Sample records for wet flue gas

  1. System and method for monitoring wet bulb temperature in a flue gas stream

    SciTech Connect (OSTI)

    Glover, R.L.; Bland, V.V.

    1990-01-02T23:59:59.000Z

    This patent describes in a system for monitoring wet bulb temperature in a flue gas stream means for extracting a sample of the gas from the flue, means for heating the sample to maintain the sample at substantially the same temperature as the gas in the flue, a sensor for measuring the wet bulb temperature of the sample, a reservoir of liquid, a liquid absorbent wick surrounding the sensor and extending into the liquid in the reservoir, and means for maintaining the liquid in the reservoir at a substantially constant level.

  2. The use of wet limestone systems for combined removal of SO sub 2 and NO sub x from flue gas

    SciTech Connect (OSTI)

    Lee, G.C. (Bechtel Corp., San Francisco, CA (USA)); Shen, D.X.; Littlejohn, D.; Chang, S.G. (Lawrence Berkeley Lab., CA (USA))

    1990-03-01T23:59:59.000Z

    A new approach by utilizing yellow phosphorus in conventional wet limestone systems for high efficiency control of SO{sub 2} and NO{sub x} emissions from power plants has been developed. The addition of yellow phosphorus in the system induces the production of O{sub 3} which subsequently oxidizes NO to NO{sub 2}. The resulting NO{sub 2} dissolves readily and can be reduced to form ammonium ions by dissolved SO{sub 2} under appropriate conditions. Yellow phosphorus is oxidized to yield P{sub 2}O{sub 5} which picks up water to form H{sub 3}PO{sub 4} mists and can be collected as a valuable product. Proof of concept experiments have been performed using a 20 acfm bench-scale system. The results show that better than 90% of SO{sub 2} and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained. This ratio depends on operating conditions as well as the process configuration. A conceptual process flow diagram has been proposed. A preliminary cost evaluation of this approach appears to indicate great economic potential. 22 refs., 8 figs., 1 tab.

  3. Final Flue Gas Cleaning (FFGC) 

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01T23:59:59.000Z

    .F., Blythe, OG.M., Carey, T.R., Radian International & Rhudy, R.G., EPRI & Brown, T.D., Federal Energy Technology Center-DOE, ”Enhanced Control of Mercury by Wet FGD Systems, 1999 f Gramite. Evan J. and Pennline, Henry W., “Photochemical Removal of Mercury... from the Texas Commission on Environmental Quality (TCEQ). The pilot plant (FFGC-PP) will be used to test and evaluate removal of air pollution constituents from the flue gas of a power plant to determine the optimum emission reduction system...

  4. Flue gas cleanup with hydroxyl radical reactions

    SciTech Connect (OSTI)

    Lee, Y.J.; Pennline, H.W.; Markussen, J.M.

    1990-02-01T23:59:59.000Z

    Electric discharge processes have been intensively tested for application to flue gas cleanup. Among the several means of OH- radical generation grouped as electric discharge, E-Beam irradiation is the one that has been most thoroughly studied. Corona glow discharge, especially pulsed corona glow discharge, on the other hand, has attracted attention recently, and several active research projects are being conducted in the United States, Japan, West Germany, and Italy. Other promising approaches for generating OH radicals efficiently are based on thermal or catalytic decomposition of OH-radical precursors. If mixing problems can be overcome to achieve homogeneous distribution of OH radicals in the flue gas stream, these methods may be applicable to flue gas cleanup. Because of their high OH-radical generation rates and potentially low capital costs, the following three approaches are recommended to be tested for their potential capability to remove SO{sub 2}/NO{sub x}: (1) H{sub 2}/O{sub 2} combustion in a hydrogen torch, (2) thermal decomposition of H{sub 2}O{sub 2}, and (3) catalytic decomposition of H{sub 2}O. Ideally, the OH radicals will convert SO{sub 2} and NO{sub x} to sulfuric acid and nitric acid. These acids or acid precursors would easily be removed from the flue gas by conventional technology, such as spray drying and wet limestone scrubbing. 67 refs., 2 tabs.

  5. Mercury sorbent delivery system for flue gas

    SciTech Connect (OSTI)

    Klunder; ,Edgar B. (Bethel Park, PA)

    2009-02-24T23:59:59.000Z

    The invention presents a device for the removal of elemental mercury from flue gas streams utilizing a layer of activated carbon particles contained within the filter fabric of a filter bag for use in a flue gas scrubbing system.

  6. Recovery of Water from Boiler Flue Gas

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; Kwangkook Jeong; Michael Kessen; Christopher Samuelson; Christopher Whitcombe

    2008-09-30T23:59:59.000Z

    This project dealt with use of condensing heat exchangers to recover water vapor from flue gas at coal-fired power plants. Pilot-scale heat transfer tests were performed to determine the relationship between flue gas moisture concentration, heat exchanger design and operating conditions, and water vapor condensation rate. The tests also determined the extent to which the condensation processes for water and acid vapors in flue gas can be made to occur separately in different heat transfer sections. The results showed flue gas water vapor condensed in the low temperature region of the heat exchanger system, with water capture efficiencies depending strongly on flue gas moisture content, cooling water inlet temperature, heat exchanger design and flue gas and cooling water flow rates. Sulfuric acid vapor condensed in both the high temperature and low temperature regions of the heat transfer apparatus, while hydrochloric and nitric acid vapors condensed with the water vapor in the low temperature region. Measurements made of flue gas mercury concentrations upstream and downstream of the heat exchangers showed a significant reduction in flue gas mercury concentration within the heat exchangers. A theoretical heat and mass transfer model was developed for predicting rates of heat transfer and water vapor condensation and comparisons were made with pilot scale measurements. Analyses were also carried out to estimate how much flue gas moisture it would be practical to recover from boiler flue gas and the magnitude of the heat rate improvements which could be made by recovering sensible and latent heat from flue gas.

  7. Flue gas desulfurization

    DOE Patents [OSTI]

    Im, K.H.; Ahluwalia, R.K.

    1984-05-01T23:59:59.000Z

    The invention involves a combustion process in which combustion gas containing sulfur oxide is directed past a series of heat exchangers to a stack and in which a sodium compound is added to the combustion gas in a temparature zone of above about 1400 K to form Na/sub 2/SO/sub 4/. Preferably, the temperature is above about 1800 K and the sodium compound is present as a vapor to provide a gas-gas reaction to form Na/sub 2/SO/sub 4/ as a liquid. Since liquid Na/sub 2/SO/sub 4/ may cause fouling of heat exchanger surfaces downstream from the combustion zone, the process advantageously includes the step of injecting a cooling gas downstream of the injection of the sodium compound yet upstream of one or more heat exchangers to cool the combustion gas to below about 1150 K and form solid Na/sub 2/SO/sub 4/. The cooling gas is preferably a portion of the combustion gas downstream which may be recycled for cooling. It is further advantageous to utilize an electrostatic precipitator downstream of the heat exchangers to recover the Na/sub 2/SO/sub 4/. It is also advantageous in the process to remove a portion of the combustion gas cleaned in the electrostatic precipitator and recycle that portion upstream to use as the cooling gas. 3 figures.

  8. Final Flue Gas Cleaning (FFGC)

    E-Print Network [OSTI]

    Stinger, D. H.; Romero, M. H.

    2006-01-01T23:59:59.000Z

    the surrounding area but can also be carried thousands of miles by trade winds before falling to ground level to pollute soil, vegetation and water resources. An obvious question is: why doesn’t industry cool the flue gas; condense out the pollutants... of handling and disposing of these pollutants at the plant site. 2. Oxides of sulfur and nitrogen can condense out as an acid, including carbonic acid that attacks materials of construction. By keeping temperatures elevated, carbon steel construction can...

  9. natural gas+ condensing flue gas heat recovery+ water creation...

    Open Energy Info (EERE)

    natural gas+ condensing flue gas heat recovery+ water creation+ CO2 reduction+ cool exhaust gases+ Energy efficiency+ commercial building energy efficiency+ industrial energy...

  10. Sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, Evan J.; Hargis, Richard A.; Pennline, Henry W.

    1998-01-01T23:59:59.000Z

    A review of the various promoters and sorbents examined for the removal of mercury from flue gas is presented. Commercial sorbent processes are described along with the chemistry of the various sorbent-mercury interactions. Novel sorbents for removing mercury from flue gas are suggested. Since activated carbons are expensive, alternate sorbents and/or improved activated carbons are needed. Because of their lower cost, sorbent development work can focus on base metal oxides and halides. Additionally, the long-term sequestration of the mercury on the sorbent needs to be addressed. Contacting methods between the flue gas and the sorbent also merit investigation.

  11. Separation of Mercury from Flue Gas Desulfurization Scrubber Produced Gypsum

    SciTech Connect (OSTI)

    Hensman, Carl, E., P.h.D; Baker, Trevor

    2008-06-16T23:59:59.000Z

    Frontier Geosciences (Frontier; FGS) proposed for DOE Grant No. DE-FG02-07ER84669 that mercury control could be achieved in a wet scrubber by the addition of an amendment to the wet-FGD scrubber. To demonstrate this, a bench-scale scrubber and synthetic flue-gas supply was designed to simulate the limestone fed, wet-desulfurization units utilized by coal-fired power plants. Frontier maintains that the mercury released from these utilities can be controlled and reduced by modifying the existing equipment at installations where wet flue-gas desulfurization (FGD) systems are employed. A key element of the proposal was FGS-PWN, a liquid-based mercury chelating agent, which can be employed as the amendment for removal of all mercury species which enter the wet-FGD scrubber. However, the equipment design presented in the proposal was inadequate to demonstrate these functions and no significant progress was made to substantiate these claims. As a result, funding for a Phase II continuation of this work will not be pursued. The key to implementing the technology as described in the proposal and report appears to be a high liquid-to-gas ratio (L/G) between the flue-gas and the scrubber liquor, a requirement not currently implemented in existing wet-FGD designs. It may be that this constraint can be reduced through parametric studies, but that was not apparent in this work. Unfortunately, the bench-scale system constructed for this project did not function as intended and the funds and time requested were exhausted before the separation studies could occur.

  12. The Gonzaga desulfurization flue gas process

    SciTech Connect (OSTI)

    Kelleher, R.L.; O'Leary, T.J.; Shirk, I.A.

    1984-01-01T23:59:59.000Z

    The Gonzaga desulfurization flue gas process removes sulfur dioxide from a flue by cold water scrubbing. Sulfur dioxide is significantly more soluable in cold water (35/sup 0/F to 60/sup 0/F) than in warm water (100/sup 0/F). Sulfur dioxide reacts in water similarly as carbon dioxide reacts in water, in that both gasses are released from the water as the temperature of the water increases. The researchers at the Gonzaga University developed this process from the observations and techniques used in studying the acid and aldehyde concentrations in flue gasses with varying of fuel to air ratios. The apparatus was fixed to a stationary engine and a gas/oil fired boiler. The flue gas was cooled to the dew point temperature of the air entering the combustion chamber on the pre-air heater. The system is described in two parts: the energies required for cooling in the scrubbing section and the energies required in the treatment section. The cold flue gas is utilized in cooling the scrubber section.

  13. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, Stark County, OH)

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  14. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, Deborah A. (Canfield, OH); Farthing, George A. (Washington Township, OH)

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse.

  15. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-09-29T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  16. Flue gas desulfurization method and apparatus

    DOE Patents [OSTI]

    Madden, D.A.; Farthing, G.A.

    1998-08-18T23:59:59.000Z

    A combined furnace limestone injection and dry scrubber flue gas desulfurization (FGD) system collects solids from the flue gas stream in first particulate collection device located downstream of an outlet of a convection pass of the furnace and upstream of the dry scrubber. The collected solids are diverted to the dry scrubber feed slurry preparation system to increase sulfur oxide species removal efficiency and sorbent utilization. The level of lime in the feed slurry provided to the dry scrubber is thus increased, which enhances removal of sulfur oxide species in the dry scrubber. The decreased particulate loading to the dry scrubber helps maintain a desired degree of free moisture in the flue gas stream entering the dry scrubber, which enhances sulfur oxide species removal both in the dry scrubber and downstream particulate collector, normally a baghouse. 5 figs.

  17. Evaluation of the Energy Saving Potential from Flue Gas Pressurization 

    E-Print Network [OSTI]

    Stanton, E. H.

    1980-01-01T23:59:59.000Z

    The potential for recovering energy from low pressure furnace flue products is limited when standard heat recovery equipment is utilized. Efficient energy recovery can be accomplished by providing a flue gas side pressure drop across a heat...

  18. Evaluation of the Energy Saving Potential from Flue Gas Pressurization

    E-Print Network [OSTI]

    Stanton, E. H.

    1980-01-01T23:59:59.000Z

    The potential for recovering energy from low pressure furnace flue products is limited when standard heat recovery equipment is utilized. Efficient energy recovery can be accomplished by providing a flue gas side pressure drop across a heat...

  19. Fundamental mechanisms in flue-gas conditioning

    SciTech Connect (OSTI)

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09T23:59:59.000Z

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  20. E-Print Network 3.0 - advanced flue gas Sample Search Results

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    flue gas losses and minimized in... generated from flue gas condensation for district heating. Twence is another example, where a high degree... into a reusable ash and that...

  1. Separation of CO2 from flue gas using electrochemical cells

    SciTech Connect (OSTI)

    Pennline, H.W; Granite, E.J.; Luebke, D.R; Kitchin, J.R; Landon, J.; Weiland, L.M.

    2010-06-01T23:59:59.000Z

    ABSTRACT Past research with high temperature molten carbonate electrochemical cells has shown that carbon dioxide can be separated from flue gas streams produced by pulverized coal combustion for power generation, However, the presence of trace contaminants, i.e" sulfur dioxide and nitric oxides, will impact the electrolyte within the cell. If a lower temperature cell could be devised that would utilize the benefits of commercially-available, upstream desulfurization and denitrification in the power plant, then this CO2 separation technique can approach more viability in the carbon sequestration area, Recent work has led to the assembly and successful operation of a low temperature electrochemical cell. In the proof-of-concept testing with this cell, an anion exchange membrane was sandwiched between gas-diffusion electrodes consisting of nickel-based anode electrocatalysts on carbon paper. When a potential was applied across the cell and a mixture of oxygen and carbon dioxide was flowed over the wetted electrolyte on the cathode side, a stream of CO2 to O2 was produced on the anode side, suggesting that carbonate/ bicarbonate ions are the CO2 carrier in the membrane. Since a mixture of CO 2 and 02 is produced, the possibility exists to use this stream in oxy-firing of additional fuel. From this research, a novel concept for efficiently producing a carbon dioxide rich effiuent from combustion of a fossil fuel was proposed. Carbon dioxide and oxygen are captured from the flue gas of a fossilfuel combustor by one or more electrochemical cells or cell stacks. The separated stream is then transferred to an oxy-fired combustor which uses the gas stream for ancillary combustion, ultimately resulting in an effluent rich in carbon dioxide, A portion of the resulting flow produced by the oxy-fired combustor may be continuously recycled back into the oxy-fired combustor for temperature control and an optimal carbon dioxide rich effluent.

  2. Noble metal catalysts for oxidation of mercury in flue gas

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J.

    2008-04-01T23:59:59.000Z

    The use of precious metals and platinum group metals as catalysts for oxidation of mercury in flue gas is an active area of study. To date, field studies have recently focused on gold and palladium catalysts installed at pilot-scale. In this work, we introduce bench-scale results for gold, platinum, and palladium catalysts tested in realistic simulated flue gas. Initial results reveal intriguing characteristics of catalytic mercury oxidation and provide insight for future research.

  3. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Robinson, M.S.; Bush, P.V.

    1992-04-27T23:59:59.000Z

    This project is divided into four tasks. The Management Plan was developed in task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. This phase of the project is now complete. During the past quarter, initial preparations of laboratory equipment for laboratory testing have been made. A plan for initial laboratory tests has been submitted to the Project Manager for review. Laboratory testing will commence once these laboratory plans have been formally approved. The results of the work performed under task 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under task 4. The Final Report for the project will also be prepared under task 4.

  4. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, John B. L. (Naperville, IL); Doctor, Richard D. (Glen Ellyn, IL); Wingender, Ronald J. (Deerfield, IL)

    1986-01-01T23:59:59.000Z

    A method of simultaneously removing SO.sub.2 and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO.sub.2 and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled.

  5. Flue gas desulfurization/denitrification using metal-chelate additives

    DOE Patents [OSTI]

    Harkness, J.B.L.; Doctor, R.D.; Wingender, R.J.

    1985-08-05T23:59:59.000Z

    A method of simultaneously removing SO/sub 2/ and NO from oxygen-containing flue gases resulting from the combustion of carbonaceous material by contacting the flue gas with an aqueous scrubber solution containing an aqueous sulfur dioxide sorbent and an active metal chelating agent which promotes a reaction between dissolved SO/sub 2/ and dissolved NO to form hydroxylamine N-sulfonates. The hydroxylamine sulfonates are then separated from the scrubber solution which is recycled. 3 figs.

  6. Construction and testing of a flue-gas corrosion probe

    SciTech Connect (OSTI)

    Federer, J.I.; McEvers, J.A.

    1990-08-01T23:59:59.000Z

    The selection of suitable materials for industrial, waste-heat- recovery systems requires assessment of corrosion of materials in various flue-gas environments. Such assessments involve exposing candidate materials to high-temperature flue gases and analyzing the effects of the exposure conditions. Because corrosion is related to flue-gas chemical composition and temperature, variations in temperature complicate the determination of corrosion rates and corrosion mechanisms. Conversely, a relatively constant temperature allows a more accurate determination of the effects of exposure conditions. For this reason, controlled-temperature flue-gas corrosion probes were constructed and tested for exposure tests of materials. A prototype probe consisted of a silicon carbide tube specimen, supporting hardware, and instrumentation for controlling temperature by internal heating and cooling. An advanced probe included other tubular specimens. Testing of the probes in an industrial-type furnace at a nominal flue-gas temperature of 1200{degree}C revealed that temperature control was inadequate. The cooling mode imposed a substantial axial-temperature gradient on the specimens; while the heating mode imposed a smaller gradient, the heating capacity was very limited. 10 refs., 10 figs., 2 tabs.

  7. Advanced Flue Gas Desulfurization (AFGD) Demonstration Project, A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2001-08-31T23:59:59.000Z

    The AFGD process as demonstrated by Pure Air at the Bailly Station offers a reliable and cost-effective means of achieving a high degree of SO{sub 2} emissions reduction when burning high-sulfur coals. Many innovative features have been successfully incorporated in this process, and it is ready for widespread commercial use. The system uses a single-loop cocurrent scrubbing process with in-situ oxidation to produce wallboard-grade gypsum instead of wet sludge. A novel wastewater evaporation system minimizes effluents. The advanced scrubbing process uses a common absorber to serve multiple boilers, thereby saving on capital through economies of scale. Major results of the project are: (1) SO{sub 2} removal of over 94 percent was achieved over the three-year demonstration period, with a system availability exceeding 99.5 percent; (2) a large, single absorber handled the combined flue gas of boilers generating 528 MWe of power, and no spares were required; (3) direct injection of pulverized limestone into the absorber was successful; (4) Wastewater evaporation eliminated the need for liquid waste disposal; and (5) the gypsum by-product was used directly for wallboard manufacture, eliminating the need to dispose of waste sludge.

  8. Flue gas injection control of silica in cooling towers.

    SciTech Connect (OSTI)

    Brady, Patrick Vane; Anderson, Howard L., Jr.; Altman, Susan Jeanne

    2011-06-01T23:59:59.000Z

    Injection of CO{sub 2}-laden flue gas can decrease the potential for silica and calcite scale formation in cooling tower blowdown by lowering solution pH to decrease equilibrium calcite solubility and kinetic rates of silica polymerization. Flue gas injection might best inhibit scale formation in power plant cooling towers that use impaired makeup waters - for example, groundwaters that contain relatively high levels of calcium, alkalinity, and silica. Groundwaters brought to the surface for cooling will degas CO{sub 2} and increase their pH by 1-2 units, possibly precipitating calcite in the process. Recarbonation with flue gas can lower the pHs of these fluids back to roughly their initial pH. Flue gas carbonation probably cannot lower pHs to much below pH 6 because the pHs of impaired waters, once outgassed at the surface, are likely to be relatively alkaline. Silica polymerization to form scale occurs most rapidly at pH {approx} 8.3 at 25 C; polymerization is slower at higher and lower pH. pH 7 fluids containing {approx}220 ppm SiO{sub 2} require > 180 hours equilibration to begin forming scale whereas at pH 8.3 scale formation is complete within 36 hours. Flue gas injection that lowers pHs to {approx} 7 should allow substantially higher concentration factors. Periodic cycling to lower recoveries - hence lower silica concentrations - might be required though. Higher concentration factors enabled by flue gas injection should decrease concentrate volumes and disposal costs by roughly half.

  9. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Levy, Edward; Bilirgen, Harun; DuPont, John

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.

  10. Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers

    SciTech Connect (OSTI)

    Edward Levy; Harun Bilirgen; John DuPoint

    2011-03-31T23:59:59.000Z

    Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.

  11. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Joseph Helble; Balaji Krishnakumar

    2006-07-31T23:59:59.000Z

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 3 results for the experimental and modeling tasks. Experiments have been completed on the effects of chlorine. However, the experiments with sulfur dioxide and NO, in the presence of water, suggest that the wet-chemistry analysis system, namely the impingers, is possibly giving erroneous results. Future work will investigate this further and determine the role of reactions in the impingers on the oxidation results. The solid-phase experiments have not been completed and it is anticipated that only preliminary work will be accomplished during this study.

  12. Analysis of Halogen-Mercury Reactions in Flue Gas

    SciTech Connect (OSTI)

    Paula Buitrago; Geoffrey Silcox; Constance Senior; Brydger Van Otten

    2010-01-01T23:59:59.000Z

    Oxidized mercury species may be formed in combustion systems through gas-phase reactions between elemental mercury and halogens, such as chorine or bromine. This study examines how bromine species affect mercury oxidation in the gas phase and examines the effects of mixtures of bromine and chlorine on extents of oxidation. Experiments were conducted in a bench-scale, laminar flow, methane-fired (300 W), quartz-lined reactor in which gas composition (HCl, HBr, NO{sub x}, SO{sub 2}) and temperature profile were varied. In the experiments, the post-combustion gases were quenched from flame temperatures to about 350 C, and then speciated mercury was measured using a wet conditioning system and continuous emissions monitor (CEM). Supporting kinetic calculations were performed and compared with measured levels of oxidation. A significant portion of this report is devoted to sample conditioning as part of the mercury analysis system. In combustion systems with significant amounts of Br{sub 2} in the flue gas, the impinger solutions used to speciate mercury may be biased and care must be taken in interpreting mercury oxidation results. The stannous chloride solution used in the CEM conditioning system to convert all mercury to total mercury did not provide complete conversion of oxidized mercury to elemental, when bromine was added to the combustion system, resulting in a low bias for the total mercury measurement. The use of a hydroxylamine hydrochloride and sodium hydroxide solution instead of stannous chloride showed a significant improvement in the measurement of total mercury. Bromine was shown to be much more effective in the post-flame, homogeneous oxidation of mercury than chlorine, on an equivalent molar basis. Addition of NO to the flame (up to 400 ppmv) had no impact on mercury oxidation by chlorine or bromine. Addition of SO{sub 2} had no effect on mercury oxidation by chlorine at SO{sub 2} concentrations below about 400 ppmv; some increase in mercury oxidation was observed at SO{sub 2} concentrations of 400 ppmv and higher. In contrast, SO{sub 2} concentrations as low as 50 ppmv significantly reduced mercury oxidation by bromine, this reduction could be due to both gas and liquid phase interactions between SO{sub 2} and oxidized mercury species. The simultaneous presence of chlorine and bromine in the flue gas resulted in a slight increase in mercury oxidation above that obtained with bromine alone, the extent of the observed increase is proportional to the chlorine concentration. The results of this study can be used to understand the relative importance of gas-phase mercury oxidation by bromine and chlorine in combustion systems. Two temperature profiles were tested: a low quench (210 K/s) and a high quench (440 K/s). For chlorine the effects of quench rate were slight and hard to characterize with confidence. Oxidation with bromine proved sensitive to quench rate with significantly more oxidation at the lower rate. The data generated in this program are the first homogeneous laboratory-scale data on bromine-induced oxidation of mercury in a combustion system. Five Hg-Cl and three Hg-Br mechanisms, some published and others under development, were evaluated and compared to the new data. The Hg-halogen mechanisms were combined with submechanisms from Reaction Engineering International for NO{sub x}, SO{sub x}, and hydrocarbons. The homogeneous kinetics under-predicted the levels of mercury oxidation observed in full-scale systems. This shortcoming can be corrected by including heterogeneous kinetics in the model calculations.

  13. Selecting the right pumps and valves for flue gas desulfurization

    SciTech Connect (OSTI)

    Ellis, D.; Ahluwalia, H. [ITT Engineered Valves, Lancaster, PA (United States)

    2006-07-15T23:59:59.000Z

    Limestone slurry needs to move efficiently through a complex process, meaning that selecting the right pumps and valves is critical. The article discusses factors to consider in selecting pumps and values for flue gas desulfurization process in coal-fired power plants. 2 photos.

  14. Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 10, February 17--May 31, 1993

    SciTech Connect (OSTI)

    Not Available

    1993-11-15T23:59:59.000Z

    The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The demonstration is being conducted at Penelec`s Seward Station, Unit No. 15. This boiler is a 147 MWe coal-fired unit, which utilizes Pennsylvania bituminous coal (approximately 1.2 to 2.5% sulfur). One of the two flue gas ducts leading from the boiler has been retrofitted with the CZD technology. The first existing ESP installed in the station is immediately behind the air preheater. The second ESP, installed about 15 years ago, is about 80 feet away from the first ESP. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2}

  15. Activation of flue gas nitrogen oxides by transition metal complexes

    SciTech Connect (OSTI)

    Miller, M.E.; Finseth, D.H.; Pennline, H.W.

    1987-01-01T23:59:59.000Z

    Sulfur and nitrogen oxides are major flue gas pollutants released by coal-fired electric power plants. In the atmosphere these oxides are converted to sulfuric and nitric acids, which contribute to the acid rain problem. Most of the nitrogen oxides present in coal-derived flue gas exist as the relatively inert and water-insoluble nitric oxide (NO), thus presenting a difficult removal problem. We present preliminary studies intended to establish basic homogeneous chemistry of transition metal complexes with nitrogen oxides. The transition metals considered in this work are volatile carbonyl complexes. The metal carbonyls took up nitric oxide homogeneously in the gas phase. Iron required uv light for reaction with NO, but the same result is expected with the application of heat. Metal carbonyls also reacted with nitrogen dioxide but produced polynuclear metal species. Oxygen did not attack the carbonyl or nitrosyl complexes. Results indicate high potential for NO/sub x/ removal from stack gases by sorption onto supported metal carbonyl complexes. The solid form allows ease in separation from the flue gas. Regeneration of the sorbent might be achieved by treating with CO to liberate NO/sub x/ by displacement or by heating to decompose and drive off NO/sub x/.

  16. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Raghubir P. Gupta

    2006-03-31T23:59:59.000Z

    This report describes research conducted between January 1, 2006, and March 31, 2006, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from coal combustion flue gas. An integrated system composed of a downflow co-current contact absorber and two hollow screw conveyors (regenerator and cooler) was assembled, instrumented, debugged, and calibrated. A new batch of supported sorbent containing 15% sodium carbonate was prepared and subjected to surface area and compact bulk density determination.

  17. Dry scrubber reduces SO sub 2 in calciner flue gas

    SciTech Connect (OSTI)

    Brown, G.W. (Refining Consulting Services, Englewood, CO (US)); Roderick, D. (Western Slope Refining Co., Fruita, CO (US)); Nastri, A. (NATEC Resources Inc., Dallas, TX (US))

    1991-02-18T23:59:59.000Z

    This paper discusses the installation of a dry sulfur dioxide scrubber for an existing petroleum coke calciner at its Fruita, Colo., refinery. The dry scrubbing process was developed by the power industry to help cope with the acid rain problem. It is the first application of the process in an oil refinery. The process could also remove SO{sub 2} from the flue gas of a fluid catalytic cracker, fluid coker, or other refinery sources.

  18. The thief process for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Freeman, M.C.; Hargis, R.A.; O'Dowd, W.J.; Pennline, H.W.

    2007-09-01T23:59:59.000Z

    The Thief Process is a cost-effective variation to activated carbon injection (ACI) for removal of mercury from flue gas. In this scheme, partially combusted coal from the furnace of a pulverized coal power generation plant is extracted by a lance and then re-injected into the ductwork downstream of the air preheater. Recent results on a 500-lb/h pilot-scale combustion facility show similar removals of mercury for both the Thief Process and ACI. The tests conducted to date at laboratory, bench, and pilot-scales demonstrate that the Thief sorbents exhibit capacities for mercury from flue gas streams that are comparable to those exhibited by commercially available activated carbons. A patent for the process was issued in February 2003. The Thief sorbents are cheaper than commercially-available activated carbons; exhibit excellent capacities for mercury; and the overall process holds great potential for reducing the cost of mercury removal from flue gas. The Thief Process was licensed to Mobotec USA, Inc. in May of 2005.

  19. Activation of flue gas nitrogen oxides by transition metal complexes

    SciTech Connect (OSTI)

    Miller, M.E.; Finseth, D.H.; Pennline, H.W.

    1987-01-01T23:59:59.000Z

    Sulfur and nitrogen oxides are major flue gas pollutants released by coal-fired electric power plants. In the atmosphere these oxides are converted to sulfuric and nitric acids, which contribute to the acid rain problem. Most of the nitrogen oxides (90%-95%) present in coal-derived flue gas exist as the relatively inert and water-insoluble nitric oxide (NO), thus presenting a difficult removal problem. A practical strategy for nitrogen oxides removal might utilize a solid support that has been impregnated with an active transition metal complex. Some supported transition metals are expected to remove NO/sub x/ by sorption, with regeneration of the sorbent being a necessary property. Others catalyze NO oxidation to the more soluble NO/sub 2/ and N/sub 2/O/sub 5/, which has been demonstrated for certain transition metal species. These activated nitrogen oxides can be more efficiently removed along with SO/sub 2/ in conventional scrubbing or spray-drying processes, in which an aqueous slurry of sorbent, such as hydrated lime, is injected into the hot flue gas. We present here preliminary studies intended to establish basic homogeneous chemistry of transition metal complexes with nitrogen oxides. The transition metals considered in this work are volatile carbonyl complexes. This work is the first step in the development of supported metal species for enhanced nitrogen oxides removal.

  20. Alternative formulations of regenerable flue gas cleanup catalysts

    SciTech Connect (OSTI)

    Mitchell, M.B.; White, M.G.

    1991-01-01T23:59:59.000Z

    The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

  1. Thief process for the removal of mercury from flue gas

    DOE Patents [OSTI]

    Pennline, Henry W. (Bethel Park, PA); Granite, Evan J. (Wexford, PA); Freeman, Mark C. (South Park Township, PA); Hargis, Richard A. (Canonsburg, PA); O'Dowd, William J. (Charleroi, PA)

    2003-02-18T23:59:59.000Z

    A system and method for removing mercury from the flue gas of a coal-fired power plant is described. Mercury removal is by adsorption onto a thermally activated sorbent produced in-situ at the power plant. To obtain the thermally activated sorbent, a lance (thief) is inserted into a location within the combustion zone of the combustion chamber and extracts a mixture of semi-combusted coal and gas. The semi-combusted coal has adsorptive properties suitable for the removal of elemental and oxidized mercury. The mixture of semi-combusted coal and gas is separated into a stream of gas and semi-combusted coal that has been converted to a stream of thermally activated sorbent. The separated stream of gas is recycled to the combustion chamber. The thermally activated sorbent is injected into the duct work of the power plant at a location downstream from the exit port of the combustion chamber. Mercury within the flue gas contacts and adsorbs onto the thermally activated sorbent. The sorbent-mercury combination is removed from the plant by a particulate collection system.

  2. Water Extraction from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Bruce C. Folkedahl; Greg F. Weber; Michael E. Collings

    2006-06-30T23:59:59.000Z

    The overall objective of this program was to develop a liquid disiccant-based flue gas dehydration process technology to reduce water consumption in coal-fired power plants. The specific objective of the program was to generate sufficient subscale test data and conceptual commercial power plant evaluations to assess process feasibility and merits for commercialization. Currently, coal-fired power plants require access to water sources outside the power plant for several aspects of their operation in addition to steam cycle condensation and process cooling needs. At the present time, there is no practiced method of extracting the usually abundant water found in the power plant stack gas. This project demonstrated the feasibility and merits of a liquid desiccant-based process that can efficiently and economically remove water vapor from the flue gas of fossil fuel-fired power plants to be recycled for in-plant use or exported for clean water conservation. After an extensive literature review, a survey of the available physical and chemical property information on desiccants in conjunction with a weighting scheme developed for this application, three desiccants were selected and tested in a bench-scale system at the Energy and Environmental Research Center (EERC). System performance at the bench scale aided in determining which desiccant was best suited for further evaluation. The results of the bench-scale tests along with further review of the available property data for each of the desiccants resulted in the selection of calcium chloride as the desiccant for testing at the pilot-scale level. Two weeks of testing utilizing natural gas in Test Series I and coal in Test Series II for production of flue gas was conducted with the liquid desiccant dehumidification system (LDDS) designed and built for this study. In general, it was found that the LDDS operated well and could be placed in an automode in which the process would operate with no operator intervention or adjustment. Water produced from this process should require little processing for use, depending on the end application. Test Series II water quality was not as good as that obtained in Test Series I; however, this was believed to be due to a system upset that contaminated the product water system during Test Series II. The amount of water that can be recovered from flue gas with the LDDS is a function of several variables, including desiccant temperature, L/G in the absorber, flash drum pressure, liquid-gas contact method, and desiccant concentration. Corrosion will be an issue with the use of calcium chloride as expected but can be largely mitigated through proper material selection. Integration of the LDDS with either low-grade waste heat and or ground-source heating and cooling can affect the parasitic power draw the LDDS will have on a power plant. Depending on the amount of water to be removed from the flue gas, the system can be designed with no parasitic power draw on the power plant other than pumping loads. This can be accomplished in one scenario by taking advantage of the heat of absorption and the heat of vaporization to provide the necessary temperature changes in the desiccant with the flue gas and precipitates that may form and how to handle them. These questions must be addressed in subsequent testing before scale-up of the process can be confidently completed.

  3. The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas

    E-Print Network [OSTI]

    Henderson, W. R.; DeBiase, J. F.

    1983-01-01T23:59:59.000Z

    . During low demand periods, the unit is gas-fired and produces 150 psi steam at high efficiency. In the fall, the heat exchanger is converted to accept flue gas from the large original water tube boilers. The flue gas heats water, which preheats make...

  4. Transport Membrane Condenser for Water and Energy Recovery from Power Plant Flue Gas

    SciTech Connect (OSTI)

    Dexin Wang

    2012-03-31T23:59:59.000Z

    The new waste heat and water recovery technology based on a nanoporous ceramic membrane vapor separation mechanism has been developed for power plant flue gas application. The recovered water vapor and its latent heat from the flue gas can increase the power plant boiler efficiency and reduce water consumption. This report describes the development of the Transport Membrane Condenser (TMC) technology in details for power plant flue gas application. The two-stage TMC design can achieve maximum heat and water recovery based on practical power plant flue gas and cooling water stream conditions. And the report includes: Two-stage TMC water and heat recovery system design based on potential host power plant coal fired flue gas conditions; Membrane performance optimization process based on the flue gas conditions, heat sink conditions, and water and heat transport rate requirement; Pilot-Scale Unit design, fabrication and performance validation test results. Laboratory test results showed the TMC system can exact significant amount of vapor and heat from the flue gases. The recovered water has been tested and proved of good quality, and the impact of SO{sub 2} in the flue gas on the membrane has been evaluated. The TMC pilot-scale system has been field tested with a slip stream of flue gas in a power plant to prove its long term real world operation performance. A TMC scale-up design approach has been investigated and an economic analysis of applying the technology has been performed.

  5. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn S. Lighty; Geoffrey Silcox; Andrew Fry; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2005-08-01T23:59:59.000Z

    The objective of this project is to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involves both experimental and modeling efforts. The team is comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective is to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters to be studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. This report summarizes Year 2 results for the experimental and modeling tasks. Experiments in the mercury reactor are underway and interesting results suggested that a more comprehensive look at catalyzed surface reactions was needed. Therefore, much of the work has focused on the heterogeneous reactions. In addition, various chemical kinetic models have been explored in an attempt to explain some discrepancies between this modeling effort and others.

