National Library of Energy BETA

Sample records for wh elan middle

  1. EA-413 Elan Energy Services, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Elan Energy Services, LLC EA-413 Elan Energy Services, LLC Order authorizing Elan Energy to export electric energy to Mexico. EA-413 Elan Energy MX.pdf (975.24 KB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 EA-294-B TexMex Energy, LLC

  2. Application to Export Electric Energy OE Docket No. EA-413 Elan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    3 Elan Energy Services, LLC Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC Application from Elan Energy Services to export electric energy to ...

  3. Application to Export Electric Energy OE Docket No. EA-413 Elan Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services, LLC | Department of Energy 3 Elan Energy Services, LLC Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC Application from Elan Energy Services to export electric energy to Mexico. EA-413 Elan Energy Services (MX).pdf (487.93 KB) More Documents & Publications EA-413 Elan Energy Services, LLC Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015

  4. Elan4/SPARC V9 Cross Loader and Dynamic Linker

    Energy Science and Technology Software Center (OSTI)

    2004-10-25

    The Elan4/Sparc V9 Croos Loader and Liner is a part of the Linux system software that allows the dynamic loading and linking of user code in the network interface Quadrics QsNETII, also called as Elan4 Quadrics. Elan44 uses a thread processor that is based on the assembly instruction set of the Sparc V9. All this software is integrated as a Linux kernel module in the Linux 2.6.5 release.

  5. Application to Export Electric Energy OE Docket No. EA-413 Elan...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    EA-413 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 Application from Elan Energy Services to export electric energy to Mexico. Federal ...

  6. Application to Export Electric Energy OE Docket No. EA-413 Elan Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 | Department of Energy 3 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 Application to Export Electric Energy OE Docket No. EA-413 Elan Energy Services, LLC: Federal Register Notice, Volume 80, No. 134 - July 14, 2015 Application from Elan Energy Services to export electric energy to Mexico. Federal Register Notice. EA-413 Elan Energy Svcs. (MX).pdf (248.6 KB) More Documents

  7. Microsoft PowerPoint - WH Energy and Climate Stakeholders 10...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    WH Energy and Climate Stakeholders 10-7-09 final.ppt Microsoft PowerPoint - WH Energy and Climate Stakeholders 10-7-09 final.ppt PDF icon Microsoft PowerPoint - WH Energy and ...

  8. TECHNICAL EQUIVALENCE BETWEEN PERKIN-ELMER DRCe AND ELAN 6000 FOR THE ANALYSIS OF 238U IN URINE BIOASSAY SAMPLES

    SciTech Connect (OSTI)

    Wong, C T; Collins, L J

    2007-09-05

    The LLNL Bioassay Laboratory recently purchased a Perkin-Elmer DRCe ICP-MS (DRCe) to replace the existing Perkin-Elmer Elan 6000 ICP-MS (Elan 6000) used for the analysis of {sup 238}U in urine bioassay samples. In accordance with section 5.7.2 of DOE-STD-1112-98, 'The Department of Energy Laboratory Accreditation Program for Radiobioassay', this document demonstrates that the DRCe is technically equivalent to the Elan 6000. This paper documents: (1) Minor changes made in the procedure to improve the sensitivity; (2) Detection limits for the Elan 6000 and the DRCe; (3) Determination of the measurement uncertainty for the DRCe; and (4) Comparison of results from the DRCe versus the Elan 6000. A 1 mL aliquot of the sample is transferred to an auto sampler tube. Nitric acid and {sup 233}U (used as an internal standard) are added to the samples and the samples are digested in a microwave oven. The digested samples are diluted to 10 mL with deionized water and the {sup 238}U concentration is determined by ICP-MS. The ICP-MS is calibrated with a series of {sup 238}U standards. {sup 233}U is used as an internal standard to correct for suppression of the signal due to the sample matrix. The Elan 6000 is run in the peakhopping mode with 100 ms dwell times and 50 sweeps. The total integration time is 5,000 ms. The average of two measurements is used for the determination.

  9. Emerging Technologies: HVAC, WH and Appliance

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technologies: HVAC, WH and Appliance BTO Peer Review 2016 Antonio M Bouza antonio.bouza@ee.doe.gov April 5-7, 2016 2 Building Technologies Office (BTO) Ecosystem Codes and Standards Emerging Technologies Residential Buildings Integration Commercial Buildings Integration 3 HVAC, Water Heating and Appliance R&D Strategy: National Labs CRADA projects, FOAs and use of BTO's deployment teams with research homes CRADA : Collaborative Research and Development Agreement More than just discrete

  10. PROJECT PROFILE: kWh Analytics (Incubator 10) | Department of...

    Broader source: Energy.gov (indexed) [DOE]

    APPROACH kWh Analytics will create the solar industry's largest database of financial payment history for solar financing contracts. This data set would serve as a crucial ...

  11. Search for WH associated production at D{\\o} Tevatron

    SciTech Connect (OSTI)

    Miconi, Florian

    2012-01-01

    The Higgs mechanism introduced in 1964 gives a satisfactory solution to a major problem of the standard model of elementary particles: the origin of the mass. It predicts the existence of the Higgs scalar boson, which has not been discovered experimentally yet. The Tevatron, a hadron accelerator based at Fermi National Accelerator Laboratory near Chicago, has delivered data to its two multi-purpose detectors CDF and DZERO since 1983 up to september 2011. Leaving us about 11 fb{sup -1} of data per experiment to analyze. Associated production of a Higgs boson and a vector gauge boson W or Z is the main search channel for a light standard Higgs boson (i.e. below 135 GeV/c{sup 2}). Using data collected by DZERO, we are looking for this production mode taking advantage of sophisticated techniques to improve the signal sensitivity such as b-jet identification and multivariate discriminants. In the end, a statistical approach allows us to set an upper limit on the ratio between the observed (resp. expected) Higgs production cross section and its theoretical cross section. The latest result obtained in the WH channel using 8.5 fb{sup -1} at DZERO is 4.6 (resp. 3.5) for a 115 GeV/c{sup 2} Higgs boson.

  12. PROJECT PROFILE: kWh Analytics (Phase 3) | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    kWh Analytics (Phase 3) PROJECT PROFILE: kWh Analytics (Phase 3) Funding Opportunity: Orange Button (SB-DATA) SunShot Subprogram: Soft Costs Location: San Francisco, CA Amount Awarded: $1,000,000 Awardee Cost Share: $1,000,000 kWh Analytics will support the adoption of industry-led data standards, including the development of a data format translation software tool, Solar BabelFish, which will instantly translate original data formats into data standards. This will significantly reduce the time

  13. text in "Max kWh" fields | OpenEI Community

    Open Energy Info (EERE)

    it should as we are trying to prevent users from writing "less than X", "greater than Y", etc. and follow the intention of the "Max kWh" field. Also there should be a warning...

  14. WH Mapathon

    Open Energy Info (EERE)

    House Mapathon 2015 Refresh To contribute, follow these instructions. For more information on this effort, visit: http:mapgive.state.govwhmapathon. Progress depicted in the map...

  15. Search for the Standard Model Higgs Boson in the $WH \\to \\ell \

    SciTech Connect (OSTI)

    Nagai, Yoshikazu; /Tsukuba U.

    2010-02-01

    We have searched for the Standard Model Higgs boson in the WH {yields} lvbb channel in 1.96 TeV pp collisions at CDF. This search is based on the data collected by March 2009, corresponding to an integrated luminosity of 4.3 fb-1. The W H channel is one of the most promising channels for the Higgs boson search at Tevatron in the low Higgs boson mass region.

  16. ETs HVAC, WH and Appliance R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ET's HV!, WH and !ppliance R&D Antonio M. Bouza, DOE/BTO Technology Manager April 24-25, 2014 Introduction Program Goals: * Support BTO's goals to achieve 50 percent building energy savings * By 2020, develop technologies enabling 20 percent energy savings in HVAC; 30 percent energy savings in water heating, and 10 percent energy savings in appliances * By 2030, develop technologies enabling 40 percent energy savings in HVAC; 60 percent energy savings in water heating, and 20 percent

  17. ETs HVAC, WH and Appliance R&D

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ET's HVAC, WH and Appliance R&D Antonio M. Bouza, DOE/BTO Technology Manager April 14-15 2015 2 Introduction Program Goals: Support BTO's goals to achieve 50 percent building energy savings * By 2020, develop technologies enabling 10 percent energy savings in HVAC; 20 percent energy savings in water heating, and 15 percent energy savings in appliances * By 2030, develop technologies enabling 25 percent energy savings in HVAC; 35 percent energy savings in water heating, and 30 percent energy

  18. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    Not Available

    2005-11-01

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  19. CEMEX: Cement Manufacturer Saves 2.1 Million kWh Annually with a Motor Retrofit Project

    SciTech Connect (OSTI)

    2010-06-25

    This DOE Industrial Technologies Program spotlight describes how the CEMEX cement manufacturing plant in Davenport, California, saves 2 million kWh and $168,000 in energy costs annually by replacing 13 worn-out motors with new energy-efficient ones.

  20. Middle East

    SciTech Connect (OSTI)

    Hemer, D.O.; Mason, J.F.; Hatch, G.C.

    1981-10-01

    Petroleum production in Middle East countries during 1980 totaled 6,747,719,000 bbl or an average rate of 18,436,390,000 bbl/d, down 13.9% from 1979. Increases were in Saudi Arabia and Syria. Significant decreases occurred in Iraq, Iran, Kuwait, and Turkey. New discoveries were made in Abu Dhabi, Iran, Saudi Arabia, Sharjah, and Oman. New areas were explored in Bahrain, Oman, Syria, and Yemen. 9 figures, 16 tables.

  1. Search for WH associated production in pp? collisions at ?s=1.96 TeV

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; Askew, A.; sman, B.; Atkins, S.; Atramentov, O.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Barreto, J.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Belanger-Champagne, C.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besanon, M.; Beuselinck, R.; Bezzubov, V. A.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Brooijmans, G.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Prez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; Cruz-Burelo, E. De La; Dliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dorland, T.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garca-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grnendahl, S.; Grnewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haas, A.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Cruz, I. Heredia-De La; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Huske, N. K.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffr, M.; Jayasinghe, A.; Jesik, R.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lellouch, J.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martnez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nunnemann, T.; Obrant, G.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Ptroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Polozov, P.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Safronov, G.; Sajot, G.; Salcido, P.; Snchez-Hernndez, A.; Sanders, M. P.; Sanghi, B.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Sldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stolin, V.; Stoyanova, D. A.; Strauss, M.; Stutte, L.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.

    2012-08-13

    This report describes a search for associated production of W and Higgs bosons based on data corresponding to an integrated luminosity of L?5.3 fb? collected with the D0 detector at the Fermilab Tevatron pp? Collider. Events containing a W?l? candidate (with l corresponding to e or ?) are selected in association with two or three reconstructed jets. One or two of the jets are required to be consistent with having evolved from a b quark. A multivariate discriminant technique is used to improve the separation of signal and backgrounds. Expected and observed upper limits are obtained for the product of the WH production cross section and branching ratios and reported in terms of ratios relative to the prediction of the standard model as a function of the mass of the Higgs boson (MH). The observed and expected 95% C.L. upper limits obtained for an assumed MH=115 GeV are, respectively, factors of 4.5 and 4.8 larger than the value predicted by the standard model.

  2. Search for WH associated production in 5.3 fb -1 of pp¯ collisions at the Fermilab Tevatron

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V.M.; Abbott, B.; Acharya, B.S.; Adams, M.; Adams, T.; Alexeev, G.D.; Alkhazov, G.; Alton, A.; Alverson, G.; Alves, G.A.; et al

    2011-03-01

    We present a search for associated production of Higgs and W bosons in collisions at a center of mass energy of in 5.3 fb -1 of integrated luminosity recorded by the D0 experiment. Multivariate analysis techniques are applied to events containing one lepton, an imbalance in transverse energy, and one or two b-tagged jets to discriminate a potential WH signal from Standard Model backgrounds. We observe good agreement between data and expected backgrounds, and set an upper limit of 4.5 (at 95% confidence level and for mH=115 GeV) on the ratio of the WH cross section multiplied by the branchingmore » fraction of H → bb¯ to its Standard Model prediction, which is consistent with an expected limit of 4.8.« less

  3. Development of zinc-bromine batteries for utility energy storage. First annual report, 1 September 1978-31 August 1979. [8-kWh submodule

    SciTech Connect (OSTI)

    Putt, R.; Attia, A.J.; Lu, P.Y.; Heyland, J.H.

    1980-05-01

    Development work on the Zn/Br battery is reported. A major improvement was the use of a bipolar cell design; this design is superior with respect to cost, performance, and simplicity. A cost and design study for an 80-kWh module resulted in a cost estimate of $54/kWh(1979$) for purchased materials and components, on the basis of 2500 MWh of annual production. A cell submodule (nominal 2 kWh) of full-sized electrodes (1 ft/sup 2/) accrued over 200 continuous cycles in a hands-off, automatic routine with efficiencies in the range of 53 to 56%. Initial testing of a full-sized 8-kWh submodule demonstrated energy efficiencies of 65 to 67%. 23 figures, 10 tables. (RWR)

  4. Development of 8 kWh Zinc bromide battery as a precursor of battery for electric power storage

    SciTech Connect (OSTI)

    Fujii, T.; Ando, Y.; Fujii, E.; Hirotu, A.; Ito, H.; Kanazashi, M.; Misaki, H.; Yamamoto, A.

    1984-08-01

    Zinc bromide battery is characterized with its room temperature operation, simple construction and easy maintenance. After four years' research and development of electrode materials, electrolyte composition, battery stack construction and other components, we prepared 1 kW class (8 kWh) battery for the first interim official evaluation. This battery showed a good and stable energy efficiency of 80% after 130 cycles of 1.25 kW 8 hours charge and 1.0 kW 8 hours discharge.

  5. Middle School Science Bowl

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2015 February Middle School Science Bowl Middle School Science Bowl WHEN: Feb 28, 2015 8:00 AM - 4:00 PM WHERE: Highland High School 4700 Coal Ave SE, Albuquerque, NM...

  6. QER- Comment of Ariel Elan 2

    Office of Energy Efficiency and Renewable Energy (EERE)

    Thank you for your attention to my comment and those of other citizens. I am among many who experience climate disruption as an emergency, and I feel emergency measures to slow or stabilize it are not only justified, but are essential. Humanity's consumption and production of energy is what needs to change in order to stabilize our climate at any point. The sooner we accomplish this, the sooner we can reduce the suffering of billions of people, and the expenditure of billions and trillions of dollars, that are all due to climate-change impacts. It is not necessary to agree that the extraction, processing, and burning of fossil fuels has caused the atmospheric and temperature changes that have caused climate disruption. Suppose an asteroid larger than planet Earth was hurtling directly towards our planet right now. We did not "cause" the asteroid to move toward us; does that mean we should do nothing to redirect it or mitigate its impact? No one would recommend that. Climate disruption is the asteroid that could make the Earth uninhabitable for future generations of human beings. The one and only thing humanity can do that we KNOW would help to slow down its cascading and exponential increase is to reduce heat-trapping gas in our atmosphere. We can do that, no matter what we believe caused the problem. And we must.

  7. EA-413 Elan Energy MX.pdf

    Office of Environmental Management (EM)

  8. QER- Comment of Ariel Elan 1

    Office of Energy Efficiency and Renewable Energy (EERE)

    To all who are concerned with New England's energy future: We are in a worldwide climate emergency. Consequently, I urge you in every possible way to endorse policies that reduce-reduce-reduce-reduce consumption of ALL fossil fuels just as quickly as we all can do so.

  9. Search for WH associated production in pp̄ collisions at √s=1.96 TeV

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Aoki, M.; et al

    2012-08-13

    This report describes a search for associated production of W and Higgs bosons based on data corresponding to an integrated luminosity of L≈5.3 fb⁻¹ collected with the D0 detector at the Fermilab Tevatron pp̄ Collider. Events containing a W→lν candidate (with l corresponding to e or μ) are selected in association with two or three reconstructed jets. One or two of the jets are required to be consistent with having evolved from a b quark. A multivariate discriminant technique is used to improve the separation of signal and backgrounds. Expected and observed upper limits are obtained for the product ofmore » the WH production cross section and branching ratios and reported in terms of ratios relative to the prediction of the standard model as a function of the mass of the Higgs boson (MH). The observed and expected 95% C.L. upper limits obtained for an assumed MH=115 GeV are, respectively, factors of 4.5 and 4.8 larger than the value predicted by the standard model.« less

  10. A $WH \\to \\tau \

    SciTech Connect (OSTI)

    Meijer, Melvin Michael

    2012-06-25

    This thesis describes a search for an elusive particle: the Higgs boson. The search is motivated by the urge to understand the fundamental building blocks of our universe.

  11. Longfellow Middle School Wins Virginia Middle School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wins Virginia Middle School Science Bowl on March 7 2014 Virginia Middle School Science Bowl At the end of the day, the team from Longfellow Middle School, Falls Church, won the...

  12. Chlorine hazard evaluation for the zinc-chlorine electric vehicle battery. Final technical report. [50 kWh

    SciTech Connect (OSTI)

    Zalosh, R. G.; Bajpai, S. N.; Short, T. P.; Tsui, R. K.

    1980-04-01

    Hazards associated with conceivable accidental chlorine releases from zinc-chlorine electric vehicle batteries are evaluated. Since commercial batteries are not yet available, this hazard assessment is based on both theoretical chlorine dispersion models and small-scale and large-scale spill tests with chlorine hydrate (which is the form of chlorine storage in the charged battery). Six spill tests involving the chlorine hydrate equivalent of a 50-kWh battery indicate that the danger zone in which chlorine vapor concentrations intermittently exceed 100 ppM extends at least 23 m directly downwind of a spill onto a warm (30 to 38/sup 0/C) road surface. Other accidental chlorine release scenarios may also cause some distress, but are not expected to produce the type of life-threatening chlorine exposures that can result from large hydrate spills. Chlorine concentration data from the hydrate spill tests compare favorably with calculations based on a quasi-steady area source dispersion model and empirical estimates of the hydrate decomposition rate. The theoretical dispersion model was combined with assumed hydrate spill probabilities and current motor vehicle accident statistics in order to project expected chlorine-induced fatality rates. These calculations indicate that expected chlorine fataility rates are several times higher in a city such as Los Angeles with a warm and calm climate than in a colder and windier city such as Boston. Calculated chlorine-induced fatality rate projections for various climates are presented as a function of hydrate spill probability in order to illustrate the degree of vehicle/battery crashworthiness required to maintain chlorine-induced fatality rates below current vehicle fatality rates due to fires and asphyxiations. 37 figures, 19 tables.

  13. Search for $WH$ associated production in 5.3 fb$^{-1}$ of $p\\bar{p}$ collisions at the Fermilab Tevatron

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Alves, Gilvan Augusto; Ancu, Lucian Stefan; /Nijmegen U. /Fermilab

    2010-12-01

    We present a search for associated production of Higgs and W bosons in p{bar p} collisions at a center of mass energy of {radical}s = 1.96 TeV in 5.3 fb{sup -1} of integrated luminosity recorded by the D0 experiment. Multivariate analysis techniques are applied to events containing one lepton, an imbalance in transverse energy, and one or two b-tagged jets to discriminate a potential WH signal from standard model backgrounds. We observe good agreement between data and background, and set an upper limit of 4.5 (at 95% confidence level and for m{sub H} = 115 GeV) on the ratio of the WH cross section multiplied by the branching fraction of H {yields} b{bar b} to its standard model prediction. A limit of 4.8 is expected from simulation.

  14. Effects of Diet on Resource Utilization by a Model Human Gut Microbiota Containing Bacteroides cellulosilyticus WH2, a Symbiont with an Extensive Glycobiome

    SciTech Connect (OSTI)

    McNulty, Nathan; Wu, Meng; Erickson, Alison L; Pan, Chongle; Erickson, Brian K; Martens, Eric C; Pudlo, Nicholas A; Muegge, Brian; Henrissat, Bernard; Hettich, Robert {Bob} L; Gordon, Jeffrey

    2013-01-01

    The human gut microbiota is an important metabolic organ, yet little is known about how its individual species interact, establish dominant positions, and respond to changes in environmental factors such as diet. In this study, gnotobiotic mice were colonized with an artificial microbiota comprising 12 sequenced human gut bacterial species and fed oscillating diets of disparate composition. Rapid, reproducible, and reversible changes in the structure of this assemblage were observed. Time-series microbial RNA-Seq analyses revealed staggered functional responses to diet shifts throughout the assemblage that were heavily focused on carbohydrate and amino acid metabolism. High-resolution shotgun metaproteomics confirmed many of these responses at a protein level. One member, Bacteroides cellulosilyticus WH2, proved exceptionally fit regardless of diet. Its genome encoded more carbohydrate active enzymes than any previously sequenced member of the Bacteroidetes. Transcriptional profiling indicated that B. cellulosilyticus WH2 is an adaptive forager that tailors its versatile carbohydrate utilization strategy to available dietary polysaccharides, with a strong emphasis on plant-derived xylans abundant in dietary staples like cereal grains. Two highly expressed, diet-specific polysaccharide utilization loci (PULs) in B. cellulosilyticus WH2 were identified, one with characteristics of xylan utilization systems. Introduction of a B. cellulosilyticus WH2 library comprising .90,000 isogenic transposon mutants into gnotobiotic mice, along with the other artificial community members, confirmed that these loci represent critical diet-specific fitness determinants. Carbohydrates that trigger dramatic increases in expression of these two loci and many of the organism s 111 other predicted PULs were identified by RNA-Seq during in vitro growth on 31 distinct carbohydrate substrates, allowing us to better interpret in vivo RNA-Seq and proteomics data. These results offer insight

  15. Search for the Standard Model Higgs Boson in Associated WH Production in 9.7 fb? of pp? Collisions with the D0 Detector

    SciTech Connect (OSTI)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besanon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Bose, T.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Prez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Chevalier-Thry, S.; Cho, D. K.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M.-C.; Croc, A.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Dliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, A.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; Garca-Gonzlez, J. A.; Garca-Guerra, G. A.; Gavrilov, V.; Gay, P.; Geng, W.; Gerbaudo, D.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Goussiou, A.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J.-F.; Grohsjean, A.; Grnendahl, S.; Grnewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Hagopian, S.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffr, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kaadze, K.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kulikov, S.; Kumar, A.; Kupco, A.; Kur?a, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Lubatti, H. J.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Madar, R.; Magaa-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martnez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Ptroff, P.; Pleier, M.-A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Snchez-Hernndez, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schlobohm, S.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Sldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Takahashi, M.; Titov, M.; Tokmenin, V. V.; Tsai, Y.-T.; Tschann-Grimm, K.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.

    2012-09-20

    We present a search for the standard model Higgs boson in final states with a charged lepton (electron or muon), missing transverse energy, and two or three jets, at least one of which is identified as a b-quark jet. The search is primarily sensitive to WH?l?bb production and uses data corresponding to 9.7 fb? of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp Collider at ?s=1.96 TeV. We observe agreement between the data and the expected background. For a Higgs boson mass of 125 GeV, we set a 95% C.L. upper limit on the production of a standard model Higgs boson of 5.2?SM, where ?SM is the standard model Higgs boson production cross section, while the expected limit is 4.7?SM.

  16. Minnesota Regional Science Bowl for Middle School Students |...

    Office of Science (SC) Website

    Minnesota Regions Minnesota Regional Science Bowl for Middle School Students National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle ...

  17. Search for $WH$ associated production in $p \\bar{p}$ collisions at $\\sqrt{s}=1.96\\,{\\rm TeV}$

    SciTech Connect (OSTI)

    Abazov, Victor Mukhamedovich; Abbott, Braden Keim; Acharya, Bannanje Sripath; Adams, Mark Raymond; Adams, Todd; Alexeev, Guennadi D.; Alkhazov, Georgiy D.; Alton, Andrew K.; Alverson, George O.; Aoki, Masato; Askew, Andrew Warren

    2012-03-01

    This report describes a search for associated production of W and Higgs bosons based on data corresponding to an integrated luminosity of L {approx} 5.3 fb{sup -1} collected with the D0 detector at the Fermilab Tevatron p{bar p} Collider. Events containing a W {yields} {ell}{nu} candidate (with {ell} corresponding to e or {mu}) are selected in association with two or three reconstructed jets. One or two of the jets are required to be consistent with having evolved from a b quark. A multivariate discriminant technique is used to improve the separation of signal and backgrounds. Expected and observed upper limits are obtained for the product of the WH production cross section and branching ratios and reported in terms of ratios relative to the prediction of the standard model as a function of the mass of the Higgs boson (M{sub H}). The observed and expected 95% C.L. upper limits obtained for an assumed M{sub H} = 115 GeV are, respectively, factors of 4.5 and 4.8 larger than the value predicted by the standard model.

  18. Bohnam Middle School wins Pantex Middle School Science Bowl ...

    National Nuclear Security Administration (NNSA)

    Thursday, February 12, 2015 - 4:13pm NNSA Blog Teams from 17 area Texas schools competed for a regional title Saturday at the Pantex Middle School Science Bowl at West Texas A&M ...

  19. Middle Georgia Biofuels | Open Energy Information

    Open Energy Info (EERE)

    Georgia Biofuels Jump to: navigation, search Name: Middle Georgia Biofuels Place: East Dublin, Georgia Zip: 31027 Product: Georgia-based biodiesel producer. References: Middle...

  20. Search for associated Higgs boson production WH ---> WWW* ---> l+- nu l-prime+- nu-prime + X in p anti-p collisions at s**(1/2) = 1.96-TeV

    SciTech Connect (OSTI)

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Agelou, M.; Agram, J.-L.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; /Buenos Aires U. /Rio de Janeiro, CBPF /Rio de Janeiro State U. /Sao Paulo, IFT /Alberta U. /Simon Fraser U. /York U., Canada /McGill U. /Beijing, Inst. High Energy Phys. /Hefei, CUST /Andes U., Bogota

    2006-07-01

    The authors present a search for associated Higgs boson production in the process p{bar p} {yields} WH {yields} WWW* {yields} {ell}{sup {+-}}{nu} {ell}{prime}{sup {+-}} {nu}{prime} + X in final states containing two like-sign isolated electrons or muons (e{sup {+-}}e{sup {+-}}, e{sup {+-}} {mu}{sup {+-}}, or {mu}{sup {+-}} {mu}{sup {+-}}). The search is based on D0 Run II data samples corresponding to integrated luminosities of 360-380 pb{sup -1}. No excess is observed over the predicted standard model background. They set 95% C.L. upper limits on {sigma}(p{bar p} {yields} WH) x Br(H {yields} WW*) between 3.2 and 2.8 pb for Higgs masses from 115 to 175 GeV.

  1. EA-413 Elan Energy Svcs. (MX).pdf

    Office of Environmental Management (EM)

  2. Summer 2010 Intern Project- Elan Frantz | Center for Energy Efficient...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Using thermoelectric (TE) devices, waste heat can be captured to generate power. In this study, TE power generation is tested as a method of cooling the central processing unit ...

  3. Aspen Elementary, Los Alamos Middle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Aspen Elementary, Los Alamos Middle School students take top award in 26th New Mexico Supercomputing Challenge April 27, 2016 'Solving the Rubik's Cube 2.0' includes 3D simulation LOS ALAMOS, N.M., April 26, 2016-Andy Corliss, Phillip Ionkov and Ming Lo of Aspen Elementary, and Max Corliss of Los Alamos Middle School won first place in the New Mexico Supercomputing Challenge for their project, "Solving the Rubik's Cube 2.0," Tuesday at Los Alamos National Laboratory. They created a

  4. Security in the Middle East

    SciTech Connect (OSTI)

    Wells, S.F. Jr.; Bruzonsky, M.A.

    1986-01-01

    The full range of U.S. security interests in the Middle East is covered in this volume of original contributions from prominent international scholars. Case studies of key countries emphasize the prospects for peaceful political, economic, and cultural change in the region. The Arab-Israeli conflict is examined with particular attention to the ''Palestine problem,'' U.S. policy and diplomacy, and the peace process. Finally, the involvement of the U.S. and the USSR and the policy options open to them are considered. Includes chapters on oil and its role in Middle-East security issues.

  5. Greeley's Maplewood Middle School Stellar in Solar Car Race

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School, second place; Fountain Middle School, third place; Englewood's Beacon Country Day School, fourth place; and Grand Junction's Orchard Mesa Middle School, fifth place. ...

