. Old Age Pensioners' Organization. It was subjected to cross-examination on October 29, 1982, during Phase I of the hearings. The Utilities Commission had designated Phase I for consideration of (1) demand, (2) assets in service, (3) revenue requirements excluding return, and (4) financing and capital requirements. This paper presents a general discussion of the elements of a rate structure and their relationship to the demand for electricity, a systematic review of some 50 empirical studies of the demand for electricity as a function of price and other factors by the three principal classes of customers, and a discussion of the notion of revenue requirements. The paper should be of interest to utility regulators, rate specialists, and forecasters for its review of demand models and to academics concerned with the study of energy demand.

  11. Residential sector end-use forecasting with EPRI-Reeps 2.1: Summary input assumptions and results

    SciTech Connect (OSTI)

    Koomey, J.G.; Brown, R.E.; Richey, R.

    1995-12-01

    This paper describes current and projected future energy use by end-use and fuel for the U.S. residential sector, and assesses which end-uses are growing most rapidly over time. The inputs to this forecast are based on a multi-year data compilation effort funded by the U.S. Department of Energy. We use the Electric Power Research Institute`s (EPRI`s) REEPS model, as reconfigured to reflect the latest end-use technology data. Residential primary energy use is expected to grow 0.3% per year between 1995 and 2010, while electricity demand is projected to grow at about 0.7% per year over this period. The number of households is expected to grow at about 0.8% per year, which implies that the overall primary energy intensity per household of the residential sector is declining, and the electricity intensity per household is remaining roughly constant over the forecast period. These relatively low growth rates are dependent on the assumed growth rate for miscellaneous electricity, which is the single largest contributor to demand growth in many recent forecasts.

  12. Combining multi-objective optimization and bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

    SciTech Connect (OSTI)

    Vrugt, Jasper A; Wohling, Thomas

    2008-01-01

    Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multi-objective optimization and Bayesian Model Averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use observed tensiometric pressure head data at three different depths in a layered vadose zone of volcanic origin in New Zealand. A set of seven different soil hydraulic models is calibrated using a multi-objective formulation with three different objective functions that each measure the mismatch between observed and predicted soil water pressure head at one specific depth. The Pareto solution space corresponding to these three objectives is estimated with AMALGAM, and used to generate four different model ensembles. These ensembles are post-processed with BMA and used for predictive analysis and uncertainty estimation. Our most important conclusions for the vadose zone under consideration are: (1) the mean BMA forecast exhibits similar predictive capabilities as the best individual performing soil hydraulic model, (2) the size of the BMA uncertainty ranges increase with increasing depth and dryness in the soil profile, (3) the best performing ensemble corresponds to the compromise (or balanced) solution of the three-objective Pareto surface, and (4) the combined multi-objective optimization and BMA framework proposed in this paper is very useful to generate forecast ensembles of soil hydraulic models.

  13. Technology data characterizing water heating in commercial buildings: Application to end-use forecasting

    SciTech Connect (OSTI)

    Sezgen, O.; Koomey, J.G.

    1995-12-01

    Commercial-sector conservation analyses have traditionally focused on lighting and space conditioning because of their relatively-large shares of electricity and fuel consumption in commercial buildings. In this report we focus on water heating, which is one of the neglected end uses in the commercial sector. The share of the water-heating end use in commercial-sector electricity consumption is 3%, which corresponds to 0.3 quadrillion Btu (quads) of primary energy consumption. Water heating accounts for 15% of commercial-sector fuel use, which corresponds to 1.6 quads of primary energy consumption. Although smaller in absolute size than the savings associated with lighting and space conditioning, the potential cost-effective energy savings from water heaters are large enough in percentage terms to warrant closer attention. In addition, water heating is much more important in particular building types than in the commercial sector as a whole. Fuel consumption for water heating is highest in lodging establishments, hospitals, and restaurants (0.27, 0.22, and 0.19 quads, respectively); water heating`s share of fuel consumption for these building types is 35%, 18% and 32%, respectively. At the Lawrence Berkeley National Laboratory, we have developed and refined a base-year data set characterizing water heating technologies in commercial buildings as well as a modeling framework. We present the data and modeling framework in this report. The present commercial floorstock is characterized in terms of water heating requirements and technology saturations. Cost-efficiency data for water heating technologies are also developed. These data are intended to support models used for forecasting energy use of water heating in the commercial sector.

  14. Residential applliance data, assumptions and methodology for end-use forecasting with EPRI-REEPS 2.1

    SciTech Connect (OSTI)

    Hwang, R.J,; Johnson, F.X.; Brown, R.E.; Hanford, J.W.; Kommey, J.G.

    1994-05-01

    This report details the data, assumptions and methodology for end-use forecasting of appliance energy use in the US residential sector. Our analysis uses the modeling framework provided by the Appliance Model in the Residential End-Use Energy Planning System (REEPS), which was developed by the Electric Power Research Institute. In this modeling framework, appliances include essentially all residential end-uses other than space conditioning end-uses. We have defined a distinct appliance model for each end-use based on a common modeling framework provided in the REEPS software. This report details our development of the following appliance models: refrigerator, freezer, dryer, water heater, clothes washer, dishwasher, lighting, cooking and miscellaneous. Taken together, appliances account for approximately 70% of electricity consumption and 30% of natural gas consumption in the US residential sector. Appliances are thus important to those residential sector policies or programs aimed at improving the efficiency of electricity and natural gas consumption. This report is primarily methodological in nature, taking the reader through the entire process of developing the baseline for residential appliance end-uses. Analysis steps documented in this report include: gathering technology and market data for each appliance end-use and specific technologies within those end-uses, developing cost data for the various technologies, and specifying decision models to forecast future purchase decisions by households. Our implementation of the REEPS 2.1 modeling framework draws on the extensive technology, cost and market data assembled by LBL for the purpose of analyzing federal energy conservation standards. The resulting residential appliance forecasting model offers a flexible and accurate tool for analyzing the effect of policies at the national level.

  15. ON THE IMPACT OF SUPER RESOLUTION WSR-88D DOPPLER RADAR DATA ASSIMILATION ON HIGH RESOLUTION NUMERICAL MODEL FORECASTS

    SciTech Connect (OSTI)

    Chiswell, S

    2009-01-11

    Assimilation of radar velocity and precipitation fields into high-resolution model simulations can improve precipitation forecasts with decreased 'spin-up' time and improve short-term simulation of boundary layer winds (Benjamin, 2004 & 2007; Xiao, 2008) which is critical to improving plume transport forecasts. Accurate description of wind and turbulence fields is essential to useful atmospheric transport and dispersion results, and any improvement in the accuracy of these fields will make consequence assessment more valuable during both routine operation as well as potential emergency situations. During 2008, the United States National Weather Service (NWS) radars implemented a significant upgrade which increased the real-time level II data resolution to 8 times their previous 'legacy' resolution, from 1 km range gate and 1.0 degree azimuthal resolution to 'super resolution' 250 m range gate and 0.5 degree azimuthal resolution (Fig 1). These radar observations provide reflectivity, velocity and returned power spectra measurements at a range of up to 300 km (460 km for reflectivity) at a frequency of 4-5 minutes and yield up to 13.5 million point observations per level in super-resolution mode. The migration of National Weather Service (NWS) WSR-88D radars to super resolution is expected to improve warning lead times by detecting small scale features sooner with increased reliability; however, current operational mesoscale model domains utilize grid spacing several times larger than the legacy data resolution, and therefore the added resolution of radar data is not fully exploited. The assimilation of super resolution reflectivity and velocity data into high resolution numerical weather model forecasts where grid spacing is comparable to the radar data resolution is investigated here to determine the impact of the improved data resolution on model predictions.

  16. Energy consumption and expenditure projections by population group on the basis of the annual energy outlook 1999 forecast

    SciTech Connect (OSTI)

    Poyer, D.A.; Balsley, J.H.

    2000-01-07

    This report presents an analysis of the relative impact of the base-case scenario used in Annual Energy Outlook 1999 on different population groups. Projections of energy consumption and expenditures, as well as energy expenditure as a share of income, from 1996 to 2020 are given. The projected consumption of electricty, natural gas, distillate fuel, and liquefied petroleum gas during this period is also reported for each population group. In addition, this report compares the findings of the Annual Energy Outlook 1999 report with the 1998 report. Changes in certain indicators and information affect energy use forecasts, and these effects are analyzed and discussed.

  17. Seismic energy data analysis of Merapi volcano to test the eruption time prediction using materials failure forecast method (FFM)

    SciTech Connect (OSTI)

    Anggraeni, Novia Antika

    2015-04-24

    The test of eruption time prediction is an effort to prepare volcanic disaster mitigation, especially in the volcano’s inhabited slope area, such as Merapi Volcano. The test can be conducted by observing the increase of volcanic activity, such as seismicity degree, deformation and SO2 gas emission. One of methods that can be used to predict the time of eruption is Materials Failure Forecast Method (FFM). Materials Failure Forecast Method (FFM) is a predictive method to determine the time of volcanic eruption which was introduced by Voight (1988). This method requires an increase in the rate of change, or acceleration of the observed volcanic activity parameters. The parameter used in this study is the seismic energy value of Merapi Volcano from 1990 – 2012. The data was plotted in form of graphs of seismic energy rate inverse versus time with FFM graphical technique approach uses simple linear regression. The data quality control used to increase the time precision employs the data correlation coefficient value of the seismic energy rate inverse versus time. From the results of graph analysis, the precision of prediction time toward the real time of eruption vary between −2.86 up to 5.49 days.

  18. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    SciTech Connect (OSTI)

    BARCOT, R.A.

    2005-08-17

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is not considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.

  19. Standardized Software for Wind Load Forecast Error Analyses and Predictions Based on Wavelet-ARIMA Models - Applications at Multiple Geographically Distributed Wind Farms

    SciTech Connect (OSTI)

    Hou, Zhangshuan; Makarov, Yuri V.; Samaan, Nader A.; Etingov, Pavel V.

    2013-03-19

    Given the multi-scale variability and uncertainty of wind generation and forecast errors, it is a natural choice to use time-frequency representation (TFR) as a view of the corresponding time series represented over both time and frequency. Here we use wavelet transform (WT) to expand the signal in terms of wavelet functions which are localized in both time and frequency. Each WT component is more stationary and has consistent auto-correlation pattern. We combined wavelet analyses with time series forecast approaches such as ARIMA, and tested the approach at three different wind farms located far away from each other. The prediction capability is satisfactory -- the day-ahead prediction of errors match the original error values very well, including the patterns. The observations are well located within the predictive intervals. Integrating our wavelet-ARIMA (stochastic) model with the weather forecast model (deterministic) will improve our ability significantly to predict wind power generation and reduce predictive uncertainty.

  20. Accounting for fuel price risk: Using forward natural gas prices instead of gas price forecasts to compare renewable to natural gas-fired generation

    SciTech Connect (OSTI)

    Bolinger, Mark; Wiser, Ryan; Golove, William

    2003-08-13

    Against the backdrop of increasingly volatile natural gas prices, renewable energy resources, which by their nature are immune to natural gas fuel price risk, provide a real economic benefit. Unlike many contracts for natural gas-fired generation, renewable generation is typically sold under fixed-price contracts. Assuming that electricity consumers value long-term price stability, a utility or other retail electricity supplier that is looking to expand its resource portfolio (or a policymaker interested in evaluating different resource options) should therefore compare the cost of fixed-price renewable generation to the hedged or guaranteed cost of new natural gas-fired generation, rather than to projected costs based on uncertain gas price forecasts. To do otherwise would be to compare apples to oranges: by their nature, renewable resources carry no natural gas fuel price risk, and if the market values that attribute, then the most appropriate comparison is to the hedged cost of natural gas-fired generation. Nonetheless, utilities and others often compare the costs of renewable to gas-fired generation using as their fuel price input long-term gas price forecasts that are inherently uncertain, rather than long-term natural gas forward prices that can actually be locked in. This practice raises the critical question of how these two price streams compare. If they are similar, then one might conclude that forecast-based modeling and planning exercises are in fact approximating an apples-to-apples comparison, and no further consideration is necessary. If, however, natural gas forward prices systematically differ from price forecasts, then the use of such forecasts in planning and modeling exercises will yield results that are biased in favor of either renewable (if forwards < forecasts) or natural gas-fired generation (if forwards > forecasts). In this report we compare the cost of hedging natural gas price risk through traditional gas-based hedging instruments (e.g., futures, swaps, and fixed-price physical supply contracts) to contemporaneous forecasts of spot natural gas prices, with the purpose of identifying any systematic differences between the two. Although our data set is quite limited, we find that over the past three years, forward gas prices for durations of 2-10 years have been considerably higher than most natural gas spot price forecasts, including the reference case forecasts developed by the Energy Information Administration (EIA). This difference is striking, and implies that resource planning and modeling exercises based on these forecasts over the past three years have yielded results that are biased in favor of gas-fired generation (again, presuming that long-term stability is desirable). As discussed later, these findings have important ramifications for resource planners, energy modelers, and policy-makers.

  1. Effects of the Financial Crisis on Photovoltaics: An Analysis of Changes in Market Forecasts from 2008 to 2009

    SciTech Connect (OSTI)

    Bartlett, J. E.; Margolis, R. M.; Jennings, C. E.

    2009-09-01

    To examine how the financial crisis has impacted expectations of photovoltaic production, demand and pricing over the next several years, we surveyed the market forecasts of industry analysts that had issued projections in 2008 and 2009. We find that the financial crisis has had a significant impact on the PV industry, primarily through increasing the cost and reducing the availability of investment into the sector. These effects have been more immediately experienced by PV installations than by production facilities, due to the different types and duration of investments, and thus PV demand has been reduced by a greater proportion than PV production. By reducing demand more than production, the financial crisis has accelerated previously expected PV overcapacity and resulting price declines.

  2. Enhancing Cloud Radiative Processes and Radiation Efficiency in the Advanced Research Weather Research and Forecasting (WRF) Model

    SciTech Connect (OSTI)

    Iacono, Michael J.

    2015-03-09

    The objective of this research has been to evaluate and implement enhancements to the computational performance of the RRTMG radiative transfer option in the Advanced Research version of the Weather Research and Forecasting (WRF) model. Efficiency is as essential as accuracy for effective numerical weather prediction, and radiative transfer is a relatively time-consuming component of dynamical models, taking up to 30-50 percent of the total model simulation time. To address this concern, this research has implemented and tested a version of RRTMG that utilizes graphics processing unit (GPU) technology (hereinafter RRTMGPU) to greatly improve its computational performance; thereby permitting either more frequent simulation of radiative effects or other model enhancements. During the early stages of this project the development of RRTMGPU was completed at AER under separate NASA funding to accelerate the code for use in the Goddard Space Flight Center (GSFC) Goddard Earth Observing System GEOS-5 global model. It should be noted that this final report describes results related to the funded portion of the originally proposed work concerning the acceleration of RRTMG with GPUs in WRF. As a k-distribution model, RRTMG is especially well suited to this modification due to its relatively large internal pseudo-spectral (g-point) dimension that, when combined with the horizontal grid vector in the dynamical model, can take great advantage of the GPU capability. Thorough testing under several model configurations has been performed to ensure that RRTMGPU improves WRF model run time while having no significant impact on calculated radiative fluxes and heating rates or on dynamical model fields relative to the RRTMG radiation. The RRTMGPU codes have been provided to NCAR for possible application to the next public release of the WRF forecast model.

  3. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy

    SciTech Connect (OSTI)

    Mellit, Adel; Pavan, Alessandro Massi

    2010-05-15

    Forecasting of solar irradiance is in general significant for planning the operations of power plants which convert renewable energies into electricity. In particular, the possibility to predict the solar irradiance (up to 24 h or even more) can became - with reference to the Grid Connected Photovoltaic Plants (GCPV) - fundamental in making power dispatching plans and - with reference to stand alone and hybrid systems - also a useful reference for improving the control algorithms of charge controllers. In this paper, a practical method for solar irradiance forecast using artificial neural network (ANN) is presented. The proposed Multilayer Perceptron MLP-model makes it possible to forecast the solar irradiance on a base of 24 h using the present values of the mean daily solar irradiance and air temperature. An experimental database of solar irradiance and air temperature data (from July 1st 2008 to May 23rd 2009 and from November 23rd 2009 to January 24th 2010) has been used. The database has been collected in Trieste (latitude 45 40'N, longitude 13 46'E), Italy. In order to check the generalization capability of the MLP-forecaster, a K-fold cross-validation was carried out. The results indicate that the proposed model performs well, while the correlation coefficient is in the range 98-99% for sunny days and 94-96% for cloudy days. As an application, the comparison between the forecasted one and the energy produced by the GCPV plant installed on the rooftop of the municipality of Trieste shows the goodness of the proposed model. (author)

  4. Solid waste integrated forecast technical (SWEFT) report: FY1997 to FY 2070 - Document number changed to HNF-0918 at revision 1 - 1/7/97

    SciTech Connect (OSTI)

    Valero, O.J.

