National Library of Energy BETA

Sample records for wet cooling towers

  1. Wet/dry cooling tower and method

    DOE Patents [OSTI]

    Glicksman, Leon R.; Rohsenow, Warren R.

    1981-01-01

    A wet/dry cooling tower wherein a liquid to-be-cooled is flowed along channels of a corrugated open surface or the like, which surface is swept by cooling air. The amount of the surface covered by the liquid is kept small compared to the dry part thereof so that said dry part acts as a fin for the wet part for heat dissipation.

  2. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve ...

  3. Wet cooling towers: rule-of-thumb design and simulation (Technical...

    Office of Scientific and Technical Information (OSTI)

    provides information useful in power plant cycle optimization, including tower dimensions, water consumption rate, exit air temperature, power requirements and construction cost. ...

  4. Best Management Practice #10: Cooling Tower Management

    Office of Energy Efficiency and Renewable Energy (EERE)

    Cooling towers dissipate heat from recirculating water used to cool chillers, air conditioners, or other process equipment to the ambient air. Heat is rejected to the environment from cooling towers through the process of evaporation. Therefore, by design, cooling towers use significant amounts of water.

  5. Cooling Towers: Understanding Key Components of Cooling Towers and How to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Improve Water Efficiency | Department of Energy Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Cooling Towers: Understanding Key Components of Cooling Towers and How to Improve Water Efficiency Fact sheet covers the key components of cooling towers and how to improve water efficiency. waterfs_coolingtowers.pdf (3.16 MB) More Documents & Publications Guidelines for Estimating Unmetered Industrial Water Use Side Stream Filtration for

  6. 2004 Savannah River Cooling Tower Collection (U)

    SciTech Connect (OSTI)

    Garrett, Alfred; Parker, Matthew J.; Villa-Aleman, E.

    2005-05-01

    The Savannah River National Laboratory (SRNL) collected ground truth in and around the Savannah River Site (SRS) F-Area cooling tower during the spring and summer of 2004. The ground truth data consisted of air temperatures and humidity inside and around the cooling tower, wind speed and direction, cooling water temperatures entering; inside adn leaving the cooling tower, cooling tower fan exhaust velocities and thermal images taken from helicopters. The F-Area cooling tower had six cells, some of which were operated with fans off during long periods of the collection. The operating status (fan on or off) for each of the six cells was derived from operations logbooks and added to the collection database. SRNL collected the F-Area cooling tower data to produce a database suitable for validation of a cooling tower model used by one of SRNL's customer agencies. SRNL considers the data to be accurate enough for use in a model validation effort. Also, the thermal images of the cooling tower decks and throats combined with the temperature measurements inside the tower provide valuable information about the appearance of cooling towers as a function of fan operating status and time of day.

  7. Vortex-augmented cooling tower - windmill combination

    DOE Patents [OSTI]

    McAllister, J.E. Jr.

    1982-09-02

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passage to provide power as a by-product.

  8. Cooling tower environmental considerations for cogeneration projects

    SciTech Connect (OSTI)

    Weaver, K.L.; Putnam, R.A.; Schott, G.A.

    1994-12-31

    Careful consideration must be given to the potential environmental impacts resulting from cooling tower operations in cogeneration projects. Concerns include visible plumes, fogging and icing of nearby roadways, emissions, water use, aesthetics, and noise. These issues must be properly addressed in order to gain public acceptance and allow for easier permitting of the facility. This paper discusses the various evaporative type cooling tower technologies from an environmental standpoint. In addition, typical concerns and questions raised by the public are presented, along with suggested guidelines for addressing these concerns. The use of modeling to predict the potential environmental impacts from cooling tower operations is sometimes required by regulatory agencies as a condition for obtaining approval for the facility. This paper discusses two of the models that are currently available for predicting cooling tower environmental impacts such as fogging, icing, salt deposition, and visible plumes. The lack of standardized models for cooling tower noise predictions, and the means by which the modeling requirements may be achieved are also addressed. An overview of the characteristics of cooling tower noise, the various measures used for noise control and the interdependency of the control measures and other cooling tower performance parameters are presented. Guidance is provided to design cost effective, low noise installations. The requirements for cooling tower impact assessments to support permitting of a cogeneration facility are also presented.

  9. Use of nanofiltration to reduce cooling tower water consumption...

    Office of Scientific and Technical Information (OSTI)

    Use of nanofiltration to reduce cooling tower water consumption. Citation Details In-Document Search Title: Use of nanofiltration to reduce cooling tower water consumption. ...

  10. Coagulation chemistries for silica removal from cooling tower...

    Office of Scientific and Technical Information (OSTI)

    Coagulation chemistries for silica removal from cooling tower water. Citation Details In-Document Search Title: Coagulation chemistries for silica removal from cooling tower water. ...

  11. Cooling tower water treatment and reuse. (Conference) | SciTech...

    Office of Scientific and Technical Information (OSTI)

    Cooling tower water treatment and reuse. Citation Details In-Document Search Title: Cooling tower water treatment and reuse. No abstract prepared. Authors: Brady, Patrick Vane ; ...

  12. Technical Evaluation of Side Stream Filtration for Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Technical Evaluation of Side Stream Filtration for Cooling Towers Technical Evaluation of Side Stream Filtration for Cooling Towers Fact sheet provides an overview of side stream ...

  13. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Technical Report: Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. ...

  14. Water-Efficient Technology Opportunity: Advanced Cooling Tower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Water-Efficient Technology Opportunity: Advanced Cooling Tower Controls The Federal Energy Management Program (FEMP) identified advanced cooling tower controls as a water-saving ...

  15. Cooling Tower Report, October 2008 | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Tower Report, October 2008 Cooling Tower Report, October 2008 Electricity Reliability Impacts of a Mandatory Cooling Tower Rule for Existing Steam Generation Units Cooling Tower Report, October 2008 (1.94 MB) More Documents & Publications 2011: Air Quality Regulations Report 2011 Air Quality Regulations Report Cooling Water Issues and Opportunities at U.S. Nuclear Power Plants, December 2010

  16. Flue gas injection control of silica in cooling towers. (Technical...

    Office of Scientific and Technical Information (OSTI)

    Flue gas injection control of silica in cooling towers. Citation Details In-Document Search Title: Flue gas injection control of silica in cooling towers. You are accessing a ...

  17. Technical Evaluation of Side Stream Filtration for Cooling Towers

    SciTech Connect (OSTI)

    2012-10-01

    Cooling towers are an integral component of many refrigeration systems, providing comfort or process cooling across a broad range of applications. Cooling towers represent the point in a cooling system where heat is dissipated to the atmosphere through evaporation. Cooling towers are commonly used in industrial applications and in large commercial buildings to release waste heat extracted from a process or building system through evaporation of water.

  18. Side Stream Filtration for Cooling Towers

    SciTech Connect (OSTI)

    2012-10-20

    This technology evaluation assesses side stream filtration options for cooling towers, with an objective to assess key attributes that optimize energy and water savings along with providing information on specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This evaluation provides an overview of the characterization of side stream filtration technology, describes typical applications, and details specific types of filtration technology.

  19. Side Stream Filtration for Cooling Towers | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Side Stream Filtration for Cooling Towers Side Stream Filtration for Cooling Towers Report assesses side stream filtration options for cooling towers with an objective to assess key attributes that optimize energy and water savings and provide information about specific technology and implementation options. This information can be used to assist Federal sites to determine which options may be most appropriate for their applications. This report provides an overview of the characterization of

  20. The Damaging Effects of Earthquake Excitation on Concrete Cooling Towers

    SciTech Connect (OSTI)

    Abedi-Nik, Farhad; Sabouri-Ghomi, Saeid

    2008-07-08

    Reinforced concrete cooling towers of hyperbolic shell configuration find widespread application in utilities engaged in the production of electric power. In design of critical civil infrastructure of this type, it is imperative to consider all the possible loading conditions that the cooling tower may experience, an important loading condition in many countries is that of the earthquake excitation, whose influence on the integrity and stability of cooling towers is profound. Previous researches have shown that the columns supporting a cooling tower are sensitive to earthquake forces, as they are heavily loaded elements that do not possess high ductility, and understanding the behavior of columns under earthquake excitation is vital in structural design because they provide the load path for the self weight of the tower shell. This paper presents the results of a finite element investigation of a representative 'dry' cooling tower, using realistic horizontal and vertical acceleration data obtained from the recent and widely-reported Tabas, Naghan and Bam earthquakes in Iran. The results of both linear and nonlinear analyses are reported in the paper, the locations of plastic hinges within the supporting columns are identified and the ramifications of the plastic hinges on the stability of the cooling tower are assessed. It is concluded that for the (typical) cooling tower configuration analyzed, the columns that are instrumental in providing a load path are influenced greatly by earthquake loading, and for the earthquake data used in this study the representative cooling tower would be rendered unstable and would collapse under the earthquake forces considered.

  1. Vortex-augmented cooling tower-windmill combination

    DOE Patents [OSTI]

    McAllister, Jr., John E.

    1985-01-01

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  2. Vortex-augmented cooling tower-windmill combination

    SciTech Connect (OSTI)

    McAllister Jr., J. E.

    1985-02-12

    A cooling tower for cooling large quantities of effluent water from a production facility by utilizing natural wind forces includes the use of a series of helically directed air inlet passages extending outwardly from the base of the tower to introduce air from any direction in a swirling vortical pattern while the force of the draft created in the tower makes it possible to place conventional power generating windmills in the air passages to provide power as a by-product.

  3. Property:CoolingTowerWaterUseSummerGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerGross Property Type Number Description Cooling Tower Water use (summer average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  4. Property:CoolingTowerWaterUseAnnlAvgConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseAnnlAvgConsumed Property Type Number Description Cooling Tower Water use (annual average) (afday) Consumed. Retrieved from "http:...

  5. Property:CoolingTowerWaterUseSummerConsumed | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseSummerConsumed Property Type Number Description Cooling Tower Water use (summer average) (afday) Consumed. Retrieved from "http:...

  6. Purification of water from cooling towers and other heat exchange systems

    DOE Patents [OSTI]

    Sullivan; Enid J. , Carlson; Bryan J. , Wingo; Robert M. , Robison; Thomas W.

    2012-08-07

    The amount of silica in cooling tower water is reduced by passing cooling tower water through a column of silica gel.

  7. Use of nanofiltration to reduce cooling tower water consumption.

    SciTech Connect (OSTI)

    Altman, Susan Jeanne; Ciferno, Jared

    2010-10-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  8. Use of nanofiltration to reduce cooling tower water usage.

    SciTech Connect (OSTI)

    Sanchez, Andres L.; Everett, Randy L.; Jensen, Richard Pearson; Cappelle, Malynda A.; Altman, Susan Jeanne

    2010-09-01

    Nanofiltration (NF) can effectively treat cooling-tower water to reduce water consumption and maximize water usage efficiency of thermoelectric power plants. A pilot is being run to verify theoretical calculations. A side stream of water from a 900 gpm cooling tower is being treated by NF with the permeate returning to the cooling tower and the concentrate being discharged. The membrane efficiency is as high as over 50%. Salt rejection ranges from 77-97% with higher rejection for divalent ions. The pilot has demonstrated a reduction of makeup water of almost 20% and a reduction of discharge of over 50%.

  9. Environmental Impacts from the Operation of Cooling Towers at SRP

    SciTech Connect (OSTI)

    Smith, F.G. III

    2001-06-26

    An assessment has been made of the environmental effects that would occur from the operation of cooling towers at the SRP reactors. A more realistic numerical model of the cooling tower plume has been used to reassess the environmental impacts. The following effects were considered: (1) the occurrence of fog and ice and their impact on nearby structures, (2) drift and salt deposition from the plume, (3) the length and height of the visible plume, and (4) the possible dose from tritium.

  10. Microsoft Word - Cooling Tower Report.doc

    Office of Environmental Management (EM)

    1: Background of Thermoelectric Power Plant Cooling Systems - Technical and ......... 10 Coal-Fired Generation ......

  11. Property:CoolingTowerWaterUseWinterConsumed | Open Energy Information

    Open Energy Info (EERE)

    gTowerWaterUseWinterConsumed Property Type Number Description Cooling Tower Water use (winter average) (afday) Consumed. Retrieved from "http:en.openei.orgw...

  12. 2010sr27[cooling_tower_complete].doc

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Friday, September 17, 2010 james-r.giusti@srs.gov Paivi Nettamo, SRNS, (803) 952-6938 paivi.nettamo@srs.gov K Cooling Tower Project Reaches Completion Aiken, S.C. - One of the most visual milestones of cleanup projects underway within the Department of Energy's Office of Environmental Management was the demolition of the K-Reactor Cooling Tower at the Savannah River Site (SRS). Now, this American Recovery and Reinvestment Act project has been completed one month ahead of schedule, with debris

  13. Add helper cooling towers to control discharge temperatures

    SciTech Connect (OSTI)

    Lander, J.; Christensen, G.

    1993-04-01

    This article describes the retrofitting of helper cooling towers to the Crystal River energy complex to reduce thermal pollution to the Gulf of Mexico. The topics of the article include the design concept, evaluation of design alternatives, a project description, economic evaluation, marine organism control, power requirements, and auxiliary systems.

  14. Property:CoolingTowerWaterUseAnnlAvgGross | Open Energy Information

    Open Energy Info (EERE)

    Property Name CoolingTowerWaterUseAnnlAvgGross Property Type Number Description Cooling Tower Water use (annual average) (afday) Gross. Retrieved from "http:en.openei.orgw...