  6. Conneaut Middle School Wind Turbine | Open Energy Information

    Open Energy Info (EERE)

    Conneaut Middle School Wind Turbine Jump to: navigation, search Name Conneaut Middle School Wind Turbine Facility Conneaut Middle School Wind Turbine Sector Wind energy Facility...

  7. Natural Gas Study Guide - Middle School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School Natural Gas Study Guide - Middle School Natural Gas Study Guide - Middle School (246.85 KB) More Documents & Publications Natural Gas Study Guide - High School What ...

  8. Middle East oil and gas

    SciTech Connect (OSTI)

    Not Available

    1984-12-01

    The following subjects are covered in this publication: (1) position of preeminence of the Middle East; (2) history of area's oil operations for Iran, Iraq, Bahrain, Kuwait, Saudi Arabia, neutral zone, Qatar, United Arab Emirates, Oman and Egypt; (3) gas operations of Saudi Arabia, Iran, Kuwait, Qatar, Iraq and United Arab Emirates; (4) changing relationships with producing countries; (5) a new oil pricing environment; (6) refining and other industrial activities; and (7) change and progress. 10 figs., 12 tabs.

  9. Middle School Rules, Forms, and Resources | U.S. DOE Office of...

    Office of Science (SC) Website

    Resources National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules, Forms,...

  10. Longfellow Middle School Edges Out Gildersleeve to Win 2011 Virginia Middle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    School Science Bowl | Jefferson Lab Edges Out Gildersleeve to Win 2011 Virginia Middle School Science Bowl Longfellow Middle School Edges Out Gildersleeve to Win 2011 Virginia Middle School Science Bowl 1st_place_Longfellow.jpg The team from Longfellow Middle School, Falls Church, won the 2011 Virginia Regional Middle School Science Bowl held March 5 at Jefferson Lab. Pictured, left to right, are Ryan Golant, Kunal Naik, Keaton Lee, Tarun Kamath, Ross Dempsey and Coach James Bradford. Photo:

  11. Longfellow Middle School Wins Virginia Middle School Science Bowl on March

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    7 | Jefferson Lab Wins Virginia Middle School Science Bowl on March 7 Longfellow Middle School Wins Virginia Middle School Science Bowl on March 7 2014 Virginia Middle School Science Bowl At the end of the day, the team from Longfellow Middle School, Falls Church, won the Virginia Regional Middle School Science Bowl on March 7. The team of (back row, left to right) Coach Jim Bradford, Fred Zhang and Benjamin Xu, and (front, l. to r.) Christopher Bi, Wenbo Wu and Aaditya Singh pose for a

  12. West KY Regional Middle School Science Bowl

    Broader source: Energy.gov [DOE]

    Deegan Lawrence (far right) from Henderson County North Middle School gives an answer as teammates D.J. Banks (middle) and Alex Chandler look on during DOE’s West Kentucky Regional Middle School Science Bowl in Paducah February 6. Henderson North won the competition and will compete in DOE’s National Science Bowl® in Washington, D.C. April 30 through May 4.

  13. Are You Smarter Than a Middle Schooler?

    Broader source: Energy.gov [DOE]

    Test your knowledge of math and science against the middle school finalists in the National Science Bowl with these 10 questions.

  14. Middle School Students | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Students National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Attending the National Finals ...

  15. Virginia Middle School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School Science Bowl Twenty Teams to Compete in Virginia Middle School Science Bowl on March 5 NEWPORT NEWS, Va., March 3, 2016 - Some of the brightest young minds in the Commonwealth will meet at the U.S. Department of Energy's Jefferson Lab on March 5, to compete in the Virginia Regional Middle School Science Bowl. Teams from 20 schools are registered for this year's academic competition. The U.S. Department of Energy (DOE) National Science Bowl® is an annual academic competition among

  16. National Science Bowl Update: Middle School Teams from Maryland...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Science Bowl Update: Middle School Teams from Maryland and Indiana to Compete for National Championship on Monday National Science Bowl Update: Middle School Teams from Maryland ...

  17. Henderson County North Middle School wins 2015 DOE West Kentucky...

    Broader source: Energy.gov (indexed) [DOE]

    Science Bowl February 6, 2015 during competition among 12 middle school teams. The team will represent western Kentucky in the middle school competition of DOE's National Science ...

  18. East Middle School and Cayuga Community College Space Heating...

    Open Energy Info (EERE)

    Middle School and Cayuga Community College Space Heating Low Temperature Geothermal Facility Jump to: navigation, search Name East Middle School and Cayuga Community College Space...

  19. Media Advisory: Virginia Middle School Science Bowl Set For March...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia Middle School Science Bowl Set For March 5 at Jefferson Lab What: The Department of Energy's 2011 Virginia Regional Middle School Science Bowl When: Saturday, March 5,...

  20. Media Advisory: March 7 Virginia Middle School Science Bowl Tournament...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 7 Virginia Middle School Science Bowl Tournament What: The 2009 Virginia Regional Middle School Science Bowl When: Saturday, March 7, 2009. Round-robin competition will run...

  1. High-performance batteries for electric-vehicle propulsion and stationary energy storage. Progress report, October 1978-September 1979. [40 kWh, Li-Al and Li-Si anodes

    SciTech Connect (OSTI)

    Barney, D. L.; Steunenberg, R. K.; Chilenskas, A. A.; Gay, E. C.; Battles, J. E.; Hornstra, F.; Miller, W. E.; Vissers, D. R.; Roche, M. F.; Shimotake, H.; Hudson, R.; Askew, B. A.; Sudar, S.

    1980-03-01

    The research, development, and management activities of the programs at Argonne National Laboratory (ANL) and at contractors' laboratories on high-temperature batteries during the period October 1978 to September 1979 are reported. These batteries are being developed for electric-vehicle propulsion and for stationary energy-storage applications. The present cells, which operate at 400 to 500/sup 0/C, are of a vertically oriented, prismatic design with one or more inner positive electrodes of FeS or FeS/sub 2/, facing negative electrodes of lithium-aluminum or lithium-silicon alloy, and molten LiCl-KC1 electrolyte. During this reporting period, cell and battery development work has continued at ANL and contractors' laboratories. A 40 kWh electric-vehicle battery (designated Mark IA) was fabricated and delivered to ANL for testing. During the initial heat-up, one of the two modules failed due to a short circuit. A failure analysis was conducted, and the Mark IA program completed. Development work on the next electric-vehicle battery (Mark II) was initiated at Eagle-Picher Industries, Inc. and Gould, Inc. Work on stationary energy-storage batteries during this period has consisted primarily of conceptual design studies. 107 figures, 67 tables.

  2. Middle Rio Grande Cooperative Water Model

    Energy Science and Technology Software Center (OSTI)

    2005-11-01

    This is computer simulation model built in a commercial modeling product Called Studio Expert, developed by Powersim, Inc. The simulation model is built in a system dynamics environment, allowing the simulation of the interaction among multiple systems that are all changing over time. The model focuses on hydrology, ecology, demography, and economy of the Middle Rio Grande, with Water as the unifying feature.

  3. STEM Volunteer Training: Engaging Middle School Students | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEM Volunteer Training: Engaging Middle School Students STEM Volunteer Training: Engaging Middle School Students August 13, 2015 3:00PM to 4:00PM EDT Register: https:...

  4. NREL: Workforce Development and Education Programs - Middle School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Learn about fun and exciting middle school programs and competitions that will put student's science and math skills to the test. National Middle School Science Bowl NREL Model Car ...

  5. Media Advisory - The Virginia Middle School Science Bowl Is Set...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Virginia Middle School Science Bowl Is Set For March 6 at Jefferson Lab What: The 2010 Virginia Regional Middle School Science Bowl When: Saturday, March 6, 2010. Round-robin...

  6. Longfellow Middle School Edges Out Gildersleeve to Win 2011 Virginia...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Edges Out Gildersleeve to Win 2011 Virginia Middle School Science Bowl 1stplaceLongfellow.jpg The team from Longfellow Middle School, Falls Church, won the 2011 Virginia Regional...

  7. Smith Middle School Takes First Place at Science Bowl Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Smith Middle School Takes First Place at Science Bowl Hydrogen Fuel Cell Car Competition ... June 24, 2005 Golden, Colo. - Smith Middle School from Chapel Hill, N.C., captured top ...

  8. Virginia, Maryland teams prepare for Regional Middle School Science Bowl |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Virginia, Maryland teams prepare for Regional Middle School Science Bowl Virginia, Maryland teams prepare for Regional Middle School Science Bowl March 3, 2005 The Department of Energy's Jefferson Lab, in Newport News, Va., hosts the Virginia/Maryland Regional Middle School Science Bowl tomorrow (Saturday, March 5). A dozen schools have registered teams for the event, according to Jan Tyler, Science Education program manager. This is JLab's second year hosting the Middle School

  9. V.P. Biden Hosts the Middle Class Task Force

    Broader source: Energy.gov [DOE]

    Secretary Chu will join Vice President Biden at the White House as he hosts a Middle Class Task Force event.

  10. EnergySmart Schools Case Study: Northern Guilford Middle School

    SciTech Connect (OSTI)

    2009-09-01

    An EnergySmart Schools Case Study on the Northern Guilford Middle School in Greensboro, North Carolina

  11. Coal Study Guide - Middle School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School Coal Study Guide - Middle School Coal Study Guide - Middle School (728.75 KB) More Documents & Publications Coal Study Guide for Elementary School Coal Study Guide - High School Guide to Low-Emission Boiler and Combustion Equipment Selection

  12. Oil Study Guide - Middle School | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle School Oil Study Guide - Middle School Oil Study Guide - Middle School (271.4 KB) More Documents & Publications Oil Study Guide - High School evaluation_egs_tech_2008.pdf A History of Geothermal Energy Research and Development in the United States: Reservoir Engineering 1976-2006

  13. STEM: Volunteer Training Engaging Middle School Students

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEM: Volunteer Training Engaging Middle School Students August 13, 2015 Erin Twamley Education Project Manager Department of Energy Nimisha Ghosh Roy Network Manager National Girls Collaborative Project Rabiah Mayas, Ph.D. Director of Science and Integrated Strategies Museum of Science and Industry Chicago 2 Agenda You are on mute! Use your webinar bar to fill out poll, send a chat or send in a question. Please tell us via chat if you cannot see or hear. Overview of STEM Training Key Outcomes

  14. Middle Urals` pollution prevention priorities assessment project

    SciTech Connect (OSTI)

    Gonzalez, M.; Ott, R.L.; Chukanov, V.

    1995-09-13

    The Middle Urals is an important Russian industrial region. The key industries are also the most environmentally damaging: mining, metallurgical and chemical industries. There are some 600 large-sized and medium-sized enterprises located within the Middle Urals` region. Their annual solid and gaseous chemical releases have led to exceeding some maximum permissible contaminant concentrations by factors of tens and hundreds. The environmental problems of the Middle Urals are of such magnitude, seriousness, and urgency that the limited available resources can be applied only to the problems of the highest priority in the most cost-effective way. By the combined efforts of scientists from Lawrence Livermore National Laboratory (USA), Institute of Industrial Ecology (Ekaterinburg, Russia) and Russian Federal Nuclear Center (Snezhinsk, Russia) the project on Environmental Priorities Assessment was initiated in 1993. Because the project will cut across a spectrum of Russian environmental, social, and political issues, it has been established as a genuine Russian effort led by Russian principals. Russian participants are the prime movers and decision-makers, and LLNL participants are advisors. A preliminary project has been completed to gather relevant environmental data and to develop a formal proposal for the full priorities assessment project for submittal to the International Science and Technology Center. The proposed priorities assessment methodology will be described in this paper. The specific objectives of this project are to develop and to implement a methodology to establish Russian priorities for future pollution prevention efforts in a limited geographic region of the Middle Urals (a part of Chelyabinsk and Sverdlovsk Oblasts). This methodology will be developed on two geographic levels: local (town scale) and regional (region scale). Detailed environmental analysis will be performed on a local scale and extrapolated to the regional scale.

  15. Greeley's Maplewood Middle School Stellar in Solar Car Race

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Greeley's Maplewood Middle School Stellar in Solar Car Race For more information contact: Sarah Holmes Barba, 303-275-3023 email: Sarah Barba Golden, Colo., May. 12, 2001 - Students from Greeley's Maplewood Middle School built the fastest model solar car and won the Junior Solar Sprint at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) today. A team from Lyons Middle School won top honors for design. Thirty-seven teams from across Colorado entered the 20-meter race,

  16. Media Advisory - Virginia Regional Middle School Science Bowl | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab Middle School Science Bowl Media Advisory - Virginia Regional Middle School Science Bowl What: Virginia Regional Middle School Science Bowl When: Saturday, March 1, 2014. Round robin competition runs from 9 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - ~ 4 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, Va.

  17. 2016 Middle School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Middle School Science Bowl Check out video highlights of the 2016 Ames Laboratory Regional Middle School Science Bowl, held Feb. 20. Twenty-four teams from across the state competed in the event, with Ames Middle School winning the championship over LeMars and a trip to the U.S. Department of Energy's National Science Bowl, April 28-May 2 in Washington DC

  18. EERE Middle East and African Partnerships and Projects | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Middle East and African Partnerships and Projects EERE Middle East and African Partnerships and Projects The Office of Energy Efficiency and Renewable Energy (EERE) engages bilaterally with individual countries in the Middle East and Africa. Bilateral Partnerships Israel EERE collaborates with the Israeli Ministry of Energy and Water Resources (MEW) to conduct jointly-funded research, development, and demonstration projects that aim to successfully commercialize cutting-edge clean

  19. Tucson and Colorado Springs Middle Schools Win Science Bowl Hydrogen...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Tucson and Colorado Springs Middle Schools Win Science Bowl Hydrogen Fuel Cell Model Car Competitions National "Battle of the Brains" continues June 19 with academic face off June ...

  20. Middle Tennessee E M C | Open Energy Information

    Open Energy Info (EERE)

    Tennessee E M C Place: Tennessee Website: www.mtemc.com Twitter: @MidTnElectric Facebook: https:www.facebook.comMiddleTennesseeElectric?refts Outage Hotline:...

  1. Middle School Academic Competition - Double Elimination | U.S...

    Office of Science (SC) Website

    NSB Home About High School Middle School Attending National Event Volunteers 2015 ... School Double Elimination Top Teams for 2015 News Media WDTS Home Contact Information ...

  2. Readout of Secretary Chu's Middle East trip: Thursday, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    to Strengthen Cooperation on Clean Energy Readout of Secretary Chu's Middle East trip: Wednesday, February 24 Readout of Energy Secretary Chu's Meetings in Riyadh, Saudi Arabia

  3. Training Manual for Senior and Middle Level Managers in Energy...

    Open Energy Info (EERE)

    Agency for International Developments (USAID) Energy Small Grants Program developed a training manual in order to build the knowledge base of senior and middle level managers...

  4. Stoller Middle School of Beaverton, Ore., emerges undefeated...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Wash. Shahala Middle School, Vancouver, Wash. Pierce County Home School Club, Milton, Wash. BPA sponsors the science bowl to showcase students' talents in science,...

  5. Middle School Academic Competition - Double Elimination | U.S...

    Office of Science (SC) Website

    Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending National Event Volunteers 2015 Competition Results...

  6. Maryland team wins Virginia/Maryland Regional Middle School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    There are two competitions at the National Middle School Science Bowl - an academic math and science competition and a model fuel-cell car competition. The academic competition...

  7. Middle School Academic Competition - Double Elimination | U.S...

    Office of Science (SC) Website

    FAQ's Alumni Past National Science Bowl Winners Past National Science Bowl Photos and Videos National Science Bowl Logos High School Middle School Attending National Event...

  8. Ames wins 2015 Middle School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    championship round. Complete results from the afternoon can be found HERE. Champion - Ames Middle School Seated (left to right): Brennan Seymour, Andres Cordorba,...

  9. Middle Tennessee EMC- Residential Energy Efficiency Rebate Program

    Broader source: Energy.gov [DOE]

    Middle Tennessee Electric Membership Corporation (MTEMC) and the Tennessee Valley Authority (TVA) offer incentives for residential customers through the eScore Program by:

  10. Honey Creek Middle School Wins U.S. Department of Energy National Science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Competition - News Releases | NREL Honey Creek Middle School Wins U.S. Department of Energy National Science Competition June 24, 2006 Photo of students from Honey Creek Middle School standing with their trophy from the National Middle School Science Bowl. Students from Honey Creek Middle School traveled from Terre Haute, Ind., to take first place at the National Middle School Science Bowl in Denver, Colo. Five middle school students from Honey Creek Middle School in Terre Haute, Ind.,

  11. EM participates in local middle school’s career week

    Broader source: Energy.gov [DOE]

    OREM recently participated in Vine Middle School’s 6th Annual College and Career Week. OREM sends employee representatives to the Knoxville-based middle school every year to educate children about the value of education and the diverse jobs that are possible through the sciences.

  12. Halls Middle School students get a taste of science at Y-12 ...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Halls Middle School ... Halls Middle School students get a taste of science at Y-12 Posted: May 21, 2013 - 12:40pm Engineering, science and history experts give Halls Middle School...

  13. DOE - NNSA/NFO -- Nevada Science Bowl - MIDDLE SCHOOL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Nevada Science Bowl - Middle School March 3-4, 2017 Middle School Competition On behalf of the National Nuclear Security Administration Nevada Field Office (NNSA/NFO), we are pleased to announce the 2017 Nevada Science Bowl for middle school competition will take place March 3-4, 2017 at the National Atomic Testing Museum and the Henderson International School campus. We would be honored to have your school field a team for this

  14. DOE - NNSA/NFO -- Science Bowl - Middle School Registration

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Bowl > Nevada Middle School Science Bowl Registration NNSA/NFO Language Options U.S. DOE/NNSA - Nevada Field Office Welcome to the Annual Nevada Middle School Science Bowl! March 3-4, 2017 Registration is due on January 18, 2017 Thirty-two teams from middle schools in Southern Nevada are welcome to participate in this round-robin double-elimination competition. Monetary awards are given to the first through fourth place teams for use in their school's mathematics/science departments. Although

  15. Media Advisory: March 7 Virginia Middle School Science Bowl Tournament |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab 7 Virginia Middle School Science Bowl Tournament Media Advisory: March 7 Virginia Middle School Science Bowl Tournament What: The 2009 Virginia Regional Middle School Science Bowl When: Saturday, March 7, 2009. Round-robin competition will run from 10 a.m. - noon. The double-elimination, semi-final and finalist rounds will run from 1:30 - 5 p.m. Awards will be presented immediately after the final round. Where: CEBAF Center Auditorium at the Thomas Jefferson National

  16. Secretary Bodman Travels to the Middle East | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    the Middle East Secretary Bodman Travels to the Middle East November 10, 2005 - 2:22pm Addthis Four-nation swing to emphasize domestic energy needs and goals WASHINGTON, DC - Secretary of Energy Samuel W. Bodman embarked upon a four-nation tour through the Middle East to enhance the United States' relationship with major oil-producing nations, promote economic liberalization and increased foreign investment in the region, and reaffirm U.S. energy policy goals. "Both consumers and producers

  17. Middle School Science Bowl 2003 - News Releases | NREL

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School Science Bowl 2003 June 18, 2003 Golden, CO. - Middle School Science Students to Face Off in Battle of Brains Teams from around the nation to test their science skills and knowledge Sixteen teams of some of the brightest sixth through eighth grade students from around the United States will test their mental agility in the National Middle School Science Bowl June 25-28. The teams, all winners of regional contests, will build and race solar-powered model cars and compete in

  18. 2010 DOE National Science Bowl® Photos - Smith Middle School...

    Office of Science (SC) Website

    Smith Middle School National Science Bowl (NSB) NSB Home About National Science Bowl ... 2010 DOE National Science Bowl Photos - Smith Middle School Print Text Size: A A A ...

  19. Middle Georgia El Member Corp | Open Energy Information

    Open Energy Info (EERE)

    El Member Corp Place: Georgia Phone Number: 1-800-342-0144 Website: www.mgemc.com Facebook: https:www.facebook.comMiddleGeorgiaEMC Outage Hotline: 229-268-2671; 800-342-0144...

  20. EECBG Success Story: Massachusetts Middle School Goes Local for...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Massachusetts Middle School Goes Local for PV Solar Energy System EECBG Success Story: ... roof. | U.S. Department of Energy EECBG Success Story: Learning is Now Much 'Cooler' for ...

  1. Teachers and JLab scientists help middle-school science instructors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    scientists help middle-school science instructors prepare to teach physics in the 21st century By John Anderson, II, JLab Public Affairs intern August 11, 2003 As part of Jefferson...

  2. Secretary Chu Announces Middle and High School Finalists Set...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in the 2012 National Science Bowl in Washington, D.C. Secretary Chu Announces Middle and High School Finalists Set to Compete in the 2012 National Science Bowl in Washington, ...

  3. Massachusetts Middle School Goes Local for PV Solar Energy System...

    Broader source: Energy.gov (indexed) [DOE]

    New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools New 26 kW solar energy system to be part of curriculum at ...

  4. EECBG Success Story: Massachusetts Middle School Goes Local for...

    Broader source: Energy.gov (indexed) [DOE]

    New 26 kW solar energy system to be part of curriculum at Norton Middle School. | Photo courtesy of Norton Public Schools. New 26 kW solar energy system to be part of curriculum at...

  5. Delgado-Aparicio urges middle school students to pursue careers...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Delgado-Aparicio urges middle school students to pursue careers in science and join the ... to follow their dreams and to pursue careers in science even if the path is difficult. ...

  6. Middle School Energy and Nuclear Science Curriculum Now Available

    Office of Energy Efficiency and Renewable Energy (EERE)

    A new middle school science, technology, engineering, and math (STEM) curriculum called The Harnessed Atom is now available on the Office of Nuclear Energy website. This new curriculum offers...

  7. Record 18 teams prepare for Virginia Regional Middle School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    MEDIA ADVISORY: News Media invited to cover the March 10 Virginia Regional Middle School Science Bowl at Jefferson Lab; Record turnout with bright young minds from 18 teams vying...

  8. Record 18 teams prepare for Virginia Regional Middle School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Energy's Jefferson Lab, in Newport News, Va., hosts the Virginia Regional Middle School Science Bowl on Saturday, March 10, with a record 18 teams competing. This is the...

  9. Middle School Science Bowl Registration | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    one team. A team is made up of 4-5 middle school students. All teams should have a coach mentoring and managing the team. Teams are selected on a first come first serve basis....

  10. Students Sharpen Science and Math Skills at Middle School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Students Sharpen Science and Math Skills at Middle School Science Bowl March 8, 2004 Golden, Colo. - The buzzer has sounded, the clock is ticking and all eyes are on you-what is ...

  11. Middle Schoolers Face-Off in Model Car Challenge

    Office of Energy Efficiency and Renewable Energy (EERE)

    Forty-four teams entered the middle school Lithium-Ion Battery Powered Model Car Competition, and two teams distinguished themselves, one for speed and the other for design.

  12. Space Coast Science Education Alliance Science Bowl for Middle School

    Office of Science (SC) Website

    Students | U.S. DOE Office of Science (SC) Space Coast Science Education Alliance Science Bowl for Middle School Students National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC

  13. Media Advisory: March 1 Middle School Science Bowl Tournament | Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab 1 Middle School Science Bowl Tournament Media Advisory What: Virginia Regional Middle School Science Bowl When: Saturday, March 1, 2008. Round robin competition runs from 10 a.m. - noon. The double elimination, semi-final and finalist rounds run from 1:30 - 5 p.m. Awards presentations will be made immediately after the final round. Where: CEBAF Center Auditorium, Thomas Jefferson National Accelerator Facility, 12000 Jefferson Avenue, Newport News, VA Details: Twenty teams, representing

  14. Local Middle School Receives School-to-Career Grant

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School Receives School-to-Career Grant For more information contact: e:mail: Public Affairs Golden, Colo., December 24, 1997 - Deer Creek Middle School in Littleton received a $10,000 grant from the Jefferson County School-to-Career Program. The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) assisted the school in writing the grant as an extension of NREL's National Teacher Enhancement Program. The money will be used to help students explore career opportunities

  15. Global Threat Reduction Initiative Africa and Middle East Project Plan 2012

    SciTech Connect (OSTI)

    Jamison, Jeremy D.

    2012-02-01

    GTRI Africa and Middle East Project Plan submitted for school project to American Graduate University.

  16. Los Alamos Middle School team wins regional MathCounts competition

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Los Alamos Middle School team wins Regional MathCounts competition Community Connections: Your link to news and opportunities from Los Alamos National Laboratory Latest Issue: September 1, 2016 all issues All Issues » submit Los Alamos Middle School wins regional MathCounts event Competes against 60 other middle schools for the title. March 1, 2013 Los Alamos Middle School won the regional MathCounts competition. Los Alamos Middle School won the regional MathCounts competition. Contacts Editor

  17. Middle School Science Bowl Registration | Argonne National Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School Science Bowl Registration Regional champions of the Academic Science Bowl win a trip to Washington, D.C.! We encourage all eligible participants to apply to the National Science Bowl. All applicants must be enrolled for the current school year in grades sixth, seventh, or eighth at the team's school. Each school is only allowed to submit one team. A team is made up of 4-5 middle school students. All teams should have a coach mentoring and managing the team. Teams are selected on a

  18. Oil and gas developments in Middle East in 1986

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.

    1987-10-01

    Petroleum production in Middle East countries during 1986 totaled 4,493,973,000 bbl (an average rate of 12,312,254 BOPD), up 22.3% from the revised 1985 total of 3,673,729,000 bbl. Iraq, Kuwait, Saudi Arabia, Abu Dhabi, and Oman had significant increased; Iran was the only Middle East country with a significant decrease. New fields went on production in Oman and Yemen Arab Republic, and significant discoveries were reported in Iraq, Yemen Arab Republic, Oman, and Syria. However, exploration was generally down in most countries. Exploration and production operations continued to be affected by war in Iraq and Iran. 8 figures, 7 tables.

  19. Cooperative monitoring workshop: Focus on the Middle East

    SciTech Connect (OSTI)

    Pregenzer, A.L.; Vannoni, M.; Biringer, K.; Dobranich, P.

    1995-05-01

    Sandia National Laboratories and the Institute for Global Conflict and Cooperation hosted a workshop on the application of cooperative monitoring to the Middle East. The workshop, held in Albuquerque, New Mexico, from July 17 through 21, 1994, was sponsored by the US Department of Energy, the Arms Control and Disarmament Agency, and the US Department of State. The meeting, which focused on use of technical monitoring tools and sharing of collected information to facilitate regional agreements, included participants from five regional countries as well as from American universities, the US government, and US National Laboratories. Some attendees previously participated in meetings of the Arms Control and Regional Security working group of the Middle East Multilateral Peace Talks. The workshop combined presentations, demonstrations and hands-on experimentation with monitoring hardware and software. An exercise was conducted to evaluate and recommend cooperative monitoring options for a model agreement between two hypothetical countries. Historical precedents were reviewed and the role of environmental and natural resource conflicts explored. These activities were supplemented by roundtable discussions covering Middle East security issues, the relationship of ``national means`` to cooperative monitoring, and cooperative monitoring of ballistic missiles in the Middle East.

  20. Oil and gas developments in Middle East in 1981

    SciTech Connect (OSTI)

    Hemer, D.O; Mason, J.F.; Hatch, G.C.

    1982-11-01

    Petroleum production in Middle East countries during 1981 totaled 5,741,096,000 bbl, or an average rate of 15,729,030 BOPD, down 14.9% from 1980. Increases were in Oman, Dubai, and Turkey. Significant decreases occurred in Iraq, Iran, Kuwait, Divided Neutral Zone, Qatar, and Abu Dhabi. New discoveries were made in Oman, Saudi Arabia, and Abu Dhabi.

  1. Henderson County North Middle School wins 2015 DOE West Kentucky Regional Science Bowl

    Broader source: Energy.gov [DOE]

    PADUCAH, Ky. – Henderson County North Middle School won the U.S. Department of Energy’s West Kentucky Regional Science Bowl February 6, 2015 during competition among 12 middle school teams. The...

  2. 2010 DOE National Science Bowl® Photos - Will James Middle School...