    1996-10-03

    This web site provides an up-to-date report on the radioactive solid waste expected to be managed at Hanford`s Solid Waste (SW) Program from onsite and offsite generators. It includes: an overview of Hanford-wide solid waste to be managed by the SW Program; program- level and waste class-specific estimates; background information on waste sources; and Li comparisons with previous forecasts and with other national data sources. The focus of this web site is on low- level mixed waste (LLMW), and transuranic waste (both non-mixed and mixed) (TRU(M)). Some details on low-level waste and hazardous waste are also provided. Currently, this site is reporting data current as of 9/96. The data represent a life cycle forecast covering all reported activities from FY97 through the end of each program`s life cycle.

  5. Simulations of Clouds and Sensitivity Study by Weather Research and Forecast Model for Atmospheric Radiation Measurement Case 4

    SciTech Connect (OSTI)

    Wu, J.; Zhang, M.

    2005-03-18

    One of the large errors in general circulation models (GCMs) cloud simulations is from the mid-latitude, synoptic-scale frontal cloud systems. Now, with the availability of the cloud observations from Atmospheric Radiation Measurement (ARM) 2000 cloud Intensive Operational Period (IOP) and other observational datasets, the community is able to document the model biases in comparison with the observations and make progress in development of better cloud schemes in models. Xie et al. (2004) documented the errors in midlatitude frontal cloud simulations for ARM Case 4 by single-column models (SCMs) and cloud resolving models (CRMs). According to them, the errors in the model simulated cloud field might be caused by following reasons: (1) lacking of sub-grid scale variability; (2) lacking of organized mesoscale cyclonic advection of hydrometeors behind a moving cyclone which may play important role to generate the clouds there. Mesoscale model, however, can be used to better under stand these controls on the subgrid variability of clouds. Few studies have focused on applying mesoscale models to the forecasting of cloud properties. Weaver et al. (2004) used a mesoscale model RAMS to study the frontal clouds for ARM Case 4 and documented the dynamical controls on the sub-GCM-grid-scale cloud variability.

  6. Hawaii demand-side management resource assessment. Final report, Reference Volume 5: The DOETRAN user`s manual; The DOE-2/DBEDT DSM forecasting model interface

    SciTech Connect (OSTI)

    1995-04-01

    The DOETRAN model is a DSM database manager, developed to act as an intermediary between the whole building energy simulation model, DOE-2, and the DBEDT DSM Forecasting Model. DOETRAN accepts output data from DOE-2 and TRANslates that into the format required by the forecasting model. DOETRAN operates in the Windows environment and was developed using the relational database management software, Paradox 5.0 for Windows. It is not necessary to have any knowledge of Paradox to use DOETRAN. DOETRAN utilizes the powerful database manager capabilities of Paradox through a series of customized user-friendly windows displaying buttons and menus with simple and clear functions. The DOETRAN model performs three basic functions, with an optional fourth. The first function is to configure the user`s computer for DOETRAN. The second function is to import DOE-2 files with energy and loadshape data for each building type. The third main function is to then process the data into the forecasting model format. As DOETRAN processes the DOE-2 data, graphs of the total electric monthly impacts for each DSM measure appear, providing the user with a visual means of inspecting DOE-2 data, as well as following program execution. DOETRAN provides three tables for each building type for the forecasting model, one for electric measures, gas measures, and basecases. The optional fourth function provided by DOETRAN is to view graphs of total electric annual impacts by measure. This last option allows a comparative view of how one measure rates against another. A section in this manual is devoted to each of the four functions mentioned above, as well as computer requirements and exiting DOETRAN.

  7. Short and Long-Term Perspectives: The Impact on Low-Income Consumers of Forecasted Energy Price Increases in 2008 and A Cap & Trade Carbon Policy in 2030

    SciTech Connect (OSTI)

    Eisenberg, Joel Fred

    2008-01-01

    The Department of Energy's Energy Information Administration (EIA) recently released its short-term forecast for residential energy prices for the winter of 2007-2008. The forecast indicates increases in costs for low-income consumers in the year ahead, particularly for those using fuel oil to heat their homes. In the following analysis, the Oak Ridge National Laboratory has integrated the EIA price projections with the Residential Energy Consumption Survey (RECS) for 2001 in order to project the impact of these price increases on the nation's low-income households by primary heating fuel type, nationally and by Census Region. The report provides an update of bill estimates provided in a previous study, "The Impact Of Forecasted Energy Price Increases On Low-Income Consumers" (Eisenberg, 2005). The statistics are intended for use by policymakers in the Department of Energy's Weatherization Assistance Program and elsewhere who are trying to gauge the nature and severity of the problems that will be faced by eligible low-income households during the 2008 fiscal year. In addition to providing expenditure forecasts for the year immediately ahead, this analysis uses a similar methodology to give policy makers some insight into one of the major policy debates that will impact low-income energy expenditures well into the middle decades of this century and beyond. There is now considerable discussion of employing a cap-and-trade mechanism to first limit and then reduce U.S. emissions of carbon into the atmosphere in order to combat the long-range threat of human-induced climate change. The Energy Information Administration has provided an analysis of projected energy prices in the years 2020 and 2030 for one such cap-and-trade carbon reduction proposal that, when integrated with the RECS 2001 database, provides estimates of how low-income households will be impacted over the long term by such a carbon reduction policy.

  8. Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project: FY 1994--FY 2001. Environmental Restoration Program, September 1993 Revision

    SciTech Connect (OSTI)

    Not Available

    1993-12-01

    This Waste Generation Forecast for DOE-ORO`s Environmental Restoration OR-1 Project. FY 1994--FY 2001 is the third in a series of documents that report current estimates of the waste volumes expected to be generated as a result of Environmental Restoration activities at Department of Energy, Oak Ridge Operations Office (DOE-ORO), sites. Considered in the scope of this document are volumes of waste expected to be generated as a result of remedial action and decontamination and decommissioning activities taking place at these sites. Sites contributing to the total estimates make up the DOE-ORO Environmental Restoration OR-1 Project: the Oak Ridge K-25 Site, the Oak Ridge National Laboratory, the Y-12 Plant, the Paducah Gaseous Diffusion Plant, the Portsmouth Gaseous Diffusion Plant, and the off-site contaminated areas adjacent to the Oak Ridge facilities (collectively referred to as the Oak Ridge Reservation Off-Site area). Estimates are available for the entire fife of all waste generating activities. This document summarizes waste estimates forecasted for the 8-year period of FY 1994-FY 2001. Updates with varying degrees of change are expected throughout the refinement of restoration strategies currently in progress at each of the sites. Waste forecast data are relatively fluid, and this document represents remediation plans only as reported through September 1993.

  9. Final Report, 2011-2014. Forecasting Carbon Storage as Eastern Forests Age. Joining Experimental and Modeling Approaches at the UMBS AmeriFlux Site

    SciTech Connect (OSTI)

    Curtis, Peter; Bohrer, Gil; Gough, Christopher; Nadelhoffer, Knute

    2015-03-12

    At the University of Michigan Biological Station (UMBS) AmeriFlux sites (US-UMB and US-UMd), long-term C cycling measurements and a novel ecosystem-scale experiment are revealing physical, biological, and ecological mechanisms driving long-term trajectories of C cycling, providing new data for improving modeling forecasts of C storage in eastern forests. Our findings provide support for previously untested hypotheses that stand-level structural and biological properties constrain long-term trajectories of C storage, and that remotely sensed canopy structural parameters can substantially improve model forecasts of forest C storage. Through the Forest Accelerated Succession ExperimenT (FASET), we are directly testing the hypothesis that forest C storage will increase due to increasing structural and biological complexity of the emerging tree communities. Support from this project, 2011-2014, enabled us to incorporate novel physical and ecological mechanisms into ecological, meteorological, and hydrological models to improve forecasts of future forest C storage in response to disturbance, succession, and current and long-term climate variation

  10. Summary of available waste forecast data for the Environmental Restoration Program at the Oak Ridge National Laboratory, Oak Ridge, Tennessee

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    This report identifies patterns of Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) waste generation that are predicted by the current ER Waste Generation Forecast data base. It compares the waste volumes to be generated with the waste management capabilities of current and proposed treatment, storage, or disposal (TSD) facilities. The scope of this report is limited to wastes generated during activities funded by the Office of the Deputy Assistant Secretary for Environmental Restoration (EM-40) and excludes wastes from the decontamination and decommissioning of facilities. Significant quantities of these wastes are expected to be generated during ER activities. This report has been developed as a management tool supporting communication and coordination of waste management activities at ORNL. It summarizes the available data for waste that will be generated as a result of remediation activities under the direction of the U.S. Department of Energy Oak Ridge Operations Office and identifies areas requiring continued waste management planning and coordination. Based on the available data, it is evident that most remedial action wastes leaving the area of contamination can be managed adequately with existing and planned ORR waste management facilities if attention is given to waste generation scheduling and the physical limitations of particular TSD facilities. Limited use of off-site commercial TSD facilities is anticipated, provided the affected waste streams can be shown to satisfy the requirements of the performance objective for certification of non-radioactive hazardous waste and the waste acceptance criteria of the off-site facilities. Ongoing waste characterization will be required to determine the most appropriate TSD facility for each waste stream.

  11. The use of real-time off-site observations as a methodology for increasing forecast skill in prediction of large wind power ramps one or more hours ahead of their impact on a wind plant.

    SciTech Connect (OSTI)

    Martin Wilde, Principal Investigator

    2012-12-31

    ABSTRACT Application of Real-Time Offsite Measurements in Improved Short-Term Wind Ramp Prediction Skill Improved forecasting performance immediately preceding wind ramp events is of preeminent concern to most wind energy companies, system operators, and balancing authorities. The value of near real-time hub height-level wind data and more general meteorological measurements to short-term wind power forecasting is well understood. For some sites, access to onsite measured wind data - even historical - can reduce forecast error in the short-range to medium-range horizons by as much as 50%. Unfortunately, valuable free-stream wind measurements at tall tower are not typically available at most wind plants, thereby forcing wind forecasters to rely upon wind measurements below hub height and/or turbine nacelle anemometry. Free-stream measurements can be appropriately scaled to hub-height levels, using existing empirically-derived relationships that account for surface roughness and turbulence. But there is large uncertainty in these relationships for a given time of day and state of the boundary layer. Alternatively, forecasts can rely entirely on turbine anemometry measurements, though such measurements are themselves subject to wake effects that are not stationary. The void in free-stream hub-height level measurements of wind can be filled by remote sensing (e.g., sodar, lidar, and radar). However, the expense of such equipment may not be sustainable. There is a growing market for traditional anemometry on tall tower networks, maintained by third parties to the forecasting process (i.e., independent of forecasters and the forecast users). This study examines the value of offsite tall-tower data from the WINDataNOW Technology network for short-horizon wind power predictions at a wind farm in northern Montana. The presentation shall describe successful physical and statistical techniques for its application and the practicality of its application in an operational setting. It shall be demonstrated that when used properly, the real-time offsite measurements materially improve wind ramp capture and prediction statistics, when compared to traditional wind forecasting techniques and to a simple persistence model.

  12. Development of an Immersed Boundary Method to Resolve Complex Terrain in the Weather Research and Forecasting Model

    SciTech Connect (OSTI)

    Lunquist, K A; Chow, F K; Lundquist, J K; Mirocha, J D

    2007-09-04

    Flow and dispersion processes in urban areas are profoundly influenced by the presence of buildings which divert mean flow, affect surface heating and cooling, and alter the structure of turbulence in the lower atmosphere. Accurate prediction of velocity, temperature, and turbulent kinetic energy fields are necessary for determining the transport and dispersion of scalars. Correct predictions of scalar concentrations are vital in densely populated urban areas where they are used to aid in emergency response planning for accidental or intentional releases of hazardous substances. Traditionally, urban flow simulations have been performed by computational fluid dynamics (CFD) codes which can accommodate the geometric complexity inherent to urban landscapes. In these types of models the grid is aligned with the solid boundaries, and the boundary conditions are applied to the computational nodes coincident with the surface. If the CFD code uses a structured curvilinear mesh, then time-consuming manual manipulation is needed to ensure that the mesh conforms to the solid boundaries while minimizing skewness. If the CFD code uses an unstructured grid, then the solver cannot be optimized for the underlying data structure which takes an irregular form. Unstructured solvers are therefore often slower and more memory intensive than their structured counterparts. Additionally, urban-scale CFD models are often forced at lateral boundaries with idealized flow, neglecting dynamic forcing due to synoptic scale weather patterns. These CFD codes solve the incompressible Navier-Stokes equations and include limited options for representing atmospheric processes such as surface fluxes and moisture. Traditional CFD codes therefore posses several drawbacks, due to the expense of either creating the grid or solving the resulting algebraic system of equations, and due to the idealized boundary conditions and the lack of full atmospheric physics. Meso-scale atmospheric boundary layer simulations, on the other hand, are performed by numerical weather prediction (NWP) codes, which cannot handle the geometry of the urban landscape, but do provide a more complete representation of atmospheric physics. NWP codes typically use structured grids with terrain-following vertical coordinates, include a full suite of atmospheric physics parameterizations, and allow for dynamic synoptic scale lateral forcing through grid nesting. Terrain following grids are unsuitable for urban terrain, as steep terrain gradients cause extreme distortion of the computational cells. In this work, we introduce and develop an immersed boundary method (IBM) to allow the favorable properties of a numerical weather prediction code to be combined with the ability to handle complex terrain. IBM uses a non-conforming structured grid, and allows solid boundaries to pass through the computational cells. As the terrain passes through the mesh in an arbitrary manner, the main goal of the IBM is to apply the boundary condition on the interior of the domain as accurately as possible. With the implementation of the IBM, numerical weather prediction codes can be used to explicitly resolve urban terrain. Heterogeneous urban domains using the IBM can be nested into larger mesoscale domains using a terrain-following coordinate. The larger mesoscale domain provides lateral boundary conditions to the urban domain with the correct forcing, allowing seamless integration between mesoscale and urban scale models. Further discussion of the scope of this project is given by Lundquist et al. [2007]. The current paper describes the implementation of an IBM into the Weather Research and Forecasting (WRF) model, which is an open source numerical weather prediction code. The WRF model solves the non-hydrostatic compressible Navier-Stokes equations, and employs an isobaric terrain-following vertical coordinate. Many types of IB methods have been developed by researchers; a comprehensive review can be found in Mittal and Iaccarino [2005]. To the authors knowledge, this is the first IBM approach that is able to

  13. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    SciTech Connect (OSTI)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID to build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.