  15. Technical Evaluation of Side Stream Filtration for Cooling Towers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Towers (photo from Pacific Northwest National Laboratory) * Scaling: Scaling is the precipitation of dissolved mineral components that have become saturated in solution, which can lower effciency of the system. * Fouling: Fouling occurs when suspended particles or biologic growth forms an insulating flm on heat transfer surfaces. Common foulants include organic matter, process oils, and silt, which can also lower system performance. * Microbiological Activity: Microbiological activity

  16. Property:CoolingTowerWaterUseWinterGross | Open Energy Information

    Open Energy Info (EERE)

    lingTowerWaterUseWinterGross Property Type Number Description Cooling Tower Water use (winter average) (afday) Gross. Retrieved from "http:en.openei.orgwindex.php?titleProper...

  17. Coagulation chemistries for silica removal from cooling tower water.

    SciTech Connect (OSTI)

    Nyman, May Devan; Altman, Susan Jeanne; Stewart, Tom

    2010-02-01

    The formation of silica scale is a problem for thermoelectric power generating facilities, and this study investigated the potential for removal of silica by means of chemical coagulation from source water before it is subjected to mineral concentration in cooling towers. In Phase I, a screening of many typical as well as novel coagulants was carried out using concentrated cooling tower water, with and without flocculation aids, at concentrations typical for water purification with limited results. In Phase II, it was decided that treatment of source or make up water was more appropriate, and that higher dosing with coagulants delivered promising results. In fact, the less exotic coagulants proved to be more efficacious for reasons not yet fully determined. Some analysis was made of the molecular nature of the precipitated floc, which may aid in process improvements. In Phase III, more detailed study of process conditions for aluminum chloride coagulation was undertaken. Lime-soda water softening and the precipitation of magnesium hydroxide were shown to be too limited in terms of effectiveness, speed, and energy consumption to be considered further for the present application. In Phase IV, sodium aluminate emerged as an effective coagulant for silica, and the most attractive of those tested to date because of its availability, ease of use, and low requirement for additional chemicals. Some process optimization was performed for coagulant concentration and operational pH. It is concluded that silica coagulation with simple aluminum-based agents is effective, simple, and compatible with other industrial processes.

  18. Reduction in performance due to recirculation in mechanical-draft cooling towers

    SciTech Connect (OSTI)

    Kroger, D.G. )

    1989-01-01

    The influence of recirculating warm plume air on the performance of mechanical-draft cooling towers is investigated analytically, numerically and experimentally. It is shown that the amount of recirculation that occurs is a function of the flow and the thermal and geometric characteristics of the tower. The presence of a wind wall tends to reduce the mount of recirculation. An equation is presented with which the performance effectiveness due to recirculation can be evaluated approximately for a mechanical-draft cooling tower.

  19. Method and system for simulating heat and mass transfer in cooling towers

    DOE Patents [OSTI]

    Bharathan, Desikan; Hassani, A. Vahab

    1997-01-01

    The present invention is a system and method for simulating the performance of a cooling tower. More precisely, the simulator of the present invention predicts values related to the heat and mass transfer from a liquid (e.g., water) to a gas (e.g., air) when provided with input data related to a cooling tower design. In particular, the simulator accepts input data regarding: (a) cooling tower site environmental characteristics; (b) cooling tower operational characteristics; and (c) geometric characteristics of the packing used to increase the surface area within the cooling tower upon which the heat and mass transfer interactions occur. In providing such performance predictions, the simulator performs computations related to the physics of heat and mass transfer within the packing. Thus, instead of relying solely on trial and error wherein various packing geometries are tested during construction of the cooling tower, the packing geometries for a proposed cooling tower can be simulated for use in selecting a desired packing geometry for the cooling tower.

  20. Cooling tower and plume modeling for satellite remote sensing applications

    SciTech Connect (OSTI)

    Powers, B.J.

    1995-05-01

    It is often useful in nonproliferation studies to be able to remotely estimate the power generated by a power plant. Such information is indirectly available through an examination of the power dissipated by the plant. Power dissipation is generally accomplished either by transferring the excess heat generated into the atmosphere or into bodies of water. It is the former method with which we are exclusively concerned in this report. We discuss in this report the difficulties associated with such a task. In particular, we primarily address the remote detection of the temperature associated with the condensed water plume emitted from the cooling tower. We find that the effective emissivity of the plume is of fundamental importance for this task. Having examined the dependence of the plume emissivity in several IR bands and with varying liquid water content and droplet size distributions, we conclude that the plume emissivity, and consequently the plume brightness temperature, is dependent upon not only the liquid water content and band, but also upon the droplet size distribution. Finally, we discuss models dependent upon a detailed point-by-point description of the hydrodynamics and thermodynamics of the plume dynamics and those based upon spatially integrated models. We describe in detail a new integral model, the LANL Plume Model, which accounts for the evolution of the droplet size distribution. Some typical results obtained from this model are discussed.

  1. Biocide usage in cooling towers in the electric power and petroleum refining industries

    SciTech Connect (OSTI)

    Veil, J.; Rice, J.K.; Raivel, M.E.S.

    1997-11-01

    Cooling towers users frequently apply biocides to the circulating cooling water to control growth of microorganisms, algae, and macroorganisms. Because of the toxic properties of biocides, there is a potential for the regulatory controls on their use and discharge to become increasingly more stringent. This report examines the types of biocides used in cooling towers by companies in the electric power and petroleum refining industries, and the experiences those companies have had in dealing with agencies that regulate cooling tower blowdown discharges. Results from a sample of 67 electric power plants indicate that the use of oxidizing biocides (particularly chlorine) is favored. Quaternary ammonia salts (quats), a type of nonoxidizing biocide, are also used in many power plant cooling towers. The experience of dealing with regulators to obtain approval to discharge biocides differs significantly between the two industries. In the electric power industry, discharges of any new biocide typically must be approved in writing by the regulatory agency. The approval process for refineries is less formal. In most cases, the refinery must notify the regulatory agency that it is planning to use a new biocide, but the refinery does not need to get written approval before using it. The conclusion of the report is that few of the surveyed facilities are having any difficulty in using and discharging the biocides they want to use.

  2. Impact of environmental concerns on cooling-tower design and operation

    SciTech Connect (OSTI)

    Hensley, J.C.

    1981-01-01

    New and sometimes unexpected environmental concerns surface from time to time, and each has its special effect on the selection, pricing, and operation of cooling towers. This paper discusses the following concerns, which are either current or are becoming significant: water conservation, energy conservation, noise, drift, blowdown, visual impact, and construction materials that are environmentally sensitive. 3 refs.

  3. Experimental optimization of cooling-tower-fan control based on field data. Master's thesis

    SciTech Connect (OSTI)

    Herman, D.L.

    1991-04-01

    Energy costs continue to play an important role in the decision-making process for building design and operation. Since the chiller, cooling tower fans, and associated pumps consume the largest fraction of energy in a heating, ventilating, and air-conditioning (HVAC) system, the control of these components is of major importance in determining building energy use. A significant control parameter for the chilled water system is the minimum entering condenser water set point temperature at which the cooling tower fans are cycled on and off, several studies have attempted to determine the optimum value for this minimum set point temperature, but direct measurements are not available to validate these studies. The purpose of this study was to experimentally determine the optimum minimum entering condenser water set point temperature from field data based on minimum energy consumption and to validate a chilled water system analytical model previously developed in earlier work. The total chiller system electrical consumption (chiller and cooling tower fan energy) was measured for four entering condensor water set point temperatures (70, 75, 80, and 85 deg F). The field results were compared to results obtained using an analytical model previously developed in a thesis entitled Optimized Design of a Commercial Building Chiller/Cooling Tower System, written by Joyce.

  4. A STUDY ON LEGIONELLA PNEUMOPHILA, WATER CHEMISTRY, AND ATMOSPHERIC CONDITIONS IN COOLING TOWERS AT THE SAVANNAH RIVER SITE

    SciTech Connect (OSTI)

    Smith, C.; Brigmon, R.

    2009-10-20

    Legionnaires disease is a pneumonia caused by the inhalation of the bacterium Legionella pneumophila. The majority of illnesses have been associated with cooling towers since these devices can harbor and disseminate the bacterium in the aerosolized mist generated by these systems. Historically, Savannah River Site (SRS) cooling towers have had occurrences of elevated levels of Legionella in all seasons of the year and in patterns that are difficult to predict. Since elevated Legionella in cooling tower water are a potential health concern a question has been raised as to the best control methodology. In this work we analyze available chemical, biological, and atmospheric data to determine the best method or key parameter for control. The SRS 4Q Industrial Hygiene Manual, 4Q-1203, 1 - G Cooling Tower Operation and the SRNL Legionella Sampling Program, states that 'Participation in the SRNL Legionella Sampling Program is MANDATORY for all operating cooling towers'. The resulting reports include L. pneumophila concentration information in cells/L. L. pneumophila concentrations >10{sup 7} cells/L are considered elevated and unsafe so action must be taken to reduce these densities. These remedial actions typically include increase biocide addition or 'shocking'. Sometimes additional actions are required if the problem persists including increase tower maintenance (e.g. cleaning). Evaluation of 14 SRS cooling towers, seven water quality parameters, and five Legionella serogroups over a three-plus year time frame demonstrated that cooling tower water Legionella densities varied widely though out this time period. In fact there was no one common consistent significant variable across all towers. The significant factors that did show up most frequently were related to suspended particulates, conductivity, pH, and dissolved oxygen, not chlorine or bromine as might be expected. Analyses of atmospheric data showed that there were more frequent significant elevated Legionella

  5. Steam-Electric Power-Plant-Cooling Handbook

    SciTech Connect (OSTI)

    Sonnichsen, J.C.; Carlson, H.A.; Charles, P.D.; Jacobson, L.D.; Tadlock, L.A.

    1982-02-01

    The Steam-Electric Power Plant Cooling Handbook provides summary data on steam-electric power plant capacity, generation and number of plants for each cooling means, by Electric Regions, Water Resource Regions and National Electric Reliability Council Areas. Water consumption by once-through cooling, cooling ponds and wet evaporative towers is discussed and a methodology for computation of water consumption is provided for a typical steam-electric plant which uses a wet evaporative tower or cooling pond for cooling.

  6. Hybrid Wet/Dry Cooling for Power Plants (Presentation)

    SciTech Connect (OSTI)

    Kutscher, C.; Buys, A.; Gladden, C.

    2006-02-01

    This presentation includes an overview of cooling options, an analysis of evaporative enhancement of air-cooled geothermal power plants, field measurements at a geothermal plant, a preliminary analysis of trough plant, and improvements to air-cooled condensers.

  7. Environmental assessment of air quality, noise and cooling tower drift from the Jersey City Total Energy Demonstration

    SciTech Connect (OSTI)

    Davis, W.T.; Kolb, J.O.

    1980-06-01

    This assessment covers three specific effects from the operation of the Total Energy (TE) demonstration: (1) air quality from combustion emissions of 600 kW diesel engines and auxiliary boilers fueled with No. 2 distillate oil, (2) noise levels from TE equipment operation, (3) cooling tower drift from two, 2220 gpm, forced-draft cooling towers. For the air quality study, measurements were performed to determine both the combustion emission rates and ground-level air quality at the Demonstration site. Stack analysis of NO/sub x/, SO/sub 2/, CO, particulates, and total hydrocarbons characterized emission rates over a range of operating conditions. Ground-level air quality was monitored during two six-week periods during the summer and winter of 1977. The noise study was performed by measuring sound levels in db(A) in the area within approximately 60 m of the CEB. The noise survey investigated the effects on noise distribution of different wind conditions, time of day or night, and condition of doors - open or closed - near the diesel engines in the CEB. In the cooling tower study, drift emission characteristics were measured to quantify the drift emission before and after cleaning of the tower internals to reduce fallout of large drift droplets in the vicinity of the CEB.

  8. AUTOMATED DEAD-END ULTRAFILTRATION FOR ENHANCED SURVEILLANCE OF LEGIONELLA 2 PNEUMOPHILA AND LEGIONELLA SPP. IN COOLING TOWER WATERS

    SciTech Connect (OSTI)

    Brigmon, R.; Leskinen, S.; Kearns, E.; Jones, W.; Miller, R.; Betivas, C.; Kingsley, M.; Lim, D.

    2011-10-10

    Detection of Legionella pneumophila in cooling towers and domestic hot water systems involves concentration by centrifugation or membrane filtration prior to inoculation onto growth media or analysis using techniques such as PCR or immunoassays. The Portable Multi-use Automated Concentration System (PMACS) was designed for concentrating microorganisms from large volumes of water in the field and was assessed for enhancing surveillance of L. pneumophila at the Savannah River Site, SC. PMACS samples (100 L; n = 28) were collected from six towers between August 2010 and April 2011 with grab samples (500 ml; n = 56) being collected before and after each PMACS sample. All samples were analyzed for the presence of L. pneumophila by direct fluorescence immunoassay (DFA) using FITC-labeled monoclonal antibodies targeting serogroups 1, 2, 4 and 6. QPCR was utilized for detection of Legionella spp. in the same samples. Counts of L. pneumophila from DFA and of Legionella spp. from qPCR were normalized to cells/L tower water. Concentrations were similar between grab and PMACS samples collected throughout the study by DFA analysis (P = 0.4461; repeated measures ANOVA). The same trend was observed with qPCR. However, PMACS concentration proved advantageous over membrane filtration by providing larger volume, more representative samples of the cooling tower environment, which led to reduced variability among sampling events and increasing the probability of detection of low level targets. These data highlight the utility of the PMACS for enhanced surveillance of L. pneumophila by providing improved sampling of the cooling tower environment.