    Office of Science (SC) Website

    The Will James Middle School team competes in the Solar Car Challenge at the National Science Bowl in Washington, DC. Will James Middle School won the Best Design Document award. ...

  3. 2010 DOE National Science Bowl® Photos - Will James Middle School...

    Office of Science (SC) Website

    Will James Middle School Team as they compete in the Solar Car Challenge at the National Science Bowl for middle school students in Washington DC. Left to right: Evan Quarles, ...

  4. Alabama Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Alabama Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Alabama Regional Middle School

  5. Argonne Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Argonne Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Argonne Regional Middle School

  6. Arizona Middle School Regional Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Arizona Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Arizona Middle School Regional

  7. Arkansas Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Arkansas Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Arkansas Regional Middle

  8. BPA Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    BPA Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals BPA Regional Middle School Science Bowl

  9. Carolina Middle School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Carolina Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Carolina Middle School Science Bowl Print Text

  10. Chicago Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Chicago Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Chicago Regional Middle School

  11. Colorado Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Colorado Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Colorado Regional Middle

  12. Georgia Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Georgia Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Georgia Regional Middle School

  13. Indiana Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Indiana Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Indiana Regional Middle School

  14. Iowa Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Iowa Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Iowa Regional Middle School Science Bowl

  15. Maryland Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Maryland Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Maryland Regional Middle

  16. Missouri Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Missouri Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Missouri Regional Middle

  17. NYC Regional SHPE Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) NYC Regional SHPE Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals NYC Regional SHPE Middle

  18. Nebraska Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nebraska Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Nebraska Regional Middle

  19. Nevada Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Nevada Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Nevada Regional Middle School

  20. New Jersey Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) New Jersey Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals New Jersey Regional Middle

  1. New Mexico Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) New Mexico Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals New Mexico Regional Middle

  2. Northeast Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Northeast Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Northeast Regional Middle

  3. Oklahoma Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Oklahoma Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Oklahoma Regional Middle

  4. Pantex Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Pantex Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Pantex Regional Middle School

  5. Puerto Rico Middle School Regional Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Puerto Rico Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Puerto Rico Middle

  6. Redding Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Redding Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Redding Regional Middle School

  7. SWPA Regional Middle School Science Bowl | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    SWPA Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals SWPA Regional Middle School Science Bowl

  8. Virginia Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Virginia Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Virginia Regional Middle

  9. Wisconsin Middle School Regional Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Wisconsin Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Wisconsin Middle School

  10. Wyoming Regional Middle School Science Bowl | U.S. DOE Office of Science

    Office of Science (SC) Website

    (SC) Wyoming Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Wyoming Regional Middle School

  11. Teachers and JLab scientists help middle-school science instructors prepare

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    to teach physics in the 21st century | Jefferson Lab and JLab scientists help middle-school science instructors prepare to teach physics in the 21st century Valerie Bicouvaris, Berkeley MIddle School, Williamsburg Valerie Bicouvaris, Berkeley Middle School, Williamsburg, uses magnetism to conduct a "magic" trick during the course section on magnetism. Teachers and JLab scientists help middle-school science instructors prepare to teach physics in the 21st century By John Anderson,

  12. Jefferson Lab Hosts 23 Teams for Middle School Science Bowl on March 7 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Hosts 23 Teams for Middle School Science Bowl on March 7 Jefferson Lab Hosts 23 Teams for Middle School Science Bowl on March 7 NEWPORT NEWS, Va., March 2, 2009 - The nation's future scientists, engineers and mathematicians may be found testing their mental skills at the Department of Energy's Virginia Regional Middle School Science Bowl taking place at Jefferson Lab on Saturday, March 7. Twenty-three teams, representing middle schools from across the region are registered for

  13. Habilitation thesis on STT and Higgs searches in WH production

    SciTech Connect (OSTI)

    Sonnenschein, Lars; /Paris U., VI-VII

    2006-12-01

    The detector of the D0 experiment at the proton anti-proton collider Tevatron in Run II is discussed in detail. The performance of the collider and the experiment is presented. Standard model Higgs searches with integrated luminosities between 260 pb{sup -1} and 950 pb{sup -1} and their combination are performed. No deviation from SM background expectation has been observed. Sensitivity prospects at the Tevatron are shown.

  14. Category:WH Mapathan Todo List | Open Energy Information

    Open Energy Info (EERE)

    (Utility Company) City of Hallettsville, Texas (Utility Company) C cont. City of Hope, Arkansas (Utility Company) City of Wall Lake, Iowa (Utility Company) City of Warroad,...

  15. kWh Analytics: Quality Ratings for PV

    Broader source: Energy.gov [DOE]

    This presentation summarizes the information given during the SunShot Grand Challenge Summit and Technology Forum, June 13-14, 2012.

  16. Search for massive WH resonances decaying into the $$\\ell \

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Khachatryan, Vardan

    2016-04-28

    In this study, a search for a massive resonancemore » $${\\mathrm{W}^{\\prime }}$$ decaying into a W and a Higgs boson in the $$\\ell \

  17. wh_mission_status.pdf | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    White House Mission Requests Memorandum FOIA-Summary of Findings: Circumstances surrounding decisions regarding the security clearance, access and work assignments FIA-16-0027 - In ...

  18. program design. Final report Brown, W.H.; Gopalakrishnan, S....

    Office of Scientific and Technical Information (OSTI)

    an improved basis for the design, procurement, testing, and operation of large feed pumps with increased reliability and stability over the full range of operating conditions....

  19. AmeriFlux US-SuM Maui Sugarcane Middle

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Anderson, Ray [USDA-Agricultural Research Service, United States Salinity Laboratory, Contaminant Fate and Transport Unit; Wang, Dong [USDA - Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Water Management Research Unit

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-SuM Maui Sugarcane Middle. Site Description - Continuous, irrigated, sugarcane cultivation for >100 years. Practice is to grow plant sugarcane for 2 years, drydown, burn leaves, harvest cane, and then till and replant very shortly after harvest. Site differs from Sugarcane Windy and Sugarcane Lee/sheltered in soil and meteorology.

  20. Readout of Secretary Chu's Middle East trip: Tuesday, February 23 |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tuesday, February 23 Readout of Secretary Chu's Middle East trip: Tuesday, February 23 February 23, 2010 - 12:00am Addthis Today, Secretary Chu visited King Abdullah University of Science and Technology (KAUST) in Thuwal, Saudi Arabia, on the Red Sea coast near Jeddah. His host was Saudi Minister of Petroleum and Minerals Ali Al Naimi, who is Chair of the KAUST Board of Trustees. KAUST is an international, graduate-level research university dedicated to science and

  1. Hood River Middle School Music and Science Building

    High Performance Buildings Database

    Hood River, Oregon The Hood River Middle School Music and Science Building is includes music and science classroom, music practice rooms, teacher offices, a greenhouse, an adjacent recycling and storage building, and outdoor spaces including an amphitheater and garden. The building is integrated with the school's progressive sustainability and permaculture curriculum. Students can track and create experiments using data from the buildings net zero energy system and rainwater harvesting system, and learn about the building's innovative and integrated use of materials and systems.

  2. Honey Creek Middle School Wins National Science Competition - News Releases

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | NREL Honey Creek Middle School Wins National Science Competition July 13, 2005 Golden, Colo. - Solar concentrators using highly efficient photovoltaic solar cells will reduce the cost of electricity from sunlight to competitive levels soon, attendees were told at a recent international conference on the subject. Herb Hayden of Arizona Public Service (APS) and Robert McConnell and Martha Symko-Davies of the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) organized

  3. Oil and gas developments in Middle East in 1982

    SciTech Connect (OSTI)

    Hemer, D.O.; Hatch, G.C.

    1983-10-01

    Petroleum production in Middle East countries during 1982 totaled 4,499,464,000 bbl (an average rate of 12,162,915 BOPD), down 21.5% from 1981. Increases were in Iraq, Iran, and Oman. Significant decreases occurred in Kuwait, Divided Neutral Zone, Saudi Arabia, Qatar, and Abu Dhabi. New discoveries were reported in Oman, Syria, Abu Dhabi, Dubai, Iran, and Saudi Arabia.

  4. Sandia California Regional Middle and High School Science Bowl winners |

    National Nuclear Security Administration (NNSA)

    National Nuclear Security Administration | (NNSA) Regional Middle and High School Science Bowl winners Thursday, March 3, 2016 - 2:00pm San Ramon's Dougherty Valley High School won the high school division for the third year in a row. More than 240 students and 48 teams competed in the Sandia California Regional Science Bowls at Las Positas College, in Livermore, California. Hopkins Junior High School (Fremont, California) and Dougherty Valley High School (San Ramon, California) defended

  5. Middle East fuel supply & gas exports for power generation

    SciTech Connect (OSTI)

    Mitchell, G.K.; Newendorp, T.

    1995-12-31

    The Middle East countries that border on, or are near, the Persian Gulf hold over 65% of the world`s estimated proven crude oil reserves and 32% of the world`s estimated proven natural gas reserves. In fact, approximately 5% of the world`s total proven gas reserves are located in Qatar`s offshore North Field. This large natural gas/condensate field is currently under development to supply three LNG export projects, as well as a sub-sea pipeline proposal to export gas to Pakistan. The Middle East will continue to be a major source of crude oil and oil products to world petroleum markets, including fuel for existing and future base load, intermediate cycling and peaking electric generation plants. In addition, as the Persian Gulf countries turn their attention to exploiting their natural gas resources, the fast-growing need for electricity in the Asia-Pacific and east Africa areas offers a potential market for both pipeline and LNG export opportunities to fuel high efficiency, gas-fired combustion turbine power plants. Mr. Mitchell`s portion of this paper will discuss the background, status and timing of several Middle Eastern gas export projects that have been proposed. These large gas export projects are difficult and costly to develop and finance. Consequently, any IPP developers that are considering gas-fired projects which require Mid-East LNG as a fuel source, should understand the numerous sources and timing to securing project debt, loan terms and conditions, and, restrictions/credit rating issues associated with securing financing for these gas export projects. Mr. Newendorp`s section of the paper will cover the financing aspects of these projects, providing IPP developers with additional considerations in selecting the primary fuel supply for an Asian-Pacific or east African electric generation project.

  6. 2016 Middle School Science Bowl Results | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    2016 Middle School Science Bowl Results News release Championship Results Bracket First Place - Ames Front row (l-r) Rishabh Swamy, Hannah Huang, Nitzan Friedberg; Back (l-r) Coach Collin Reichert, Andres Cordoba, David Kim, Ames Laboratory Director Adam Schwartz. Second Place - LeMars Front row (l-r) Ethan Hulinsky, Alex Meier, Jake Francksen-Small; Back row (l-r) Coach Ryan Zittritsch, Tate Hogrefe, Kyle Herbst, Ames Laboratory Director Adam Schwartz. Third Place - Madrid Front (l-r) Jason

  7. Oil and gas developments in Middle East in 1984

    SciTech Connect (OSTI)

    Hemer, D.O.; Lyle, J.H.

    1985-10-01

    Petroleum production in Middle East countries during 1984 totaled 4,088,853,000 bbl (an average rate of 11,144,407 BOPD), down less than 1.0% from the revised total of 4,112,116,000 bbl produced in 1983. Iraq, Kuwait, Qatar, and Oman had significant increases; Iran and Dubai had significant decreases. Jordan produced oil, although a minor amount, for the first time ever, and new production facilities were in the planning stage in Syria, North Yemen, and Oman, which will bring new fields on stream when completed.

  8. Oil and gas developments in Middle East in 1985

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.

    1986-10-01

    Petroleum production in Middle East countries during 1985 totaled 3,837,580,000 bbl (an average rate of 10,513,917 BOPD), down 2.2% from the revised 1984 total of 3,924,034,000 bbl. Iran, Iraq, Dubai, Oman, and Syria had significant increases; Kuwait, Kuwait-Saudi Arabia Divided Neutral Zone, Saudi Arabia, and Qatar had significant decreases. New fields went on production in Iraq, Abu Dhabi, Oman, and Syria. In North Yemen, the first ever oil production in that country was nearing the start-up stage at year end. 9 figures, 9 tables.

  9. Oil and gas developments in Middle East in 1984

    SciTech Connect (OSTI)

    Hemer, D.O.; Lyle, J.H.

    1985-10-01

    Petroleum production in Middle East countries during 1984 totaled 4,088,853,000 bbl (an average rate of 11,144,407 BOPD), down less than 1.0% from the revised total of 4,112,116,000 bbl produced in 1983. Iraq, Kuwait, Qatar, and Oman had significant increases; Iran and Dubai had significant decreases. Jordan produced oil, although a minor amount, for the first time ever, and new production facilities were in the planning stage in Syria, North Yemen, and Oman, which will bring new fields on stream when completed. 4 figures, 9 tables.

  10. 2016 Middle School Science Bowl | Princeton Plasma Physics Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Middle School Science Bowl View larger image 16 PR 0219 271 View larger image 16 PR 0220 090 View larger image MSSci Bowl Winner William Annin 1 F View larger image Princeton Charter 264 View larger image Princeton Charter 278 View larger image Princeton Charter Witherspoon 229 View larger image Second Place Princeton Charter 313 View larger image Third Place Witherspoon 312 View larger image William Annin 261 View larger image 16 PR 0219 037 View larger image 16 PR 0219 072 View larger image 16

  11. Oil and gas development in Middle East in 1987

    SciTech Connect (OSTI)

    Hemer, D.O.; Gohrbandt, K.H.A.; Phillips, C.B.

    1988-10-01

    Petroleum production in Middle East countries during 1987 totaled an estimated 4,500,500,000 bbl (an average rate of 12,330,137 b/d), up slightly from the revised 1986 total of 4,478,972,000 bbl. Iran, Iraq, Syria, and Yemen Arab Republic had significant increases; Kuwait and Saudi Arabia had significant decreases. Production was established for the first time in People's Democratic Republic of Yemen. New fields went on production in Iraq, Oman, People's Democratic Republic of Yemen, and Syria, and significant oil discoveries were reported in Iraq, Oman, People's Democratic Republic of Yemen, Syria, and Yemen Arab Republic. The level of exploration increased in 1987 with new concessions awarded in some countries, drilling and seismic activities on the increase, new regions in mature areas explored for the first time, and significant reserve additions reported in new and old permits. The Iraq-Iran war still had a negative impact in some regions of the Middle East, particularly in and around the Gulf. 11 figs., 4 tabs.

  12. Middle School Academic Competition - Double Elimination | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Academic Competition - Double Elimination National Science Bowl® (NSB) NSB Home About Regional Competitions National Finals Attending the National Finals 2016 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination Top Teams for 2016 Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department

  13. Middle School Academic Competition - Round Robin | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Academic Competition - Round Robin National Science Bowl® (NSB) NSB Home About Regional Competitions National Finals Attending the National Finals 2016 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination Top Teams for 2016 Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy

  14. Middle School Electric Car Competition | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Electric Car Competition National Science Bowl® (NSB) NSB Home About Regional Competitions National Finals Attending the National Finals 2016 Competition Results Middle School Round Robin Middle School Double Elimination Middle School Electric Car High School Round Robin High School Double Elimination Top Teams for 2016 Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building

  15. Middle School Regionals | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Middle School Regionals National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Regional Competitions Middle School Regionals Print Text Size: A A A FeedbackShare

  16. Middle School Sample Questions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Middle School Sample Questions National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Rules, Forms, and Resources Middle School Sample Questions Print Text Size:

  17. Big Sky Regional Middle School Regional Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Big Sky Regional Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Big Sky

  18. Cal State LA Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Cal State LA Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Cal State LA

  19. California South/West Bay Area Regional Middle School Science Bowl

    Office of Science (SC) Website

    California South/West Bay Area Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals California

  20. Central Coast Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Central Coast Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Central Coast

  1. Connecticut Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Connecticut Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Connecticut

  2. Eastern Idaho Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Eastern Idaho Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Eastern Idaho

  3. Long Island Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Long Island Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Long Island

  4. Minnesota Regional Science Bowl for Middle School Students | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Minnesota Regional Science Bowl for Middle School Students National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School

  5. Mississippi Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Mississippi Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Mississippi

  6. New York State Capital District Regional Middle School Science Bowl | U.S.

    Office of Science (SC) Website

    DOE Office of Science (SC) New York State Capital District Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle

  7. SHPE-Fresno Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) SHPE-Fresno Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals SHPE-Fresno

  8. San Antonio Area Middle School Regional Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) San Antonio Area Middle School Regional Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals San Antonio

  9. Sandia/Las Positas Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Sandia/Las Positas Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Sandia/Las

  10. Washington, DC Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Washington, DC Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Washington, DC

  11. West Kentucky Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) West Kentucky Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals West Kentucky

  12. West Virginia Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) West Virginia Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals West Virginia

  13. Western Idaho Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Western Idaho Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Western Idaho

  14. Western New York Regional Middle School Science Bowl | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Western New York Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us Middle School Regionals Western New

  15. Photo of the Week: Students from Roosevelt Middle School win Argonne's 2013

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Science Bowl | Department of Energy Students from Roosevelt Middle School win Argonne's 2013 Regional Science Bowl Photo of the Week: Students from Roosevelt Middle School win Argonne's 2013 Regional Science Bowl February 25, 2013 - 11:49am Addthis Each year, the National Science Bowl brings together thousands of middle and high school students from across the country to compete in a range of science disciplines, including biology, chemistry, earth science, physics, astronomy and

  16. Clinton Middle School wins CNS-sponsored Dream It. Do It. competition |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Y-12 National Security Complex Clinton Middle School wins ... Clinton Middle School wins CNS-sponsored Dream It. Do It. competition Posted: May 12, 2016 - 5:12pm Clinton Middle School wins the inaugural Dream It. Do It. Competition May 2016. Front row (left to right): Janet Hawkins, Paige Cooper, Sierra Patrick, Anthony Burkett Hundley and Kristin Waldschlager of CNS. Back row (left to right): Anderson County Chamber President Rick Meredith, Jack Spangler, Jonathan Lewis, Kelly Myers and

  17. Princeton High School and Grover Middle School Win Top Prizes at Regional

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowls | Princeton Plasma Physics Lab Princeton High School and Grover Middle School Win Top Prizes at Regional Science Bowls Princeton Plasma Physics Laboratory Hosts Competitions February 27, 2012 Tweet Widget Google Plus One Share on Facebook Thomas Grover Middle School took home the top prize Feb. 24 during the middle school Science Bowl® competition at the U.S. Department of Energy's Princeton Plasma Physics Laboratory (PPPL). Grover team members (from left) are Coach Rae

  18. Middle School Electric Car Competition | U.S. DOE Office of Science...

    Office of Science (SC) Website

    NSB Home About High School Middle School Attending National Event Volunteers 2015 ... School Double Elimination Top Teams for 2015 News Media WDTS Home Contact Information ...

  19. 2010 DOE National Science Bowl® Photos - Roosevelt Middle School...

    Office of Science (SC) Website

    Roosevelt Middle School National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  20. 2010 DOE National Science Bowl® Photos - 2010 Middle School...

    Office of Science (SC) Website

    2010 Middle School Teams National Science Bowl (NSB) NSB Home About National Science Bowl Contacts Regional Science Bowl Coordinators National Science Bowl FAQ's Alumni Past ...

  1. D.C. Middle and High School Students Get a Chance to Experience...

    Office of Environmental Management (EM)

    to Experience the Regional Science Bowl Competition Setting D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting March ...

  2. Jefferson Lab Hosts Virginia Middle School Science Bowl on March 1 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Middle School Science Bowl on March 1 Jefferson Lab Hosts Virginia Middle School Science Bowl on March 1 NEWPORT NEWS, Va., Feb. 26, 2014 - Some of the brightest young minds in the Commonwealth will meet at the Department of Energy's Jefferson Lab on Saturday, March 1, to compete in the Virginia Regional Middle School Science Bowl. Teams from 16 middle schools are registered for this year's academic competition. The National Science Bowl® - sponsored and managed by the U.S.

  3. Nine teams compete in Virginia Middle School Science Bowl competition at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab on March 11 | Jefferson Lab Nine teams compete in Virginia Middle School Science Bowl competition at Jefferson Lab on March 11 Nine teams compete in Virginia Middle School Science Bowl competition at Jefferson Lab on March 11 March 17, 2006 Peasley Middle School The Peasley Middle School Team from Gloucester, Va., is coached by Ray Yoh (far right). The team (from left to right) includes Tavis Sparrier, Sayer Fisher, William Wei-Xi Wang and Caleb Dyke. Photo by Steve Gagnon,

  4. Forum on Enhancing the Delivery of Energy Efficiency to Middle Income Households: Discussion Summary

    SciTech Connect (OSTI)

    none,

    2012-09-20

    Summarizes discussions and recommendations from a forum for practitioners and policymakers aiming to strengthen residential energy efficiency program design and delivery for middle income households.

  5. Annual Energy Consumption Analysis Report for Richland Middle School

    SciTech Connect (OSTI)

    Liu, Bing

    2003-12-18

    Richland Middle School is a single story, 90,000 square feet new school located in Richland, WA. The design team proposed four HVAC system options to serve the building. The proposed HVAC systems are listed as following: (1) 4-pipe fan coil units served by electrical chiller and gas-fired boilers, (2) Ground-source closed water loop heat pumps with water loop heat pumps with boiler and cooling tower, and (3) VAV system served by electrical chiller and gas-fired boiler. This analysis estimates the annual energy consumptions and costs of each system option, in order to provide the design team with a reasonable basis for determining which system is most life-cycle cost effective. eQuest (version 3.37), a computer-based energy simulation program that uses the DOE-2 simulation engine, was used to estimate the annual energy costs.

  6. A Doppler lidar for measuring winds in the middle atmosphere

    SciTech Connect (OSTI)

    Chanin, M.L.; Garnier, A.; Hauchecorne, A.; Porteneuve, J. )

    1989-11-01

    The possibility of measuring winds in the middle atmosphere with a Doppler lidar has just been demonstrated. It is aimed at studying the wave-mean flow interaction, when used is association with the Rayleigh lidar providing density and temperature profiles and their fluctuations. The new Doppler lidar relies on the Rayleigh scattering from air molecules is designed to cover the height range 25-60 km, a region where radars cannot operate. The Doppler shift to the backscattered echo is measured by inter-comparing the signal detected through each of the two high-resolution, narrow band-pass Fabry-Perot interferometers tuned on either side of the emitted laser line.

  7. LLNL Middle East and North Africa research database

    SciTech Connect (OSTI)

    Dodge, D; Hauk, T; Moore, R M; O'Boyle, J; Ruppert, S

    1999-07-23

    The Lawrence Livermore National Laboratory (LLNL) Comprehensive Nuclear-Test-Ban Treaty Research and Development (CTBT R and D) program has made significant progress populating a comprehensive seismic research database (RDB) for seismic events and derived research products in the Middle East and North Africa (MENA). Our original ME/NA study region has enlarged and is now defined as an area including the Middle East, Africa, Europe, Southwest Asia, the Former Soviet Union and the Scandinavian/Arctic region. The LLNL RDB will facilitate calibration of all International Monitoring System (IMS) stations (primary and auxiliary) or their surrogates (if not yet installed) as well as a variety of gamma stations. The RDB provides not only a coherent framework in which to store and organize large volumes of collected seismic waveforms and associated event parameter information, but also provides an efficient data processing/research environment for deriving location and discrimination correction sur faces and capabilities. In order to accommodate large volumes of data from many sources with diverse formats the RDB is designed to be flexible and extensible in addition to maintaining detailed quality control information and associated metadata. Station parameters, instrument responses, phase pick information, and event bulletins were compiled and made available through the RDB. For seismic events in the MENA region occurring between 1976 and 1999, we have systematically assembled, quality checked and organized event waveforms; continuous seismic data from 1990 to present are archived for many stations. Currently, over 11,400 seismic events and 1.2 million waveforms are maintained in the RDB and made readily available to researchers. In addition to open sources of seismic data, we have established collaborative relationships with several ME/NA countries that have yielded additional ground truth and broadband waveform data essential for regional calibration and capability

  8. Enhancing Middle East climate change monitoring and indexes

    SciTech Connect (OSTI)

    Sensoy, S.; Peterson, T.C.; Zhang, X.

    2007-08-15

    Extreme climate events can have significant impacts on both natural and human systems, and therefore it is important to know if and how climate extremes are changing. Analysis of extremes requires long-term daily station data and, unfortunately, there are many regions in the world where these data are not internationally exchanged. The Intergovernmental Panel on Climate Change (IPCC) Third Assessment Report (Folland et al. 2001) relied heavily on the multinational analysis of Frich et al (2002). However, Frich et al. had no results from all of Central and South America, and most of Africa and southern Asia, including the Middle East. To remedy this situation for the IPCC Fourth Assessment Report, the joint World Meteorological Organization Commission for Climatology/World Climate Research Programme (WCRP) project on Climate Variability and Predictability (CLIVAR) Expert Team on Climate Change Detection, Monitoring, and Indices (Zwiers et al. 2003) internationally coordinated a series of five regional climate change workshops and a set of indices for analyses of extremes. Two workshops covered the Americas, one in Brazil and one in Guatemala. One workshop addressed southern Africa. A workshop in India involved south and central Asia, while the workshop for the Middle East sought to address the region from Turkey to Iran and from Georgia to the southern tip of the Arabian Peninsula. The key to a successful workshop is a collaborative approach between outside experts and regional participants. The participants here broght long-term daily precipitation and maximum and minimum temperature data, station history information, an understanding of their country's climate, and a willingness to analyze thse data under the tutelage of outside experts. The outside experts brought knowledge of the crucial data and climate change issues, presentations to explain these issues, and user-friendly software to aid the analyses. Xuebin Zhang of Environment Canada wrote the workshop

  9. National Science Bowl Update: Middle School Teams from Maryland and Indiana to Compete for National Championship on Monday

    Broader source: Energy.gov [DOE]

    The field of middle school finalists in the Department of Energy (DOE) National Science Bowl has narrowed once more, and now only two middle school teams remain in the competition.

  10. Kinetic and reactor models for HDT of middle distillates

    SciTech Connect (OSTI)

    Cotta, R.M.; Filho, R.M.

    1996-12-31

    Hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) of middle distillates over a commercial Ni-Mo/y-Al{sub 2}O{sub 3} has been studied under wide operating conditions just as 340 to 380{degrees}C and 38 to 98 atm. A Power Law model was presented to each one of those reactions. The parameters of kinetic equations were estimated solving the ordinary differential equations by the 4 order Runge-Kutta-Gill algorithm and Marquardt method for searching of set of kinetic parameters (kinetic constants as well as the orders of reactions). An adiabatic diesel hydrotreating trickle-bed reactor packed with the same catalyst was simulated numerically in order to check up the behavior of this specific reaction system. One dimensional pseudo-homogeneous model was used in this work. For each feed, the mass and energy balance equations were integrated along the length of the catalytic bed using the 4th Runge-Kutta-Gill method. The performance of two industrial reactors was checked. 5 refs., 2 tabs.

  11. Middle-Late Permian mass extinction on land

    SciTech Connect (OSTI)

    Retallack, G.J.; Metzger, C.A.; Greaver, T.; Jahren, A.H.; Smith, R.M.H.; Sheldon, N.D.

    2006-11-15

    The end-Permian mass extinction has been envisaged as the nadir of biodiversity decline due to increasing volcanic gas emissions over some 9 million years. We propose a different tempo and mechanism of extinction because we recognize two separate but geologically abrupt mass extinctions on land, one terminating the Middle Permian (Guadalupian) at 260.4 Ma and a later one ending the Permian Period at 251 Ma. Our evidence comes from new paleobotanical, paleopedological, and carbon isotopic studies of Portal Mountain, Antarctica, and comparable studies in the Karoo Basin, South Africa. Extinctions have long been apparent among marine invertebrates at both the end of the Guadalupian and end of the Permian, which were also times of warm-wet greenhouse climatic transients, marked soil erosion, transition from high- to low-sinuosity and braided streams, soil stagnation in wetlands, and profound negative carbon isotope anomalies. Both mass extinctions may have resulted from catastrophic methane outbursts to the atmosphere from coal intruded by feeder dikes to flood basalts, such as the end-Guadalupian Emeishan Basalt and end-Permian Siberian Traps.