  6. Fundamentals of Mercury Oxidation in Flue Gas

    SciTech Connect (OSTI)

    JoAnn Lighty; Geoffrey Silcox; Constance Senior; Joseph Helble; Balaji Krishnakumar

    2008-07-31T23:59:59.000Z

    The objective of this project was to understand the importance of and the contribution of gas-phase and solid-phase coal constituents in the mercury oxidation reactions. The project involved both experimental and modeling efforts. The team was comprised of the University of Utah, Reaction Engineering International, and the University of Connecticut. The objective was to determine the experimental parameters of importance in the homogeneous and heterogeneous oxidation reactions; validate models; and, improve existing models. Parameters studied include HCl, NO{sub x}, and SO{sub 2} concentrations, ash constituents, and temperature. The results suggested that homogeneous mercury oxidation is below 10% which is not consistent with previous data of others and work which was completed early in this research program. Previous data showed oxidation above 10% and up to 100%. However, the previous data are suspect due to apparent oxidation occurring within the sampling system where hypochlorite ion forms in the KCl impinger, which in turn oxidized mercury. Initial tests with entrained iron oxide particles injected into a flame reactor suggest that iron present on fly ash particle surfaces can promote heterogeneous oxidation of mercury in the presence of HCl under entrained flow conditions. Using the data generated above, with homogeneous reactions accounting for less than 10% of the oxidation, comparisons were made to pilot- and full-scale data. The results suggest that heterogeneous reactions, as with the case of iron oxide, and adsorption on solid carbon must be taking place in the full-scale system. Modeling of mercury oxidation using parameters from the literature was conducted to further study the contribution of homogeneous pathways to Hg oxidation in coal combustion systems. Calculations from the literature used rate parameters developed in different studies, in some cases using transition state theory with a range of approaches and basis sets, and in other cases using empirical approaches. To address this, rate constants for the entire 8-step homogeneous Hg oxidation sequence were developed using an internally consistent transition state approach. These rate constants when combined with the appropriate sub-mechanisms produced lower estimates of the overall extent of homogeneous oxidation, further suggesting that heterogeneous pathways play an important role in Hg oxidation in coal-fired systems.

  7. Carbon Dioxide Capture from Flue Gas Using Dry, Regenerable Sorbents

    SciTech Connect (OSTI)

    David A. Green; Thomas O. Nelson; Brian S. Turk; Paul D. Box; Andreas Weber; Raghubir P. Gupta

    2006-01-01T23:59:59.000Z

    This report describes research conducted between October 1, 2005, and December 31, 2005, on the use of dry regenerable sorbents for removal of carbon dioxide (CO{sub 2}) from flue gas from coal combustion. A field test was conducted to examine the extent to which RTI's supported sorbent can be regenerated in a heated, hollow screw conveyor. This field test was conducted at the facilities of a screw conveyor manufacturer. The sorbent was essentially completely regenerated during this test, as confirmed by thermal desorption and mass spectroscopy analysis of the regenerated sorbent. Little or no sorbent attrition was observed during 24 passes through the heated screw conveyor system. Three downflow contactor absorption tests were conducted using calcined sodium bicarbonate as the absorbent. Maximum carbon dioxide removals of 57 and 91% from simulated flue gas were observed at near ambient temperatures with water-saturated gas. These tests demonstrated that calcined sodium carbonate is not as effective at removing CO{sub 2} as are supported sorbents containing 10 to 15% sodium carbonate. Delivery of the hollow screw conveyor for the laboratory-scale sorbent regeneration system was delayed; however, construction of other components of this system continued during the quarter.

  8. The Beckett System Recovery and Utilization of Low Grade Waste Heat From Flue Gas 

    E-Print Network [OSTI]

    Henderson, W. R.; DeBiase, J. F.

    1983-01-01T23:59:59.000Z

    The Beckett Heat Recovery is a series of techniques for recovering low-grade waste heat from flue gas. Until the cost of fossil fuels began rising rapidly, flue gas below 600 F was considered economically unworthy of reclaim. This paper...

  9. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir Gupta; Alejandro Lopez-Ortiz

    2001-01-01T23:59:59.000Z

    Four grades of sodium bicarbonate and two grades of trona were characterized in terms of particle size distribution, surface area, pore size distribution, and attrition. Surface area and pore size distribution determinations were conducted after calcination of the materials. The sorbent materials were subjected to thermogravimetric testing to determine comparative rates and extent of calcination (in inert gas) and sorption (in a simulated coal combustion flue gas mixture). Selected materials were exposed to five calcination/sorption cycles and showed no decrease in either sorption capacity or sorption rate. Process simulations were conducted involving different heat recovery schemes. The process is thermodynamically feasible. The sodium-based materials appear to have suitable physical properties for use as regenerable sorbents and, based on thermogravimetric testing, are likely to have sorption and calcination rates that are rapid enough to be of interest in full-scale carbon sequestration processes.

  10. Supported polyethylenimine adsorbents for CO2 capture from flue gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Gray, M.L.; Pennline, H.W.

    2008-10-01T23:59:59.000Z

    Anthropogenic CO2 emissions produced from fossil fuel combustion are believed to contribute to undesired consequences in global climate. Major contributors towards CO2 emissions are fossil fuel-fired power plants for electricity production. For this reason, CO2 capture from flue gas streams together with permanent sequestration in geologic formations is being considered a viable solution towards mitigation of the major greenhouse gas1. Technologies based on chemical absorption with alkanolamines have been assessed for first generation CO2 post-combustion capture primarily due to its advanced stage of development. However, limitations associated with these chemical solvents (i.e., low CO2 loadings, amine degradation by oxygen, equipment corrosion) manifest themselves in high capital and operating costs with reduced thermal efficiencies. Therefore, necessary design and development of alternative, lower cost approaches for CO2 capture from coal-fired combustion streams are warranted.

  11. Developments in flue gas cleanup research at the Federal Energy Technology Center

    SciTech Connect (OSTI)

    Pennline, H.W.; Hargis, R.A.; Hedges, S.W.; Hoffman, J.S.; O`Dowd, W.J.; Warzinski, R.P.; Yeh, J.T.; Scierka, S.J.; Granite, E.J. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1997-12-31T23:59:59.000Z

    A major research effort in the cleanup of flue gas, which is produced by the combustion of fossil fuels, is being conducted by the in-house research program at the Federal Energy Technology Center (FETC) of the US Department of Energy (DOE). Novel technologies being developed can abate sulfur dioxide (SO{sub 2}), nitrogen oxides (NO{sub x}), hazardous air pollutants (also referred to as air toxics), and carbon dioxide (CO{sub 2}) from flue gas. Laws within the US mandate the control of some of these pollutants and the initial characterization of others, while potential new regulations impact the status of others. Techniques that can control one or more of the targeted pollutants in an environmentally and economically acceptable manner are of prime interest. Past efforts have included low-temperature dry scrubbing SO{sub 2} removal techniques that typically use a calcium or sodium-based disposable sorbent either in a spray drying mode or in a duct injection mode of operation; novel techniques for enhancing sorbent utilization in conventional wet or dry scrubbing processes; and control of emissions produced from small-scale combustors (residential or commercial-size) that burn coal or coal/sorbent briquettes. Recent research at FETC has focused on investigations of air toxics produced by burning various coals, with a particular emphasis on the speciation of mercury and the control of the various mercury species; dry, regenerable sorbent processes that use a metal oxide sorbent to simultaneously remove SO{sub 2} and NO{sub x}; catalysts for selective catalytic reduction (SCR)-type NO{sub x} control; and the utilization and sequestering of CO{sub 2} removed from flue gas produced by fossil fuel combustion. The research projects range from laboratory-scale work to testing with the combustion products of coal at a scale equivalent to about 0.75 megawatt of electric power generation. An overview and status of the in-house flue gas cleanup projects at FETC are reported.

  12. Carbon Dioxide Capture from Flue Gas Using Dry Regenerable Sorbents

    SciTech Connect (OSTI)

    Thomas Nelson; David Green; Paul Box; Raghubir Gupta; Gennar Henningsen

    2007-06-30T23:59:59.000Z

    Regenerable sorbents based on sodium carbonate (Na{sub 2}CO{sub 3}) can be used to separate carbon dioxide (CO{sub 2}) from coal-fired power plant flue gas. Upon thermal regeneration and condensation of water vapor, CO{sub 2} is released in a concentrated form that is suitable for reuse or sequestration. During the research project described in this report, the technical feasibility and economic viability of a thermal-swing CO{sub 2} separation process based on dry, regenerable, carbonate sorbents was confirmed. This process was designated as RTI's Dry Carbonate Process. RTI tested the Dry Carbonate Process through various research phases including thermogravimetric analysis (TGA); bench-scale fixed-bed, bench-scale fluidized-bed, bench-scale co-current downflow reactor testing; pilot-scale entrained-bed testing; and bench-scale demonstration testing with actual coal-fired flue gas. All phases of testing showed the feasibility of the process to capture greater than 90% of the CO{sub 2} present in coal-fired flue gas. Attrition-resistant sorbents were developed, and these sorbents were found to retain their CO{sub 2} removal activity through multiple cycles of adsorption and regeneration. The sodium carbonate-based sorbents developed by RTI react with CO{sub 2} and water vapor at temperatures below 80 C to form sodium bicarbonate (NaHCO3) and/or Wegscheider's salt. This reaction is reversed at temperatures greater than 120 C to release an equimolar mixture of CO{sub 2} and water vapor. After condensation of the water, a pure CO{sub 2} stream can be obtained. TGA testing showed that the Na{sub 2}CO3 sorbents react irreversibly with sulfur dioxide (SO{sub 2}) and hydrogen chloride (HCl) (at the operating conditions for this process). Trace levels of these contaminants are expected to be present in desulfurized flue gas. The sorbents did not collect detectable quantities of mercury (Hg). A process was designed for the Na{sub 2}CO{sub 3}-based sorbent that includes a co-current downflow reactor system for adsorption of CO{sub 2} and a steam-heated, hollow-screw conveyor system for regeneration of the sorbent and release of a concentrated CO{sub 2} gas stream. An economic analysis of this process (based on the U.S. Department of Energy's National Energy Technology Laboratory's [DOE/NETL's] 'Carbon Capture and Sequestration Systems Analysis Guidelines') was carried out. RTI's economic analyses indicate that installation of the Dry Carbonate Process in a 500 MW{sub e} (nominal) power plant could achieve 90% CO{sub 2} removal with an incremental capital cost of about $69 million and an increase in the cost of electricity (COE) of about 1.95 cents per kWh. This represents an increase of roughly 35.4% in the estimated COE - which compares very favorable versus MEA's COE increase of 58%. Both the incremental capital cost and the incremental COE were projected to be less than the comparable costs for an equally efficient CO{sub 2} removal system based on monoethanolamine (MEA).

  13. Investigation of a mercury speciation technique for flue gas desulfurization materials

    SciTech Connect (OSTI)

    Lee, J.Y.; Cho K.; Cheng L.; Keener, T.C.; Jegadeesan G.; Al-Abed, S.R. [University of Cincinnati, Cincinnati, OH (United States). Department of Chemical and Materials Engineering

    2009-08-15T23:59:59.000Z

    Most of the synthetic gypsum generated from wet flue gas desulfurization (FGD) scrubbers is currently being used for wallboard production. Because oxidized mercury is readily captured by the wet FGD scrubber, and coal-fired power plants equipped with wet scrubbers desire to benefit from the partial mercury control that these systems provide, some mercury is likely to be bound in with the FGD gypsum and wallboard. In this study, the feasibility of identifying mercury species in the FGD gypsum and wallboard samples was investigated using a large sample size thermal desorption method and samples from power plants in Pennsylvania. Potential candidates of pure mercury standards including mercuric chloride, mercurous chloride, mercury oxide, mercury sulfide, and mercuric sulfate were analyzed to compare their results with those obtained from FGD gypsum and dry wallboard samples. Although any of the thermal evolutionary curves obtained from these pure mercury standards did not exactly match with those of the FGD gypsum and wallboard samples, it was identified that Hg{sub 2}Cl{sub 2} and HgCl{sub 2} could be candidates. An additional chlorine analysis from the gypsum and wallboard samples indicated that the chlorine concentrations were approximately 2 orders of magnitude higher than the mercury concentrations, suggesting possible chlorine association with mercury. 21 refs., 5 figs., 3 tabs.

  14. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Alejandro Lopez-Ortiz; Douglas P. Harrison; Ya Liang

    2001-05-01T23:59:59.000Z

    Electrobalance studies of calcination and carbonation of sodium bicarbonate materials were conducted at Louisiana State University. Calcination in an inert atmosphere was rapid and complete at 120 C. Carbonation was temperature dependent, and both the initial rate and the extent of reaction were found to decrease as temperature was increased between 60 and 80 C. A fluidization test apparatus was constructed at RTI and two sodium bicarbonate materials were fluidized in dry nitrogen at 22 C. The bed was completely fluidized at between 9 and 11 in. of water pressure drop. Kinetic rate expression derivations and thermodynamic calculations were conducted at RTI. Based on literature data, a simple reaction rate expression, which is zero order in carbon dioxide and water, was found to provide the best fit against reciprocal temperature. Simulations based on process thermodynamics suggested that approximately 26 percent of the carbon dioxide in flue gas could be recovered using waste heat available at 240 C.

  15. Advanced environmental control technology for flue gas cleanup

    SciTech Connect (OSTI)

    Pennline, H.W.; Drummond, C.J.

    1987-01-01T23:59:59.000Z

    The U.S. Department of Energy (DOE) oversees a substantial research and development effort to develop advanced environmental control technology for coal-fired sources. This Flue Gas Cleanup Program is currently divided into five areas: combined SO/sub 2//NO/sub x/ control, SO/sub 2/ control, particulate control, NO/sub x/ control, and small-scale boiler emission control. Projects in these areas range from basic research studies to proof-of-concept-scale evaluations. Projects in the DOE program are conducted by universities, national laboratories, industrial organizations, and in-house research at the Pittsburgh Energy Technology Center. An overview of the program, together with brief descriptions of the status of individual projects are given.

  16. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Jeffrey W. Portzer; Raghubir P. Gupta; William J. McMichael; Thomas Nelson

    2004-07-01T23:59:59.000Z

    This report describes research conducted between April 1, 2004 and June 30, 2004 on the preparation and use of dry regenerable sorbents for removal of carbon dioxide from flue gas. Support materials and supported sorbents were prepared by spray drying. Sorbents consisting of 20 to 50% sodium carbonate on a ceramic support were prepared by spray drying in batches of approximately 300 grams. The supported sorbents exhibited greater carbon dioxide capture rates than unsupported calcined sodium bicarbonate in laboratory tests. Preliminary process design and cost estimation for a retrofit application suggested that costs of a dry regenerable sodium carbonate-based process could be lower than those of a monoethanolamine absorption system. In both cases, the greatest part of the process costs come from power plant output reductions due to parasitic consumption of steam for recovery of carbon dioxide from the capture medium.

  17. Flue gas cleanup using the Moving-Bed Copper Oxide Process

    SciTech Connect (OSTI)

    Pennline, Henry W.; Hoffman, James S.

    2013-10-01T23:59:59.000Z

    The use of copper oxide on a support had been envisioned as a gas cleanup technique to remove sulfur dioxide (SO{sub 2}) and nitric oxides (NO{sub x}) from flue gas produced by the combustion of coal for electric power generation. In general, dry, regenerable flue gas cleanup techniques that use a sorbent can have various advantages, such as simultaneous removal of pollutants, production of a salable by-product, and low costs when compared to commercially available wet scrubbing technology. Due to the temperature of reaction, the placement of the process into an advanced power system could actually increase the thermal efficiency of the plant. The Moving-Bed Copper Oxide Process is capable of simultaneously removing sulfur oxides and nitric oxides within the reactor system. In this regenerable sorbent technique, the use of the copper oxide sorbent was originally in a fluidized bed, but the more recent effort developed the use of the sorbent in a moving-bed reactor design. A pilot facility or life-cycle test system was constructed so that an integrated testing of the sorbent over absorption/regeneration cycles could be conducted. A parametric study of the total process was then performed where all process steps, including absorption and regeneration, were continuously operated and experimentally evaluated. The parametric effects, including absorption temperature, sorbent and gas residence times, inlet SO{sub 2} and NO{sub x} concentration, and flyash loadings, on removal efficiencies and overall operational performance were determined. Although some of the research results have not been previously published because of previous collaborative restrictions, a summary of these past findings is presented in this communication. Additionally, the potential use of the process for criteria pollutant removal in oxy-firing of fossil fuel for carbon sequestration purposes is discussed.

  18. Process for separating carbon dioxide from flue gas using sweep-based membrane separation and absorption steps

    DOE Patents [OSTI]

    Wijmans, Johannes G.; Baker, Richard W.; Merkel, Timothy C.

    2012-08-21T23:59:59.000Z

    A gas separation process for treating flue gases from combustion processes, and combustion processes including such gas separation. The invention involves routing a first portion of the flue gas stream to be treated to an absorption-based carbon dioxide capture step, while simultaneously flowing a second portion of the flue gas across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas to the combustor.

  19. Biomimetic Membrane for CO2 Capture from Flue Gas

    SciTech Connect (OSTI)

    Michael C. Trachtenberg

    2007-05-31T23:59:59.000Z

    These Phase III experiments successfully addressed several issues needed to characterize a permeator system for application to a pulverized coal (PC) burning furnace/boiler assuming typical post-combustion cleanup devices in place. We completed key laboratory stage optimization and modeling efforts needed to move towards larger scale testing. The SOPO addressed six areas. Task 1--Post-Combustion Particle Cleanup--The first object was to determine if the Carbozyme permeator performance was likely to be reduced by particles (materials) in the flue gas stream that would either obstruct the mouth of the hollow fibers (HF) or stick to the HF bore wall surface. The second, based on the Acceptance Standards (see below), was to determine whether it would be preferable to clean the inlet gas stream (removing acid gases and particulates) or to develop methods to clean the Carbozyme permeator if performance declined due to HF block. We concluded that condensation of particle and particulate emissions, in the heat exchanger, could result in the formation of very sticky sulfate aerosols with a strong likelihood of obtruding the HF. These must be managed carefully and minimized to near-zero status before entering the permeator inlet stream. More extensive post-combustion cleanup is expected to be a necessary expense, independent of CO{sub 2} capture technology This finding is in agreement with views now emerging in the literature for a variety of CO{sub 2} capture methods. Task 2--Water Condensation--The key goal was to monitor and control temperature distributions within the permeator and between the permeator and its surroundings to determine whether water condensation in the pores or the HF bore would block flow, decreasing performance. A heat transfer fluid and delivery system were developed and employed. The result was near isothermal performance that avoided all instances of flow block. Direct thermocouple measurements provided the basis for developing a heat transfer model that supports prediction of heat transfer profiles for larger permeators Tasks 3. 4.1, 4.2--Temperature Range of Enzymes--The goal was to determine if the enzyme operating temperature would limit the range of thermal conditions available to the capture system. We demonstrated the ability of various isozymes (enzyme variants) to operate from 4-85 C. Consequently, the operating characteristics of the enzyme are not a controlling factor. Further, any isozyme whose upper temperature bound is at least 10 C greater than that of the planned inlet temperature will be stable under unanticipated, uncontrolled 'hiccups' in power plant operation. Task 4.4, 4.4--Examination of the Effects of SOx and NOx on Enzyme Activity (Development of Flue Gas Composition Acceptance Standards)--The purpose was to define the inlet gas profile boundaries. We examined the potential adverse effects of flue gas constituents including different acids from to develop an acceptance standard and compared these values to actual PC flue gas composition. Potential issues include changes in pH, accumulation of specific inhibitory anions and cations. A model was developed and validated by test with a SO{sub 2}-laden stream. The predicted and actual data very largely coincided. The model predicted feed stream requirements to allow continuous operation in excess of 2500 hours. We developed operational (physical and chemical) strategies to avoid or ameliorate these effects. Avoidance, the preferred strategy (noted above), is accomplished by more extensive cleanup of the flue gas stream. Task 5--Process Engineering Model--We developed a process-engineering model for two purposes. The first was to predict the physical and chemical status at each test point in the design as a basis for scale-up. The second was to model the capital and operating cost of the apparatus. These were accomplished and used to predict capex, opex and cost of energy. Task 6--Preliminary Commercialization Plan--We carried out analyses of the market and the competition by a variety of parameters. The conclusion was that there is a l

  20. Multi-component removal in flue gas by aqua ammonia

    DOE Patents [OSTI]

    Yeh, James T. (Bethel Park, PA); Pennline, Henry W. (Bethel Park, PA)

    2007-08-14T23:59:59.000Z

    A new method for the removal of environmental compounds from gaseous streams, in particular, flue gas streams. The new method involves first oxidizing some or all of the acid anhydrides contained in the gas stream such as sulfur dioxide (SO.sub.2) and nitric oxide (NO) and nitrous oxide (N.sub.2O) to sulfur trioxide (SO.sub.3) and nitrogen dioxide (NO.sub.2). The gas stream is subsequently treated with aqua ammonia or ammonium hydroxide which captures the compounds via chemical absorption through acid-base or neutralization reactions. The products of the reactions can be collected as slurries, dewatered, and dried for use as fertilizers, or once the slurries have been dewatered, used directly as fertilizers. The ammonium hydroxide can be regenerated and recycled for use via thermal decomposition of ammonium bicarbonate, one of the products formed. There are alternative embodiments which entail stoichiometric scrubbing of nitrogen oxides and sulfur oxides with subsequent separate scrubbing of carbon dioxide.

  1. Confined zone dispersion flue gas desulfurization demonstration. Quarterly report No. 8, August 17, 1992--November 16, 1992

    SciTech Connect (OSTI)

    Not Available

    1993-09-27T23:59:59.000Z

    The CZD process involves injecting a finely atomized slurry of reactive lime into the flue gas duct work of a coal-fired utility boiler. The principle of the confined zone is to form a wet zone of slurry droplets in the middle of the duct confined in an envelope of hot gas between the wet zone and the duct walls. The lime slurry reacts with part of the SO{sub 2} in the gas, and the reaction products dry to form solid particles. A solids collector, typically an electrostatic precipitator (ESP) downstream from the point of injection, captures the reaction products along with the fly ash entrained in the flue gas. The goal of this demonstration is to prove the technical and economic feasibility of the CZD technology on a commercial scale. The process is expected to achieve 50% SO{sub 2} removal at lower capital and O&M costs than other systems. To achieve its objectives, the project is divided into the following three phases: Phase 1: Design and Permitting, Phase 2: Construction and Start-up, Phase 3: Operation and Disposition. Phase 1 activities were completed on January 31, 1991. Phase 2 activities were essentially concluded on July 31, 1991, and Phase 3a, Parametric Testing, was initiated on July 1, 1991. This Quarterly Technical Progress Report covers Phase 3b activities from August 17, 1992 through November 16, 1992.

  2. Effect of flue gas impurities on the process of injection and storage of carbon dioxide in depleted gas reservoirs

    E-Print Network [OSTI]

    Nogueira de Mago, Marjorie Carolina

    2005-11-01T23:59:59.000Z

    sequestration. In this thesis, I report my findings on the effect of flue gas ??impurities?? on the displacement of natural gas during CO2 sequestration, and results on unconfined compressive strength (UCS) tests to carbonate samples. In displacement experiments...

  3. Wet powder seal for gas containment

    DOE Patents [OSTI]

    Stang, Louis G. (Sayville, NY)

    1982-01-01T23:59:59.000Z

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  4. Heat exchanger design for thermoelectric electricity generation from low temperature flue gas streams

    E-Print Network [OSTI]

    Latcham, Jacob G. (Jacob Greco)

    2009-01-01T23:59:59.000Z

    An air-to-oil heat exchanger was modeled and optimized for use in a system utilizing a thermoelectric generator to convert low grade waste heat in flue gas streams to electricity. The NTU-effectiveness method, exergy, and ...

  5. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis 

    E-Print Network [OSTI]

    Nelson, R. L.

    1981-01-01T23:59:59.000Z

    New developments in closed loop combustion control are causing radical changes in the way combustion control systems are implemented. The recent availability of in line flue gas analyzers and microprocessor technology are teaming up to produce...

  6. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers 

    E-Print Network [OSTI]

    Miller, B.; Keon, E.

    1980-01-01T23:59:59.000Z

    Chemical technology has been used successfully to solve many of the operational and emissions problems that result from burning coal. This paper describes the use of blended chemical flue gas conditioners to significantly reduce particulate...

  7. Flue gas desulfurization : cost and functional analysis of large-scale and proven plants

    E-Print Network [OSTI]

    Tilly, Jean

    1983-01-01T23:59:59.000Z

    Flue Gas Desulfurization is a method of controlling the emission of sulfurs, which causes the acid rain. The following study is based on 26 utilities which burn coal, have a generating capacity of at least 50 Megawatts ...

  8. Noble Metal Catalysts for Mercury Oxidation in Utility Flue Gas: Gold, Palladium and Platinum Formulations

    SciTech Connect (OSTI)

    Presto, A.A.; Granite, E.J

    2008-07-01T23:59:59.000Z

    The use of noble metals as catalysts for mercury oxidation in flue gas remains an area of active study. To date, field studies have focused on gold and palladium catalysts installed at pilot scale. In this article, we introduce bench-scale experimental results for gold, palladium and platinum catalysts tested in realistic simulated flue gas. Our initial results reveal some intriguing characteristics of catalytic mercury oxidation and provide insight for future research into this potentially important process.

  9. CARBON DIOXIDE CAPTURE FROM FLUE GAS USING DRY REGENERABLE SORBENTS

    SciTech Connect (OSTI)

    David A. Green; Brian S. Turk; Raghubir P. Gupta; Douglas P. Harrison; Ya Liang

    2001-10-01T23:59:59.000Z

    The objective of this project is to develop a simple, inexpensive process to separate CO{sub 2} as an essentially pure stream from a fossil fuel combustion system using a regenerable, sodium-based sorbent. The sorbent being used in this project is sodium carbonate which is converted to sodium bicarbonate, ''baking soda,'' through reaction with carbon dioxide and water vapor. Sodium bicarbonate is regenerated to sodium carbonate when heated, producing a nearly pure CO{sub 2} stream after condensation of water vapor. Testing conducted previously confirmed that the reaction rate and achievable CO{sub 2} capacity of sodium carbonate decreased with increasing temperature, and that the global rate of reaction of sodium carbonate to sodium bicarbonate increased with an increase in both CO{sub 2} and H{sub 2}O concentrations. Energy balance calculations indicated that the rate of heat removal from the particle surface may determine the reaction rate for a particular particle system. This quarter, thermogravimetric analyses (TGA) were conducted which indicated that calcination of sodium bicarbonate at temperatures as high as 200 C did not cause a significant decrease in activity in subsequent carbonation testing. When sodium bicarbonate was subjected to a five cycle calcination/carbonation test, activity declined slightly over the first two cycles but was constant thereafter. TGA tests were also conducted with two other potential sorbents. Potassium carbonate was found to be less active than sodium carbonate, at conditions of interest in preliminary TGA tests. Sodium carbonate monohydrate showed negligible activity. Testing was also conducted in a 2-inch internal diameter quartz fluidized-bed reactor system. A five cycle test demonstrated that initial removals of 10 to 15 percent of the carbon dioxide in a simulated flue gas could be achieved. The carbonation reaction proceeded at temperatures as low as 41 C. Future work by TGA and in fixed-bed, fluidized-bed, and transport reactor systems is planned to demonstrate the feasibility of this process in large scale operations to separate carbon dioxide from flue gas.

  10. Integration of a high efficiency flue gas cleanup process into advanced power systems

    SciTech Connect (OSTI)

    Hoffman, J.S.; Pennline, H.W.; Yeh, J.T.; Ratafia-Brown, J.A.; Gorokhov, V.A.

    1994-12-31T23:59:59.000Z

    The Moving-Bed Copper Oxide Process, a dry, regenerable flue gas cleanup technology, can simultaneously remove sulfur dioxide (SO{sub 2}) and nitrogen oxide (NO{sub x}) emissions from the flue gases generated by coal combustion. While this advanced air pollution abatement process technology has only been previously considered for conventional utility system applications, its unique design characteristics make it quite advantageous for use in advanced power systems, such as those pulverized-coal-fired systems defined in the US Department of Energy`s Combustion 2000 Initiative. Integration of this flue gas cleanup process into the advanced power systems is technically and economically assessed and compared with several commercially available flue gas cleanup processes. An update on the status of the Moving-Bed Copper oxide Process development is also presented.

  11. Evaluation of BOC'S Lotox Process for the Oxidation of Elemental Mercury in Flue Gas from a Coal-Fired Boiler

    SciTech Connect (OSTI)

    Khalid Omar

    2008-04-30T23:59:59.000Z

    Linde's Low Temperature Oxidation (LoTOx{trademark}) process has been demonstrated successfully to remove more than 90% of the NOx emitted from coal-fired boilers. Preliminary findings have shown that the LoTOx{trademark} process can be as effective for mercury emissions control as well. In the LoTOx{trademark} system, ozone is injected into a reaction duct, where NO and NO{sub 2} in the flue gas are selectively oxidized at relatively low temperatures and converted to higher nitrogen oxides, which are highly water soluble. Elemental mercury in the flue gas also reacts with ozone to form oxidized mercury, which unlike elemental mercury is water-soluble. Nitrogen oxides and oxidized mercury in the reaction duct and residual ozone, if any, are effectively removed in a wet scrubber. Thus, LoTOx{trademark} appears to be a viable technology for multi-pollutant emission control. To prove the feasibility of mercury oxidation with ozone in support of marketing LoTOx{trademark} for multi-pollutant emission control, Linde has performed a series of bench-scale tests with simulated flue gas streams. However, in order to enable Linde to evaluate the performance of the process with a flue gas stream that is more representative of a coal-fired boiler; one of Linde's bench-scale LoTOx{trademark} units was installed at WRI's combustion test facility (CTF), where a slipstream of flue gas from the CTF was treated. The degree of mercury and NOx oxidation taking place in the LoTOx{trademark} unit was quantified as a function of ozone injection rates, reactor temperatures, residence time, and ranks of coals. The overall conclusions from these tests are: (1) over 80% reduction in elemental mercury and over 90% reduction of NOx can be achieved with an O{sub 3}/NO{sub X} molar ratio of less than two, (2) in most of the cases, a lower reactor temperature is preferred over a higher temperature due to ozone dissociation, however, the combination of both low residence time and high temperature proved to be effective in the oxidation of both NOx and elemental mercury, and (3) higher residence time, lower temperature, and higher molar ratio of O{sub 3}/NOx contributed to the highest elemental mercury and NOx reductions.

  12. Chaoticity of the Wet Granular Gas

    E-Print Network [OSTI]

    A. Fingerle; S. Herminghaus; V. Yu. Zaburdaev

    2007-05-22T23:59:59.000Z

    In this work we derive an analytic expression for the Kolmogorov-Sinai entropy of dilute wet granular matter, valid for any spatial dimension. The grains are modelled as hard spheres and the influence of the wetting liquid is described according to the Capillary Model, in which dissipation is due to the hysteretic cohesion force of capillary bridges. The Kolmogorov-Sinai entropy is expanded in a series with respect to density. We find a rapid increase of the leading term when liquid is added. This demonstrates the sensitivity of the granular dynamics to humidity, and shows that the liquid significantly increases the chaoticity of the granular gas.

  13. In the field. Pilot project uses innovative process to capture CO{sub 2} from flue gas

    SciTech Connect (OSTI)

    NONE

    2008-04-01T23:59:59.000Z

    A pilot project at We Energies' Pleasant Prairie Power Plant uses chilled ammonia to capture CO{sub 2} from flue gas. 3 photos.

  14. Comment on the “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”

    SciTech Connect (OSTI)

    Granite, E.J.; Presto, A.A.

    2008-09-01T23:59:59.000Z

    A communication in response to the excellent and timely paper entitled “Role of SO2 for Elemental Mercury Removal from Coal Combustion Flue Gas by Activated Carbon”.

  15. Near-Zero Emissions Oxy-Combustion Flue Gas Purification

    SciTech Connect (OSTI)

    Minish Shah; Nich Degenstein; Monica Zanfir; Rahul Solunke; Ravi Kumar; Jennifer Bugayong; Ken Burgers

    2012-06-30T23:59:59.000Z

    The objectives of this project were to carry out an experimental program to enable development and design of near zero emissions (NZE) CO{sub 2} processing unit (CPU) for oxy-combustion plants burning high and low sulfur coals and to perform commercial viability assessment. The NZE CPU was proposed to produce high purity CO{sub 2} from the oxycombustion flue gas, to achieve > 95% CO{sub 2} capture rate and to achieve near zero atmospheric emissions of criteria pollutants. Two SOx/NOx removal technologies were proposed depending on the SOx levels in the flue gas. The activated carbon process was proposed for power plants burning low sulfur coal and the sulfuric acid process was proposed for power plants burning high sulfur coal. For plants burning high sulfur coal, the sulfuric acid process would convert SOx and NOx in to commercial grade sulfuric and nitric acid by-products, thus reducing operating costs associated with SOx/NOx removal. For plants burning low sulfur coal, investment in separate FGD and SCR equipment for producing high purity CO{sub 2} would not be needed. To achieve high CO{sub 2} capture rates, a hybrid process that combines cold box and VPSA (vacuum pressure swing adsorption) was proposed. In the proposed hybrid process, up to 90% of CO{sub 2} in the cold box vent stream would be recovered by CO{sub 2} VPSA and then it would be recycled and mixed with the flue gas stream upstream of the compressor. The overall recovery from the process will be > 95%. The activated carbon process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx, thus exceeding the performance targets of >99% and >95%, respectively. The process was also found to be suitable for power plants burning both low and high sulfur coals. Sulfuric acid process did not meet the performance expectations. Although it could achieve high SOx (>99%) and NOx (>90%) removal efficiencies, it could not produce by-product sulfuric and nitric acids that meet the commercial product specifications. The sulfuric acid will have to be disposed of by neutralization, thus lowering the value of the technology to same level as that of the activated carbon process. Therefore, it was decided to discontinue any further efforts on sulfuric acid process. Because of encouraging results on the activated carbon process, it was decided to add a new subtask on testing this process in a dual bed continuous unit. A 40 days long continuous operation test confirmed the excellent SOx/NOx removal efficiencies achieved in the batch operation. This test also indicated the need for further efforts on optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level. The VPSA process was tested in a pilot unit. It achieved CO{sub 2} recovery of > 95% and CO{sub 2} purity of >80% (by vol.) from simulated cold box feed streams. The overall CO{sub 2} recovery from the cold box VPSA hybrid process was projected to be >99% for plants with low air ingress (2%) and >97% for plants with high air ingress (10%). Economic analysis was performed to assess value of the NZE CPU. The advantage of NZE CPU over conventional CPU is only apparent when CO{sub 2} capture and avoided costs are compared. For greenfield plants, cost of avoided CO{sub 2} and cost of captured CO{sub 2} are generally about 11-14% lower using the NZE CPU compared to using a conventional CPU. For older plants with high air intrusion, the cost of avoided CO{sub 2} and capture CO{sub 2} are about 18-24% lower using the NZE CPU. Lower capture costs for NZE CPU are due to lower capital investment in FGD/SCR and higher CO{sub 2} capture efficiency. In summary, as a result of this project, we now have developed one technology option for NZE CPU based on the activated carbon process and coldbox-VPSA hybrid process. This technology is projected to work for both low and high sulfur coal plants. The NZE CPU technology is projected to achieve near zero stack emissions

  16. Diatomaceous earth and activated bauxite used as granular sorbents for the removal of sodium chloride vapor from hot flue gas

    SciTech Connect (OSTI)

    Lee, S.H.D.; Swift, W.M.; Johnson, I.

    1980-01-01T23:59:59.000Z

    Diatomaceous earth and activated bauxite were tested as granular sorbents for use as filter media in granular-bed filters for the removal of gaseous alkali metal compounds from the hot (800/sup 0/C) flue gas of PFBC. Tests were performed at atmospheric pressure, using NaCl vapor transported in relatively dry simulated flue gas of PFBC. Either a fixed-bed combustor or a high-temperature sorption test rig was used. The effects of sorbent bed temperature, superficial gas velocity, gas hourly space velocity, and NaCl-vapor concentration in flue gas on the sorption behavior of these two sorbents and their ultimate sorption capacities were determined. Both diatomaceous earth and activated bauxite were found to be very effective in removing NaCl vapor from flue gas. Preliminary cost evaluations showed that they are economically attractive as granular sorbents for cleaning alkali vapor from simulated flue gas.