  14. Agent-based model forecasts aging of the population of people who inject drugs in metropolitan Chicago and changing prevalence of hepatitis C infections

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gutfraind, Alexander; Boodram, Basmattee; Prachand, Nikhil; Hailegiorgis, Atesmachew; Dahari, Harel; Major, Marian E.; Kaderali, Lars

    2015-09-30

    People who inject drugs (PWID) are at high risk for blood-borne pathogens transmitted during the sharing of contaminated injection equipment, particularly hepatitis C virus (HCV). HCV prevalence is influenced by a complex interplay of drug-use behaviors, social networks, and geography, as well as the availability of interventions, such as needle exchange programs. To adequately address this complexity in HCV epidemic forecasting, we have developed a computational model, the Agent-based Pathogen Kinetics model (APK). APK simulates the PWID population in metropolitan Chicago, including the social interactions that result in HCV infection. We used multiple empirical data sources on Chicago PWID tomore » build a spatial distribution of an in silico PWID population and modeled networks among the PWID by considering the geography of the city and its suburbs. APK was validated against 2012 empirical data (the latest available) and shown to agree with network and epidemiological surveys to within 1%. For the period 2010–2020, APK forecasts a decline in HCV prevalence of 0.8% per year from 44(±2)% to 36(±5)%, although some sub-populations would continue to have relatively high prevalence, including Non-Hispanic Blacks, 48(±5)%. The rate of decline will be lowest in Non-Hispanic Whites and we find, in a reversal of historical trends, that incidence among non-Hispanic Whites would exceed incidence among Non-Hispanic Blacks (0.66 per 100 per years vs 0.17 per 100 person years). APK also forecasts an increase in PWID mean age from 35(±1) to 40(±2) with a corresponding increase from 59(±2)% to 80(±6)% in the proportion of the population >30 years old. Our research highlight the importance of analyzing sub-populations in disease predictions, the utility of computer simulation for analyzing demographic and health trends among PWID and serve as a tool for guiding intervention and prevention strategies in Chicago, and other major cities.« less

  15. Hawaii Energy Strategy: Program guide. [Contains special sections on analytical energy forecasting, renewable energy resource assessment, demand-side energy management, energy vulnerability assessment, and energy strategy integration

    SciTech Connect (OSTI)

    Not Available

    1992-09-01

    The Hawaii Energy Strategy program, or HES, is a set of seven projects which will produce an integrated energy strategy for the State of Hawaii. It will include a comprehensive energy vulnerability assessment with recommended courses of action to decrease Hawaii's energy vulnerability and to better prepare for an effective response to any energy emergency or supply disruption. The seven projects are designed to increase understanding of Hawaii's energy situation and to produce recommendations to achieve the State energy objectives of: Dependable, efficient, and economical state-wide energy systems capable of supporting the needs of the people, and increased energy self-sufficiency. The seven projects under the Hawaii Energy Strategy program include: Project 1: Develop Analytical Energy Forecasting Model for the State of Hawaii. Project 2: Fossil Energy Review and Analysis. Project 3: Renewable Energy Resource Assessment and Development Program. Project 4: Demand-Side Management Program. Project 5: Transportation Energy Strategy. Project 6: Energy Vulnerability Assessment Report and Contingency Planning. Project 7: Energy Strategy Integration and Evaluation System.

  16. Implementation and assessment of turbine wake models in the Weather Research and Forecasting model for both mesoscale and large-eddy simulation

    SciTech Connect (OSTI)

    Singer, M; Mirocha, J; Lundquist, J; Cleve, J

    2010-03-03

    Flow dynamics in large wind projects are influenced by the turbines located within. The turbine wakes, regions characterized by lower wind speeds and higher levels of turbulence than the surrounding free stream flow, can extend several rotor diameters downstream, and may meander and widen with increasing distance from the turbine. Turbine wakes can also reduce the power generated by downstream turbines and accelerate fatigue and damage to turbine components. An improved understanding of wake formation and transport within wind parks is essential for maximizing power output and increasing turbine lifespan. Moreover, the influence of wakes from large wind projects on neighboring wind farms, agricultural activities, and local climate are all areas of concern that can likewise be addressed by wake modeling. This work describes the formulation and application of an actuator disk model for studying flow dynamics of both individual turbines and arrays of turbines within wind projects. The actuator disk model is implemented in the Weather Research and Forecasting (WRF) model, which is an open-source atmospheric simulation code applicable to a wide range of scales, from mesoscale to large-eddy simulation. Preliminary results demonstrate the applicability of the actuator disk model within WRF to a moderately high-resolution large-eddy simulation study of a small array of turbines.

  17. Effects of soot-induced snow albedo change on snowpack and hydrological cycle in western United States based on Weather Research and Forecasting chemistry and regional climate simulations

    SciTech Connect (OSTI)

    Qian, Yun; Gustafson, William I.; Leung, Lai-Yung R.; Ghan, Steven J.

    2009-02-14

    Radiative forcing induced by soot on snow is a major anthropogenic forcing affecting the global climate. However, it is uncertain how the soot-induced snow albedo perturbation affects regional snowpack and the hydrological cycle. In this study we simulated the deposition of soot aerosol on snow and investigated the resulting impact on snowpack and the surface water budget in the western United States. A yearlong simulation was performed using the chemistry version of the Weather Research and Forecasting model (WRF-Chem) to determine an annual budget of soot deposition, followed by two regional climate simulations using WRF in meteorology-only mode, with and without the soot-induced snow albedo perturbations. The chemistry simulation shows large spatial variability in soot deposition that reflects the localized emissions and the influence of the complex terrain. The soot-induced snow albedo perturbations increase the net solar radiation flux at the surface during late winter to early spring, increase the surface air temperature, reduce snow water equivalent amount, and lead to reduced snow accumulation and less spring snowmelt. These effects are stronger over the central Rockies and southern Alberta, where soot deposition and snowpack overlap the most. The indirect forcing of soot accelerates snowmelt and alters stream flows, including a trend toward earlier melt dates in the western United States. The soot-induced albedo reduction initiates a positive feedback process whereby dirty snow absorbs more solar radiation, heating the surface and warming the air. This warming causes reduced snow depth and fraction, which further reduces the regional surface albedo for the snow covered regions. Our simulations indicate that the change of maximum snow albedo induced by soot on snow contributes to 60% of the net albedo reduction over the central Rockies. Snowpack reduction accounts for the additional 40%.

  18. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    SciTech Connect (OSTI)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed wind speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (? ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35 and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF models MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a ? gradient method whether using observed or modelled ? profiles.

  19. A Case Study of the Weather Research and Forecasting Model Applied to the Joint Urban 2003 Tracer Field Experiment. Part 1. Wind and Turbulence

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Nelson, Matthew A.; Brown, Michael J.; Halverson, Scot A.; Bieringer, Paul E.; Annunzio, Andrew; Bieberbach, George; Meech, Scott

    2015-09-25

    We found that numerical-weather-prediction models are often used to supply the mean wind and turbulence fields for atmospheric transport and dispersion plume models as they provide dense horizontally- and vertically-resolved geographic coverage in comparison to typically sparse monitoring networks. Here, the Weather Research and Forecasting (WRF) model was run over the month-long period of the Joint Urban 2003 field campaign conducted in Oklahoma City and the simulated fields important to transport and dispersion models were compared to measurements from a number of sodars, tower-based sonic anemometers, and balloon soundings located in the greater metropolitan area. Time histories of computed windmore » speed, wind direction, turbulent kinetic energy (e), friction velocity (u* ), and reciprocal Obukhov length (1 / L) were compared to measurements over the 1-month field campaign. Vertical profiles of wind speed, potential temperature (θ ), and e were compared during short intensive operating periods. The WRF model was typically able to replicate the measured diurnal variation of the wind fields, but with an average absolute wind direction and speed difference of 35° and 1.9 m s-1 , respectively. Then, using the Mellor-Yamada-Janjic (MYJ) surface-layer scheme, the WRF model was found to generally underpredict surface-layer TKE but overpredict u* that was observed above a suburban region of Oklahoma City. The TKE-threshold method used by the WRF model’s MYJ surface-layer scheme to compute the boundary-layer height (h) consistently overestimated h derived from a θ gradient method whether using observed or modelled θ profiles.« less

  20. A critical evaluation of the upper ocean heat budget in the Climate Forecast System Reanalysis data for the south central equatorial Pacific

    SciTech Connect (OSTI)

    Liu H.; Lin W.; Liu, X.; Zhang, M.

    2011-08-26

    Coupled ocean-atmospheric models suffer from the common bias of a spurious rain belt south of the central equatorial Pacific throughout the year. Observational constraints on key processes responsible for this bias are scarce. The recently available reanalysis from a coupled model system for the National Centers for Environmental Prediction (NCEP) Climate Forecast System Reanalysis (CFSR) data is a potential benchmark for climate models in this region. Its suitability for model evaluation and validation, however, needs to be established. This paper examines the mixed layer heat budget and the ocean surface currents - key factors for the sea surface temperature control in the double Inter-Tropical Convergence Zone in the central Pacific - from 5{sup o}S to 10{sup o}S and 170{sup o}E to 150{sup o}W. Two independent approaches are used. The first approach is through comparison of CFSR data with collocated station observations from field experiments; the second is through the residual analysis of the heat budget of the mixed layer. We show that the CFSR overestimates the net surface flux in this region by 23 W m{sup -2}. The overestimated net surface flux is mainly due to an even larger overestimation of shortwave radiation by 44 W m{sup -2}, which is compensated by a surface latent heat flux overestimated by 14 W m{sup -2}. However, the quality of surface currents and the associated oceanic heat transport in CFSR are not compromised by the surface flux biases, and they agree with the best available estimates. The uncertainties of the observational data from field experiments are also briefly discussed in the present study.

  1. Fallout forecasting: 1945-1962

    SciTech Connect (OSTI)

    Kennedy, W.R. Jr.

    1986-03-01

    The delayed hazards of fallout from the detonations of nuclear devices in the atmosphere have always been the concern of those involved in the Test Program. Even before the Trinity Shot (TR-2) of July 16, 1945, many very competent, intelligent scientists and others from all fields of expertise tried their hand at the prediction problems. This resume and collection of parts from reports, memoranda, references, etc., endeavor to chronologically outline prediction methods used operationally in the field during Test Operations of nuclear devices fired into the atmosphere.

  2. Using Wikipedia to forecast disease

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to plan for future outbreaks. The LANL team was able to successfully monitor influenza in the United States, dengue fever in Brazil and Thailand, and tuberculosis in China...

  3. Stellar Astrophysics Requirements NERSC Forecast

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Copernicus Center, Warsaw). Computing cycles: DOE NERSC. 14 May 26, 2011 FLASHWDM Parallel Performance strong peak weak 15 May 26, 2011 Example 2: Core-Collapse SN...

  4. NREL: Energy Analysis - Daniel Steinberg

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Steinberg Photo of Daniel Steinberg Daniel Steinberg is a section supervisor of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Senior Policy and Economic Analyst - Electricity Planning Section Supervisor On staff since September 2009 Phone number: 303-275-4287 E-mail: daniel.steinberg@nrel.gov Areas of expertise Energy policy and regulatory analysis Econometric analysis Modeling of interactions between climate change and the energy sector Primary research

  5. USE OF AN EQUILIBRIUM MODEL TO FORECAST DISSOLUTION EFFECTIVENESS, SAFETY IMPACTS, AND DOWNSTREAM PROCESSABILITY FROM OXALIC ACID AIDED SLUDGE REMOVAL IN SAVANNAH RIVER SITE HIGH LEVEL WASTE TANKS 1-15

    SciTech Connect (OSTI)

    KETUSKY, EDWARD

    2005-10-31

    This thesis details a graduate research effort written to fulfill the Magister of Technologiae in Chemical Engineering requirements at the University of South Africa. The research evaluates the ability of equilibrium based software to forecast dissolution, evaluate safety impacts, and determine downstream processability changes associated with using oxalic acid solutions to dissolve sludge heels in Savannah River Site High Level Waste (HLW) Tanks 1-15. First, a dissolution model is constructed and validated. Coupled with a model, a material balance determines the fate of hypothetical worst-case sludge in the treatment and neutralization tanks during each chemical adjustment. Although sludge is dissolved, after neutralization more is created within HLW. An energy balance determines overpressurization and overheating to be unlikely. Corrosion induced hydrogen may overwhelm the purge ventilation. Limiting the heel volume treated/acid added and processing the solids through vitrification is preferred and should not significantly increase the number of glass canisters.

  6. Diagnosis of the Marine Low Cloud Simulation in the NCAR Community Earth System Model (CESM) and the NCEP Global Forecast System (GFS)-Modular Ocean Model v4 (MOM4) coupled model

    SciTech Connect (OSTI)

    Xiao, Heng; Mechoso, C. R.; Sun, Rui; Han, J.; Pan, H. L.; Park, S.; Hannay, Cecile; Bretherton, Christopher S.; Teixeira, J.

    2014-07-25

    We present a diagnostic analysis of the marine low cloud climatology simulated by two state-of-the-art coupled atmosphere-ocean models: the NCAR Community Earth System Model (CESM) and the NCEP Global Forecasting System (GFS). In both models, the shallow convection and boundary layer turbulence parameterizations have been recently updated: both models now use a mass-flux scheme for the parameterization of shallow convection, and a turbulence parameterization capable of handling Stratocumulus (Sc)-topped Planetary Boundary Layers (PBLs). For shallow convection, both models employ a convective trigger function based on the concept of convective inhibition and both include explicit convective overshooting/penetrative entrainment formulation. For Sc-topped PBL, both models treat explicitly turbulence mixing and cloud-top entrainment driven by cloud-top radiative cooling. Our focus is on the climatological transition from Sc to shallow Cumulus (Cu)-topped PBL in the subtropical eastern oceans. We show that in the CESM the coastal Sc-topped PBLs in the subtropical Eastern Pacific are well-simulated but the climatological transition from Sc to shallow Cu is too abrupt and happens too close to the coast. By contrast, in the GFS coupled simulation the coastal Sc amount and PBL depth are severely underestimated while the transition from Sc to shallow Cu is delayed and offshore Sc cover is too extensive in the subtropical Eastern Pacific. We discuss the possible connections between such differences in the simulations and differences in the parameterizations of shallow convection and boundary layer turbulence in the two models.

  7. Project Profile: Design of Social and Economic Incentives and Information Campaigns to Promote Solar Technology Diffusion through Data-Driven Behavior Modeling

    Broader source: Energy.gov [DOE]

    Sandia National Laboratories, along with partners at the California Center for Sustainable Energy, the National Renewable Energy Laboratory, the University of Pennsylvania Wharton School, and...

  8. Module 6 - Metrics, Performance Measurements and Forecasting...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    This module focuses on the metrics and performance measurement tools used in Earned Value. This module reviews metrics such as cost and schedule variance along with cost and ...

  9. Stochastic Forecasting of Algae Blooms in Lakes

    SciTech Connect (OSTI)

    Wang, Peng; Tartakovsky, Daniel M.; Tartakovsky, Alexandre M.

    2013-01-15

    We consider the development of harmful algae blooms (HABs) in a lake with uncertain nutrients inflow. Two general frameworks, Fokker-Planck equation and the PDF methods, are developed to quantify the resultant concentration uncertainty of various algae groups, via deriving a deterministic equation of their joint probability density function (PDF). A computational example is examined to study the evolution of cyanobacteria (the blue-green algae) and the impacts of initial concentration and inflow-outflow ratio.

  10. Development and Demonstration of Advanced Forecasting, Power...

    Broader source: Energy.gov (indexed) [DOE]

    ...mizationprojectanlgasper.ppt More Documents & Publications Day-ahead Scheding and Real-time Operations Tool 2014 Water Power Program Peer Review Compiled Presentations: ...

  11. NREL: Resource Assessment and Forecasting - Facilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    energy research and development. The 2,600-square-foot facility was completed in 2000 and houses the Metrology Laboratory, Optical Metrology Laboratory, Data Acquisition...

  12. Issues in Midterm Analysis and Forecasting

    Reports and Publications (EIA)

    1999-01-01

    Final issue of this report. Presents a series of eight papers, which cover topics in analysis and modeling that underlie the Annual Energy Outlook 1999, as well as other significant issues in midterm energy markets.

  13. NREL: Resource Assessment and Forecasting - Metrology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Metrology Laboratory Photo of Solar Radiation Research Laboratory researchers inspecting radiometers mounted to calibration tables at the outside test site. Researchers at the Solar Radiation Research Laboratory use pyranometers, pyrheliometers, pyrgeometers, photometers, and spectroradiometers to provide the solar resource information necessary for renewable energy research and development. Metrology, the science of measurement, is a critical part of providing accurate and repeatable data.

  14. NREL: Resource Assessment and Forecasting - Research Staff

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Photo of Mark Kutchenreiter - Senior Research Technician A.S. Air Pollution Control Engineering Technology, Pennsylvania State University Mark joined NREL in 2010 and works at the ...

  15. OpenEI Community - energy data + forecasting

    Open Energy Info (EERE)

  16. Cross-impacts analysis development and energy policy analysis applications

    SciTech Connect (OSTI)

    Roop, J.M.; Scheer, R.M.; Stacey, G.S.