  9. Technology to Facilitate the Use of Impaired Waters in Cooling Towers

    SciTech Connect (OSTI)

    Colborn, Robert

    2012-04-30

    The project goal was to develop an effective silica removal technology and couple that with existing electro-dialysis reversal (EDR) technology to achieve a cost effective treatment for impaired waters to allow for their use in the cooling towers of coal fired power plants. A quantitative target of the program was a 50% reduction in the fresh water withdrawal at a levelized cost of water of $3.90/Kgal. Over the course of the program, a new molybdenum-modified alumina was developed that significantly outperforms existing alumina materials in silica removal both kinetically and thermodynamically. The Langmuir capacity is 0.11g silica/g adsorbent. Moreover, a low cost recycle/regeneration process was discovered to allow for multiple recycles with minimal loss in activity. On the lab scale, five runs were carried out with no drop in performance between the second and fifth run in ability to absorb the silica from water. The Mo-modified alumina was successfully prepared on a multiple kilogram scale and a bench scale model column was used to remove 100 ppm of silica from 400 liters of simulated impaired water. Significant water savings would result from such a process and the regeneration process could be further optimized to reduce water requirements. Current barriers to implementation are the base cost of the adsorbent material and the fine powder form that would lead to back pressure on a large column. If mesoporous materials become more commonly used in other areas and the price drops from volume and process improvements, then our material would also lower in price because the amount of molybdenum needed is low and no additional processing is required. There may well be engineering solutions to the fine powder issue; in a simple concept experiment, we were able to pelletize our material with Boehmite, but lost performance due to a dramatic decrease in surface area.

  10. NASA Marshall Space Flight Center Improves Cooling System Performance: Best Management Practice Case Study #10: Cooling Towers (Fact Sheet)

    SciTech Connect (OSTI)

    Not Available

    2011-02-01

    National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  11. Experimental evaluation of dry/wet air-cooled heat exchangers. Progress report

    SciTech Connect (OSTI)

    Hauser, S.G.; Gruel, R.L.; Huenefeld, J.C.; Eschbach, E.J.; Johnson, B.M.; Kreid, D.K.

    1982-08-01

    The ultimate goal of this project was to contribute to the development of improved cooling facilities for power plants. Specifically, the objective during FY-81 was to experimentally determine the thermal performance and operating characteristics of an air-cooled heat exchanger surface manufactured by the Unifin Company. The performance of the spiral-wound finned tube surface (Unifin) was compared with two inherently different platefin surfaces (one developed by the Trane Co. and the other developed by the HOETERV Institute) which were previously tested as a part of the same continuing program. Under dry operation the heat transfer per unit frontal area per unit inlet temperature difference (ITD) of the Unifin surface was 10% to 20% below that of the other two surfaces at low fan power levels. At high fan power levels, the performances of the Unifin and Trane surfaces were essentially the same, and 25% higher than the HOETERV surface. The design of the Unifin surface caused a significantly larger air-side pressure drop through the heat exchanger both in dry and deluge operation. Generally higher overall heat transfer coefficients were calculated for the Unifin surface under deluged operation. They ranged from 2.0 to 3.5 Btu/hr-ft/sup 2/-/sup 0/F as compared to less than 2.0 Btu hr-ft/sup 2/-/sup 0/F for the Trane and HOETERV surfaces under similar conditions. The heat transfer enhancement due to the evaporative cooling effect was also measureably higher with the Unifin surface as compared to the Trane surface. This can be primarily attributed to the better wetting characteristics of the Unifin surface. If the thermal performance of the surfaces are compared at equal face velocities, the Unifin surface is as much as 35% better. This method of comparison accounts for the wetting characteristics while neglecting the effect of pressure drop. Alternatively the surfaces when compared at equal pressure drop essentially the same thermal performance.

  12. Use of Air2Air Technology to Recover Fresh-Water from the Normal Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2009-06-30

    This program was undertaken to build and operate the first Air2Air{trademark} Water Conservation Cooling Tower at a power plant, giving a validated basis and capability for water conservation by this method. Air2Air{trademark} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10%-25% annually, depending on the cooling tower location (climate).

  13. User's guide for the BNW-III optimization code for modular dry/wet-cooled power plants

    SciTech Connect (OSTI)

    Braun, D.J.; Faletti, D.W.

    1984-09-01

    This user's guide describes BNW-III, a computer code developed by the Pacific Northwest Laboratory (PNL) as part of the Dry Cooling Enhancement Program sponsored by the US Department of Energy (DOE). The BNW-III code models a modular dry/wet cooling system for a nuclear or fossil fuel power plant. The purpose of this guide is to give the code user a brief description of what the BNW-III code is and how to use it. It describes the cooling system being modeled and the various models used. A detailed description of code input and code output is also included. The BNW-III code was developed to analyze a specific cooling system layout. However, there is a large degree of freedom in the type of cooling modules that can be selected and in the performance of those modules. The costs of the modules are input to the code, giving the user a great deal of flexibility.

  14. Lawrence Livermore National Laboratory (LLNL) Experimental Test Site (Site 300) Salinity Evaluation and Minimization Plan for Cooling Towers and Mechanical Equipment Discharges

    SciTech Connect (OSTI)

    Daily III, W D

    2010-02-24

    This document was created to comply with the Central Valley Regional Water Quality Control Board (CVRWQCB) Waste Discharge Requirement (Order No. 98-148). This order established new requirements to assess the effect of and effort required to reduce salts in process water discharged to the subsurface. This includes the review of technical, operational, and management options available to reduce total dissolved solids (TDS) concentrations in cooling tower and mechanical equipment water discharges at Lawrence Livermore National Laboratory's (LLNL's) Experimental Test Site (Site 300) facility. It was observed that for the six cooling towers currently in operation, the total volume of groundwater used as make up water is about 27 gallons per minute and the discharge to the subsurface via percolation pits is 13 gallons per minute. The extracted groundwater has a TDS concentration of 700 mg/L. The cooling tower discharge concentrations range from 700 to 1,400 mg/L. There is also a small volume of mechanical equipment effluent being discharged to percolation pits, with a TDS range from 400 to 3,300 mg/L. The cooling towers and mechanical equipment are maintained and operated in a satisfactory manner. No major leaks were identified. Currently, there are no re-use options being employed. Several approaches known to reduce the blow down flow rate and/or TDS concentration being discharged to the percolation pits and septic systems were reviewed for technical feasibility and cost efficiency. These options range from efforts as simple as eliminating leaks to implementing advanced and innovative treatment methods. The various options considered, and their anticipated effect on water consumption, discharge volumes, and reduced concentrations are listed and compared in this report. Based on the assessment, it was recommended that there is enough variability in equipment usage, chemistry, flow rate, and discharge configurations that each discharge location at Site 300 should be

  15. Improvement to Air2Air Technology to Reduce Fresh-Water Evaporative Cooling Loss at Coal-Based Thermoelectric Power Plants

    SciTech Connect (OSTI)

    Ken Mortensen

    2011-12-31

    This program was undertaken to enhance the manufacturability, constructability, and cost of the Air2Air{TM} Water Conservation and Plume Abatement Cooling Tower, giving a validated cost basis and capability. Air2Air{TM} water conservation technology recovers a portion of the traditional cooling tower evaporate. The Condensing Module provides an air-to-air heat exchanger above the wet fill media, extracting the heat from the hot saturated moist air leaving in the cooling tower and condensing water. The rate of evaporate water recovery is typically 10% - 25% annually, depending on the cooling tower location (climate). This program improved the efficiency and cost of the Air2Air{TM} Water Conservation Cooling Tower capability, and led to the first commercial sale of the product, as described.

  16. Power Tower System Concentrating Solar Power Basics | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The cool heat-transfer fluid exiting the turbine flows into a steam condenser to be cooled and sent back up the tower to the receiver. In power tower concentrating solar power ...

  17. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1995-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  18. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1994-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode.

  19. Convection towers

    DOE Patents [OSTI]

    Prueitt, Melvin L.

    1996-01-01

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water.

  20. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1996-01-16

    Convection towers which are capable of cleaning the pollution from large quantities of air, of generating electricity, and of producing fresh water utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity, and condensers produce fresh water. 6 figs.

  1. Convection towers

    DOE Patents [OSTI]

    Prueitt, M.L.

    1994-02-08

    Convection towers which are capable of cleaning the pollution from large quantities of air and of generating electricity utilize the evaporation of water sprayed into the towers to create strong airflows and to remove pollution from the air. Turbines in tunnels at the skirt section of the towers generate electricity. Other embodiments may also provide fresh water, and operate in an updraft mode. 5 figures.

  2. SunTower Power Tower and Receiver

    Broader source: Energy.gov [DOE]

    This photograph shows a Sierra SunTower power tower, one of two towers at eSolar’s 5 megawatt (MW) commercial CSP plant in Lancaster, California.

  3. Fill fouling experiences on both mechanical and natural draft towers

    SciTech Connect (OSTI)

    Fraze, R.O. )

    1992-01-01

    Fouling of the film fill in cooling towers is becoming an increasingly serious problem in the Utility Industry. This paper discusses Florida Power Corporation's experience with fouling of film type fill in two mechanical draft and two natural draft towers. The two mechanical draft towers were placed in service as helper towers at the Anclote Plant in 1981. The two natural draft towers went into service at the Crystal River North Site in 1982 and 1984 for closed cycle cooling. All the towers are on salt water systems.

  4. Cooling Towers: Understanding Key Components of Cooling Towers...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Introduction Federal laws and regulations require Federal agencies to reduce water use and improve water effciency. Namely, Executive Order 13514 Federal Leadership in ...

  5. Water Managment: The Dynamic Challenges of Evaporative Cooling...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    As water flows over the tower, heat picked up by the process is released by evaporation. The cooling water then returns to the heat exchangers to pick up more heat. Cooling Tower ...

  6. Energy penalty analysis of possible cooling water intake structurerequirements on existing coal-fired power plants.

    SciTech Connect (OSTI)

    Veil, J. A.; Littleton, D. J.; Gross, R. W.; Smith, D. N.; Parsons, E.L., Jr.; Shelton, W. W.; Feeley, T. J.; McGurl, G. V.

    2006-11-27

    Section 316(b) of the Clean Water Act requires that cooling water intake structures must reflect the best technology available for minimizing adverse environmental impact. Many existing power plants in the United States utilize once-through cooling systems to condense steam. Once-through systems withdraw large volumes (often hundreds of millions of gallons per day) of water from surface water bodies. As the water is withdrawn, fish and other aquatic organisms can be trapped against the screens or other parts of the intake structure (impingement) or if small enough, can pass through the intake structure and be transported through the cooling system to the condenser (entrainment). Both of these processes can injure or kill the organisms. EPA adopted 316(b) regulations for new facilities (Phase I) on December 18, 2001. Under the final rule, most new facilities could be expected to install recirculating cooling systems, primarily wet cooling towers. The EPA Administrator signed proposed 316(b) regulations for existing facilities (Phase II) on February 28, 2002. The lead option in this proposal would allow most existing facilities to achieve compliance without requiring them to convert once-through cooling systems to recirculating systems. However, one of the alternate options being proposed would require recirculating cooling in selected plants. EPA is considering various options to determine best technology available. Among the options under consideration are wet-cooling towers and dry-cooling towers. Both types of towers are considered to be part of recirculating cooling systems, in which the cooling water is continuously recycled from the condenser, where it absorbs heat by cooling and condensing steam, to the tower, where it rejects heat to the atmosphere before returning to the condenser. Some water is lost to evaporation (wet tower only) and other water is removed from the recirculating system as a blow down stream to control the building up of suspended and

  7. Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power Power Tower Power Tower DOE funds solar research and development (R&D) in power tower (central receiver) systems as one of four concentrating solar ...

  8. Armor Tower, Inc.

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Mr. Edward Rosenbloom Chief Executive Officer Armor Tower, Inc. P.O. Box 49779 Charlotte, North Carolina 28277 WEL-2015-06 Dear Mr. Rosenbloom: The Office of Enterprise Assessments' Office of Enforcement has completed an investigation into an electrical shock incident involving an Armor Tower, Inc. (Armor Tower) employee at the Brookhaven National Laboratory (BNL). Armor Tower is a second-tier subcontractor to Brookhaven Science Associates, LLC (BSA), which is the Department of Energy's (DOE)

  9. Best Management Practice #9: Single-Pass Cooling Equipment |...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    degreasers, hydraulic equipment, condensers, air compressors, welding machines, vacuum ... Installation of a chiller and cooling tower or an air-cooled chiller may also be an ...

  10. Solar power tower

    SciTech Connect (OSTI)

    None, None

    2009-01-18

    The solar power tower section of the Renewable Energy Technology Characterizations describes the technical and economic status of this emerging renewable energy option for electricity supply.

  11. Report on Preliminary Engineering Study for Installation of an Air Cooled Steam Condenser at Brawley Geothermal Plant, Unit No. 1

    SciTech Connect (OSTI)

    1982-03-01

    The Brawley Geothermal Project comprises a single 10 MW nominal geothermal steam turbine-generator unit which has been constructed and operated by the Southern California Edison Company (SCE). Geothermal steam for the unit is supplied through contract by Union Oil Company which requires the return of all condensate. Irrigation District (IID) purchases the electric power generated and provides irrigation water for cooling tower make-up to the plant for the first-five years of operation, commencing mid-1980. Because of the unavailability of irrigation water from IID in the future, SCE is investigating the application and installation of air cooled heat exchangers in conjunction with the existing wet (evaporative) cooling tower with make-up based on use of 180 gpm (nominal) of the geothermal condensate which may be made available by the steam supplier.