  12. Media Advisory - The Virginia Middle School Science Bowl Is Set For March 6

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at Jefferson Lab | Jefferson Lab The Virginia Middle School Science Bowl Is Set For March 6 at Jefferson Lab Media Advisory - The Virginia Middle School Science Bowl Is Set For March 6 at Jefferson Lab What: The 2010 Virginia Regional Middle School Science Bowl When: Saturday, March 6, 2010. Round-robin competition will run from 10 a.m. - noon. The double-elimination, semi-final and finalist rounds will run from 1:30 to approximately 4 p.m. Awards will be presented immediately after the

  13. Media Advisory: Virginia Middle School Science Bowl Set For March 5 at

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab | Jefferson Lab Advisory: Virginia Middle School Science Bowl Set For March 5 at Jefferson Lab Media Advisory: Virginia Middle School Science Bowl Set For March 5 at Jefferson Lab What: The Department of Energy's 2011 Virginia Regional Middle School Science Bowl When: Saturday, March 5, 2011. Round-robin competition will run from 9 a.m. - noon. The double-elimination, semi-final and finalist rounds will run from 1 p.m. to approximately 4 p.m. Awards will be presented

  14. Fourteen Teams to Compete in Virginia Middle School Science Bowl on March 7

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    | Jefferson Lab Fourteen Teams to Compete in Virginia Middle School Science Bowl on March 7 Fourteen Teams to Compete in Virginia Middle School Science Bowl on March 7 NEWPORT NEWS, Va., March 3, 2015 - Some of the brightest young minds in the Commonwealth will meet at the U.S. Department of Energy's Jefferson Lab on March 7, to compete in the Virginia Regional Middle School Science Bowl. Teams from 14 schools are registered for this year's academic competition. The National Science Bowl® -

  15. STEM Middle School Mentoring Cafés Take it on the Road | Department of

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy STEM Middle School Mentoring Cafés Take it on the Road STEM Middle School Mentoring Cafés Take it on the Road November 12, 2015 - 3:00pm Addthis STEM Mentoring Cafes - sponsored in part by the Energy Department - engage middle schoolers with science and technology professionals at local science centers and museums nationwide to inspire them to learn about a broad spectrum of energy-related career fields. source: Matty Greene/US DOE STEM Mentoring Cafes - sponsored in part by the

  16. Latitudinal survey of middle atmospheric water vapor revealed by shipboard microwave spectroscopy. Master's thesis

    SciTech Connect (OSTI)

    Schrader, M.L.

    1994-05-01

    Water vapor is one of the most important greenhouse gases and is an important tracer of atmospheric motions in the middle atmosphere. It also plays an important role in the chemistry of the middle atmosphere and through its photodissociation by solar radiation, it is the major source of hydrogen escaping to space. Ground-based microwave measurements conducted in the 1980s have provided a fair understanding of the seasonal variation of mesospheric water vapor in the northern hemisphere mid-latitudes, but the global distribution of water vapor in the middle atmosphere is only beginning to be revealed by space-based measurements.

  17. Design of 3D eye-safe middle range vibrometer

    SciTech Connect (OSTI)

    Polulyakh, Valeriy; Poutivski, Iouri

    2014-05-27

    Laser Doppler Vibrometer and Range Meter (3D-MRV) is designed for middle range distances [1100 meters]. 3D-MRV combines more than one laser in one device for a simultaneous real time measuring the distance and movement of the targets. The first laser has a short pulse (t?30psec) and low energy (E?200nJ) for distance measurement and the second one is a CW (continuous wave) single frequency laser for the velocity measurement with output power (P?30mW). Both lasers perform on the eye-safe wavelength 1.5 ?m. 3D-MRV uses the same mono-static optical transmitting and receiving channel for both lasers including an output telescope and a scanning angular system. 3D-MRV has an optical polarization switch to combine linear polarized laser beams from two lasers into one optical channel. The laser beams from both lasers by turns illuminate the target and the scattered laser radiation is collected by the telescope on a photo detector. The electrical signal from photo detector is used for measuring the distance to the target and its movement. For distance measurement the time of flight method is employed. For targets movement the optical heterodyne method is employed. The received CW laser radiation is mixed on a photo detector with the frequency-shifted laser radiation that is taken from CW laser and passed through an acousto-optic cell. The electrical signal from a photo detector on the difference frequency and phase has information about movement of the scattered targets. 3D-MVR may be used for the real time picturing of vibration of the extensive targets like bridges or aircrafts.

  18. Secretary Bodman to Travel to the Middle East to Advance International Energy Cooperation

    Broader source: Energy.gov [DOE]

    WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman next week will embark on a five-nation tour through the Middle East to enhance the United States' relationship with oil-producing nations,...

  19. U.S. Energy Secretary Bodman Completes Middle East Trip | Department...

    Office of Environmental Management (EM)

    U.S. Energy Secretary Bodman Completes Middle East Trip November 20, 2005 - 2:51pm Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman concluded his four-nation ...

  20. Middle School Academic Competition - Round Robin | U.S. DOE Office...

    Office of Science (SC) Website

    Looking for the latest information on the Double Elimination tournament? Click here Jefferson Division Team 1 2 3 4 5 6 7 8 Total Points 1. Alfonza W. Davis Middle School 0 0 0 0 ...

  1. 2010 DOE National Science Bowl® Photos - Falcon Cove Middle...

    Office of Science (SC) Website

    Text Size: A A A FeedbackShare Page Falcon Cove Middle School students from Weston, FL tour the National Mall in Washington, DC as they participate in the National Science Bowl. ...

  2. LOS ALAMOS, New Mexico, April 26, 2011-Los Alamos Middle School...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    April 26, 2011 LOS ALAMOS, New Mexico, April 26, 2011-Los Alamos Middle School student Cole Kendrick won the top prize in the 21st New Mexico Supercomputing Challenge hosted by Los ...

  3. Standard's Guide to Learning Middle School Hands-On Science Elective...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Guide to Learning Middle School Hands-On Science Elective Class Student: Grade: Date: Math B Proficiency Levels PP P A Collect, organize, analyze, and graph (e.g., line plots,...

  4. EECBG Success Story: Massachusetts Middle School Goes Local for PV Solar Energy System

    Broader source: Energy.gov [DOE]

    When the school buses pull up to Norton Middle School this year, students will see more than just their friends and teachers, they'll get a view of new - 126 solar panels on the school's roof. Learn more.

  5. University of Texas Rio Grande Valley Regional Middle School Science Bowl |

    Office of Science (SC) Website

    U.S. DOE Office of Science (SC) University of Texas Rio Grande Valley Regional Middle School Science Bowl National Science Bowl® (NSB) NSB Home About Regional Competitions Rules, Forms, and Resources High School Regionals Middle School Regionals National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email

  6. Delgado-Aparicio urges middle school students to pursue careers in science

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    and join the quest for fusion energy | Princeton Plasma Physics Lab Delgado-Aparicio urges middle school students to pursue careers in science and join the quest for fusion energy By Jeanne Jackson DeVoe June 16, 2015 Tweet Widget Google Plus One Share on Facebook Physicist Luis Delgado-Aparicio (with a photo of Einstein behind him) speaks to middle school students at the Hispanics Inspiring Students' Performance and Achievement (HISPA) Conference at Princeton University. (Photo by Elle

  7. D.C. Middle and High School Students Get a Chance to Experience the

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Regional Science Bowl Competition Setting | Department of Energy D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting D.C. Middle and High School Students Get a Chance to Experience the Regional Science Bowl Competition Setting March 26, 2014 - 1:07pm Addthis Annie Whatley Annie Whatley Deputy Director, Office of Minority Education and Community Development Have you ever heard of the Washington, D.C. regional science bowl competition?

  8. Jefferson Lab Hosts 20 Teams for Middle School Science Bowl on March 1 |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Jefferson Lab Middle School Science Bowl on March 1 NEWPORT NEWS, Va., Feb. 25, 2008 - Tomorrow's scientists, engineers and mathematicians may be found testing their mental skills at the Department of Energy's Virginia Regional Middle School Science Bowl taking place at Jefferson Lab on Saturday, March 1. Twenty teams, representing high schools from across the region are registered for this year's academic competition. The National Science Bowl® tournament - sponsored by the U.S. Department

  9. Record 18 teams prepare for Virginia Regional Middle School Science Bowl on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 10 at Jefferson Lab | Jefferson Lab MEDIA ADVISORY: News Media invited to cover the March 10 Virginia Regional Middle School Science Bowl at Jefferson Lab; Record turnout with bright young minds from 18 teams vying for top spot in academic competition The Department of Energy's Jefferson Lab in Newport News, Va., is hosting the 2007 Virginia Regional Middle School Science Bowl on Saturday, March 10. Eighteen teams - twice the number of teams that competed in 2006 - will participate

  10. Solar Energy Education. Renewable energy activities for junior high/middle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    school science (Technical Report) | SciTech Connect junior high/middle school science Citation Details In-Document Search Title: Solar Energy Education. Renewable energy activities for junior high/middle school science × You are accessing a document from the Department of Energy's (DOE) SciTech Connect. This site is a product of DOE's Office of Scientific and Technical Information (OSTI) and is provided as a public service. Visit OSTI to utilize additional information resources in energy

  11. Aspen Elementary, Los Alamos Middle School students take top award in 26th

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    New Mexico Supercomputing Challenge 26th New Mexico Supercomputing Challenge Aspen Elementary, Los Alamos Middle School students take top award in 26th New Mexico Supercomputing Challenge Andy Corliss, Phillip Ionkov and Ming Lo of Aspen Elementary, and Max Corliss of Los Alamos Middle School won first place in the New Mexico Supercomputing Challenge. April 27, 2016 Los Alamos National Laboratory sits on top of a once-remote mesa in northern New Mexico with the Jemez mountains as a backdrop

  12. 50 middle-schoolers are wowed by science at PPPL's My Brother's Keeper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program | Princeton Plasma Physics Lab 50 middle-schoolers are wowed by science at PPPL's My Brother's Keeper program May 17, 2016 By: Jeanne Jackson DeVoe March 8, 2016 Fifty seventh- and eighth-graders from John Witherspoon Middle School in Princeton came to PPPL for a half day on March 4 to become scientists - doing a variety of hands-on science activities, from building a motor to sampling ice cream frozen with liquid nitrogen in a cryogenics demonstration, to watching cool plasma

  13. Record 18 teams prepare for Virginia Regional Middle School Science Bowl on

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 10 at Jefferson Lab | Jefferson Lab Newport News, Va. -- The Department of Energy's Jefferson Lab, in Newport News, Va., hosts the Virginia Regional Middle School Science Bowl on Saturday, March 10, with a record 18 teams competing. This is the largest turnout we've had for the Middle School Science Bowl in the four years we have hosted it at Jefferson Lab, according to Jan Tyler, JLab's Science Education program manager and Science Bowl coordinator. "The Science Bowl is an

  14. Gas projects surge in the Middle East as governments seek new revenue sources

    SciTech Connect (OSTI)

    Williams, M.D.

    1997-02-24

    The rapid development of natural gas and condensate reserves in the Middle East results from a simple motivation: the desire of governments to earn revenues. For the past decade, Middle East governments have run budget deficits, which they funded by drawing down foreign assets and issuing debt. Now in the process of structural economic reform, they have begun to use an under-utilized resource--natural gas, of which Middle East governments own about one third of the world`s reserves. Governments receive revenues from several sources in natural gas developments, which makes the projects very attractive. Revenue comes from the sale of the natural gas in the domestic market and, if exported, the international market; the sale of associated condensates; the additional exports of crude oil or refined products if natural gas is substituted for refined products in domestic markets; the increased sale of crude oil if natural gas is injected into reservoirs to maintain pressure; and the sale of petrochemicals where natural gas is used as feedstock. Large projects under way in the Middle East highlight the consequences of multiple revenue sources and interlinked costs of natural gas and condensate development. Other countries in the region are undertaking similar projects, so examples cited represent only a portion of what is occurring. The paper describes Abu Dhabi, Qatar, Saudi Arabia, and Iran.

  15. Solar Energy Education. Renewable energy activities for junior high/middle school science

    SciTech Connect (OSTI)

    Not Available

    1985-01-01

    Some basic topics on the subject of solar energy are outlined in the form of a teaching manual. The manual is geared toward junior high or middle school science students. Topics include solar collectors, solar water heating, solar radiation, insulation, heat storage, and desalination. Instructions for the construction of apparatus to demonstrate the solar energy topics are provided. (BCS)

  16. Calloway Middle School Honored at DOE National Science Bowl, Lone Oak Competes Among High Schools

    Broader source: Energy.gov [DOE]

    PADUCAH, KY – Calloway County Middle School won the Civility Award and was named one of the top six battery-powered model car design teams at the Department of Energy’s National Science Bowl in Washington, D.C.

  17. Middle School Academic Competition - Round Robin | U.S. DOE Office...

    Office of Science (SC) Website

    ... Mulhall-Orlando School 0 0 0 0 0 0 0 0 4. Hunter College High School 2 0 2 0 2 2 2 10 5. ... Next Generation School 0 0 0 0 0 0 0 0 6. Robert H. Sperreng Middle School 0 2 2 2 2 0 2 ...

  18. Middle School Academic Competition - Round Robin | U.S. DOE Office...

    Office of Science (SC) Website

    ... Team 1 2 3 4 5 6 7 Total Points 1. Mahtomedi Middle School 2 0 2 0 0 0 4 2. Edward Hurley Elementary School 0 0 2 0 0 0 2 3. Treasure Valley Math & Science Center 2 2 2 2 2 2 12 4. ...

  19. U.S. Attorney's Office Middle District of Florida FOR IMMEDIATE RELEASE

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Middle District of Florida FOR IMMEDIATE RELEASE Friday, September 11, 2015 Scientists Sentenced To Prison For Defrauding The Small Business Innovation Research Program Tampa, Florida - U.S. District Judge Virginia Hernandez Covington has sentenced Mahmoud Aldissi (a/k/a Matt) and Anastassia Bogomolova (a/k/a Anastasia) for conspiracy to commit wire fraud, wire fraud, aggravated identity theft, and falsification of records. Aldissi was sentenced to 15 years in federal prison and Bogomolova was

  20. Middle School Electric Car Competition | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Electric Car Competition National Science Bowl® (NSB) NSB Home About Regional Science Bowl Coordinators Alumni Historical Information - National Finals National Science Bowl Logos Regional Competitions National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us 2013 Competition Results Middle School

  1. Middle School Electric Car Competition | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Electric Car Competition National Science Bowl® (NSB) NSB Home About Regional Science Bowl Coordinators Alumni Historical Information - National Finals National Science Bowl Logos Regional Competitions National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us 2014 Competition Results Middle School

  2. Past Middle School National Science Bowl Winners (2002 - 2015) | U.S. DOE

    Office of Science (SC) Website

    Office of Science (SC) Middle School National Science Bowl Winners (2002 - 2015) National Science Bowl® (NSB) NSB Home About Regional Science Bowl Coordinators Alumni Historical Information - National Finals National Science Bowl Logos Regional Competitions National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC

  3. Method for enriching a middle isotope using vibration-vibration pumping

    DOE Patents [OSTI]

    Rich, Joseph W.; Homicz, Gregory F.; Bergman, Richard C.

    1989-01-01

    Method for producing isotopically enriched material by vibration-vibration excitation of gaseous molecules wherein a middle mass isotope of an isotopic mixture including lighter and heavier mass isotopes preferentially populates a higher vibrational mode and chemically reacts to provide a product in which it is enriched. The method can be used for vibration-vibration enrichment of .sup.17 O in a CO reactant mixture.

  4. Students and Parents at Carver Middle School Explore STEM with Jefferson

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Lab (Newport News Public Schools TV Media Center,This Just In program) | Jefferson Lab Students and Parents at Carver Middle School Explore STEM with Jefferson Lab (Newport News Public Schools TV Media Center,This Just In program) External Link: http://nnpstv.com/mediacenter/video/1326/This-Just-In-110-Week-of-April-2-2012 By jlab_admin on Mon, 2012-04-02

  5. Petroleum potential of lower and middle Paleozoic rocks in Nebraska portion of Mid-Continent

    SciTech Connect (OSTI)

    Carlson, M.P. )

    1989-08-01

    Central North America during the Paleozoic was characterized by northern (Williston) and southern (Anadarko) depositional regimes separated by a stable Transcontinental arch. Nebraska lies on the southern flank of this arch and contains the northern zero edges of the lower and middle Paleozoic rocks of the southern regime. Most of these rocks are secondary dolomites with zones of excellent intercrystalline porosity. The Reagan-LaMotte Sandstones and the overlying Arbuckle dolomites are overlapped by Middle Ordovician rocks toward the Transcontinental arch. Rocks equivalent to the Simpson consist of a basal sand (St. Peter) and overlying interbedded gray-green shales and dolomitic limestones. An uppermost shale facies is present in the Upper Ordovician (Viola-Maquoketa) eastward and southward across Nebraska. The dolomite facies extends northward into the Williston basin. The Silurian dolomites, originally more widely deposited, are overlapped by Devonian dolomites in southeastern Nebraska. Upper Devonian rocks exhibit a regional facies change from carbonate to green-gray shale to black shale southeastward across the Mid-Continent. Mississippian carbonates overlap the Devonian westward and northward across the Transcontinental arch. Pennsylvanian uplift and erosion were widespread, producing numerous stratigraphic traps. Sands related to the basal Pennsylvanian unconformity produce along the Cambridge arch. Arbuckle, Simpson, Viola, and Hunton production is present in the Forest City basin and along the Central Kansas uplift. Although source rocks are scarce and the maturation is marginal, current theories of long-distance oil migration encourage exploration in the extensive lower and middle Paleozoic reservoirs in this portion of the Mid-Continent.

  6. 50 middle-schoolers are wowed by science at PPPL's My Brother's Keeper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program | Princeton Plasma Physics Lab 50 middle-schoolers are wowed by science at PPPL's My Brother's Keeper program By Jeanne Jackson DeVoe March 8, 2016 Tweet Widget Google Plus One Share on Facebook Students use a compass to map the magnetic field lines of the electromagnet they created during a workshop at PPPL's My Brother's Keeper event March 4. (Photo by Elle Starkman/PPPL Office of Communications) Students use a compass to map the magnetic field lines of the electromagnet they

  7. 50 middle-schoolers are wowed by science at PPPL's My Brother's Keeper

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    program | Princeton Plasma Physics Lab 50 middle-schoolers are wowed by science at PPPL's My Brother's Keeper program By Jeanne Jackson DeVoe March 8, 2016 Tweet Widget Google Plus One Share on Facebook Students use a compass to map the magnetic field lines of the electromagnet they created during a workshop at the My Brother's Keeper event at PPPL March 4. (Photo by Elle Starkman/PPPL Office of Communications) (Photo by Photo by Elle Starkman/PPPL Office of Communications) Students use a

  8. West Windsor-Plainsboro South High School & William Annin Middle School

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Virginia win N.J. Regional Science Bowl at PPPL | Princeton Plasma Physics Lab

    West Windsor-Plainsboro South High School & William Annin Middle School win N.J. Regional Science Bowl at PPPL Top science whizzes will go to national contest in Washington, D.C. By Jeanne Jackson DeVoe February 23, 2016 Tweet Widget Google Plus One Share on Facebook The West Windsor-Plainsboro South High School team buzzes in an answer as they compete against Millburn High School in Round 12 of the New

  9. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study withSynechococcusWH8102

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, E. V.; Phillippy, K. H.; Brahamsha, B.; Haaland, D. M.; Timlin, J. A.; Elbourne, L. D. H.; Palenik, B.; Paulsen, I. T.

    2009-01-01

    Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in partmoreto the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.less

  10. Electric rate that shifts hourly may foretell spot-market kWh

    SciTech Connect (OSTI)

    Springer, N.

    1985-11-25

    Four California industrial plants have cut their electricity bills up to 16% by shifting from the traditional time-of-use rates to an experimental real-time program (RTP) that varies prices hourly. The users receive a price schedule reflecting changing generating costs one day in advance to encourage them to increase power consumption during the cheapest time periods. Savings during the pilot program range between $11,000 and $32,000 per customer. The hourly cost breakdown encourages consumption during the night and early morning. The signalling system could be expanded to cogenerators and independent small power producers. If an electricity spot market develops, forecasters think a place on the stock exchanges for future-delivery contracts could develop in the future.

  11. Structure of a Bud6/Actin Complex Reveals a Novel WH2-like Actin...

    Office of Scientific and Technical Information (OSTI)

    Resource Type: Journal Article Resource Relation: Journal Name: Structure; Journal Volume: ... Sponsoring Org: NIH Country of Publication: United States Language: ENGLISH Word Cloud ...

  12. Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500Wh/L

    Office of Energy Efficiency and Renewable Energy (EERE)

    2012 DOE Hydrogen and Fuel Cells Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

  13. 2014 Total Electric Industry- Average Retail Price (cents/kWh...

    Gasoline and Diesel Fuel Update (EIA)

    17.05 Maine 15.27 12.70 8.95 0.00 12.65 Massachusetts 17.39 14.68 12.74 8.76 15.35 New Hampshire 17.53 14.34 11.93 0.00 15.22 Rhode Island 17.17 14.56 12.86 14.89 15.41 Vermont ...

  14. "2014 Total Electric Industry- Average Retail Price (cents/kWh...

    U.S. Energy Information Administration (EIA) Indexed Site

    "Massachusetts",17.390969,14.676411,12.740483,8.7639584,15.354558 "New Hampshire",17.52928,14.339091,11.929516,0,15.220362 "Rhode Island",17.167946,14.560559,12.86...

  15. Statistical Analysis of Microarray Data with Replicated Spots: A Case Study with Synechococcus WH8102

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Thomas, E. V.; Phillippy, K. H.; Brahamsha, B.; Haaland, D. M.; Timlin, J. A.; Elbourne, L. D. H.; Palenik, B.; Paulsen, I. T.

    2009-01-01

    Until recently microarray experiments often involved relatively few arrays with only a single representation of each gene on each array. A complete genome microarray with multiple spots per gene (spread out spatially across the array) was developed in order to compare the gene expression of a marine cyanobacterium and a knockout mutant strain in a defined artificial seawater medium. Statistical methods were developed for analysis in the special situation of this case study where there is gene replication within an array and where relatively few arrays are used, which can be the case with current array technology. Due in partmore » to the replication within an array, it was possible to detect very small changes in the levels of expression between the wild type and mutant strains. One interesting biological outcome of this experiment is the indication of the extent to which the phosphorus regulatory system of this cyanobacterium affects the expression of multiple genes beyond those strictly involved in phosphorus acquisition.« less

  16. Need for refining capacity creates opportunities for producers in Middle East

    SciTech Connect (OSTI)

    Ali, M.S.S. )

    1994-07-11

    Oil industry interest in refining has revived in the past few years in response to rising oil consumption. The trend creates opportunities, for countries in the Middle East, which do not own refining assets nearly in proportion to their crude oil reserved. By closing this gap between reserves and refining capacity, the countries can ease some of the instability now characteristic of the oil market. Some major oil producing countries have begun to move downstream. During the 1980s, Venezuela, Kuwait, Saudi Arabia, Libya, and other members of the Organization of Petroleum Exporting Countries acquired refining assets through direct total purchase or joint ventures. Nevertheless, the oil industry remains largely unintegrated, with the Middle East holding two thirds of worldwide oil reserves but only a small share downstream. As worldwide refining capacity swings from a period of surplus toward one in which the need for new capacity will be built. The paper discusses background of the situation, shrinking surplus, investment requirements, sources of capital, and shipping concerns.

  17. SESAME, A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect (OSTI)

    Einfeld, D.; Hasnain, S.S.; Sayers, Z.; Schopper, H.; Winick, H.; Al-Dmour, E.

    2004-05-12

    Developed under the auspices of UNESCO, SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be a major international research centre in the Middle East and Mediterranean region. On 6th of January 2003, the official foundation of SESAME took place. The facility is located in Allan, Jordan, 30 km North-West of Amman. As of August 2003 the Founding Members are Bahrain, Egypt, Iran, Israel, Jordan, Pakistan, Palestine, Turkey and United Arabic Emirates, representing a population of over 300 million. SESAME will be a 2.5 GeV 3rd Generation light source (emittance 24.6 nm.rad, circumference {approx}125m). About 40% of the circumference is available for insertion devices (average length 2.75m) in 13 straight sections. Beam lines are up to 36m. The site and a building are provided by Jordan. Construction started in August 2003. The scientific program will start with up to 6 beam lines: MAD Protein Crystallography, SAXS and WAXS for polymers and proteins, Powder Diffraction for material science, UV/VUV/SXR Photoelectron Spectroscopy and Photoabsorption Spectroscopy, IR Spectroscopy, and EXAFS.

  18. Evaluation of American Indian Science and Engineering Society Intertribal Middle School Science and Math Bowl Project

    SciTech Connect (OSTI)

    AISES, None

    2013-09-25

    The American Indian Science and Engineering Society (AISES) has been funded under a U.S. Department of Energy (DOE) grant (Grant Award No. DE-SC0004058) to host an Intertribal Middle-School Science and Math Bowl (IMSSMB) comprised of teams made up of a majority of American Indian students from Bureau of Indian Education-funded schools and public schools. The intent of the AISES middle school science and math bowl is to increase participation of American Indian students at the DOE-sponsored National Science Bowl. Although national in its recruitment scope, the AISES Intertribal Science and Math Bowl is considered a “regional” science bowl, equivalent to the other 50 regional science bowls which are geographically limited to states. Most regional bowls do not have American Indian student teams competing, hence the AISES bowl is meant to encourage American Indian student teams to increase their science knowledge in order to participate at the national level. The AISES competition brings together teams from various American Indian communities across the nation. Each team is provided with funds for travel to and from the event, as well as for lodging and meals. In 2011 and 2012, there were 10 teams participating; in 2013, the number of teams participating doubled to 20. Each Science and Math Bowl team is comprised of four middle school — grades 6 through 8 — students, one alternate, and a teacher who serves as advisor and coach — although in at least two cases, the coach was not a teacher, but was the Indian Education Coordinator. Each team member must have at least a 3.0 GPA. Furthermore, the majority of students in each team must be comprised of American Indian, Alaska Native or Native Hawaiian students. Under the current DOE grant, AISES sponsored three annual middle school science bowl competitions over the years 2011, 2012 and 2013. The science and math bowls have been held in late March concurrently with the National American Indian Science and

  19. SESAME - A 3rd Generation Synchrotron Light Source for the Middle East

    SciTech Connect (OSTI)

    Ulkue, Dincer; Rahighi, Javad; Winick, Herman

    2007-01-19

    SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) will be the Middle East's first international research center. It is a cooperative venture by the scientists and governments of the region with founding members Bahrain, Egypt, Israel, Jordan, Pakistan, Palestine Authority, and Turkey. Iran is in the process of finalizing its formal membership. Other countries (Cyprus, Morocco, and the United Arab Emirates) are also expected to join. The permanent Council of member states has full responsibility for the project. Members provide the annual operating budget. Observer countries are Germany, Greece, Italy, Kuwait, Portugal, Russian Federation, Sweden, the UK, and the US. SESAME is being developed under the umbrella of UNESCO. Jordan was selected as the building site. SESAME will offer excellent opportunities for training of Middle East scientists and attract those working abroad to consider returning. SESAME will be a 2.5GeV 3rd Generation light source (emittance 26nm-rad, circumference {approx}133m), providing excellent performance for structural molecular biology, molecular environmental science, surface and interface science, microelectromechanical devices, x-ray imaging, archaeological microanalysis, and materials characterization. It will cover a broad spectral range from the infrared to hard x-rays and will have 12 straight sections for insertion devices (average length 2.75m). The injector will be the BESSY I 0.8 GeV booster synchrotron which has been given as a gift from Germany. Four committees advise the Council and assist in developing the technical design, beam lines, user community, and scientific Program. The SESAME building, now in construction with funds and a site provided by Jordan, is scheduled for completion in late 2006 after which the BESSY I injector will be installed. First stored beam in the new 2.5 GeV ring is planned for 2009 with six initial beamlines planned. Some beamlines will be built by member

  20. Environmental impacts of the satellite power system (SPS) on the middle atmosphere

    SciTech Connect (OSTI)

    none, none

    1980-10-01

    The heavy-lift launch vehicles (HLLV) proposed for use in constructing satellite power systems (SPS) would deposit various contaminants in the middle atmosphere, contaminants that could conceivably have adverse effects on climate and upper air structure. These contaminants consist of the major constituents of water vapor, hydrogen, carbon dioxide, and carbon monoxide, and the minor constituents of sulfur dioxide and nitric oxide in the rocket effluent, as well as nitric oxide formed during reentry. To assess the magnitudes of the effects, we have constructed new models or modified existing models. They are: one- and two-dimensional photochemical models, a plume model, a noctilucent cloud and contrail model, a reentry model, and a model of the lower ionosphere, all of which are described in detail in the report. Using a scenario of 400 launches per year for 10 years, we have performed assessments and arrived at the following conclusions which are given.