    1986-12-01

    Purpose of this report is to describe the cross-impact analysis process and microcomputer software developed for the Office of Policy, Planning, and Analysis (PPA) of DOE. First introduced in 1968, cross-impact analysis is a technique that produces scenarios of future conditions and possibilities. Cross-impact analysis has several unique attributes that make it a tool worth examining, especially in the current climate when the outlook for the economy and several of the key energy markets is uncertain. Cross-impact analysis complements the econometric, engineering, systems dynamics, or trend approaches already in use at DOE. Cross-impact analysis produces self-consistent scenarios in the broadest sense and can include interaction between the economy, technology, society and the environment. Energy policy analyses that couple broad scenarios of the future with detailed forecasting can produce more powerful results than scenario analysis or forecasts can produce alone.

  17. New Tools for Forecasting Old Physics at the LHC

    ScienceCinema (OSTI)

    None

    2011-10-06

    For the LHC to uncover many types of new physics, the "old physics" produced by the Standard Model must be understood very well. For decades, the central theoretical tool for this job was the Feynman diagram expansion. However, Feynman diagrams are just too slow, even on fast computers, to allow adequate precision for complicated LHC events with many jets in the final state. Such events are already visible in the initial LHC data. Over the past few years, alternative methods to Feynman diagrams have come to fruition. These new "on-shell" methods are based on the old principles of unitarity and factorization. They can be much more efficient because they exploit the underlying simplicity of scattering amplitudes, and recycle lower-loop information. I will describe how and why these methods work, and present some of the recent state-of-the-art results that have been obtained with them.

  18. Ocean thermal energy conversion: Historical highlights, status, and forecast

    SciTech Connect (OSTI)

    Dugger, G.L.; Avery, W.H.; Francis, E.J.; Richards, D.

    1983-07-01

    In 1881, d'Arsonval conceived the closed-Rankine-cycle ocean thermal energy conversion (OTEC) system in which a working fluid is vaporized by heat exchange with cold water drawn from a 700-1200 m depth. In 1930, Claude demonstrated an open-cycle process in Cuba. Surface water was flash-vaporized at 3 kPa to drive a turbine directly (no secondary working fluid) and then was condensed by direct contact with water drawn from a 700-m depth through a 1.6m-diam, 1.75-km-long cold-water pipe (CWP). From a delta T of 14/sup 0/C his undersized turbine generated 22 kW. In 1956 a French team designed a 3.5-MW (net) open-cycle plant for installation off Abidjan on the Ivory Coast of Africa and demonstrated the necessary CWP deployment. The at-sea demonstrations by Mini-OTEC and OTEC-1 and other recent advances in OTEC technology summarized herein represent great progress. All of the types of plants proposed for the DOE's PON program may be worthy of development; certainly work on a grazing plant is needed. Our estimates indicate that the U.S. goals established by Public Law 96-310 leading to 10 GW of OTEC power and energy product equivalents by 1999 are achievable, provided that adequate federal financial incentives are retained to assure the building of the first few plants.

  19. PBL FY 2002 Third Quarter Review Forecast of Generation Accumulated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Revenue Basis. The FB CRAC Revenue Basis is the total generation revenue (not including LB CRAC) for the loads subject to FB CRAC plus Slice loads, for the year in which the FB...

  20. How regulators should use natural gas price forecasts

    SciTech Connect (OSTI)

    Costello, Ken

    2010-08-15

    Natural gas prices are critical to a range of regulatory decisions covering both electric and gas utilities. Natural gas prices are often a crucial variable in electric generation capacity planning and in the benefit-cost relationship for energy-efficiency programs. High natural gas prices can make coal generation the most economical new source, while low prices can make natural gas generation the most economical. (author)

  1. Research Study - Global Enterprise VoIP Equipment Market Forecasts...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  2. Global GPS Phones Market Size, Segmentation, Demand Forecast...

    Open Energy Info (EERE)

    we deeply analyzed the world's main region market conditions that including the product price, profit, capacity, production, capacity utilization, supply, demand and industry...

  3. Wind Forecast Improvement Project Southern Study Area Final Report...

    Office of Environmental Management (EM)

    Southern Study Area Final Report.pdf More Documents & Publications QER - Comment of Edison Electric Institute (EEI) 1 QER - Comment of Canadian Hydropower Association QER -...

  4. Regional forecasting with global atmospheric models; Third year report

    SciTech Connect (OSTI)

    Crowley, T.J.; North, G.R.; Smith, N.R.

    1994-05-01

    This report was prepared by the Applied Research Corporation (ARC), College Station, Texas, under subcontract to Pacific Northwest Laboratory (PNL) as part of a global climate studies task. The task supports site characterization work required for the selection of a potential high-level nuclear waste repository and is part of the Performance Assessment Scientific Support (PASS) Program at PNL. The work is under the overall direction of the Office of Civilian Radioactive Waste Management (OCRWM), US Department of Energy Headquarters, Washington, DC. The scope of the report is to present the results of the third year`s work on the atmospheric modeling part of the global climate studies task. The development testing of computer models and initial results are discussed. The appendices contain several studies that provide supporting information and guidance to the modeling work and further details on computer model development. Complete documentation of the models, including user information, will be prepared under separate reports and manuals.

  5. Forecast of Standard Atomic Weights for the Mononuclidic Elements 2011

    SciTech Connect (OSTI)

    Holden, N.E.; Holden, N.; Holden,N.E.

    2011-07-27

    In this short report, I will provide an early warning about potential changes to the standard atomic weight values for the twenty mononuclidic and the so-called pseudo-mononuclidic ({sup 232}Th and {sup 231}Pa) chemical elements due to the estimated changes in the mass values to be published in the next Atomic Mass Tables within the next two years. There have been many new measurements of atomic masses, since the last published Atomic Mass Table. The Atomic Mass Data Center has released an unpublished version of the present status of the atomic mass values as a private communication. We can not update the Standard Atomic Weight Table at this time based on these unpublished values but we can anticipate how many changes are probably going to be expected in the next few years on the basis of the forthcoming publication of the Atomic Mass Table. I will briefly discuss the procedures that the Atomic Weights Commission used in deriving the recommended Standard Atomic Weight values and their uncertainties from the atomic mass values. I will also discuss some concern raised about a proposed change in the definition of the mole. The definition of the mole is now connected directly to the mass of a {sup 12}C isotope (which is defined as 12 exactly) and to the kilogram. A change in the definition of the mole will probably impact the mass of {sup 12}C.

  6. Review/Verify Strategic Skills Needs/Forecasts/Future Mission...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Sector program Execution Plans (1-3 yrs) HR Strategic Plan (1-3 yrs) Current hiring Lists (1-2 yrs) Succession Plans (1-x yrs) UpdateValidate Strategic Staff...

  7. Short-Term Energy Carbon Dioxide Emissions Forecasts August 2009

    Reports and Publications (EIA)

    2009-01-01

    Supplement to the Short-Term Energy Outlook. Short-term projections for U.S. carbon dioxide emissions of the three fossil fuels: coal, natural gas, and petroleum.

  8. Forecast of contracting and subcontracting opportunities: Fiscal year 1998

    SciTech Connect (OSTI)

    1998-01-01

    This report describes procurement procedures and opportunities for small businesses with the Department of Energy (DOE). It describes both prime and subcontracting opportunities of $100,000 and above which are being set aside for 8(a) and other small business concerns. The report contains sections on: SIC codes; procurement opportunities with headquarters offices; procurement opportunities with field offices; subcontracting opportunities with major contractors; 8(a) contracts expiring in FY 1998; other opportunities to do business with DOE; management and operating contractors--expiration dates; Office of Small and Disadvantaged Business Utilization (OSDBU) staff directory; and small business survey. This document will be updated quarterly on the home page.

  9. Study forecasts disappearance of conifers due to climate change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    due to climate change New results, reported in a paper released today in the journal Nature Climate Change, suggests that global models may underestimate predictions of forest...

  10. Microsoft Word - Argonne_WindPowerForecasting_Report_Final_Nov...

    Office of Scientific and Technical Information (OSTI)

    R.A. Anthes and T.T. Warner, "Development of hydrodynamic models suitable for air pollution and other mesometeorological studies," Monthly Weather Review, vol. 106, pp....

  11. Computers for artificial intelligence a technology assessment and forecast

    SciTech Connect (OSTI)

    Miller, R.K.

    1986-01-01

    This study reviews the development and current state-of-the-art in computers for artificial intelligence, including LISP machines, AI workstations, professional and engineering workstations, minicomputers, mainframes, and supercomputers. Major computer systems for AI applications are reviewed. The use of personal computers for expert system development is discussed, and AI software for the IBM PC, Texas Instrument Professional Computer, and Apple MacIntosh is presented. Current research aimed at developing a new computer for artificial intelligence is described, and future technological developments are discussed.

  12. NREL: Resource Assessment and Forecasting - Working with Us

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Submit a proposal in response to any active solicitation for assisting NREL with a solar radiation research R&D activity Work with NREL researchers through mentored research...

  13. NREL: Resource Assessment and Forecasting - Optical Metrology Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Optical Metrology Laboratory Photo of a laser and a spectral irradiance calibration system used to create lamp-detector alignment. Researchers use a spectral irradiance calibration alignment jig and a laser beam to align a calibration source and test unit. The NREL Optical Metrology Laboratory ensures that optical radiation resource measurement equipment is calibrated to national or international standards to ensure the quality and traceability of data. NREL considers optical radiation to range

  14. Uncertainty Reduction in Power Generation Forecast Using Coupled...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Conference Resource Relation: Conference: IEEE PES General Meeting, Conference & Exposition, July 27-31, 2014, National Harbor, MD Publisher: IEEE, Piscataway, NJ, ...

  15. Base Oil Market Segment Forecasts up to 2020,Research Reports...

    Open Energy Info (EERE)

    Market Research Home > Groups > Future of Condition Monitoring for Wind Turbines Wayne31jan's picture Submitted by Wayne31jan(150) Contributor 11 June, 2015 - 03:19 Base Oil...

  16. North America Drilling Fluids Market Segment Forecasts up to...

    Open Energy Info (EERE)

    removal of cuttings from wellbore, counterbalancing the formation processes, maintaining wellbore stability and so on, are on the rise in the offshore areas of Gulf of Mexico. As...

  17. ANL Wind Power Forecasting and Electricity Markets | Open Energy...

    Open Energy Info (EERE)

    Company Organization Argonne National Laboratory Partner Institute for Systems and Computer Engineering of Porto (INESC Porto) in Portugal, Midwest Independent System Operator...

  18. Microsoft Word - Documentation - Price Forecast Uncertainty.doc

    U.S. Energy Information Administration (EIA) Indexed Site

    growth, Organization of Petroleum ... Journal of Environmental Economics and Management, Vol. 46 (2003) pp. 52 - 71. Ogawa, ... volatility, John Wiley & Sons Ltd. (2005). ...

  19. Project Profile: Forecasting and Influencing Technological Progress in Solar Energy

    Broader source: Energy.gov [DOE]

    The University of North Carolina at Charlotte, along with their partners at Arizona State University and the University of Oxford, under the Solar Energy Evolution and Diffusion Studies (SEEDS)...

  20. Beyond "Partly Sunny": A Better Solar Forecast | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... The IBM Thomas J. Watson Research Center and its partners will integrate big data ... Similar to the recently demonstrated IBM Watson computer system, the proposed Watt-sun ...

  1. New Climate Research Centers Forecast Changes and Challenges

    Broader source: Energy.gov [DOE]

    Two new observation stations -– in Alaska and the Azore islands -– should reduce uncertainties and improve global climate models.

  2. Residential Electricity Demand in China -- Can Efficiency Reverse the Growth?

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.; Zhou, Nan

    2009-05-18

    The time when energy-related carbon emissions come overwhelmingly from developed countries is coming to a close. China has already overtaken the United States as the world's leading emitter of greenhouse gas emissions. The economic growth that China has experienced is not expected to slow down significantly in the long term, which implies continued massive growth in energy demand. This paper draws on the extensive expertise from the China Energy Group at LBNL on forecasting energy consumption in China, but adds to it by exploring the dynamics of demand growth for electricity in the residential sector -- and the realistic potential for coping with it through efficiency. This paper forecasts ownership growth of each product using econometric modeling, in combination with historical trends in China. The products considered (refrigerators, air conditioners, fans, washing machines, lighting, standby power, space heaters, and water heating) account for 90percent of household electricity consumption in China. Using this method, we determine the trend and dynamics of demandgrowth and its dependence on macroeconomic drivers at a level of detail not accessible by models of a more aggregate nature. In addition, we present scenarios for reducing residential consumption through efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, thus allowing for a technologically realistic assessment of efficiency opportunities specifically in the Chinese context.

  3. Oil- and gas-supply modeling

    SciTech Connect (OSTI)

    Gass, S.I.

    1982-05-01

    The symposium on Oil and Gas Supply Modeling, held at the Department of Commerce, Washington, DC (June 18-20, 1980), was funded by the Energy Information Administration of the Department of Energy and co-sponsored by the National Bureau of Standards' Operations Research Division. The symposium was organized to be a forum in which the theoretical and applied state-of-the-art of oil and gas supply models could be presented and discussed. Speakers addressed the following areas: the realities of oil and gas supply, prediction of oil and gas production, problems in oil and gas modeling, resource appraisal procedures, forecasting field size and production, investment and production strategies, estimating cost and production schedules for undiscovered fields, production regulations, resource data, sensitivity analysis of forecasts, econometric analysis of resource depletion, oil and gas finding rates, and various models of oil and gas supply. This volume documents the proceedings (papers and discussion) of the symposium. Separate abstracts have been prepared for individual papers for inclusion in the Energy Data Base.

  4. Analysis of environmental constraints on expanding reserves in current and future reservoirs in wetlands. Final report

    SciTech Connect (OSTI)

    Harder, B.J.

    1995-03-01

    Louisiana wetlands require careful management to allow exploitation of non-renewable resources without destroying renewable resources. Current regulatory requirements have been moderately successful in meeting this goal by restricting development in wetland habitats. Continuing public emphasis on reducing environmental impacts of resource development is causing regulators to reassess their regulations and operators to rethink their compliance strategies. We examined the regulatory system and found that reducing the number of applications required by going to a single application process and having a coherent map of the steps required for operations in wetland areas would reduce regulatory burdens. Incremental changes can be made to regulations to allow one agency to be the lead for wetland permitting at minimal cost to operators. Operators need cost effective means of access that will reduce environmental impacts, decrease permitting time, and limit future liability. Regulators and industry must partner to develop incentive based regulations that can provide significant environmental impact reduction for minimal economic cost. In addition regulators need forecasts of future E&P trends to estimate the impact of future regulations. To determine future activity we attempted to survey potential operators when this approach was unsuccessful we created two econometric models of north and south Louisiana relating drilling activity, success ratio, and price to predict future wetland activity. Results of the econometric models indicate that environmental regulations have a small but statistically significant effect on drilling operations in wetland areas of Louisiana. We examined current wetland practices and evaluated those practices comparing environmental versus economic costs and created a method for ranking the practices.

  5. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rep. C42 (1978) 89 1978AM01 J.F. Amann, P.D. Barnes, K.G.R. Doss, S.A. Dytman, R.A. Eisenstein, J.D. Sherman and W.R. Wharton, Phys. Rev. Lett. 40 (1978) 758 1978AN07 I. Angeli...

  6. Revised Manuscript

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    UNAM 5 (1982) 1 1982DO01 K.G.R. Doss, P.D. Barnes, N. Colella, S.A. Dytman, R.A. Eisenstein, C. Ellegaard, F. Takeutchi, W.R. Wharton, J.F. Amann, R.H. Pehl et al, Phys. Rev....

  7. Energy Forecast, ForskEL (Smart Grid Project) | Open Energy Informatio...

    Open Energy Info (EERE)

    meeting both the clients' demand for cost stability and at the same time encourages a demand response. 2. Lack of information and awareness about the possibilities and...

  8. Regional price targets appropriate for advanced coal extraction. [Forecasting to 1985 and 2000; USA; Regional analysis

    SciTech Connect (OSTI)

    Terasawa, K.L.; Whipple, D.W.