  17. Proof-of concept testing of the advanced NOXSO flue gas cleanup process. Final report

    SciTech Connect (OSTI)

    Not Available

    1993-04-01T23:59:59.000Z

    The NOXSO Process uses a regenerable sorbent that removes SO{sub 2} and NO{sub x} simultaneously from flue gas. The sorbent is a stabilized {gamma}-alumina bed impregnated with sodium carbonate. The process was successfully tested at three different scales, equivalent to 0.017, 0.06 and 0.75 MW of flue gas generated from a coal-fired power plant. The Proof-of-Concept (POC) Test is the last test prior to a full-scale demonstration. A slip stream of flue gas equivalent to a 5 MW coal-fired power plant was used for the POC test. This paper summarizes the NOXSO POC plant and its test results.

  18. Experimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas

    E-Print Network [OSTI]

    Subramanian, Venkat

    great potential for converting flue gas to biomass. Microalgae can capture solar energy more efficientlyExperimental analysis and model-based optimization of microalgae growth in photo-bioreactors using flue gas Lian He, Venkat R. Subramanian, Yinjie J. Tang* Department of Energy, Environmental

  19. Effect of connate water on miscible displacement of reservoir oil by flue gas 

    E-Print Network [OSTI]

    Maxwell, H. D.

    1960-01-01T23:59:59.000Z

    EFFECT OF CONNATE WATER ON MISCIBLE DISPLACEMENT OF RESERVOIR OIL BY FLUE GAS A Thesis By H. D. MAXWELL, JR. Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements... for the degree of MASTER OF SCIENCE Au gus t, 19 60 Major Subject: PETROLEUM ENGINEERING EFFECT OF CONNATE WATER ON MISCIBLE DISPLACEMENT OF RESERVOIR OIL BY FLUE GAS A Thesis H. D. MAXWELL, JR. Approved as to style and content by: haxrman of ommitte...

  20. Carbon dioxide absorber and regeneration assemblies useful for power plant flue gas

    DOE Patents [OSTI]

    Vimalchand, Pannalal; Liu, Guohai; Peng, Wan Wang

    2012-11-06T23:59:59.000Z

    Disclosed are apparatus and method to treat large amounts of flue gas from a pulverized coal combustion power plant. The flue gas is contacted with solid sorbents to selectively absorb CO.sub.2, which is then released as a nearly pure CO.sub.2 gas stream upon regeneration at higher temperature. The method is capable of handling the necessary sorbent circulation rates of tens of millions of lbs/hr to separate CO.sub.2 from a power plant's flue gas stream. Because pressurizing large amounts of flue gas is cost prohibitive, the method of this invention minimizes the overall pressure drop in the absorption section to less than 25 inches of water column. The internal circulation of sorbent within the absorber assembly in the proposed method not only minimizes temperature increases in the absorber to less than 25.degree. F., but also increases the CO.sub.2 concentration in the sorbent to near saturation levels. Saturating the sorbent with CO.sub.2 in the absorber section minimizes the heat energy needed for sorbent regeneration. The commercial embodiments of the proposed method can be optimized for sorbents with slower or faster absorption kinetics, low or high heat release rates, low or high saturation capacities and slower or faster regeneration kinetics.

  1. Comparison of thermoelectric and permeation dryers for sulfur dioxide removal during sample conditioning of wet gas streams

    SciTech Connect (OSTI)

    Dunder, T.A. [Entropy, Inc., Research Triangle Park, NC (United States). Research Div.; Leighty, D.A. [Perma Pure, Inc., Toms River, NJ (United States)

    1997-12-31T23:59:59.000Z

    Flue gas conditioning for moisture removal is commonly performed for criteria pollutant measurements, in particular for extractive CEM systems at combustion sources. An implicit assumption is that conditioning systems specifically remove moisture without affecting pollutant and diluent concentrations. Gas conditioning is usually performed by passing the flue gas through a cold trap (Peltier or thermoelectric dryer) to remove moisture by condensation, which is subsequently extracted by a peristaltic pump. Many air pollutants are water-soluble and potentially susceptible to removal in a condensation dryer from gas interaction with liquid water. An alternative technology for gas conditioning is the permeation dryer, where the flue gas passes through a selectively permeable membrane for moisture removal. In this case water is transferred through the membrane while other pollutants are excluded, and the gas does not contact condensed liquid. Laboratory experiments were performed to measure the relative removal of a water-soluble pollutant (sulfur dioxide, SO{sub 2}) by the two conditioning techniques. A wet gas generating system was used to create hot, wet gas streams of known composition (15% and 30% moisture, balance nitrogen) and flow rate. Pre-heated SO{sub 2} was dynamically spiked into the wet stream using mass flow meters to achieve concentrations of 20, 50, and 100 ppm. The spiked gas was directed through a heated sample line to either a thermoelectric or a permeation conditioning system. Two gas analyzers (Western Research UV gas monitor, KVB/Analect FTIR spectrometer) were used to measure the SO{sub 2} concentration after conditioning. Both analytic methods demonstrated that SO{sub 2} is removed to a significantly greater extent by the thermoelectric dryer. These results have important implications for SO{sub 2} monitoring and emissions trading.

  2. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard

    2003-12-01T23:59:59.000Z

    ADA Environmental Solutions (ADA-ES) has successfully completed a research and development program granted by the Department of Energy National Energy Technology Laboratory (NETL) to develop a family of non-toxic flue gas conditioning agents to provide utilities and industries with a cost-effective means of complying with environmental regulations on particulate emissions and opacity. An extensive laboratory screening of potential additives was completed followed by full-scale trials at four utility power plants. The developed cohesivity additives have been demonstrated on a 175 MW utility boiler that exhibited poor collection of unburned carbon in the electrostatic precipitator. With cohesivity conditioning, opacity spiking caused by rapping reentrainment was reduced and total particulate emissions were reduced by more than 30%. Ammonia conditioning was also successful in reducing reentrainment on the same unit. Conditioned fly ash from the process is expected to be suitable for dry or wet disposal and for concrete admixture.

  3. Synthetic aggregates prepared from flue gas desulfurization by-products using various binder materials

    SciTech Connect (OSTI)

    Bellucci, J.; Graham, U.M.; Hower, J.C.; Robl, T.L. [Univ. of Kentucky, Lexington, KY (United States). Center for Applied Energy Research

    1994-12-31T23:59:59.000Z

    Flue Gas Desulfurization (FGD) by-products can be converted into environmentally safe and structurally stable aggregates. One type of synthetic aggregate was prepared using an optimum mixture of (FGD) by-products, fly ash, and water. Mineral reactions have been examined using X-ray diffraction and scanning electron microscope.

  4. Separation of Carbon Dioxide from Nitrogen and Water in Flue Gas Streams 

    E-Print Network [OSTI]

    Mera, Hilda 1989-

    2012-04-12T23:59:59.000Z

    are determined by the mean-square displacement method derived by Albert Einstein. The diffusion coefficients of each component in the flue gas are analyzed to examine the effect of temperature in diffusion coefficients and study the motion of the gases in the MOF...

  5. High Temperature Flue Gas Desulfurization In Moving Beds With Regenerable Copper Based Sorbents

    SciTech Connect (OSTI)

    Cengiz, P.A.; Ho, K.K.; Abbasian, J.; Lau, F.S.

    2002-09-20T23:59:59.000Z

    The objective of this study was to develop new and improved regenerable copper based sorbent for high temperature flue gas desulfurization in a moving bed application. The targeted areas of sorbent improvement included higher effective capacity, strength and long-term durability for improved process control and economic utilization of the sorbent.

  6. MEMBRANE PROCESS TO SEQUESTER CO2 FROM POWER PLANT FLUE GAS

    SciTech Connect (OSTI)

    Tim Merkel; Karl Amo; Richard Baker; Ramin Daniels; Bilgen Friat; Zhenjie He; Haiqing Lin; Adrian Serbanescu

    2009-03-31T23:59:59.000Z

    The objective of this project was to assess the feasibility of using a membrane process to capture CO2 from coal-fired power plant flue gas. During this program, MTR developed a novel membrane (Polaris™) with a CO2 permeance tenfold higher than commercial CO2-selective membranes used in natural gas treatment. The Polaris™ membrane, combined with a process design that uses a portion of combustion air as a sweep stream to generate driving force for CO2 permeation, meets DOE post-combustion CO2 capture targets. Initial studies indicate a CO2 separation and liquefaction cost of $20 - $30/ton CO2 using about 15% of the plant energy at 90% CO2 capture from a coal-fired power plant. Production of the Polaris™ CO2 capture membrane was scaled up with MTR’s commercial casting and coating equipment. Parametric tests of cross-flow and countercurrent/sweep modules prepared from this membrane confirm their near-ideal performance under expected flue gas operating conditions. Commercial-scale, 8-inch diameter modules also show stable performance in field tests treating raw natural gas. These findings suggest that membranes are a viable option for flue gas CO2 capture. The next step will be to conduct a field demonstration treating a realworld power plant flue gas stream. The first such MTR field test will capture 1 ton CO2/day at Arizona Public Service’s Cholla coal-fired power plant, as part of a new DOE NETL funded program.

  7. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2014-06-01T23:59:59.000Z

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA as well as flue gas from coal combustion. This topical report covers Phase 2b, which is the construction phase of pilot demonstration subsystems that make up the integrated plant. The subsystems included are the mineralization subsystem, the Alkalinity Based on Low Energy (ABLE) subsystem, the waste calcium oxide processing subsystem, and the fiber cement board production subsystem. The fully integrated plant is now capable of capturing CO2 from various sources (gas and coal) and mineralizing into a reactive calcium carbonate binder and subsequently producing commercial size (4ftx8ft) fiber cement boards. The topical report provides a description of the “as built” design of these subsystems and the results of the commissioning activities that have taken place to confirm operability. At the end of Phase 2b, the CCMP pilot demonstration is fully ready for testing.

  8. Microalgae Production from Power Plant Flue Gas: Environmental Implications on a Life Cycle Basis

    SciTech Connect (OSTI)

    Kadam, K. L.

    2001-06-22T23:59:59.000Z

    Power-plant flue gas can serve as a source of CO{sub 2} for microalgae cultivation, and the algae can be cofired with coal. This life cycle assessment (LCA) compared the environmental impacts of electricity production via coal firing versus coal/algae cofiring. The LCA results demonstrated lower net values for the algae cofiring scenario for the following using the direct injection process (in which the flue gas is directly transported to the algae ponds): SOx, NOx, particulates, carbon dioxide, methane, and fossil energy consumption. Carbon monoxide, hydrocarbons emissions were statistically unchanged. Lower values for the algae cofiring scenario, when compared to the burning scenario, were observed for greenhouse potential and air acidification potential. However, impact assessment for depletion of natural resources and eutrophication potential showed much higher values. This LCA gives us an overall picture of impacts across different environmental boundaries, and hence, can help in the decision-making process for implementation of the algae scenario.

  9. Environmental performance of air staged combustor with flue gas recirculation to burn coal/biomass

    SciTech Connect (OSTI)

    Anuar, S.H.; Keener, H.M.

    1995-12-31T23:59:59.000Z

    The environmental and thermal performance of a 1.07 m diameter, 440 kW atmospheric fluidized bed combustor operated at 700{degrees}C-920{degrees}C and burning coal was studied. Flue gas recirculation was incorporated to enhance the thermal performance and air staging was used to control emissions of SO{sub 2}, CO, NO{sub x} and N{sub 2}O. Studies focused on the effect of excess air, firing rate, and use of sorbent on system performance. The recirculation-staging mode with limestone had the highest thermal efficiency (0.67) using the firing equation. Emission data showed that flue gas recirculation (ratio of 0.7) significantly reduced NO{sub x} emissions; and that use of limestone sorbent at a Ca/S ratio of 3 reduced SO{sub 2} emissions by 64% to approximately 0.310 g/MJ.

  10. Effect of connate water on miscible displacement of reservoir oil by flue gas

    E-Print Network [OSTI]

    Maxwell, H. D.

    1960-01-01T23:59:59.000Z

    for the degree of MASTER OF SCIENCE Au gus t, 19 60 Major Subject: PETROLEUM ENGINEERING EFFECT OF CONNATE WATER ON MISCIBLE DISPLACEMENT OF RESERVOIR OIL BY FLUE GAS A Thesis H. D. MAXWELL, JR. Approved as to style and content by: haxrman of ommitte... of the petroleum industry there has been a continually increasing search for more economical and more efficient methods for increasing the primary recovery from an oil reservoir. Better production practices, including pressure maintenance programs using both...

  11. Flue Gas Conditioning to Reduce Particulate Emissions in Industrial Coal-Fired Boilers

    E-Print Network [OSTI]

    Miller, B.; Keon, E.

    1980-01-01T23:59:59.000Z

    FLUE GAS CONDITIONING TO REDUCE PARTICULATE EMISSIONS IN INDUSTRIAL COAL-FIRED BOILERS Barry Miller and Ed Keon Apollo Technologies, Inc. Whippany, New Jersey ABSTRACT Chemical technology has been used successfully to solve many... inspection of the ESP, careful observation of ESP controls to determine spark rate and voltage drop during sparking, in-situ resistivity mea surements, rapper on-off observations, and a re view of records to investigate the relationship of boiler...

  12. New Developments in Closed Loop Combustion Control Using Flue Gas Analysis

    E-Print Network [OSTI]

    Nelson, R. L.

    1981-01-01T23:59:59.000Z

    NEW DEVELOPMENTS IN CLOSED LOOP COMBUSTION CONTROL USING FLUE GAS ANALYSIS Robert L. Nelson Westinghouse Computer &Instrumentation Div. Orrville, Ohio Introduction New developments in closed loop combustion control are causing radical changes... the Third Industrial Energy Technology Conference Houston, TX, April 26-29, 1981 i The Westinghouse Model 215 analyzer, shown in j Figure 8, has a very short sampling path and has be~n used on many high temperature applications befor~ a high temperature...

  13. Investigation of the moving-bed copper oxide process for flue gas cleanup

    SciTech Connect (OSTI)

    Pennline, H.W.; Hoffman, J.S.; Yeh, J.T. [Dept. of Energy, Pittsburgh, PA (United States). Pittsburgh Energy Technology Center; Resnik, K.P.; Vore, P.A. [Parsons Power Group, Inc., Pittsburgh, PA (United States)

    1996-12-31T23:59:59.000Z

    The Moving-Bed Copper Oxide Process is a dry, regenerable sorbent technique that uses supported copper oxide sorbent to simultaneously remove SO{sub 2} and NO{sub x} emissions from flue gas generated by coal combustion. The process can be integrated into the design of advanced power systems, such as the Low-Emission Boiler System (LEBS) or the High-Performance Power System (HIPPS). This flue gas cleanup technique is currently being evaluated in a life-cycle test system (LCTS) with a moving-bed flue gas contactor at DOE`s Pittsburgh Energy Technology Center. An experimental data base being established will be used to verify reported technical and economic advantages, optimize process conditions, provide scaleup information, and validate absorber and regenerator mathematical models. In this communication, the results from several process parametric test series with the LCTS are discussed. The effects of various absorber and regenerator parameters on sorbent performance (e.g., SO{sub 2} removal) were investigated. Sorbent spheres of 1/8-in diameter were used as compared to 1/16-in sized sorbent of a previous study. Also discussed are modifications to the absorber to improve the operability of the LCTS when fly ash is present during coal combustion.

  14. Analysis of CO2 Separation from Flue Gas, Pipeline Transportation, and Sequestration in Coal

    SciTech Connect (OSTI)

    Eric P. Robertson

    2007-09-01T23:59:59.000Z

    This report was written to satisfy a milestone of the Enhanced Coal Bed Methane Recovery and CO2 Sequestration task of the Big Sky Carbon Sequestration project. The report begins to assess the costs associated with separating the CO2 from flue gas and then injecting it into an unminable coal seam. The technical challenges and costs associated with CO2 separation from flue gas and transportation of the separated CO2 from the point source to an appropriate sequestration target was analyzed. The report includes the selection of a specific coal-fired power plant for the application of CO2 separation technology. An appropriate CO2 separation technology was identified from existing commercial technologies. The report also includes a process design for the chosen technology tailored to the selected power plant that used to obtain accurate costs of separating the CO2 from the flue gas. In addition, an analysis of the costs for compression and transportation of the CO2 from the point-source to an appropriate coal bed sequestration site was included in the report.

  15. Alternative formulations of regenerable flue gas cleanup catalysts. Progress report, September 1, 1990--August 31, 1991

    SciTech Connect (OSTI)

    Mitchell, M.B.; White, M.G.

    1991-12-31T23:59:59.000Z

    The major source of man-made SO{sub 2} in the atmosphere is the burning of coal for electric power generation. Coal-fired utility plants are also large sources of NO{sub x} pollution. Regenerable flue gas desulfurization/NO{sub x} abatement catalysts provide one mechanism of simultaneously removing SO{sub 2} and NO{sub x} species from flue gases released into the atmosphere. The purpose of this project is to examine routes of optimizing the adsorption efficiency, the adsorption capacity, and the ease of regeneration of regenerable flue gas cleanup catalysts. We are investigating two different mechanisms for accomplishing this goal. The first involves the use of different alkali and alkaline earth metals as promoters for the alumina sorbents to increase the surface basicity of the sorbent and thus adjust the number and distribution of adsorption sites. The second involves investigation of non-aqueous impregnation, as opposed to aqueous impregnation, as a method to obtain an evenly dispersed monolayer of the promoter on the surface.

  16. Pulsed plasma treatment of polluted gas using wet-/low-temperature corona reactors

    SciTech Connect (OSTI)

    Shimizu, Kazuo; Kinoshita, Katsuhiro; Yanagihara, Kenya; Rajanikanth, B.S.; Katsura, Shinji; Mizuno, Akira [Toyohashi Univ. of Technology, Aichi (Japan). Dept. of Ecological Engineering] [Toyohashi Univ. of Technology, Aichi (Japan). Dept. of Ecological Engineering

    1997-09-01T23:59:59.000Z

    Application of pulsed plasma for gas cleaning is gaining prominence in recent years, mainly from the energy consideration point of view. Normally, the gas treatment is carried out at or above room temperature by the conventional dry-type corona reactor. However, this treatment is still inadequate for the removal of certain stable gases present in the exhaust/flue gas mixture. The authors report here some interesting results of treatment of such stable gases like N{sub 2}O with pulsed plasma at subambient temperature. Also reported in this paper are improvements in DeNO/DeNO{sub x} efficiency using unconventional wet-type reactors, designed and fabricated by us, and operating at different subambient temperatures. DeNO/DeNO{sub x} by the pulsed-plasma process is mainly due to oxidation, but reduction takes place at the same time. When the wet-type reactor was used, the NO{sub 2} product was absorbed by water film and higher DeNO{sub x} efficiency could be achieved. Apart from laboratory tests on simulated gas mixtures, field tests were also carried out on the exhaust gas of an 8-kW diesel engine. A comparative analysis of the various tests are presented, together with a note on the energy consideration.

  17. Using Flue Gas Huff 'n Puff Technology and Surfactants to Increase Oil Production from the Antelope Shale Formation of the Railroad Gap Oil Field

    SciTech Connect (OSTI)

    McWilliams, Michael

    2001-12-18T23:59:59.000Z

    This project was designed to test cyclic injection of exhaust flue gas from compressors located in the field to stimulate production from Antelope Shale zone producers. Approximately 17,000 m{sup 3} ({+-}600 MCF) of flue gas was to be injected into each of three wells over a three-week period, followed by close monitoring of production for response. Flue gas injection on one of the wells would be supplemented with a surfactant.

  18. Investigation of mercury transformation by HBr addition in a slipstream facility with real flue gas atmospheres of bituminous coal and Powder River Basin Coal

    SciTech Connect (OSTI)

    Yan Cao; Quanhai Wang; Chien-wei Chen; Bobby Chen; Martin Cohron; Yi-chuan Tseng; Cheng-chung Chiu; Paul Chu; Wei-Ping Pan [Western Kentucky University, Bowling Green, KY (United States). Institute for Combustion Science and Environmental Technology

    2007-09-15T23:59:59.000Z

    An investigation of speciated mercury transformation with the addition of hydrogen bromide (HBr) at elevated temperatures was conducted in a slipstream reactor with real flue gas atmospheres. Test results indicated that adding HBr into the flue gas at several parts per million strongly impacted the mercury oxidation and adsorption, which were dependent upon temperature ranges. Higher temperatures (in the range of 300-350 C) promoted mercury oxidation by HBr addition but did not promote mercury adsorption. Lower temperatures (in a range of 150-200 C) enhanced mercury adsorption on the fly ash by adding HBr. Test results also verified effects of flue gas atmospheres on the mercury oxidation by the addition of HBr, which included concentrations of chlorine and sulfur in the flue gas. Chlorine species seemed to be involved in the competition with bromine species in the mercury oxidation process. With the addition of HBr at 3 ppm at a temperature of about 330 C, the additional mercury oxidation could be reached by about 55% in a flue gas atmosphere by burning PRB coal in the flue gas and by about 20% in a flue gas by burning bituminous coal. These are both greater than the maximum gaseous HgBr2 percentage in the flue gas (35% for PRB coal and 5% for bituminous coal) by thermodynamic equilibrium analysis predictions under the same conditions. This disagreement may indicate a greater complexity of mercury oxidation mechanisms by the addition of HBr. It is possible that bromine species promote activated chlorine species generation in the flue gas, where the kinetics of elemental mercury oxidation were enhanced. However, SO{sub 2} in the flue gas may involve the consumption of the available activated chlorine species. Thus, the higher mercury oxidation rate by adding bromine under the flue gas by burning PRB coal may be associated with its lower SO{sub 2} concentration in the flue gas. 39 refs., 8 figs., 4 tabs.

  19. An investigation of sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Haddad, G.J.; Hargis, R.A. [Dept. of Energy, Pittsburgh, PA (United States). Federal Energy Technology Center

    1998-12-31T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from a carrier gas. An on-line atomic fluorescence spectrophotometer, used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  20. Catalysts for oxidation of mercury in flue gas

    DOE Patents [OSTI]

    Granite, Evan J. (Wexford, PA); Pennline, Henry W. (Bethel Park, PA)

    2010-08-17T23:59:59.000Z

    Two new classes of catalysts for the removal of heavy metal contaminants, especially mercury (Hg) from effluent gases. Both of these classes of catalysts are excellent absorbers of HCl and Cl.sub.2 present in effluent gases. This adsorption of oxidizing agents aids in the oxidation of heavy metal contaminants. The catalysts remove mercury by oxidizing the Hg into mercury (II) moieties. For one class of catalysts, the active component is selected from the group consisting of iridium (Ir) and iridum-platinum (Ir/Pt) alloys. The Ir and Ir/Pt alloy catalysts are especially corrosion resistant. For the other class of catalyst, the active component is partially combusted coal or "Thief" carbon impregnated with Cl.sub.2. Untreated Thief carbon catalyst can be self-activating in the presence of effluent gas streams. The Thief carbon catalyst is disposable by means of capture from the effluent gas stream in a particulate collection device (PCD).

  1. Membrane Process to Capture CO{sub 2} from Coal-Fired Power Plant Flue Gas

    SciTech Connect (OSTI)

    Merkel, Tim; Wei, Xiaotong; Firat, Bilgen; He, Jenny; Amo, Karl; Pande, Saurabh; Baker, Richard; Wijmans, Hans; Bhown, Abhoyjit

    2012-03-31T23:59:59.000Z

    This final report describes work conducted for the U.S. Department of Energy National Energy Technology Laboratory (DOE NETL) on development of an efficient membrane process to capture carbon dioxide (CO{sub 2}) from power plant flue gas (award number DE-NT0005312). The primary goal of this research program was to demonstrate, in a field test, the ability of a membrane process to capture up to 90% of CO{sub 2} in coal-fired flue gas, and to evaluate the potential of a full-scale version of the process to perform this separation with less than a 35% increase in the levelized cost of electricity (LCOE). Membrane Technology and Research (MTR) conducted this project in collaboration with Arizona Public Services (APS), who hosted a membrane field test at their Cholla coal-fired power plant, and the Electric Power Research Institute (EPRI) and WorleyParsons (WP), who performed a comparative cost analysis of the proposed membrane CO{sub 2} capture process. The work conducted for this project included membrane and module development, slipstream testing of commercial-sized modules with natural gas and coal-fired flue gas, process design optimization, and a detailed systems and cost analysis of a membrane retrofit to a commercial power plant. The Polaris? membrane developed over a number of years by MTR represents a step-change improvement in CO{sub 2} permeance compared to previous commercial CO{sub 2}-selective membranes. During this project, membrane optimization work resulted in a further doubling of the CO{sub 2} permeance of Polaris membrane while maintaining the CO{sub 2}/N{sub 2} selectivity. This is an important accomplishment because increased CO{sub 2} permeance directly impacts the membrane skid cost and footprint: a doubling of CO{sub 2} permeance halves the skid cost and footprint. In addition to providing high CO{sub 2} permeance, flue gas CO{sub 2} capture membranes must be stable in the presence of contaminants including SO{sub 2}. Laboratory tests showed no degradation in Polaris membrane performance during two months of continuous operation in a simulated flue gas environment containing up to 1,000 ppm SO{sub 2}. A successful slipstream field test at the APS Cholla power plant was conducted with commercialsize Polaris modules during this project. This field test is the first demonstration of stable performance by commercial-sized membrane modules treating actual coal-fired power plant flue gas. Process design studies show that selective recycle of CO{sub 2} using a countercurrent membrane module with air as a sweep stream can double the concentration of CO{sub 2} in coal flue gas with little energy input. This pre-concentration of CO{sub 2} by the sweep membrane reduces the minimum energy of CO{sub 2} separation in the capture unit by up to 40% for coal flue gas. Variations of this design may be even more promising for CO{sub 2} capture from NGCC flue gas, in which the CO{sub 2} concentration can be increased from 4% to 20% by selective sweep recycle. EPRI and WP conducted a systems and cost analysis of a base case MTR membrane CO{sub 2} capture system retrofitted to the AEP Conesville Unit 5 boiler. Some of the key findings from this study and a sensitivity analysis performed by MTR include: The MTR membrane process can capture 90% of the CO{sub 2} in coal flue gas and produce high-purity CO{sub 2} (>99%) ready for sequestration. CO{sub 2} recycle to the boiler appears feasible with minimal impact on boiler performance; however, further study by a boiler OEM is recommended. For a membrane process built today using a combination of slight feed compression, permeate vacuum, and current compression equipment costs, the membrane capture process can be competitive with the base case MEA process at 90% CO{sub 2} capture from a coal-fired power plant. The incremental LCOE for the base case membrane process is about equal to that of a base case MEA process, within the uncertainty in the analysis. With advanced membranes (5,000 gpu for CO{sub 2} and 50 for CO{sub 2}/N{sub 2}), operating with no feed compression and l

  2. A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

    E-Print Network [OSTI]

    Pei, Y J; Dong, X; Feng, G Y; Fu, S; Gao, H; Hong, Y; Li, G; Li, Y X; Shang, L; Sheng, L S; Tian, Y C; Wang, X Q; Wang, Y; Wei, W; Zhang, Y W; Zhou, H J

    2001-01-01T23:59:59.000Z

    A Low Cost and High Efficient Facility for Removal of $\\SO_{2}$ and $\\NO_{x}$ in the Flue Gas from Coal Fire Power Plant

  3. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    1999-07-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons, as well as novel sorbents, were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  4. Novel sorbents for mercury removal from flue gas

    SciTech Connect (OSTI)

    Granite, E.J.; Pennline, H.W.; Hargis, R.A.

    2000-04-01T23:59:59.000Z

    A laboratory-scale packed-bed reactor system is used to screen sorbents for their capability to remove elemental mercury from various carrier gases. When the carrier gas is argon, an on-line atomic fluorescence spectrophotometer (AFS), used in a continuous mode, monitors the elemental mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the inlet and outlet streams of the packed-bed reactor. The mercury concentration in the reactor inlet gas and the reactor temperature are held constant during a test. For more complex carrier gases, the capacity is determined off-line by analyzing the spent sorbent with either a cold vapor atomic absorption spectrophotometer (CVAAS) or an inductively coupled argon plasma atomic emission spectrophotometer (ICP-AES). The capacities and breakthrough times of several commercially available activated carbons as well as novel sorbents were determined as a function of various parameters. The mechanisms of mercury removal by the sorbents are suggested by combining the results of the packed-bed testing with various analytical results.

  5. Compression stripping of flue gas with energy recovery

    DOE Patents [OSTI]

    Ochs, Thomas L. (Albany, OR); O'Connor, William K. (Lebanon, OR)

    2005-05-31T23:59:59.000Z

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SO.sub.X and NO.sub.X and CO.sub.2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO.sub.2, SO.sub.2, and H.sub.2 O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  6. Compression Stripping of Flue Gas with Energy Recovery

    DOE Patents [OSTI]

    Ochs, Thomas L.; O'Connor, William K.

    2005-05-31T23:59:59.000Z

    A method of remediating and recovering energy from combustion products from a fossil fuel power plant having at least one fossil fuel combustion chamber, at least one compressor, at least one turbine, at least one heat exchanger and a source of oxygen. Combustion products including non-condensable gases such as oxygen and nitrogen and condensable vapors such as water vapor and acid gases such as SOX and NOX and CO2 and pollutants are produced and energy is recovered during the remediation which recycles combustion products and adds oxygen to support combustion. The temperature and/or pressure of the combustion products are changed by cooling through heat exchange with thermodynamic working fluids in the power generation cycle and/or compressing and/or heating and/or expanding the combustion products to a temperature/pressure combination below the dew point of at least some of the condensable vapors to condense liquid having some acid gases dissolved and/or entrained and/or directly condense acid gas vapors from the combustion products and to entrain and/or dissolve some of the pollutants while recovering sensible and/or latent heat from the combustion products through heat exchange between the combustion products and thermodynamic working fluids and/or cooling fluids used in the power generating cycle. Then the CO2, SO2, and H2O poor and oxygen enriched remediation stream is sent to an exhaust and/or an air separation unit and/or a turbine.

  7. EPA reports advances in scrubber technology at Flue Gas Desulfurization symposium

    SciTech Connect (OSTI)

    Smock, R.

    1982-07-01T23:59:59.000Z

    The overall message of the recent Symposium on Flue Gas Desulfurization was that the technology for sulfur dioxide scrubbing has matured enough for discussions to focus on future improvements rather than whether scrubbers work at all. The Environmental Protection Agency (EPA) regulations will not change in the near future, however, unless there are changes in the Clean air Act to deal with acid rain, despite the improvements in performance data. The symposium covered reports on dual-alkali scrubbing, organic buffer additives, the probability that scrubber wastes will not be classified as hazardous, simultaneous removal of nitrogen oxides and sulfur dioxide, and continuous monitoring programs. 3 figures, 4 tables. (DCK)

  8. Flue Gas Desulfurization Market Research Report 2018 | OpenEI Community

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergy InformationFlue Gas

  9. Advanced separation technology for flue gas cleanup. Quarterly technical report No. 8, [January--March 1994

    SciTech Connect (OSTI)

    Bhown, A.S.; Alvarado, D.; Pakala, N.; Ventura, S. [SRI International, Menlo Park, CA (United States)] [SRI International, Menlo Park, CA (United States); Sirkar, K.K.; Majumdar, S.; Bhaumick, D. [New Jersey Inst. of Tech., Newark, NJ (United States)] [New Jersey Inst. of Tech., Newark, NJ (United States)

    1994-03-01T23:59:59.000Z

    During the first quarter of 1994, we continued work on Tasks 2, 3, 4, 5, and 6. We also began work on Task 7. In Task 2, we incorporated 4.5% O{sub 2} into our simulated flue gas stream during this quarter`s NO{sub x}-absorption experiments. We also ran experiments using Cobalt (II)-phthalocyanine as an absorbing agent We observed higher absorption capacities when using this solution with the simulated flue gas containing O{sub 2}. In Task 3, we synthesized a few EDTA polymer analogs. We also began scaled up synthesis of Co(II)-phthalocyanine for use in Task 5. In Task 4, we performed experiments for measuring distribution coefficients (m{sub i}) Of SO{sub 2} between aqueous and organic phases. This was done using the liquor regenerating apparatus described in Task 6. In Task 5, we began working with Co(II)-phthalocyanine in the 301 fiber hollow fiber contactor. We also calculated mass transfer coefficients (K{sub olm}) for these runs, and we observed that the gas side resistance dominates mass transfer. In Task 6, in the liquor regeneration apparatus, we observed 90% recovery of SO{sub 2} by DMA from water used as the scrubbing solution. We also calculated the distribution of coefficients (m{sub i}). In Task 7, we established and began implementing a methodology for completing this task.

  10. Desulfurization of flue gas by the confined zone dispersion process - Proof-of-concept tests

    SciTech Connect (OSTI)

    Abrams, J.Z.; Blake, J.H.; Pennline, H.W.

    1986-01-01T23:59:59.000Z

    As part of a program to develop more cost-effective approaches to the control of acid rain precursors, the Department of Energy (DOE) is supporting proof-of-concept tests of the Confined Zone Dispersion (CZD) process proposed by Bechtel. This process removes SO/sub 2/ from flue gas by injecting a finely atomized slurry of highly reactive pressure hydrated dolomitic lime into the duct of a utility boiler. A slipstream of flue gas at 300/sup 0/F will be withdrawn from the plant ductwork and will pass through a 130-ft run of 3-ft diameter test duct. A two-fluid atomizer will inject the lime slurry into the upstream end of the test duct. A pilot scale electrostatic precipitator (ESP) will remove reaction products and fly ash before the gas is discharged back into the utility's ESP. An 11-month test program will optimize controllable variables, acquire design data, and demonstrate reliability by a long duration run. Measurements taken will include SO/sub 2/ removal, lime utilization, ESP performance, and characterization of waste solids.

  11. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    SciTech Connect (OSTI)

    Chang, Shih-Ger; Yan, Nai-Qiang; Qu, Zan; Chi, Yao; Qiao, Shao-Hua; Dod, Ray; Chang, Shih-Ger; Miller, Charles

    2008-07-02T23:59:59.000Z

    Oxidation of Hg0 with any oxidant or converting it to a particle-bound form can facilitate its removal. Two sulfur-chlorine compounds, sulfur dichloride (SCl2) and sulfur monochloride (S2Cl2), were investigated as oxidants for Hg0 by gas phase reaction and by surface-involved reactions in the presence of flyash or activated carbon. The gas phase reaction rate constants between Hg0 and the sulfur/chlorine compounds were determined, and the effects of temperature and the main components in flue gases were studied. The gas phase reaction between Hg0 and SCl2 is shown to be more rapid than the gas phase reaction with chlorine, and the second order rate constant was 9.1(+-0.5) x 10-18 mL-molecules-1cdots-1 at 373oK. Nitric oxide (NO) inhibited the gas phase reaction of Hg0 with sulfur-chlorine compounds. The presence of flyash or powdered activated carbon in flue gas can substantially accelerate the reaction. The predicted Hg0 removal is about 90percent with 5 ppm SCl2 or S2Cl2 and 40 g/m3 of flyash in flue gas. The combination of activated carbon and sulfur-chlorine compounds is an effective alternative. We estimate that co-injection of 3-5 ppm of SCl2 (or S2Cl2) with 2-3 Lb/MMacf of untreated Darco-KB is comparable in efficiency to the injection of 2-3 Lb/MMacf Darco-Hg-LH. Extrapolation of kinetic results also indicates that 90percent of Hg0 can be removed if 3 Lb/MMacf of Darco-KB pretreated with 3percent of SCl2 or S2Cl2 is used. Unlike gas phase reactions, NO exhibited little effect on Hg0 reactions with SCl2 or S2Cl2 on flyash or activated carbon. Mercuric sulfide was identified as one of the principal products of the Hg0/SCl2 or Hg0/S2Cl2 reactions. Additionally, about 8percent of SCl2 or S2Cl2 in aqueous solutions is converted to sulfide ions, which would precipitate mercuric ion from FGD solution.