  1. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    SciTech Connect (OSTI)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  2. Science and Technology to Advance Regional Security in the Middle East and Central Asia

    SciTech Connect (OSTI)

    Tompson, A F B; Richardson, J H; Ragaini, R C; Knapp, R B; Rosenberg, N D; Smith, D K; Ball, D Y

    2002-10-09

    This paper is concerned with the promotion and advancement of regional security in the Middle East and Central Asia through the development of bilateral and multilateral cooperation on targeted scientific and technical projects. It is widely recognized that increasing tensions and instability in many parts of the world emphasize--or reemphasize--a need to seek and promote regional security in these areas. At the Lawrence Livermore National Laboratory (LLNL), a national security research facility operated for the US Department of Energy, we are pursuing an effort to use science and technology as a ''low risk'' means of engagement in regions of strategic importance to the United States. In particular, we are developing collaborations and cooperative projects among (and between) national laboratory scientists in the US and our various counterparts in the countries of interest.

  3. Use of a dynamic simulation model to understand nitrogen cycling in the middle Rio Grande, NM.

    SciTech Connect (OSTI)

    Meixner, Tom; Tidwell, Vincent Carroll; Oelsner, Gretchen; Brooks, Paul; Roach, Jesse D.

    2008-08-01

    Water quality often limits the potential uses of scarce water resources in semiarid and arid regions. To best manage water quality one must understand the sources and sinks of both solutes and water to the river system. Nutrient concentration patterns can identify source and sink locations, but cannot always determine biotic processes that affect nutrient concentrations. Modeling tools can provide insight into these large-scale processes. To address questions about large-scale nitrogen removal in the Middle Rio Grande, NM, we created a system dynamics nitrate model using an existing integrated surface water--groundwater model of the region to evaluate our conceptual models of uptake and denitrification as potential nitrate removal mechanisms. We modeled denitrification in groundwater as a first-order process dependent only on concentration and used a 5% denitrification rate. Uptake was assumed to be proportional to transpiration and was modeled as a percentage of the evapotranspiration calculated within the model multiplied by the nitrate concentration in the water being transpired. We modeled riparian uptake as 90% and agricultural uptake as 50% of the respective evapotranspiration rates. Using these removal rates, our model results suggest that riparian uptake, agricultural uptake and denitrification in groundwater are all needed to produce the observed nitrate concentrations in the groundwater, conveyance channels, and river as well as the seasonal concentration patterns. The model results indicate that a total of 497 metric tons of nitrate-N are removed from the Middle Rio Grande annually. Where river nitrate concentrations are low and there are no large nitrate sources, nitrate behaves nearly conservatively and riparian and agricultural uptake are the most important removal mechanisms. Downstream of a large wastewater nitrate source, denitrification and agricultural uptake were responsible for approximately 90% of the nitrogen removal.

  4. Biomarker responses in cyprinids of the middle stretch of the River Po, Italy

    SciTech Connect (OSTI)

    Vigano, L.; Arillo, A.; Melodia, F.; Arlati, P.; Monti, C.

    1998-03-01

    Fish belonging to three species of cyprinids, that is, barbel (Barbus plebejus), chub (Leuciscus cephalus), and Italian nase (Chondrostoma soeetta), were collected from two sites of the River Po, located upstream and downstream from the confluence of one of its middle-reach polluted tributaries, the River Lambro. The two groups of individuals caught for each species were analyzed and compared for several microsomal and cytosolic biochemical markers. The enzymatic activities assayed in fish liver included ethoxyresorufin O-deethylase (EROD), aminopyrine-N-demethylase (APDM), uridine diphosphate glucuronyltransferase (UDPGT), glutathione S-transferase (GST), glutathione reductase, and glutathione peroxidase. In addition, the contents of reduced glutathione and nonprotein thiols were measured. Despite some differences among species, all microsomal activities (EROD, APDM, UDPGT) were found to be significantly induced in fish living downstream the River Lambro. With the exception of a higher GST enzyme activity of barbel from the downstream reach, no significant modification was evident in any of the tested cytosolic biomarkers. Results showed that barbel and nase better discriminated the two reaches of the River Po. In general, the alterations observed in feral fish are consistent with the results found in previous studies conducted with rainbow trout (Oncorhynchus mykiss) under both laboratory and field conditions in the same middle reach of the River Po. All of the data indicate that the downstream tract of the main river is exposed to the load of pollutants transported by the River Lambro, including known inducers such as polychlorinated biphenyls and polycyclic aromatic hydrocarbons (PAHs). The latter were analyzed in sediments sampled at the two sites of fish collection, and the downstream sediment showed the highest concentrations of PAHs, although their levels are comparable to those present in moderately polluted locations. Regardless of the site of exposure

  5. The Potential Uses of Commercial Satellite Imagery in the Middle East

    SciTech Connect (OSTI)

    Vannoni, M.G.

    1999-06-08

    It became clear during the workshop that the applicability of commercial satellite imagery to the verification of future regional arms control agreements is limited at this time. Non-traditional security topics such as environmental protection, natural resource management, and the development of infrastructure offer the more promising applications for commercial satellite imagery in the short-term. Many problems and opportunities in these topics are regional, or at least multilateral, in nature. A further advantage is that, unlike arms control and nonproliferation applications, cooperative use of imagery in these topics can be done independently of the formal Middle East Peace Process. The value of commercial satellite imagery to regional arms control and nonproliferation, however, will increase during the next three years as new, more capable satellite systems are launched. Aerial imagery, such as that used in the Open Skies Treaty, can also make significant contributions to both traditional and non-traditional security applications but has the disadvantage of requiring access to national airspace and potentially higher cost. There was general consensus that commercial satellite imagery is under-utilized in the Middle East and resources for remote sensing, both human and institutional, are limited. This relative scarcity, however, provides a natural motivation for collaboration in non-traditional security topics. Collaborations between scientists, businesses, universities, and non-governmental organizations can work at the grass-roots level and yield contributions to confidence building as well as scientific and economic results. Joint analysis projects would benefit the region as well as establish precedents for cooperation.

  6. Tectonics, eustasy, and sequence stratigraphy - The Middle Pennsylvanian-Wolfcampian of the Permian basin

    SciTech Connect (OSTI)

    Sarg, J.F. )

    1992-04-01

    The depositional patterns of sedimentary rocks are controlled by the interaction of tectonics, eustasy, and sediment supply. Tectonics and eustasy combine to cause relative changes of sea level that control the accommodation space for sediments. Sediment supply controls how much of the accommodation space is filled. Tectonics has the greatest effect on accommodation. Long-term basin fill histories are interpreted as first-order tectonic events. Second-order tectonic events are initiated by increase in the rate of subsidence that progressively decay and may culminate in a period of uplift or structural growth. Three second-order tectonic events characterize the middle-late Paleozoic history of the Permian basin. These events occur over tens of millions of years and are (1) Givetian-Meramecian, (2) Chesterian-Desmoinesian, and (3) Missourian-Guadalupian. Sediment response to these tectonic events include initial backstepping carbonate platform deposition, followed by deepening and starvation of the basin areas resulting in black shale deposition. Eustasy controls the rate of relative sea level change and is the major controlling factor on the timing of stratigraphic discontinuities. The discontinuities bound sequences and subdivide them into systems tracts. The Middle Pennsylvanian-Wolfcampian of the Permian basin can be subdivided into 19-21 third-order sequences (1-5-m.y. duration) and include six Desmoinesian, four Missourian, five to six Virgilian, and four to five Wolfcampian cycles. The cyclothems of the mid-continent represent higher order depositional sequences that stack in an orderly fashion to comprise the systems tracts of the third-order sequences.

  7. Comparison of hydrocarbon production trends in Middle and Upper members of Minnelusa formation

    SciTech Connect (OSTI)

    Reel, C.L.; Horne, J.C.; Kelly, A.O.

    1985-05-01

    The main reservoir rocks in the upper and middle members of the Minnelusa Formation consist of wind blown dunal sands in the area surrounding the Lusk embayment. Changes in the local depositional setting, tectonic framework, and eustatic sea level controlled the distribution and reservior quality of these sandstones. The middle member exhibits two production trends. Age-equivalent Tensleep rocks deposited along the western margin of the embayment produce from sandstones accumulated in a sand sea paleoenvironment. Structure is atnececessary for trapping owing to permeability continuity. Along the eastern margin of the embayment, production comes from isolated accumulations of sandstone deposited as dunes on broad coastal sabkhas. Fields in these sandstones define a linear trend due to the coast-parallel alignment of these dunes. Production from the upper member defines four major trends. Upper member sandstones in the southern part of the basin, similar to Leo reservoirs, produce from sediments deposited as coast-parallel dunes in a northwest-southeast alignment. In the northern portion of the basin, production is from sandstones deposited in broad, flat eolian sand seas. Because of the permeability continuity of these sandstones, structural closure is necessary for trapping hydrocarbons. Upper member production has been influenced by the unconformity developed at the top of the Minnelusa. Movement along the Rosebud arch resulted in a southwest-northeast production trend apparent in each sandstone unit reflecting their northwestward erosional limits. The last, and most apparent, production trend, results from the Opeche Shale infilling of northwest-southeast-oriented stream valleys. Most production to date has been from sandstones following this alignment juxta-posed downdip of these impermeable shales.

  8. Controls on aggradation and incision in the NE Negev, Israel, since the middle Pleistocene

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Matmon, A.; Elfasi, S.; Hidy, A. J.; Geller, Y.; Porat, N.; Team, ASTER

    2016-02-23

    Here, we investigated the mid-Pleistocene to recent aggradation-incision pattern of two drainage systems (Nahal Peres and Nahal Tahmas) in the hyperarid north eastern Negev desert, southern Israel. Although these drainage systems drain into the tectonically active Dead Sea basin, lake level fluctuations cannot account for the aggradation-incision pattern as bedrock knickpoints disconnect the investigated parts of these drainage systems from base level influence. We applied geomorphic mapping, soil stratigraphy, optically stimulated luminescence (OSL) and cosmogenic (in situ 10Be) exposure dating to reconstruct cycles of aggradation and incision of alluvial terraces and to study their temporal association with regional periods ofmore » humidity and aridity and global glacial-interglacial cycles. The spatial and temporal relationships between the alluvial units suggest changes in the drainage system behavior since the middle Pleistocene, and show a pattern in which prolonged periods of sediment aggradation alternated with short periods of rapid and intense degradation through erosion and incision into sediment and bedrock. We obtain ages for several Pleistocene-Holocene periods of incision: ~ 1.1 Ma, ~ 300 ka, ~ 120 ka, ~ 20 ka, ~ 12 ka and ~ 2 ka. Although broadly synchronous, the Nahal Peres and Nahal Tahmas systems exhibit temporal differences in aggradation and incision.« less

  9. Calibration of Regional Seismic Stations in the Middle East with Shots in Turkey

    SciTech Connect (OSTI)

    Toksoz, M N; Kuleli, S; Gurbuz, C; Kalafat, D; Nekler, T; Zor, K; Yilmazer, M; Ogutcu, Z; Schultz, C A; Harris, D B

    2003-07-21

    The objective of this project is to calibrate regional travel-times and propagation characteristics of seismic waves in Turkey and surrounding areas in the Middle East in order to enhance detection and location capabilities in the region. Important data for the project will be obtained by large calibration shots in central and eastern Turkey. The first, a two-ton shot, was fired in boreholes near Keskin in central Anatolia on 23 November 2002. The explosives were placed in 14 holes, each 80 m deep, arranged in concentric circular arrays. Ninety temporary seismic stations were deployed within a 300 km radius around the shot. The permanent stations of the Turkish National Seismic Network provided a good azimuthal coverage as well as three radial traverses. Most stations within a radius of 200 km recorded the shot. Travel-time data have been analyzed to obtain a detailed crustal model under the shot and along the profiles. The model gives a 35 km thick crust, characterized by two layers with velocities of 5.0 and 6.4 km/s. The P{sub n} velocity was found to be 7.8 km/s. The crustal thickness decreases to the north where the profile crosses the North Anatolian fault. There is a slight increase in crustal velocities, but no change in crustal thickness to the west. Data analysis effort is continuing to refine the regional velocity models and to obtain station corrections.

  10. Extending the flood record on the Middle Gila River with Holocene stratigraphy

    SciTech Connect (OSTI)

    Huckleberry, G. . Dept. of Geosciences)

    1993-04-01

    Historical changes in flood frequency and magnitude are correlated to changes in channel geometry for the Middle Gila River (MGR) in south-central Arizona. The author has attempted to reconstruct the frequency of large floods on the MGR for the last 1,000 years by looking at the stratigraphic record with the purpose of modeling channel changes during a period of significant local cultural change, i.e., the Hohokam-Pima cultural transition. After distinguishing and mapping geological surfaces in the eastern part of the Gila River Indian Community. The author placed a series of backhoe trenches on late Holocene MGR terraces. He interprets lithological discontinuities within overbank deposits as boundaries separating temporally discrete floods. Detrital charcoal from within the stratigraphy was submitted to the National Science Foundation-University of Arizona AMS facility for radiocarbon analysis. The stratigraphic record indicates that a minimum of four large floods have occurred on the MGR since A.D. 1300. Three of these floods may correspond to large historical floods in 1833, 1868, and 1905. If so, then it appears that MGR flood frequency increased after A.D. 1800. There is no evidence for increased flood frequency and channel transformations during the cultural decline of the Hohokam in the 15th century.

  11. An example of mixing-zone dolomite, Middle Eocene Avon Park Formation, Floridan aquifer system

    SciTech Connect (OSTI)

    Cander, H.S. )

    1994-07-01

    A late-formed dolomite cement in a core of the Middle Eocene Avon Park Formation, peninsular Florida, provides an example of dolomite cement from a mixing zone and illustrates how dolomite textural alteration and stabilization can occur at earth-surface conditions. The Avon Park Formation is a pervasively dolomitized peritidal platform carbonate 400 m thick in the Florida aquifer system. Typical Avon Park dolomite is inclusion-rich, fine-grained (< 40 mm), noncathodoluminescent, highly porous (average, 20%), and formed during the Eocene by normal to hypersaline seawater ([delta][sup 18]O = + 3.7[per thousand] PDB; [delta][sup 13]C = + 2.0[per thousand]; [sup 87]Sr/[sup 86]Sr = 0.70778; Sr = 167 ppm). In a 20 m interval in a core from southwest Florida, inclusion-free, cathodoluminescent dolomite overgrows the early-formed noncathodoluminescent marine dolomite. The cathodoluminescent dolomite cement profoundly alters the texture of Avon Park dolomite from typical Cenozoic-like porous, poorly crystalline dolomite to hard, dense, low-porosity, highly crystalline Paleozoic-like dolomite. The dolomite cement is not a replacement of limestone but an overgrowth of early-formed marine dolomite and pore-occluding cement. This study demonstrates that: (1) dolomite precipitated from a 75% seawater mixing-zone fluid that was both calcite saturated and sulfate-rich, and (2) dramatic textural maturation and stabilization in dolomite can occur in the near surface environment, without elevated temperature and burial conditions.

  12. Integrative curriculum reform, domain dependent knowing, and teachers` epistemological theories: Implications for middle-level teaching

    SciTech Connect (OSTI)

    Powell, R.R.

    1998-12-01

    Integrative curriculum as both a theoretical construct and a practical reality, and as a theme-based, problem-centered, democratic way of schooling, is becoming more widely considered as a feasible alternative to traditional middle-level curricula. Importantly for teaching and learning, domain dependence requires teachers to view one area of knowledge as fully interdependent with other areas of knowledge during the learning process. This requires teachers to adopt personal epistemological theories that reflect integrative, domain dependent knowing. This study explored what happened when teachers from highly traditional domain independent school settings encountered an ambitious college-level curriculum project that was designed to help the teachers understand the potential that integrative, domain dependent teaching holds for precollege settings. This study asked: What influence does an integrative, domain dependent curriculum project have on teachers` domain independent, epistemological theories for teaching and learning? Finding an answer to this question is essential if we, as an educational community, are to understand how integrative curriculum theory is transformed by teachers into systemic curriculum reform. The results suggest that the integrative curriculum project that teachers participated in did not explicitly alter their classroom practices in a wholesale manner. Personal epistemological theories of teachers collectively precluded teachers from making any wholesale changes in their individual classroom teaching. However, teachers became aware of integrative curriculum as an alternative, and they expressed interest in infusing integrative practices into their classrooms as opportunities arise.

  13. Middle East Respiratory Syndrome Coronavirus Intra-Host Populations Are Characterized by Numerous High Frequency Variants

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Borucki, Monica K.; Lao, Victoria; Hwang, Mona; Gardner, Shea; Adney, Danielle; Munster, Vincent; Bowen, Richard; Allen, Jonathan E.

    2016-01-20

    Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen related to SARS virus. In vitro studies indicate this virus may have a broad host range suggesting an increased pandemic potential. Genetic and epidemiological evidence indicate camels serve as a reservoir for MERS virus but the mechanism of cross species transmission is unclear and many questions remain regarding the susceptibility of humans to infection. Deep sequencing data was obtained from the nasal samples of three camels that had been experimentally infected with a human MERS-CoV isolate. A majority of the genome was covered and average coverage was greater thanmore » 12,000x depth. Although only 5 mutations were detected in the consensus sequences, 473 intrahost single nucleotide variants were identified. Lastly, many of these variants were present at high frequencies and could potentially influence viral phenotype and the sensitivity of detection assays that target these regions for primer or probe binding.« less

  14. Crisis Prevention Centers as confidence building measures: Suggestions for the Middle East

    SciTech Connect (OSTI)

    Pregenzer, A.L.

    1995-05-01

    Relationships between countries generally exist somewhere in the grey area between war and peace. Crisis prevention activities are important in this area, and should have two goals: stabilizing tense situations that could push countries toward war, and supporting or reinforcing efforts to move countries toward peace. A Crisis Prevention Center (CPC) should facilitate efforts to achieve these goals. Its functions can be grouped into three broad, interrelated categories: establishing and facilitating communication among participating countries; supporting negotiations and consensus-building on regional security issues; and supporting implementation of agreed confidence and security building measures. Technology will play a critical role in a CPC. Technology is required for establishing communication systems to ensure the timely flow of information between countries and to provide the means for organizing and analyzing this information. Technically-based cooperative monitoring can provide an objective source of information on mutually agreed issues, thereby supporting the implementation of confidence building measures and treaties. Technology can be a neutral subject of interaction and collaboration between technical communities from different countries, thereby providing an important channel for improving relationships. Potential first steps for a CPC in the Middle Ease could include establishing communication channels and a dedicated communications center in each country, together with an agreement to use the system as a ``Hot Line` in bilateral and multilateral-lateral emergency situations. Bilateral cooperative monitoring centers could be established to assist with implementation of agreements. A centrally located CPC could serve as a regional communications hub, coordinating a number of functions aimed at stabilizing regional tensions and supporting confidence building activities. Specific recommendations for confidence building activities are discussed.

  15. The complete mitochondrial genome of a gecko and the phylogeneticposition of the Middle Eastern teratoscincus keyserlingii

    SciTech Connect (OSTI)

    Macey, J. Robert; Fong, Jonathan J.; Kuehl, Jennifer V.; Shafiei,Soheila; Ananjeva, Natalia B.; Papenfuss, Theodore J.; Boore, Jeffrey L.

    2005-04-22

    Sqamate reptiles are traditionally divided into six groups: Iguania, Anguimorpha, Scincomorpha, Gekkota (these four are lizards), Serpentes (snakes), and Amphisbaenia (the so-called worm lizards). Currently there are complete mitochondrial genomes from two representatives of the Iguania (Janke et al., 2001; Kumazawa, 2004), three from the Anguimorpha (Kumazawa, 2004; Kumazawa and Endo, 2004), two from the Scincomorpha (Kumazawa and Nishida, 1999; Kumazawa, 2004), two from Serpentes (Kumazawa et al., 1998; Kumazawa, 2004) and 12 from Amphisbaenia (Macey et al., 2004). The only traditional group of Squamata from which a complete mitochondrial genome has not been sequenced is the Gekkota. Here we report the complete mitochondrial genome of Teratoscincus keyserlingii, a Middle Eastern representative of the Gekkota. The gekkonid lizard genus Teratoscincus is distributed throughout the deserts of central and southwest Asia as shown in figure 1, with five species currently recognized (Macey et al. 1997a, 1999b). Included in this figure are the positions of mountain ranges discussed in the text; see also figure 1 in Macey et al. (1999b). Two species, T. bedriagai and T. microlepis, are restricted to Southwest Asia south of the Kopet Dagh and Hindu Kush in Iran, Afghanistan, and Pakistan (Anderson, 1999). Two species are found in the deserts of western China and Mongolia, with T. przewalskii occurring in the Taklimakan and lowland Gobi deserts, and T. roborowskii restricted to the Turpan Depression. The fifth species, T. scincus, is sometimes considered to be restricted to the Caspian Basin in Kazakhstan, Kyrgyzistan, Tadjikistan, Turkmenistan and Uzbekistan. Alternatively, Teratoscincus populations in Southwest Asia, primarily on the Iranian Plateau, situated directly north of the Arabian Plate, are sometimes considered to be a subspecies of T. scincus or, otherwise, to constitute a sixth species, T. keyserlingii. Macey et al. (1999b) assessed the phylogenetic

  16. Attracting students and professionals into math, science, and technology education at the elementary and middle grades: Final report, September 1, 1992--February 28, 1994

    SciTech Connect (OSTI)

    Flick, L.B.

    1995-12-31

    This report describes the progress of a project to encourage students and professionals to participate in math, science, and technology education at the elementary and middle grades. The topics of the report include documenting activities and procedures for the purposes of evaluation and dissemination of descriptive information, generating case studies of the students going through this program to provide research and evaluation data on the process of attracting technically qualified people into elementary and middle school teaching, establishing a program of mentoring between scientists, engineers, and mathematicians and prospective teachers in the program, and establishing a program of mentoring between master teachers in area schools and prospective teachers.

  17. The Higgs boson in the Standard Model theoretical constraints and a direct search in the wh channel at the Tevatron

    SciTech Connect (OSTI)

    Huske, Nils Kristian; /Paris U., VI-VII

    2010-09-01

    We have presented results in two different yet strongly linked aspects of Higgs boson physics. We have learned about the importance of the Higgs boson for the fate of the Standard Model, being either only a theory limited to explaining phenomena at the electroweak scale or, if the Higgs boson lies within a mass range of 130 < m{sub H} < 160 GeV the SM would remain a self consistent theory up to highest energy scales O(m{sub Pl}). This could have direct implications on theories of cosmological inflation using the Higgs boson as the particle giving rise to inflation in the very early Universe, if it couples non-minimally to gravity, an effect that would only become significant at very high energies. After understanding the immense meaning of proving whether the Higgs boson exists and if so, at which mass, we have presented a direct search for a Higgs boson in associated production with a W boson in a mass range 100 < m{sub H} < 150 GeV. A light Higgs boson is favored regarding constraints from electroweak precision measurements. As a single analysis is not yet sensitive for an observation of the Higgs boson using 5.3 fb{sup -1} of Tevatron data, we set limits on the production cross section times branching ratio. At the Tevatron, however, we are able to combine the sensitivity of our analyses not only across channels or analyses at a single experiment but also across both experiments, namely CDF and D0. This yields to the so-called Tevatron Higgs combination which, in total, combines 129 analyses from both experiments with luminosities of up to 6.7 fb{sup -1}. The results of a previous Tevatron combination led to the first exclusion of possible Higgs boson masses since the LEP exclusion in 2001. The latest Tevatron combination from July 2010 can be seen in Fig. 111 and limits compared to the Standard Model expectation are listed in Table 23. It excludes a SM Higgs boson in the regions of 100 < m{sub H} < 109 GeV as well as 158 < m{sub H} < 175 GeV based on the observed final limits at 95% C.L. In the most interesting low mass region between 115 and 135 GeV, even the full Tevatron combination is not yet sensitive enough to exclude a Higgs boson, or to even prove its existence with a meaningful significance. Fig. 112 shows a projection plot for sensitivity to the SM Higgs boson at the Tevatron as a measure of increasing luminosity. The 10 fb{sup -1} projection is a rather conservative outlook for the coming year of data taking as the Tevatron runs smoothly and the run till the end of 2011 is assured. By now, already 9 fb{sup -1} have been recorded by the two experiments. As the extrapolation plot shows, this amount of luminosity will allow to exclude the Higgs boson over a wide mass range at a 95% C.L. With the LHC at CERN now running and successfully collecting first data, it is worth looking at projections of Higgs boson sensitivity at the current center of mass energy of 7 TeV of the LHC accelerator. Fig. 113 shows a projection of a possible SM Higgs boson exclusion using 1 fb{sup -1} of LHC data collected by the ATLAS experiment. An exclusion is expected between 135 and 188 GeV at 95% C.L., combining the three decay channels H {yields} WW, H {yields} ZZ and H {yields} {gamma}{gamma}. A combination between LHC experiments would possibly yield an even broader range of excluded Higgs boson mass points. Therefore, whether at the Tevatron or the LHC, exciting times in the exclusion or possible discovery of the SM Higgs boson lie ahead.

  18. WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline WY UT ID INDEX MAP...

  19. WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline WY UT ID INDEX MAP 2001...

  20. WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN

    U.S. Energy Information Administration (EIA) Indexed Site

    BOE Reserve Class No 2001 reserves 0.1 - 10 MBOE 10.1 - 100 MBOE 100.1 - 1,000 MBOE 1,000.1 - 10,000 MBOE 10,000.1 - 100,000 MBOE > 100,000 MBOE Basin Outline WY UT ID INDEX MAP ...

  1. WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN

    U.S. Energy Information Administration (EIA) Indexed Site

    Liquids Reserve Class No 2001 liquids reserves 0.1 - 10 Mbbl 10.1 - 100 Mbbl 100.1 - 1,000 Mbbl 1,000.1 - 10,000 Mbbl 10,000.1 - 100,000 Mbbl Basin Outline WY UT ID INDEX MAP 2001 ...

  2. WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas Reserve Class No 2001 gas reserves 0.1 - 10 MMCF 10.1 - 100 MMCF 100.1 - 1,000 MMCF 1,000.1 - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline WY UT ID INDEX ...

  3. Hydropower Upgrades to Yield Added Generation at Average Costs Less Than 4 cents per kWh- Without New Dams

    Broader source: Energy.gov [DOE]

    $30.6 million Recovery Act investment by the Department of Energy highlights the additional potential of hydro power

  4. WH ITNEY CAN YON-CART ER CR K YELLOW CR EEK_WY_D PIN EVIEW AN

    U.S. Energy Information Administration (EIA) Indexed Site

    - 10,000 MMCF 10,000.1 - 100,000 MMCF > 100,000 MMCF Basin Outline WY UT ID INDEX MAP 2001 Reserve Summary for Wyoming Thrust Belt Fields Wyoming Thrust Belt Oil & Gas Fields ...

  5. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    SciTech Connect (OSTI)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  6. Technical and Political Assessment of Peaceful Nuclear Power Program Prospects in North Africa and the Middle East

    SciTech Connect (OSTI)

    Windsor, Lindsay K.; Kessler, Carol E.

    2007-09-11

    An exceptional number of Middle Eastern and North African nations have recently expressed interest in developing nuclear energy for peaceful purposes. Many of these countries have explored nuclear research in limited ways in the past, but the current focused interest and application of resources towards developing nuclear-generated electricity and nuclear-powered desalination plants is unprecedented. Consequently, questions arise in response to this emerging trend: What instigated this interest? To what end(s) will a nuclear program be applied? Does the country have adequate technical, political, legislative, nonproliferation, and safety infrastructure required for the capability desired? If so, what are the next steps for a country in preparation for a future nuclear program? And if not, what collaboration efforts are possible with the United States or others? This report provides information on the capabilities and interests of 13 countries in the region in nuclear energy programs in light of safety, nonproliferation and security concerns. It also provides information useful for determining potential for offering technical collaboration, financial aid, and/or political support.