  12. Wind tower service lift

    DOE Patents [OSTI]

    Oliphant, David; Quilter, Jared; Andersen, Todd; Conroy, Thomas

    2011-09-13

    An apparatus used for maintaining a wind tower structure wherein the wind tower structure may have a plurality of legs and may be configured to support a wind turbine above the ground in a better position to interface with winds. The lift structure may be configured for carrying objects and have a guide system and drive system for mechanically communicating with a primary cable, rail or other first elongate member attached to the wind tower structure. The drive system and guide system may transmit forces that move the lift relative to the cable and thereby relative to the wind tower structure. A control interface may be included for controlling the amount and direction of the power into the guide system and drive system thereby causing the guide system and drive system to move the lift relative to said first elongate member such that said lift moves relative to said wind tower structure.

  13. Side Stream Filtration for Cooling Towers

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Colson iii Abbreviations and Acronyms ASHRAE American Society of Heating, ... ASHRAE Guideline 12- 2000 has basic treatment recommendations for control and prevention, ...

  14. Tower Camera Handbook

    SciTech Connect (OSTI)

    Moudry, D

    2005-01-01

    The tower camera in Barrow provides hourly images of ground surrounding the tower. These images may be used to determine fractional snow cover as winter arrives, for comparison with the albedo that can be calculated from downward-looking radiometers, as well as some indication of present weather. Similarly, during spring time, the camera images show the changes in the ground albedo as the snow melts. The tower images are saved in hourly intervals. In addition, two other cameras, the skydeck camera in Barrow and the piling camera in Atqasuk, show the current conditions at those sites.

  15. China Solar Tower Development | Open Energy Information

    Open Energy Info (EERE)

    Tower Development Jump to: navigation, search Name: China Solar Tower Development Place: China Sector: Solar Product: Joint venture for development of solar towers in China,...

  16. Composite Tower Solutions | Open Energy Information

    Open Energy Info (EERE)

    needs, including meteorological towers, weather towers, and data collection and instrumentation towers. Coordinates: 40.233765, -111.668509 Show Map Loading map......

  17. MULTI-TUBE POWER LEADS TOWER FOR BEPCII IR MAGNETS.

    SciTech Connect (OSTI)

    JIA,L.X.; ZHANG,X.B.; WANG,L.; WANG,T.H.; YAO,Z.L.

    2004-05-11

    A power lead tower containing the multi-tube power leads is designed and under fabrication for the superconducting IR quadrupole magnets in the Beijing Electron Position Collider Upgrade (BEPCII). The lead tower consists of six pairs of gas-cooled leads for seven superconducting coils at various operating currents. The power lead is designed in a modular fashion, which can be easily applied to suit different operating current. The end copper block of the tube lead has a large cold mass that provide a large time constant in case of cooling flow interruption. A novel cryogenic electrical isolator is used for the leads.

  18. Concentrating Solar Power Tower Technology

    Broader source: Energy.gov [DOE]

    In this b-roll, solar power towers' are systems that use an array of mirrors to focus the sun's energy on a tower-mounted heat exchanger to generate electricity.

  19. Ice Thermal Storage Systems for LWR Supplemental Cooling and Peak Power Shifting

    SciTech Connect (OSTI)

    Haihua Zhao; Hongbin Zhang; Phil Sharpe; Blaise Hamanaka; Wei Yan; WoonSeong Jeong

    2010-06-01

    Availability of enough cooling water has been one of the major issues for the nuclear power plant site selection. Cooling water issues have frequently disrupted the normal operation at some nuclear power plants during heat waves and long draught. The issues become more severe due to the new round of nuclear power expansion and global warming. During hot summer days, cooling water leaving a power plant may become too hot to threaten aquatic life so that environmental regulations may force the plant to reduce power output or even temporarily to be shutdown. For new nuclear power plants to be built at areas without enough cooling water, dry cooling can be used to remove waste heat directly into the atmosphere. However, dry cooling will result in much lower thermal efficiency when the weather is hot. One potential solution for the above mentioned issues is to use ice thermal storage systems (ITS) that reduce cooling water requirements and boost the plant’s thermal efficiency in hot hours. ITS uses cheap off-peak electricity to make ice and uses those ice for supplemental cooling during peak demand time. ITS is suitable for supplemental cooling storage due to its very high energy storage density. ITS also provides a way to shift large amount of electricity from off peak time to peak time. Some gas turbine plants already use ITS to increase thermal efficiency during peak hours in summer. ITSs have also been widely used for building cooling to save energy cost. Among three cooling methods for LWR applications: once-through, wet cooling tower, and dry cooling tower, once-through cooling plants near a large water body like an ocean or a large lake and wet cooling plants can maintain the designed turbine backpressure (or condensation temperature) during 99% of the time; therefore, adding ITS to those plants will not generate large benefits. For once-through cooling plants near a limited water body like a river or a small lake, adding ITS can bring significant economic

  20. Power Towers for Utilities

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Towers for Utilities - Sandia Energy Energy Search Icon Sandia Home Locations Contact Us Employee Locator Energy & Climate Secure & Sustainable Energy Future Stationary Power Energy Conversion Efficiency Solar Energy Wind Energy Water Power Supercritical CO2 Geothermal Natural Gas Safety, Security & Resilience of the Energy Infrastructure Energy Storage Nuclear Power & Engineering Grid Modernization Battery Testing Nuclear Energy Defense Waste Management Programs Advanced Nuclear

  1. Concentrating Solar Power: Power Towers

    Office of Energy Efficiency and Renewable Energy (EERE)

    This video provides an overview of the principles, applications, and benefits of generating electricity using power towers, a concentrating solar power (CSP) technology. A brief animation explains...

  2. How to Build a Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Volunteers - Sign Up About Science Bowl Curriculum and Activities How to Build a Motor The Great Marble Drop How to Build a Turbine How to Build a Tower Classroom...

  3. Tower Temperature and Humidity Sensors (TWR) Handbook

    SciTech Connect (OSTI)

    Cook, DR

    2010-02-01

    Three tall towers are installed at the Atmospheric Radiation Measurement (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee forest site (E21), and a 40-meter triangular tower at the North Slope of Alaska (NSA) Barrow site. The towers are used for meteorological, radiological, and other measurements.

  4. Concentrating Solar Power Tower System Basics | Department of...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Tower System Basics Concentrating Solar Power Tower System Basics August 20, 2013 - 5:06pm Addthis In power tower concentrating solar power systems, numerous large, flat, ...

  5. SMUD Kokhala Power Tower Study

    SciTech Connect (OSTI)

    Price, Henry W.; Whitney, Daniel D.; Beebe, H.I.

    1997-06-01

    Kokhala is the name of a new hybridized power tower design which integrates a nitrate-salt solar power tower with a gas turbine combined-cycle power plant. This integration achieves high value energy, low costs, and lower investor risk than a conventional solar only power tower plant. One of the primary advantages of this system is that it makes small power tower plants much more economically competitive with conventional power generation technologies. This paper is an overview of a study that performed a conceptual evaluation of a small (30 MWe) commercial plant suitable for the Sacramento Municipal Utility District`s (SMUD) Rancho Seco power plant site near Sacramento, California. This paper discusses the motivation for using a small hybrid solar plant and provides an overview of the analysis methodology used in the study. The results indicate that a power tower integrated with an advanced gas turbine, combined with Sacramento`s summer solar resource, could produce a low- risk, economically viable power generation project in the near future.

  6. CSP Tower Air Brayton Combustor

    Broader source: Energy.gov [DOE]

    This fact sheet describes a concentrating solar power tower air Brayton combustor project awarded under the DOE's 2012 SunShot CSP R&D award program. The team, led by the Southwest Research Institute, is working to develop an external combustor that allows for the mixing of CSP-heated air with natural gas in hybridized power plants. This project aims to increase the temperature capabilities of the CSP tower air receiver and gas turbine to 1,000ºC and achieve energy conversion efficiencies greater than 50%.

  7. Evaluation of materials for systems using cooled, treated geothermal or high-saline brines

    SciTech Connect (OSTI)

    Suciu, D.F.; Wikoff, P.M.

    1982-09-01

    Lack of adequate quantities of clean surface water for use in wet (evaporative) cooling systems indicates the use of high-salinity waste waters, or cooled geothermal brines, for makeup purposes. High-chloride, aerated water represents an extremely corrosive environment. In order to determine metals suitable for use in such an environment, metal coupons were exposed to aerated, treated geothermal brine salted to a chloride concentration of 10,000 and 50,000 ppM (mg/L) for periods of up to 30 days. The exposed coupons were evaluated to determine the general, pitting, and crevice corrosion characteristics of the metals. The metals exhibiting corrosion resistance at 50,000 ppM chloride were then evaluated at 100,000 and 200,000 ppM chloride. Since these were screening tests to select materials for components to be used in a cooling system, with primary emphasis on condenser tubing, several materials were exposed for 4 to 10 months in pilot cooling tower test units with heat transfer for further corrosion evaluation. The results of the screening tests indicate that ferritic stainless steels (29-4-2 and SEA-CURE) exhibit excellent corrosion resistance at all levels of chloride concentration. Copper-nickel alloys (70/30 and Monel 400) exhibited excellent corrosion resistance in the high-saline water. The 70/30 copper-nickel alloy, which showed excellent resistance to general corrosion, exhibited mild pitting in the 30-day tests. This pitting was not apparent, however, after 6 months of exposure in the pilot cooling tower tests. The nickel-base alloys exhibited excellent corrosion resistance, but their high cost prevents their use unless no other material is found feasible. Other materials tested, although unsuitable for condenser tubing material, would be suitable as tube sheet material.

  8. The Tower Shielding Facility: Its glorious past

    SciTech Connect (OSTI)

    Muckenthaler, F.J.

    1997-05-07

    The Tower Shielding Facility (TSF) is the only reactor facility in the US that was designed and built for radiation-shielding studies in which both the reactor source and shield samples could be raised into the air to allow measurements to be made without interference from ground scattering or other spurious effects. The TSF proved its usefulness as many different programs were successfully completed. It became active in work for the Defense Atomic Support Agency (DASA) Space Nuclear Auxiliary Power, Defense Nuclear Agency, Liquid Metal Fast Breeder Reactor Program, the Gas-Cooled and High-Temperature Gas-Cooled Reactor programs, and the Japanese-American Shielding Program of Experimental Research, just to mention a few of the more extensive ones. The history of the TSF as presented in this report describes the various experiments that were performed using the different reactors. The experiments are categorized as to the programs which they supported and placed in corresponding chapters. The experiments are described in modest detail, along with their purpose when appropriate. Discussion of the results is minimal, but references are given to more extensive topical reports.

  9. Use of Produced Water in Recirculated Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    C. McGowin; M. DiFilippo; L. Weintraub

    2006-06-30

    Tree ring studies indicate that, for the greater part of the last three decades, New Mexico has been relatively 'wet' compared to the long-term historical norm. However, during the last several years, New Mexico has experienced a severe drought. Some researchers are predicting a return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters to supplement current fresh water supplies for power plant operation and cooling and other uses. The U.S. Department of Energy's National Energy Technology Laboratory sponsored three related assessments of water supplies in the San Juan Basin area of the four-corner intersection of Utah, Colorado, Arizona, and New Mexico. These were (1) an assessment of using water produced with oil and gas as a supplemental supply for the San Juan Generating Station (SJGS); (2) a field evaluation of the wet-surface air cooling (WSAC) system at SJGS; and (3) the development of a ZeroNet systems analysis module and an application of the Watershed Risk Management Framework (WARMF) to evaluate a range of water shortage management plans. The study of the possible use of produced water at SJGS showed that produce water must be treated to justify its use in any reasonable quantity at SJGS. The study identified produced water volume and quality, the infrastructure needed to deliver it to SJGS, treatment requirements, and delivery and treatment economics. A number of produced water treatment alternatives that use off-the-shelf technology were evaluated along with the equipment needed for water treatment at SJGS. Wet surface air-cooling (WSAC) technology was tested at the San Juan Generating Station (SJGS) to determine its capacity to cool power plant circulating water using degraded water. WSAC is a commercial cooling technology and has been used for many years to cool and/or condense process fluids. The purpose of the pilot test was to determine if WSAC

  10. Coagulation chemistries for silica removal from cooling tower...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Report Number(s): SAND2011-0800 TRN: US201109%%315 DOE Contract Number: AC04-94AL85000 Resource Type: Technical Report Research Org: Sandia National Laboratories Sponsoring Org: ...

  11. Best Management Practice #10: Cooling Tower Management | Department...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    The dissolved solids can also lead to corrosion problems. The concentration of dissolved ... increase, which can cause scale and corrosion problems unless carefully controlled. ...

  12. GreenTower | Open Energy Information

    Open Energy Info (EERE)

    Sector: Solar Product: Developer of a solar chimney technology, with greenhouses for food production. Hopes to deploy this in Namibia. References: GreenTower1 This article...

  13. ARM - Campaign Instrument - aerosol-tower-eml

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    (AEROSOL-TOWER-EML) Instrument Categories Aerosols Campaigns Remote Cloud Sensing (RCS) Field Evaluation Download Data Southern Great Plains, 1994.04.01 - 1994.05.31...

  14. Advanced low noise cooling fans

    SciTech Connect (OSTI)

    Spek, H.F. van der; Nelissen, P.J.M.