  12. Carbon Dioxide Removal from Flue Gas Using Microporous Metal Organic Frameworks

    SciTech Connect (OSTI)

    David A Lesch

    2010-06-30T23:59:59.000Z

    UOP LLC, a Honeywell Company, in collaboration with Professor Douglas LeVan at Vanderbilt University (VU), Professor Adam Matzger at the University of Michigan (UM), Professor Randall Snurr at Northwestern University (NU), and Professor Stefano Brandani at the University of Edinburgh (UE), supported by Honeywell's Specialty Materials business unit and the Electric Power Research Institute (EPRI), have completed a three-year project to develop novel microporous metal organic frameworks (MOFs) and an associated vacuum-pressure swing adsorption (vPSA) process for the removal of CO{sub 2} from coal-fired power plant flue gas. The project leveraged the team's complementary capabilities: UOP's experience in materials development and manufacturing, adsorption process design and process commercialization; LeVan and Brandani's expertise in high-quality adsorption measurements; Matzger's experience in syntheis of MOFs and the organic components associated with MOFs; Snurr's expertise in molecular and other modeling; Honeywell's expertise in the manufacture of organic chemicals; and, EPRI's knowledge of power-generation technology and markets. The project was successful in that a selective CO{sub 2} adsorbent with good thermal stability and reasonable contaminant tolerance was discovered, and a low cost process for flue gas CO{sub 2} capture process ready to be evaluated further at the pilot scale was proposed. The team made significant progress toward the current DOE post-combustion research targets, as defined in a recent FOA issued by NETL: 90% CO{sub 2} removal with no more than a 35% increase in COE. The team discovered that favorable CO{sub 2} adsorption at more realistic flue gas conditions is dominated by one particular MOF structure type, M/DOBDC, where M designates Zn, Co, Ni, or Mg and DOBDC refers to the form of the organic linker in the resultant MOF structure, dioxybenzenedicarboxylate. The structure of the M/DOBDC MOFs consists of infinite-rod secondary building units bound by DOBDC resulting in 1D hexagonal pores about 11 angstroms in diameter. Surface areas range from 800 to 1500 sq m/g for the different MOFs. Mg/DOBDC outperformed all MOF and zeolite materials evaluated to date, with about 25 wt% CO{sub 2} captured by this MOF at flue gas conditions ({approx}0.13 atm CO{sub 2} pressure, 311K). In simulated flue gas without oxygen, the zero-length (ZLC) system was very useful in quickly simulating the effect of long term exposure to impurities on the MOFs. Detailed adsorption studies on MOF pellets have shown that water does not inhibit CO{sub 2} adsorption for MOFs as much as it does for typical zeolites. Moreover, some MOFs retain a substantial CO{sub 2} capacity even with a modest water loading at room temperature. Molecular modeling was a key activity in three areas of our earlier DOE/NETL-sponsored MOF-based research on CC. First, the team was able to effectively simulate CO{sub 2} and other gas adsorption isotherms for more than 20 MOFs, and the knowledge obtained was used to help predict new MOF structures that should be effective for CO{sub 2} adsorption at low pressure. The team also showed that molecular modeling could be utilized to predict the hydrothermal stability of a given MOF. Finally, the team showed that low moisture level exposure actually enhanced the CO{sub 2} adsorption performance of a particular MOF, HKUST-1.

  13. Environ. Scl. Technol. 1994, 28, 277-283 Effects of Salts on Preparation and Use of Calcium Silicates for Flue Gas

    E-Print Network [OSTI]

    Rochelle, Gary T.

    Silicates for Flue Gas Desulfurization Kurt K. Klnd, Phlllp D. Wasserman, and Gary 1.Rochelle' Department is a flue gas desulfurization (FGD) technology developed for existingcoal to remove sulfur dioxide. High surface area calcium silicate hydrates are made by slurrying Ca(0H

  14. Lead Isotopic Composition of Fly Ash and Flue Gas Residues from Municipal Solid Waste Combustors in France: Implications for Atmospheric Lead Source Tracing.

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    1 Lead Isotopic Composition of Fly Ash and Flue Gas Residues from Municipal Solid Waste Combustors@crpg.cnrs-nancy.fr _______________________________________________________________________________________ Fly ash and flue gas residues from eight municipal solid waste combusters (MSWC) in France (1992 of "industrial Pb" is not an easy task because of its possible extreme heterogeneity. Municipal solid waste

  15. Land application uses for dry flue gas desulfurization by-products: Phase 3

    SciTech Connect (OSTI)

    Dick, W.; Bigham, J.; Forster, R.; Hitzhusen, F.; Lal, R.; Stehouwer, R.; Traina, S.; Wolfe, W.; Haefner, R.; Rowe, G.

    1999-01-31T23:59:59.000Z

    New flue gas desulfurization (FGD) scrubbing technologies create a dry, solid by-product material consisting of excess sorbent, reaction product that contains sulfate and sulfite, and coal fly ash. Generally, dry FGD by-products are treated as solid wastes and disposed in landfills. However, landfill sites are becoming scarce and tipping fees are constantly increasing. Provided the environmental impacts are socially and scientifically acceptable, beneficial uses via recycling can provide economic benefits to both the producer and the end user of the FGD. A study titled ''Land Application Uses for Dry Flue Gas Desulfurization By-Products'' was initiated in December, 1990 to develop and demonstrate large volume, beneficial uses of FGD by-products. Phase 1 and Phase 2 reports have been published by the Electric Power Research Institute (EPRI), Palo Alto, CA. Phase 3 objectives were to demonstrate, using field studies, the beneficial uses of FGD by-products (1) as an amendment material on agricultural lands and on abandoned surface coal mine land, (2) as an engineering material for soil stabilization and raid repair, and (3) to assess the environmental and economic impacts of such beneficial uses. Application of dry FGD by-product to three soils in place of agricultural limestone increased alfalfa (Medicago sativa L.) and corn (Zea may L.) yields. No detrimental effects on soil and plant quality were observed.

  16. Mercury Speciation in Coal-Fired Power Plant Flue Gas-Experimental Studies and Model Development

    SciTech Connect (OSTI)

    Radisav Vidic; Joseph Flora; Eric Borguet

    2008-12-31T23:59:59.000Z

    The overall goal of the project was to obtain a fundamental understanding of the catalytic reactions that are promoted by solid surfaces present in coal combustion systems and develop a mathematical model that described key phenomena responsible for the fate of mercury in coal-combustion systems. This objective was achieved by carefully combining laboratory studies under realistic process conditions using simulated flue gas with mathematical modeling efforts. Laboratory-scale studies were performed to understand the fundamental aspects of chemical reactions between flue gas constituents and solid surfaces present in the fly ash and their impact on mercury speciation. Process models were developed to account for heterogeneous reactions because of the presence of fly ash as well as the deliberate addition of particles to promote Hg oxidation and adsorption. Quantum modeling was used to obtain estimates of the kinetics of heterogeneous reactions. Based on the initial findings of this study, additional work was performed to ascertain the potential of using inexpensive inorganic sorbents to control mercury emissions from coal-fired power plants without adverse impact on the salability fly ash, which is one of the major drawbacks of current control technologies based on activated carbon.

  17. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Devenney, Martin; Gilliam, Ryan; Seeker, Randy

    2013-08-01T23:59:59.000Z

    The objective of this project is to demonstrate an innovative process to mineralize CO2 from flue gas directly to reactive carbonates and maximize the value and versatility of its beneficial use products. The program scope includes the design, construction, and testing of a CO2 Conversion to Material Products (CCMP) Pilot Demonstration Plant utilizing CO2 from the flue gas of a power production facility in Moss Landing, CA. This topical report covers Subphase 2a which is the design phase of pilot demonstration subsystems. Materials of construction have been selected and proven in both lab scale and prototype testing to be acceptable for the reagent conditions of interest. The target application for the reactive carbonate material has been selected based upon small-scale feasibility studies and the design of a continuous fiber board production line has been completed. The electrochemical cell architecture and components have been selected based upon both lab scale and prototype testing. The appropriate quality control and diagnostic techniques have been developed and tested along with the required instrumentation and controls. Finally the demonstrate site infrastructure, NEPA categorical exclusion, and permitting is all ready for the construction and installation of the new units and upgrades.

  18. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S. (North Canton, OH); Downs, William (Alliance, OH); Bailey, Ralph T. (Uniontown, OH); Vecci, Stanley J. (Alliance, OH)

    2003-01-01T23:59:59.000Z

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  19. Use of sulfide-containing liquors for removing mercury from flue gases

    DOE Patents [OSTI]

    Nolan, Paul S.; Downs, William; Bailey, Ralph T.; Vecci, Stanley J.

    2006-05-02T23:59:59.000Z

    A method and apparatus for reducing and removing mercury in industrial gases, such as a flue gas, produced by the combustion of fossil fuels, such as coal, adds sulfide ions to the flue gas as it passes through a scrubber. Ideally, the source of these sulfide ions may include at least one of: sulfidic waste water, kraft caustic liquor, kraft carbonate liquor, potassium sulfide, sodium sulfide, and thioacetamide. The sulfide ion source is introduced into the scrubbing liquor as an aqueous sulfide species. The scrubber may be either a wet or dry scrubber for flue gas desulfurization systems.

  20. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    Babcock and Wilcox`s (B and W) SOx-NOx-Rox Box{trademark} process effectively removes SOx, NOx and particulate (Rox) from flue gas generated from coal-fired boilers in a single unit operation, a high temperature baghouse. The SNRB technology utilizes dry sorbent injection upstream of the baghouse for removal of SOx and ammonia injection upstream of a zeolitic selective catalytic reduction (SCR) catalyst incorporated in the baghouse to reduce NOx emissions. Because the SOx and NOx removal processes require operation at elevated gas temperatures (800--900 F) for high removal efficiency, high-temperature fabric filter bags are used in the baghouse. The SNRB technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. This report represents the completion of Milestone M14 as specified in the Work Plan. B and W tested the SNRB pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R.E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B and W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB process. The SNRB facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993. About 2,300 hours of high-temperature operation were achieved. The main emissions control performance goals of: greater than 70% SO{sub 2} removal using a calcium-based sorbent; greater than 90% NOx removal with minimal ammonia slip; and particulate emissions in compliance with the New Source Performance Standards (NSPS) of 0.03 lb/million Btu were exceeded simultaneously in the demonstration program when the facility was operated at optimal conditions. Testing also showed significant reductions in emissions of some hazardous air pollutants.

  1. Assessment of the Flue Gas Recycle Strategies on Oxy-Coal Power Plants using an Exergy-based Methodology

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    Assessment of the Flue Gas Recycle Strategies on Oxy- Coal Power Plants using an Exergy to be competitive with post-combustion for carbon capture on coal-fired power plants. In order to achieve is produced from coal (IEA 2012b), the development of CO2 capture technology on coal-fired power plants

  2. Advanced Flue Gas Desulfurization (AFGD) demonstration project: Volume 2, Project performance and economics. Final technical report

    SciTech Connect (OSTI)

    NONE

    1996-04-30T23:59:59.000Z

    The project objective is to demonstrate removal of 90--95% or more of the SO{sub 2} at approximately one-half the cost of conventional scrubbing technology; and to demonstrate significant reduction of space requirements. In this project, Pure Air has built a single SO{sub 2} absorber for a 528-MWe power plant. The absorber performs three functions in a single vessel: prequencher, absorber, and oxidation of sludge to gypsum. Additionally, the absorber is of a co- current design, in which the flue gas and scrubbing slurry move in the same direction and at a relatively high velocity compared to conventional scrubbers. These features all combine to yield a state- of-the-art SO{sub 2} absorber that is more compact and less expensive than conventional scrubbers. The project incorporated a number of technical features including the injection of pulverized limestone directly into the absorber, a device called an air rotary sparger located within the base of the absorber, and a novel wastewater evaporation system. The air rotary sparger combines the functions of agitation and air distribution into one piece of equipment to facilitate the oxidation of calcium sulfite to gypsum. Additionally, wastewater treatment is being demonstrated to minimize water disposal problems inherent in many high-chloride coals. Bituminous coals primarily from the Indiana, Illinois coal basin containing 2--4.5% sulfur were tested during the demonstration. The Advanced Flue Gas Desulfurization (AFGD) process has demonstrated removal of 95% or more of the SO{sub 2} while providing a commercial gypsum by-product in lieu of solid waste. A portion of the commercial gypsum is being agglomerated into a product known as PowerChip{reg_sign} gypsum which exhibits improved physical properties, easier flowability and more user friendly handling characteristics to enhance its transportation and marketability to gypsum end-users.

  3. Speciation, characterization, and mobility of As, Se, and Hg in flue gas desulphurization residues

    SciTech Connect (OSTI)

    Souhail R. Al-Abed; Gautham Jegadeesan; Kirk G. Scheckel; Thabet Tolaymat [United States Environmental Protection Agency, Cincinnati, OH (United States). National Risk Management Research Laboratory

    2008-03-01T23:59:59.000Z

    Flue gas from coal combustion contains significant amounts of volatile toxic trace elements such as arsenic (As), selenium (Se), and mercury (Hg). The capture of these elements in the flue gas desulphurization (FGD) scrubber unit has resulted in generation of a metal-laden residue. With increasing reuse of the FGD residues in beneficial applications, it is important to determine metal speciation and mobility to understand the environmental impact of its reuse. In this paper, we report the solid phase speciation of As, Se, and Hg in FGD residues using X-ray absorption spectroscopy (XAS), X-ray fluorescence spectroscopy (XRF), and sequential chemical extraction (SCE) techniques. The SCE results combined with XRF data indicated a strong possibility of As association with iron oxides, whereas Se was distributed among all geochemical phases. Hg appeared to be mainly distributed in the strong-complexed phase. XRF images also suggested a strong association of Hg with Fe oxide materials within FGD residues. XAS analysis indicated that As existed in its oxidized state (As(V)), whereas Se and Hg was observed in primarily reduced states as selenite (Se(IV)) and Hg(I), respectively. The results from the SCE and variable pH leaching tests indicated that the labile fractions of As, Se, and Hg were fairly low and thus suggestive of their stability in the FGD residues. However, the presence of a fine fraction enriched in metal content in the FGD residue suggested that size fractionation is important in assessing the environmental risks associated with their reuse. 34 refs., 3 figs., 4 tabs.

  4. SOx-NOx-Rox Box{trademark} flue gas clean-up demonstration. Final report

    SciTech Connect (OSTI)

    NONE

    1995-09-01T23:59:59.000Z

    The SNRB{trademark} Flue Gas Cleanup Demonstration Project was cooperatively funded by the U.S. Department of Energy (DOE), the Ohio Coal Development Office (OCDO), B&W, the Electric Power Research Institute (EPRI), Ohio Edison, Norton Chemical Process Products Company and the 3M Company. The SNRB{trademark} technology evolved from the bench and laboratory pilot scale to be successfully demonstrated at the 5-MWe field scale. Development of the SNRB{trademark} process at B&W began with pilot testing of high-temperature dry sorbent injection for SO{sub 2} removal in the 1960`s. Integration of NO{sub x} reduction was evaluated in the 1970`s. Pilot work in the 1980`s focused on evaluation of various NO{sub x} reduction catalysts, SO{sub 2} sorbents and integration of the catalyst with the baghouse. This early development work led to the issuance of two US process patents to B&W - No. 4,309,386 and No. 4,793,981. An additional patent application for improvements to the process is pending. The OCDO was instrumental in working with B&W to develop the process to the point where a larger scale demonstration of the technology was feasible. This report represents the completion of Milestone M14 as specified in the Work Plan. B&W tested the SNRB{trademark} pollution control system at a 5-MWe demonstration facility at Ohio Edison`s R. E. Burger Plant located near Shadyside, Ohio. The design and operation were influenced by the results from laboratory pilot testing at B&W`s Alliance Research Center. The intent was to demonstrate the commercial feasibility of the SNRB{trademark} process. The SNRB{trademark} facility treated a 30,000 ACFM flue gas slipstream from Boiler No. 8. Operation of the facility began in May 1992 and was completed in May 1993.

  5. Near-Zero Emissions Oxy-Combustion Flue Gas Purification - Power Plant Performance

    SciTech Connect (OSTI)

    Andrew Seltzer; Zhen Fan

    2011-03-01T23:59:59.000Z

    A technical feasibility assessment was performed for retrofitting oxy-fuel technology to an existing power plant burning low sulfur PRB fuel and high sulfur bituminous fuel. The focus of this study was on the boiler/power generation island of a subcritical steam cycle power plant. The power plant performance in air and oxy-firing modes was estimated and modifications required for oxy-firing capabilities were identified. A 460 MWe (gross) reference subcritical PC power plant was modeled. The reference air-fired plant has a boiler efficiency (PRB/Bituminous) of 86.7%/89.3% and a plant net efficiency of 35.8/36.7%. Net efficiency for oxy-fuel firing including ASU/CPU duty is 25.6%/26.6% (PRB/Bituminous). The oxy-fuel flue gas recirculation flow to the boiler is 68%/72% (PRB/bituminous) of the flue gas (average O{sub 2} in feed gas is 27.4%/26.4%v (PRB/bituminous)). Maximum increase in tube wall temperature is less than 10ºF for oxy-fuel firing. For oxy-fuel firing, ammonia injected to the SCR was shut-off and the FGD is applied to remove SOx from the recycled primary gas stream and a portion of the SOx from the secondary stream for the high sulfur bituminous coal. Based on CFD simulations it was determined that at the furnace outlet compared to air-firing, SO{sub 3}/SO{sub 2} mole ratio is about the same, NOx ppmv level is about the same for PRB-firing and 2.5 times for bituminous-firing due to shutting off the OFA, and CO mole fraction is approximately double. A conceptual level cost estimate was performed for the incremental equipment and installation cost of the oxyfuel retrofit in the boiler island and steam system. The cost of the retrofit is estimated to be approximately 81 M$ for PRB low sulfur fuel and 84 M$ for bituminous high sulfur fuel.

  6. New strategy to decompose nitrogen oxides from regenerable flue gas cleanup processes

    SciTech Connect (OSTI)

    Yeh, J.T.; Ekmann, J.M.; Pennline, H.W.; Drummond, C.J.

    1987-01-01T23:59:59.000Z

    Simulated NO/sub x/ recycle tests were recently conducted at the Pittsburgh Energy Technology Center (PETC), US Department of Energy, with excellent results. However, the NO/sub x/-recycle technique needs improvement if steady-state removal of 90% of the NO/sub x/ produced from the combustor is required. This paper reports experimental results for two new techniques to improve the destruction of externally injected NO/sub x/ into a combustor. The first technique involves doping the NO/sub x/ gas stream to the combustor with methane (other reductants might also be effective). The second technique is injecting the recycled NO/sub x/ stream at the optimum location (with and without methane doping) for maximum reduction. Test data showed 100% reduction of injected NO/sub x/ is possible with this technique. A third approach is proposed using a low-NO/sub x/ burner in combination with the NO/sub x/ recycle technique to achieve a steady-state 90% NO/sub x/ removal in the flue gas. The projected results of the third process scheme are based on material balance computations and reasonable expectations of the performance of each component of the process.

  7. A technique to control mercury from flue gas: The Thief Process

    SciTech Connect (OSTI)

    O'Dowd, W.J.; Pennline, H.W.; Freeman, M.C.; Granite, E.J.; Hargis, R.A.; Lacher, C.J.; Karash, A.

    2006-12-01T23:59:59.000Z

    The Thief Process is a mercury removal process that may be applicable to a broad range of pulverized coal-fired combustion systems. This is one of several sorbent injection technologies under development by the U.S. Department of Energy for capturing mercury from coal-fired electric utility boilers. A unique feature of the Thief Process involves the production of a thermally activated sorbent in situ at the power plant. The sorbent is obtained by inserting a lance, or thief, into the combustor, in or near the flame, and extracting a mixture of partially combusted coal and gas. The partially combusted coal or sorbent has adsorptive properties suitable for the removal of vapor-phase mercury at flue gas temperatures that are typical downstream of a power plant preheater. One proposed scenario, similar to activated carbon injection (ACI), involves injecting the extracted sorbent into the downstream ductwork between the air preheater and the particulate collection device of the power plant. Initial laboratory-scale and pilot-scale testing, using an eastern bituminous coal, focused on the concept validation. Subsequent pilot-scale testing, using a Powder River Basin (PRB) coal, focused on the process development and optimization. The results of the experimental studies, as well as an independent experimental assessment, are detailed. In addition, the results of a preliminary economic analysis that documents the costs and the potential economic advantages of the Thief Process for mercury control are discussed.

  8. Flue-gas carbon capture on carbonaceous sorbents: Toward a low-cost multifunctional Carbon Filter for 'Green' energy producers

    SciTech Connect (OSTI)

    Radosz, M.; Hu, X.D.; Krutkramelis, K.; Shen, Y.Q. [University of Wyoming, Laramie, WY (United States)

    2008-05-15T23:59:59.000Z

    A low-pressure Carbon Filter Process (patent pending) is proposed to capture carbon dioxide (CO{sub 2}) from flue gas. This filter is filled with a low-cost carbonaceous sorbent, such as activated carbon or charcoal, which has a high affinity (and, hence, high capacity) to CO{sub 2} but not to nitrogen (N{sub 2}). This, in turn, leads to a high CO{sub 2}/N{sub 2} selectivity, especially at low pressures. The Carbon Filter Process proposed in this work can recover at least 90% of flue-gas CO{sub 2} of 90%+ purity at a fraction of the cost normally associated with the conventional amine absorption process. The Carbon Filter Process requires neither expensive materials nor flue-gas compression or refrigeration, and it is easy to heat integrate with an existing or grassroots power plant without affecting the cost of the produced electricity too much. An abundant supply of low-cost CO{sub 2} from electricity producers is good news for enhanced oil recovery (EOR) and enhanced coal-bed methane recovery (ECBMR) operators, because it will lead to higher oil and gas recovery rates in an environmentally sensitive manner. A CO{sub 2}-rich mixture that contains some nitrogen is much less expensive to separate from flue-gas than pure CO{sub 2}; therefore, mixed CO{sub 2}/N{sub 2}-EOR and CO{sub 2}/N{sub 2}-ECBMR methods are proposed to maximize the overall carbon capture and utilization efficiency.

  9. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    C. Jean Bustard; Kenneth E. Baldrey; Richard Schlager

    2000-04-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions has begun a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the flyash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. Preliminary testing has identified a class of common deliquescent salts that effectively control flyash resistivity on a variety of coals. A method to evaluate cohesive properties of flyash in the laboratory has been selected and construction of an electrostatic tensiometer test fixture is underway. Preliminary selection of a variety of chemicals that will be screened for effect on flyash cohesion has been completed.

  10. A kinetic approach to the catalytic oxidation of mercury in flue gas

    SciTech Connect (OSTI)

    Albert A. Presto; Evan J. Granite; Andrew Karash; Richard A. Hargis; William J. O'Dowd; Henry W. Pennline [U.S. Department of Energy, Pittsburgh, PA (United States). National Energy Technology Laboratory

    2006-10-15T23:59:59.000Z

    Four mercury oxidation catalysts were tested in a packed bed reactor in the presence of flue gas generated by the NETL 500 lb/h coal combustor. The four catalysts tested were Ir, Ir/HCl, Darco FGD activated carbon, and Thief/HCl. The Thief/HCl and Darco converted the highest percentage of the inlet mercury; however, the high conversion in these experiments was aided by larger catalyst loadings than in the Ir and Ir/HCl experiments. We propose a method for analyzing mercury oxidation catalyst results in a kinetic framework using the bulk reaction rate for oxidized mercury formation normalized by either the catalyst mass or surface area. Results reported for fractional mercury oxidation are strongly influenced by the specific experimental conditions and are therefore difficult to translate from experiment to experiment. The catalyst-normalized results allow for more quantitative analysis of mercury oxidation catalyst data and are the first step in creating a predictive model that will allow for efficient scaling up from laboratory-scale to larger-scale studies. 34 refs., 1 fig., 3 tabs.

  11. Fundamental mechanisms in flue gas conditioning. Quarterly report, January 1992--March 1992

    SciTech Connect (OSTI)

    Snyder, T.R.; Robinson, M.S.; Bush, P.V.

    1992-04-27T23:59:59.000Z

    This project is divided into four tasks. The Management Plan was developed in task 1. Task 2, Evaluation of Mechanisms in FGD Sorbent and Ash Interactions, focuses on the characteristics of binary mixtures of these distinct powders. Task 3, Evaluation of Mechanisms in Conditioning Agents and Ash, is designed to examine the effects of various conditioning agents on fine ash particles to determine the mechanisms by which these agents alter the physical properties of the ash. Tasks 2 and 3 began with an extensive literature search and the assembly of existing theories. This phase of the project is now complete. During the past quarter, initial preparations of laboratory equipment for laboratory testing have been made. A plan for initial laboratory tests has been submitted to the Project Manager for review. Laboratory testing will commence once these laboratory plans have been formally approved. The results of the work performed under task 2 and 3 will be included in a Flue Gas Conditioning Model that will be issued under task 4. The Final Report for the project will also be prepared under task 4.

  12. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 3: SOx/NOx/Hg Removal for Low Sulfur Coal

    SciTech Connect (OSTI)

    Monica Zanfir; Rahul Solunke; Minish Shah

    2012-06-01T23:59:59.000Z

    The goal of this project was to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxycombustion technology. The objective of Task 3 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning low sulfur coal in oxy-combustion power plants. The goal of the program was to conduct an experimental investigation and to develop a novel process for simultaneously removal of SOx and NOx from power plants that would operate on low sulfur coal without the need for wet-FGD & SCRs. A novel purification process operating at high pressures and ambient temperatures was developed. Activated carbonâ??s catalytic and adsorbent capabilities are used to oxidize the sulfur and nitrous oxides to SO{sub 3} and NO{sub 2} species, which are adsorbed on the activated carbon and removed from the gas phase. Activated carbon is regenerated by water wash followed by drying. The development effort commenced with the screening of commercially available activated carbon materials for their capability to remove SO{sub 2}. A bench-unit operating in batch mode was constructed to conduct an experimental investigation of simultaneous SOx and NOx removal from a simulated oxyfuel flue gas mixture. Optimal operating conditions and the capacity of the activated carbon to remove the contaminants were identified. The process was able to achieve simultaneous SOx and NOx removal in a single step. The removal efficiencies were >99.9% for SOx and >98% for NOx. In the longevity tests performed on a batch unit, the retention capacity could be maintained at high level over 20 cycles. This process was able to effectively remove up to 4000 ppm SOx from the simulated feeds corresponding to oxyfuel flue gas from high sulfur coal plants. A dual bed continuous unit with five times the capacity of the batch unit was constructed to test continuous operation and longevity. Full-automation was implemented to enable continuous operation (24/7) with minimum operator supervision. Continuous run was carried out for 40 days. Very high SOx (>99.9%) and NOx (98%) removal efficiencies were also achieved in a continuous unit. However, the retention capacity of carbon beds for SOx and NOx was decreased from ~20 hours to ~10 hours over a 40 day period of operation, which was in contrast to the results obtained in a batch unit. These contradictory results indicate the need for optimization of adsorption-regeneration cycle to maintain long term activity of activated carbon material at a higher level and thus minimize the capital cost of the system. In summary, the activated carbon process exceeded performance targets for SOx and NOx removal efficiencies and it was found to be suitable for power plants burning both low and high sulfur coals. More efforts are needed to optimize the system performance.

  13. CO{sub 2} Capture Membrane Process for Power Plant Flue Gas

    SciTech Connect (OSTI)

    Lora Toy; Atish Kataria; Raghubir Gupta

    2011-09-30T23:59:59.000Z

    Because the fleet of coal-fired power plants is of such importance to the nationâ??s energy production while also being the single largest emitter of CO{sub 2}, the development of retrofit, post-combustion CO{sub 2} capture technologies for existing and new, upcoming coal power plants will allow coal to remain a major component of the U.S. energy mix while mitigating global warming. Post-combustion carbon capture technologies are an attractive option for coal-fired power plants as they do not require modification of major power-plant infrastructures, such as fuel processing, boiler, and steam-turbine subsystems. In this project, the overall objective was to develop an advanced, hollow-fiber, polymeric membrane process that could be cost-effectively retrofitted into current pulverized coal-fired power plants to capture at least 90% of the CO{sub 2} from plant flue gas with 95% captured CO{sub 2} purity. The approach for this project tackled the technology development on three different fronts in parallel: membrane materials R&D, hollow-fiber membrane module development, and process development and engineering. The project team consisted of RTI (prime) and two industrial partners, Arkema, Inc. and Generon IGS, Inc. Two CO{sub 2}-selective membrane polymer platforms were targeted for development in this project. For the near term, a next-generation, high-flux polycarbonate membrane platform was spun into hollow-fiber membranes that were fabricated into both lab-scale and larger prototype (~2,200 ft{sup 2}) membrane modules. For the long term, a new fluoropolymer membrane platform based on poly(vinylidene fluoride) [PVDF] chemistry was developed using a copolymer approach as improved capture membrane materials with superior chemical resistance to flue-gas contaminants (moisture, SO{sub 2}, NOx, etc.). Specific objectives were: ï?· Development of new, highly chemically resistant, fluorinated polymers as membrane materials with minimum selectivity of 30 for CO{sub 2} over N{sub 2} and CO{sub 2} permeance greater than 300 gas permeation units (GPU) targeted; ï?· Development of next-generation polycarbonate hollow-fiber membranes and membrane modules with higher CO{sub 2} permeance than current commercial polycarbonate membranes; ï?· Development and fabrication of membrane hollow fibers and modules from candidate polymers; ï?· Development of a CO{sub 2} capture membrane process design and integration strategy suitable for end-of-pipe, retrofit installation; and ï?· Techno-economic evaluation of the "best" integrated CO{sub 2} capture membrane process design package In this report, the results of the project research and development efforts are discussed and include the post-combustion capture properties of the two membrane material platforms and the hollow-fiber membrane modules developed from them and the multi-stage process design and analysis developed for 90% CO{sub 2} capture with 95% captured CO{sub 2} purity.

  14. Next Generation Pressurized Oxy-Coal Combustion: High Efficiency and No Flue Gas Recirculation

    SciTech Connect (OSTI)

    Rue, David

    2013-09-30T23:59:59.000Z

    The Gas Technology Institute (GTI) has developed a pressurized oxy-coal fired molten bed boiler (MBB) concept, in which coal and oxygen are fired directly into a bed of molten coal slag through burners located on the bottom of the boiler and fired upward. Circulation of heat by the molten slag eliminates the need for a flue gas recirculation loop and provides excellent heat transfer to steam tubes in the boiler walls. Advantages of the MBB technology over other boilers include higher efficiency (from eliminating flue gas recirculation), a smaller and less expensive boiler, modular design leading to direct scalability, decreased fines carryover and handling costs, smaller exhaust duct size, and smaller emissions control equipment sizes. The objective of this project was to conduct techno-economic analyses and an engineering design of the MBB project and to support this work with thermodynamic analyses and oxy-coal burner testing. Techno-economic analyses of GTI’s pressurized oxy-coal fired MBB technology found that the overall plant with compressed CO2 has an efficiency of 31.6%. This is a significant increase over calculated 29.2% efficiency of first generation oxy-coal plants. Cost of electricity (COE) for the pressurized MBB supercritical steam power plant with CO2 capture and compression was calculated to be 134% of the COE for an air-coal supercritical steam power plant with no CO2 capture. This compares positively with a calculated COE for first generation oxy-coal supercritical steam power plants with CO2 capture and compression of 164%. The COE for the MBB power plant is found to meet the U.S. Department of Energy (DOE) target of 135%, before any plant optimization. The MBB power plant was also determined to be simpler than other oxy-coal power plants with a 17% lower capital cost. No other known combustion technology can produce higher efficiencies or lower COE when CO2 capture and compression are included. A thermodynamic enthalpy and exergy analysis found a number of modifications and adjustments that could provide higher efficiency and better use of available work. Conclusions from this analysis will help guide the analyses and CFD modeling in future process development. The MBB technology has the potential to be a disruptive technology that will enable coal combustion power plants to be built and operated in a cost effective way, cleanly with no carbon dioxide emissions. A large amount of work is needed to quantify and confirm the great promise of the MBB technology. A Phase 2 proposal was submitted to DOE and other sponsors to address the most critical MBB process technical gaps. The Phase 2 proposal was not accepted for current DOE support.

  15. Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year JanCubic Feet) Gas, Wet

  16. Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas, Wet After Lease

  17. Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197Cubic Feet) Gas, Wet After

  18. CO{sub 2} Capture from Flue Gas Using Solid Molecular Basket Sorbents

    SciTech Connect (OSTI)

    Fillerup, Eric; Zhang, Zhonghua; Peduzzi, Emanuela; Wang, Dongxiang; Guo, Jiahua; Ma, Xiaoliang; Wang, Xiaoxing; Song, Chunshan

    2012-08-31T23:59:59.000Z

    The objective of this project is to develop a new generation of solid, regenerable polymeric molecular basket sorbent (MBS) for more cost-efficient capture and separation of CO{sub 2} from flue gas of coal-fired power plants. The primary goal is to develop a cost-effective MBS sorbent with better thermal stability. To improve the cost-effectiveness of MBS, we have explored commercially available and inexpensive support to replace the more expensive mesoporous molecular sieves like MCM-41 and SBA- 15. In addition, we have developed some advanced sorbent materials with 3D pore structure such as hexagonal mesoporous silica (HMS) to improve the CO{sub 2} working capacity of MBS, which can also reduce the cost for the whole CO{sub 2} capture process. During the project duration, the concern regarding the desorption rate of MBS sorbents has been raised, because lower desorption rate increases the desorption time for complete regeneration of the sorbent which in turn leads to a lower working capacity if the regeneration time is limited. Thus, the improvement in the thermal stability of MBS became a vital task for later part of this project. The improvement in the thermal stability was performed via increasing the polymer density either using higher molecular weight PEI or PEI cross-linking with an organic compound. Moreover, we have used the computational approach to estimate the interaction of CO{sub 2} with different MBSs for the fundamental understanding of CO{sub 2} sorption, which may benefit the development, design and modification of the sorbents and the process.

  19. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Fauth, D.J.; Filburn, T.P. (University of Hartford, West Hartford, CT); Gray, M.L.; Hedges, S.W.; Hoffman, J.; Pennline, H.W.; Filburn, T.

    2007-06-01T23:59:59.000Z

    Capturing CO2 emissions generated from fossil fuel-based power plants has received widespread attention and is considered a vital course of action for CO2 emission abatement. Efforts are underway at the Department of Energy’s National Energy Technology Laboratory to develop viable energy technologies enabling the CO2 capture from large stationary point sources. Solid, immobilized amine sorbents (IAS) formulated by impregnation of liquid amines within porous substrates are reactive towards CO2 and offer an alternative means for cyclic capture of CO2 eliminating, to some degree, inadequacies related to chemical absorption by aqueous alkanolamine solutions. This paper describes synthesis, characterization, and CO2 adsorption properties for IAS materials previously tested to bind and release CO2 and water vapor in a closed loop life support system. Tetraethylenepentamine (TEPA), acrylonitrile-modified tetraethylenepentamine (TEPAN), and a single formulation consisting of TEPAN and N, N’-bis(2-hydroxyethyl)ethylenediamine (BED) were individually supported on a poly (methyl methacrylate) (PMMA) substrate and examined. CO2 adsorption profiles leading to reversible CO2 adsorption capacities were obtained using thermogravimetry. Under 10% CO2 in nitrogen at 25°C and 1 atm, TEPA supported on PMMA over 60 minutes adsorbed ~3.2 mmol/g{sorbent} whereas, TEPAN supported on PMMA along with TEPAN and BED supported on PMMA adsorbed ~1.7 mmol/g{sorbent} and ~2.3 mmol/g{sorbent} respectively. Cyclic experiments with a 1:1 weight ratio of TEPAN and BED supported on poly (methyl methacrylate) beads utilizing a fixed-bed flow system with 9% CO2, 3.5% O2, nitrogen balance with trace gas constituents were studied. CO2 adsorption capacity was ~ 3 mmols CO2/g{sorbent} at 40°C and 1.4 atm. No beneficial effect on IAS performance was found using a moisture-laden flue gas mixture. Tests with 750 ppmv NO in a humidified gas stream revealed negligible NO sorption onto the IAS. A high SO2 concentration resulted in incremental loss in IAS performance and revealed progressive degrees of “staining” upon testing. Adsorption of SO2 by the IAS necessitates upstream removal of SO2 prior to CO2 capture.

  20. Near-Zero Emissions Oxy-Combustion Flue Gas Purification Task 2: SOx/Nox/Hg Removal for High Sulfur Coal

    SciTech Connect (OSTI)

    Nick Degenstein; Minish Shah; Doughlas Louie

    2012-05-01T23:59:59.000Z

    The goal of this project is to develop a near-zero emissions flue gas purification technology for existing PC (pulverized coal) power plants that are retrofitted with oxy-combustion technology. The objective of Task 2 of this project was to evaluate an alternative method of SOx, NOx and Hg removal from flue gas produced by burning high sulfur coal in oxy-combustion power plants. The goal of the program was not only to investigate a new method of flue gas purification but also to produce useful acid byproduct streams as an alternative to using a traditional FGD and SCR for flue gas processing. During the project two main constraints were identified that limit the ability of the process to achieve project goals. 1) Due to boiler island corrosion issues >60% of the sulfur must be removed in the boiler island with the use of an FGD. 2) A suitable method could not be found to remove NOx from the concentrated sulfuric acid product, which limits sale-ability of the acid, as well as the NOx removal efficiency of the process. Given the complexity and safety issues inherent in the cycle it is concluded that the acid product would not be directly saleable and, in this case, other flue gas purification schemes are better suited for SOx/NOx/Hg control when burning high sulfur coal, e.g. this project's Task 3 process or a traditional FGD and SCR.