  7. Fission track thermochronologic constraints on the timing and nature of major Middle Tertiary extension, Ruby Mountains - East Humboldt Range, Nevada

    SciTech Connect (OSTI)

    Dokka, R.K.; Mahaffie, M.J.; Snoke, A.W.

    1985-01-01

    Fission Track (FT) apatite, zircon, and sphene ages were determined from both mylonitic and non-mylonitic rocks of the Ruby Mountains-East Humboldt Range metamorphic core complex. The analyzed sample suite included various mylonitic orthogneisses as well as amphibolitic orthogneisses from the non-mylonitic infrastructural core. Porphyritic biotite granodiorite of the Oligocene Harrison Pass pluton was also dated. FT ages are concordant and range in age from 27 - 24 Ma. These dates reflect rapid cooling of the lower plate from temperatures above 250/sup 0/C to below 100/sup 0/C during the early Miocene. The general concordance of the FT dates with /sup 40/Ar//sup 39/Ar biotite and hornblende plateau ages from the same sample suite suggest an even more pronounced cooling history. This rapid cooling history is considered to reflect large-scale tectonic denudation (intracrustal thinning), a manifestation of intense crustal extension. Mylonitic rocks that originally formed along ductile shear zones in the middle crust (10-15 km) were quickly brought near the surface and juxtaposed against brittly distended rocks deformed under upper crustal conditions. FT data firmly establish the upper age limit on the timing of mylonitization during the shear zone deformation. This rapid cooling interval also coincides with the inferred age of extensive landscape disruption and the development of an alluvial fan-lacustrine system which included the periodic emplacement of landslide deposits (megabreccias).

  8. Oil and power: an analysis of United States economic interests and strategies in the Middle East. Study project

    SciTech Connect (OSTI)

    Poche, C.D.

    1988-05-31

    The United States met virtually all of its oil needs from domestic sources until the early 1970s. This self-sufficiency gradually eroded as our internal production failed to keep pace with rising levels of energy consumption. As a result, our new energy needs have been satisfied primarily by petroleum imports. The 1973 Arab oil embargo and supply curtailments associated with the Iranian Revolution in 1979 were painful experiences for the nation. By 1980, the United States was importing 8.5 million barrels of oil per day at a cost many times higher than the going rate in earlier years. Dependence on Middle East oil had become a frightening reality. During the same period, trade deficits, inflation, interest rates, and balance of payment problems were increasing at an alarming rate. Since that point in time, the United States has made progress in building a strong foundation for energy security. Despite these gains the United States is rapidly approaching another critical juncture in its battle to reduce dependency on imported oil. It also suggests national economic strategies that could be employed to improve America's energy prospects for the future.

  9. Tectonic and eustatic controls on facies distribution in the middle of upper Jurassic, Viking Graben, Norwegian North Sea

    SciTech Connect (OSTI)

    Sneider, J.S.; Vail, P.R. ); De Clarens, P. )

    1993-09-01

    The Middle of Upper Jurassic in the Viking Graben area was deposited during an overall transgression. From the lower Toarcian to the base of the cretaceous, there are seven 2nd-order (3-5 m.y.) transgressive-regressive (T/R) facies cycles that are related to regional tectonic events. These cycles dominate facies distribution, appear synchronous, and can be correlated throughout the study area. Local tectonics and sediment supply can modify these cycles. Local tectonics, sediment supply, and position in the T/R facies cycles control development of 3rd-order (0.5-3 m.y.) cycles. Where sediment supply is low, 3rd-order sequences are poorly developed. During a 2nd-order regression, shelfal areas and local highs are often eroded. Third-order sequences have well developed lowstands system-Y tracts (LST) and poorly developed transgressive systems tracts (TST). During 2nd-order transgressions, 3rd-order sequences have enhanced TST, starved HST, and poorly developed LST. Thick, stacked, shoreface sandstones may develop in the TST on terraces or on gently dipping slopes if sediment supply is high. The base of these sequences often shows an abrupt basinward shift in facies followed by backstepping facies. turbidites develop during 3rd-order lowstands when there is a steeply dipping slope and high sediment supply, but their distribution is more limited.

  10. Middle Triassic paleokarst surfaces and associated stratigraphic patterns in platform carbonates: Evidence from sedimentology and diagenesis, southern Alps, Italy

    SciTech Connect (OSTI)

    Mutti, M.; Jadoul, F. )

    1991-03-01

    Triassic carbonate platforms are superbly exposed in the Southern Alps. A regional paleokarst surface occurs in the Middle Triassic, at the Ladinian-Carnian stage boundary, and is well recognized throughout the Tethyan region. The authors describe the characteristics of the paleokarst and the stratigraphic patterns of the strata deposited immediately after the formation of the surface in the Brembana Valley. The paleokarst cuts up to tens of meters into the underlying Esino Limestone massive platform facies and forms a lens-shaped depression filled by peritidal cyclic facies intensively deformed in tepees. The origin of this geometry can be explained either as a tectonic-controlled feature or as a karst-processes related incised-valley associated to a major eustatic cycle. Depression-filling peritidal facies are intensively deformed in senile tepees and are periodically interbedded with 'terra rossa' soils and tend to pinchout at the margins of the depression. Several orders of cyclicity are recognized in peritidal carbonates. Diagenetic features are exceptionally complex and record a wide variety of superimposing environments ranging from normal marine to early meteoric and can be related to major cyclic stratigraphic patterns. Syndepositional cements form up to 80% of the present rock.

  11. R.E.A.C.T. - Renewable Energy Activities - Choices for Tomorrow - Teacher's Activity Guide for Middle Level Grades 6-8

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    R.E.A.C.T. Renewable Energy Activities - Choices for Tomorrow Teacher's Activity Guide for Middle Level Grades 6-8 National Renewable Energy Laboratory Education Programs 1617 Cole Blvd. Golden, Colorado 80401 Tel: (303) 275-3044 Home page: http://www.nrel.gov ACKNOWLEDGMENTS The Education Office at NREL would like to thank Dr. James Schreck, Professor of Chemistry and Biochemistry, University of Northern Colorado, for his commitment and hard work in the development of this activity booklet. His

  12. Fluid rare earth element anlayses from geothermal wells located on the Reykjanes Peninsula, Iceland and Middle Valley seafloor hydrothermal system on the Juan de Fuca Ridge.

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Andrew Fowler

    2015-05-01

    Results for fluid rare earth element analyses from four Reykjanes peninsula high-temperature geothermal fields. Data for fluids from hydrothermal vents located 2400 m below sea level from Middle Valley on the Juan de Fuca Ridge are also included. Data have been corrected for flashing. Samples preconcentrated using a chelating resin with IDA functional group (InertSep ME-1). Analyzed using an Element magnetic sector inductively coupled plasma mass spectrometry (ICP-MS).

  13. R.E.A.C.T. - Renewable Energy Activities - Choices for Tomorrow - Teacher's Activity Guide for Middle Level Grades 6-8

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    E.A.C.T. Renewable Energy Activities - Choices for Tomorrow Teacher's Activity Guide for Middle Level Grades 6-8 National Renewable Energy Laboratory Education Programs 1617 Cole Blvd. Golden, Colorado 80401 Tel: (303) 275-3044 Home page: http://www.nrel.gov ACKNOWLEDGMENTS The Education Office at NREL would like to thank Dr. James Schreck, Professor of Chemistry and Biochemistry, University of Northern Colorado, for his commitment and hard work in the development of this activity booklet. His

  14. High-resolution stratigraphic forward modeling: A case study of the lower-middle San Andres formation, Permian basin

    SciTech Connect (OSTI)

    Shuster, M.W. , Rijswijk ); Childers, D.W. )

    1993-09-01

    This study has attempted to calibrate Shell's two-dimensional (2-D) basin modeling program as an exploration tool by simulating the stratigraphy of a mixed carbonate/clastic third-order depositional sequence. The lower-middle San Andres Formation was selected because available log, core, and outcrop data from the Northwest Shelf area, Permian basin, provided an excellent calibration set. A regional stratigraphic cross section from the Cato-Chaveroo to the Wasson fields was constructed delineating lithology and porosity distribution. Approximately 10 shoaling-upward depositional cycles were interpreted. A higher frequency, five-in-one cyclicity was also interpreted based on core and outcrop data. The observed stratigraphy was simulated using a composite eustasy consisting of third-order (2,000,000 yr), fourth-order (100,000 yr), and fifth-order (20,000 yr) sinusoids each at five-meter amplitudes. Subsidence input was constrained by back-stripped tectonic subsidence curves calculated from well data. Sedimentation parameters were interactively derived. New empirically based algorithms were used to model Dunham lithofacies, environmental facies, and sabkha anhydrite distribution. Synthetic log and 2-D synthetic seismic profiles were constructed from the simulation output. The simulation results suggest that (1) relative sea level is the dominant control on the observed depositional cyclicity, (2) the distribution of regional seal facies (anhydrite) reflects falling sea level and prolonged exposure, (3) limestone-dolomite trends on the shelf are grossly related to environment and (4) the distribution of grainstones and packstones (potential reservoirs) occurs as fourth- and fifth-order offlapping and aggradational pods. The synthetic log signatures compared to [open quotes]real[close quotes] logs substantiate the interpreted depositional cyclicity, but also point out the difficulty in interpreting high-order cycles based on log data alone.

  15. Ground Truth, Magnitude Calibration and Regional Phase Propagation and Detection in the Middle East and Horn of Africa

    SciTech Connect (OSTI)

    Nyblade, A; Brazier, R; Adams, A; Park, Y; Rodgers, A; Al-Amri, A

    2007-07-08

    In this project, we are exploiting several seismic data sets to improve U.S. operational capabilities to monitor for low yield nuclear tests across the Middle East (including the Iranian Plateau, Zagros Mountains, Arabian Peninsula, Turkish Plateau, Gulf of Aqaba, Dead Sea Rift) and the Horn of Africa (including the northern part of the East African Rift, Afar Depression, southern Red Sea and Gulf of Aden). The data sets are being used to perform three related tasks. (1) We are determining moment tensors, moment magnitudes and source depths for regional events in the magnitude 3.0 to 6.0 range. (2) These events are being used to characterize high-frequency (0.5-16 Hz) regional phase attenuation and detection thresholds, especially from events in Iran recorded at stations across the Arabian Peninsula. (3) We are collecting location ground truth at GT5 (local) and GT20 (regional) levels for seismic events with M > 2.5, including source geometry information and source depths. Towards meeting these objectives, seismograms from earthquakes in the Zagros Mountains recorded at regional distances have been inverted for moment tensors, which have then been used to create synthetic seismograms to determine the source depths of the earthquakes via waveform matching. The source depths have been confirmed by modeling teleseismic depth phases recorded on GSN and IMS stations. Early studies of the distribution of seismicity in the Zagros region found evidence for earthquakes in the upper mantle. But subsequent relocations of teleseismic earthquakes suggest that source depths are generally much shallower, lying mainly within the upper crust. All of the regional events studied so far nucleated within the upper crust, and most of the events have thrust mechanisms. The source mechanisms for these events are being used to characterize high-frequency (0.5-16 Hz) regional phase attenuation and detection thresholds for broadband seismic stations in the Arabian Peninsula, including IMS

  16. Emerging energy security issues: Natural gas in the Gulf Nations, An overview of Middle East resources, export potentials, and markets. Report Series No. 4

    SciTech Connect (OSTI)

    Ripple, R.D.; Hagen, R.E.

    1995-09-01

    This paper proceeds with a presentation of the natural gas resource base of the Gulf nations of the Middle East. The resource base is put in the context of the world natural gas resource and trade flows. This is followed by a discussion of the existing and planned project to move Gulf natural gas to consuming regions. Then a discussion of the source of demand in the likely target markets for the Gulf resource follows. Next, the nature of LNG pricing is discussed. A brief summary concludes the paper.

  17. Possible flexural mechanisms for origins of extensive, ooid-rich, carbonate environments, middle and early late Mississippian, east-central United States

    SciTech Connect (OSTI)

    Ettensohn, F.R. )

    1989-08-01

    During the earliest Mississippian, much of east-central US was a deep-water black-shale basin formed due to subsidence accompanying Acadian tectonism; by the middle Mississippian, this basin had been transformed into a very shallow epeiric sea characterized by ooid-rich carbonates. This transformation probably occurred in two parts due to flexural mechanisms accompanying the end of the Acadian orogeny and the beginning of the Ouachita orogeny. In the eastern part of the basin, with the end of active Acadian deformational loading, lithospheric relaxation caused uplift and eastward migration of the Acadian peripheral bulge from near the Cincinnati arch into the Appalachian basin. By the middle Meramecian, this uplift and a concomitant infilling of the basin with post-orogenic clastics created an extensive shallow-water platform conducive to ooid deposition well into the Appalachian basin. In western parts of the cratonic black-shale basin, from the western flanks of the Cincinnati arch to the eastern flanks of the Transcontinental arch, any infilling with postorogenic Acadian clastics was minor. However, by the Kinderhook-Osage transition, apparent collision and subduction leading to the Ouachita orogeny had begun, and with the inception of collision, the entire foreland as far north as the Illinois basin was upwarped by the cratonward (north and northeast) migration of the accompany peripheral bulge. As a result, by the early Meramecian, shallow-water conditions favorable for oolitic-carbonate deposition prevailed throughout the area.

  18. Geology and recognition criteria for veinlike uranium deposits of the lower to middle Proterozoic unconformity and strata-related types. Final report

    SciTech Connect (OSTI)

    Dahlkamp, F.J.; Adams, S.S.

    1981-01-01

    The discovery of the Rabbit Lake deposit, Saskatchewan, in 1968 and the East Alligator Rivers district, Northern Territory, Australia, in 1970 established the Lower-Middle Proterozoic veinlike-type deposits as one of the major types of uranium deposits. The term veinlike is used in order to distinguish it from the classical magmatic-hydrothermal vein or veintype deposits. The veinlike deposits account for between a quarter and a third of the Western World's proven uranium reserves. Lower-Middle Proterozoic veinlike deposits, as discussed in this report include several subtypes of deposits, which have some significantly different geologic characteristics. These various subtypes appear to have formed from various combinations of geologic processes ranging from synsedimentary uranium precipitation through some combination of diagenesis, metamorphism, metasomatism, weathering, and deep burial diagenesis. Some of the deposit subtypes are based on only one or two incompletely described examples; hence, even the classification presented in this report may be expected to change. Geologic characteristics of the deposits differ significantly between most districts and in some cases even between deposits within districts. Emphasis in this report is placed on deposit descriptions and the interpretations of the observers.

  19. PROGRESS TOWARDS NEXT GENERATION, WAVEFORM BASED THREE-DIMENSIONAL MODELS AND METRICS TO IMPROVE NUCLEAR EXPLOSION MONITORING IN THE MIDDLE EAST

    SciTech Connect (OSTI)

    Savage, B; Peter, D; Covellone, B; Rodgers, A; Tromp, J

    2009-07-02

    Efforts to update current wave speed models of the Middle East require a thoroughly tested database of sources and recordings. Recordings of seismic waves traversing the region from Tibet to the Red Sea will be the principal metric in guiding improvements to the current wave speed model. Precise characterizations of the earthquakes, specifically depths and faulting mechanisms, are essential to avoid mapping source errors into the refined wave speed model. Errors associated with the source are manifested in amplitude and phase changes. Source depths and paths near nodal planes are particularly error prone as small changes may severely affect the resulting wavefield. Once sources are quantified, regions requiring refinement will be highlighted using adjoint tomography methods based on spectral element simulations [Komatitsch and Tromp (1999)]. An initial database of 250 regional Middle Eastern events from 1990-2007, was inverted for depth and focal mechanism using teleseismic arrivals [Kikuchi and Kanamori (1982)] and regional surface and body waves [Zhao and Helmberger (1994)]. From this initial database, we reinterpreted a large, well recorded subset of 201 events through a direct comparison between data and synthetics based upon a centroid moment tensor inversion [Liu et al. (2004)]. Evaluation was done using both a 1D reference model [Dziewonski and Anderson (1981)] at periods greater than 80 seconds and a 3D model [Kustowski et al. (2008)] at periods of 25 seconds and longer. The final source reinterpretations will be within the 3D model, as this is the initial starting point for the adjoint tomography. Transitioning from a 1D to 3D wave speed model shows dramatic improvements when comparisons are done at shorter periods, (25 s). Synthetics from the 1D model were created through mode summations while those from the 3D simulations were created using the spectral element method. To further assess errors in source depth and focal mechanism, comparisons between the

  20. Lithostratigraphy and environmental considerations of Cenomanian-Early Turonian shelf carbonates (Rumaila and Mishrif Formations) of Mesopotamian basin, middle and southern Iraq

    SciTech Connect (OSTI)

    Sherwani, G.H.M.; Aqrawi, A.A.M.

    1987-05-01

    Rumaila and Mishrif Formations form the major part of the Cenomanian early Turonian deposits of middle and southern Iraq. The Rumaila Formation consists of lithographic chalky limestone at the lower part and marly limestone and marl at the upper part. The formation represents deep off-shelf deposits, whereas the overlying Mishrif Formation is composed of various types of shallow-shelf carbonates such as rudist-bearing patchy reefs and lagoonal and off-shelf limestones. An environmental model is suggested to delineate the stratigraphic relationships between the above mentioned two formations and to correlate them with their equivalents in central Iraq (i.e., Mahilban, Fahad, and Maotsi Formations). The gradational contact between the two formations and the intertonguing with their equivalents are considered to be the most important stratigraphic phenomena.

  1. Lower to middle Miocene isotope ( sup 87 Sr/ sup 86 Sr,. delta. sup 18 O,. delta. sup 13 C) standard sections, DSDP site 608

    SciTech Connect (OSTI)

    Miller, K.G.; Feigenson, M.D. ); Wright, J.D. )

    1990-05-01

    Isotopes changes ({sup 87}Sr/{sup 86}Sr, {delta}{sup 18}O, {delta}{sup 13}C) have been correlated to the geologic time scale primarily by biostratigraphy. Biostratigraphic correlations suffer from problems of diachrony and taxonomy. Magnetostratigraphy provides a facies-independent correlation tool, but there are few Tertiary sections with unambiguous magnetostratigraphy. The authors previously developed an isotope standard for the Oligocene at the only location with a pristine magnetochronology, Site 522. They extend this approach to Site 608 in the northeastern North Atlantic, which contains a relatively straightforward Miocene magnetochronology. They establish Miocene oxygen isotope Chronozones MI1 through MI6 at Sites 522 and 608, which are directly tied to the geomagnetic polarity time scale (GPTS). The integration of stable isotopes, Sr isotopes, biostratigraphy, and magnetostratigraphy at site 608 provides a standard section with which other Sr isotope and oxygen isotope records can be correlated. For example, using oxygen isotopes to correlate, the Sr isotope record from Site 608 compares well with previously published records from Sites 516 and 590. The firm ties of the Oligocene to middle Miocene isotope records with the GPTS allows them to establish the nature of the change in Sr isotopes between 38 and 8 Ma. There were moderately high rates of {sup 87}Sr/{sup 86}Sr change during the Oligocene ({approximately}0.000030/m.y.), yielding stratigraphic resolution of {plus minus}1.0 m.y. The rate of change of {sup 87}Sr/{sup 86}Sr increased during the early Miocene. They estimate that the rate of change between 23 and 15 Ma was greater than 0.000060/m.y. Given their ability to reproduce Sr isotope measurements ({plus minus}0.000020 to {plus minus}0.000030), temporal resolution is better than {plus minus}0.5 my. for the early to early middle Oliocene.

  2. Economic Competitiveness of U.S. Utility-Scale Photovoltaics Systems in 2015: Regional Cost Modeling of Installed Cost ($/W) and LCOE ($/kWh)

    SciTech Connect (OSTI)

    Fu, Ran; James, Ted L.; Chung, Donald; Gagne, Douglas; Lopez, Anthony; Dobos, Aron

    2015-06-14

    Utility-scale photovoltaics (PV) system growth is largely driven by the economic metrics of total installed costs and levelized cost of electricity (LCOE), which differ by region. This study details regional cost factors, including environment (wind speed and snow loads), labor costs, material costs, sales taxes, and permitting costs using a new system-level bottom-up cost modeling approach. We use this model to identify regional all-in PV installed costs for fixed-tilt and one-axis tracker systems in the United States with consideration of union and non-union labor costs in 2015. LCOEs using those regional installed costs are then modeled and spatially presented. Finally, we assess the cost reduction opportunities of increasing module conversion efficiencies on PV system costs in order to indicate the possible economic impacts of module technology advancements and help future research and development (R&D) effects in the context of U.S. SunShot targets.

  3. Search for the Standard Model Higgs Boson in Associated WH Production in 9.7 fb⁻¹ of pp̄ Collisions with the D0 Detector

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Alverson, G.; Askew, A.; et al

    2012-09-20

    We present a search for the standard model Higgs boson in final states with a charged lepton (electron or muon), missing transverse energy, and two or three jets, at least one of which is identified as a b-quark jet. The search is primarily sensitive to WH→lνbb¯ production and uses data corresponding to 9.7 fb⁻¹ of integrated luminosity collected with the D0 detector at the Fermilab Tevatron pp¯ Collider at √s=1.96 TeV. We observe agreement between the data and the expected background. For a Higgs boson mass of 125 GeV, we set a 95% C.L. upper limit on the production ofmore » a standard model Higgs boson of 5.2×σSM, where σSM is the standard model Higgs boson production cross section, while the expected limit is 4.7×σSM.« less

  4. Initial test results from the RedFlow 5 kW, 10 kWh zinc-bromide module, phase 1.

    SciTech Connect (OSTI)

    Ferreira, Summer Rhodes; Rose, David Martin

    2012-02-01

    In this paper the performance results of the RedFlow zinc-bromide module (ZBM) Gen 2.0 are reported for Phase 1 of testing, which includes initial characterization of the module. This included physical measurement, efficiency as a function of charge and discharge rates, efficiency as a function of maximum charge capacity, duration of maximum power supplied, and limited cycling with skipped strip cycles. The goal of this first phase of testing was to verify manufacturer specifications of the zinc-bromide flow battery. Initial characterization tests have shown that the ZBM meets the manufacturer's specifications. Further testing, including testing as a function of temperature and life cycle testing, will be carried out during Phase 2 of the testing, and these results will be issued in the final report, after Phase 2 testing has concluded.

  5. Erosional remnants and adjacent unconformities along an eolian-marine boundary of the Page Sandstone and Carmel Formation, Middle Jurassic, south-central Utah

    SciTech Connect (OSTI)

    Jones, L.S.; Blakey, R.C. (Univ. of Northern Arizona, Flagstaff, AZ (United States). Dept. of Geology)

    1993-09-01

    Sandstone ridges along the marine-eolian boundary of the Middle Jurassic Page Sandstone (eolian) with the lower Carmel Formation (restricted marine) in south-central Utah have been identified as erosional remnants consisting of strata of siliciclastic sabkha and eolian origin. The ridges lie within two distinct units of the Thousand Pockets Tongue of the Page. Two equally plausible models explain the genesis of these ridges. One model involves (1) early cementation of eolian and sabkha strata, (2) wind erosion leading to development of yardangs and unconformities, (3) yardang tilting due to evaporite dissolution, and (4) renewed deposition and burial. The alternative model explains ridge development through (1) subsidence, with tilting, of eolian and sabkha strata into evaporites due to loading from linear dunes, (2) evaporite dissolution and unconformity development, and (3) renewed deposition and burial. These models provide important clues about the nature of a missing part of the rock record. Reconstruction of units that were deposited but later eroded improves paleogeographic interpretation and here indicates that the Carmel paleo-shoreline was considerably farther to the northwest than previously believed.

  6. Apatite fission track evidence for post-Early Cretaceous erosional unroofing of Middle Pennsylvanian sandstones from the southern Appalachian Basin in Kentucky and Virginia

    SciTech Connect (OSTI)

    Boettcher, S.S.; Milliken, K.L. . Dept. of Geological Sciences)

    1992-01-01

    Apatite fission track ages and mean etchable track lengths for 7 samples of Middle Pennsylvanian (Breathitt Formation) depositional age from the southern Appalachian Basin of KY and VA suggest that 3--4 km of erosional unroofing has occurred since the Early Cretaceous. The samples were collected over a 1,600 km[sup 2] area at the northern end of the Pine Mountain Overthrust southeast of Pikeville, KY. This new data set overlaps 8 published apatite fission track ages and 3 mean etchable lengths from the Cumberland Plateau and Valley and Ridge areas of WV. Because all of the apatite fission track ages are significantly younger than the depositional age, maximum burial temperatures in the area exceeded 125 C, such that fission tracks that formed in the detrital apatite prior to deposition have been totally annealed. Furthermore, mean etchable track lengths show considerable length reduction from initial values revealing that the samples resided in the zone of partial annealing on the order of 100 Ma following attainment of maximum temperatures. The burial history for these samples began with deposition and rapid burial of synorogenic sediments in front of the westward advancing Alleghenian deformation front. The fission track data are compatible with the hypothesis that maximum temperatures were attained during the Late Paleozoic as tectonically driven synorogenic fluids penetrated the foreland basin deposits. Slow erosional unroofing (< 15 m/Ma for a thermal gradient of 30 C/km) has occurred since the onset of Triassic-Jurassic rifting along the atlantic continental margin and continued into the Cenozoic.

  7. Response of C3 and C4 plants to middle-Holocene climatic variation near the prairie-forest ecotone of Minnesota, U.S.A.

    SciTech Connect (OSTI)

    Tian, J; Brown, T A; Hu, F S; Stefanova, I; Nelson, D M

    2003-12-24

    Paleorecords of the middle Holocene (MH) from the North American midcontinent can offer insights into ecological responses to pervasive drought that may accompany future climatic warming. We analyzed MH sediments from West Olaf Lake (WOL) and Steel Lake (SL) in Minnesota to examine the effects of warm/dry climatic conditions on prairie-woodland ecosystems. Mineral composition and carbonate {delta}{sup 18}O were used to determine climatic variations, whereas pollen assemblages, charcoal {delta}{sup 13}C, and charcoal accumulation rates were used to reconstruct vegetation composition, C{sub 3} and C{sub 4} plant abundance, and fire. The ratio of aragonite:calcite at WOL and {delta}{sup 18}O at SL suggest that pronounced droughts occurred during the MH but that drought severity decreased with time. From charcoal {delta}{sup 13}C data we estimated that the MH abundance of C{sub 4} plants averaged 50% at WOL and 43% at SL. At WOL C{sub 4} abundance was negatively correlated with aragonite:calcite, suggesting that severe moisture deficits suppressed C{sub 4} plants in favor of weedy C{sub 3} plants (e.g., Ambrosia). As climate ameliorated C{sub 4} abundance increased (from {approx}33 to 66%) at the expense of weedy species, enhancing fuel availability and fire occurrence. In contrast, farther east at SL climate was cooler and wetter than at WOL, and C{sub 4} abundance showed no correlation with {delta}{sup 18}O-inferred aridity. Woody C{sub 3} plants (e.g., Quercus) were more abundant, biomass flammability lower, and fires less important at SL than at WOL. Our results suggest that C{sub 4} plants are adapted to warm/dry climatic conditions, but not to extreme droughts, and that the fire regime is controlled by biomass-climate interactions.

  8. Aspen Elementary, Los Alamos Middle

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    They won for their project "Yavanchlan: Creating Optimal Strategies for Artificial Intelligence to Play Against Humans." They studied techniques to enable efficient computer play ...

  9. Kinard Core Knowledge Middle School

    High Performance Buildings Database

    Fort Collins, CO Located on the outskirts of Fort Collins, the Kinard school has established an impressive benchmark for high performance school buildings. Not only was the school designed with low energy use in mind: it's actually achieving these goals.