    1995-02-01

    The results from an intensive research program show that it is possible to reduce the sound power level of cooling fans by 15 dB(A) by altering blade cord width and swept leading and trailing edge lines. Combination with the reduction of the pressure drop can result in a step of 20 dB(A) and a reduction with 25 percent of the absorbed power. Testing was conducted in accordance with recognized international measuring standards and the results will be presented, including consequences for cooling tower and condenser design.

  15. Wind turbine tower for storing hydrogen and energy

    DOE Patents [OSTI]

    Fingersh, Lee Jay

    2008-12-30

    A wind turbine tower assembly for storing compressed gas such as hydrogen. The tower assembly includes a wind turbine having a rotor, a generator driven by the rotor, and a nacelle housing the generator. The tower assembly includes a foundation and a tubular tower with one end mounted to the foundation and another end attached to the nacelle. The tower includes an in-tower storage configured for storing a pressurized gas and defined at least in part by inner surfaces of the tower wall. In one embodiment, the tower wall is steel and has a circular cross section. The in-tower storage may be defined by first and second end caps welded to the inner surface of the tower wall or by an end cap near the top of the tower and by a sealing element attached to the tower wall adjacent the foundation, with the sealing element abutting the foundation.

  16. Tower Water-Vapor Mixing Ratio

    SciTech Connect (OSTI)

    Guastad, Krista; Riihimaki, Laura; none,

    2013-04-01

    The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added product (VAP) is to calculate water-vapor mixing ratio at the 25-meter and 60-meter levels of the meteorological tower at the Southern Great Plains (SGP) Central Facility.

  17. Enforcement Letter, Armor Tower, Inc. | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Armor Tower, Inc. Enforcement Letter, Armor Tower, Inc. December 4, 2015 Worker Safety and Health Enforcement Letter issued to Armor Tower, Inc. On December 4, 2015, the U.S. Department of Energy (DOE) Office of Enterprise Assessments' Office of Enforcement issued an Enforcement Letter (WEL-2015-06) to Armor Tower, Inc., relating to a worker electrical shock that occurred while working on a meteorological tower at DOE's Brookhaven National Laboratory. Enforcement Letter, Armor Tower, Inc.

  18. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More ...

  19. Tower Temperature and Humidity Sensors (TWR) Handbook (Technical...

    Office of Scientific and Technical Information (OSTI)

    (ARM) Climate Research Facility: a 60-meter triangular tower at the Southern Great Plains (SGP) Central Facility (CF), a 21-meter walkup scaffolding tower at the SGP Okmulgee ...

  20. Assessment of Parabolic Trough and Power Tower Solar Technology...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  1. Executive Summary: Assessment of Parabolic Trough and Power Tower...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ... of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts ...

  2. Ewiiaapaayp Band of Kumeyaay Indians - Wind Meteorological Tower...

    Office of Environmental Management (EM)

    Band of Kumeyaay Indians Meteorlogical Tower Deployment and Data Measurement and Analysis ... from the previously collected raw wind data and correlations among the towers show: * ...

  3. Cool Roofs

    Energy Savers [EERE]

    ... Selecting cool roof type that retains better surface properties can give better lifetime energy savings for the cool roof. For the metal roof, these metal roofs have better ...

  4. Use of Produced Water in Recirculating Cooling Systems at Power Generating Facilities

    SciTech Connect (OSTI)

    Kent Zammit; Michael N. DiFilippo

    2005-07-01

    The purpose of this study is to evaluate produced water as a supplemental source of water for the San Juan Generating Station (SJGS). This study incorporates elements that identify produced water volume and quality, infrastructure to deliver it to SJGS, treatment requirements to use it at the plant, delivery and treatment economics, etc. SJGS, which is operated by Public Service of New Mexico (PNM) is located about 15 miles northwest of Farmington, New Mexico. It has four units with a total generating capacity of about 1,800 MW. The plant uses 22,400 acre-feet of water per year from the San Juan River with most of its demand resulting from cooling tower make-up. The plant is a zero liquid discharge facility and, as such, is well practiced in efficient water use and reuse. For the past few years, New Mexico has been suffering from a severe drought. Climate researchers are predicting the return of very dry weather over the next 30 to 40 years. Concern over the drought has spurred interest in evaluating the use of otherwise unusable saline waters. This deliverable describes possible test configurations for produced water demonstration projects at SJGS. The ability to host demonstration projects would enable the testing and advancement of promising produced water treatment technologies. Testing is described for two scenarios: Scenario 1--PNM builds a produced water treatment system at SJGS and incorporates planned and future demonstration projects into the design of the system. Scenario 2--PNM forestalls or decides not to install a produced water treatment system and would either conduct limited testing at SJGS (produced water would have to be delivered by tanker trucked) or at a salt water disposal facility (SWD). Each scenario would accommodate demonstration projects differently and these differences are discussed in this deliverable. PNM will host a demonstration test of water-conserving cooling technology--Wet Surface Air Cooling (WSAC) using cooling tower blowdown

  5. American Tower Company | Open Energy Information

    Open Energy Info (EERE)

    Company Jump to: navigation, search Name: American Tower Company Address: P.O. Box 29 Place: Shelby, Ohio Zip: 44875 Sector: Wind energy Product: Agriculture;Business and legal...

  6. Liquid cooled counter flow turbine bucket

    DOE Patents [OSTI]

    Dakin, James T.

    1982-09-21

    Means and a method are provided whereby liquid coolant flows radially outward through coolant passages in a liquid cooled turbine bucket under the influence of centrifugal force while in contact with countercurrently flowing coolant vapor such that liquid is entrained in the flow of vapor resulting in an increase in the wetted cooling area of the individual passages.

  7. Concentrating Solar Power Projects - Power Tower Projects | Concentrating

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power | NREL Power Tower Projects Aerial photo of a power tower system, showing numerous large, reflective mirrors in concentric circular rows. Tracking the sun, each mirror reflects onto the top of the tower at the center of the circle of mirrors. The receiver at the top of the tower is glowing. Stretched-membrane heliostats with silvered polymer reflectors surround the Solar Two power tower in Daggett, California. Credit: Sandia National Laboratories / PIX 00036 Concentrating solar

  8. Seismic response of offshore guyed towers

    SciTech Connect (OSTI)

    Jain, A.K.; Bisht, R.S.

    1993-12-31

    Seismic stresses in the offshore Guyed Tower assumes importance because of its flexural modes having smaller periods (in the range of 1 to 3 sec), which may attract considerable seismic forces. Since the displacement of the offshore Guyed Tower is generally guided by the rigid body mode corresponding to the fundamental period which lies between 20 to 40 sec., seismic excitation is relatively unimportant in relation to the towers` overall displacement behavior. The response of offshore Guyed Tower to ransom ground motion (E1 Centro earthquake, 1940) is investigated. The guyed tower is modeled as a uniform shear beam with a rotational spring at the base of the tower. The guylines are represented by a linearized spring whose force-excursion relationship is derived from a separate static analysis of the guylines. The dynamic equation of motion duly takes into account the pressure-drag effect produced due to fluid-structure interaction. The response is obtained in tim- domain using Newmark`s {beta} Time Integration Scheme.

  9. ON THE STRUCTURE AND STABILITY OF MAGNETIC TOWER JETS

    SciTech Connect (OSTI)

    Huarte-Espinosa, M.; Frank, A.; Blackman, E. G.; Ciardi, A.; Hartigan, P.; Lebedev, S. V.; Chittenden, J. P.

    2012-09-20

    Modern theoretical models of astrophysical jets combine accretion, rotation, and magnetic fields to launch and collimate supersonic flows from a central source. Near the source, magnetic field strengths must be large enough to collimate the jet requiring that the Poynting flux exceeds the kinetic energy flux. The extent to which the Poynting flux dominates kinetic energy flux at large distances from the engine distinguishes two classes of models. In magneto-centrifugal launch models, magnetic fields dominate only at scales {approx}< 100 engine radii, after which the jets become hydrodynamically dominated (HD). By contrast, in Poynting flux dominated (PFD) magnetic tower models, the field dominates even out to much larger scales. To compare the large distance propagation differences of these two paradigms, we perform three-dimensional ideal magnetohydrodynamic adaptive mesh refinement simulations of both HD and PFD stellar jets formed via the same energy flux. We also compare how thermal energy losses and rotation of the jet base affects the stability in these jets. For the conditions described, we show that PFD and HD exhibit observationally distinguishable features: PFD jets are lighter, slower, and less stable than HD jets. Unlike HD jets, PFD jets develop current-driven instabilities that are exacerbated as cooling and rotation increase, resulting in jets that are clumpier than those in the HD limit. Our PFD jet simulations also resemble the magnetic towers that have been recently created in laboratory astrophysical jet experiments.

  10. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    ARM: Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  11. ARM: Three Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Three Meter Tower: video camera Citation Details In-Document Search Title: ARM: Three Meter Tower: video camera Three Meter Tower: video camera Authors: Scott Smith ; Martin...

  12. ARM: Forty Meter Tower: video camera (Dataset) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Forty Meter Tower: video camera Citation Details In-Document Search Title: ARM: Forty Meter Tower: video camera Forty Meter Tower: video camera Authors: Scott Smith ; Martin...

  13. Phase Change Material Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Phase Change Material Tower Phase Change Material Tower This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_erickson.pdf (1.04 MB) More Documents & Publications Direct s-CO2 Reciever Development High-Efficiency Low-Cost Solar Receiver for Use in a Supercritical CO2 Recompression Cycle - FY13 Q1 2014 SunShot Initiative Peer Review Report

  14. Lifting system and apparatus for constructing wind turbine towers

    DOE Patents [OSTI]

    Livingston, Tracy; Schrader, Terry; Goldhardt, James; Lott, James

    2011-02-01

    The disclosed invention is utilized for mounting a wind turbine and blade assembly on the upper end of a wind turbine tower. The invention generally includes a frame or truss that is pivotally secured to the top bay assembly of the tower. A transverse beam is connected to the frame or truss and extends fore of the tower when the frame or truss is in a first position and generally above the tower when in a second position. When in the first position, a wind turbine or blade assembly can be hoisted to the top of the tower. The wind turbine or blade assembly is then moved into position for mounting to the tower as the frame or truss is pivoted to a second position. When the turbine and blade assembly are secured to the tower, the frame or truss is disconnected from the tower and lowered to the ground.

  15. Utility-Scale Power Tower Solar Systems: Performance Acceptance...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Utility-Scale Power Tower Solar Systems: Performance Acceptance Test Guidelines David ... DE-AC36-08GO28308 Utility-Scale Power Tower Solar Systems: Performance Acceptance Test ...

  16. Project Profile: Brayton Cycle Baseload Power Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cycle Baseload Power Tower Project Profile: Brayton Cycle Baseload Power Tower Wilson logo Wilson Solarpower, under the Baseload CSP FOA, proposed a utility-scale, Brayton cycle baseload power tower system with a capacity factor of at least 75% and LCOE of $0.09/kWh. Approach Photo of a tower in the background with slanted panels connected by a wire in the foreground. Wilson developed, built, tested, and evaluated two prototype components-an unpressurized thermal storage system and an

  17. New North Dakota Factory to Produce Wind Towers, Jobs

    Broader source: Energy.gov [DOE]

    Wind tower factory could bring back some of the jobs lost when a machine manufacturing plant closed.

  18. Boise Air Traffic Control Tower: High Performance and sustainable Building Guiding Principles Technical Assistance

    SciTech Connect (OSTI)

    Fowler, Kimberly M.; Goel, Supriya; Henderson, Jordan W.

    2013-09-01

    Overview of energy efficiency opportunities for new FAA tower construction using the Boise Air Traffic Control Tower as an example.

  19. Concentrating Solar Power Tower Plant Illustration

    Office of Energy Efficiency and Renewable Energy (EERE)

    This graphic illustrates numerous large, flat, sun-tracking mirrors, known as heliostats, that focus sunlight onto a receiver at the top of a tower. A heat-transfer fluid heated in the receiver is used to generate steam, which, in turn, is used in a conventional turbine generator to produce electricity.

  20. WET SOLIDS FLOW ENHANCEMENT

    SciTech Connect (OSTI)

    Unknown

    2001-03-25

    The yield locus, tensile strength and fracture mechanisms of wet granular materials were studied. The yield locus of a wet material was shifted to the left of that of the dry specimen by a constant value equal to the compressive isostatic stress due to pendular bridges. for materials with straight yield loci, the shift was computed from the uniaxial tensile strength, either measured in a tensile strength tester or calculated from the correlation, and the angle of internal friction of the material. The predicted shift in the yield loci due to different moisture contents compare well with the measured shift in the yield loci of glass beads, crushed limestone, super D catalyst and Leslie coal. Measurement of the void fraction during the shear testing was critical to obtain the correct tensile strength theoretically or experimentally.

  1. Cooled railplug

    DOE Patents [OSTI]

    Weldon, William F.

    1996-01-01

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers.

  2. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, L.C.; Simpson, M.L.

    1995-01-17

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically. 4 figures.

  3. Optical wet steam monitor

    DOE Patents [OSTI]

    Maxey, Lonnie C.; Simpson, Marc L.

    1995-01-01

    A wet steam monitor determines steam particle size by using laser doppler velocimeter (LDV) device to produce backscatter light. The backscatter light signal is processed with a spectrum analyzer to produce a visibility waveform in the frequency domain. The visibility waveform includes a primary peak and a plurality of sidebands. The bandwidth of at least the primary frequency peak is correlated to particle size by either visually comparing the bandwidth to those of known particle sizes, or by digitizing the waveform and comparing the waveforms electronically.