  1. Design, construction, and operation of a life-cycle test system for the evaluation of flue gas cleanup processes

    SciTech Connect (OSTI)

    Pennline, H.W.; Yeh, James T.; Hoffman, J.S. [USDOE Pittsburgh Energy Technology Center, PA (United States); Longton, E.J.; Vore, P.A.; Resnik, K.P.; Gromicko, F.N. [Gilbert/Commonwealth, Inc., Library, PA (United States)

    1995-12-01T23:59:59.000Z

    The Pittsburgh Energy Technology Center of the US Department of Energy has designed, constructed, and operated a Life-Cycle Test Systems (LCTS) that will be used primarily for the investigation of dry, regenerable sorbent flue gas cleanup processes. Sorbent continuously cycles from an absorber reactor where the pollutants are removed from the flue gas, to a regenerator reactor where the activity of the spent sorbent is restored and a usable by-product stream of gas is produced. The LCTS will initially be used to evaluate the Moving-Bed Copper Oxide Process by determining the effects of various process parameters on SO{sub 2} and NO{sub x} removals. The purpose of this paper is to document the design rationale and details, the reactor/component/instrument installation, and the initial performance of the system. Although the Moving-Bed Copper Oxide Process will be investigated initially, the design of the LCTS evolved to make the system a multipurpose, versatile research facility. Thus, the unit can be used to investigate various other processes for pollution abatement of SO{sub 2}, NO{sub x}, particulates, air toxics, and/or other pollutants.

  2. OpenEI Community - natural gas+ condensing flue gas heat recovery+ water

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are beingZealand Jump to: navigation, searchOfRoseConcernsCompany Oil and GasOff<div/0 en TheResult

  3. ADVANCED FLUE GAS CONDITIONING AS A RETROFIT UPGRADE TO ENHANCE PM COLLECTION FROM COAL-FIRED ELECTRIC UTILITY BOILERS

    SciTech Connect (OSTI)

    Kenneth E. Baldrey

    2001-09-01T23:59:59.000Z

    The U.S. Department of Energy and ADA Environmental Solutions are engaged in a project to develop commercial flue gas conditioning additives. The objective is to develop conditioning agents that can help improve particulate control performance of smaller or under-sized electrostatic precipitators on utility coal-fired boilers. The new chemicals will be used to control both the electrical resistivity and the adhesion or cohesivity of the fly ash. There is a need to provide cost-effective and safer alternatives to traditional flue gas conditioning with SO{sub 3} and ammonia. During this reporting quarter, further laboratory-screening tests of additive formulations were completed. For these tests, the electrostatic tensiometer method was used for determination of fly ash cohesivity. Resistivity was measured for each screening test with a multi-cell laboratory fly ash resistivity furnace constructed for this project. Also during this quarter chemical formulation testing was undertaken to identify stable and compatible resistivity/cohesivity liquid products.

  4. Selective CO2 Capture from Flue Gas Using Metal-Organic Frameworks?A Fixed Bed Study

    SciTech Connect (OSTI)

    Liu, Jian; Tian, Jian; Thallapally, Praveen K.; McGrail, B. Peter

    2012-05-03T23:59:59.000Z

    It is important to capture carbon dioxide from flue gas which is considered to be the main reason to cause global warming. CO2/N2 separation by novel adsorbents is a promising method to reduce CO2 emission but effect of water and CO2/N2 selectivity is critical to apply the adsorbents into practical applications. A very well known, Metal Organic Framework, NiDOBDC (Ni-MOF-74 or CPO-27-Ni) was synthesized through a solvothermal reaction and the sample (500 to 800 microns) was used in a fixed bed CO2/N2 breakthrough study with and without H2O. The Ni/DOBDC pellet has a high CO2 capacity of 3.74 mol/kg at 0.15 bar and a high CO2/N2 selectivity of 38, which is much higher than those of reported MOFs and zeolites under dry condition. Trace amount of water can impact CO2 adsorption capacity as well as CO2/N2 selectivity for the Ni/DOBDC. However, Ni/DOBDC can retain a significant CO2 capacity and CO2/N2 selectivity at 0.15 bar CO2 with 3% RH water. These results indicate a promising future to use the Ni/DOBDC in CO2 capture from flue gas.

  5. Status of flue-gas treatment technologies for combined SO[sub 2]/NO[sub x] reduction

    SciTech Connect (OSTI)

    Livengood, C.D. (Argonne National Lab., IL (United States). Energy Systems Div.); Markussen, J.M. (USDOE Pittsburgh Energy Technology Center, PA (United States))

    1993-01-01T23:59:59.000Z

    Enactment of the Clean Air Act Amendments and passage of state legislation leading to more stringent nitrogen oxides (NO.) regulations have fueled research and development efforts on the technologies for the combined control of sulfur dioxide (SO[sub 2]) and NO[sub x]. The integrated removal of both SO[sub 2] and NO[sub x] in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue-gas-cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  6. WETTABILITY ALTERATION OF POROUS MEDIA TO GAS-WETTING FOR IMPROVING PRODUCTIVITY AND INJECTIVITY IN GAS-LIQUID FLOWS

    SciTech Connect (OSTI)

    Abbas Firoozabadi

    2003-12-01T23:59:59.000Z

    Wettability alteration to intermediate gas-wetting in porous media by treatment with FC-759, a fluoropolymer polymer, has been studied experimentally. Berea sandstone was used as the main rock sample in our work and its wettability before and after chemical treatment was studied at various temperatures from 25 to 93 C. We also studied recovery performance for both gas/oil and oil/water systems for Berea sandstone before and after wettability alteration by chemical treatment. Our experimental study shows that chemical treatment with FC-759 can result in: (1) wettability alteration from strong liquid-wetting to stable intermediate gas-wetting at room temperature and at elevated temperatures; (2) neutral wetting for gas, oil, and water phases in two-phase flow; (3) significant increase in oil mobility for gas/oil system; and (4) improved recovery behavior for both gas/oil and oil/water systems. This work reveals a potential for field application for improved gas-well deliverability and well injectivity by altering the rock wettability around wellbore in gas condensate reservoirs from strong liquid-wetting to intermediate gas-wetting.

  7. Development of Fly Ash Derived Sorbents to Capture CO2 from Flue Gas of Power Plants

    SciTech Connect (OSTI)

    M. Mercedes Maroto-Valer; John M. Andresen; Yinzhi Zhang; Zhe Lu

    2003-12-31T23:59:59.000Z

    This research program focused on the development of fly ash derived sorbents to capture CO{sub 2} from power plant flue gas emissions. The fly ash derived sorbents developed represent an affordable alternative to existing methods using specialized activated carbons and molecular sieves, that tend to be very expensive and hinder the viability of the CO{sub 2} sorption process due to economic constraints. Under Task 1 'Procurement and characterization of a suite of fly ashes', 10 fly ash samples, named FAS-1 to -10, were collected from different combustors with different feedstocks, including bituminous coal, PRB coal and biomass. These samples presented a wide range of LOI value from 0.66-84.0%, and different burn-off profiles. The samples also spanned a wide range of total specific surface area and pore volume. These variations reflect the difference in the feedstock, types of combustors, collection hopper, and the beneficiation technologies the different fly ashes underwent. Under Task 2 'Preparation of fly ash derived sorbents', the fly ash samples were activated by steam. Nitrogen adsorption isotherms were used to characterize the resultant activated samples. The cost-saving one-step activation process applied was successfully used to increase the surface area and pore volume of all the fly ash samples. The activated samples present very different surface areas and pore volumes due to the range in physical and chemical properties of their precursors. Furthermore, one activated fly ash sample, FAS-4, was loaded with amine-containing chemicals (MEA, DEA, AMP, and MDEA). The impregnation significantly decreased the surface area and pore volume of the parent activated fly ash sample. Under Task 3 'Capture of CO{sub 2} by fly ash derived sorbents', sample FAS-10 and its deashed counterpart before and after impregnation of chemical PEI were used for the CO{sub 2} adsorption at different temperatures. The sample FAS-10 exhibited a CO{sub 2} adsorption capacity of 17.5mg/g at 30 C, and decreases to 10.25mg/g at 75 C, while those for de-ashed counterpart are 43.5mg/g and 22.0 mg/g at 30 C and 75 C, respectively. After loading PEI, the CO{sub 2} adsorption capacity increased to 93.6 mg/g at 75 C for de-ashed sample and 62.1 mg/g at 75 C for raw fly ash sample. The activated fly ash, FAS-4, and its chemical loaded counterparts were tested for CO{sub 2} capture capacity. The activated carbon exhibited a CO{sub 2} adsorption capacity of 40.3mg/g at 30 C that decreased to 18.5mg/g at 70 C and 7.7mg/g at 120 C. The CO{sub 2} adsorption capacity profiles changed significantly after impregnation. For the MEA loaded sample the capacity increased to 68.6mg/g at 30 C. The loading of MDEA and DEA initially decreased the CO{sub 2} adsorption capacity at 30 C compared to the parent sample but increased to 40.6 and 37.1mg/g, respectively, when the temperature increased to 70 C. The loading of AMP decrease the CO{sub 2} adsorption capacity compared to the parent sample under all the studied temperatures. Under Task 4 'Comparison of the CO{sub 2} capture by fly ash derived sorbents with commercial sorbents', the CO{sub 2} adsorption capacities of selected activated fly ash carbons were compared to commercial activated carbons. The CO{sub 2} adsorption capacity of fly ash derived activated carbon, FAS-4, and its chemical loaded counterpart presented CO{sub 2} capture capacities close to 7 wt%, which are comparable to, and even better than, the published values of 3-4%.

  8. Modeling of wet gas compression in twin-screw multiphase pump 

    E-Print Network [OSTI]

    Xu, Jian

    2009-05-15T23:59:59.000Z

    Twin-screw multiphase pumps experience a severe decrease in efficiency, even the breakdown of pumping function, when operating under wet gas conditions. Additionally, field operations have revealed significant vibration and thermal issues which can...

  9. Absorption, electrodialysis and additional regeneration in two flue gas SO/sub 2//NO/sub x/ cleanup processes

    SciTech Connect (OSTI)

    Walker, R.J.; Pennline, H.W.

    1987-01-01T23:59:59.000Z

    Eleven potential adsorbents for use in the two processes were tested in a laboratory-scale bubble column. Best absorbent performance was obtained with iron EDTA in an ammonium sulfite/sulfate solution. Removals of greater than 95% were observed for SO/sub 2/, NO, and NO/sub 2/ from a simulated flue gas containing N/sub 2/, O/sub 2/, CO/sub 2/, SO/sub 2/, NO, and NO/sub 2/. Laboratory-scale electrodialysis tests of fresh scrubbing liquor revealed that iron EDTA tended to permeate through anion-selective membranes and thus deleteriously affected process performance. Screening tests with twelve types of anion-selective membranes showed that three had EDTA permeation rates that were acceptable for process operation. Two methods of regeneration with respect to the NO/sub x/-removal component were investigated. Thermal stripping did not appear successful for producing nitrogen oxides in the off-gas from the stripper. A thermal treatment of the spent liquor at 50/sup 0/C successfully regenerated iron EDTA. The mechanism is being investigated.

  10. Fundamental mechanisms in flue-gas conditioning. Topical report No. 1, Literature review and assembly of theories on the interactions of ash and FGD sorbents

    SciTech Connect (OSTI)

    Dahlin, R.S.; Vann Bush, P.; Snyder, T.R.

    1992-01-09T23:59:59.000Z

    The overall goal of this research project is to formulate a mathematical model of flue gas conditioning. This model will be based on an understanding of why ash properties, such as cohesivity and resistivity, are changed by conditioning. Such a model could serve as a component of the performance models of particulate control devices where flue gas conditioning is used. There are two specific objectives of this research project, which divide the planned research into two main parts. One part of the project is designed to determine how ash particles are modified by interactions with sorbent injection processes and to describe the mechanisms by which these interactions affect fine particle collection. The objective of the other part of the project is to identify the mechanisms by which conditioning agents, including chemically active compounds, modify the key properties of fine fly ash particles.

  11. Efficient capture of CO{sub 2} from simulated flue gas by formation of TBAB or TBAF semiclathrate hydrates

    SciTech Connect (OSTI)

    Shuanshi Fan; Shifeng Li; Jingqu Wang; Xuemei Lang; Yanhong Wang [South China University of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conversation

    2009-08-15T23:59:59.000Z

    Capturing CO{sub 2} by forming hydrate is an attractive technology for reducing the greenhouse effect. The most primary challenges are high energy consumption, low hydrate formation rate, and separation efficiency. This work presents efficient capture of CO{sub 2} from simulated flue gas (CO{sub 2} (16.60 mol %)/N{sub 2} binary mixtures) by formation of semiclathrate hydrates at 4.5 and 7.1{sup o}C and feed pressures ranging from 2.19 to 7.31 MPa. The effect of 0.293 mol % tetra-n-butyl ammonium bromide (TBAB) and tetra-n-butyl ammonium fluoride (TBAF) on the hydrate formation rate, reactor space velocity, and CO{sub 2} separation efficiency was studied in a 1 L stirred reactor. The results showed the hydrate formation rate constant increased with increasing feed pressure and reached the maximum at 2.82 x 10{sup -7} mol{sup 2}/(s.J) with TBAB and 8.26 x 10{sup -7} mol{sup 2}/(s.J) with TBAF. The space velocity of the hydrate reactor increased with increasing feed pressure and reached a maximum of 13.46 h{sup -1} with TBAB and 25.96 h{sup -1} with TBAF. CO{sub 2} recovery was about 50%, and the optimum CO{sub 2} separation factor with TBAF was 36.98, which was about 4 times higher than that with TBAB in the range of feed pressure. CO{sub 2} could be enriched to 90.40 mol % from simulated flue gas under low feed pressure by two stages of hydrate separation with TBAF. The results demonstrated that TBAB, especially TBAF, could accelerate hydrate formation. The space velocity of the hydrate reactor with TBAB or TBAF was higher than that with THF. CO{sub 2} could be easily enriched in the hydrate phase by two stages of hydrate separation under gentle conditions. 27 refs., 8 figs., 5 tabs.

  12. Simultaneous SO{sub 2}/NO separation from flue gas using HFCLM. Final report

    SciTech Connect (OSTI)

    Schimmel, K.

    1995-02-01T23:59:59.000Z

    Abatement technologies for oxides of sulfur and nitrogen present in flue and stack gases from coal fired boilers are becoming increasingly important. Scrubbing the gases with an aqueous limestone slurry to remove SO{sub 2} is a widely used treatment process. These scrubbing solutions are, however, not very effective in removing NO. In addition, the process is expensive and produces large volumes of sludge. The liquid membrane from a 0.01 M aqueous solution of Fe{sup 2+}EDTA has been found to have a very high selectivity for NO over N{sub 2}. Thus, SO{sub 2}/NO{sub x} can be removed simultaneously using an aqueous Fe 3{sup 3+}EDTA solution in a hollow fiber contained liquid membrane (HFCLM) permeator with hydrophobic fibers. The HFCLM configuration has addressed previous concerns about liquid membrane stability for an application such as this. In this project, a flow apparatus was constructed that will allow simultaneous SO{sub 2}/NO removal and recovery using two hollow fiber modules in series. Flowing the liquid membrane on the shell-side of the modules it is hypothesized will enhance the performance over that of HFCLMs without loss of stability. From the work completed in this exploratory project, it was concluded that to move the current state-of-the-art for this promising technology toward commercialization will require progress in the following areas: (1) sensitivity of the performance of the system to temperature changes, (2) validation of a mass transfer model to be used in scale-up calculations, (3) data on alternative flow schemes, and (4) overall process economics calculations.

  13. Production and Pressure Decline Curves for Wet Gas Sands With Closed Outer Boundaries

    E-Print Network [OSTI]

    Mohaghegh, Shahab

    . SPE SPE 23442 Production and Pressure Decline Curves for Wet Gas Sands With Closed Outer, Richardson, TX 7S0834S36 U.5A. Telex, 730989 SPEDAL. ABSTRACT A family of pressure and production decline as gas reservoirs which produce substan- tial amounts of water together with ~as. Production of water

  14. Experimental research on emission and removal of dioxins in flue gas from a co-combustion of MSW and coal incinerator

    SciTech Connect (OSTI)

    Zhong Zhaoping [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)]. E-mail: zzhong@seu.edu.cn; Jin Baosheng [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Huang Yaji [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Zhou Hongcang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China); Lan Jixiang [Department of Power Engineering, Research Institute of Thermal Energy Engineering, Key Laboratory of Clean Coal Power Generation and Combustion Technology of Ministry of Education, Southeast University, Nanjing 210096 (China)

    2006-07-01T23:59:59.000Z

    This paper describes the experimental study of dioxins removal from flue gas from a co-combustion municipal solid waste and coal incinerator by means of a fluidized absorption tower and a fabric filter. A test rig has been set up. The flow rate of flue gas of the test rig is 150-2000 m{sup 3}/h. The system was composed of a humidification and cooling system, an absorption tower, a demister, a slurry make-up tank, a desilter, a fabric filter and a measurement system. The total height of the absorption tower was 6.5 m, and the diameter of the reactor pool was 1.2 m. When the absorbent was 1% limestone slurry, the recirculation ratio was 3, the jet rate was 5-15 m/s and the submerged depth of the bubbling pipe under the slurry was 0.14 m, the removal efficiency for dioxins was 99.35%. The concentration of dioxins in the treated flue gas was 0.1573 x 10{sup -13} kg/Nm{sup 3} and the concentration of oxygen was 11%. This concentration is comparable to the emission standards of other developed countries.

  15. Management of dry flue gas desulfurization by-products in underground mines. Topical report, April 1, 1996--April 30, 1997

    SciTech Connect (OSTI)

    Chugh, Y.P.; Brackebusch, F.; Carpenter, J. [and others

    1998-12-31T23:59:59.000Z

    This report represents the Final Technical Progress Report for Phase II of the overall program for a cooperative research agreement between the U.S. Department of Energy - MORGANTOWN Energy Technology Center (DOE-METC) and Southern Illinois University at Carbondale (SIUC). Under the agreement, SIUC will develop and demonstrate technologies for the handling, transport, and placement in abandoned underground coal mines of dry flue gas desulfurization by-products, such as fly ash, scrubber sludge, fluidized bed combustion by-products, and will assess the environmental impact of such underground placement. The overall program is divided into three (3) phases. Phase II of the program is primarily concerned with developing and testing the hardware for the actual underground placement demonstrations. Two technologies have been identified and hardware procured for full-scale demonstrations: (1) hydraulic placement, where coal combustion by-products (CCBs) will be placed underground as a past-like mixture containing about 70 to 75 percent solids; and (2) pneumatic placement, where CCBs will be placed underground as a relatively dry material using compressed air. 42 refs., 36 figs., 36 tabs.

  16. Flue Gas Perification Utilizing SOx/NOx Reactions During Compression of CO2 Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Kevin Fogash

    2010-09-30T23:59:59.000Z

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO2 stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO2 derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  17. Flue Gas Purification Utilizing SOx/NOx Reactions During Compression of CO{sub 2} Derived from Oxyfuel Combustion

    SciTech Connect (OSTI)

    Fogash, Kevin

    2010-09-30T23:59:59.000Z

    The United States wishes to decrease foreign energy dependence by utilizing the country’s significant coal reserves, while stemming the effects of global warming from greenhouse gases. In response to these needs, Air Products has developed a patented process for the compression and purification of the CO{sub 2} stream from oxyfuel combustion of pulverized coal. The purpose of this project was the development and performance of a comprehensive experimental and engineering evaluation to determine the feasibility of purifying CO{sub 2} derived from the flue gas generated in a tangentially fired coal combustion unit operated in the oxy-combustion mode. Following the design and construction of a 15 bar reactor system, Air Products conducted two test campaigns using the slip stream from the tangentially fired oxy-coal combustion unit. During the first test campaign, Air Products evaluated the reactor performance based on both the liquid and gaseous reactor effluents. The data obtained from the test run has enabled Air Products to determine the reaction and mass transfer rates, as well as the effectiveness of the reactor system. During the second test campaign, Air Products evaluated reactor performance based on effluents for different reactor pressures, as well as water recycle rates. Analysis of the reaction equations indicates that both pressure and water flow rate affect the process reaction rates, as well as the overall reactor performance.

  18. Economic assessment of advanced flue gas desulfurization processes. Final report. Volume 2. Appendices G, H, and I

    SciTech Connect (OSTI)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01T23:59:59.000Z

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final report, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluation, was completed in October 1980. A slightly modified and condensed version of that report appears as Appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  19. Alternative flue gas treatment technologies for integrated SO{sub 2} and NO{sub x} control

    SciTech Connect (OSTI)

    Markussen, J.M. [USDOE Pittsburgh Energy Technology Center, PA (United States); Livengood, D.D. [Argonne National Lab., IL (United States)

    1995-06-01T23:59:59.000Z

    Enactment of the 1990 Clean Air Act Amendments, as well as passage of legislation at the state level has raised the prospect of more stringent nitrogen oxides (NO{sub x}) emission regulations and has fueled research and development efforts on a number technologies for the combined control of sulfur dioxide (SO{sub 2}) and NO{sub x}. The integrated removal of both SO{sub 2} and NO{sub x} in a single system can offer significant advantages over the use of several separate processes, including such factors as reduced system complexity, better operability, and lower costs. This paper reviews the status of a number of integrated flue gas cleanup systems that have reached a significant stage of development, focusing on post-combustion processes that have been tested or are ready for testing at the pilot scale or larger. A brief process description, a summary of the development status and performance achieved to date, pending commercialization issues, and process economics (when available) are given for each technology.

  20. DEVELOPMENT OF SUPERIOR SORBENTS FOR SEPARATION OF CO2 FROM FLUE GAS AT A WIDE TEMPERATURE RANGE DURING COAL COMBUSTION

    SciTech Connect (OSTI)

    Panagiotis G. Smirniotis

    2005-01-30T23:59:59.000Z

    For this part of the project the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed.

  1. Membrane loop process for separating carbon dioxide for use in gaseous form from flue gas

    DOE Patents [OSTI]

    Wijmans, Johannes G; Baker, Richard W; Merkel, Timothy C

    2014-10-07T23:59:59.000Z

    The invention is a process involving membrane-based gas separation for separating and recovering carbon dioxide emissions from combustion processes in partially concentrated form, and then transporting the carbon dioxide and using or storing it in a confined manner without concentrating it to high purity. The process of the invention involves building up the concentration of carbon dioxide in a gas flow loop between the combustion step and a membrane separation step. A portion of the carbon dioxide-enriched gas can then be withdrawn from this loop and transported, without the need to liquefy the gas or otherwise create a high-purity stream, to a destination where it is used or confined, preferably in an environmentally benign manner.

  2. Inorganic hazardous air pollutants before and after a limestone flue gas desulfurization system as a function of <10 micrometer particle sizes and unit load

    SciTech Connect (OSTI)

    Maxwell, D.P.; Williams, W.A.; Flora, H.B. II [Radian Corp., Austin, TX (United States)

    1995-12-31T23:59:59.000Z

    Radian Corporation collected size-fractionated particulate samples from stack gas at a unit burning high sulfur coal with a venturi scrubber FGD system. Independent sample fractions were collected under high-load and low-load operating conditions and subjected to various techniques designed to measure the total composition and surface-extractable concentrations of selected trace elements. The relationships between unit load, particle-size distribution, total composition, and surface-extractable inorganic species are reported and compared to show the availability of trace elements relevant to potential health risks from flue gas particulate emissions.

  3. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOE Patents [OSTI]

    Yang, Wen-Ching (Murrysville, PA); Newby, Richard A. (Pittsburgh, PA); Lippert, Thomas E. (Murrysville, PA)

    1997-01-01T23:59:59.000Z

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  4. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOE Patents [OSTI]

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05T23:59:59.000Z

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  5. Separation of flue-gas scrubber sludge into marketable products. Second quarterly technical progress report, December 1, 1993--February 28, 1994 (Quarter No. 2)

    SciTech Connect (OSTI)

    Kawatra, S.K.; Eisele, T.C.

    1994-03-01T23:59:59.000Z

    To reduce their sulfur emissions, many coal-fired electric power plants use wet flue-gas scrubbers. These scrubbers convert sulfur oxides into solid sulfate and sulfite sludge, which must then be disposed of This sludge is a result of reacting limestone with sulfur dioxide to precipitate calcium sulfite and calcium sulfate. It consists of calcium sulfite (CaSO{sub 3}{lg_bullet}0.5H{sub 2}0), gypsum (CaSO{sub 4}{lg_bullet}2H{sub 2}0), and unreacted limestone (CaCO{sub 3}) or lime (Ca(OH){sub 2}), with miscellaneous objectionable impurities such as iron oxides; silica; and magnesium, sodium, and potassium oxides or salts. Currently, the only market for scrubber sludge is for manufacture of gypsum products, such as wallboard and plaster, and for cement. However, the quality of the raw sludge is often not high enough or consistent enough to satisfy manufacturers, and so the material is difficult to sell. This project is developing a process that can produce a high-quality calcium sulfite or gypsum product while keeping process costs low enough that the material produced will be competitive with that from other, more conventional sources. This purification will consist of minimal-reagent froth flotation, using the surface properties of the particles of unreacted limestone to remove them and their associated impurities from the material, leaving a purified gypsum or calcium sulfite product. The separated limestone will be a useful by-product, as it can be recycled to the scrubber, thus boosting the limestone utilization and improving process efficiency. Calcium sulfite will then be oxidized to gypsum, or separated as a salable product in its own right from sludges where it is present in sufficient quantity. The main product of the process will be either gypsum or calcium sulfite, depending on the characteristics of the sludge being processed. These products will be sufficiently pure to be easily marketed, rather that being landfilled.

  6. ,"Louisiana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, Wet After Lease

  7. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, March 11, 1993--June 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-11-01T23:59:59.000Z

    There are two basic approaches to addressing the problem of SO{sub 2} and NO{sub x} emissions: (1) desulfurize (and denitrogenate) the feedstock prior to or during combustion; or (2) scrub the resultant SO{sub 2} and oxides of nitrogen from the boiler flue gases. The flue gas processing alternative has been addressed in this project via microbial reduction of SO{sub 2} and NO{sub x} by sulfate-reducing bacteria

  8. Management of dry flue gas desulfurization by-products in underground mines. Quarterly report, January--March 1995

    SciTech Connect (OSTI)

    Chugh, Y.; Dutta, D.; Esling, S. [and others

    1995-04-01T23:59:59.000Z

    On September 30, 1993, the U.S. Department of Energy, Morgantown Energy Technology Center and Southern Illinois University at Carbondale (SIUC) entered into a cooperative research agreement entitled {open_quotes}Management of Dry Flue Gas Desulfurization By-Products in Underground Mines{close_quotes} (DE-FC21-93MC 30252). Under the agreement Southern Illinois University at Carbondale will develop and demonstrate several technologies for the placement of coal combustion residues in abandoned coal mines, and will assess the environmental impact of such underground residues placement. Previous quarterly Technical Progress Reports have set forth the specific objectives of the program, as well as the management plan and the test plan for the overall program, and a discussion of these will not be repeated here. Rather, this report, will set forth the technical progress made during the period January 1 through March 31, 1995. The demonstration of the SEEC, Inc. technology for the transporting of coal combustion residues was completed with the unloading and final disposition of the three Collapsible Intermodal Containers (CIC). The loading and transport by rail of the three CIC`s was quire successful; however some difficulties were encountered in the unloading of the containers. A full topical report on the entire SEEC demonstration is being prepared. As a result of the demonstration some modifications of the SEEC concept may be undertaken. Also during the quarter the location of the injection wells at the Peabody No. 10 mine demonstration site were selected. Peabody Coal Company has developed the specifications for the wells and sought bids for the actual drilling. It is expected that the wells will be drilled early in May.

  9. Scrubber strategy: the how and why of flue gas desulfurization. [Analysis of 20 US scrubbing systems in 1980

    SciTech Connect (OSTI)

    Baviello, M.A.

    1982-01-01T23:59:59.000Z

    In this report, INFORM provides facts that will help the non-technical decisionmakers in the US understand a technology that can significantly reduce the polluting effects of burning coal. Those decisionmakers include legislators, regulators and utility executives, public interest groups, concerned community organizations and environmentalists who have been involved in the debate over the broader use of our most abundant fossil fuel - coal. The use of this resource, especially in large industrial and utility plants, has created widespread and intense public controversy. For the past four years INFORM has turned its research capabilities to defining cleaner and more economical ways of using US coal supplies. We have focused on finding out what cleaning coal and using flue gas desulfurization systems (called scrubbers) can contribute to reducing the polluting effects of burning coal in utility plants. All in all, both scrubbers and coal cleaning offer exciting and important possibilities for putting more coal to work in generating power in this country more economically and still meeting critical air quality standards that have been set to protect public health. The need for accurate and clear information concerning these technologies is evident: 80% of the sulfur dioxide emissions in the US now come from utility power plant operations, and over 140 existing oil-fired power plants are candidates for conversion to coal use. We hope that this documentation of the technologies of scrubber systems along with INFORM's companion study of coal cleaning, may help government and business planners and concerned citizens chart intelligent future courses and set realistic goals for meeting our energy needs in an environmentally sound manner.

  10. Metal-Organic Frameworks Capture CO2 From Coal Gasification Flue Gas |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItemResearch > The EnergyCenter (LMI-EFRC)MaRIETechnologiesMesdiCenter for Gas

  11. Experimental investigation of a molecular gate membrane for separation of carbon dioxide from flue gas

    SciTech Connect (OSTI)

    Kazama, S. (RITE, Kyoto, Japan); Kai, T. (RITE, Kyoto, Japan); Kouketsu, T. (RITE, Kyoto, Japan); Matsui, S. (RITE, Kyoto, Japan); Yamada, K. (RITE, Kyoto, Japan); Hoffman, J.S.; Pennline, H.W.

    2006-09-01T23:59:59.000Z

    Commercial-sized modules of the PAMAM dendrimer composite membrane with high CO2/N2 selectivity and CO2 permeance were developed according to the In-situ Modification (IM) method. This method utilizes the interfacial precipitation of membrane materials on the surface of porous, commercially available polysulfone (PSF) ultrafiltration hollow fiber membrane substrates. A thin layer of amphiphilic chitosan, which has a potential affinity for both hydrophobic PSF substrates and hydrophilic PAMAM dendrimers, was employed as a gutter layer directly beneath the inner surface of the substrate by the IM method. PAMAM dendrimers were then impregnated into the chitosan gutter layer to form a hybrid active layer for CO2 separation. Permeation experiments of the PAMAM dendrimer composite membrane were carried out using a humidified mixed CO2 / N2 feed gas at a pressure difference up to 97 kPa at ambient temperature. When conducted with CO2 (5%) / N2 (95%) feed gas at a pressure difference of 97 kPa, the PAMAM composite membrane exhibited an excellent CO2/N2 selectivity of 150 and a CO2 permeance of 1.7×10-7 m3(STP) m-2 s-1 kPa-1. The impact of various process parameters on the permeability and selectivity was also examined.

  12. Field testing of a probe to measure fouling in an industrial flue gas stream

    SciTech Connect (OSTI)

    Sohal, M.S.

    1990-11-01T23:59:59.000Z

    The US Department of Energy, Office of Industrial Technology sponsors work in the area of measuring and mitigating fouling in heat exchangers. This report describes the design and fabrication of a gas-side fouling measuring device, and its testing in an industrial environment. The report gives details of the probe fabrication, material used, controllers, other instrumentation required for various measurements, and computer system needed for recording the data. The calibration constants for measuring the heat flux with the heat fluxmeter were determined. The report also describes the field test location, the tests performed, the data collected, and the data analysis. The conclusions of the tests performed were summarized. Although fouling deposits on the probe were minimal, the tests proved that the probe is capable of measuring the fouling in a harsh industrial environment. 17 refs., 19 figs., 5 tabs.

  13. Modeling of wet gas compression in twin-screw multiphase pump

    E-Print Network [OSTI]

    Xu, Jian

    2009-05-15T23:59:59.000Z

    Fig. 1.4 Subsea multiphase pumping system in Ceiba Field, West Africa............................................................... 8 Fig. 1.5 Twin-screw pump cutaway ............................................................... 12 Fig... Page Table 1.1 Summary of subsea multiphase pumping projects............................ 9 Table 1.2 Summary of subsea wet gas compression projects ........................... 10 Table 2.1 Summary of current models for twin-screw pump...

  14. Global evaluation of mass transfer effects: In-duct injection flue gas desulfurization

    SciTech Connect (OSTI)

    Cole, J.A.; Newton, G.H.; Kramlich, J.C.; Payne, R.

    1990-09-30T23:59:59.000Z

    Sorbent injection is a low capital cost, low operating cost approach to SO{sub 2} control targeted primarily at older boilers for which conventional fuel gas desulfurization is not economically viable. Duct injection is one variation of this concept in which the sorbent, either a dry powder or a slurry, is injected into the cooler regions of the boiler, generally downstream of the air heaters. The attractiveness of duct injection is tied to the fact that it avoids much of the boiler heat transfer equipment and thus has minimal impact of boiler performance. Both capital and operating cost are low. This program has as its objectives three performance related issues to address: (1) experimentally identify limits on sorbent performance. (2) identify and test sorbent performance enhancement strategies. (3) develop a compute model of the duct injection process. Two major tasks are described: a laboratory-scale global experiment and development of process model. Both are aimed at understanding and quantifying the rate-limiting processes which control SO{sub 2} capture by lime slurry during boiler duct injection. 29 refs., 35 figs., 4 tabs.

  15. Audit of wet gas processing at Chevron's McKittrick Plant, Naval Petroleum Reserve No. 1, Elk Hills, California

    SciTech Connect (OSTI)

    Not Available

    1987-04-10T23:59:59.000Z

    The purpose of the audit was to determine if: (1) volumes of wet gas delivered to the McKittrick plant were properly calculated and reported; (2) processing fees paid to Chevron conformed to contract provisions; (3) wet gas processing at Chevron's facility was economical; and (4) controls over natural gas liquid sales were adequate. Our review showed that there were weaknesses in internal controls, practices and procedures regarding the Department's management of the wet gas which is processed by Chevron under contract to the Reserve. The findings, recommendations and management comments are synopsized in the Executive Summary.

  16. Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96 1967-2010Cubic Feet) Gas,

  17. Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of FossilFoot) Year JanCubic Feet) Gas,

  18. Florida Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.GasYear Jan Feb Mar AprVented and

  19. Natural Gas Reserves Acquisitions, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural Gas4,365,0888,848

  20. Natural Gas Reserves Adjustments, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural Gas4,365,0888,84871

  1. New Mexico Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial Consumers (Number of Elements) New MexicoFeet) Working Gas)Same

  2. Commercial demonstration of the NOXSO SO{sub 2}/NO{sub x} removal flue gas cleanup system. Quarterly technical progress report No. 15, September 1, 1994--November 30, 1994

    SciTech Connect (OSTI)

    NONE

    1997-01-01T23:59:59.000Z

    The objective of the NOXSO Demonstration Project (NDP), with cost-shared funding support from DOE, is to design, construct, and operate a commercial-scale flue gas cleanup system utilizing the NOXSO process. The NDP consists of the NOXSO plant and sulfur recovery unit, designed to remove SO{sub 2} and NO{sub x} from flue gas and produce elemental sulfur by-product, and the liquid SO{sub 2} plant and air separation unit, designed to process the elemental sulfur into liquid SO{sub 2}. The NOXSO plant and sulfur recovery unit will be constructed at ALCOA Generating Corporation`s (AGC) Warrick Power Plant near Evansville, Indiana, and will treat all of the flue gas from the 150-MW Unit 2 boiler. The elemental sulfur produced will be shipped to the Olin Charleston Plant in Charleston, Tennessee, for conversion into liquid SO{sub 2}.

  3. Mercury removal in utility wet scrubber using a chelating agent

    DOE Patents [OSTI]

    Amrhein, Gerald T. (Louisville, OH)

    2001-01-01T23:59:59.000Z

    A method for capturing and reducing the mercury content of an industrial flue gas such as that produced in the combustion of a fossil fuel or solid waste adds a chelating agent, such as ethylenediaminetetraacetic acid (EDTA) or other similar compounds like HEDTA, DTPA and/or NTA, to the flue gas being scrubbed in a wet scrubber used in the industrial process. The chelating agent prevents the reduction of oxidized mercury to elemental mercury, thereby increasing the mercury removal efficiency of the wet scrubber. Exemplary tests on inlet and outlet mercury concentration in an industrial flue gas were performed without and with EDTA addition. Without EDTA, mercury removal totaled 42%. With EDTA, mercury removal increased to 71%. The invention may be readily adapted to known wet scrubber systems and it specifically provides for the removal of unwanted mercury both by supplying S.sup.2- ions to convert Hg.sup.2+ ions into mercuric sulfide (HgS) and by supplying a chelating agent to sequester other ions, including but not limited to Fe.sup.2+ ions, which could otherwise induce the unwanted reduction of Hg.sup.2+ to the form, Hg.sup.0.