  10. 2015 Middle School Team Photos

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  11. Developing regionalized models of lithospheric thickness and velocity structure across Eurasia and the Middle East from jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities

    SciTech Connect (OSTI)

    Julia, J; Nyblade, A; Hansen, S; Rodgers, A; Matzel, E

    2009-07-06

    In this project, we are developing models of lithospheric structure for a wide variety of tectonic regions throughout Eurasia and the Middle East by regionalizing 1D velocity models obtained by jointly inverting P-wave and S-wave receiver functions with Rayleigh wave group and phase velocities. We expect the regionalized velocity models will improve our ability to predict travel-times for local and regional phases, such as Pg, Pn, Sn and Lg, as well as travel-times for body-waves at upper mantle triplication distances in both seismic and aseismic regions of Eurasia and the Middle East. We anticipate the models will help inform and strengthen ongoing and future efforts within the NNSA labs to develop 3D velocity models for Eurasia and the Middle East, and will assist in obtaining model-based predictions where no empirical data are available and for improving locations from sparse networks using kriging. The codes needed to conduct the joint inversion of P-wave receiver functions (PRFs), S-wave receiver functions (SRFs), and dispersion velocities have already been assembled as part of ongoing research on lithospheric structure in Africa. The methodology has been tested with synthetic 'data' and case studies have been investigated with data collected at an open broadband stations in South Africa. PRFs constrain the size and S-P travel-time of seismic discontinuities in the crust and uppermost mantle, SRFs constrain the size and P-S travel-time of the lithosphere-asthenosphere boundary, and dispersion velocities constrain average S-wave velocity within frequency-dependent depth-ranges. Preliminary results show that the combination yields integrated 1D velocity models local to the recording station, where the discontinuities constrained by the receiver functions are superimposed to a background velocity model constrained by the dispersion velocities. In our first year of this project we will (i) generate 1D velocity models for open broadband seismic stations in the

  12. C10DIV.xls

    U.S. Energy Information Administration (EIA) Indexed Site

    Building (thousand kWh) per Square Foot (kWh) per Worker (thousand kWh) per Building (thousand dollars) per Square Foot (dollars) per kWh (dollars) NEW ENGLAND...

  13. Entergy Arkansas - Small Business Energy Efficiency Programs...

    Broader source: Energy.gov (indexed) [DOE]

    Type Rebate Program Rebate Amount Lighting and Lighting Controls: 0.21 per kWh Window Film: .35 per kWh Duct Sealing:.35 per kWh Ceiling Insulation: .35 per kWh Refrigeration:...

  14. DISCOVERY OF A FAINT X-RAY COUNTERPART AND A PARSEC-LONG X-RAY TAIL FOR THE MIDDLE-AGED, {gamma}-RAY-ONLY PULSAR PSR J0357+3205

    SciTech Connect (OSTI)

    De Luca, A.; Bignami, G. F.; Marelli, M.; Caraveo, P. A.; Mignani, R. P.; Hummel, W.; Collins, S.; Shearer, A.; Parkinson, P. M. Saz; Belfiore, A.

    2011-06-01

    The Large Area Telescope (LAT) on board the Fermi Gamma-ray Space Telescope opened a new era for pulsar astronomy, detecting {gamma}-ray pulsations from more than 60 pulsars, {approx}40% of which are not seen at radio wavelengths. One of the most interesting sources discovered by LAT is PSR J0357+3205, a radio-quiet, middle-aged ({tau}{sub C} {approx} 0.5 Myr) pulsar standing out for its very low spin-down luminosity (E-dot{sub rot}{approx}6x10{sup 33} erg s{sup -1}), indeed the lowest among non-recycled {gamma}-ray pulsars. A deep X-ray observation with Chandra (0.5-10 keV), coupled with sensitive optical/infrared ground-based images of the field, allowed us to identify PSR J0357+3205 as a faint source with a soft spectrum, consistent with a purely non-thermal emission (photon index {Gamma} = 2.53 {+-} 0.25). The absorbing column (N{sub H} = 8 {+-} 4 x 10{sup 20} cm{sup -2}) is consistent with a distance of a few hundred parsecs. Moreover, the Chandra data unveiled a huge (9 arcmin long) extended feature apparently protruding from the pulsar. Its non-thermal X-ray spectrum points to synchrotron emission from energetic particles from the pulsar wind, possibly similar to other elongated X-ray tails associated with rotation-powered pulsars and explained as bow-shock pulsar wind nebulae (PWNe). However, energetic arguments as well as the peculiar morphology of the diffuse feature associated with PSR J0357+3205 make the bow-shock PWN interpretation rather challenging.

  15. Middle School Schedule | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Schedule Saturday, February 20, 2016 (Iowa State University campus, Ames, Iowa) 7:30 - Registration and continental breakfast 8:00 - Welcome & Announcements 8:30 - Practice Rounds...

  16. Growing from the Middle | GE Global Research

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Companies here span a tremendous range of industries - from fitness clubs and real estate developers, to semiconductor device manufacturers and energy service providers....

  17. Middle East: Output expansions boost drilling

    SciTech Connect (OSTI)

    1996-08-01

    Iraqi exports may return to the market in limited fashion, but none of the region`s producers seems particularly concerned. They believe that global oil demand is rising fast enough to justify their additions to productive capacity. The paper discusses exploration, drilling and development, and production in Saudi Arabia, Kuwait, the Neutral Zone, Abu Dhabi, Dubai, Oman, Iran, Iraq, Yemen, Qatar, Syria, Turkey, and Sharjah. The paper also briefly mentions activities in Bahrain, Israel, Jordan, and Ras al Khaimah.

  18. Middle School Science Bowl | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    apply. Teams consist of up to five students (four students and one alternate) and one coach. The coach may be a teacher, parent, administrator, or Talented and Gifted...

  19. Middle School Coach Information | The Ames Laboratory

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Coach Information February 20, 2016 Registration is closed (event is full) Hints, tips and tricks: Registration opens October 1 - 11:00 AM. Any coach or team data entered into the...

  20. STEM: Volunteer Training Engaging Middle School Students

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    STEM. * Women continue to be underrepresented in STEM at college and workforce level, especially in engineering, computer science, and physical sciences. * STEM is an equity issue. ...

  1. 2014 Brayton Cycle Workshop and Industry Day

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Commercial (Data from forms EIA-861- schedules 4A-D, EIA-861S and EIA-861U) State Number of Customers Average Monthly Consumption (kWh) Average Price (cents/kWh) Average Monthly Bill (Dollar and cents) New England 862,269 5,132 14.70 754.43 Connecticut 155,372 6,915 15.55 1,075.18 Maine 91,541 3,627 12.70 460.77 Massachusetts 398,717 5,450 14.68 799.87 New Hampshire 105,840 3,515 14.34 504.04 Rhode Island 58,346 5,224 14.56 760.66 Vermont 52,453 3,226 14.56 469.78 Middle Atlantic 2,247,455 5,860

  2. Excellent performances of energy harvester using cantilever driving double-clamped 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3} plates and symmetric middle-stops

    SciTech Connect (OSTI)

    Zeng, Zhou; Xu, Qing; Ren, Bo; Lin, Di; Di, Wenning; Luo, Haosu Wang, Dong

    2015-10-26

    We present a high performance nonlinear piezoelectric energy harvester constituted by a cantilever with symmetrically middle-stops and double-clamped piezoelectric plates based on piezoelectric single crystal 0.7Pb(Mg{sub 1/3}Nb{sub 2/3})O{sub 3}-0.3PbTiO{sub 3}. Electrical properties of the device under different excitation frequencies, accelerations, and load resistances are studied systematically. Under a low acceleration of 3 m/s{sup 2} (0.3 g), a peak voltage of 26.2 V and a maximum normalized power of 25.6 mW/g{sup 2} were obtained across a matching impedance of 600 kΩ with favorable bandwidths. The low excitation acceleration and excellent performances indicate that the device can be a promising candidate for energy harvesting in low-power electronics and wireless sensors.

  3. City of Sidney, Nebraska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    Average Rates Residential: 0.1070kWh Commercial: 0.0878kWh Industrial: 0.0555kWh References "EIA Form EIA-861 Final Data File for 2010 - File1a" Retrieved from...

  4. Orange & Rockland Utils Inc | Open Energy Information

    Open Energy Info (EERE)

    kWh Commercial: 0.1230kWh Industrial: 0.0580kWh The following table contains monthly sales and revenue data for Orange & Rockland Utils Inc (New York). Scroll leftright to...

  5. City of Fort Collins, Colorado (Utility Company) | Open Energy...

    Open Energy Info (EERE)

    Average Rates Residential: 0.0926kWh Commercial: 0.0737kWh Industrial: 0.0562kWh The following table contains monthly sales and revenue data for Fort Collins City...

  6. Cumberland Elec Member Corp | Open Energy Information

    Open Energy Info (EERE)

    Schedules Grid-background.png Average Rates Residential: 0.1060kWh Commercial: 0.1120kWh Industrial: 0.0733kWh The following table contains monthly sales and revenue data...

  7. PHEVs Component Requirements and Efficiencies

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Fuel Consumption l100km Electrical Consumption Whkm Conventional Split HEV PHEV 8kWh Split Optimum Engine Power PHEV 12 kWh Series Thermostat Control PHEV 16 kWh Series ...

  8. City of Seward, Alaska (Utility Company) | Open Energy Information

    Open Energy Info (EERE)

    expanding it. Utility Rate Schedules Grid-background.png Average Rates Residential: 0.2030kWh Commercial: 0.2160kWh Industrial: 0.1730kWh References "EIA Form EIA-861...

  9. Table C10. Electricity Consumption and Expenditure Intensities...

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Expenditure Intensities, 1999" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square Foot (kWh)","per...

  10. Energy Information Administration - Commercial Energy Consumption...

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    4A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003 Electricity Consumption Electricity Expenditures per Building (thousand kWh) per Square Foot (kWh)...

  11. Building America FY14 Projects by Technology

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... 40% New All Integrated Design (& WH packages) CA ARBI (DEG) Retrofit on Purchase & Data Mining Community Scale Verification Retrofit SF Integrated Design (& WH packages) All All ...

  12. Building America FY14 Project Matrix - by Research Team

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    40% New All Integrated Design (& WH packages) CA ARBI (DEG) Retrofit on Purchase & Data Mining Community Scale Verification Retrofit SF Integrated Design (& WH packages) All All ...

  13. Latest in Village Scale Clean Energy Technology

    Office of Environmental Management (EM)

    ... * Generally calculated on monthly or annual basis * Total energy savings * Loading on ... Power Wind n Penetratio ous Instantane (kWh) Demand Energy Primary (kWh) Produced ...

  14. EA-384 NRG Power Marketing LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    4 NRG Power Marketing LLC EA-384 NRG Power Marketing LLC Order authorizing NRG Power Marketing to export electric energy to Mexico. EA-384 NRGPML MX.pdf (767.99 KB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-384 NRG Power Marketing LLC EA-378 Cargill Power Markets LLC EA-413 Elan Energy Services, LLC

  15. --No Title--

    U.S. Energy Information Administration (EIA) Indexed Site

    Using Electricity (million |Electricity Energy Intensity | | | (billion kWh) | square feet | (kWhsquare foot) | | |---+---...

  16. Upright Vacuum Sweeps Up the Competition in #EnergyFaceoff Round...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Vacuum: 297 W (297 x 1)1000 .297 kWh per week (weekly consumption) .297 kWhweek x 52 weeks 15.44 kWh (annual energy consumption) 15.44 kWh x 0.11kWh 1.70 per year Hair ...

  17. DOE Challenge Home Case Study: Near Zero Maine Home II, Vassalboro...

    Energy Savers [EERE]

    ... without PV 15,218 kWh, with PV 19,536 kWh; 393 gallons of oil * Annual PV production: projected 4,204 kWh, actual 5,400 kWh DOE CHALLENGE HOME Near Zero Maine Home 2 (Most ...

  18. Training courses on ''alternative energy technologies'' for middle level workers

    SciTech Connect (OSTI)

    Jagadeesh, A.

    1983-12-01

    The Government of India has given priority to energy in the Sixth Plan. The Department of Non-Conventional Sources of Energy under Government of India and State Units connected with Alternative Energy Sources are taking all possible steps to promote the cause and use of Alternative Energy Sources like Solar, Wind, Biogas etc.. Besides several private Engineering concerns like Central Electronics Ltd., Shahibabad; Solaren Technologz Pvt. Ltd., Bombay; Avanti Fastners Ltd., New Delhi; Jyoti Ltd., Baroda; Voltas Ltd., Bombay; Institute of Engineering and Rural Technology, Allahabad; ORP Ltd., Gazipur etc. are either manufacturing or marketing alternative energy sources products like Solar Cookers, Solar heating systems, Windmills, Windturbines etc.. Kahdi and Village Industries Commission is already involved in a big way in installing Biogas Plants throughout the Country. As the use of Alternative Energy Sources is on the increase, the needfor qualified technical personnel to undertake maintenance and repairs is necessary. There are hundreds of Polytechnic offering Diploma Courses in traditional disciplines like Electrical, Mechanical, Civil etc.. Also Industrial Training Institutes (ITIs) offer Certificate Courses in branches like Fitter, Welder, Draftsman etc..

  19. NJ Regional Middle School Science Bowl | Princeton Plasma Physics...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    competition in Washington, D.C. The Science Bowl is a double elimination contest with oral question and answer rounds in the fields of chemistry, biology, physics, astronomy and...

  20. DOE New Jersey Regional Middle School Science Bowl | Princeton...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    at PPPL, adult visitors must show a government-issued photo I.D. - for example, a passport or a driver's license. Non-U.S. citizens must show a government-issued photo I.D.,...

  1. Heath Middle School Science Students Study Environmental Issue...

    Broader source: Energy.gov (indexed) [DOE]

    ... Students briefly visited a facility that Babcock & Wilcox Conversion Services operates to convert DUF6 into more stable material. They returned to visit a laboratory that the U.S. ...

  2. Photo of the Week: Students from Roosevelt Middle School win...

    Broader source: Energy.gov (indexed) [DOE]

    disciplines, including biology, chemistry, earth science, physics, astronomy and math. ... disciplines, including biology, chemistry, earth science, physics, astronomy and math. ...

  3. Ames Laboratory Middle School Science Bowl Feb. 20 | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (Adel), Ames, Boone, Clarion-Goldfield, Dallas Center-Grimes, Eleanor Roosevelt (Dubuque), Glenwood, Le Mars, Lenox, Madrid, Melcher-Dallas, New Hampton, North Union (Swea City), ...

  4. 2016 Middle School Science Bowl Participating Teams | The Ames...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Adel-DeSoto-Minburn (Adel) Ames - Team 1 Ames - Team 2 Boone Clarion-Goldfield Eleanor Roosevelt (Dubuque) Glenwood Le Mars Lenox Lynnville-Sully Madrid Melcher-Dallas New ...

  5. Stratton Middle and High School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  6. Thomas Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  7. Fission track evidence for widespread early to Middle miocene...

    Open Energy Info (EERE)

    major extension over broad areas of the northern Basin and Range. Authors Dumitru, T.; Miller, E.; Savage, C.; Gans, P.; Brown and R. Published Geological Society of America,...

  8. Thomas Harrison Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  9. Williams Elementary and Middle School Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  10. Memorial Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  11. Wellington Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  12. North Wilkes Middle and High School Wind Project | Open Energy...

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  13. Henley Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  14. Jerome Middle School Wind Project | Open Energy Information

    Open Energy Info (EERE)

    - Yankton School District Wind Project

  15. Geologic Map of the Middle East Rift Geothermal Subzone, Kilauea...

    Open Energy Info (EERE)

    Kilauea Volcano, HawaiiInfo GraphicMapChart Authors Frank A. Trusdell and Richard B. Moore Published U.S. GEOLOGICAL SURVEY, 2006 DOI Not Provided Check for DOI availability:...

  16. Fourteen Teams to Compete in Virginia Middle School Science Bowl...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Bowl competition at: http:science.energy.govwdtsnsb The Department of Energy's Office ... For more information on DOE's Office of Science, visit: www.science.energy.gov. The ...

  17. Middle School Regional Science Bowl Competition | Argonne National...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Additional Information For more information about the Science Bowl and the national competition, visit National Science Bowl. Contact education@anl.gov Science Bowl Competition ...

  18. Aspen Elementary, Los Alamos Middle School students take top...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    They won for their project "Yavanchlan: Creating Optimal Strategies for Artificial Intelligence to Play Against Humans." They studied techniques to enable efficient computer play ...

  19. Evaluating Radiative Closure in the Middle-to-Upper Troposhere

    SciTech Connect (OSTI)

    Tobin, David C; Turner, David D; Knuteson, Robert O

    2013-01-02

    This project had two general objectives. The first is the characterization and improvement of the radiative transfer parameterization in strongly absorbing water vapor bands, as these strongly absorbing bands dictate the clear sky radiative heating rate. The second is the characterization and improvement of the radiative transfer in cirrus clouds, with emphasis on ensuring that the parameterization of the radiative transfer is consistent and accurate across the spectrum. Both of these objectives are important for understanding the radiative processes in the mid-to-upper troposphere. The research on this project primarily involved analysis of data from the First and Second Radiative Heating in Underexplored Bands Campaigns, RHUBC-I and II. This included a climate model sensitivity study using results from RHUBC-I. The RHUBC experiments are ARM-funded activities that directly address the objectives of this research project. A secondary effort was also conducted that investigated the trends in the long-term (~14 year) dataset collected by the Atmospheric Emitted Radiance Interferometer (AERI) at the ARM Southern Great Plains site. This work, which was primarily done by a post-doc at the University of Wisconsin – Madison under Dr. Turner’s direction, uses the only NIST-traceable instrument at the ARM site that has a well-documented calibration and uncertainty performance to investigate long-term trends in the downwelling longwave radiance above this site.

  20. Past Middle School National Science Bowl Winners (2002 - 2015...

    Office of Science (SC) Website

    First Place Team: Hopkins Junior High School, Fremont, California Team Members: Raghu ... First Place Team: Challenger School, Newark, California Team Members: Nikhil Desai, Rahul ...

  1. Calling Science Stars in Middle and High Schools | Department...

    Broader source: Energy.gov (indexed) [DOE]

    2010 Science Bowl national champions: North Carolina School of Science and Mathematics from Durham, NC | Department of Energy Photo | Public Domain | 2010 Science Bowl national...

  2. Basalt Middle School Teacher Recognized for Renewable Energy Efforts - News

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Baruch Plan Presented Baruch Plan Presented New York, NY Bernard Baruch presents the American plan for international control of atomic research to the United Nations. The Soviet Union opposes the plan, rendering it useless

    Barwood CNG Cab Fleet Study Final Results May 1999 * NREL/ TP-540-26035 Peg Whalen, Ken Kelly, and Mardi John National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research

  3. West Kentucky Regional Middle School Science Bowl | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    West Kentucky Community & Technical College 4810 Alben Barkley Dr Paducah County, KY 42001 Contact Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov Phone: ...

  4. Global warming and the regions in the Middle East

    SciTech Connect (OSTI)

    Alvi, S.H.; Elagib, N.

    1996-12-31

    The announcement of NASA scientist James Hansen made at a United States Senate`s hearing in June 1988 about the onset of global warming ignited a whirlwind of public concern in United States and elsewhere in the world. Although the temperature had shown only a slight shift, its warming has the potential of causing environmental catastrophe. According to atmosphere scientists, the effect of higher temperatures will change rainfall patterns--some areas getting drier, some much wetter. The phenomenon of warming in the Arabian Gulf region was first reported by Alvi for Bahrain and then for Oman. In the recent investigations, the authors have found a similar warming in other regions of the Arabian Gulf and in several regions of Sudan in Africa. The paper will investigate the observed data on temperature and rainfall of Seeb in Oman, Bahrain, International Airport in Kuwait as index stations for the Arabian Gulf and Port Sudan, Khartoum and Malakal in the African Continent of Sudan. Based on various statistical methods, the study will highlight a drying of the regions from the striking increase in temperature and decline of rainfall amount. Places of such environmental behavior are regarded as desertifying regions. Following Hulme and Kelly, desertification is taken to mean land degradation in dryland regions, or the permanent decline in the potential of the land to support biological activity, and hence human welfare. The paper will also, therefore, include the aspect of desertification for the regions under consideration.

  5. Teachers and JLab scientists help middle-school science instructors...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    its fourth annual P.E.S.T. (Physics Enrichment for Science Teachers) program, July 7 - ... Jefferson Lab's P.E.S.T. (Physics Enrichment for Science Teachers) program made this ...

  6. Two Middle Pleistocene Glacial-Interglacial Cycles from the Valle...

    Open Energy Info (EERE)

    John W. Geissman, Giday WoldeGabriel, Craig D. Allen, Catrina M. Johnson and Susan J. Smith Conference New Mexico Geological Society 58th Annual Field Conference;...

  7. Calloway Middle School Honored at DOE National Science Bowl,...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    ... Calloway County High School's Mia Beth Morehead, coach, Landon Fike, Cody Bergman, Sam Morehead, Josh Betts, and Hudson Elliott from Murray, Kentucky, pose for a team photo during ...

  8. Middle School Regional Science Bowl Coach's Resources | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Science Bowl Coach's Resources Find tools on how to prep and select your team. The Science Bowl is a challenging fast paced competition for students who are interested in learning more about STEM or excel in the classroom. For coaches, the prospect of preparing and selecting a successful team may be overwhelming. Listed below are tools and information you can use to help with the process. Coach's Resources

  9. Clean Cities: Middle-West Tennessee Clean Fuels coalition

    Alternative Fuels and Advanced Vehicles Data Center [Office of Energy Efficiency and Renewable Energy (EERE)]

    Maury, McNairy, Montgomery, Moore, Obion, Perry, Robertson, Rutherford, Shelby, Smith, Stewart, Sumner, Tipton, Trousdale, Wayne, Weakley, Williamson, Wilson Designated:...

  10. Evaluating Radiative Closure in the Middle-to-Upper Troposhere...

    Office of Scientific and Technical Information (OSTI)

    and improvement of the radiative transfer parameterization in strongly absorbing water vapor bands, as these strongly absorbing bands dictate the clear sky radiative heating rate. ...

  11. Texas Middle School Wins National Science Competition - News...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Raymond L. Orbach, director of DOE's Office of Science. "It is exciting to see these ... Orbach said. First, second and third place winners of both the solar car and the ...

  12. Readout of Secretary Chu's Middle East trip: Wednesday, February...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    He was hosted by Dr. Sultan Al Jaber, CEO of Masdar, and senior staff, who led a series of ... to approximately 700 Masdar graduate students, faculty and UAE government officials, ...

  13. Delivering Energy Efficiency to Middle Income Single Family Households

    SciTech Connect (OSTI)

    none,

    2011-12-01

    Provides state and local policymakers with information on successful approaches to the design and implementation of residential efficiency programs for households ineligible for low-income programs.

  14. Category:Wind for Schools Middle School Curricula | Open Energy...

    Open Energy Info (EERE)

    Power Project lesson plan.pdf Experiencing PBL The W... 55 KB Getting-to-know-your-turbine.pdf Getting-to-know-your-t... 1.25 MB How does a windmill work.docx How does a...

  15. NNSA Selects Washington Middle School to Participate in K-12...

    National Nuclear Security Administration (NNSA)

    the expansion of NNSA's Laboratories K-12 Outreach Program. ... with K-12 students in communities throughout the U.S.," ... on various sources of energy, their uses, and conservation. ...

  16. Nysmith School Wins Virginia Middle School Science Bowl | Jefferson Lab

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NEPA Compliance Officer Rationale Office of Acquisition and Project Management APM 15-001 Application of DOE NEPA Procedure: Categorical Exclusions B3.1, Site characterization and environmental monitoring (10 CFR Part 1021, Subpart D, Appendix B). Rationale: The proposed action in the attached checklist (APM 15-001, Nye County Preemptive Review and Community-Based Groundwater Sampling Program) describes development and implementation of a groundwater monitoring program involving Nye County's

  17. Middle School | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    of science and math. Each team is composed of four students, one alternate student, and a coach. Regional and national events encourage student involvement in math and science ...

  18. Middle School Regional Science Bowl Competition | Argonne National

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Laboratory Additional Information For more information about the Science Bowl and the national competition, visit National Science Bowl. Contact education@anl.gov Science Bowl Competition Science Bowl, a competition like no other! Have you ever dreamed of winning Jeopardy and hearing the crowd erupt with excitement? The Department of Energy's National Science Bowl challenges young students who are passionate about science and engineering to show off their talents in the academic competition.

  19. Widespread effects of middle Mississippian deformation in the...

    National Nuclear Security Administration (NNSA)

    ... Footnotes trexler@mines.unr.edu GSA Data Repository item 2003139, detailed regional discussion of stratigraphy in Nevada, is available on the Web at http:www.geosociety.org...

  20. Middle Valley, Tennessee: Energy Resources | Open Energy Information

    Open Energy Info (EERE)

    Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 35.1959036, -85.1846785 Show Map Loading map... "minzoom":false,"mappingservice":"goog...

  1. Middle School Regional Science Bowl Coach's Resources | Argonne...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Science Bowl Coach's Resources Find tools on how to prep and select your team. The Science Bowl is a challenging fast paced competition for students who are interested in learning...

  2. Middle School Students Go Green | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    field, green roof, green building products, daylight harvesting system, solar panels and rainwater catchment system. Through the Kentucky Department for Energy Development ...

  3. Mines Welcomes Middle School Students | Critical Materials Institute

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Science and Technology. The students spent the day at Mines to learn about Earth, energy, the environment, critical materials and mining. The students enjoyed a chemistry show ...

  4. EA-294-B TexMex Energy, LLC | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    B TexMex Energy, LLC EA-294-B TexMex Energy, LLC Order authorizing TexMex to export electric energy to Mexico. EA-294-B TexMex MX.pdf (793.38 KB) More Documents & Publications Application to Export Electric Energy OE Docket No. EA-294-B TexMex Energy LLC EA-294-A TexMex Energy, LLC EA-413 Elan Energy Services, LLC

  5. Renaissance in Flow-Cell Technologies: Recent Advancements and Future Opportunities

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Renaissance in Flow-Cell Technologies Recent Advancements and Future Opportunities Mike Perry Project Leader, Electrochemical Systems United Technologies Research Center ec c es UTC Proprietary Grand Challenges in Electrical Energy Storage (EES) SCALE & COST: Want to go from Wh to kWh to MWh...  El tri Vehicl  Grid-Scale $100/kWh GRIDS Program Target  Portable Devices > $500/kWh  Electric Vehicles $250/kWh BEEST Program Target Wh UTC Proprietary Batteries are currently < 1%

  6. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti-...

  7. Released: September, 2008

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption (kWh) by End Use for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)" ,"Total ","Space Heat- ing","Cool- ing","Venti- lation","Water...

  8. Development of Large Format Lithium Ion Cells with Higher Energy...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL Development of Large Format Lithium Ion Cells with Higher Energy Density Exceeding 500WhL 2012 DOE ...

  9. Building America Case Study: Community-Scale Energy Modeling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PERFORMANCE DATA Annual Energy Consumption: Average: 15,459 kWh Median: 15,252 kWh ... To that end, the U.S. Department of Energy Building America team IBACOS analyzed ...

  10. NV Energy (Southern Nevada) - SureBet Business Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    25 Window Film: 0.50sq. ft. Variable Speed Drives: 45HP Hotel Room Occupancy Sensor: 55unit Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak New...

  11. NV Energy (Northern Nevada) - SureBet Business Energy Efficiency...

    Broader source: Energy.gov (indexed) [DOE]

    25 Window Film: 0.50sq. ft. Variable Speed Drives: 45HP Hotel Room Occupancy Sensor: 55unit Commercial Custom Retrofit: 0.10kWh on peak; 0.05kWh off peak New...

  12. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Energy Fund Prior to July 2007, the Delmarva fund collected 0.000178 per kWh (0.178 millskWh) to fund renewable energy and energy efficiency incentive programs. The...

  13. Building America Top Innovations Hall of Fame Profile … High...

    Energy Savers [EERE]

    ... Each home's 2.2-kW photovoltaic system produced about 3,330 kWh during the 12 months studied, about half the average consumption of each household (7,007 kWh). Premier Homes chose ...

  14. TVA - Green Power Providers | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Years 11-20: retail electric rate 2014 Premium Rates: Solar: 0.04kWh Wind, Biomass, and Hydro: 0.03kWh Summary Note: Enrollment for 2015 was conducted from January 26th to...

  15. Delmarva- Green Energy Fund

    Office of Energy Efficiency and Renewable Energy (EERE)

    Prior to July 2007, the Delmarva fund collected $0.000178 per kWh (0.178 mills/kWh) to fund renewable energy and energy efficiency incentive programs. The collections were increased to $0.000356...

  16. --No Title--

    Gasoline and Diesel Fuel Update (EIA)

    . Electricity Consumption (kWh) by End Use for Non-Mall Buildings, 2003 Total Electricity Consumption (billion kWh) Total Space Heat- ing Cool- ing Venti- lation Water Heat- ing...