  4. Cooled railplug

    DOE Patents [OSTI]

    Weldon, W.F.

    1996-05-07

    The railplug is a plasma ignitor capable of injecting a high energy plasma jet into a combustion chamber of an internal combustion engine or continuous combustion system. An improved railplug is provided which has dual coaxial chambers (either internal or external to the center electrode) that provide for forced convective cooling of the electrodes using the normal pressure changes occurring in an internal combustion engine. This convective cooling reduces the temperature of the hot spot associated with the plasma initiation point, particularly in coaxial railplug configurations, and extends the useful life of the railplug. The convective cooling technique may also be employed in a railplug having parallel dual rails using dual, coaxial chambers. 10 figs.

  5. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM)

    SciTech Connect (OSTI)

    Turchi, C. S.; Heath, G. A.

    2013-02-01

    This report describes a component-based cost model developed for molten-salt power tower solar power plants. The cost model was developed by the National Renewable Energy Laboratory (NREL), using data from several prior studies, including a contracted analysis from WorleyParsons Group, which is included herein as an Appendix. The WorleyParsons' analysis also estimated material composition and mass for the plant to facilitate a life cycle analysis of the molten salt power tower technology. Details of the life cycle assessment have been published elsewhere. The cost model provides a reference plant that interfaces with NREL's System Advisor Model or SAM. The reference plant assumes a nominal 100-MWe (net) power tower running with a nitrate salt heat transfer fluid (HTF). Thermal energy storage is provided by direct storage of the HTF in a two-tank system. The design assumes dry-cooling. The model includes a spreadsheet that interfaces with SAM via the Excel Exchange option in SAM. The spreadsheet allows users to estimate the costs of different-size plants and to take into account changes in commodity prices. This report and the accompanying Excel spreadsheet can be downloaded at https://sam.nrel.gov/cost.

  6. High-Temperatuer Solar Selective Coating Development for Power Tower

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Receivers | Department of Energy High-Temperatuer Solar Selective Coating Development for Power Tower Receivers High-Temperatuer Solar Selective Coating Development for Power Tower Receivers This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 23-25, 2013 near Phoenix, Arizona. csp_review_meeting_042413_ambrosini.pdf (3.05 MB) More Documents & Publications High-Temperature Solar Selective Coating Development for Power Tower

  7. Project Profile: Solar Power Tower Improvements with the Potential to

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Reduce Costs | Department of Energy Concentrating Solar Power » Project Profile: Solar Power Tower Improvements with the Potential to Reduce Costs Project Profile: Solar Power Tower Improvements with the Potential to Reduce Costs Pratt Whitney Rocketdyne logo Pratt & Whitney Rocketdyne, under the Baseload CSP FOA, designed and tested several components of a molten salt solar power tower that is in line with SunShot Initiative cost targets. Approach Receiver test panel design

  8. Integrated Layout and Optimization Tool for Solar Power Towers |

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Concentrating Solar Power | NREL Integrated Layout and Optimization Tool for Solar Power Towers The Solar Power Tower Integrated Layout and Optimization Tool (SolarPILOT(tm)) generates and characterizes power tower (central receiver) systems. This software was developed by the National Renewable Energy Laboratory (NREL). SolarPILOT consists of a graphical user interface (GUI) and an application programming interface (API) through which external programs can access SolarPILOT's functionality.

  9. Building a Better Transmission Tower | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    a Better Transmission Tower Building a Better Transmission Tower May 20, 2011 - 9:41am Addthis A helicopter hoists platforms for linemen during the construction of this single-circuit 500-kilovolt tower – one of hundreds on the McNary-John Day line saving BPA big bucks. | Photo courtesy of Bonneville Power Administration A helicopter hoists platforms for linemen during the construction of this single-circuit 500-kilovolt tower - one of hundreds on the McNary-John Day line saving BPA big

  10. Upcoming Funding Opportunity for Tower Manufacturing and Installation...

    Energy Savers [EERE]

    and Lower Cost of Energy" intends to support partnerships that lead to innovative designs and processes for wind turbine tower manufacturing and turbine system installation. ...

  11. NASA's Solar Tower Test of the 1-Meter Aeroshell

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    NASA's Solar Tower Test of the 1-Meter Aeroshell - Sandia Energy Energy Search Icon Sandia ... Applications National Solar Thermal Test Facility Nuclear Energy Systems ...

  12. Don Ana Sun Tower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    Don Ana Sun Tower Sector Solar Facility Type Concentrating Solar Power Developer NRG EnergyeSolar Location Dona Ana County, New Mexico Coordinates 32.485767,...

  13. Solar Power Tower Integrated Layout and Optimization Tool Background...

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Solar Power Tower Integrated Layout and Optimization Tool Background SolarPILOT(tm) offers several unique capabilities compared to other software tools. Unlike exclusively ...

  14. A model for radionuclide transport in the Cooling Water System

    SciTech Connect (OSTI)

    Kahook, S.D.

    1992-08-01

    A radionuclide transport model developed to assess radiological levels in the K-reactor Cooling Water System (CWS) in the event of an inadvertent process water (PW) leakage to the cooling water (CW) in the heat exchangers (HX) is described. During and following a process water leak, the radionuclide transport model determines the time-dependent release rates of radionuclide from the cooling water system to the environment via evaporation to the atmosphere and blow-down to the Savannah River. The developed model allows for delay times associated with the transport of the cooling water radioactivity through cooling water system components. Additionally, this model simulates the time-dependent behavior of radionuclides levels in various CWS components. The developed model is incorporated into the K-reactor Cooling Tower Activity (KCTA) code. KCTA allows the accident (heat exchanger leak rate) and the cooling tower blow-down and evaporation rates to be described as time-dependent functions. Thus, the postulated leak and the consequence of the assumed leak can be modelled realistically. This model is the first of three models to be ultimately assembled to form a comprehensive Liquid Pathway Activity System (LPAS). LPAS will offer integrated formation, transport, deposition, and release estimates for radionuclides formed in a SRS facility. Process water and river water modules are forthcoming as input and downstream components, respectively, for KCTA.

  15. Meteorological Towers Display for Windows NT

    Energy Science and Technology Software Center (OSTI)

    1999-05-20

    The Towers Display Program provides a convenient means of graphically depicting current wind speed and direction from a network of meteorological monitoring stations. The program was designed primarily for emergency response applications and, therefore, plots observed wind directions as a transport direction, i.e., the direction toward which the wind would transport a release of an atmospheric contaminant. Tabular summaries of wind speed and direction as well as temperature, relative humidity, and atmospheric turbulence measured atmore » each monitoring station can be displayed. The current implementation of the product at SRS displays data from eight Weather INformation and Display (WIND) System meteorological towers at SRS, meteorological stations established jointly by SRS/WSRC and the Augusta/Richmond County Emergency Management Agency in Augusta, GA, and National Weather Service stations in Augusta, GA. Wind speed and direction are plotted in a Beaufort scale format at the location of the station on a geographic map of the area. A GUI provides for easy specification of a desired date and time for the data to be displayed.« less

  16. Does surface roughness amplify wetting?

    SciTech Connect (OSTI)

    Malijevský, Alexandr

    2014-11-14

    Any solid surface is intrinsically rough on the microscopic scale. In this paper, we study the effect of this roughness on the wetting properties of hydrophilic substrates. Macroscopic arguments, such as those leading to the well-known Wenzel's law, predict that surface roughness should amplify the wetting properties of such adsorbents. We use a fundamental measure density functional theory to demonstrate the opposite effect from roughness for microscopically corrugated surfaces, i.e., wetting is hindered. Based on three independent analyses we show that microscopic surface corrugation increases the wetting temperature or even makes the surface hydrophobic. Since for macroscopically corrugated surfaces the solid texture does indeed amplify wetting there must exist a crossover between two length-scale regimes that are distinguished by opposite response on surface roughening. This demonstrates how deceptive can be efforts to extend the thermodynamical laws beyond their macroscopic territory.

  17. Tower Water-Vapor Mixing Ratio (Technical Report) | SciTech Connect

    Office of Scientific and Technical Information (OSTI)

    Tower Water-Vapor Mixing Ratio Citation Details In-Document Search Title: Tower Water-Vapor Mixing Ratio The purpose of the Tower Water-Vapor Mixing Ratio (TWRMR) value-added ...

  18. Keeping California cool: Recent cool community developments ...

    Office of Scientific and Technical Information (OSTI)

    Keeping California cool: Recent cool community developments Citation Details In-Document Search This content will become publicly available on September 6, 2017 Title: Keeping ...

  19. DOE Science Showcase - Cool roofs, cool research, at DOE | OSTI...

    Office of Scientific and Technical Information (OSTI)

    Cool roofs, cool research, at DOE Science Accelerator returns cool roof documents from 6 ... for Selecting Cool Roofs DOE Cool Roof Calculator Visit the Science Showcase homepage.

  20. REACTOR COOLING

    DOE Patents [OSTI]

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  1. FULL-SCALE TESTING OF ENHANCED MERCURY CONTROL TECHNOLOGIES FOR WET FGD SYSTEMS

    SciTech Connect (OSTI)

    D.K. McDonald; G.T. Amrhein; G.A. Kudlac; D. Madden Yurchison

    2003-05-07

    Wet flue gas desulfurization (wet FGD) systems are currently installed on about 25% of the coal-fired utility generating capacity in the U.S., representing about 15% of the number of coal-fired units. Depending on the effect of operating parameters such as mercury content of the coal, form of mercury (elemental or oxidized) in the flue gas, scrubber spray tower configuration, liquid-to-gas ratio, and slurry chemistry, FGD systems can provide cost-effective, near-term mercury emissions control options with a proven history of commercial operation. For boilers already equipped with FGD systems, the incremental cost of any vapor phase mercury removal achieved is minimal. To be widely accepted and implemented, technical approaches that improve mercury removal performance for wet FGD systems should also have low incremental costs and have little or no impact on operation and SO{sub 2} removal performance. The ultimate goal of the Full-scale Testing of Enhanced Mercury Control for Wet FGD Systems Program was to commercialize methods for the control of mercury in coal-fired electric utility systems equipped with wet flue gas desulfurization (wet FGD). The program was funded by the U.S. Department of Energy's National Energy Technology Laboratory, the Ohio Coal Development Office within the Ohio Department of Development, and Babcock & Wilcox. Host sites and associated support were provided by Michigan South Central Power Agency (MSCPA) and Cinergy. Field-testing was completed at two commercial coal-fired utilities with wet FGD systems: (1) MSCPA's 55 MW{sub e} Endicott Station and (2) Cinergy's 1300 MW{sub e} Zimmer Station. Testing was conducted at these two locations because of the large differences in size and wet scrubber chemistry. Endicott employs a limestone, forced oxidation (LSFO) wet FGD system, whereas Zimmer uses Thiosorbic{reg_sign} Lime (magnesium enhanced lime) and ex situ oxidation. Both locations burn Ohio bituminous coal.

  2. Conversion Tower for Dispatchable Solar Power: High-Efficiency Solar-Electric Conversion Power Tower

    SciTech Connect (OSTI)

    2012-01-11

    HEATS Project: Abengoa Solar is developing a high-efficiency solar-electric conversion tower to enable low-cost, fully dispatchable solar energy generation. Abengoa’s conversion tower utilizes new system architecture and a two-phase thermal energy storage media with an efficient supercritical carbon dioxide (CO2) power cycle. The company is using a high-temperature heat-transfer fluid with a phase change in between its hot and cold operating temperature. The fluid serves as a heat storage material and is cheaper and more efficient than conventional heat-storage materials, like molten salt. It also allows the use of a high heat flux solar receiver, advanced high thermal energy density storage, and more efficient power cycles.

  3. AmeriFlux US-Skr Shark River Slough (Tower SRS-6) Everglades

    DOE Data Explorer [Office of Scientific and Technical Information (OSTI)]

    Barr, Jordan G. [Everglades National Park; Fuentes, Jose [Pennsylvania State University

    2016-01-01

    This is the AmeriFlux version of the carbon flux data for the site US-Skr Shark River Slough (Tower SRS-6) Everglades. Site Description - The Florida Everglades Shark River Slough Mangrove Forest site is located along the Shark River in the western region of Everglades National Park. Also referred to as site SRS6 of the Florida Coastal Everglades LTER program, freshwater in the mangrove riverine floods the forest floor under a meter of water twice per day. Transgressive discharge of freshwater from the Shark river follows annual rainfall distributions between the wet and dry seasons. Hurricane Wilma struck the site in October of 2005 causing significant damage. The tower was offline until the following October in order to continue temporally consistent measurements. In post-hurricane conditions, ecosystem respiration rates and solar irradiance transfer increased. 2007- 2008 measurements indicate that these factors led to an decline in both annual -NEE and daily NEE from pre-hurricane conditions in 2004-2005.

  4. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Quang A.

    1998-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards of downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  5. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Quang A.

    1999-01-01

    An apparatus for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets.

  6. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Q.A.

    1998-03-31

    An apparatus is disclosed for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material. The apparatus consists of a tower bioreactor which has mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  7. Tower reactors for bioconversion of lignocellulosic material

    DOE Patents [OSTI]

    Nguyen, Q.A.

    1999-03-30

    An apparatus is described for enzymatic hydrolysis and fermentation of pretreated lignocellulosic material, in the form of a tower bioreactor, having mixers to achieve intermittent mixing of the material. Precise mixing of the material is important for effective heat and mass transfer requirements without damaging or denaturing the enzymes or fermenting microorganisms. The pretreated material, generally in the form of a slurry, is pumped through the bioreactor, either upwards or downwards, and is mixed periodically as it passes through the mixing zones where the mixers are located. For a thin slurry, alternate mixing can be achieved by a pumping loop which also serves as a heat transfer device. Additional heat transfer takes place through the reactor heat transfer jackets. 5 figs.