  4. ,"Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas, Wet After Lease Separation

  5. FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS

    SciTech Connect (OSTI)

    D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

    2003-05-07T23:59:59.000Z

    Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

  6. ,"Louisiana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, Wet After

  7. Development of Superior Sorbents for Separation of CO2 from Flue Gas at a Wide Temperature Range During Coal Combustion

    SciTech Connect (OSTI)

    Panagiotis G. Smirniotis

    2007-06-30T23:59:59.000Z

    In chapter 1, the studies focused on the development of novel sorbents for reducing the carbon dioxide emissions at high temperatures. Our studies focused on cesium doped CaO sorbents with respect to other major flue gas compounds in a wide temperature range. The thermo-gravimetric analysis of sorbents with loadings of CaO doped on 20 wt% cesium demonstrated high CO{sub 2} sorption uptakes (up to 66 wt% CO{sub 2}/sorbent). It is remarkable to note that zero adsorption affinity for N{sub 2}, O{sub 2}, H{sub 2}O and NO at temperatures as high as 600 C was observed. For water vapor and nitrogen oxide we observed a positive effect for CO{sub 2} adsorption. In the presence of steam, the CO{sub 2} adsorption increased to the highest adsorption capacity of 77 wt% CO{sub 2}/sorbent. In the presence of nitrogen oxide, the final CO{sub 2} uptake remained same, but the rate of adsorption was higher at the initial stages (10%) than the case where no nitrogen oxide was fed. In chapter 2, Ca(NO{sub 3}){sub 2} {center_dot} 4H{sub 2}O, CaO, Ca(OH){sub 2}, CaCO{sub 3}, and Ca(CH{sub 3}COO){sub 2} {center_dot} H{sub 2}O were used as precursors for synthesis of CaO sorbents on this work. The sorbents prepared from calcium acetate (CaAc{sub 2}-CaO) resulted in the best uptake characteristics for CO{sub 2}. It possessed higher BET surface area and higher pore volume than the other sorbents. According to SEM images, this sorbent shows 'fluffy' structure, which probably contributes to its high surface area and pore volume. When temperatures were between 550 and 800 C, this sorbent could be carbonated almost completely. Moreover, the carbonation progressed dominantly at the initial short period. Under numerous adsorption-desorption cycles, the CaAc{sub 2}-CaO demonstrated the best reversibility, even under the existence of 10 vol % water vapor. In a 27 cyclic running, the sorbent sustained fairly high carbonation conversion of 62%. Pore size distributions indicate that their pore volume decreased when experimental cycles went on. Silica was doped on the CaAc{sub 2}-CaO in various weight percentages, but the resultant sorbent did not exhibit better performance under cyclic operation than those without dopant. In chapter 3, the Calcium-based carbon dioxide sorbents were made in the gas phase by flame spray pyrolysis (FSP) and compared to the ones made by standard high temperature calcination (HTC) of selected calcium precursors. The FSP-made sorbents were solid nanostructured particles having twice as large specific surface area (40-60 m{sup 2}/g) as the HTC-made sorbents (i.e. from calcium acetate monohydrate). All FSP-made sorbents showed high capacity for CO{sub 2} uptake at high temperatures (773-1073 K) while the HTC-made ones from calcium acetate monohydrate (CaAc{sub 2} {center_dot} H{sub 2}O) demonstrated the best performance for CO{sub 2} uptake among all HTC-made sorbents. At carbonation temperatures less than 773 K, FSP-made sorbents demonstrated better performance for CO{sub 2} uptake than all HTC-made sorbents. Above that, both FSP-made, and HTC-made sorbents from CaAc{sub 2} {center_dot} H{sub 2}O exhibited comparable carbonation rates and maximum conversion. In multiple carbonation/decarbonation cycles, FSP-made sorbents demonstrated stable, reversible and high CO{sub 2} uptake capacity sustaining maximum molar conversion at about 50% even after 60 such cycles indicating their potential for CO{sub 2} uptake. In chapter 4 we investigated the performance of CaO sorbents with dopant by flame spray pyrolysis at higher temperature. The results show that the sorbent with zirconia gave best performance among sorbents having different dopants. The one having Zr to Ca of 3:10 by molar gave stable performance. The calcium conversion around 64% conversion during 102-cycle operations at 973 K. When carbonation was performance at 823 K, the Zr/Ca sorbent (3:10) exhibited stable performance of 56% by calcium molar conversion, or 27% by sorbent weight, both of which are less than those at 973 K as expected. In chapter 5 we investigated the perfor

  8. ,"Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas, Wet After Lease

  9. ,"Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas, Wet After

  10. ,"U.S. Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+LiquidsAnnual",2014Annual",2014Gas, Wet

  11. ,"Alaska Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net Withdrawals (MMcf)" ,"Click worksheetGas, Wet

  12. ,"Colorado Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbedNetGas, Wet After

  13. ,"Florida Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease CondensateWellhead PriceGas, Wet

  14. ,"Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbed MethaneNetGas, Wet After Lease

  15. ,"Montana Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, Wet After Lease

  16. Packed-Bed Reactor Study of NETL Sample 196c for the Removal of Carbon Dioxide from Simulated Flue Gas Mixture

    SciTech Connect (OSTI)

    Hoffman, James S.; Hammache, Sonia; Gray, McMahan L.; Fauth Daniel J.; Pennline, Henry W.

    2012-04-24T23:59:59.000Z

    An amine-based solid sorbent process to remove CO2 from flue gas has been investigated. The sorbent consists of polyethylenimine (PEI) immobilized onto silica (SiO2) support. Experiments were conducted in a packed-bed reactor and exit gas composition was monitored using mass spectrometry. The effects of feed gas composition (CO2 and H2O), temperature, and simulated steam regeneration were examined for both the silica support as well as the PEI-based sorbent. The artifact of the empty reactor was also quantified. Sorbent CO2 capacity loading was compared to thermogravimetric (TGA) results to further characterize adsorption isotherms and better define CO2 working capacity. Sorbent stability was monitored by periodically repeating baseline conditions throughout the parametric testing and replacing with fresh sorbent as needed. The concept of the Basic Immobilized Amine Sorbent (BIAS) Process using this sorbent within a system where sorbent continuously flows between the absorber and regenerator was introduced. The basic tenet is to manipulate or control the level of moisture on the sorbent as it travels around the sorbent circulation path between absorption and regeneration stages to minimize its effect on regeneration heat duty.

  17. FIELD TEST PROGRAM FOR LONG-TERM OPERATION OF A COHPAC SYSTEM FOR REMOVING MERCURY FROM COAL-FIRED FLUE GAS

    SciTech Connect (OSTI)

    Jean Bustard; Charles Lindsey; Paul Brignac; Travis Starns; Sharon Sjostrom; Trent Taylor; Cindy Larson

    2004-01-29T23:59:59.000Z

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Sorbent injection technology represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. It involves injecting a solid material such as powdered activated carbon into the flue gas. The gas-phase mercury in the flue gas contacts the sorbent and attaches to its surface. The sorbent with the mercury attached is then collected by the existing particle control device along with the other solid material, primarily fly ash. During 2001, ADA Environmental Solutions (ADA-ES) conducted a full-scale demonstration of sorbent-based mercury control technology at the Alabama Power E.C. Gaston Station (Wilsonville, AL). This unit burns a low-sulfur bituminous coal and uses a hot-side electrostatic precipitator (ESP) in combination with a Compact Hybrid Particulate Collector (COHPAC{trademark}) baghouse to collect fly ash. The majority of the fly ash is collected in the ESP with the residual being collected in the COHPAC{trademark} baghouse. Activated carbon was injected between the ESP and COHPAC{trademark} units to collect the mercury. Short-term mercury removal levels in excess of 90% were achieved using the COHPAC{trademark} unit. The test also showed that activated carbon was effective in removing both forms of mercury--elemental and oxidized. However, a great deal of additional testing is required to further characterize the capabilities and limitations of this technology relative to use with baghouse systems such as COHPAC{trademark}. It is important to determine performance over an extended period of time to fully assess all operational parameters. The project described in this report focuses on fully demonstrating sorbent injection technology at a coal-fired power generating plant that is equipped with a COHPAC{trademark} system. The overall objective is to evaluate the long-term effects of sorbent injection on mercury capture and COHPAC{trademark} performance. The work is being done on one-half of the gas stream at Alabama Power Company's Plant Gaston Unit 3 (nominally 135 MW). Data from the testing will be used to determine: (1) If sorbent injection into a high air-to-cloth ratio baghouse is a viable, long-term approach for mercury control; and (2) Design criteria and costs for new baghouse/sorbent injection systems that will use a similar, polishing baghouse (TOXECON{trademark}) approach.

  18. ,"U.S. Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+LiquidsAnnual",2014Annual",2014Gas, WetGas, Wet

  19. ,"Louisiana State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, WetCrude Oil

  20. ,"Louisiana State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, WetCrude

  1. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, December 11, 1992--March 11, 1993

    SciTech Connect (OSTI)

    Sublette, K.L.

    1993-12-31T23:59:59.000Z

    This report describes the potential of sulfate reducing bacteria to fix sulfur derived from flue gas desulfurization. The first section reviews the problem, the second section reviews progress of this study to use desulfovibrio desulfuricans for this purpose. The final section related progress during the current reporting period. This latter section describes studies to immobilize the bacteria in co-culture with floc-forming anaerobes, use of sewage sludges in the culture media, and sulfate production from sulfur dioxide.

  2. High-volume, high-value usage of flue gas desulfurization (FGD) by-products in underground mines - Phase I: Laboratory investigations. Quarterly report, October 1993--December 1993

    SciTech Connect (OSTI)

    Not Available

    1994-03-01T23:59:59.000Z

    This project proposes to use pneumatically or hydraulically emplaced dry-flue gas desulfurization (FGD) by-products to backfill the adits left by highwall mining. Backfilling highwall mine adits with dry-FGD materials is technically attractive. The use of an active highwall mine would allow the dry-FGD material to be brought in using the same transportation network used to move the coal out, eliminating the need to recreated the transportation infrastructure, thereby saving costs. Activities during the period included the negotiations leading to the final cooperative agreement for the project and the implementation of the necessary instruments at the University of Kentucky to administer the project. Early in the negotiations, a final agreement on a task structure was reached and a milestone plan was filed. A review was initiated of the original laboratory plan as presented in the proposal, and tentative modifications were developed. Selection of a mine site was made early; the Pleasant Valley mine in Greenup County was chosen. Several visits were made to the mine site to begin work on the hydrologic monitoring plan. The investigation of the types of permits needed to conduct the project was initiated. Considerations concerning the acceptance and implementation of technologies led to the choice of circulating fluidized bed ash as the primary material for the study. Finally, the membership of a Technical Advisory Committee for the study was assembled.

  3. Catalytic hydrolysis of urea with fly ash for generation of ammonia in a batch reactor for flue gas conditioning and NOx reduction

    SciTech Connect (OSTI)

    Sahu, J.N.; Gangadharan, P.; Patwardhan, A.V.; Meikap, B.C. [Indian Institute of Technology, Kharagpur (India). Dept. of Chemical Engineering

    2009-01-15T23:59:59.000Z

    Ammonia is a highly volatile noxious material with adverse physiological effects, which become intolerable even at very low concentrations and present substantial environmental and operating hazards and risk. Yet ammonia has long been known to be used for feedstock of flue gas conditioning and NOx reduction. Urea as the source of ammonia for the production of ammonia has the obvious advantages that no ammonia shipping, handling, and storage is required. The process of this invention minimizes the risks and hazards associated with the transport, storage, and use of anhydrous and aqueous ammonia. Yet no such rapid urea conversion process is available as per requirement of high conversion in shorter time, so here we study the catalytic hydrolysis of urea for fast conversion in a batch reactor. The catalyst used in this study is fly ash, a waste material originating in great amounts in combustion processes. A number of experiments were carried out in a batch reactor at different catalytic doses, temperatures, times, and at a constant concentration of urea solution 10% by weight, and equilibrium and kinetic studies have been made.

  4. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-01-21T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period October 1, 2002 through December 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future fullscale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fifth full reporting period for the subject Cooperative Agreement. During this period, project efforts included starting up the pilot unit with three catalysts at the first site, conducting catalyst activity measurements, completing comprehensive flue gas sampling and analyses, and procuring additional catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  5. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    SciTech Connect (OSTI)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01T23:59:59.000Z

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and increase carbon injection when inlet loading and mercury removal were low. The resulting mercury removal varied between 50 and 98%, with an overall average of 85.6%, showing that the process was successful at removing high percentages of vapor-phase mercury even with a widely varying mass loading. In an effort to improve baghouse performance, high-permeability bags were tested. The new bags made a significant difference in the cleaning frequency of the baghouse. Before changing the bags, the baghouse was often in a continuous clean of 4.4 p/b/h, but with the new bags the cleaning frequency was very low, at less than 1 p/b/h. Alternative sorbent tests were also performed using these high-permeability bags. The results of these tests showed that most standard, high-quality activated carbon performed similarly at this site; low-cost sorbent and ash-based sorbents were not very effective at removing mercury; and chemically enhanced sorbents did not appear to offer any benefits over standard activated carbons at this site.

  6. FlueGen Inc | Open Energy Information

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualPropertyd8c-a9ae-f8521cbb8489Information Hydro IncEnergy InformationFlue GasFlueGen Inc

  7. ,"Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas, Wet

  8. ,"Pennsylvania Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ Lease Condensate ProvedGas, Wet After Lease

  9. ,"California - Los Angeles Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, Wet After Lease

  10. ,"California - San Joaquin Basin Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbed

  11. ,"Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDryCoalbedNetGas, Wet

  12. ,"Louisiana - South Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet After Lease

  13. ,"Louisiana Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, Wet After

  14. ,"Miscellaneous States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociatedSummary"ShaleCoalbedDryGas, Wet

  15. ,"Montana Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, Wet After

  16. Process for the combined removal of SO.sub.2 and NO.sub.x from flue gas

    DOE Patents [OSTI]

    Chang, Shih-Ger (El Cerrito, CA); Liu, David K. (Oakland, CA); Griffiths, Elizabeth A. (Neston, GB2); Littlejohn, David (Oakland, CA)

    1988-01-01T23:59:59.000Z

    The present invention in one aspect relates to a process for the simultaneous removal of NO.sub.x and SO.sub.2 from a fluid stream comprising mixtures thereof and in another aspect relates to the separation, use and/or regeneration of various chemicals contaminated or spent in the process and which includes the steps of: (A) contacting the fluid stream at a temperature of between about 105.degree. and 180.degree. C. with a liquid aqueous slurry or solution comprising an effective amount of an iron chelate of an amino acid moiety having at least one --SH group; (B) separating the fluid stream from the particulates formed in step (A) comprising the chelate of the amino acid moiety and fly ash; (C) washing and separating the particulates of step (B) with an aqueous solution having a pH value of between about 5 to 8; (D) subsequently washing and separating the particulates of step (C) with a strongly acidic aqueous solution having a pH value of between about 1 to 3; (E) washing and separating the particulates of step (D) with an basic aqueous solution having a pH value of between about 9 to 12; (F) optionally adding additional amino acid moiety, iron (II) and alkali to the aqueous liquid from step (D) to produce an aqueous solution or slurry similar to that in step (A) having a pH value of between about 4 to 12; and (G) recycling the aqueous slurry of step (F) to the contacting zone of step (A). Steps (D) and (E) can be carried out in the reverse sequence, however the preferred order is (D) and then (E). In another preferred embodiment the present invention provides a process for the removal of NO.sub.x, SO.sub.2 and particulates from a fluid stream which includes the steps of (A) injecting into a reaction zone an aqueous solution itself comprising (i) an amino acid moiety selected from those described above; (ii) iron (II) ion; and (iii) an alkali, wherein the aqueous solution has a pH of between about 4 and 11; followed by solids separation and washing as is described in steps (B), (C), (D) and (E) above. The overall process is useful to reduce acid rain components from combustion gas sources.

  17. Recovery Act: Innovative CO2 Sequestration from Flue Gas Using Industrial Sources and Innovative Concept for Beneficial CO2 Use

    SciTech Connect (OSTI)

    Dando, Neal; Gershenzon, Mike; Ghosh, Rajat

    2012-07-31T23:59:59.000Z

    field testing of a biomimetic in-duct scrubbing system for the capture of gaseous CO2 coupled with sequestration of captured carbon by carbonation of alkaline industrial wastes. The Phase 2 project, reported on here, combined efforts in enzyme development, scrubber optimization, and sequestrant evaluations to perform an economic feasibility study of technology deployment. The optimization of carbonic anhydrase (CA) enzyme reactivity and stability are critical steps in deployment of this technology. A variety of CA enzyme variants were evaluated for reactivity and stability in both bench scale and in laboratory pilot scale testing to determine current limits in enzyme performance. Optimization of scrubber design allowed for improved process economics while maintaining desired capture efficiencies. A range of configurations, materials, and operating conditions were examined at the Alcoa Technical Center on a pilot scale scrubber. This work indicated that a cross current flow utilizing a specialized gas-liquid contactor offered the lowest system operating energy. Various industrial waste materials were evaluated as sources of alkalinity for the scrubber feed solution and as sources of calcium for precipitation of carbonate. Solids were mixed with a simulated sodium bicarbonate scrubber blowdown to comparatively examine reactivity. Supernatant solutions and post-test solids were analyzed to quantify and model the sequestration reactions. The best performing solids were found to sequester between 2.3 and 2.9 moles of CO2 per kg of dry solid in 1-4 hours of reaction time. These best performing solids were cement kiln dust, circulating dry scrubber ash, and spray dryer absorber ash. A techno-economic analysis was performed to evaluate the commercial viability of the proposed carbon capture and sequestration process in full-scale at an aluminum smelter and a refinery location. For both cases the in-duct scrubber technology was compared to traditional amine- based capture. Incorporation of the laboratory results showed that for the application at the aluminum smelter, the in-duct scrubber system is more economical than traditional methods. However, the reverse is true for the refinery case, where the bauxite residue is not effective enough as a sequestrant, combined with challenges related to contaminants in the bauxite residue accumulating in and fouling the scrubber absorbent. Sensitivity analyses showed that the critical variables by which process economics could be improved are enzyme concentration, efficiency, and half-life. At the end of the first part of the Phase 2 project, a gate review (DOE Decision Zero Gate Point) was conducted to decide on the next stages of the project. The original plan was to follow the pre-testing phase with a detailed design for the field testing. Unfavorable process economics, however, resulted in a decision to conclude the project before moving to field testing. It is noted that CO2 Solutions proposed an initial solution to reduce process costs through more advanced enzyme management, however, DOE program requirements restricting any technology development extending beyond 2014 as commercial deployment timeline did not allow this solution to be undertaken.

  18. ,"Louisiana State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociated Natural Gas, WetGas, Wet

  19. Novel technologies for SO{sub x}/NO{sub x} removal from flue gas. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect (OSTI)

    Kung, H.; Kung, M.; Yang, B.; Spivey, J.J.; Jang, B.W.

    1994-09-01T23:59:59.000Z

    The goal of this project is to develop a cost-effective low temperature deNO{sub x} catalyst to be used in the Research Triangle Institute-Waterloo SO{sub 2}/NO{sub x} process for boiler retrofit applications. The performance goal of the catalyst is to convert over 80% of the NO in the flue gas at a temperature as low as 150{degrees}C in the presence of 4% O{sub 2}, and 10% water. Based on the results obtained in the previous quarter, which showed a La-Cu-ZrO{sub 2} catalyst to be a promising low temperature catalyst in the presence of 2% H{sub 2}O in the reduction of NO to N{sub 2} with isobutanol, research was conducted to investigate the variations in feed conditions on the performance of the catalyst. Specifically, the effect of increased H{sub 2}O concentration and the effect of NO{sub 2} in the feed were investigated. Although the activity of the catalyst declined when the H{sub 2}O concentration was increased from 2 to 10%, the decline was relatively mild compared with that when the water content was changed from 0 to 2%. The effect of NO{sub 2} was investigated because oxidation of NO to NO{sub 2}, a thermodynamically favorable process, proceeds at a finite rate even in the absence of a catalyst. It was found that, under the low temperature reaction conditions, replacement of NO{sub 2} with NO did not affect the catalytic performance of the La-Cu-ZrO{sub 2} catalyst. Besides studying the La-Cu-ZrO{sub 2} catalyst, effort has continued in screening other potential catalysts. A promising 5%Cu-2%Ag catalyst supported on active carbon was found that catalyzes NO reduction by acetone. At 150{degrees}C, 35% NO conversion was obtained in the presence of 4% O{sub 2} and 8% H{sub 2}O at a space velocity of 3000 h{sup {minus}1} after 5 h on stream.

  20. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Pilot-Scale Test Results

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, ''Field Testing of a Wet FGD Additive.'' The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemissions of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate that the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project will conduct pilot and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosage requirements to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB co-fired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot and full-scale jet bubbling reactor (JBR) FGD systems to be tested. A third utility, to be named later, will provide the high-sulfur Eastern bituminous coal full-scale FGD test site. Degussa Corporation is providing the TMT-15 additive and technical support to the test program. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High Sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. This topical report presents the results from the Task 2 and Task 4 pilot-scale additive tests. The Task 3 and Task 5 full-scale additive tests will be conducted later in calendar year 2006.

  1. ,"North Dakota Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG StorageConsumptionPlantWellhead PriceGas, Wet

  2. ,"Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed Methane ProvedNetGas, Wet After

  3. ,"Texas - RRC District 7C Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNatural Gas, Wet After

  4. ,"Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas, Wet

  5. ,"U.S. Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+LiquidsAnnual",2014Annual",2014Gas, Wet After

  6. ,"Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolumeCoalbed MethaneNetGas, Wet After

  7. ,"Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas, WetThrough

  8. ,"New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlant Liquids,VolumeGas, Wet After

  9. ,"New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,DryPlant Liquids,VolumeGas, Wet

  10. ,"New York Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPrice Sold toNetGas, Wet After

  11. ,"New York Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG Storage NetPrice Sold toNetGas, Wet

  12. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 3 Full-scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe

    2007-05-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of a flue gas desulfurization (FGD) additive, Degussa Corporation's TMT-15, to prevent the reemission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine TMT salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the TMT-15 additive in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} reemissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Power River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, TXU Generation Company LP, Southern Company, and Degussa Corporation. TXU Generation has provided the Texas lignite/PRB cofired test site for pilot FGD tests, Monticello Steam Electric Station Unit 3. Southern Company is providing the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems to be tested. IPL, an AES company, provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Degussa Corporation is providing the TMT-15 additive and technical support to the test program as cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and have been previously reported. This topical report presents the results from the Task 3 full-scale additive tests, conducted at IPL's Petersburg Station Unit 2. The Task 5 full-scale additive tests will be conducted later in calendar year 2007.

  13. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-05-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time period January 1, 2003 through March 31, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the sixth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the pilot unit with three catalysts, conducting catalyst activity measurements, and procuring the fourth catalyst, all for the GRE Coal Creek pilot unit site. Laboratory efforts were also conducted to support catalyst selection for the second pilot unit site, at CPS' Spruce Plant. This technical progress report provides an update on these efforts.

  14. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-10-04T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period July 1, 2002 through September 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The coprecipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the fourth full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to completing, installing and starting up the pilot unit, completing laboratory runs to size catalysts, and procuring catalysts for the pilot unit. This technical progress report provides an update on these efforts.

  15. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-07-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period April 1, 2003 through June 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the seventh full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit, conducting catalyst activity measurements, installing sonic horns for on-line catalyst cleaning, and installing the fourth catalyst, all for the GRE Coal Creek site. CPS began installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter. Laboratory efforts were conducted to support catalyst selection for that second pilot unit. This technical progress report provides an update on these efforts.

  16. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-07-17T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period April 1, 2002 through June 30, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the third full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to constructing the pilot unit and conducting laboratory runs to help size catalysts for the pilot unit. This technical progress report provides an update on these two efforts.

  17. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Final report

    SciTech Connect (OSTI)

    Sublette, K.L.

    1994-03-01T23:59:59.000Z

    The main objective of this research was to investigate microorganisms capable of fossil fuel flue gas desulfurization and denitrification. The study used municipal sewage sludge as a carbon and energy source for SO{sub 2}-reducing cultures. The individual tasks developed a consortium of sulfate-reducing bacteria, investigated the design parameters for a continuous process, preformed a cost analysis, and screened sulfate-reducing bacteria. In the investigation of microbial reduction of NO{sub x} to nitrogen, tasks included screening denitrifying bacteria for NO and NO{sub 2} activity, developing optimum NO-reducing cultures, and investigating design parameters for a continuous system. This final report reviews the work previous to the current project, describes project objectives and the specific work plan, and reports results from the work completed during the previous reporting periods.

  18. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736 269,010ChangesWet (Billion

  19. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736 269,010ChangesWet (BillionField

  20. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, New

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736 269,010ChangesWet

  1. U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5 Tables July 1996 Energy Information Administration Office ofthroughYear JanYear Jan Feb Mar Apr18,736 269,010ChangesWetAcquisitions

  2. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary Blythe; Conor Braman; Katherine Dombrowski; Tom Machalek

    2010-12-31T23:59:59.000Z

    This document is the final technical report for Cooperative Agreement DE-FC26-04NT41992, 'Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,' which was conducted over the time-period January 1, 2004 through December 31, 2010. The objective of this project has been to demonstrate at pilot scale the use of solid catalysts and/or fixed-structure mercury sorbents to promote the removal of total mercury and oxidation of elemental mercury in flue gas from coal combustion, followed by wet flue gas desulfurization (FGD) to remove the oxidized mercury at high efficiency. The project was co-funded by the U.S. DOE National Energy Technology Laboratory (DOE-NETL), EPRI, Great River Energy (GRE), TXU Energy (now called Luminant), Southern Company, Salt River Project (SRP) and Duke Energy. URS Group was the prime contractor. The mercury control process under development uses fixed-structure sorbents and/or catalysts to promote the removal of total mercury and/or oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury not adsorbed is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The project has tested candidate materials at pilot scale and in a commercial form, to provide engineering data for future full-scale designs. Pilot-scale catalytic oxidation tests have been completed for periods of approximately 14 to19 months at three sites, with an additional round of pilot-scale fixed-structure sorbent tests being conducted at one of those sites. Additionally, pilot-scale wet FGD tests have been conducted downstream of mercury oxidation catalysts at a total of four sites. The sites include the two of three sites from this project and two sites where catalytic oxidation pilot testing was conducted as part of a previous DOE-NETL project. Pilot-scale wet FGD tests were also conducted at a fifth site, but with no catalyst or fixed-structure mercury sorbent upstream. This final report presents and discusses detailed results from all of these efforts, and makes a number of conclusions about what was learned through these efforts.

  3. ,"California Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude OilPriceWellheadGas,

  4. ,"Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........RegionTotalPrice (DollarsNetWellheadGas,

  5. New Mexico Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govNThousandCubic Feet) Gas,

  6. ,"Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNGCoalbed MethaneWellhead Price (Dollars perGas,

  7. ,"Utah Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plant Liquids,NetWellhead

  8. Alabama Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u o f l d w nGas)APPENDIX

  9. Florida Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1.Gas Proved

  10. ,"Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (DollarsVolume (MMcf)"LiquidsWellhead PriceGas,

  11. ,"Mississippi Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future Production (MillionCrude OilWellheadGas,

  12. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-02-22T23:59:59.000Z

    The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the first full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to project initiation and planning. There is no significant technical progress to report for the current period.

  13. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Gary M. Blythe

    2006-03-31T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-04NT41992, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems'', during the time-period January 1 through March 31, 2006. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in flue gas from coal combustion, and the use of a wet flue gas desulfurization (FGD) system downstream to remove the oxidized mercury at high efficiency. The project is being co-funded by the U.S. DOE National Energy Technology Laboratory, EPRI, Great River Energy (GRE), TXU Generation Company LP, the Southern Company, and Duke Energy. URS Group is the prime contractor. The mercury control process under development uses honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone FGD systems. Oxidized mercury is removed in the wet FGD absorbers and leaves with the byproducts from the FGD system. The current project is testing previously identified catalyst materials at pilot scale and in a commercial form to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months or longer at each of two sites to provide longer-term catalyst life data. Pilot-scale wet FGD tests are being conducted periodically at each site to confirm the ability to scrub the catalytically oxidized mercury at high efficiency. This is the ninth reporting period for the subject Cooperative Agreement. During this period, project efforts primarily consisted of operating the catalyst pilot units at the TXU Generation Company LP's Monticello Steam Electric Station and at Georgia Power's Plant Yates. Two catalyst activity measurement trips were made to Plant Yates during the quarter. This Technical Progress Report presents catalyst activity results from the oxidation catalyst pilot unit at Plant Yates and discusses the status of the pilot unit at Monticello.

  14. ,"California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, Wet After

  15. ,"California - San Joaquin Basin Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, Wet

  16. ,"California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas, WetCoalbedNonassociated

  17. ,"Gulf of Mexico Federal Offshore - Louisiana and Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated Natural Gas, Wet After

  18. ,"Gulf of Mexico Federal Offshore - Texas Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated Natural Gas, Wet

  19. Microbial reduction of SO{sub 2} and NO{sub x} as a means of by-product recovery/disposal from regenerable processes for the desulfurization of flue gas. Technical progress report, September 11, 1992--December 11, 1992

    SciTech Connect (OSTI)

    Sublette, K.L.

    1992-12-31T23:59:59.000Z

    With the continual increase in the utilization of high sulfur and high nitrogen containing fossil fuels, the release of airborne pollutants into the environment has become a critical problem. The fuel sulfur is converted to SO{sub 2} during combustion. Fuel nitrogen and a fraction of the nitrogen from the combustion air are converted to nitric oxide and nitrogen dioxide, NO{sub x}. For the past five years Combustion Engineering (now Asea Brown Boveri or ABB) and, since 1986, the University of Tulsa (TU) have been investigating the oxidation of H{sub 2}S by the facultatively anaerobic and autotrophic bacterium Thiobacillus denitrificans and have developed a process, concept for the microbial removal of H{sub 2}S from a gas stream the simultaneous removal of SO{sub 2} and NO by D. desulfuricans and T. denitrificans co-cultures and cultures-in-series was demonstrated. These systems could not be sustained due to NO inhibition of D. desulfuricans. However, a preliminary economic analysis has shown that microbial reduction of SO{sub 2} to H{sub 2}S with subsequent conversion to elemental sulfur by the Claus process is both technically and economically feasible if a less expensive carbon and/or energy source can be found. It has also been demonstrated that T. denitrificans can be grown anaerobically on NO(g) as a terminal electron acceptor with reduction to elemental nitrogen. Microbial reduction of NO{sub x} is a viable process concept for the disposal of concentrated streams of NO{sub x} as may be produced by certain regenerable processes for the removal of SO{sub 2} and NO{sub x} from flue gas.

  20. Field Testing of a Wet FGD Additive for Enhanced Mercury Control

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-31T23:59:59.000Z

    This document is the final report for DOE-NETL Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project has been to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project was intended to demonstrate whether such additives can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project involved pilot- and full-scale tests of the additives in wet FGD absorbers. The tests were intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power provided the Texas lignite/PRB co-fired test site for pilot FGD tests and project cost sharing. Southern Company provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested, and project cost sharing. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation provided the TMT-15 additive, and the Nalco Company provided the Nalco 8034 additive. Both companies also supplied technical support to the test program as in-kind cost sharing. The project was conducted in six tasks. Of the six tasks, Task 1 involved project planning and Task 6 involved management and reporting. The other four tasks involved field testing on FGD systems, either at pilot or full scale. These four tasks included: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests were completed in 2005 and the full-scale test using high-sulfur coal was completed in 2006; only the TMT-15 additive was tested in these efforts. The Task 5 full-scale additive tests conducted at Southern Company's Plant Yates Unit 1 were completed in 2007, and both the TMT-15 and Nalco 8034 additives were tested.

  1. ,"Texas - RRC District 7C Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNatural Gas, Wet

  2. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2003-10-01T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems,'' during the time-period July 1, 2003 through September 30, 2003. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE), and City Public Service (CPS) of San Antonio are project cofunders. URS Group is the prime contractor. The mercury control process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates with the byproducts from the FGD system. The current project is testing previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, to provide engineering data for future full-scale designs. The pilot-scale tests will continue for approximately 14 months at each of two sites to provide longer-term catalyst life data. This is the eighth full reporting period for the subject Cooperative Agreement. During this period, project efforts included continued operation of the first pilot unit at the GRE Coal Creek site with all four catalysts in service and sonic horns installed for on-line catalyst cleaning. During the quarter, a catalyst activity measurement trip and mercury SCEM relative accuracy tests were completed, and catalyst pressure drop was closely monitored with the sonic horns in operation. CPS completed the installation of the second mercury oxidation catalyst pilot unit at their Spruce Plant during the quarter, and the four catalysts to be tested in that unit were ordered. The pilot unit was started up with two of the four catalysts in service late in August, and initial catalyst activity results were measured in late September. The other two catalysts will not become available for testing until sometime in October. This technical progress report details these efforts at both sites.

  3. PILOT TESTING OF MERCURY OXIDATION CATALYSTS FOR UPSTREAM OF WET FGD SYSTEMS

    SciTech Connect (OSTI)

    Gary M. Blythe

    2002-04-26T23:59:59.000Z

    This document summarizes progress on Cooperative Agreement DE-FC26-01NT41185, Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems, during the time period January 1, 2002 through March 31, 2002. The objective of this project is to demonstrate at pilot scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. The project is being funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-01NT41185. EPRI, Great River Energy (GRE) and City Public Service (CPS) of San Antonio are project co-funders. URS Group is the prime contractor. The mercury catalytic oxidation process under development uses catalyst materials applied to honeycomb substrates to promote the oxidation of elemental mercury in the flue gas from coal-fired power plants that have wet lime or limestone flue gas desulfurization (FGD) systems. Oxidized mercury is removed in the wet FGD absorbers and co-precipitates in a stable form with the byproducts from the FGD system. The co-precipitated mercury does not appear to adversely affect the disposal or reuse properties of the FGD byproduct. The current project will test previously identified, effective catalyst materials at a larger, pilot scale and in a commercial form, so as to provide engineering data for future full-scale designs. The pilot-scale tests will continue for up to 14 months at each of two sites to provide longer-term catalyst life data. This is the second full reporting period for the subject Cooperative Agreement. During this period, most of the project efforts were related to pilot unit design and conducting laboratory runs to help select candidate catalysts. This technical progress report provides an update on these two efforts. A Test Plan for the upcoming pilot-scale evaluations was also prepared and submitted to NETL for review and comment. Since this document was already submitted under separate cover, this information is not repeated here.

  4. Confined zone dispersion flue gas desulfurization demonstration

    SciTech Connect (OSTI)

    Not Available

    1992-12-31T23:59:59.000Z

    This is the fifth quarterly report for this project. This project is divided into three phases. Phase 1, which has been completed, involved design, engineering, and procurement for the CZD system, duct and facility modifications, and supporting equipment. Phase 2, also completed, included equipment acquisition and installation, facility construction, startup, and operator training for parametric testing. Phase 3 broadly covers testing, operation and disposition, but only a portion of Phase 3 was included in Budget Period 1. That portion was concerned with parametric testing of the CZD system to establish the optimum conditions for an extended, one-year, continuous demonstration. As of December 31, 1991, the following goals have been achieved. (1) Nozzle Selection - A modified Spraying Systems Company (SSC) atomizing nozzle has been selected for the one-year continuous CZD demonstration. (2) SO[sub 2] and NO[sub x] Reduction - Preliminary confirmation of 50% SO[sub 2] reduction has been achieved, but the NO[sub x] reduction target cannot be confirmed at this time. (3) Lime Selection - Testing indicated an injection rate of 40 to 50 gallons per minute with a lime slurry concentration of 8 to 10% to achieve 50% SO[sub 2] reduction. There has been no selection of the lime to be used in the one year demonstration. (4) ESP Optimization - Tests conducted to date have shown that lime injection has a very beneficial effect on ESP performance, and little adjustment may be necessary. (5) SO[sub 2] Removal Costs - Testing has not revealed any significant departure from the bases on which Bechtel's original cost estimates (capital and operating) were prepared. Therefore, SO[sub 2] removal costs are still expected to be in the range of $300/ton or less.

  5. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Bush, P.V.