    1980-12-01

    The object of the study is to provide a methodology for predicting coal prices in regional markets for the target time frames 1985 and 2000 that could subsequently be used to guide the development of an advanced coal extraction system. The model constructed for the study is a supply and demand model that focuses on underground mining, since the advanced technology is expected to be developed for these reserves by the target years. The supply side of the model is based on coal reserve data generated by Energy and Environmental Analysis, Inc. (EEA). Given this data and the cost of operating a mine (data from US Department of Energy and Bureau of Mines), the Minimum Acceptable Selling Price (MASP) is obtained. The MASP is defined as the smallest price that would induce the producer to bring the mine into production, and is sensitive to the current technology and to assumptions concerning miner productivity. Based on this information, market supply curves can then be generated. On the demand side of the model, demand by region is calculated based on an EEA methodology that emphasizes demand by electric utilities and demand by industry. The demand and supply curves are then used to obtain the price targets. This last step is accomplished by allocating the demands among the suppliers so that the combined cost of producing and transporting coal is minimized.

  9. An Improved Model To Forecast Co2 Leakage Rates Along A Wellbore...

    Open Energy Info (EERE)

    geometry of leakage pathways. We have implemented a SCP model described in the literature, which yields an estimate of the depth of the leakage source and the effective...

  10. Joint Analysis of Galaxy-Galaxy Lensing and Galaxy Clustering: Methodology and Forecasts for DES

    SciTech Connect (OSTI)

    Park, Y.

    2015-07-19

    The joint analysis of galaxy-galaxy lensing and galaxy clustering is a promising method for inferring the growth function of large scale structure. Our analysis will be carried out on data from the Dark Energy Survey (DES), with its measurements of both the distribution of galaxies and the tangential shears of background galaxies induced by these foreground lenses. We develop a practical approach to modeling the assumptions and systematic effects affecting small scale lensing, which provides halo masses, and large scale galaxy clustering. Introducing parameters that characterize the halo occupation distribution (HOD), photometric redshift uncertainties, and shear measurement errors, we study how external priors on different subsets of these parameters affect our growth constraints. Degeneracies within the HOD model, as well as between the HOD and the growth function, are identified as the dominant source of complication, with other systematic effects sub-dominant. The impact of HOD parameters and their degeneracies necessitate the detailed joint modeling of the galaxy sample that we employ. Finally, we conclude that DES data will provide powerful constraints on the evolution of structure growth in the universe, conservatively/optimistically constraining the growth function to 7.9%/4.8% with its first-year data that covered over 1000 square degrees, and to 3.9%/2.3% with its full five-year data that will survey 5000 square degrees, including both statistical and systematic uncertainties.

  11. Forecasting the Growth of Green Power Markets in the United States

    SciTech Connect (OSTI)

    Wiser, R.; Bolinger, M.; Holt, E.; Swezey, B.

    2001-10-31

    In this report, we quantify the potential size and impact of the green power market in the United States, and identify features of the market that will most affect its ultimate growth trajectory.

  12. DOE Announces Webinars on Real Time Energy Management, Solar Forecasting Metrics, and More

    Broader source: Energy.gov [DOE]

    EERE offers webinars to the public on a range of subjects, from adopting the latest energy efficiency and renewable energy technologies to training for the clean energy workforce. Webinars are free; however, advanced registration is typically required. You can also watch archived webinars and browse previously aired videos, slides, and transcripts.

  13. Reducing Our Carbon Footprint: Frontiers in Climate Forecasting (LBNL Science at the Theater)

    ScienceCinema (OSTI)

    Collins, Bill

    2011-05-09

    Bill Collins directs Berkeley Lab's research dedicated to atmospheric and climate science. Previously, he headed the development of one of the leading climate models used in international studies of global warming. His work has confirmed that man-made greenhouse gases are probably the main culprits of recent warming and future warming poses very real challenges for the environment and society. A lead author of the most recent assessment of the science of climate change by the United Nations' Integovernmental Panel on Climate Change, Collins wants to create a new kind of climate model, one that will integrate cutting-edge climate science with accurate predictions people can use to plan their lives

  14. The Future of the Earth's Climate: Frontiers in Forecasting (LBNL Summer Lecture Series)

    ScienceCinema (OSTI)

    Collins, Bill

    2011-04-28

    Summer Lecture Series 2007: Berkeley Lab's Bill Collins discusses how observations show that the Earth is warming at a rate unprecedented in recent history, and that human-induced changes in atmospheric chemistry are probably the main culprits. He suggests a need for better observations and understanding of the carbon and hydrological cycles.

  15. PNNL-Weather Research and Forecasting (WRF)-Chem Modeling in...

    Open Energy Info (EERE)

    San Francisco, CA, A41F-01. Fast JD, JC Doran, JC Barnard, S Springs ton, L Klein man, L Emmons, C Wiedinmyer. 2007. "Predictions of aerosols downwind of Mexico City using a...

  16. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  17. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  18. Forecasting the oil-gasoline price relationship: should we care about the Rockets and the Feathers?

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Matteo Manera Asymmetries in the Oil-Gasoline Price Relationship University of Milano-Bicocca, Italy and Fondazione Eni Enrico Mattei, Italy EIA Financial and Physical Oil Market Workshop "Evolution of Petroleum Market and Price Dynamics" September 29, 2015 Energy Information Administration, Washington DC, US 1 Introduction * Energy demand models are often developed on the assumption that consumer behavior is defined by symmetric responses to rising or falling prices and income * It is

  19. Intra-Hour Dispatch and Automatic Generator Control Demonstration with Solar Forecasting

    Broader source: Energy.gov [DOE]

    The University of California at San Diego (UCSD) is leading a project that will reduce power system operation cost by providing a prediction of the generation fleet's behavior in real time for...

  20. Live Webinar on the Funding Opportunity for Wind Forecasting Improvement Project in Complex Terrain

    Broader source: Energy.gov [DOE]

    On April 21, 2014 from 3:00 to 5:00 PM EST the Wind Program will hold a live webinar to provide information to potential applicants for this Funding Opportunity Announcement. There is no cost to...

  1. Energy Savings Forecast of Solid-State Lighting in General Illuminatio...

    Energy Savers [EERE]

    Prepared for the U.S. Department of Energy August 2014 Prepared by Navigant Consulting, ... James R. Brodrick of the U.S. Department of Energy, Building Technologies Office offered ...

  2. Using Artificial Neural Networks to Forecast Trichloroethylene Concentrations at the Paducah Gaseous Diffusion Plant

    SciTech Connect (OSTI)

    Kopp, Joshua D

    2007-05-01

    To determine the future extent of the TCE contamination plume at PGDP, a groundwater and solute transport model has been developed by the Department of Energy (DOE). The model used to perform these calculations is MODFLOWT which is an enhanced groundwater transport model developed by the United States Geological Survey (USGS). MODFLOWT models groundwater movement as well as the transport of species that are subject to adsorption and decay by using a finite difference method (Duffield et al 2001). A significant limitation of MODFLOWT is that it requires large amounts of data. This data can be difficult and expensive to obtain. MODFLOWT also requires excessive computational time to perform one simulation. It is desirable to have a model that can predict the spatial extent of the contaminant plume without as much required data and that does not require excessive computational times. The purpose of this study is to develop and alternative model to MODFLOWT that can produce similar results for possible use in a companion management model. The alternative model used in this study is an artificial neural network (ANN).

  3. Future Air Conditioning Energy Consumption in Developing Countriesand what can be done about it: The Potential of Efficiency in theResidential Sector

    SciTech Connect (OSTI)

    McNeil, Michael A.; Letschert, Virginie E.

    2007-05-01

    The dynamics of air conditioning are of particular interestto energy analysts, both because of the high energy consumption of thisproduct, but also its disproportionate impact on peak load. This paperaddresses the special role of this end use as a driver of residentialelectricity consumption in rapidly developing economies. Recent historyhas shown that air conditioner ownership can grow grows more rapidly thaneconomic growth in warm-climate countries. In 1990, less than a percentof urban Chinese households owned an air conditioner; by 2003 this numberrose to 62 percent. The evidence suggests a similar explosion of airconditioner use in many other countries is not far behind. Room airconditioner purchases in India are currently growing at 20 percent peryear, with about half of these purchases attributed to the residentialsector. This paper draws on two distinct methodological elements toassess future residential air conditioner 'business as usual' electricityconsumption by country/region and to consider specific alternative 'highefficiency' scenarios. The first component is an econometric ownershipand use model based on household income, climate and demographicparameters. The second combines ownership forecasts and stock accountingwith geographically specific efficiency scenarios within a uniqueanalysis framework (BUENAS) developed by LBNL. The efficiency scenariomodule considers current efficiency baselines, available technologies,and achievable timelines for development of market transformationprograms, such as minimum efficiency performance standards (MEPS) andlabeling programs. The result is a detailed set of consumption andemissions scenarios for residential air conditioning.

  4. Relationship Between Wind Generation and Balancing Energy Market Prices in ERCOT: 2007-2009

    SciTech Connect (OSTI)

    Nicholson, E.; Rogers, J.; Porter, K.

    2010-11-01

    This paper attempts to measure the average marginal effects of wind generation on the balancing-energy market price in ERCOT with the help of econometric analysis.

  5. Relationship Between Crude Oil and Natural Gas Prices, The

    Reports and Publications (EIA)

    2006-01-01

    This paper examines the time series econometric relationship between the Henry Hub natural gas price and the West Texas Intermediate (WTI) crude oil price.

  6. DOE/SC-ARM-14-034 Lower Atmospheric Boundary Layer Experiment

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    4 Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report P Klein WG Blumberg TA Bonin S Mishra JF Newman M Carney DD Turner EP Jacobsen PB Chilson S Wharton CE Wainwright RK Newsom November 2014 DISCLAIMER This report was prepared as an account of work sponsored by the U.S. Government. Neither the United States nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy,

  7. Forecasting changes in water quality in rivers associated with growing biofuels in the Arkansas-White-Red river basin, USA

    SciTech Connect (OSTI)

    Jager, Yetta; Brandt, Craig C; Baskaran, Latha Malar; Srinivasan, Raghavan; Turhollow Jr, Anthony F; Schweizer, Peter E

    2015-01-01

    The mid-section of the Arkansas-White-Red (AWR) river basin near the 100th parallel is particularly promising for sustainable biomass production using cellulosic perennial crops and residues. Along this longitudinal band, precipitation becomes limiting to competing crops that require irrigation from an increasingly depleted groundwater aquifer. In addition, the deep-rooted perennial, switchgrass, produces modest-to-high yields in this region with minimal inputs and could compete against alternative crops and land uses at relatively low cost. Previous studies have also suggested that switchgrass and other perennial feedstocks offer environmentally benign alternatives to corn and corn stover. However, water quality implications remain a significant concern for conversion of marginal lands to bioenergy production because excess nutrients produced by agriculture for food or for energy contribute to eutrophication in the dead-zone in the Gulf of Mexico. This study addresses water quality implications for the AWR river basin. We used the SWAT model to compare water quality in rivers draining a baseline, pre-cellulosic-bioenergy and post-cellulosic-bioenergy landscapes for 2022 and 2030. Simulated water quality responses varied across the region, but with a net tendency toward decreased amounts of nutrient and sediment, particularly in subbasins with large areas of bioenergy crops in 2030 future scenarios. We conclude that water quality is one aspect of sustainability for which cellulosic bioenergy production in this region holds promise.

  8. Slide 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 2 nd Quarter Forecast of negative 125 million. This forecast reflects: - Reduced Revenue forecast due to lower streamflows and dropping prices to date as well as expectations...

  9. The Boom of Electricity Demand in the Residential Sector in the Developing World and the Potential for Energy Efficiency

    SciTech Connect (OSTI)

    Letschert, Virginie; McNeil, Michael A.

    2008-05-13

    With the emergence of China as the world's largest energy consumer, the awareness of developing country energy consumption has risen. According to common economic scenarios, the rest of the developing world will probably see an economic expansion as well. With this growth will surely come continued rapid growth in energy demand. This paper explores the dynamics of that demand growth for electricity in the residential sector and the realistic potential for coping with it through efficiency. In 2000, only 66% of developing world households had access to electricity. Appliance ownership rates remain low, but with better access to electricity and a higher income one can expect that households will see their electricity consumption rise significantly. This paper forecasts developing country appliance growth using econometric modeling. Products considered explicitly - refrigerators, air conditioners, lighting, washing machines, fans, televisions, stand-by power, water heating and space heating - represent the bulk of household electricity consumption in developing countries. The resulting diffusion model determines the trend and dynamics of demand growth at a level of detail not accessible by models of a more aggregate nature. In addition, the paper presents scenarios for reducing residential consumption through cost-effective and/or best practice efficiency measures defined at the product level. The research takes advantage of an analytical framework developed by LBNL (BUENAS) which integrates end use technology parameters into demand forecasting and stock accounting to produce detailed efficiency scenarios, which allows for a realistic assessment of efficiency opportunities at the national or regional level. The past decades have seen some of the developing world moving towards a standard of living previously reserved for industrialized countries. Rapid economic development, combined with large populations has led to first China and now India to emerging as 'energy giants', a phenomenon that is expected to continue, accelerate and spread to other countries. This paper explores the potential for slowing energy consumption and greenhouse gas emissions in the residential sector in developing countries and evaluates the potential of energy savings and emissions mitigation through market transformation programs such as, but not limited to Energy Efficiency Standards and Labeling (EES&L). The bottom-up methodology used allows one to identify which end uses and regions have the greatest potential for savings.

  10. Minority Utility Rate Design Assessment Model

    Energy Science and Technology Software Center (OSTI)

    2003-01-20

    Econometric model simulates consumer demand response to various user-supplied, two-part tariff electricity rate designs and assesses their economic welfare impact on black, hispanic, poor and majority households.

  11. Energy Policy Socioeconomic Impact Model

    Energy Science and Technology Software Center (OSTI)

    1993-05-13

    Econometric model simulates consumer demand response to residential demand-side management programs and two-part tariff electricity rate designs and assesses their economic impact on various population groups.

  12. 1999 Pacific Northwest Loads and Resources Study.

    SciTech Connect (OSTI)

    United States. Bonneville Power Administration.

    1999-12-01

    The Pacific Northwest Loads and Resources Study (White Book) is published annually by BPA and establishes the planning basis for supplying electricity to customers. It serves a dual purpose. First, the White Book presents projections of regional and Federal system load and resource capabilities, along with relevant definitions and explanations. Second, the White Book serves as a benchmark for annual BPA determinations made pursuant to its regional power sales contracts. Specifically, BPA uses the information in the White Book for determining the notice required when customers request to increase or decrease the amount of power purchased from BPA. The White Book will not be used in calculations for the 2002 regional power sales contract subscription process. The White Book compiles information obtained from several formalized resource planning reports and data submittals, including those from the Northwest Power Planning Council (Council) and the Pacific Northwest Utilities Conference Committee (PNUCC). The White Book is not an operational planning guide, nor is it used for determining BPA revenues. Operation of the Federal Columbia River Power System (FCRPS) is based on a set of criteria different from that used for resource planning decisions. Operational planning is dependent upon real-time or near-term knowledge of system conditions, including expectations of river flows and runoff, market opportunities, availability of reservoir storage, energy exchanges, and other factors affecting the dynamics of operating a power system. In this loads and resources study, resource availability is compared with a medium forecast of electricity consumption. The forecasted future electricity demands--firm loads--are subtracted from the projected capability of existing and ''contracted for'' resources to determine whether BPA and the region will be surplus or deficit. If Federal system resources are greater than loads in any particular year or month, there is a surplus of energy and/or capacity, which BPA may use or market to increase revenues. Conversely, if Federal system firm loads exceed available resources, there is a deficit of energy and/or capacity and BPA would add conservation or contract purchases as needed to meet its firm loads. The load forecast is derived by using econometric models and analysis to predict the loads that will be placed on electric utilities in the region. This study incorporates information on contract obligations and contract resources, combined with the resource capabilities obtained from public utility and investor-owned utility (IOU) customers through their annual data submittals to the PNUCC, from BPA's Firm Resource Exhibit (FRE Exhibit I) submittals, and through analysis of the Federal hydroelectric power system. The loads and resources analysis in this study simulates the operation of the power system under the Pacific Northwest Coordination Agreement (PNCA) produced by the Pacific Northwest Coordinating Group. The PNCA defines the planning and operation of the regional hydrosystem. The 1999 White Book is presented in two documents: (1) this summary of Federal system and Pacific Northwest region loads and resources; and (2) a technical appendix (available electronically only) detailing the loads and resources for each major Pacific Northwest generating utility. This analysis updates the December 1998 Pacific Northwest Loads and Resources Study. This analysis projects the yearly average energy consumption and resource availability for Operating Years (OY) 2000-01 through 2009-10. The study shows the Federal system's and the region's monthly estimated maximum electricity demand, monthly energy demand, monthly energy generation, and monthly maximum generating capability--capacity--for OY 2000-01, 2004-05, and 2009-10. The Federal system and regional monthly capacity surplus/deficit projections are summarized for 10 operating years. This document analyzes the Pacific Northwest's projected loads and available generating resources in two parts: (1) the loads and resources of the Federal system, for which BPA is the marketing agency; and (2) the larger Pacific Northwest regional power system, which includes loads and resources in addition to the Federal system.