  8. Hydrothermal Processing of Wet Wastes

    Broader source: Energy.gov [DOE]

    Breakout Session 3A—Conversion Technologies III: Energy from Our Waste—Will we Be Rich in Fuel or Knee Deep in Trash by 2025? Hydrothermal Processing of Wet Wastes James R. Oyler, President, Genifuel Corporation

  9. Power Tower Technology Roadmap and cost reduction plan.

    SciTech Connect (OSTI)

    Mancini, Thomas R.; Gary, Jesse A.; Kolb, Gregory J.; Ho, Clifford Kuofei

    2011-04-01

    Concentrating solar power (CSP) technologies continue to mature and are being deployed worldwide. Power towers will likely play an essential role in the future development of CSP due to their potential to provide dispatchable solar electricity at a low cost. This Power Tower Technology Roadmap has been developed by the U.S. Department of Energy (DOE) to describe the current technology, the improvement opportunities that exist for the technology, and the specific activities needed to reach the DOE programmatic target of providing competitively-priced electricity in the intermediate and baseload power markets by 2020. As a first step in developing this roadmap, a Power Tower Roadmap Workshop that included the tower industry, national laboratories, and DOE was held in March 2010. A number of technology improvement opportunities (TIOs) were identified at this workshop and separated into four categories associated with power tower subsystems: solar collector field, solar receiver, thermal energy storage, and power block/balance of plant. In this roadmap, the TIOs associated with power tower technologies are identified along with their respective impacts on the cost of delivered electricity. In addition, development timelines and estimated budgets to achieve cost reduction goals are presented. The roadmap does not present a single path for achieving these goals, but rather provides a process for evaluating a set of options from which DOE and industry can select to accelerate power tower R&D, cost reductions, and commercial deployment.

  10. DOE - NNSA/NFO -- News & Views Bren Tower

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    At 1,527 Feet, BREN Tower Dominates Nevada National Security Site Skyline Photo - 1,527-foot BREN Tower The BREN Tower 1,527 feet tall, has been a focal point of attention ever since it was erected on the Nevada National Security Site in 1962. During its 30 years, it has been part of the Yucca and Jackass Flat skylines, and a platform for two important experiments --Bare Reactor Experiment, Nevada (BREN), and the High Energy Neutron Reactions Experiment (HENRE). It was built by the Dresser-Ideco

  11. Solar heating and cooling system installed at RKL Controls Company, Lumberton, New Jersey. Final report

    SciTech Connect (OSTI)

    1981-03-01

    Solar heating and cooling of a 40,000 square foot manufacturing building, sales offices and the solar computer control center/display room are described. Information on system description, test data, major problems and resolutions, performance, operation and maintenance manual, manufacturer's literature and as-built drawings are provided also. The solar system is composed of 6000 square feet of Sunworks double glazed flat plate collectors, external above ground storage subsystem, controls, ARKLA absorption chiller, heat recovery and a cooling tower.

  12. CDX 4608, Guard Tower Power and Fiber Reroute (4608)

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Guard Tower Power and Fiber Reroute (4608) Y-12 Site Office Oak Ridge, Anderson County, Tennessee The proposed action is to design and re-route power and fiber to 9949-AR (Guard...

  13. Exxon's guyed tower nears load-out date

    SciTech Connect (OSTI)

    Glasscock, M.S.; Finn, L.D.

    1983-04-01

    Exxon's Lena guyed tower, installed in 1,000ft. water in the Gulf of Mexico, is discussed. The Lena tower is designed to move in response to wave forces rather than resist them rigidly, as is the case with conventional platforms. Selection of tower components to satisfy requirements resulted in a complex geometry which presented design challenges. Buoyancy will serve as a stabilizing force for the tower by adding to the restoring force of the guying system. Flexible J-tube pipeline risers were developed to avoid excessive stresses in the pipelines and J-tube pipelines and J-tubes at the mudline. Exxon's Lena platform is to-date in the second deepest water in the world, and at 1,305 ft total height, is the tallest.

  14. Alpine SunTower Solar Power Plant | Open Energy Information

    Open Energy Info (EERE)

    www.renewableenergyfocus.comview2513pge-and-nrg-energy-collaborate-on-92-mw-solar-thermal-power Retrieved from "http:en.openei.orgwindex.php?titleAlpineSunTowerSola...

  15. Flow Distortion Study Completed for the Chesapeake Light Tower...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    With the light tower similar in profile to offshore oil platforms, one concern was whether its bulky cross section would disturb the wind blowing around it so that measurements on ...

  16. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650C to 1000C. Selective efficiency (?sel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ?sel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000C in environments of nitrogen and forming gas.

  17. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from themore » receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.« less

  18. High temperature performance of high-efficiency, multi-layer solar selective coatings for tower applications

    SciTech Connect (OSTI)

    Gray, M. H.; Tirawat, R.; Kessinger, K. A.; Ndione, P. F.

    2015-05-01

    The roadmap to next-generation concentrating solar power plants anticipates a progression to central towers with operating temperatures in excess of 650°C. These higher temperatures are required to drive higher power-cycle efficiencies, resulting in lower cost energy. However, these conditions also place a greater burden on the materials making up the receiver. Any novel absorber material developed for next-generation receivers must be stable in air, cost effective, and survive thousands of heating and cooling cycles. The collection efficiency of a power tower plant can be increased if the energy absorbed by the receiver is maximized while the heat loss from the receiver to the environment is minimized. Thermal radiation losses can be significant (>7% annual energy loss) with receivers at temperatures above 650°C. We present progress toward highly efficient and durable solar selective absorbers (SSAs) intended for operating temperatures from 650°C to 1000°C. Selective efficiency (ηsel) is defined as the energy retained by the absorber, accounting for both absorptance and emittance, relative to the energy incident on the surface. The low emittance layers of multilayer SSAs are binary compounds of refractory metals whose material properties indicate that coatings formed of these materials should be oxidation resistant in air to 800-1200°C. On this basis, we initially developed a solar selective coating for parabolic troughs. This development has been successfully extended to meet the absorptance and emittance objectives for the more demanding, high temperature regime. We show advancement in coating materials, processing and designs resulting in the initial attainment of target efficiencies ηsel > 0.91 for proposed tower conditions. Additionally, spectral measurements show that these coatings continue to perform at targeted levels after cycling to temperatures of 1000°C in environments of nitrogen and forming gas.

  19. Upcoming Funding Opportunity for Tower Manufacturing and Installation |

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Department of Energy Tower Manufacturing and Installation Upcoming Funding Opportunity for Tower Manufacturing and Installation December 18, 2013 - 11:25am Addthis The DOE Wind Program has issued a Notice of Intent for a funding opportunity that it intends to post early in 2014, pending Congressional appropriations. The funding opportunity, tentatively titled "U.S. Wind Manufacturing: Taller Hub Heights to Access Higher Wind Resources, and Lower Cost of Energy" intends to support

  20. Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Design | Department of Energy in Wind Turbine Towers: Cost Analysis and Conceptual Design Hydrogen Storage in Wind Turbine Towers: Cost Analysis and Conceptual Design Preprint 34851.pdf (366.26 KB) More Documents & Publications U.S. Wind Energy Manufacturing & Supply Chain: A Competitiveness Analysis Final Report DE-EE0005380 - Assessment of Offshore Wind Farm Effects on Sea Surface, Subsurface and Airborne Electronic Systems Technical Assessment of Cryo-Compressed Hydrogen Storage

  1. Project Profile: CSP Tower Air Brayton Combustor | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Concentrating Solar Power » Project Profile: CSP Tower Air Brayton Combustor Project Profile: CSP Tower Air Brayton Combustor SWRI logo -- This project is inactive -- The Southwest Research Institute (SWRI) and its partners, under the 2012 Concentrating Solar Power (CSP) SunShot R&D funding opportunity announcement (FOA), are developing an external combustor capable of operating at much higher temperatures than the current state-of-the-art technology. Approach Illustration with a horizontal

  2. Hydrothermal Processing of Wet Wastes

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Processing of Wet Wastes James Oyler July 2014 Slide 1 Slide 2 Q: What is possible with Waste-to-Energy (WTE)? A: Up to 25% of US Liquid Fuel Supply. 25% Sounds High-Is That Possible? * Available technology and wet wastes can start toward this goal now * 285,000 barrels of oil per day by 2025 - 3.3 million bbl/d by 2045 (17% of US demand); also produces more than 6 million MCF/d of methane - Continue growing to 25% of US demand by adding more feedstocks (chart shown later) * Using wastes solves

  3. Promising Technology: Cool Roofs

    Broader source: Energy.gov [DOE]

    A cool roof increases the solar reflectance of the roof surface. By reflecting more sunlight, the roof surface maintains a cooler temperature. This decrease in temperature leads to less heat transfer through the roof into the building below. During the cooling season, the addition of a cool roof can decrease the cooling load of the building.

  4. CoolEarth formerly Cool Earth Solar | Open Energy Information

    Open Energy Info (EERE)

    CoolEarth formerly Cool Earth Solar Jump to: navigation, search Name: CoolEarth (formerly Cool Earth Solar) Place: Livermore, California Zip: 94550 Product: CoolEarth is a...

  5. The WACMOS-ET project – Part 1: Tower-scale evaluation of four remote-sensing-based evapotranspiration algorithms

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Michel, D.; Jimenez, C.; Miralles, D. G.; Jung, M.; Hirschi, M.; Ershadi, A.; Martens, B.; McCabe, M. F.; Fisher, J. B.; Mu, Q.; et al

    2016-02-23

    The WAter Cycle Multi-mission Observation Strategy – EvapoTranspiration (WACMOS-ET) project has compiled a forcing data set covering the period 2005–2007 that aims to maximize the exploitation of European Earth Observations data sets for evapotranspiration (ET) estimation. The data set was used to run four established ET algorithms: the Priestley–Taylor Jet Propulsion Laboratory model (PT-JPL), the Penman–Monteith algorithm from the MODerate resolution Imaging Spectroradiometer (MODIS) evaporation product (PM-MOD), the Surface Energy Balance System (SEBS) and the Global Land Evaporation Amsterdam Model (GLEAM). In addition, in situ meteorological data from 24 FLUXNET towers were used to force the models, with results from both forcing sets compared tomore » tower-based flux observations. Model performance was assessed on several timescales using both sub-daily and daily forcings. The PT-JPL model and GLEAM provide the best performance for both satellite- and tower-based forcing as well as for the considered temporal resolutions. Simulations using the PM-MOD were mostly underestimated, while the SEBS performance was characterized by a systematic overestimation. In general, all four algorithms produce the best results in wet and moderately wet climate regimes. In dry regimes, the correlation and the absolute agreement with the reference tower ET observations were consistently lower. While ET derived with in situ forcing data agrees best with the tower measurements (R2 = 0.67), the agreement of the satellite-based ET estimates is only marginally lower (R2 = 0.58). Results also show similar model performance at daily and sub-daily (3-hourly) resolutions. Overall, our validation experiments against in situ measurements indicate that there is no single best-performing algorithm across all biome and forcing types. In conclusion, an extension of the evaluation to a larger selection of 85 towers (model inputs resampled to a common grid to facilitate global

  6. Hybrid radiator cooling system

    DOE Patents [OSTI]

    France, David M.; Smith, David S.; Yu, Wenhua; Routbort, Jules L.

    2016-03-15

    A method and hybrid radiator-cooling apparatus for implementing enhanced radiator-cooling are provided. The hybrid radiator-cooling apparatus includes an air-side finned surface for air cooling; an elongated vertically extending surface extending outwardly from the air-side finned surface on a downstream air-side of the hybrid radiator; and a water supply for selectively providing evaporative cooling with water flow by gravity on the elongated vertically extending surface.

  7. Competitive Wetting in Active Brazes

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Chandross, Michael Evan

    2014-05-01

    We found that the wetting and spreading of molten filler materials (pure Al, pure Ag, and AgAl alloys) on a Kovar ™ (001) substrate was studied with molecular dynamics simulations. A suite of different simulations was used to understand the effects on spreading rates due to alloying as well as reactions with the substrate. Moreover, the important conclusion is that the presence of Al in the alloy enhances the spreading of Ag, while the Ag inhibits the spreading of Al.

  8. Conversion of Solar Two to a Kokhala hybrid power tower

    SciTech Connect (OSTI)

    Price, H.W.

    1997-06-01

    The continued drop in energy prices and restructuring of the utility industry have reduced the likelihood that a follow-on commercial 100-MW, power tower project will be built immediately following the Solar Two demonstration project. Given this, it would be desirable to find a way to extend the life of the Solar Two project to allow the plant to operate as a showcase for future power tower projects. This paper looks at the possibility of converting Solar Two into a commercial Kokhala hybrid power tower plant at the end of its demonstration period in 1998. The study identifies two gas turbines that could be integrated into a Kokhala cycle at Solar Two and evaluates the design, expected performance, and economics of each of the systems. The study shows that a commercial Kokhala project at Solar Two could produce power at a cost of less than 7 e/kWhr.

  9. Solar Two: A successful power tower demonstration project

    SciTech Connect (OSTI)

    REILLY,HUGH E.; PACHECO,JAMES E.