    1993-01-20T23:59:59.000Z

    We performed a wide variety of laboratory analyses during the past quarter. As with most of the work we performed during the previous quarter, our recent efforts were primarily directed toward the determination of the effects of adsorbed water on the cohesivity and tensile strength of powders. We also continued our analyses of dust cake ashes that have had the soluble compounds leached from their particle surfaces by repeated washings with water. Our analyses of leached and unleached dust cake ashes continued to provide some interesting insights into effects that compounds adsorbed on surfaces of ash particles can have on bulk ash behavior. As suggested by our literature review, our data indicate that water adsorption depends on particle morphology and on surface chemistry. Our measurements of tensile strength show, that for many of the samples we have analyzed a relative minimum in tensile strength exists for samples conditioned and tested at about 30% relative humidity. In our examinations of the effects of water conditioning on sample cohesivity, we determined that in the absence of absorption of water into the interior of the particles, cohesivity usually increases sharply when environments having relative humidities above 75% are used to condition and test the samples. Plans are under way to condition selected samples with (NH[sub 4])[sub 2]SO[sub 4], NH[sub 4]HSO[sub 4], CaCl[sub 2], organosiloxane, and SO[sub 3]. Pending approval, we will begin these conditioning experiments, and subsequent analyses of the conditioned samples.

  6. Fundamental mechanisms in flue gas conditioning

    SciTech Connect (OSTI)

    Snyder, T.R.; Vann Bush, P.

    1992-07-27T23:59:59.000Z

    SEM pictures of the three mixtures of sorbent and ash from the DITF and the base line ESP hopper ash from Muskingum are shown in Figures 1 through 4. The effects of sorbent addition on particle morphology are evident in Figures 2 through 4 by the presence of irregularly shaped particles and deposits on the surfaces of the spherical fly ash particles. In contrast, the base Ene ash particles have the characteristic relatively smooth, spherical morphology normally associated with pulverized-coal (PC) fly ashes. Resistivity determinations made on these four ashes in ascending and descending temperature modes. These data are shown in Figures 5 and 6. Sorbent injection processes performed at the DITF lowered the duct temperature to around 165{degrees}F from about 350{degrees}F for base line operation. Consequently, during collection in the ESP, the particulate matter from the sorbent injection processes had a significantly lower resitivity (approximately 4 {times} 10{sup 7} {Omega}-cm) than the base line ash (approximately 3 {times} 10{sup 11} {Omega}-cm at 350{degrees}F). Specific surface areas and true particle densities have been measured for the four samples obtained from the DOE/PETC Duct Injection Test Facility. These data are summarized in Table 4. The primary difference indicated by these initial analyses of these four samples is the significant increase in specific surface area due to sorbent addition. The specific surface areas of the three sorbent and ash mixtures from the DITF are quite similar.

  7. Field Testing of a Wet FGD Additive for Enhanced Mercury Control - Task 5 Full-Scale Test Results

    SciTech Connect (OSTI)

    Gary Blythe; MariJon Owens

    2007-12-01T23:59:59.000Z

    This Topical Report summarizes progress on Cooperative Agreement DE-FC26-04NT42309, 'Field Testing of a Wet FGD Additive'. The objective of the project is to demonstrate the use of two flue gas desulfurization (FGD) additives, Evonik Degussa Corporation's TMT-15 and Nalco Company's Nalco 8034, to prevent the re-emission of elemental mercury (Hg{sup 0}) in flue gas exiting wet FGD systems on coal-fired boilers. Furthermore, the project intends to demonstrate whether the additive can be used to precipitate most of the mercury (Hg) removed in the wet FGD system as a fine salt that can be separated from the FGD liquor and bulk solid byproducts for separate disposal. The project is conducting pilot- and full-scale tests of the additives in wet FGD absorbers. The tests are intended to determine required additive dosages to prevent Hg{sup 0} re-emissions and to separate mercury from the normal FGD byproducts for three coal types: Texas lignite/Powder River Basin (PRB) coal blend, high-sulfur Eastern bituminous coal, and low-sulfur Eastern bituminous coal. The project team consists of URS Group, Inc., EPRI, Luminant Power (was TXU Generation Company LP), Southern Company, IPL (an AES company), Evonik Degussa Corporation and the Nalco Company. Luminant Power has provided the Texas lignite/PRB co-fired test site for pilot FGD tests and cost sharing. Southern Company has provided the low-sulfur Eastern bituminous coal host site for wet scrubbing tests, as well as the pilot- and full-scale jet bubbling reactor (JBR) FGD systems tested. IPL provided the high-sulfur Eastern bituminous coal full-scale FGD test site and cost sharing. Evonik Degussa Corporation is providing the TMT-15 additive, and the Nalco Company is providing the Nalco 8034 additive. Both companies are also supplying technical support to the test program as in-kind cost sharing. The project is being conducted in six tasks. Of the six project tasks, Task 1 involves project planning and Task 6 involves management and reporting. The other four tasks involve field testing on FGD systems, either at pilot or full scale. The four tasks include: Task 2 - Pilot Additive Testing in Texas Lignite Flue Gas; Task 3 - Full-scale FGD Additive Testing in High-sulfur Eastern Bituminous Flue Gas; Task 4 - Pilot Wet Scrubber Additive Tests at Plant Yates; and Task 5 - Full-scale Additive Tests at Plant Yates. The pilot-scale tests and the full-scale test using high-sulfur coal were completed in 2005 and 2006 and have been previously reported. This topical report presents the results from the Task 5 full-scale additive tests, conducted at Southern Company's Plant Yates Unit 1. Both additives were tested there.

  8. Nitrogen gas emissions from stormwater retention basins during wet weather events in the Phoenix Metropolitan area: an additional ecosystem service?

    E-Print Network [OSTI]

    Hall, Sharon J.

    . We pretreated the basin with a heavy N isotope (15N in NO3 ­ ) to trace the fate of the N added from any process by basin design. Data calculated from gas fluxes in chambers after water, but potentially producing considerable amounts of N2O, a greenhouse gas Incoming data will allow complete

  9. A mathematical model for the estimation of flue temperature in a coke oven

    SciTech Connect (OSTI)

    Choi, K.I.; Kim, S.Y.; Suo, J.S.; Hur, N.S.; Kang, I.S.; Lee, W.J.

    1997-12-31T23:59:59.000Z

    The coke plants at the Kwangyang works has adopted an Automatic Battery Control (ABC) system which consists of four main parts, battery heating control, underfiring heat and waste gas oxygen control, pushing and charging schedule and Autotherm-S that measures heating wall temperature during pushing. The measured heating wall temperature is used for calculating Mean Battery Temperature (MBT) which is average temperature of flues for a battery, but the Autotherm-S system can not provide the flue temperatures of an oven. This work attempted to develop mathematical models for the estimation of the flue temperature using the measured heating wall temperature and to examine fitness of the mathematical model for the coke plant operation by analysis of raw gas temperature at the stand pipe. Through this work it is possible to reflect heating wall temperature in calculating MBT for battery heating control without the interruption caused by a maintenance break.

  10. ,"Texas - RRC District 2 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDry Natural GasNatural

  11. ,"U.S. Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillate Fuel Oil byGasGas,

  12. ,"Utah Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S. UndergroundState

  13. ,"Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plant

  14. ,"Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy SourcesRefinery, Bulk Terminal, and Natural GasU.S.Plantand

  15. ,"Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments; Unit:1996..........Region Natural GasPlant

  16. ,"California Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,

  17. ,"California Federal Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil +Crude

  18. ,"California Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude

  19. ,"California State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry Natural Gas Expected

  20. ,"California State Offshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNaturalDry Natural Gas

  1. ,"Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPriceNonassociatedSummary"ShaleCoalbedDryGas,

  2. ,"Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future ProductionNetPriceGas,PriceNonassociated

  3. ,"New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural Gas Expected

  4. ,"New Mexico Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural Gas

  5. ,"North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, ExpectedLNG StorageConsumptionPlantWellhead PriceGas,

  6. ,"Texas - RRC District 10 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural Gas Expected FutureNatural

  7. ,"Texas - RRC District 10 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural Gas Expected

  8. ,"Texas - RRC District 3 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDryDry Natural

  9. ,"Texas - RRC District 4 Onshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDry Natural Gas

  10. ,"Texas - RRC District 5 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry NaturalDryDry Natural Gas

  11. ,"Texas - RRC District 7B Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry Natural Gas Expected

  12. ,"Texas - RRC District 8 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNatural Gas,Dry

  13. ,"Texas - RRC District 9 Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry Natural Gas Expected

  14. ,"Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry Natural Gas

  15. ,"Texas State Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,Crude

  16. ,"U.S. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease Separation"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice SoldPlantGrossDistillate Fuel Oil byGas

  17. Table 9: Total U.S. proved reserves of natural gas, wet after lease separation, 2001-13

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14: Total U.S. proved

  18. Table 9: Total U.S. proved reserves of natural gas, wet after lease separation, 2001-13

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghuraji Agro IndustriesTownDells,1Stocks Nov-14Total DeliveredPrincipal shale gas:14: Total U.S.

  19. ,"Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net Withdrawals (MMcf)" ,"Click worksheetGas,

  20. ,"California Federal Offshore Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil +Crude Oil

  1. ,"Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+ Lease CondensateWellhead PriceGas,

  2. ,"New Mexico - West Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids, Expected Future7,Dry Natural Gas Expected FutureNatural

  3. Final report to US Department of Energy: Cyclotron autoresonance accelerator for electron beam dry scrubbing of flue gases

    SciTech Connect (OSTI)

    Hirshfield, J.L.

    2001-05-25T23:59:59.000Z

    Several designs have been built and operated of microwave cyclotron autoresonance accelerators (CARA's) with electron beam parameters suitable for remediation of pollutants in flue gas emissions from coal-burning power plants. CARA designs have also been developed with a TW-level 10.6 micron laser driver for electron acceleration from 50 to 100 MeV, and with UHF drivers for proton acceleration to over 500 MeV. Dose requirements for reducing SO2, NOx, and particulates in flue gas emissions to acceptable levels have been surveyed, and used to optimize the design of an electron beam source to deliver this dose.

  4. Separation of carbon dioxide from flue emissions using Endex principles

    E-Print Network [OSTI]

    Ball, R

    2009-01-01T23:59:59.000Z

    In an Endex reactor endothermic and exothermic reactions are directly thermally coupled and kinetically matched to achieve intrinsic thermal stability, efficient conversion, autothermal operation, and minimal heat losses. Applied to the problem of in-line carbon dioxide separation from flue gas, Endex principles hold out the promise of effecting a carbon dioxide capture technology of unprecedented economic viability. In this work we describe an Endex Calcium Looping reactor, in which heat released by chemisorption of carbon dioxide onto calcium oxide is used directly to drive the reverse reaction, yielding a pure stream of carbon dioxide for compression and geosequestration. In this initial study we model the proposed reactor as a continuous-flow dynamical system in the well-stirred limit, compute the steady states and analyse their stability properties over the operating parameter space, flag potential design and operational challenges, and suggest an optimum regime for effective operation.

  5. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, Chang Y. (3807 Reynolds St., Laramie, WY 82070)

    1993-01-01T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO.sub.2 and NO.sub.x.

  6. Full-Scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System

    SciTech Connect (OSTI)

    Gary Blythe; Jennifer Paradis

    2010-06-30T23:59:59.000Z

    This document presents and discusses results from Cooperative Agreement DE-FC26-06NT42778, 'Full-scale Testing of a Mercury Oxidation Catalyst Upstream of a Wet FGD System,' which was conducted over the time-period July 24, 2006 through June 30, 2010. The objective of the project was to demonstrate at full scale the use of solid honeycomb catalysts to promote the oxidation of elemental mercury in pulverized-coal-fired flue gas. Oxidized mercury is removed downstream in wet flue gas desulfurization (FGD) absorbers and collected with the byproducts from the FGD system. The project was co-funded by EPRI, the Lower Colorado River Authority (LCRA), who also provided the host site, Great River Energy, Johnson Matthey, Southern Company, Salt River Project (SRP), the Tennessee Valley Authority (TVA), NRG Energy, Ontario Power and Westar. URS Group was the prime contractor and also provided cofunding. The scope of this project included installing and testing a gold-based catalyst upstream of one full-scale wet FGD absorber module (about 200-MW scale) at LCRA's Fayette Power Project (FPP) Unit 3, which fires Powder River Basin coal. Installation of the catalyst involved modifying the ductwork upstream of one of three wet FGD absorbers on Unit 3, Absorber C. The FGD system uses limestone reagent, operates with forced sulfite oxidation, and normally runs with two FGD modules in service and one spare. The full-scale catalyst test was planned for 24 months to provide catalyst life data. Over the test period, data were collected on catalyst pressure drop, elemental mercury oxidation across the catalyst module, and mercury capture by the downstream wet FGD absorber. The demonstration period began on May 6, 2008 with plans for the catalyst to remain in service until May 5, 2010. However, because of continual increases in pressure drop across the catalyst and concerns that further increases would adversely affect Unit 3 operations, LCRA decided to end the demonstration early, during a planned unit outage. On October 2, 2009, Unit 3 was taken out of service for a fall outage and the catalyst upstream of Absorber C was removed. This ended the demonstration after approximately 17 months of the planned 24 months of operation. This report discusses reasons for the pressure drop increase and potential measures to mitigate such problems in any future application of this technology. Mercury oxidation and capture measurements were made on Unit 3 four times during the 17-month demonstration. Measurements were performed across the catalyst and Absorber C and 'baseline' measurements were performed across Absorber A or B, which did not have a catalyst upstream. Results are presented in the report from all four sets of measurements during the demonstration period. These results include elemental mercury oxidation across the catalyst, mercury capture across Absorber C downstream of the catalyst, baseline mercury capture across Absorber A or B, and mercury re-emissions across both absorbers in service. Also presented in the report are estimates of the average mercury control performance of the oxidation catalyst technology over the 17-month demonstration period and the resulting mercury control costs.

  7. Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems

    SciTech Connect (OSTI)

    Richard Rhudy

    2006-06-30T23:59:59.000Z

    This final report presents and discusses results from a mercury control process development project entitled ''Pilot Testing of Mercury Oxidation Catalysts for Upstream of Wet FGD Systems''. The objective of this project was to demonstrate at pilot scale a mercury control technology that uses solid honeycomb catalysts to promote the oxidation of elemental mercury in the flue gas from coal combustion. Oxidized mercury is removed in downstream wet flue gas desulfurization (FGD) absorbers and leaves with the FGD byproducts. The goal of the project was to achieve 90% oxidation of elemental mercury in the flue gas and 90% overall mercury capture with the downstream wet FGD system. The project was co-funded by EPRI and the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) under Cooperative Agreement DE-FC26-01NT41185. Great River Energy (GRE) and City Public Service (now CPS Energy) of San Antonio were also project co-funders and provided host sites. URS Group, Inc. was the prime contractor. Longer-term pilot-scale tests were conducted at two sites to provide catalyst life data. GRE provided the first site, at their Coal Creek Station (CCS), which fires North Dakota lignite, and CPS Energy provided the second site, at their Spruce Plant, which fires Powder River Basin (PRB) coal. Mercury oxidation catalyst testing began at CCS in October 2002 and continued through the end of June 2004, representing nearly 21 months of catalyst operation. An important finding was that, even though the mercury oxidation catalyst pilot unit was installed downstream of a high-efficiency ESP, fly ash buildup began to plug flue gas flow through the horizontal catalyst cells. Sonic horns were installed in each catalyst compartment and appeared to limit fly ash buildup. A palladium-based catalyst showed initial elemental mercury oxidation percentages of 95% across the catalyst, declining to 67% after 21 months in service. A carbon-based catalyst began with almost 98% elemental mercury oxidation across the catalyst, but declined to 79% oxidation after nearly 13 months in service. The other two catalysts, an SCR-type catalyst (titanium/vanadium) and an experimental fly-ash-based catalyst, were significantly less active. The palladium-based and SCR-type catalysts were effectively regenerated at the end of the long-term test by flowing heated air through the catalyst overnight. The carbon-based catalyst was not observed to regenerate, and no regeneration tests were conducted on the fourth, fly-ash-based catalyst. Preliminary process economics were developed for the palladium and carbon-based catalysts for a scrubbed, North Dakota lignite application. As described above, the pilot-scale results showed the catalysts could not sustain 90% or greater oxidation of elemental mercury in the flue gas for a period of two years. Consequently, the economics were based on performance criteria in a later DOE NETL solicitation, which required candidate mercury control technologies to achieve at least a 55% increase in mercury capture for plants that fire lignite. These economics show that if the catalysts must be replaced every two years, the catalytic oxidation process can be 30 to 40% less costly than conventional (not chemically treated) activated carbon injection if the plant currently sells their fly ash and would lose those sales with carbon injection. If the plant does not sell their fly ash, activated carbon injection was estimated to be slightly less costly. There was little difference in the estimated cost for palladium versus the carbon-based catalysts. If the palladium-based catalyst can be regenerated to double its life to four years, catalytic oxidation process economics are greatly improved. With regeneration, the catalytic oxidation process shows over a 50% reduction in mercury control cost compared to conventional activated carbon injection for a case where the plant sells its fly ash. At Spruce Plant, mercury oxidation catalyst testing began in September 2003 and continued through the end of April 2005, interrupted only by a

  8. Dynamic wetting on superhydrophobic surfaces: Droplet impact and wetting hysteresis

    E-Print Network [OSTI]

    Smyth, Katherine M.

    We study the wetting energetics and wetting hysteresis of sessile and impacting water droplets on superhydrophobic surfaces as a function of surface texture and surface energy. For sessile drops, we find three wetting ...

  9. Combined Flue Gas Heat Recovery and Pollution Control Systems

    E-Print Network [OSTI]

    Zbikowski, T.

    1979-01-01T23:59:59.000Z

    in the field of heat recovery now make it possible to recover a portion of the wasted heat and improve the working conditions of the air purification equipment. Proper design and selection of heat recovery and pollution control equipment as a combination...

  10. ,"Texas - RRC District 2 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural Gas

  11. ,"California Federal Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,Crude Oil +

  12. ,"California State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;Net WithdrawalsWellheadNatural Gas,CrudeAssociated-Dissolved

  13. ,"Gulf of Mexico Federal Offshore - Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated Natural Gas,

  14. ,"Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources and Shipments;NetPrice (Dollars per+Nonassociated Natural Gas,Nonassociated

  15. DESULFURIZATION OF COAL MODEL COMPOUNDS AND COAL LIQUIDS

    E-Print Network [OSTI]

    Wrathall, James Anthony

    2011-01-01T23:59:59.000Z

    technology is assumed. Wet scrubber or combination flue-gasFlue Gas Scrubbing Costs Scrubber Lime- Limestone Reduction-Same as lime-limestone scrubber cost. Cap. Cost*4 Since 6236

  16. ,"Texas - RRC District 2 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDry Natural

  17. ,"Texas - RRC District 3 Onshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDry

  18. ,"Texas - RRC District 3 Onshore Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDry Natural GasDryDry

  19. ,"Texas - RRC District 7B Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry Natural Gas

  20. ,"Texas - RRC District 7C Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry Natural GasAssociated-Dissolved

  1. ,"Texas - RRC District 8 Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDry NaturalNatural Gas,

  2. ,"Texas State Offshore Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic Feet)"

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS Codes; Column: Energy Sources andPlant Liquids,+ LeasePrice Sold toDryDryDry NaturalCrudeGas,

  3. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15T23:59:59.000Z

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  4. Feasibility of an alpha particle gas densimeter for stack sampling applications 

    E-Print Network [OSTI]

    Johnson, Randall Mark

    1983-01-01T23:59:59.000Z

    , for conceivable ranges of flue gas composition, the maximum error in density due to the uncertainty in gas composition is less than 2%. ACKNOWLEDGEMENTS I wish to express my appreciation to Dr. R. A. Fjeld and Dr. A. R. McFarland for their patience... LISTING APPENDIX C TABULATED RESULTS 58 60 72 VI TA 84 Vi LIST OF TABLES TABLE P age I Typical Flue Gas Compositions II Model Flue Gas Compositions 35 Coeff icients for Alpha particle Stopping Power Functions 59 Computed and Experimental...

  5. Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD

    SciTech Connect (OSTI)

    Katherine Dombrowski

    2009-12-31T23:59:59.000Z

    This report presents the results of a multi-year test program conducted as part of Cooperative Agreement DE-FC26-06NT42779, 'Mercury Control for Plants Firing Texas Lignite and Equipped with ESP-wet FGD.' The objective of this program was to determine the level of mercury removal achievable using sorbent injection for a plant firing Texas lignite fuel and equipped with an ESP and wet FGD. The project was primarily funded by the U.S. DOE National Energy Technology Laboratory. EPRI, NRG Texas, Luminant (formerly TXU), and AEP were project co-funders. URS Group was the prime contractor, and Apogee Scientific and ADA-ES were subcontractors. The host site for this program was NRG Texas Limestone Electric Generating Station (LMS) Units 1 and 2, located in Jewett, Texas. The plant fires a blend of Texas lignite and Powder River Basin (PRB) coal. Full-scale tests were conducted to evaluate the mercury removal performance of powdered sorbents injected into the flue gas upstream of the ESP (traditional configuration), upstream of the air preheater, and/or between electric fields within the ESP (Toxecon{trademark} II configuration). Phases I through III of the test program, conducted on Unit 1 in 2006-2007, consisted of three short-term parametric test phases followed by a 60-day continuous operation test. Selected mercury sorbents were injected to treat one quarter of the flue gas (e.g., approximately 225 MW equivalence) produced by Limestone Unit 1. Six sorbents and three injection configurations were evaluated and results were used to select the best combination of sorbent (Norit Americas DARCO Hg-LH at 2 lb/Macf) and injection location (upstream of the ESP) for a two-month performance evaluation. A mercury removal rate of 50-70% was targeted for the long-term test. During this continuous-injection test, mercury removal performance and variability were evaluated as the plant operated under normal conditions. Additional evaluations were made to determine any balance-of-plant impacts of the mercury control process, including those associated with ESP performance and fly ash reuse properties. Upon analysis of the project results, the project team identified several areas of interest for further study. Follow-on testing was conducted on Unit 2 in 2009 with the entire unit treated with injected sorbent so that mercury removal across the FGD could be measured and so that other low-ash impact technologies could be evaluated. Three approaches to minimizing ash impacts were tested: (1) injection of 'low ash impact' sorbents, (2) alterations to the injection configuration, and (3) injection of calcium bromide in conjunction with sorbent. These conditions were tested with the goal of identifying the conditions that result in the highest mercury removal while maintaining the sorbent injection at a rate that preserves the beneficial use of ash.

  6. Flue-Cured Tobacco Curing Efficiency Research Tour

    E-Print Network [OSTI]

    Buehrer, R. Michael

    Flue-Cured Tobacco Curing Efficiency Research Tour Wednesday, October 23, 2013 Topics to be discussed: Tobacco curing efficiency New barn evaluations New curing barn technology Evaluation of single-barn hot water boiler systems Remedial barn pad insulation Utilization of solar energy

  7. Control of pollutants in flue gases and fuel gases

    E-Print Network [OSTI]

    Laughlin, Robert B.

    . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1 2.2 Flue gases and fuel gases: combustion, gasification, pyrolysis, incineration and other and gasification technologies for heat and power . . . . . . . . 2-3 2.4 Waste incineration and waste . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3 3.3 Formation of sulphur compounds during combustion and gasification . 3-5 3.4 Emission

  8. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D.; Bourcier, William L.

    2014-08-19T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  9. Carbon ion pump for removal of carbon dioxide from combustion gas and other gas mixtures

    DOE Patents [OSTI]

    Aines, Roger D. (Livermore, CA); Bourcier, William L. (Livermore, CA)

    2010-11-09T23:59:59.000Z

    A novel method and system of separating carbon dioxide from flue gas is introduced. Instead of relying on large temperature or pressure changes to remove carbon dioxide from a solvent used to absorb it from flue gas, the ion pump method, as disclosed herein, dramatically increases the concentration of dissolved carbonate ion in solution. This increases the overlying vapor pressure of carbon dioxide gas, permitting carbon dioxide to be removed from the downstream side of the ion pump as a pure gas. The ion pumping may be obtained from reverse osmosis, electrodialysis, thermal desalination methods, or an ion pump system having an oscillating flow in synchronization with an induced electric field.

  10. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  11. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C. (Powell, TN); Simpson, Marc L. (Knoxville, TN)

    1995-01-01T23:59:59.000Z

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  12. A study of toxic emissions from a coal-fired power plant utilizing an ESP/Wet FGD system. Volume 1, Sampling, results, and special topics: Final report

    SciTech Connect (OSTI)

    Not Available

    1994-07-01T23:59:59.000Z

    This was one of a group of assessments of toxic emissions from coal-fired power plants, conducted for DOE-PETC in 1993 as mandated by the 1990 Clean Air Act. It is organized into 2 volumes; Volume 1 describes the sampling effort, presents the concentration data on toxic chemicals in several power plant streams, and reports the results of evaluations and calculations. The study involved solid, liquid, and gaseous samples from input, output, and process streams at Coal Creek Station Unit No. 1, Underwood, North Dakota (1100 MW mine-mouth plant burning lignite from the Falkirk mine located adjacent to the plant). This plant had an electrostatic precipitator and a wet scrubber flue gas desulfurization unit. Measurements were conducted on June 21--24, 26, and 27, 1993; chemicals measured were 6 major and 16 trace elements (including Hg, Cr, Cd, Pb, Se, As, Be, Ni), acids and corresponding anions (HCl, HF, chloride, fluoride, phosphate, sulfate), ammonia and cyanide, elemental C, radionuclides, VOCs, semivolatiles (incl. PAH, polychlorinated dioxins, furans), and aldehydes. Volume 2: Appendices includes process data log sheets, field sampling data sheets, uncertainty calculations, and quality assurance results.

  13. III. Vacuum PumpsIII. Vacuum Pumps Gas transfer

    E-Print Network [OSTI]

    Liu, Kai

    (Gas Capture)(Gas Capture)( p )( p ) 10-3 - 10-4 torr10 10 torr Oil free, no moving parts Drawback: Oil Diffusion PumpB. High Vacuum: Oil Diffusion Pump (Wet, Gas Transfer)(Wet, Gas TransferIII. Vacuum PumpsIII. Vacuum Pumps Mechanism Gas transfer Gas capture FunctionFunction Roughing

  14. Study of an ammonia-based wet scrubbing process in a continuous flow system

    SciTech Connect (OSTI)

    Mao, James X.; Lee, Anita S.; Kitchin, John R.; Nulwala, Hunaid B.; Luebke, David R.; Damodaran, Krishnan

    2013-01-01T23:59:59.000Z

    A continuous gas and liquid flow, regenerative scrubbing process for CO{sub 2} capture was demonstrated at the bench-scale level. An aqueous ammonia-based solution captures CO{sub 2} from simulated flue gas in an absorber and releases a nearly pure stream of CO{sub 2} in the regenerator. After the regeneration, the solution of ammonium compounds is recycled to the absorber. The design of a continuous flow unit was based on earlier exploratory results from a semi-batch reactor, where a CO{sub 2} and N{sub 2} simulated flue gas mixture flowed through a well-mixed batch of ammonia-based solution. During the semi-batch tests, the solution was cycled between absorption and regeneration steps to measure the carrying capacity of the solution at various initial ammonia concentrations and temperatures. Consequentially, a series of tests were conducted on the continuous unit to observe the effect of various parameters on CO{sub 2} removal efficiency and regenerator effectiveness within the flow system. The parameters that were studied included absorber temperature, regenerator temperature, initial NH{sub 3} concentration, simulated flue gas flow rate, liquid solvent inventory in the flow system, and height of the packed-bed absorber. From this testing and subsequent testing, ammonia losses from both the absorption and regeneration steps were quantified, and attempts were made to maintain steady state during operations. Implications of experimental results with respect to process design are discussed.

  15. Dept. of Sol Science, UW-Madison/UW-Extension, 1525 Observatory Dr., Madison, WI 53706/608-262-0485 November 2010 Issue #2 2010

    E-Print Network [OSTI]

    Balser, Teri C.

    /608-262-0485 ____________________________________________________________________________________ November 2010 Issue #2 2010 Using Flue Gas Desulfurization (FGD) Gypsum in Wisconsin Dick Wolkowski, Birl plants burn low S coal and some have installed flue gas scrubbers to reduce sulfur emissions. Use of a wet scrubber results in the byproduct flue gas desulfurization (FGD) gypsum. FGD gypsum is created

  16. Cement kiln flue dust as a source of lime and potassium in four East Texas soils

    E-Print Network [OSTI]

    Poole, Warren David

    1975-01-01T23:59:59.000Z

    design on both sites. Yield, soil pH, plant and soil concentrations of K, Ca, and Mg were determined. Soil pH and extractable Ca increased with increasing rate of flue dust or calcite. Under field conditions, flue dust compared favorably with calcite... was similar to plant uptake from corresponding calcite + KC1 treatments. Soil pH and extractable soil K, Ca, and Mg increased with increased rate of flue dust treatment equally as well as from the corresponding calcite treatments. The flue dust was equal...

  17. Process for selected gas oxide removal by radiofrequency catalysts

    DOE Patents [OSTI]

    Cha, C.Y.

    1993-09-21T23:59:59.000Z

    This process to remove gas oxides from flue gas utilizes adsorption on a char bed subsequently followed by radiofrequency catalysis enhancing such removal through selected reactions. Common gas oxides include SO[sub 2] and NO[sub x]. 1 figure.

  18. Method for high temperature mercury capture from gas streams

    DOE Patents [OSTI]

    Granite, E.J.; Pennline, H.W.

    2006-04-25T23:59:59.000Z

    A process to facilitate mercury extraction from high temperature flue/fuel gas via the use of metal sorbents which capture mercury at ambient and high temperatures. The spent sorbents can be regenerated after exposure to mercury. The metal sorbents can be used as pure metals (or combinations of metals) or dispersed on an inert support to increase surface area per gram of metal sorbent. Iridium and ruthenium are effective for mercury removal from flue and smelter gases. Palladium and platinum are effective for mercury removal from fuel gas (syngas). An iridium-platinum alloy is suitable for metal capture in many industrial effluent gas streams including highly corrosive gas streams.

  19. Experimental investigation of burning velocities of ultra-wet methane-air-steam mixtures

    E-Print Network [OSTI]

    Paris-Sud XI, Université de

    , steam, burning velocity, chemiluminescence, OH Introduction In ultra-wet gas turbines, the heatExperimental investigation of burning velocities of ultra-wet methane-air-steam mixtures Eric Abstract Global burning velocities of methane-air-steam mixtures are measured on prismatic laminar Bunsen

  20. Investigation of Mineral Transformations in Wet Supercritical...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy. Investigation of Mineral Transformations in Wet Supercritical CO2 by Electron Microscopy. Abstract: The...

  1. 1 Mathematical Model The mass consevation equations are for wetting phase

    E-Print Network [OSTI]

    Santos, Juan

    la wetting phase (brine, digamos). Menos aun para un gas, o sea si el CO2 no estuviera en estado se tiene en cuenta la compresibilidad del CO2, y ademas de la solubilidad en brine, pero eso es

  2. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  3. natural gas+ condensing flue gas heat recovery+ water creation+ CO2

    Open Energy Info (EERE)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov You are being directedAnnualProperty Edit withTianlinPapersWindey Wind Home Rmckeel'slinked openreduction+ cool exhaust

  4. Wet-dry cooling demonstration. Test results

    SciTech Connect (OSTI)

    Allemann, R.T.; DeBellis, D.E.; Werry, E.V.; Johnson, B.M.

    1986-05-01T23:59:59.000Z

    A large-scale test of dry/wet cooling using the ammonia phase-change system, designated the Advanced Concepts Test (ACT), has been operated at Pacific Gas and Electric Company's Kern Station at Bakersfield, California. The facility is capable of condensing 60,000 lbs/h of steam from a small house turbine. Two different modes of combining dry and evaporative cooling have been tested. One uses deluge cooling in which water is allowed to flow over the fins of the dry (air-cooled) heat exchanger on hot days; the other uses a separate evaporative condenser in parallel to the dry heat exchanger. A third mode of enhancing the dry cooling system, termed capacitive cooling has been tested. In this system, the ammonia-cooled steam condenser is supplemented by a parallel conventional water-cooled condenser with water supplied from a closed system. This water is cooled during off-peak hours each night by an ammonia heat pump which rejects heat through the ACT Cooling Tower. If operated over the period of a year, each of the wet/dry systems would use only 25% of the water normally required to reject this heat load in an evaporative cooling tower. The third would consume no water, the evaporative cooling being replaced by the delayed cooling of the closed system water supply.

  5. High potential recovery -- Gas repressurization

    SciTech Connect (OSTI)

    Madden, M.P.

    1998-05-01T23:59:59.000Z

    The objective of this project was to demonstrate that small independent oil producers can use existing gas injection technologies, scaled to their operations, to repressurize petroleum reservoirs and increase their economic oil production. This report gives background information for gas repressurization technologies, the results of workshops held to inform small independent producers about gas repressurization, and the results of four gas repressurization field demonstration projects. Much of the material in this report is based on annual reports (BDM-Oklahoma 1995, BDM-Oklahoma 1996, BDM-Oklahoma 1997), a report describing the results of the workshops (Olsen 1995), and the four final reports for the field demonstration projects which are reproduced in the Appendix. This project was designed to demonstrate that repressurization of reservoirs with gas (natural gas, enriched gas, nitrogen, flue gas, or air) can be used by small independent operators in selected reservoirs to increase production and/or decrease premature abandonment of the resource. The project excluded carbon dioxide because of other DOE-sponsored projects that address carbon dioxide processes directly. Two of the demonstration projects, one using flue gas and the other involving natural gas from a deeper coal zone, were both technical and economic successes. The two major lessons learned from the projects are the importance of (1) adequate infrastructure (piping, wells, compressors, etc.) and (2) adequate planning including testing compatibility between injected gases and fluids, and reservoir gases, fluids, and rocks.

  6. Evaluating energy dissipation during expansion in a refrigeration cycle using flue pipe acoustic resonators

    E-Print Network [OSTI]

    Luckyanova, Maria N. (Maria Nickolayevna)

    2008-01-01T23:59:59.000Z

    This research evaluates the feasibility of using a flue pipe acoustic resonator to dissipate energy from a refrigerant stream in order to achieve greater cooling power from a cryorefrigeration cycle. Two models of the ...

  7. Natural and industrial analogues for release of CO2 from storage reservoirs: Identification of features, events, and processes and lessons learned

    E-Print Network [OSTI]

    Lewicki, Jennifer L.; Birkholzer, Jens; Tsang, Chin-Fu

    2006-01-01T23:59:59.000Z

    Flue Flue Fuel oil Natural gas Natural gas Gas turbine Gasturbine Gas turbine Coal IGCC Flue Flue Flue Flue Fuel IEA,oil, natural gas, and gas turbine power plants. As shown,

  8. U.S. crude oil, natural gas, and natural gas liquids reserves 1997 annual report

    SciTech Connect (OSTI)

    Wood, John H.; Grape, Steven G.; Green, Rhonda S.

    1998-12-01T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1997, as well as production volumes for the US and selected States and State subdivisions for the year 1997. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), nonassociated gas and associated-dissolved gas (which are the two major types of wet natural gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, reserve estimates for two types of natural gas liquids, lease condensate and natural gas plant liquids, are presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1997 is provided. 21 figs., 16 tabs.

  9. OPTIMIZING TECHNOLOGY TO REDUCE MERCURY AND ACID GAS EMISSIONS FROM ELECTRIC POWER PLANTS

    SciTech Connect (OSTI)

    Jeffrey C. Quick; David E. Tabet; Sharon Wakefield; Roger L. Bon

    2005-10-01T23:59:59.000Z

    Maps showing potential mercury, sulfur, chlorine, and moisture emissions for U.S. coal by county of origin were made from publicly available data (plates 1, 2, 3, and 4). Published equations that predict mercury capture by emission control technologies used at U.S. coal-fired utilities were applied to average coal quality values for 169 U.S. counties. The results were used to create five maps that show the influence of coal origin on mercury emissions from utility units with: (1) hot-side electrostatic precipitator (hESP), (2) cold-side electrostatic precipitator (cESP), (3) hot-side electrostatic precipitator with wet flue gas desulfurization (hESP/FGD), (4) cold-side electrostatic precipitator with wet flue gas desulfurization (cESP/FGD), and (5) spray-dry adsorption with fabric filter (SDA/FF) emission controls (plates 5, 6, 7, 8, and 9). Net (lower) coal heating values were calculated from measured coal Btu values, and estimated coal moisture and hydrogen values; the net heating values were used to derive mercury emission rates on an electric output basis (plate 10). Results indicate that selection of low-mercury coal is a good mercury control option for plants having hESP, cESP, or hESP/FGD emission controls. Chlorine content is more important for plants having cESP/FGD or SDA/FF controls; optimum mercury capture is indicated where chlorine is between 500 and 1000 ppm. Selection of low-sulfur coal should improve mercury capture where carbon in fly ash is used to reduce mercury emissions. Comparison of in-ground coal quality with the quality of commercially mined coal indicates that existing coal mining and coal washing practice results in a 25% reduction of mercury in U.S. coal before it is delivered to the power plant. Further pre-combustion mercury reductions may be possible, especially for coal from Texas, Ohio, parts of Pennsylvania and much of the western U.S.