  13. CBEI Broker Training Project

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    CBEI Broker Training Project 2015 Building Technologies Office Peer Review Dr. Susan Wachter wachter@wharton.upenn.edu CBEI/University of Pennsylvania Project Summary Timeline: Start date: May, 2014 Planned end date: April, 2016 Key Milestones 1. Broker training course approved; 8/14 2. First training course delivered; 12/9/14 3. Provided summary of survey feedback to CBEI for Go/No Go decision; 1/30/2015 4. Provided proposed delivery partner & final market strategy to CBEI for

  14. ASSESSING AND FORECASTING, BY PLAY, NATURAL GAS ULTIMATE RECOVERY GROWTH AND QUANTIFYING THE ROLE OF TECHNOLOGY ADVANCEMENTS IN THE TEXAS GULF COAST BASIN AND EAST TEXAS

    SciTech Connect (OSTI)

    William L. Fisher; Eugene M. Kim

    2000-12-01

    A detailed natural gas ultimate recovery growth (URG) analysis of the Texas Gulf Coast Basin and East Texas has been undertaken. The key to such analysis was determined to be the disaggregation of the resource base to the play level. A play is defined as a conceptual geologic unit having one or more reservoirs that can be genetically related on the basis of depositional origin of the reservoir, structural or trap style, source rocks and hydrocarbon generation, migration mechanism, seals for entrapment, and type of hydrocarbon produced. Plays are the geologically homogeneous subdivision of the universe of petroleum pools within a basin. Therefore, individual plays have unique geological features that can be used as a conceptual model that incorporates geologic processes and depositional environments to explain the distribution of petroleum. Play disaggregation revealed important URG trends for the major natural gas fields in the Texas Gulf Coast Basin and East Texas. Although significant growth and future potential were observed for the major fields, important URG trends were masked by total, aggregated analysis based on a broad geological province. When disaggregated by plays, significant growth and future potential were displayed for plays that were associated with relatively recently discovered fields, deeper reservoir depths, high structural complexities due to fault compartmentalization, reservoirs designated as tight gas/low-permeability, and high initial reservoir pressures. Continued technology applications and advancements are crucial in achieving URG potential in these plays.

  15. Navy Mobility Fuels Forecasting System Phase 6 report: The potential impacts of a worst-case military conflict on world petroleum availability

    SciTech Connect (OSTI)

    Lee, R.; Das, S.; Leiby, P.N.

    1991-01-01

    A major Middle East and European military confrontation would cause an extremely large disruption in the supply of oil worldwide. There would be imbalances between oil supply and demand. These imbalances can only be solved by rationing and by military actions to ensure an adequate flow of crude oil and products. 25 refs., 5 tabs.

  16. Interim report of the interagency coal export task force: draft for public comment. [Trade by country 1960-1979; general forecasting to 1985, 1990 and 2000

    SciTech Connect (OSTI)

    1981-01-01

    The Interagency Coal Export Task Force was formed in the Spring of 1980 at the direction of the President, in support of the international efforts of the United States, encouraging the use of coal. Its purpose was to report on possible courses of action to increase United States steam coal exports in a manner consistent with other national policies, including our commitment to environmental protection. The Task Force assembled existing data, developed significant new information regarding the international coal market and undertook analyses of apparent problems underlying coal exports. The Task Force contributed to a public awareness of the fact that increased coal exports will serve both the domestic and international interests of the United States. Based upon extensive, independent field studies in Europe and the Far East, the Task Force concludes that there will be significant growth in world demand for steam coal. Such growth has already begun, has contributed to the almost seven-fold increase in United States overseas steam coal exports for 1990 over 1979, and is expected to continue beyond the end of this century. The growth in world steam coal trade projected in the report does not guarantee United States coal exporters a large or expanding share of the market. The United States' role depends on the buying strategies of the consuming countries, the policies and prices of competing exporters, and the actions taken by the United States to maintain reasonable prices, prompt delivery and dependable quality. Projections of United States steam coal exports, therefore, rest upon a number of highly uncertain factors which are discussed in some detail.

  17. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO{sub 2}) and oxides of nitrogen (NO{sub x}) from electric power generating stations. The restrictions on SO{sub 2} take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry`s response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  18. Analysis of the Clean Air Act Amendments of 1990: A forecast of the electric utility industry response to Title IV, Acid Deposition Control

    SciTech Connect (OSTI)

    Molburg, J.C.; Fox, J.A.; Pandola, G.; Cilek, C.M.

    1991-10-01

    The Clean Air Act Amendments of 1990 incorporate, for the first time, provisions aimed specifically at the control of acid rain. These provisions restrict emissions of sulfur dioxide (SO[sub 2]) and oxides of nitrogen (NO[sub x]) from electric power generating stations. The restrictions on SO[sub 2] take the form of an overall cap on the aggregate emissions from major generating plants, allowing substantial flexibility in the industry's response to those restrictions. This report discusses one response scenario through the year 2030 that was examined through a simulation of the utility industry based on assumptions consistent with characterizations used in the National Energy Strategy reference case. It also makes projections of emissions that would result from the use of existing and new capacity and of the associated additional costs of meeting demand subject to the emission limitations imposed by the Clean Air Act. Fuel-use effects, including coal-market shifts, consistent with the response scenario are also described. These results, while dependent on specific assumptions for this scenario, provide insight into the general character of the likely utility industry response to Title IV.

  19. EIA projections of coal supply and demand

    SciTech Connect (OSTI)

    Klein, D.E.

    1989-10-23

    Contents of this report include: EIA projections of coal supply and demand which covers forecasted coal supply and transportation, forecasted coal demand by consuming sector, and forecasted coal demand by the electric utility sector; and policy discussion.

  20. Financial Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is negative 4 million for the end of FY 2011. The 2nd Quarter Review end-of-year net revenue forecast is 25 million. The current Northwest River Forecasting Center forecast puts...

  1. August 2009 QBR Follow Ups

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agency Financial Information What are the assumptions behind lower streamflows and dropping prices in the 3 rd Quarter Forecast in comparison to the 2 nd Quarter Forecast? Are...

  2. ARM - Publications: Science Team Meeting Documents

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Forecast System Morcrette, J.-J., European Centre for Medium-Range Weather Forecasts, United Kingdom Thirteenth Atmospheric Radiation Measurement (ARM) Science Team Meeting The...

  3. Ecosystem Spectroscopy: Investigating Associations between Hyperspectr...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ecosystem dynamics at the biosphere-atmosphere interface to enable more accurate climate forecasting. Although our ability to forecast ecosystem functions and climate at the...

  4. Future Power Systems 20: The Smart Enterprise, its Objective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, ...

  5. Sandia Energy - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    forecasts automatically from deterministic historical forecasts for load, solar, andor wind power production and their respective actuals, using a technology known as...

  6. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... This helps improve forecasts produced by other means, e.g., using weather-based models, and reduce forecast errors prediction intervals. October 2014 , IEEE, Piscataway, NJ, United ...

  7. New Approach to Determine the Need for Operating Reserves in...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    load forecasting errors, and the predicted uncertainty in the wind power forecast. In contrast to other proposed stochastic scheduling methods, the demand curve for...

  8. Offshore Wind Power USA

    Broader source: Energy.gov [DOE]

    The Offshore Wind Power USA conference provides the latest offshore wind market updates and forecasts.

  9. Nuclear Power Generation and Fuel Cycle Report 1996

    Reports and Publications (EIA)

    1996-01-01

    This report provides information and forecasts important to the domestic and world nuclear and uranium industries.

  10. Microsoft Word - Draft EBT Analysis_Alcoa -10.10.12 _REDLINE...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FOR THE PERIOD BEGINNING JANUARY 1, 2013 THROUGH SEPTEMBER 30, 2022 ... 2 IV. GAS PRICE FORECAST......

  11. Weather | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Weather Princeton, New Jersey, weather forecast Click here for more extensive PPPL weather information....

  12. Challenges for Long-Term Energy Models: Modeling Energy Use and Energy Efficiency

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Long-Term Energy Models: Modeling Energy Use and Energy Efficiency James Sweeney Stanford University Director, Precourt Institute for Energy Efficiency Professor, Management Science and Engineering Presentation to EIA 2008 Energy Conference 34 ! Years of Energy Information and Analysis Some Modeling History * Original Federal Energy Administration Demand Models in PIES and IEES (1974) - Residential, Industrial, Commercial Sectors * Econometric models * Dynamic specification * Allowed matrix

  13. Key Management Challenges in Smart Grid

    SciTech Connect (OSTI)

    Sheldon, Frederick T; Duren, Mike

    2012-01-01

    Agenda Awarded in February 2011 Team of industry and research organizations Project Objectives Address difficult issues Complexity Diversity of systems Scale Longevity of solution Participate in standards efforts and working groups Develop innovative key management solutions Modeling and simulation ORNL Cyber Security Econometric Enterprise System Demonstrate effectiveness of solution Demonstrate scalability

  14. ARM - Publications: Science Team Meeting Documents: Assessing physical

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    processes in the ECMWF model forecasts through the ARM SGP site measurements Assessing physical processes in the ECMWF model forecasts through the ARM SGP site measurements Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Cheinet, Sylvain ECMWF (UK) Beljaars, Anton ECMWF Koehler, M European Centre for Medium-range Weather Forecasts, Reading, Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts Viterbo, Pedro ECMWF In this study, we compare

  15. Future Power Systems 20: The Smart Enterprise, its Objective and

    Energy Savers [EERE]

    Forecasting. | Department of Energy 0: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. PDF icon Future Power Systems 20: The Smart Enterprise, its Objective and Forecasting. More Documents & Publications Future Power Systems 21 - The Smart Customer Smart Grid R&D Multi-Year Program Plan (2010-2014) - September 2011 Update

  16. Definitions - S

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    less than one year within the operating year. sales forecast See forecast. salmon Fish that spends its one- to three-year adulthood in salt water and returns to fresh water...

  17. Microsoft Word - Alcoa Extension EBT ROD Attachments - 2010-10...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    load forecast used in AURORA xmp , the WECC 10-Year Coordinated Plan Summary (2006-2015) was used in WP-10. That load forecast has since been discontinued. In its place, the...

  18. Contract/Project Management

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    1 ContractProject Management Primary Performance Metrics FY 2011 Target FY 2011 Forecast FY 2011 Pre- & Post-CAP Forecast Comment 1a. Capital Asset Line Item Projects: ...

  19. Financial Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Overview for FY 2010 through July 31, 2010 Power Services * The Modified Net Revenue forecast at Start-of-Year was 142 million and the Rate Case forecast was 114...

  20. FMC Presentation May

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    is 14 million higher than the 2 nd Quarter Review forecast. * The end-of-year net revenue forecast for the 2nd Quarter Review is 42 million. This is 64 million below the SOY...

  1. 2013 3rd Qtr Package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agency * The 3 rd Quarter forecast for the end-of-year (EOY) Agency adjusted net revenue is 75 million. o This is 54 million higher than the 2 nd Quarter Review forecast,...

  2. 2013 2nd Qtr Package

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 2013 through March 31, 2013 Agency * The end-of-year (EOY) Agency adjusted net revenue forecast for the 2 nd Quarter Review is 21 million. o This forecast is 44 million...

  3. Financial Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Overview for FY 2010 through June 30, 2010 Power Services The Modified Net Revenue forecast at Start-of-Year was 142 million and the Rate Case forecast was 114...

  4. Financial Overview And Monthly Financial Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Agency * The 3 rd Quarter forecast for the end-of-year (EOY) Agency adjusted net revenue is 75 million. o This is 54 million higher than the 2 nd Quarter Review forecast,...

  5. FMC Presentation November

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in the 1st quarter forecast. o The 1st Quarter Review end-of-year (EOY) adjusted net revenue forecast is 65 million compared to the start-of-year (SOY) estimate of 51 million...

  6. December 2013

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February are 27 million. Adjusted net revenues are 98 million. * The adjusted net revenue estimate in the start-of-year forecast is 117 million and the rate case forecast is...

  7. January 24, 2006 Financial Management Committee Handouts

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview for FY 2010 through April 30, 2010 Power Services The Modified Net Revenue forecast at Start-of-Year was 142 million and the Rate Case forecast was 114...

  8. Financial Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Financial Overview for FY 2010 through March 31, 2010 Power Services The Modified Net Revenue forecast at Start-of-Year was 142 million and the Rate Case forecast was 114...

  9. Financial Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    This is 32 million higher than the 2nd Quarter Review forecast. - The end-of-year net revenue forecast for the 3rd Quarter Review is 107 million. This is 65 million higher than...

  10. Financial Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    the 2nd Quarter Forecast. However, any positive impact on the future end-of-year net revenue forecast is likely to be offset by the low price environment. Net revenue projections...

  11. Quarterly Business Review FY 2009 3rd Quarter Financial Results...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2nd Quarter Forecast. Unfortunately, any positive impact on the future end-of-year net revenue forecast is likely to be mitigated by continuing low market prices. - The Northwest...

  12. Financial Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Overview for FY 2010 through August 31, 2010 Power Services * The Modified Net Revenue forecast at Start-of-Year was 142 million and the Rate Case forecast was 114...

  13. FMC May 2013 Appendix 1 Monthly Financial Reports Public Available

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    expected in the 2nd quarter forecast. o The 2nd Quarter Review end-of-year (EOY) net revenue forecast is 21 million compared to the start-of-year (SOY) estimate of 51 million...

  14. FMC Presentation November

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    FY 2013 through March 31, 2013 Agency * The end-of-year (EOY) Agency adjusted net revenue forecast for the 2nd Quarter Review is 21 million. o This forecast is 44 million...

  15. Financial Management Committee

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2nd Quarter Forecast. Unfortunately, any positive impact on the future end-of-year net revenue forecast is likely to be mitigated by continuing low market prices. * The Northwest...

  16. FMC

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and contains BPA-approved Agency Financial Information Power Services The Modified Net Revenue forecast at Start-of-Year was 142 million and the Rate Case forecast was 114...

  17. NASEO 2010 Winter Fuels Outlook Conference October 13, 2010...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    warmer than forecast If 10% colder than forecast Heating oil 12 0 25 Natural gas 4 -7 12 Propane 8 -3 18 Electricity -2 -6 2 Average of all fuels 3 -6 10 Source: EIA Short-Term...

  18. No Slide Title

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    than forecast If 10% colder than forecast Heating oil -2 -13 10 Natural gas -12 -21 -5 Propane -14 -22 -6 Electricity -2 -6 2 Average all fuels -8 -16 -2 Source: STEO October...

  19. NEAR FIELD MODELING OF SPE1 EXPERIMENT AND PREDICTION OF THE...

    Office of Scientific and Technical Information (OSTI)

    ... Language: English Subject: 58 GEOSCIENCES; 98 NUCLEAR DISARMAMENT, SAFEGUARDS, AND PHYSICAL PROTECTION; ATTENUATION; BOREHOLES; DESIGN; FORECASTING; FRACTURES; G CODES; GRANITES; ...

  20. SunShot

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    probablistic solar forecast produced with PRESCIENT. Permalink Gallery Sandia Develops Stochastic Production Cost Model ... Grid Integration, Energy, Facilities, Grid ...

  1. Solar Newsletter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    probablistic solar forecast produced with PRESCIENT. Permalink Gallery Sandia Develops Stochastic Production Cost Model ... Grid Integration, Energy, Facilities, Grid ...

  2. Advancing Reactive Tracer Methods for Measurement of Thermal...

    Office of Scientific and Technical Information (OSTI)

    Org: DOE - EE Country of Publication: United States Language: English Subject: 15 GEOTHERMAL ENERGY; DESIGN; DRAWDOWN; ECONOMICS; FORECASTING; FRACTURES; GEOTHERMAL...