  17. Pacific Power - Energy FinAnswer | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    Name Utility Administrator Pacific Power Website http:www.pacificpower.netbusseepi.html State California Program Type Rebate Program Rebate Amount 0.12kWh-0.18kWh...

  18. South Carolina Municipalities- Green Power Purchasing

    Broader source: Energy.gov [DOE]

    Participating residential customers are able to purchase this green power for $3 per 100 kWh block. Commercial participants are able to purchase the power for $6 per 200 kWh block.

  19. Energy Incentive Programs, New Hampshire | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    What public-purpose-funded energy efficiency programs are available in my state? In 2002, the New Hampshire Public Utilities Commission allocated 1.8 mills per kWh (0.0018kWh) of ...

  20. Advancing PEVs and the Future of PEV R&D and Deployment

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    PHEVs and EREVs Future Next Generation Li-ion or Li-metal Chemistry with 3x energy density Battery Cost (kWh) Energy Density (WhL) 2007 2008 2009 2010 2011 2012 2014 2013...

  1. Nyseg non-residential adjustment fees? | OpenEI Community

    Open Energy Info (EERE)

    MFC on Nyseg's site and each is less than 0.005kWh. That being said, the posted value matches my expectations more for high New York electricity rates (0.16kWh). Am I missing...

  2. SOUTHWESTERN POWER ADMINISTRATION ANNUAL REPORT

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Estimated annual energy* (millions kWh) actual net energy (millions kWh) Beaver 1965 112,000 172 161 Blakely Mountain 1956 75,000 169 119 Broken Bow 1970 100,000 129 186 Bull ...

  3. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    538,800 35 Average retail price (centskWh) 33.43 1 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  4. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    684,481 33 Average retail price (centskWh) 8.68 39 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  5. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    20,316,681 2 Average retail price (centskWh) 8.09 46 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  6. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    28,310 49 Average retail price (centskWh) 15.41 5 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  7. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,576,943 20 Average retail price (centskWh) 9.17 33 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  8. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    34,883,315 1 Average retail price (centskWh) 8.94 37 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  9. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,255,974 22 Average retail price (centskWh) 8.18 43 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  10. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    3,151,592 10 Average retail price (centskWh) 12.65 11 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  11. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    33,870 48 Average retail price (centskWh) 12.11 12 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  12. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    696,6330 32 Average retail price (centskWh) 7.65 50 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  13. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,763,652 19 Average retail price (centskWh) 9.60 27 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  14. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,364,746 13 Average retail price (centskWh) 8.15 44 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  15. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    1,181,447 24 Average retail price (centskWh) 9.73 23 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  16. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    138,573,884 Average retail price (centskWh) 10.44 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  17. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    1,227,421 23 Average retail price (centskWh) 8.35 42 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  18. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    253,513 39 Average retail price (centskWh) 17.46 2 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  19. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    201,071 40 Average retail price (centskWh) 10.18 19 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  20. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    11,180,448 3 Average retail price (centskWh) 15.15 8 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  1. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    60,865 47 Average retail price (centskWh) 10.16 20 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  2. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    1,388,386 21 Average retail price (centskWh) 7.76 49 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  3. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    844,760 29 Average retail price (centskWh) 12.10 13 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  4. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    2,463,339 11 Average retail price (centskWh) 9.40 29 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  5. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    944,590 27 Average retail price (centskWh) 7.13 51 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  6. EIA - State Electricity Profiles

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1,123,692 25 Average retail price (centskWh) 9.52 28 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  7. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    use 7,958,621 4 Average retail price (centskWh) 9.06 35 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  8. EIA - State Electricity Profiles

    U.S. Energy Information Administration (EIA) Indexed Site

    89 51 Average retail price (centskWh) 9.05 36 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  9. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    4,565,846 8 Average retail price (centskWh) 10.03 22 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  10. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    2,117,420 17 Average retail price (centskWh) 10.57 17 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  11. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    83,636 46 Average retail price (centskWh) 10.06 21 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  12. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    391,720 37 Average retail price (centskWh) 8.15 45 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  13. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    5,462 50 Average retail price (centskWh) 14.57 9 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  14. EIA - State Electricity Profiles

    Gasoline and Diesel Fuel Update (EIA)

    5,375,185 5 Average retail price (centskWh) 10.77 16 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  15. EIA - State Electricity Profiles

    Annual Energy Outlook [U.S. Energy Information Administration (EIA)]

    3,439,427 9 Average retail price (centskWh) 9.36 30 kWh Kilowatthours. Sources: U.S. Energy Information Administration, Form EIA-860, "Annual Electric Generator Report." ...

  16. U.S. Virgin Islands Feed-In Tariff

    Broader source: Energy.gov [DOE]

    In May of 2014, AB 7586 created a feed-in-tariff that would allow owners of solar photovotaic systems ranging between 10 kWh and 500 kWh to sell their energy for approximately 26 cents per kWh. Two...

  17. New Mexico Regions | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Mexico Regions National Science Bowl (NSB) NSB Home About High School Middle School Middle School Students Middle School Coaches Middle School Regionals Middle School Rules,...

  18. Middle School Academic Question Resources | U.S. DOE Office of...

    Office of Science (SC) Website

    Science Earth Science: Heath Earth Science Spaulding and Namowitz, copyright 1994 D.K. Guide to the Human Body D.K. PublishingISBN 07894-7388-7 Last modified: 352016 8:13:24 PM

  19. Florida Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Beginning 5 weeks prior to the event and space permitting, second registered teams will be approved to participate. Competition Location Florida Solar Energy Center 1679 Clearlake ...

  20. Middle School Academic Competition - Double Elimination | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Academic Competition - Double Elimination National Science Bowl® (NSB) NSB Home About Regional Science Bowl Coordinators Alumni Historical Information - National Finals National Science Bowl Logos Regional Competitions National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us 2013

  1. Middle School Academic Competition - Double Elimination | U.S. DOE Office

    Office of Science (SC) Website

    of Science (SC) Academic Competition - Double Elimination National Science Bowl® (NSB) NSB Home About Regional Science Bowl Coordinators Alumni Historical Information - National Finals National Science Bowl Logos Regional Competitions National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us 2014

  2. Middle School Academic Competition - Round Robin | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Academic Competition - Round Robin National Science Bowl® (NSB) NSB Home About Regional Science Bowl Coordinators Alumni Historical Information - National Finals National Science Bowl Logos Regional Competitions National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us 2013 Competition

  3. Middle School Academic Competition - Round Robin | U.S. DOE Office of

    Office of Science (SC) Website

    Science (SC) Academic Competition - Round Robin National Science Bowl® (NSB) NSB Home About Regional Science Bowl Coordinators Alumni Historical Information - National Finals National Science Bowl Logos Regional Competitions National Finals Volunteers Key Dates Frequently Asked Questions News Media Contact Us WDTS Home Contact Information National Science Bowl® U.S. Department of Energy SC-27/ Forrestal Building 1000 Independence Ave., SW Washington, DC 20585 E: Email Us 2014 Competition

  4. Cadmium, type 2 diabetes, and kidney damage in a cohort of middle-aged women

    SciTech Connect (OSTI)

    Barregard, Lars; Bergström, Göran; Fagerberg, Björn

    2014-11-15

    Background: It has been proposed that diabetic patients are more sensitive to the nephrotoxicity of cadmium (Cd) compared to non-diabetics, but few studies have examined this in humans, and results are inconsistent. Aim: To test the hypothesis that women with type 2 diabetes mellitus (DM) or impaired glucose tolerance (IGT) have higher risk of kidney damage from cadmium compared to women with normal glucose tolerance (NGT). Methods: All 64-year-old women in Gothenburg, Sweden, were invited to a screening examination including repeated oral glucose tolerance tests. Random samples of women with DM, IGT, and NGT were recruited for further clinical examinations. Serum creatinine was measured and used to calculate estimated glomerular filtration rate (eGFR). Albumin (Alb) and retinol-binding protein (RBP) were analyzed in a 12 h urine sample. Cadmium in blood (B-Cd) and urine (U-Cd) was determined using inductively coupled plasma mass spectrometry. Associations between markers of kidney function (eGFR, Alb, and RBP) and quartiles of B-Cd and U-Cd were evaluated in models, including also blood pressure and smoking habits. Results: The mean B-Cd (n=590) was 0.53 µg/L (median 0.34 µg/L). In multivariable models, a significant interaction was seen between high B-Cd (upper quartile, >0.56 µg/L) and DM (point estimate +0.40 mg Alb/12 h, P=0.04). In stratified analyzes, the effect of high B-Cd on Alb excretion was significant in women with DM (53% higher Alb/12 h, P=0.03), but not in women with IGT or NGT. Models with urinary albumin adjusted for creatinine showed similar results. In women with DM, the multivariable odds ratio (OR) for microalbuminuria (>15 mg/12 h) was increased in the highest quartile of B-Cd vs. B-Cd quartiles 1–3 in women with DM (OR 4.2, 95% confidence interval 1.1–12). No such effect was found in women with IGT or NGT. There were no associations between B-Cd and eGFR or excretion of RBP, and no differences between women with DM, IGT, or NGT regarding effect of B-Cd on eGFR or RBP. Conclusion: The present study provides support for the hypothesis that women with DM have higher risk of renal glomerular damage from cadmium exposure compared to women without DM. - Highlights: • Cadmium in blood, kidney function, and glucose tolerance was examined in 590 women. • Blood cadmium was associated with albumin excretion in women with type 2 diabetes. • No such associations with cadmium were found in women without diabetes. • Women with type 2 diabetes have increased sensitivity to kidney damage from cadmium.

  5. Development and testing of an aerosol-stratus cloud parameterization scheme for middle and high latitudes

    SciTech Connect (OSTI)

    Olsson, P.Q.; Meyers, M.P.; Kreidenweis, S.; Cotton, W.R.

    1996-04-01

    The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a bulk-microphysics/aerosol model using data from Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) sites and large-eddy simulation (LES) explicit bin-resolving aerosol/microphysics models. The primary objectives of this work are twofold. First, we need the prediction of number concentrations of activated aerosol which are transferred to the droplet spectrum, so that the aerosol population directly affects the cloud formation and microphysics. Second, we plan to couple the aerosol model to the gas and aqueous-chemistry module that will drive the aerosol formation and growth. We begin by exploring the feasibility of performing cloud-resolving simulations of Arctic stratus clouds over the North Slope CART site. These simulations using Colorado State University`s regional atmospheric modeling system (RAMS) will be useful in designing the structure of the cloud-resolving model and in interpreting data acquired at the North Slope site.

  6. Calling Science Stars in Middle and High Schools | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    for Clean Diesel Exhaust | Department of Energy Presentation given at DEER 2006, August 20-24, 2006, Detroit, Michigan. Sponsored by the U.S. DOE's EERE FreedomCar and Fuel Partnership and 21st Century Truck Programs. 2006_deer_huai.pdf (791.33 KB) More Documents & Publications Measurement of diesel solid nanoparticle emissions using a catalytic stripper for comparison with Europe's PMP protocol Evaluation of the European PMP Methodologies Using Chassis Dynamometer and On-road Testing of

  7. The Physics of the Middle: Keji Lai | U.S. DOE Office of Science...

    Office of Science (SC) Website

    ... Lai earned his undergraduate degree in electrical engineering from Tsinghua University, China; he received a doctoral degree in the same field at Princeton University. He crossed ...

  8. Maryland team wins Virginia/Maryland Regional Middle School Science Bowl;

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Maryland Natural Gas Gross Withdrawals (Million Cubic Feet) Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 1991 0 0 5 0 0 5 0 0 3 0 0 16 1992 4 4 3 2 2 2 2 3 3 2 2 2 1993 2 2 2 2 1 2 3 3 3 3 3 2 1994 2 2 2 2 2 2 2 3 3 3 2 2 1995 2 2 2 2 2 2 2 2 2 2 2 2 1996 2 15 21 9 11 11 11 6 10 22 6 11 1997 2 13 18 8 10 10 9 5 9 20 5 9 1998 5 4 3 4 5 7 6 6 5 6 5 6 1999 2 1 2 2 1 2 2 2 2 1 1 1 2000 3 2 3 4 3 3 3 3 3 2 2 2 2001 3 2 3 3 3 3 3 3 3

  9. Middle School Electric Car Competition | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Final Results Team Time (s) Rank 1. Edison Computech 6.05 1 2. Panhandle 6.20 2 3. Robert H. Sperreng 6.31 3 4. Bret Harte 6.46 4 5. Will James 6.53 5 6. BASIS Scottsdale 6.78 6 ...

  10. Volunteers Needed to Help With High- and Middle-School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... how a match runs, and the duties of volunteers: - http:science.energy.govwdtsnsbaboutcoordinatorscoordinator-resourcesVolunteer%20Training%20Video - View the 2015 ...

  11. The Manning School Triumphs in Middle School Science Bowl - News Releases |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    The Manhattan Project The Manhattan Project A brief History of the Manhattan Project: Terrence R. Fehner and F.G. Gosling, The Manhattan Project, 2012, 10 p. The Manhattan Project.pdf (60.9 KB) More Documents & Publications Fehner and Gosling, Origins of the Nevada Test Site Fehner and Gosling, Atmospheric Nuclear Weapons Testing, 1951-1963. Battlefield of the Cold War: The Nevada Test Site, Volume I Gosling, The Manhattan Project: Making the Atomic Bomb NREL

    The Manning School

  12. Two-stage fixed-bed gasifier with selectable middle gas off-take point

    DOE Patents [OSTI]

    Strickland, Larry D.; Bissett, Larry A.

    1992-01-01

    A two-stage fixed bed coal gasifier wherein an annular region is in registry with a gasification zone underlying a devolatilization zone for extracting a side stream of high temperature substantially tar-free gas from the gasifier. A vertically displaceable skirt means is positioned within the gasifier to define the lower portion of the annular region so that vertical displacement of the skirt means positions the inlet into the annular region in a selected location within or in close proximity to the gasification zone for providing a positive control over the composition of the side stream gas.

  13. The sensitivity of the terrestrial biosphere to climatic change: A simulation of the middle Holocene

    SciTech Connect (OSTI)

    Foley, J.A.

    1994-12-01

    A process-based ecosystem model, DEMETER, is used to simulate the sensitivity of the terrestrial biosphere to changes in climate. In this study, DEMETER is applied to the two following climatic regimes: (1) the modern observed climate and (2) a simulated mid-Holocene climate (6000 years before present). The mid-Holocene climate is simulated using the GENESIS global climate model, where shifts in the Earth`s orbital parameters result in warmer northern continents and enhanced monsoons in Asia, North Africa, and North America. DEMETER simulates large differences between modern and mid-Holocene vegetation cover: (1) mid-Holocene boreal forests extend farther poleward than present in much of Europe, Asia, and North America, and (2) mid-Holocene North African grasslands extend substantially farther north than present. The simulated patterns of mid-Holocene vegetation are consistent with many features of the paleobotanical record. Simulated mid-Holocene global net primary productivity is approximately 3% larger than present, largely due to the increase of boreal forest and tropical grasslands relative to tundra and desert. Global vegetation carbon is higher at 6 kyr B.P. compared to present by roughly the same amount (4%). Mid-Holocene global litter carbon is larger than present by 10%, while global soil carbon is approximately 1% less. Despite the regional changes in productivity and carbon storage the simulated total carbon storage potential of the terrestrial biosphere (not including changes in peat) does not change significantly between the two simulations. 53 refs., 12 figs., 4 tabs.

  14. 50 middle-schoolers are wowed by science at PPPL's My Brother...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    March 4. Gallery: Ankita Jariwala uses a Tesla coil to light up a blue fluorescent bulb. ... of Communications) Ankita Jariwala uses a Tesla coil to light up a blue fluorescent bulb. ...

  15. H2 Educate! Hydrogen Education for Middle Schools | Department of Energy

    Broader source: Energy.gov (indexed) [DOE]

    edp_03_spruill.pdf (2.95 MB) More Documents & Publications Education and Outreach Fact Sheet Deactivation Mechanisms of Base Metal/Zeolite Urea Selective Catalytic Reduction Materials Education

  16. The Greening of the Middle Kingdom: The Story of Energy Efficiency in China

    SciTech Connect (OSTI)

    Levine, Mark D.; Zhou, Nan; Price, Lynn

    2009-05-01

    The dominant image of China's energy system is of billowing smokestacks from the combustion of coal. More heavily dependent on coal than any other major country, China uses it for about 70 percent of its energy (NBS, 2008). Furthermore, until recently, China had very few environmental controls on emissions from coal combustion; recent efforts to control sulfur dioxide (SO{sub 2}) emissions appear to be meeting with some success (Economy, 2007, 2009). Figure 1 shows the dominant use of coal in China's energy system from 1950 to 1980 (NBS, various years). However, this is just one side of China's energy story. Figure 2 illustrates the second part, and what may be the most important part of the story - China's energy system since 1980, shortly after Deng Xiaoping assumed full leadership. This figure compares the trends in energy consumption and gross domestic product (GDP) by indexing both values to 100 in 1980. The upper line shows what energy consumption in China would have been if it had grown at the same rate as GDP, since energy consumption usually increases in lockstep with GDP in an industrializing, developing country, at least until it reaches a high economic level. The lower line in Figure 2 shows China's actual energy consumption, also indexed to 1980. The striking difference between the lines shows that GDP in China grew much faster than energy demand from 1980 to 2002. As a result, by 2002 energy and energy-related carbon dioxide (CO{sub 2}) emissions were more than 40% percent of what they would have been if energy and GDP had grown in tandem. In the next chapter of China's energy history, from 2002 to 2005, the increase in energy demand outstripped a very rapidly growing economy, and because of the large size of the Chinese economy, the increase had substantial impacts. The construction of power plants increased to 100 gigawatts per year; over the three-year period newly constructed plants had a capacity of more than 30 percent of total electricity-generation capacity in the United States. At the same time, energy-related CO{sub 2} emissions in China increased dramatically. In the latest stage, another abrupt change, this time for the better in terms of energy efficiency, began late in 2005. As senior officials in the government turned their attention to the problem of growing energy demand, the government set a mandatory goal for 2010 of a 20 percent reduction in energy intensity (defined as energy use per unit of GDP) from 2005 levels. To meet this goal, China undertook significant legislative, regulatory, and organizational reforms at the national, provincial, and municipal levels to ensure that measures to reduce energy intensity would be implemented in all sectors and activities in China. At the time of this writing, it appears that China is on its way to meeting the 20 percent goal, thus reducing CO{sub 2} emissions by 1.5 billion tones, as compared with consumption at 2005 energy-intensity levels. In this paper, we describe and assess these three significant periods in China's energy story and provide a context by briefly reviewing the three decades prior to 1980.

  17. Volunteers Needed to Help With High- and Middle-School Science...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    "These events champion an interest in science, math and technology," says Jan Tyler, ... STEM (science, technology, engineering and math) resources outside of the classroom. ...

  18. D.C. Middle and High School Students Get a Chance to Experience...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    country to compete in a fast-paced question and answer format being tested on a range of science disciplines including biology, chemistry, Earth science, physics, energy and math. ...

  19. Petrology of lower and middle Eocene carbonate rocks, Floridan aquifer, central Florida

    SciTech Connect (OSTI)

    Thayer, P.A.; Miller, J.A.

    1984-09-01

    Study of cores from a US Geological Survey test well near Polk City, Florida, indicates that the Avon Park-Lake City (Claibornian) and Oldsmar (Sabinian) Limestones, which comprise most of the Floridan aquifer in central Florida, can be divided into six microfacies: foraminiferal mudstone, foraminiferal wackestone-packstone, foraminiferal grainstone, nodular anhydrite, laminated dolomicrite, and replacement dolomite. Dolomite containing variable amounts of nodular anhydrite forms more than 90% of the Avon Park-Lake city interval, whereas thte Oldsmar is chiefly limestone. Several episodes of dolomite formation are recognized. Laminated dolomicrite formed syngenetically in a supratidal-sabhka environment. Crystalline dolomite with nodular anhydrite formed early by replacement of limestone through reflux of dense, magnesium-rich brines. Replacement dolomite not associated with evaporites and containing limpid crystals probably formed later by a mixed-water process in the subsurface environment. Late diagenetic processes affecting crystalline dolomites include hydration of anhydrite to gypsum, partial dissolution of gypsum, minor alteration of gypsum to calcite, and dissolution of calcian dolomite cores in stoichiometric crystals. Crystalline dolomite and grainstone are the only rock types that have high enough porosities and permeabilities to provide significant yields of water. Medium and finely crystalline dolomites show best values of porosity and permeability because they have high percentages of intercrystal and moldic pores that are well connected. Filling of pores by anhydrite or gypsum can significantly reduce porosity and permeability.

  20. Energy Secretary Steven Chu to Travel to the Middle East Next...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    He will also visit the Qatar Science and Technology Park and Education City, a project of the Qatar Foundation that houses educational and research facilities for school age to ...

  1. A View from the Middle for Chemical Reactions | U.S. DOE Office...

    Office of Science (SC) Website

    Using a unique experimental approach, researchers teased apart the intermediate chemical pathways for a reaction with four atoms, fluorine and water, F + H2O HF + OH, and ...

  2. Anatomy Of A Middle Miocene Valles-Type Caldera Cluster- Geology...

    Open Energy Info (EERE)

    constructed three large stratovolcanoes, and their eruptive centers migrated from SW to NE. Stocks of pyroxene-bearing quartz monzodiorite to porphyritic granophyre intruded...

  3. 2010 DOE National Science Bowl® Photos - Gale Range Middle School...

    Office of Science (SC) Website

    member Rishi Krishnan competes at the National Science Bowl Solar Car Competition in Washington, DC. Left to right; Rishi Krishnan Photograph by Dennis Brack, National Science Bowl ...

  4. File:Wind For Schools Teacher Guide for Middle School.pdf | Open...

    Open Energy Info (EERE)

    InDesign CS4 (6.0.6) Short title WindForSchools.pdf Conversion program Acrobat Distiller 10.1.5 (Windows) Encrypted no Page size 612 x 792 pts (letter) Version of PDF format 1.7...

  5. Weather data for simplified energy calculation methods. Volume II. Middle United States: TRY data

    SciTech Connect (OSTI)

    Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.

    1984-08-01

    The objective of this report is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 22 cities in the continental United States using Test Reference Year (TRY) source weather data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.

  6. Middle School Electric Car Competition | U.S. DOE Office of Science...

    Office of Science (SC) Website

    Print Text Size: A A A FeedbackShare Page Final Results Team Time (s) Rank 1. Edison Computech 7-8 5.97 1 2. Treasure Valley Math and Science Center 6.05 2 3. Albuquerque Academy ...

  7. Secretary Bodman to Travel to the Middle East to Advance International...

    Broader source: Energy.gov (indexed) [DOE]

    Secretary Bodman will depart on Monday, January 14, 2008 and travel to Jordan, Saudi Arabia, United Arab Emirates, Qatar and Egypt. "To increase global energy security, producing ...

  8. STEM Middle School Mentoring Cafes Take it on the Road | Department...

    Office of Environmental Management (EM)

    to serve 20 annually to inspire young minds in their communities From Anchorage to New York, The Energy Department's popular Science, Technology, Engineering, and Mathematics...

  9. Middle Schoolers Dream Big with Their Solar- and Battery-Powered...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    ... Christian Maples, his hair streaked blue and green like "FBI Covert Ops," one of the four ... Larry Sigle, Christian Maples (with "FBI Covert Ops"), Alex Gunderson, and Dalton ...

  10. Pantex Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    TX Collingsworth County, TX Crosby County, TX Dallam County, TX Dawson County, TX Deaf Smith County, TX Donley County, TX Floyd County, TX Gaines County, TX Garza County, TX Gray ...

  11. Arkansas Regional Middle School Science Bowl | U.S. DOE Office...

    Office of Science (SC) Website

    Competition Location Math and Science Building University of Arkansas - Fort Smith 5120 Grand Avenue Fort Smith, Arkansas 72913 Regional Contact Information Regional Coordinator: ...

  12. 2010 DOE National Science Bowl® Photos - Spanish Fort Middle...

    Office of Science (SC) Website

    Science Bowl. Left to right: Coach Tim Daniels, Eric Nuss, Matthew Inabinett, Kristen Smith, Cary Burdick Photograph by Dennis Brack, National Science Bowl For more information: ...

  13. West Kentucky Regional Middle School Science Bowl | U.S. DOE...

    Office of Science (SC) Website

    Regional Contact Information Regional Coordinator: Don Dihel Email: Don.Dihel@lex.doe.gov Phone: 270-441-6824 Co-Coordinator: Robert "Buz" Smith Email: Robert.Smith@lex.doe.gov ...

  14. Secretary Chu to Join Vice President Biden at Middle Class Task...

    Broader source: Energy.gov (indexed) [DOE]

    of Energy Steven Chu, Secretary of Labor Hilda Solis, and Secretary of Housing and Urban Development Shaun Donovan. The event will be open press. Additional media details are...

  15. Middle School Regionals | U.S. DOE Office of Science (SC)

    Office of Science (SC) Website

    Massachusetts North Dakota Virginia Florida Michigan Ohio Washington Georgia Minnesota Oklahoma Washington, DC Hawaii Mississippi Oregon West Virginia Idaho Missouri ...

  16. EA-2030: Middle Entiat River Habitat Restoration Project; Chelan County, Washington

    Broader source: Energy.gov [DOE]

    Bonneville Power Administration, in cooperation with the Bureau of Reclamation, is preparing an EA that evaluates the potential environmental impacts of a proposal to improve native fish habitat quality and quantity along a 4-mile section of the Entiat River and improve floodplain function by reconnecting the river with historic side channels and placing logs to direct river flow into side channels and onto the floodplain.

  17. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Climate Zonea for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  18. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Climate Zonea for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,,"Total Floorspace of...

  19. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Building Size for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  20. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    3. Electricity Consumption and Conditional Energy Intensity, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using Electricity (million square...

  1. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  2. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Building Size for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  3. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 1" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  4. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  5. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    9A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  6. Building

    U.S. Energy Information Administration (EIA) Indexed Site

    DIV. Electricity Consumption and Expenditure Intensities by Census Division, 1999" ,"Electricity Consumption",,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  7. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    Electricity Consumption and Conditional Energy Intensity by Census Region, 1999" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of Buildings Using Electricity...

  8. Released: Dec 2006

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Expenditure Intensities for All Buildings, 2003" ,"Electricity Consumption",,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per Square...

  9. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Region for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  10. Building-Level Intensities

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Expenditure Intensities for Non-Mall Buildings, 2003" ,"Electricity Consumption",,,,,,"Electricity Expenditures" ,"per Building (thousand kWh)","per...

  11. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Region for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,,"Total Floorspace of...

  12. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Year Constructed for Non-Mall Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  13. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    4. Electricity Consumption and Conditional Energy Intensity by Year Constructed, 1999" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of Buildings Using...

  14. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Census Division for All Buildings, 2003: Part 2" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace...

  15. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    A. Electricity Consumption and Conditional Energy Intensity by Year Constructed for All Buildings, 2003" ,"Total Electricity Consumption (billion kWh)",,,"Total Floorspace of...

  16. Consumption

    U.S. Energy Information Administration (EIA) Indexed Site

    . Electricity Consumption and Conditional Energy Intensity by Census Division for Non-Mall Buildings, 2003: Part 3" ,"Total Electricity Consumption (billion kWh)",,,"Total...

  17. Memorandum of Understanding Between the U.S. Department of Health...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    applicable, survivors of such employees suffering from illnesses incurred by such ... and evaluating SEC petitions and for responding to issues raised by ABR WH and the ...

  18. Renewable Energy Update

    Broader source: Energy.gov (indexed) [DOE]

    ... with lowest cost fossil fuel - Natural Gas, projected as .06kWh and achieve 20 ... studies, and optimized transmission integration. Market barriers will additionally provide ...

  19. "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas...

    U.S. Energy Information Administration (EIA) Indexed Site

    "," ",," "," " ,,"Residual","Distillate",,"LPG and" "Economic","Electricity","Fuel Oil","Fuel Oil(b)","Natural Gas(c)","NGL(d)","Coal" "Characteristic(a)","(kWh)","(gallons)","...

  20. Tax Credits, Rebates & Savings | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Boilers, Heat Pumps, Programmable Thermostats, Other EE Orcas Power & Light- MORE Green Power Program Incentive payments will be paid per kilowatt hour (kWh) of production,...