  10. GAS INJECTION/WELL STIMULATION PROJECT

    SciTech Connect (OSTI)

    John K. Godwin

    2005-12-01T23:59:59.000Z

    Driver Production proposes to conduct a gas repressurization/well stimulation project on a six well, 80-acre portion of the Dutcher Sand of the East Edna Field, Okmulgee County, Oklahoma. The site has been location of previous successful flue gas injection demonstration but due to changing economic and sales conditions, finds new opportunities to use associated natural gas that is currently being vented to the atmosphere to repressurize the reservoir to produce additional oil. The established infrastructure and known geological conditions should allow quick startup and much lower operating costs than flue gas. Lessons learned from the previous project, the lessons learned form cyclical oil prices and from other operators in the area will be applied. Technology transfer of the lessons learned from both projects could be applied by other small independent operators.

  11. Wetting and lubricating film instabilities in microchannels

    E-Print Network [OSTI]

    Cubaud, Thomas

    , and silicone oils . Dynamic wetting transitions: a pearl flow thick lubricating film , b spider flow thinWetting and lubricating film instabilities in microchannels Thomas Cubaud Department of Mechanical of partially wetting threads in planar microchannels of height h=100 or 250 m fluids: ethanol, mineral oils

  12. The microrheology of wet forms

    SciTech Connect (OSTI)

    Kraynik, A.M. [Sandia National Labs., Albuquerque, NM (United States); Reinelt, D.A. [Southern Methodist Univ., Dallas, TX (United States). Dept. of Mathematics

    1996-05-01T23:59:59.000Z

    The Kelvin cell is the only known topology for stable, perfectly ordered, dry foams. During topological transitions (T1s) associated with large elastic-plastic deformations, these cells switch neighbors and some faces gain or lose two sides, but the resulting bubbles with different shape are still Kelvin cells. The bubbles in a stable, perfectly ordered. wet foam are not limited to one topology (or even the two described here). The topological transitions considered here result in gain or loss of two dry films per bubble. The transition from Kelvin to RD topology is triggered by films shrinking in area, as in the dry case. However, the reverse transition from RD to Kelvin topology involves a different mechanism--opposite interfaces of an eight-way vertex touch and a new film grows from the point of contact as the foam is compressed. Microrheological analysis based on 2D models of foam structure has been useful preparation for 3D, despite obvious differences between 2D and 3D. Linear elastic behavior is anisotropic for perfectly ordered 3D foams--nonlinear elastic behavior is isotropic for 2D foams with polydisperse hexagonal structure. The shear moduli of a wet Kelvin foam decrease with increasing {phi}--the shear modulus of a wet 2D foam (with three-way Plateau borders) does not depend on {phi} at all. The effective isotropic shear moduli G of perfectly ordered wet foams tend to decrease with increasing {phi} but do not exhibit linear dependence, which may stem from the disorder of real systems.

  13. Elucidating the mysteries of wetting.

    SciTech Connect (OSTI)

    Webb, Edmund Blackburn, III (,; ); Bourdon, Christopher Jay; Grillet, Anne Mary; Sackinger, Philip A.; Grest, Gary Stephen; Emerson, John Allen; Ash, Benjamin Jesse; Heine, David R.; Brooks, Carlton, F.; Gorby, Allen D.

    2005-11-01T23:59:59.000Z

    Nearly every manufacturing and many technologies central to Sandia's business involve physical processes controlled by interfacial wetting. Interfacial forces, e.g. conjoining/disjoining pressure, electrostatics, and capillary condensation, are ubiquitous and can surpass and even dominate bulk inertial or viscous effects on a continuum level. Moreover, the statics and dynamics of three-phase contact lines exhibit a wide range of complex behavior, such as contact angle hysteresis due to surface roughness, surface reaction, or compositional heterogeneities. These thermodynamically and kinetically driven interactions are essential to the development of new materials and processes. A detailed understanding was developed for the factors controlling wettability in multicomponent systems from computational modeling tools, and experimental diagnostics for systems, and processes dominated by interfacial effects. Wettability probed by dynamic advancing and receding contact angle measurements, ellipsometry, and direct determination of the capillary and disjoining forces. Molecular scale experiments determined the relationships between the fundamental interactions between molecular species and with the substrate. Atomistic simulations studied the equilibrium concentration profiles near the solid and vapor interfaces and tested the basic assumptions used in the continuum approaches. These simulations provide guidance in developing constitutive equations, which more accurately take into account the effects of surface induced phase separation and concentration gradients near the three-phase contact line. The development of these accurate models for dynamic multicomponent wetting allows improvement in science based engineering of manufacturing processes previously developed through costly trial and error by varying material formulation and geometry modification.

  14. A cement kiln flue-dust evaluated as a soil liming material

    E-Print Network [OSTI]

    Stacha, Raimund

    1973-01-01T23:59:59.000Z

    A CEMENT KILN FLUE-DUST EVALUATED AS A SOIl LIMING MATERIAL A Thesis by RAIMUND STACHA Submitted to the Graduate College of Texas A&M University in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE 1973 NJSbj t...:~StlCh tt A CEMENT KILN FLUE-DUST EVALUATED AS A SOIL I IMING MATERIAL A Thesis by RAIMUND STACHA Approved as to style and content by: (Chairman of Committee) (Head of Department) (Me er) (Member) (Member) (Member) (Member) 1973 ABSTRACT A...

  15. Carbon nanotube fiber spun from wetted ribbon

    DOE Patents [OSTI]

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29T23:59:59.000Z

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  16. New configurations of a heat recovery absorption heat pump integrated with a natural gas boiler for boiler efficiency improvement

    SciTech Connect (OSTI)

    Qu, Ming [Purdue University, West Lafayette, IN; Abdelaziz, Omar [ORNL; Yin, Hongxi [Southeast University, Nanjing, China

    2014-11-01T23:59:59.000Z

    Conventional natural gas-fired boilers exhaust flue gas direct to the atmosphere at 150 200 C, which, at such temperatures, contains large amount of energy and results in relatively low thermal efficiency ranging from 70% to 80%. Although condensing boilers for recovering the heat in the flue gas have been developed over the past 40 years, their present market share is still less than 25%. The major reason for this relatively slow acceptance is the limited improvement in the thermal efficiency of condensing boilers. In the condensing boiler, the temperature of the hot water return at the range of 50 60 C, which is used to cool the flue gas, is very close to the dew point of the water vapor in the flue gas. Therefore, the latent heat, the majority of the waste heat in the flue gas, which is contained in the water vapor, cannot be recovered. This paper presents a new approach to improve boiler thermal efficiency by integrating absorption heat pumps with natural gas boilers for waste heat recovery (HRAHP). Three configurations of HRAHPs are introduced and discussed. The three configurations are modeled in detail to illustrate the significant thermal efficiency improvement they attain. Further, for conceptual proof and validation, an existing hot water-driven absorption chiller is operated as a heat pump at operating conditions similar to one of the devised configurations. An overall system performance and economic analysis are provided for decision-making and as evidence of the potential benefits. These three configurations of HRAHP provide a pathway to achieving realistic high-efficiency natural gas boilers for applications with process fluid return temperatures higher than or close to the dew point of the water vapor in the flue gas.

  17. Sulfur Dioxide Treatment from Flue Gases Using a Biotrickling

    E-Print Network [OSTI]

    ), and several episodes in London (1). All fuels used by humans such as coal, oil, natural gas, peat, wood of absorbing sulfur dioxide either in water or in aqueous slurries

  18. Pilot-scale study of the effect of selective catalytic reduction catalyst on mercury speciation in Illinois and Powder River Basin coal combustion flue gases

    SciTech Connect (OSTI)

    Lee, C.W.; Srivastava, R.K.; Ghorishi, S.B.; Karwowski, J.; Hastings, T.H.; Hirschi, J.C. [US Environmental Protection Agency, Triangle Park, NC (United States)

    2006-05-15T23:59:59.000Z

    A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur (S) and chlorine (Cl)) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NO{sub x}) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg{sup 0}), decreasing the percentage of Hg{sup 0} at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg{sup 0} by the SCR catalyst, with the percentage of Hg{sup 0} decreasing from {approximately} 96% at the inlet of the reactor to {approximately} 80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation. 16 refs., 4 figs., 3 tabs.

  19. MATERIALS AND MOLECULAR RESEARCH DIVISION. ANNUAL REPORT 1980

    E-Print Network [OSTI]

    Searcy, Alan W.

    2010-01-01T23:59:59.000Z

    the reaction in flue gas desulphurization processes. TIEimportance in flue gas desulphurization proc­ esses carried

  20. Order of wetting transitions in electrolyte solutions

    SciTech Connect (OSTI)

    Ibagon, Ingrid, E-mail: ingrid@is.mpg.de; Bier, Markus, E-mail: bier@is.mpg.de; Dietrich, S. [Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)] [Max-Planck-Institut für Intelligente Systeme, Heisenbergstr. 3, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart (Germany)

    2014-05-07T23:59:59.000Z

    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.

  1. Investigation of Swirl Flows Applied to the Oil and Gas Industry

    E-Print Network [OSTI]

    Ravuri Venkata Krish, Meher Surendra

    2010-01-16T23:59:59.000Z

    Understanding how swirl flows can be applied to processes in the oil and gas industry and how problems might hinder them, are the focus of this thesis. Three application areas were identified: wet gas metering, liquid loading in gas wells...

  2. The Production of High Levels of Renewable Natural Gas from Biomass Using Steam Hydrogasification

    E-Print Network [OSTI]

    Thanmongkhon, Yoothana

    2014-01-01T23:59:59.000Z

    2012. 14. Pless, J. , Natural Gas Development and HydraulicProduction of Substituted Natural Gas from the Wet OrganicU.S.E.I.A), California Natural Gas Consumption. 2012. 116.

  3. Carbon Mineralization by Aqueous Precipitation for Beneficial Use of CO2 from Flue Gas

    SciTech Connect (OSTI)

    Brent Constantz; Randy Seeker; Martin Devenney

    2010-06-30T23:59:59.000Z

    Calera's innovative Mineralization via Aqueous Precipitation (MAP) technology for the capture and conversion of CO{sub 2} to useful materials for use in the built environment was further developed and proven in the Phase 1 Department of Energy Grant. The process was scaled to 300 gallon batch reactors and subsequently to Pilot Plant scale for the continuous production of product with the production of reactive calcium carbonate material that was evaluated as a supplementary cementitious material (SCM). The Calera SCM{trademark} was evaluated as a 20% replacement for ordinary portland cement and demonstrated to meet the industry specification ASTM 1157 which is a standard performance specification for hydraulic cement. The performance of the 20% replacement material was comparable to the 100% ordinary portland cement control in terms of compressive strength and workability as measured by a variety of ASTM standard tests. In addition to the performance metrics, detailed characterization of the Calera SCM was performed using advanced analytical techniques to better understand the material interaction with the phases of ordinary portland cement. X-ray synchrotron diffraction studies at the Advanced Photon Source in Argonne National Lab confirmed the presence of an amorphous phase(s) in addition to the crystalline calcium carbonate phases in the reactive carbonate material. The presence of carboaluminate phases as a result of the interaction of the reactive carbonate materials with ordinary portland cement was also confirmed. A Life Cycle Assessment was completed for several cases based on different Calera process configurations and compared against the life cycle of ordinary portland cement. In addition to the materials development efforts, the Calera technology for the production of product using an innovative building materials demonstration plant was developed beyond conceptual engineering to a detailed design with a construction schedule and cost estimate.

  4. Enhanced Elemental Mercury Removal from Coal-fired Flue Gas by Sulfur-chlorine Compounds

    E-Print Network [OSTI]

    Miller, Nai-Qiang Yan-Zan Qu Yao Chi Shao-Hua Qiao Ray Dod Shih-Ger Chang Charles

    2008-01-01T23:59:59.000Z

    Coal-fired power generating plants contribute approximatelynumber of coal-fired generating plants (1-3). The mercury is

  5. QUANTIFICATION OF MERCURY IN FLUE GAS EMISSION USING BORON-DOPED DIAMOND ELECTROCHEMISTRY

    SciTech Connect (OSTI)

    A. Manivannan; M.S. Seehra

    2003-08-19T23:59:59.000Z

    In this project, we have attempted to develop a new technique utilizing Boron-doped diamond (BDD) films to electrochemically detect mercury dissolved in solution via the initial deposition of metallic mercury, followed by anodic linear sweep voltammetry in the range from 10-10{sup -10} M to 10{sup -5} M. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques were employed. The extremely low background current for BDD electrodes compared to glassy carbon (GC) provides a strong advantage in trace metal detection. CV peak currents showed good linearity in the micromolar range. A detection level of 6.8 x 10{sup -10} M was achieved with DPV in 0.1 M KNO{sub 3} (pH = 1) for a deposition time of 20 minutes. Reproducible stripping peaks were obtained, even for the low concentration range. A comparison with GC shows that BDD is superior. Linear behavior was also obtained in the mercury concentration range from 10{sup -10} M to 10{sup -9} M.

  6. Performance history over 10 years of super duplex stainless steel in flue gas desulfurization

    SciTech Connect (OSTI)

    Bendall, K.C. [Langley Alloys Ltd., Maidenhead (United Kingdom)

    1996-08-01T23:59:59.000Z

    25 Cr duplex (austenitic/ferritic) stainless steel containing copper and nitrogen offers a cost effective solution to material selection for pollution control equipment. The properties of duplex stainless steel which make it suitable for this type of application are discussed and long term performance histories presented. It is concluded that high alloy duplex steel has an important role to play in the production of low maintenance reliable equipment for FGD and other pollution control systems.

  7. Fundamental mechanisms in flue gas conditioning. Quarterly report, April 1992--June 1992

    SciTech Connect (OSTI)

    Snyder, T.R.; Vann Bush, P.

    1992-07-27T23:59:59.000Z

    SEM pictures of the three mixtures of sorbent and ash from the DITF and the base line ESP hopper ash from Muskingum are shown in Figures 1 through 4. The effects of sorbent addition on particle morphology are evident in Figures 2 through 4 by the presence of irregularly shaped particles and deposits on the surfaces of the spherical fly ash particles. In contrast, the base Ene ash particles have the characteristic relatively smooth, spherical morphology normally associated with pulverized-coal (PC) fly ashes. Resistivity determinations made on these four ashes in ascending and descending temperature modes. These data are shown in Figures 5 and 6. Sorbent injection processes performed at the DITF lowered the duct temperature to around 165{degrees}F from about 350{degrees}F for base line operation. Consequently, during collection in the ESP, the particulate matter from the sorbent injection processes had a significantly lower resitivity (approximately 4 {times} 10{sup 7} {Omega}-cm) than the base line ash (approximately 3 {times} 10{sup 11} {Omega}-cm at 350{degrees}F). Specific surface areas and true particle densities have been measured for the four samples obtained from the DOE/PETC Duct Injection Test Facility. These data are summarized in Table 4. The primary difference indicated by these initial analyses of these four samples is the significant increase in specific surface area due to sorbent addition. The specific surface areas of the three sorbent and ash mixtures from the DITF are quite similar.

  8. Fundamental mechanisms in flue gas conditioning. Quarterly report, October 1992--December 1992

    SciTech Connect (OSTI)

    Snyder, T.R.; Bush, P.V.

    1993-01-20T23:59:59.000Z

    We performed a wide variety of laboratory analyses during the past quarter. As with most of the work we performed during the previous quarter, our recent efforts were primarily directed toward the determination of the effects of adsorbed water on the cohesivity and tensile strength of powders. We also continued our analyses of dust cake ashes that have had the soluble compounds leached from their particle surfaces by repeated washings with water. Our analyses of leached and unleached dust cake ashes continued to provide some interesting insights into effects that compounds adsorbed on surfaces of ash particles can have on bulk ash behavior. As suggested by our literature review, our data indicate that water adsorption depends on particle morphology and on surface chemistry. Our measurements of tensile strength show, that for many of the samples we have analyzed a relative minimum in tensile strength exists for samples conditioned and tested at about 30% relative humidity. In our examinations of the effects of water conditioning on sample cohesivity, we determined that in the absence of absorption of water into the interior of the particles, cohesivity usually increases sharply when environments having relative humidities above 75% are used to condition and test the samples. Plans are under way to condition selected samples with (NH{sub 4}){sub 2}SO{sub 4}, NH{sub 4}HSO{sub 4}, CaCl{sub 2}, organosiloxane, and SO{sub 3}. Pending approval, we will begin these conditioning experiments, and subsequent analyses of the conditioned samples.

  9. SOx-NOx-Rox Box Flue Gas Cleanup Demonstration: A DOE Assessment

    SciTech Connect (OSTI)

    National Energy Technology Laboratory

    2000-12-15T23:59:59.000Z

    The SNRB{trademark} test program demonstrated the feasibility of controlling multiple emissions from a coal-fired boiler in a single processing unit. The degree of emissions removals for SO{sub 2}, NO{sub x}, and particulates all exceeded the project goals. A high degree of removal for HAPs was also achieved. The SNRB system offers low space requirements, control of multiple pollutants, and operating flexibility. The pneumatic SO{sub 2} sorbent and ammonia injection systems are expected to have high reliability because of their mechanical simplicity. Despite these advantages, the SNRB process may not be an economic choice for applications involving SO{sub 2} removals above about 85%. For lower levels of SO{sub 2} removal, the projected economics for SNRB appear to be more favorable than those of existing processes which involve separate units for the same degree of control for SO{sub 2}, NO{sub x} , and particulates. Specific findings are summarized as follows: (1) SO{sub 2} removal of 85-90% was achieved at a calcium utilization of 40-45%, representing a significant improvement in performance over other dry lime injection processes. (2) When firing 3-4% sulfur coal, compliance with the 1990 CAAA Phase I SO{sub 2} emissions limit of 2.5 lb/10{sup 6} Btu was achieved with a Ca/S molar ratio of less than 1.0. For the Phase II SO{sub 2} emissions limit of 1.2 lb/10{sup 6} Btu, compliance was achieved with a Ca/S molar ratio as low as 1.5. Phase II compliance is the more relevant emissions limit. (3) When using NaHCO{sub 3} as the sorbent, the Phase II SO{sub 2} emissions limit was achieved at a Na{sub 2}/S molar ratio of less than 2.0 (NSR < 1.0). (4) Compliance with the Phase I NO{sub x} emissions limit of 0.45 lb/10{sup 6} Btu for Group 1 boilers was achieved at an NH{sub 3}/NO{sub x} ratio of 0.85, with an ammonia slip of 5 ppm or less. (5) Particulate collection efficiency averaged 99.9%, corresponding to an average emissions rate of 0.018 lb/10{sup 6} Btu. This is significantly lower than the NSPS value of 0.03 lb/10{sup 6} Btu. The high-temperature baghouse design incorporating an SCR catalyst for NO{sub x} reduction was demonstrated successfully. The technology is ready for commercial application. The key feature of the technology is control of SO{sub 2}, NO{sub x}, and particulates in a single process unit. However, this limits its commercial market to applications requiring control of all three components. Also, although the testing demonstrated greater than 90% SO{sub 2} capture, this was achieved at high sorbent/sulfur ratios. For applications requiring a high percentage of sulfur removal, a modern conventional FGD unit with LNBs for NO{sub x} control may be the preferred option.

  10. The utilization of flue gas desulfurization waste by-products in construction brick 

    E-Print Network [OSTI]

    Berryman, Charles Wayne

    1992-01-01T23:59:59.000Z

    Unconfined Compressive Strength and Density Comparisons of Gypsum Hemihydrate with Various Inductions of Fly Ash 16 Unconfined Compressive Strength and Density Comparisons Using Various Types of Bottom Ashes 18 Optimum Temperature to Calcine Dihydrate... Gypsum to Hemihydrate Gypsum 21 Optimum Time to Calcine Dihydrate to Hemihydrate 22 Unconfined Compressive Strength and Density Comparisons for Hemihydrate Subjected to Various Size Sieves 25 Temperature of Hemihydrate during Hydration versus Time...

  11. The utilization of flue gas desulfurization waste by-products in construction brick

    E-Print Network [OSTI]

    Berryman, Charles Wayne

    1992-01-01T23:59:59.000Z

    APPENDIX D. TEST PROCEDURES APPENDIX E. CONVERSION TABLES VITA 85 90 93 96 99 LIST OF FIGURES Figure Page Model for FGD Waste By-Product Research Unconfined Compressive Strength for Fly Ash Mixed with Various Inductions of Portland Cement 15... properties such as weight, durability, strength, density, etc. Varying mixes of bottom ash, fly ash, portland cement, and sand will be tested for possible enhancement of the hemihydrate. Also, a mix design that best utilizes all the waste by...

  12. pH Adjustment of Power Plant Cooling Water with Flue Gas/ Fly Ash - Energy

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What'sis Taking Over OurThe Iron4 Self-Scrubbing:,, ,Development of NovelHigh( ( ( ( ( ( ( ( ( ( ( ( (

  13. DOE/FETC/TR--98-01 SORBENTS FOR MERCURY REMOVAL FROM FLUE GAS

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 Clean Energy5655994DP-1513 . Di

  14. Development of Novel CO2 Adsorbents for Capture of CO2 from Flue Gas

    Office of Scientific and Technical Information (OSTI)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem Not Found Item Not Found The itemAIR57451 CleanFOR IMMEDIATE RELEASENovel CO 2

  15. Catalysts for Oxidation of Mercury in Flue Gas - Energy Innovation Portal

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645U.S. DOE Office511041clothAdvanced Materials Advanced. C o w l i t z C o . C lKieling ,Catalysis ScienceTheAdvanced

  16. Ab Initio Rational Design of New MOFs for Separations and Flue Gas Capture

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Become agovEducationWelcome to StudyFuel

  17. Capture of Carbon Dioxide from Air and Flue Gas in the Alkylamine-Appended

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742EnergyOnItem NotEnergy,ARMForms About Batteries BatteriesCAESMissionMetal-Organic Framework

  18. Identification of High Collision Concentration Locations Under Wet Weather Conditions

    E-Print Network [OSTI]

    Hwang, Taesung; Chung, Koohong; Ragland, David; Chan, Chin-Yao

    2008-01-01T23:59:59.000Z

    conducted under wet weather conditions. Observations fromLeahy, M. , and Suggett, J. Weather as a Chronic Hazard forLocations Under Wet Weather Conditions Taesung Hwang,

  19. High-accuracy P-p-T measurements of pure gas and natural gas like mixtures using a compact magnetic suspension densimeter

    E-Print Network [OSTI]

    Ejaz, Saquib

    2007-09-17T23:59:59.000Z

    into syngas, i.e. carbon monoxide and hydrogen. The syngas, after cleaned of particles, mercury and sulfur, is combusted and the resulting hot, pressurized flue gas expands through a gas turbine thus producing power in an open gas turbine (Brayton) cycle...). The indirect route involves the production of syngas. Syngas can be produced by steam reforming or partial oxidative reaction of methane, which finally is converted to higher hydrocarbons by a Fischer- Tropsch (FT) process. The need for air separation...

  20. Zevenhoven & Kilpinen PREFACE / INTRODUCTION 13.4.2002 1-1 Chapter 1 Preface /

    E-Print Network [OSTI]

    Laughlin, Robert B.

    .2 Objectives and scope Textbooks on this subject are, in general, limited to what can be called "conventional" flue gas cleaning for conventional pulverised coal combustion processes, i.e. wet flue gas and furanes; and volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Also

  1. Zevenhoven & Kilpinen PREFACE / INTRODUCTION 4.2.2004 1-1 Chapter 1 Preface /

    E-Print Network [OSTI]

    Zevenhoven, Ron

    .2 Objectives and scope Textbooks on this subject are, in general, limited to what can be called "conventional" flue gas cleaning for conventional pulverised coal combustion processes, i.e. wet flue gas and furanes; and volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Also

  2. US crude oil, natural gas, and natural gas liquids reserves, 1992 annual report

    SciTech Connect (OSTI)

    Not Available

    1993-10-18T23:59:59.000Z

    This report presents estimates of proved reserves of crude oil, natural gas, and natural gas liquids as of December 31, 1992, as well as production volumes for the United States, and selected States and State subdivisions for the year 1992. Estimates are presented for the following four categories of natural gas: total gas (wet after lease separation), its two major components (nonassociated and associated-dissolved gas), and total dry gas (wet gas adjusted for the removal of liquids at natural gas processing plants). In addition, two components of natural gas liquids, lease condensate and natural gas plant liquids, have their reserves and production data presented. Also included is information on indicated additional crude oil reserves and crude oil, natural gas, and lease condensate reserves in nonproducing reservoirs. A discussion of notable oil and gas exploration and development activities during 1992 is provided.

  3. Maintenance of Stormwater Wetlands and Wet Ponds

    E-Print Network [OSTI]

    Hunt, William F.

    constructed across North Carolina. OVERVIEW As its name implies, a stormwater wetland is a wetland system of stormwater wetlands and wet ponds is performed to achieve four goals: efficient hydraulic flow and pollutant

  4. Breakdown in the Wetting Transparency of Graphene

    E-Print Network [OSTI]

    Shih, Chih-Jen

    We develop a theory to model the van der Waals interactions between liquid and graphene, including quantifying the wetting behavior of a graphene-coated surface. Molecular dynamics simulations and contact angle measurements ...

  5. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R. (Lynnfield, MA); Rohsenow, Warren R. (Waban, MA)

    1981-01-01T23:59:59.000Z

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  6. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    SciTech Connect (OSTI)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

    2003-02-01T23:59:59.000Z

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying wetting at microscopic and macroscopic scales and a library of well-characterized fluids for use in studies of crude oil/brine/rock interactions.

  7. Kansas Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Building FloorspaceThousandWithdrawals0.0DecadeYear

  8. Kentucky Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) Kenai,Feet)YearSeparation 2,812

  9. LA, South Onshore Nonassociated Natural Gas Proved Reserves, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1 1996-2013Production 64

  10. LA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 156 57 61 76 67

  11. Louisiana Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3 0 0 0 1569Decade Year-0Same

  12. Michigan Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet) 3Exports (NoYearDecadeSeparation 3,105

  13. Miscellaneous Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand Cubic9

  14. Miscellaneous Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70 349 350 37972

  15. Mississippi Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million Cubic Feet)Commercialper Thousand70 349 350

  16. Mississippi Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic Feet)Same Month Previous

  17. Montana Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto China (Million CubicCubic32,876 10,889Decade03

  18. TX, State Offshore Nonassociated Natural Gas Proved Reserves, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial ConsumersThousandCubic Feet) DecadeV49 155 181 177 1959,5488 25

  19. Nebraska Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.gov

  20. New Mexico - East Nonassociated Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B(Billion Cubic

  1. New Mexico - West Nonassociated Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govN E B(BillionFeet)Proved

  2. New Mexico Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved Reservesthroughwww.eia.govNThousandCubic Feet)

  3. New York Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65 1967-2010Reserves (Billion

  4. North Dakota Natural Gas, Wet After Lease Separation Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per Thousand

  5. North Dakota Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per ThousandReserves (Billion

  6. Ohio Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0 1(Billion Cubic

  7. Oklahoma Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9 0Proved Reserves

  8. Oklahoma Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9Year JanYearWellheadCubic

  9. Oklahoma Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21 4.65per9Year

  10. Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year Jan FebFullProved Reserves

  11. Pennsylvania Natural Gas, Wet After Lease Separation Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year JanCubicperWellhead

  12. Pennsylvania Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are now leaving Energy.gov You are now leaving Energy.gov YouKizildere IRaghurajiConventionalMississippi"site. IfProved(Million Barrels)21Year JanCubicperWellheadReserves

  13. Wet-gas compression in twin-screw multiphase pumps

    E-Print Network [OSTI]

    Chan, Evan

    2009-05-15T23:59:59.000Z

    . However, pump manufacturers are usually unwilling to disclose these measurements since they are regarded as trade secrets. To get around this limitation, Martin and Scott 8,9 introduced a system for calculating an effective clearance size based...

  14. Alabama Nonassociated Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B u oDecadeSame Month

  15. Alaska Nonassociated Natural Gas Proved Reserves, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National and Regional Data; Row: NAICS8) Distribution Category UC-950 Cost and Quality of Fuels forA 6 J 9 U B uYearDecadeYear Jan

  16. California - Coastal Region Onshore Associated-Dissolved Natural Gas, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0ProvedGrossFeet) ProvedFeet)After

  17. California - Coastal Region Onshore Natural Gas, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0ProvedGrossFeet)Production

  18. California - Coastal Region Onshore Nonassociated Natural Gas, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0ProvedGrossFeet)ProductionLease

  19. California - Los Angeles Basin Onshore Natural Gas, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude Oil

  20. California - Los Angeles Basin Onshore Nonassociated Natural Gas, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels) Crude OilLease

  1. California - San Joaquin Basin Onshore Natural Gas, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels)Separation Proved

  2. California - San Joaquin Basin Onshore Nonassociated Natural Gas, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels)Separation

  3. California Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (Million Barrels)SeparationProved

  4. California Federal Offshore Associated-Dissolved Natural Gas, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpected Future

  5. California Federal Offshore Natural Gas, Wet After Lease Separation Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpected

  6. California Federal Offshore Nonassociated Natural Gas, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReserves (MillionExpectedSeparation, Proved

  7. California Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb Mar Apr MayWellhead

  8. California Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb Mar Apr MayWellheadReserves

  9. California State Offshore Natural Gas, Wet After Lease Separation Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb Mar

  10. California State Offshore Nonassociated Natural Gas, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear Jan Feb MarSeparation, Proved

  11. Colorado Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear JanDecade Year-0c. Real

  12. Colorado Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecadeReservesYear21 3.96 1967-2010Cubic Feet)

  13. Florida Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity Use asFeet)Second

  14. Florida Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan FebWellhead PriceCubic

  15. Florida Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot) Year Jan FebWellhead

  16. Gulf of Mexico Federal Offshore - Texas Nonassociated Natural Gas, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688Electricity UseFoot)ProvedAfter Lease Separation,

  17. Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessAprilResidentialTexas (MillionYearCubic

  18. Kansas Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessAprilResidentialTexas

  19. Kentucky Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at1,066,688ElectricityLessAprilResidentialTexasThousandProvedProved

  20. Kentucky Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead Price (Dollars perCubic

  1. Kentucky Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal StocksProved Reserves (Billion Cubic Feet)Wellhead Price (Dollars

  2. Arkansas Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous Year

  3. Associated-Dissolved Natural Gas Estimated Production, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1 0

  4. Associated-Dissolved Natural Gas Reserves Acquisitions, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1Separation 938

  5. Associated-Dissolved Natural Gas Reserves Adjustments, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month Previous1Separation

  6. Associated-Dissolved Natural Gas Reserves Extensions, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame Month

  7. Associated-Dissolved Natural Gas Reserves Revision Decreases, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease Separation 7,385

  8. Associated-Dissolved Natural Gas Reserves Revision Increases, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSame MonthLease Separation

  9. CA, Coastal Region Onshore Nonassociated Natural Gas Proved Reserves, Wet

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion CubicPotentialNov-14SalesSameCommercial(Million L41 478151

  10. CA, State Offshore Nonassociated Natural Gas Proved Reserves, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460 1977-2013164 167 20057 57

  11. California Associated-Dissolved Natural Gas Proved Reserves, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590 1,550 1,460CubicYear Jan FebLease

  12. California Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321 2,590FuelDecade Year-0 Year-1Same

  13. Colorado Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,128 2,469 2,321Spain (MillionFeet)2008Year

  14. Estimated Production of Natural Gas, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller Motor

  15. Federal Offshore Texas Nonassociated Natural Gas Proved Reserves, Wet After

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803 Table A1. Refiner/Reseller2009 Annual Download03Lease

  16. Nebraska Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of(Millionthrough, 2002 (next8,,9,7,3, 2011

  17. Alabama Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996 N EnergyandProductionShaleProved

  18. Alabama Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32Wellhead PriceCubic

  19. Alabama Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at Commercial andSeptember 25,9,1996Feet)4.32Wellhead

  20. Alaska Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2 Year-3

  1. Alaska Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1 Year-2 Year-3Reserves (Billion

  2. Arkansas Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year JanDecade Year-0Proved Reserves

  3. Arkansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year%Underground

  4. Arkansas Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40Coal Stocks at CommercialDecade Year-0 Year-1Year%UndergroundReserves (Billion

  5. West Virginia Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (Million Cubic58(MillionYear Jan Feb Marfrom Same

  6. Wyoming Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122Commercial602 1,397 125 Q 69 (MillionAdjustments (MillionYear JanSeparation

  7. Texas Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan Feb Mar Apr May Jun Jul AugDecade

  8. Utah Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year Jan FebIncreases (Billion CubicYearDecadeYear6,393 6,810

  9. Virginia Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40 Buildingto17 34 44Year JanDecade Year-0 Year-1

  10. Associated-Dissolved Natural Gas Proved Reserves, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade Year-0E (2001)gasoline prices4 OilU.S.5Are there

  11. Nonassociated Natural Gas Proved Reserves, Wet After Lease Separation, as

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level:Energy: Grid Integration Redefining What's Possible for Renewable Energy:Nanowire Solar541,9337,2AprilBig EddyNobelNon-axisymmetricof Dec.

  12. Michigan Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubic Feet) Year3:

  13. Michigan Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet) Year JanCubic

  14. Michigan Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade EnergyTennesseeYearUndergroundCubicDecadeFeet) Year

  15. Miscellaneous States Associated-Dissolved Natural Gas, Wet After Lease

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.Year Jan Feb MarThousand

  16. Miscellaneous States Natural Gas, Wet After Lease Separation Proved

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.Year

  17. Miscellaneous States Nonassociated Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy, U.S.YearProved Reserves (Billion

  18. Mississippi Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale Production (BillionProved

  19. Mississippi Natural Gas, Wet After Lease Separation Proved Reserves

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73 4.17Wellhead

  20. Mississippi Nonassociated Natural Gas, Wet After Lease Separation, Proved

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off) Shale%73 4.17WellheadReserves

  1. Montana Associated-Dissolved Natural Gas, Wet After Lease Separation,

    Gasoline and Diesel Fuel Update (EIA)

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for On-Highway4,1,50022,3,,,,6,1,9,1,50022,3,,,,6,1,Decade1 Source: Office of Fossil Energy,off)Thousand

  2. Texas - RRC District 1 Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr May Jun

  3. Texas - RRC District 10 Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb Mar Apr May

  4. Texas - RRC District 5 Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation, Proved Reserves (Billion

  5. Texas - RRC District 6 Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan Feb MarSeparation, ProvedReserves

  6. Texas - RRC District 8 Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation, Proved

  7. Texas - RRC District 9 Nonassociated Natural Gas, Wet After Lease

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year Jan FebSeparation,Separation,Reserves

  8. Texas Natural Gas, Wet After Lease Separation Proved Reserves (Billion

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected Future

  9. Texas Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReserves (Billion Cubic

  10. Texas State Offshore Natural Gas, Wet After Lease Separation Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReservesBarrels)

  11. Texas State Offshore Nonassociated Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content API GravityDakota" "Fuel, quality", 2013,Iowa"Dakota"Year JanExpected FutureReservesBarrels)Proved

  12. Utah Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(Billion Cubic Feet)

  13. Virginia Associated-Dissolved Natural Gas, Wet After Lease Separation,

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197 14,197(BillionYear Jan FebProved Reserves

  14. West Virginia Natural Gas, Wet After Lease Separation Proved Reserves

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb Mar AprNA(Billion Cubic

  15. West Virginia Nonassociated Natural Gas, Wet After Lease Separation, Proved

    U.S. Energy Information Administration (EIA) Indexed Site

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page onYou are nowTotal" (Percent) Type: Sulfur Content4,367,470 4,364,790 4,363,909 4,363,143 4,363,967 4,363,549 1973-2015 Alaska 14,197 14,197CubicYear Jan Feb Mar AprNA(Billion

  16. NM, East Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 474 523

  17. NM, West Nonassociated Natural Gas Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 47421 20 21

  18. Natural Gas Associated-Dissolved Proved Reserves, Wet After Lease

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Jan Feb Mar AprYear Jan1,185530 47421 20

  19. Natural Gas Nonassociated Proved Reserves, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,960

  20. Natural Gas Reserves Extensions, Wet After Lease Separation

    Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

    AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative1 First Use of Energy for All Purposes (Fuel and Nonfuel), 2002; Level: National5Sales for4,645 3,625 1,006 492 742 33 111 1,613 122 40CoalLease(Billion2,12803andYear Janthrough2,869,9601. Natural