  3. StrBioLib: a Java library for development of custom computationalstruc...

    Office of Scientific and Technical Information (OSTI)

    Subject: 99; 59; 60; ALGORITHMS; AVAILABILITY; BIOLOGY; DOCUMENTATION; FORECASTING; JAVA; NEURAL NETWORKS; OPTIMIZATION; PROTEIN STRUCTURE; TRAINING java library structural biology ...

  4. Prediction and Control of Network Cascade: Example of Power Grid...

    Office of Scientific and Technical Information (OSTI)

    Country of Publication: United States Language: English Subject: 36 MATERIALS SCIENCE; 97 MATHEMATICAL METHODS AND COMPUTING; ALGORITHMS; FORECASTING; MATHEMATICS; COMPUTER...

  5. "Title","Creator/Author","Publication Date","OSTI Identifier...

    Office of Scientific and Technical Information (OSTI)

    ACIDS; CALIFORNIA; CHAINS; CHEMISTRY; DISEASES; FIBROSIS; FORECASTING; GENETICS; OPTIMIZATION; PROTEIN STRUCTURE; PROTEINS; QUEUES; SHAPE; SIMULATION PROTEIN STRUCTURE...

  6. Manipulating and Visualizing Proteins Simon, Horst D. 59 BASIC...

    Office of Scientific and Technical Information (OSTI)

    ACIDS; CALIFORNIA; CHAINS; CHEMISTRY; DISEASES; FIBROSIS; FORECASTING; GENETICS; OPTIMIZATION; PROTEIN STRUCTURE; PROTEINS; QUEUES; SHAPE; SIMULATION PROTEIN STRUCTURE...

  7. TITLE AUTHORS SUBJECT SUBJECT RELATED DESCRIPTION PUBLISHER AVAILABILI...

    Office of Scientific and Technical Information (OSTI)

    AMINO ACIDS CALIFORNIA CHAINS CHEMISTRY DISEASES FIBROSIS FORECASTING GENETICS OPTIMIZATION PROTEIN STRUCTURE PROTEINS QUEUES SHAPE SIMULATION PROTEIN STRUCTURE PREDICTION...

  8. USAJobs Search | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Power Administration (BPA). Customer Support Services provides Load Forecasting and Analysis, Customer Contract Management and Administration, Customer Billing, Customer...

  9. Renewable Energy and Climate Change

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... infrastructure * Generation flexibility * Energy storage technologies * Demand side management * Improved forecasting and operational planning methods Check the ...

  10. Earth System Observations

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    interactions. Deploying research facilities globally Forecasting forests' responses to climate change Monitoring terrestrial ecosystems Contact Us Group Leader (acting) Bob...

  11. February most likely month for flu season to peak

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    February most likely month for flu season to peak February most likely month for flu season to peak The Los Alamos team's model is an ongoing research project that forecasts the current flu season probabilistically, similar to best-practice forecasts of weather, presidential elections, and sporting events. December 20, 2015 The Los Alamos team's model is an ongoing research project that forecasts the current flu season probabilistically, similar to best-practice forecasts of weather,

  12. Property:ProgramResources | Open Energy Information

    Open Energy Info (EERE)

    + ANL Wind Power Forecasting and Electricity Markets + Softwaremodeling tools + APEC-Alternative Transport Fuels: Implementation Guidelines + Guidemanual + APFED-Good...

  13. Microsoft PowerPoint - FinalModule6.ppt

    Office of Environmental Management (EM)

    6: Metrics, Performance Measurements and Forecasting Prepared by: Module 6 - Metrics, Performance Measures and Forecasting 2 Prepared by: Booz Allen Hamilton Module 6: Metrics, Performance Measurements and Forecasting Welcome to Module 6. The objective of this module is to introduce you to the Metrics and Performance Measurement tools used, along with Forecasting, in Earned Value Management. The Topics that will be addressed in this Module include: * Define Cost and Schedule Variances * Define

  14. Short-term energy outlook, annual supplement 1994

    SciTech Connect (OSTI)

    Not Available

    1994-08-01

    The Short-Term Energy Outlook Annual Supplement (Supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  15. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    Gasoline and Diesel Fuel Update (EIA)

    Full report (3.6 mb) Major residential equipment and commercial heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1 mb) Appendix B - Technology Forecast Updates - Residential and Commercial Building Technologies - Advanced Case (1 mb) Lighting and commercial ventilation & refrigeration equipment Appendix C - Technology Forecast Updates - Residential and Commercial Building Technologies

  16. Short-term energy outlook annual supplement, 1993

    SciTech Connect (OSTI)

    1993-08-06

    The Short-Term Energy Outlook Annual Supplement (supplement) is published once a year as a complement to the Short-Term Energy Outlook (Outlook), Quarterly Projections. The purpose of the Supplement is to review the accuracy of the forecasts published in the Outlook, make comparisons with other independent energy forecasts, and examine current energy topics that affect the forecasts.

  17. Speculation

    Gasoline and Diesel Fuel Update (EIA)

    Market Luciana Juvenal (Federal Reserve Bank of St. Louis and International Monetary Fund) Ivan Petrella (Birkbeck College, University of London) Motivation Introduction Econometric Method Data and Speci...cation VAR and FAVAR Extended Model Conclusion Appendix Disclaimer The views expressed are those of the individual authors and do not necessarily re‡ect o¢ cial positions of the Federal Reserve Bank of St. Louis, the Federal Reserve System, the Board of Governors, or the International

  18. NREL: Energy Analysis - David Hurlbut

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Hurlbut Photo of David Hurlbut David Hurlbut is a member of the Market and Policy Impact Analysis Group in the Strategic Energy Analysis Center. Senior Analyst On staff since January 2007 Phone number: 303-384-7334 E-mail: david.hurlbut@nrel.gov Areas of expertise Policy and legislative analysis Statistical analysis and econometrics Optimization modeling Cost-benefit analysis Primary research interests Economic incentives and market behavior affecting energy efficiency and renewable energy

  19. NREL: Energy Analysis - John (Jack) Mayernik

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Jack) Mayernik Photo of Jack Mayernik Jack Mayernik is a member of the Washington D.C. Office in the Strategic Energy Analysis Center. Building Energy Analyst On staff since 2015 Phone number: 202-488-2209 E-mail: john.mayernik@nrel.gov Areas of expertise Building sector analysis Logic models Econometrics Primary research interests Economic and market analysis of energy efficiency technologies Cost/benefit analysis of energy efficiency programs International and domestic energy efficiency

  20. Tax revenue and innovations in natural gas supply: New Mexico

    SciTech Connect (OSTI)

    Ulibarri, C.A.; Marsh, T.L.

    1994-10-01

    This paper develops an econometric model of natural gas supply at the state-level using New Mexico as a case study. The supply model is estimated using annual time series observations on production levels, delivered prices, proved reserves, existing wells, and extraction costs. The authors validate the model against historical data and then use it to consider the fiscal impacts on state tax revenue from innovations in extraction technologies.

  1. Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Highlights North Sea Brent crude oil prices averaged $32/barrel (b) in February, a $1/b increase from January. Brent crude oil prices are forecast to average $34/b in 2016 and $40/b in 2017, $3/b and $10/b lower than forecast in last month's STEO, respectively. The lower forecast prices reflect oil production that has been more resilient than expected in a low-price environment and lower expectations for forecast oil demand growth. Forecast West Texas Intermediate (WTI) crude oil prices are

  2. High Resolution Atmospheric Modeling for Wind Energy Applications

    SciTech Connect (OSTI)

    Simpson, M; Bulaevskaya, V; Glascoe, L; Singer, M

    2010-03-18

    The ability of the WRF atmospheric model to forecast wind speed over the Nysted wind park was investigated as a function of time. It was found that in the time period we considered (August 1-19, 2008), the model is able to predict wind speeds reasonably accurately for 48 hours ahead, but that its forecast skill deteriorates rapidly after 48 hours. In addition, a preliminary analysis was carried out to investigate the impact of vertical grid resolution on the forecast skill. Our preliminary finding is that increasing vertical grid resolution does not have a significant impact on the forecast skill of the WRF model over Nysted wind park during the period we considered. Additional simulations during this period, as well as during other time periods, will be run in order to validate the results presented here. Wind speed is a difficult parameter to forecast due the interaction of large and small length scale forcing. To accurately forecast the wind speed at a given location, the model must correctly forecast the movement and strength of synoptic systems, as well as the local influence of topography / land use on the wind speed. For example, small deviations in the forecast track or strength of a large-scale low pressure system can result in significant forecast errors for local wind speeds. The purpose of this study is to provide a preliminary baseline of a high-resolution limited area model forecast performance against observations from the Nysted wind park. Validating the numerical weather prediction model performance for past forecasts will give a reasonable measure of expected forecast skill over the Nysted wind park. Also, since the Nysted Wind Park is over water and some distance from the influence of terrain, the impact of high vertical grid spacing for wind speed forecast skill will also be investigated.

  3. bkz091814.dvi

    Gasoline and Diesel Fuel Update (EIA)

    Are Product Spreads Useful for Forecasting Oil Prices? An Empirical Evaluation of the Verleger Hypothesis ∗ Christiane Baumeister Lutz Kilian † Bank of Canada University of Michigan CEPR Xiaoqing Zhou University of Michigan September 18, 2014 Abstract Notwithstanding a resurgence in research on out-of-sample forecasts of the price of oil in recent years, there is one important approach to forecasting the real price of oil which has not been studied systematically to date. This approach is

  4. Departments of Energy and Commerce Announce New Partnership to Further

    Energy Savers [EERE]

    Cooperation on Renewable Energy Modeling and Forecasting | Department of Energy Commerce Announce New Partnership to Further Cooperation on Renewable Energy Modeling and Forecasting Departments of Energy and Commerce Announce New Partnership to Further Cooperation on Renewable Energy Modeling and Forecasting January 24, 2011 - 12:00am Addthis WASHINGTON - The Department of Energy and the Department of Commerce today announced a new agreement to further collaboration between the agencies on

  5. U.S. monthly oil production tops 8 million barrels per day for the first time since 1988

    Gasoline and Diesel Fuel Update (EIA)

    Midwest households expected to see a 33% drop in propane heating bills this winter Midwest households that paid record-high prices for propane last winter to stay warm are expected to see a big drop in their heating bills this winter, according to the forecast for winter heating expenditures from the U.S. Energy Information Administration. The new forecast, which incorporates the latest weather outlook from forecasters at the National Oceanic and Atmospheric Administration, says the average

  6. Morcrette-JJ

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Assessment of the ECMWF Model Cloudiness and Surface Radiation Fields at the ARM SGP Site J.-J. Morcrette European Centre for Medium-Range Weather Forecasts Shinfield Park, Reading Berkshire, United Kingdom Abstract The cloud and radiation fields produced by the operational European Centre for Medium-Range Weather Forecasts (ECMWF) forecasts are assessed using observations from the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) site over the April through May 1999

  7. Microsoft PowerPoint - ARM_STM_2007_Neggers.ppt [Compatibility Mode]

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ARM data in improving the ECMWF boundary layer scheme Roel Neggers Sylvain Cheinet Martin Köhler Anton Beljaars Contents Various ways to evaluate an operational forecast model Issues concerning the model physics A new boundary layer scheme Improvements Outlook How to evaluate an operational forecast model? GCM: resolved & unresolved (sub-grid) scales Physical process evaluation can be done in two modes: 3D Forecasts and climate runs Process is interactive with the larger scales (dynamics)

  8. Lessons Learned with Early PV Plant Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    31 * Consists of all transformers and feeders for entire ... and Lessons Learned with Power Plant Integration Agenda ... DG, forecast transients harmonics Application to APS ...

  9. Energy Conservation Program: Data Collection and Comparison with...

    Energy Savers [EERE]

    Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales for Five Lamp Types, Notice of Data Availability Energy Conservation Program: Data Collection ...

  10. Energy Conservation Program: Data Collection and Comparison with...

    Energy Savers [EERE]

    EERE-2011-BT-NOA-0013 Energy Conservation Program: Data Collection and Comparison with Forecasted Unit Sales of Five Lamp Types AGENCY: Office of Energy Efficiency and Renewable ...

  11. ARM XDC Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    for Environmental Prediction run a regional numerical weather analysis and forecast system that covers the entire North American Continent. The data archived by ARM since...

  12. Draft September 18, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    result in the reduction in the amount of conservation BPA would otherwise forecast for acquisition under the ECAs. Although Regional Dialogue contracts preclude customers from...

  13. IEA: Renewable Energy to Grow During the Next 5 Years | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    capacity expected, China accounts for almost 40%, with the United States, India, Germany, and Brazil also contributing to the growth. The report presents detailed forecasts...

  14. Microsoft Word - Net Requirements Transparency Process_09302015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    period followed, which was closed on August 14, 2015. During the comment period, Benton PUD submitted an updated TRL energy forecast for October 2015 - September 2016. The updated...

  15. Renewable Resources in the U.S. Electricity Supply

    Reports and Publications (EIA)

    1993-01-01

    Provides an overview of current and long term forecasted uses of renewable resources in the nation's electricity marketplace, the largest domestic application of renewable resources today.

  16. Winter Weather Outlook

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The operations branch of the CPC prepares long-range forecasts by applying dynamical, empirical, and statistical techniques. The analysis branch performs applied research to...

  17. Generation Inputs Workshop June 25, 2014

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Inputs Workshop 25 June 2014 BPA's Centralized Wind Power Forecasting Initiative Scott Winner June 25, 2014 Generation Inputs Workshop Predecisional. For Discussion Purposes Only....

  18. EIA Energy Information Administration

    U.S. Energy Information Administration (EIA) Indexed Site

    of the Midwest beginning early this week. Prices then moved down on Friday when other weather forecasts supported the NWS position that temperatures in much of the heavily...

  19. Search | OpenEI Community

    Open Energy Info (EERE)

    Propane Propane Market Propane Market Forecast Propane Market Growth Propane Market Size Propane Market Trends Propionic Acid Ethyl Ester Market Propionic Acid Ethyl Ester Market...

  20. Power Business Line Decision Forums, as of March 14, 2005

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Implementation - Rate Case 6 Renewable Budget Levels (wo rate credit) PFR PFR 7 Calpine Geothermal PFR Forecast Assumption - Rate Case Actual Implementation Cancellation -...

  1. Wind Integration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wind Generation - ScheduledActual Balancing Reserves - Deployed Near Real-time Wind Animation Wind Projects under Review Growth Forecast Fact Sheets Working together to address...

  2. Solar Trackers Market - Global Industry Analysis, Size, Share...

    Open Energy Info (EERE)

    Solar Trackers Market - Global Industry Analysis, Size, Share, Growth, Trends and Forecast, 2010 - 2020 Home > Groups > Increase Natural Gas Energy Efficiency John55364's picture...

  3. OIl Speculation

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    ... "detailed inventory data for China continues to test observers' powers of deduction. ... Table 2: Estimates and robust test statistics for the futures excess return forecasting ...

  4. NREL: Photovoltaics Research - NREL Handbook Helps Industry Collect...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    rapidly throughout the last few years, there have been significant enhancements in the body of knowledge in the areas of solar resource assessment and forecasting. Thus, this...

  5. ARM Data Used to Evaluate Reanalysis Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    models (Xie et al. 2004; Kennedy et al. 2011), investigating extreme weather and climatic events (Dong et al. 2011 and 2014), and examining forecast skill. These...

  6. TMC Template

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    * Phase in adjustment over two rate periods * Revert back to BP-14 RHWM Process regulated hydro generation forecast Request for additional data: * Revised delta comparison on...

  7. Search for: All records | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ... LLC New Brunswick Laboratory (NBL), Argonne, IL (United States) New York ... (1) corrosion (1) decomposition (1) evaluation (1) flowsheets (1) forecasting (1) ...

  8. VIA ELECTRONIC SUBMISSION

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... be grounded in experience as well as theory and forecasting." 26 With more empirical ... effects, protection-oriented interest groups often maintain that agencies ...

  9. Two-color quark matter: U(1){sub A} restoration, superfluidity...

    Office of Scientific and Technical Information (OSTI)

    This is motivated by the increasing interest in the QCD phase diagram as follows: (1) The ... D QUARKS; FORECASTING; LATTICE FIELD THEORY; PHASE DIAGRAMS; QUANTUM CHROMODYNAMICS; ...

  10. Appendix A - GPRA06 benefits estimates: MARKAL and NEMS model baseline cases

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    NEMS is an integrated energy model of the U.S. energy system developed by the Energy Information Administration (EIA) for forecasting and policy analysis purposes.

  11. Onsemble | Open Energy Information

    Open Energy Info (EERE)

    Colorado Zip: 80302 Region: Rockies Area Sector: Wind energy Product: wind energy forecasting Website: www.onsemble.ws Coordinates: 40.010492, -105.276843 Show Map Loading...

  12. Working with SRNL - Our Facilities - Atmospheric Technologies...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The SRNL Atmospheric Technologies Center has extensive capabilities for world-wide meteorological forecasts and real-time atmospheric transport modeling and assessment. ...

  13. ARM - Publications: Science Team Meeting Documents: Preliminary Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with the ECMWF forecast model including a McICA approach to cloud-radiation interactions Preliminary Results with the ECMWF forecast model including a McICA approach to cloud-radiation interactions Morcrette, Jean-Jacques European Centre for Medium-Range Weather Forecasts The Monte-Carlo Independent Column Approximation (Barker et al., 2003; Pincus et al., 2003) has been used together with the Rapid Radiation Transfer Models (LW and SW) developed at AER Inc. in the ECMWF Forecast System.

  14. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    then evaluated and ranked according to their Equitable Threat Score (ETS), a statistical method often used in the evaluation of weather forecasting. A skill score close to 1...

  15. NREL: Energy Analysis - Carolyn Davidson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Carolyn Davidson Photo of Carolyn Davidson Carolyn Davidson is a member of the Energy Forecasting and Modeling Group in the Strategic Energy Analysis Center. Economic Analyst On...

  16. Microsoft Word - Comments_NREL_20110202 bpa Mar 4.doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    not consider following or forecast error. Introducing within-hour uncertainty into the assessment could increase the exposure. Now assume that G w is 1500 MW (average schedule...

  17. Sandia Energy - Tidal Energy Resource Assessment in the East...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    current at the site is highly regular, which is desirable because it allows accurate electricity supply forecasting. The mean ebb and mean flood flow directions are nearly...

  18. Press Room - Press Releases - U.S. Energy Information Administration...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1, 2015 MEDIA ADVISORY: EIA to Release Updated Energy Forecasts to 2040 WHO: Adam Sieminski, Administrator U.S. Energy Information Administration (EIA) WHAT: EIA presents cases...

  19. This Week In Petroleum Summary Printer-Friendly Version

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    forecast in May. click to enlarge Oil prices retreated markedly in May following a series of downbeat economic headlines, and there are concerns more declines could occur if...

  20. This Week In Petroleum Printer-Friendly Version

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    production capacity is a key factor in understanding oil market trends and in forecasting world oil prices. Low and falling surplus production capacity generally...

  1. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most - 2 - conifer forests should be heavily disturbed, if not...

  2. Rising global temperatures accelerate drought-induced forest...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    professor, explain that their research, and more from scientists around the world, is forecasting that by 2100 most conifer forests should be heavily disturbed, if not gone, as...

  3. California's 6th congressional district: Energy Resources | Open...

    Open Energy Info (EERE)

    in California's 6th congressional district A10 Power Akuacom Alternative Energy Inc Bio Energy Systems LLC Bioil Energy Matters LLC Enphase Energy Inc Forecast Energy Geysers...

  4. RES Anatolia | Open Energy Information

    Open Energy Info (EERE)

    navigation, search Name: RES Anatolia Place: Istanbul, Turkey Zip: 34398 Sector: Solar, Wind energy Product: Istanbul-based subsidiary formed due to positive forecasts for the...

  5. 3TIER | Open Energy Information

    Open Energy Info (EERE)

    Northwest Area Sector: Services Product: Assessment and forecasting products for wind, solar, and hydro Number of Employees: 51-200 Website: www.3tier.com Coordinates:...

  6. QBR Follow Ups February 2015

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    built into the rate case that allowed wind projects to change their scheduling elections. Since no wind projects elected to do this, the forecast was zeroed out increasing...

  7. BloombergBusiness: Viewed from space: less corn

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    fields. September 13, 2015 Domestic corn production will be 13.34 billion bushels, Descartes Labs forecast. Source: Descartes Labs via Bloomberg Domestic corn production will be...

  8. Search | OpenEI Community

    Open Energy Info (EERE)

    Project Management Project Management Project Management Tool Project Management Tool Propane Propane Market Propane Market Forecast Propane Market Growth Propane Market Size...

  9. 1

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Santa Barbara Santa Barbara, California Introduction The advent of powerful computers has enabled atmospheric scientists to run weather forecast and climate models at...

  10. Rates Meetings and Workshops (pbl/rates)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Rate Case Workshops Other Power Rates-Related Workshops July 1, 2004 - Rates and Finances Workshop (updated June 25, 2004) (financial and rate forecasts and scenarios for FY...

  11. Updated Buildings Sector Appliance and Equipment Costs and Efficiency

    Gasoline and Diesel Fuel Update (EIA)

    Full report (4.1 mb) Heating, cooling, & water heating equipment Appendix A - Technology Forecast Updates - Residential and Commercial Building Technologies - Reference Case (1.9...

  12. Addressing grid challenges and exploring opportunities, including DR

    SciTech Connect (OSTI)

    Simms, Scott

    2011-10-25

    Wind is valuable to PNW power generation mix. BPA supports development of wind generation forecasting, utility operational protocols and business practices, Demand Response, and storage applications.

  13. Student Trainee (Hydrologist)

    Office of Energy Efficiency and Renewable Energy (EERE)

    You will serve as a Pathways Program Intern (Hydrology) in the Weather and Streamflow Forecasting organization, Power and Operations Planning (PGP), Generation Asset Management (PG), Power Services...

  14. Nuclear Power Generation and Fuel Cycle Report 1997

    Reports and Publications (EIA)

    1997-01-01

    Final issue. This report provides information and forecasts important to the domestic and world nuclear and uranium industries. 1997 represents the most recent publication year.

  15. Natural Gas Weekly Update, Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    to last week's relatively moderate temperatures and a forecast for a continuation of this weather pattern have contributed to lower prices at most markets. After remaining...

  16. Natural Gas Weekly Update

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    to last week's relatively moderate temperatures and a forecast for a continuation of this weather pattern have contributed to lower prices at most markets. After remaining...

  17. DOE/EIA-M059(2007)

    Gasoline and Diesel Fuel Update (EIA)

    Adjust CTL investment costs over forecast. Purpose: Have CTL investment costs reflect learning and diminished resources. A decline rate in investment costs is used to model...

  18. Model Documentation Report: Residential Demand Module of the...

    Gasoline and Diesel Fuel Update (EIA)

    (conditioned square footage) based on current Census Bureau data. * Revision of the benchmarking process that incorporates historical and near-term forecasted values. December 2012...

  19. Residential Demand Module of the National Energy Modeling System...

    Gasoline and Diesel Fuel Update (EIA)

    (conditioned square footage) based on current Census Bureau data. * Revision of the benchmarking process that incorporates historical and near-term forecasted values. * Revision of...

  20. Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    based on today's forecast." Del Valle and her team were able to successfully monitor influenza in the United States, Poland, Japan and Thailand, dengue fever in Brazil and...

  1. Distributed Resource Energy Analysis and Management System (DREAMS...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to enhance operational functions (e.g. unit commitment, load forecasting, Automatic ... cost-competitive with other forms of electricity by the end of the decade. Learn more. ...

  2. Sandia Energy - Sandia PV Team Publishes Book Chapter

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Book Chapter Previous Next Sandia PV Team Publishes Book Chapter The book, Solar Energy Forecasting and Resource Assessment, provides an authoritative voice on the...

  3. Microsoft Word - Alcoa Extension EBT ROD Attachments - 2010-10...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    built in the Pacific Northwest is modeled to be consistent with Transmission Services' forecast of installed wind generation capacity in BPA's Balancing Authority Area. For...

  4. Policy Flash 2012-7 | Department of Energy

    Energy Savers [EERE]

    7 Policy Flash 2012-7 The Administration continues its emphasis on sustainable acquisition, emphasizing the importance of the program and forecasting changes in the Federal...

  5. Property:ProgramSector | Open Energy Information

    Open Energy Info (EERE)

    + AGI-32 + Energy + ANL Wind Power Forecasting and Electricity Markets + Energy + APEC-Alternative Transport Fuels: Implementation Guidelines + Energy + APFED-Good Practice...

  6. DOE to Host a Booth at Offshore WINDPOWER | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    market, supply chain opportunities, port readiness, and jobs and investment forecasts. ... Topic Presenter Session DateTime Steve Chalk - Deputy Assistant Secretary for Renewable ...

  7. Short-Term Energy Outlook - U.S. Energy Information Administration (EIA)

    Gasoline and Diesel Fuel Update (EIA)

    Global Petroleum and Other Liquids Global oil inventories are forecast to increase by an annual average of 1.6 million b/d in 2016 and by an additional 0.6 million b/d in 2017. These inventory builds are larger than previously expected, delaying the rebalancing of the oil market and contributing to lower forecast oil prices. Compared with last month's STEO, EIA has revised forecast supply growth higher for 2016 and revised forecast demand growth lower for both 2016 and 2017. Higher 2016 supply

  8. Session Papers

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    - compare the forecast with observations. Advantage: Allows detailed comparison with data. Problems: Expensive. Results are big and complicated and depend on all aspects of...

  9. Fundamental to the Cloud Land Surface Interaction Campaign (CLASIC...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    in agriculture ranging from more accurate weather forecasting to improved water management decisions and crop yield estimation. CLASIC CLASIC - - LAND LAND Cloud and Land...

  10. ARM - Facility News Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    from better forecasts for utility operators and more efficient design and operation of wind turbines and wind plants. More information is available in the Wind Program Newsletter...

  11. Sandia Energy - Solar Power International (SPI) Workshop

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    generation problem mitigation, discuss technology advancements including advanced inverters, consider forecasting tools for grid operators, and review case studies of industry...

  12. This Week In Petroleum Summary Printer-Friendly Version

    Gasoline and Diesel Fuel Update (EIA)

    facilities. Predicting the formation of hurricanes and tropical storms is an uncertain science, and most forecasters speak in terms of probabilities or ranges. The National Oceanic...

  13. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    new way. By treating the observations as a statistical sample, their probabilistic evaluation technique groups observations by classes in the forecast probability, as opposed to...

  14. A dual mass flux framework for boundary layer convection

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    A dual mass flux framework for boundary layer convection Neggers, Roel European Centre for Medium-range Weather Forecasts (ECMWF) Category: Modeling A new convective boundary layer...

  15. Estimation and Analysis of Life Cycle Costs of Baseline Enhanced...

    Open Energy Info (EERE)

    Identification of component-wise cost reduction targets for parity with coal and natural gas - Assessment of market economics for potential new entrants - Forecasts of technology...

  16. Solar Success Stories

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    2015 19:46:00 +0000 1349441 at http:energy.gov Solar Forecasting Gets a Boost from Watson, Accuracy Improved by 30% http:energy.goveeresuccess-storiesarticles...

  17. Research Highlight

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    routines. Additional Key Contacts: Howard Barker, Jason Cole, Mike Iacono, Eli Mlawer, Robert Pincus, and Petri Risnen. One of the world's foremost weather forecast models is...

  18. U P A D O E M A T E R I A L T R A N S F E R S T U D Y

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... In exchanges, such as coal, oil, and natural gas, there are ... S. Africa + Namibia Australia Niger Russia Canada Kazakhstan ... Price Delta Base Forecast No DOE Transfers UPA Report - ...

  19. ARM - CLASIC Workshop, March 26-27

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  20. ARM - AAF CLASIC Field Campaign

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  1. ARM - Fact Sheets

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  2. ARM - CLASIC News & Press

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Measurement Platforms PNNL WRF-CuP Forecast Cloud Physics Lidar MODIS Airborne Simulator Data Mesonet Monitoring ARM Data Plots Experiment Planning CLASIC Proposal Abstract...

  3. ARM - Events Article

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    provided through European Centre for Medium-Range Weather Forecasts (ECMWF) for the YOTC time period. Developing an implementation plan. A YOTC website has been started. An email...

  4. Word Pro - Untitled1

    U.S. Energy Information Administration (EIA) Indexed Site

    "North American Electric Reliability Corporation (NERC)" in Glossary. Notes: * Values for 2011 are forecast. * The winter peak period is October through May. Source: Table 8.12b.

  5. U.S. Energy Information Administration (EIA)

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    in the Northwest where a large portion of the generating mix comes from hydroelectric power, and the region's forecasted water supply decreased following a dry January. Total...

  6. AL PRO | Open Energy Information

    Open Energy Info (EERE)

    search Name: AL-PRO Place: Grossheide, Lower Saxony, Germany Zip: 26532 Sector: Wind energy Product: AL-PRO is an inndependent expert office for wind forecasts, wind...

  7. PowerPoint Presentation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    with a Single Column Model, CAPT Forecasts and M-PACE Observations Motivations Summary * CAM3 significantly underestimates the observed boundary layer mixed-phase cloud fraction...

  8. ARM XDC Datastreams

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NCEPGFS: National Centers for Environment Prediction Global Forecast System Point Reyes CA, USA; Mobile Facility SONDE: Balloon-Borne Sounding System ECMWFDIAG: European...

  9. Sustainable and Holistic Integration of Energy Storage and Solar...

    Broader source: Energy.gov (indexed) [DOE]

    loads (such as optimized operation of HVAC systems and other appliances) Enable demand response Incorporate solar and load forecasting into decisions Be interoperable internally ...

  10. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended forecast Weather at Fermilab Current Security Status Secon Level 3 Current Flag ... in the Linac Gallery to observe the decommissioning of the Cockcroft-Walton generators, ...

  11. Fermilab Today

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Extended forecast Weather at Fermilab Current Security Status Secon Level 3 Current Flag ... Pellico, who is overseeing their decommissioning. "People who work on these things ...

  12. J. C. Fulton

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... sludge from the K West Reactor fuel storage basin. ... Number Title Type Due Date Actual Date Forecast Date Status ... Project Manager for Decommissioning, Waste, Fuels, and ...

  13. Life Cycle Greenhouse Gas Emissions: Natural Gas and Power Production

    U.S. Energy Information Administration (EIA) Indexed Site

    Laboratory Electricity Generation Forecast: 25% Growth in Next 20 Years EIA, AEO 2015: Reference Case 37% Coal ... a clearinghouse of information on technologies, ...

  14. Analysis & Projections - U.S. Energy Information Administration...

    U.S. Energy Information Administration (EIA) Indexed Site

    Cooperation on Energy Information site internationalUnited StatesCanadaenergyMexico Electricity generation from ... Price summary (historical and forecast) 2014 2015 2016 2017 ...

  15. An Evaluation of Macroeconomic Models for Use at EIA

    U.S. Energy Information Administration (EIA) Indexed Site

    ... forecasting purposes, and this is considered to be a strength of the VAR methodology. ... general equilibrium models (DSGE) are smaller and more widely used in research activities. ...

  16. Slide 1

    U.S. Energy Information Administration (EIA) Indexed Site

    Source: EIA International Energy Annual 2006; Short-Term Energy Outlook (March 2009) *forecasted Energy is a security issue Global average temperature United States Japan, France, ...

  17. About EIA - Policies - U.S. Energy Information Administration...

    U.S. Energy Information Administration (EIA) Indexed Site

    through surveys, reports and articles detailing energy data analyses, and forecasts Currently Available 1 PrivacySecurity Privacy policy and security policy Currently ...

  18. Developing the Next Generation of Gridded TMYs (Presentation...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    o Outreach * Standards, expert committees, and collaborations o ASTM G03-radiometry o IEA Task 46 Solar Resource Assessment and Forecasting o Subcontracts and cooperative...

  19. OPEC Revenues Fact Sheet

    Reports and Publications (EIA)

    2013-01-01

    This report includes estimates of OPEC net oil export revenues, based on historical estimates and forecasts from the latest Energy Information Administration (EIA) Short-Term Energy Outlook.

  20. Supercomputers Capture Turbulence in the Solar Wind

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Turbulence in the Solar Wind Supercomputers Capture Turbulence in the Solar Wind Berkeley Lab visualizations could help scientists forecast destructive space weather December...