    2000-03-02

    Solar Two, a 10MWe power tower plant in Barstow, California, successfully demonstrated the production of grid electricity at utility-scale with a molten-salt solar power tower. This paper provides an overview of the project, from inception in 1993 to closure in the spring of 1999. Included are discussions of the goals of the Solar Two consortium, the planned-vs.-actual timeline, plant performance, problems encountered, and highlights and successes of the project. The paper concludes with a number of key results of the Solar Two test and evaluation program.

  10. Executive Summary: Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent& Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  11. Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts

    SciTech Connect (OSTI)

    Not Available

    2003-10-01

    Sargent and Lundy LLC conducted an independent analysis of parabolic trough and power tower solar technology cost and performance.

  12. Coal combustion by wet oxidation

    SciTech Connect (OSTI)

    Bettinger, J.A.; Lamparter, R.A.; McDowell, D.C.

    1980-11-15

    The combustion of coal by wet oxidation was studied by the Center for Waste Management Programs, of Michigan Technological University. In wet oxidation a combustible material, such as coal, is reacted with oxygen in the presence of liquid water. The reaction is typically carried out in the range of 204/sup 0/C (400/sup 0/F) to 353/sup 0/C (650/sup 0/F) with sufficient pressure to maintain the water present in the liquid state, and provide the partial pressure of oxygen in the gas phase necessary to carry out the reaction. Experimental studies to explore the key reaction parameters of temperature, time, oxidant, catalyst, coal type, and mesh size were conducted by running batch tests in a one-gallon stirred autoclave. The factors exhibiting the greatest effect on the extent of reaction were temperature and residence time. The effect of temperature was studied from 204/sup 0/C (400/sup 0/F) to 260/sup 0/C (500/sup 0/F) with a residence time from 600 to 3600 seconds. From this data, the reaction activation energy of 2.7 x 10/sup 4/ calories per mole was determined for a high-volatile-A-Bituminous type coal. The reaction rate constant may be determined at any temperature from the activation energy using the Arrhenius equation. Additional data were generated on the effect of mesh size and different coal types. A sample of peat was also tested. Two catalysts were evaluated, and their effects on reaction rate presented in the report. In addition to the high temperature combustion, low temperature desulfurization is discussed. Desulfurization can improve low grade coal to be used in conventional combustion methods. It was found that 90% of the sulfur can be removed from the coal by wet oxidation with the carbon untouched. Further desulfurization studies are indicated.

  13. Solar Power Tower Design Basis Document, Revision 0

    SciTech Connect (OSTI)

    ZAVOICO,ALEXIS B.

    2001-07-01

    This report contains the design basis for a generic molten-salt solar power tower. A solar power tower uses a field of tracking mirrors (heliostats) that redirect sunlight on to a centrally located receiver mounted on top a tower, which absorbs the concentrated sunlight. Molten nitrate salt, pumped from a tank at ground level, absorbs the sunlight, heating it up to 565 C. The heated salt flows back to ground level into another tank where it is stored, then pumped through a steam generator to produce steam and make electricity. This report establishes a set of criteria upon which the next generation of solar power towers will be designed. The report contains detailed criteria for each of the major systems: Collector System, Receiver System, Thermal Storage System, Steam Generator System, Master Control System, and Electric Heat Tracing System. The Electric Power Generation System and Balance of Plant discussions are limited to interface requirements. This design basis builds on the extensive experience gained from the Solar Two project and includes potential design innovations that will improve reliability and lower technical risk. This design basis document is a living document and contains several areas that require trade-studies and design analysis to fully complete the design basis. Project- and site-specific conditions and requirements will also resolve open To Be Determined issues.

  14. Workers Safely Tear Down Towers at Manhattan Project Site

    Broader source: Energy.gov [DOE]

    LOS ALAMOS, N.M. – After decades dominating the Los Alamos National Laboratory skyline, two water towers were safely demolished by workers in a matter of hours recently, bringing EM’s Environmental Projects Office at Los Alamos a step closer to transferring the land for future commercial or industrial use.

  15. Absorption Cooling Basics

    Office of Energy Efficiency and Renewable Energy (EERE)

    Absorption coolers use heat rather than electricity as their energy source. Because natural gas is the most common heat source for absorption cooling, it is also referred to as gas-fired cooling.

  16. Guide to Cool Roofs

    Energy Savers [EERE]

    beautify your home. The immediate and long-term benefits of roofs that stay cool in the sun have made cool roofing the fastest growing sector of the building industry. Studies...

  17. Data center cooling system

    SciTech Connect (OSTI)

    Chainer, Timothy J; Dang, Hien P; Parida, Pritish R; Schultz, Mark D; Sharma, Arun

    2015-03-17

    A data center cooling system may include heat transfer equipment to cool a liquid coolant without vapor compression refrigeration, and the liquid coolant is used on a liquid cooled information technology equipment rack housed in the data center. The system may also include a controller-apparatus to regulate the liquid coolant flow to the liquid cooled information technology equipment rack through a range of liquid coolant flow values based upon information technology equipment temperature thresholds.

  18. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Cool Magnetic Molecules Print Wednesday, 25 May 2011 00:00 Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost

  19. Earth coupled cooling techniques

    SciTech Connect (OSTI)

    Grondzik, W.T.; Boyer, L.L.; Johnston, T.L.

    1981-01-01

    Earth coupled cooling is an important consideration for residential and commercial designers, owners, and builders in many regions of the country. The potential benefits which can be expected from passive earth contact cooling are reviewed. Recommendations for the design of earth sheltered structures incorporating earth coupled cooling strategies are also presented.

  20. New "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment...

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment New "Cool Roof Time Machine" Will Accelerate Cool Roof Deployment April 24, 2015 - 4:21pm Addthis Berkeley Lab...

  1. Cooling water distribution system

    DOE Patents [OSTI]

    Orr, Richard

    1994-01-01

    A passive containment cooling system for a nuclear reactor containment vessel. Disclosed is a cooling water distribution system for introducing cooling water by gravity uniformly over the outer surface of a steel containment vessel using an interconnected series of radial guide elements, a plurality of circumferential collector elements and collector boxes to collect and feed the cooling water into distribution channels extending along the curved surface of the steel containment vessel. The cooling water is uniformly distributed over the curved surface by a plurality of weirs in the distribution channels.

  2. STOCHASTIC COOLING POWER REQUIREMENTS.

    SciTech Connect (OSTI)

    WEI,J.BLASKIEWICZ,M.BRENNAN,M.

    2004-07-05

    A practical obstacle for stochastic cooling in high-energy colliders like RHIC is the large amount of power needed for the cooling system. Based on the coasting-beam Fokker-Planck (F-P) equation, we analytically derived the optimum cooling rate and cooling power for a beam of uniform distribution and a cooling system of linear gain function. The results indicate that the usual back-of-envelope formula over-estimated the cooling power by a factor of the mixing factor M. On the other hand, the scaling laws derived from the coasting-beam Fokker-Planck approach agree with those derived from the bunched-beam Fokker-Planck approach if the peak beam intensity is used as the effective coasting-beam intensity. A longitudinal stochastic cooling system of 4-8 GHz bandwidth in RHIC can effectively counteract intrabeam scattering, preventing the beam from escaping the RF bucket becoming debunched around the ring.

  3. Radiant Cooling | Department of Energy

    Energy Savers [EERE]

    Radiant Cooling Radiant cooling cools a floor or ceiling by absorbing the heat radiated from the rest of the room. When the floor is cooled, it is often referred to as radiant ...

  4. Carbon nanotube fiber spun from wetted ribbon

    DOE Patents [OSTI]

    Zhu, Yuntian T; Arendt, Paul; Zhang, Xiefei; Li, Qingwen; Fu, Lei; Zheng, Lianxi

    2014-04-29

    A fiber of carbon nanotubes was prepared by a wet-spinning method involving drawing carbon nanotubes away from a substantially aligned, supported array of carbon nanotubes to form a ribbon, wetting the ribbon with a liquid, and spinning a fiber from the wetted ribbon. The liquid can be a polymer solution and after forming the fiber, the polymer can be cured. The resulting fiber has a higher tensile strength and higher conductivity compared to dry-spun fibers and to wet-spun fibers prepared by other methods.

  5. NREL: MIDC/National Wind Technology Center M2 Tower (39.91 N, 105.235 W,

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    1855 m, GMT-7) National Wind Technology Center M2 Tower

  6. Wind Turbine Tower for Storing Hydrogen and Energy - Energy Innovation

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Portal Wind Energy Wind Energy Hydrogen and Fuel Cell Hydrogen and Fuel Cell Energy Storage Energy Storage Find More Like This Return to Search Wind Turbine Tower for Storing Hydrogen and Energy National Renewable Energy Laboratory Contact NREL About This Technology Technology Marketing Summary Around the world, there is an increasing demand for satisfying energy requirements in ways that use less or no fossil fuels. These alternatives need to be reliable, cost effective, and environmentally

  7. Gas turbine cooling system

    DOE Patents [OSTI]

    Bancalari, Eduardo E.

    2001-01-01

    A gas turbine engine (10) having a closed-loop cooling circuit (39) for transferring heat from the hot turbine section (16) to the compressed air (24) produced by the compressor section (12). The closed-loop cooling system (39) includes a heat exchanger (40) disposed in the flow path of the compressed air (24) between the outlet of the compressor section (12) and the inlet of the combustor (14). A cooling fluid (50) may be driven by a pump (52) located outside of the engine casing (53) or a pump (54) mounted on the rotor shaft (17). The cooling circuit (39) may include an orifice (60) for causing the cooling fluid (50) to change from a liquid state to a gaseous state, thereby increasing the heat transfer capacity of the cooling circuit (39).

  8. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  9. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  10. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  11. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  12. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  13. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  14. Cool Magnetic Molecules

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Cool Magnetic Molecules Print Certain materials are known to heat up or cool down when they are exposed to a changing magnetic field. This is known as the magnetocaloric effect. All magnetic materials exhibit this effect, but in most cases, it is too small to be technologically useful. Recently, however, the search for special molecules with a surprisingly large capacity to keep cool has heated up, driven by environmental and cost considerations as well as by recent improvements in our ability

  15. Power electronics cooling apparatus

    DOE Patents [OSTI]

    Sanger, Philip Albert; Lindberg, Frank A.; Garcen, Walter

    2000-01-01

    A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

  16. District cooling gets hot

    SciTech Connect (OSTI)

    Seeley, R.S.

    1996-07-01

    Utilities across the country are adopting cool storage methods, such as ice-storage and chilled-water tanks, as an economical and environmentally safe way to provide cooling for cities and towns. The use of district cooling, in which cold water or steam is pumped to absorption chillers and then to buildings via a central community chiller plant, is growing strongly in the US. In Chicago, San Diego, Pittsburgh, Baltimore, and elsewhere, independent district-energy companies and utilities are refurbishing neglected district-heating systems and adding district cooling, a technology first developed approximately 35 years ago.

  17. Energy 101: Cool Roofs

    ScienceCinema (OSTI)

    None

    2013-05-29

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  18. Data Center Cooling

    SciTech Connect (OSTI)

    Rutberg, Michael; Cooperman, Alissa; Bouza, Antonio

    2013-10-31

    The article discusses available technologies for reducing energy use for cooling data center facilities. This article addresses the energy savings and market potential of these strategies as well.

  19. ARM - Cool Sites

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Barrow, Alaska Tropical Western Pacific Site Tours Contacts Students Study Hall About ARM Global Warming FAQ Just for Fun Meet our Friends Cool Sites Teachers Teachers' Toolbox ...

  20. Passive containment cooling system

    DOE Patents [OSTI]

    Conway, Lawrence E.; Stewart, William A.

    1991-01-01

    A containment cooling system utilizes a naturally induced air flow and a gravity flow of water over the containment shell which encloses a reactor core to cool reactor core decay heat in two stages. When core decay heat is greatest, the water and air flow combine to provide adequate evaporative cooling as heat from within the containment is transferred to the water flowing over the same. The water is heated by heat transfer and then evaporated and removed by the air flow. After an initial period of about three to four days when core decay heat is greatest, air flow alone is sufficient to cool the containment.

  1. Cool Roofs: An Introduction

    Broader source: Energy.gov [DOE]

    I've been hearing a lot about cool roof technologies, so I welcomed the chance to learn more at a recent seminar.

  2. Energy 101: Cool Roofs

    K-12 Energy Lesson Plans and Activities Web site (EERE)

    This edition of Energy 101 takes a look at how switching to a cool roof can save you money and benefit the environment.

  3. Home Cooling | Department of Energy

    Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

    Cooling Home Cooling Energy Saver 101 Energy Saver 101 We're covering everything you need to know about home cooling to help you save energy and money. Read more Ventilation Systems for Cooling Ventilation Systems for Cooling Learn how to avoid heat buildup and keep your home cool with ventilation. Read more Cooling with a Whole House Fan Cooling with a Whole House Fan A whole-house fan, in combination with other cooling systems, can meet all or most of your home cooling needs year round. Read

  4. Buildings Energy Data Book: 5.3 Heating, Cooling, and Ventilation Equipment

    Buildings Energy Data Book [EERE]

    9 Major Commercial HVAC Equipment Lifetimes and Ages Median Equipment Type Lifetime Air Conditioners Through-the-Wall 15 Water-CooledPackage 24 (1) Roof-Top 15 Chillers Reciprocating 20 Centrifugal 25 (1) Absorption 23 Heat Pumps Air-to-Air 15 Water-to-Air 24 (1) Furnaces (gas or oil) 18 Boilers (gas or oil) Hot-Water 24 - 35 Steam 25 - 30 Unit Heaters Gas-Fired or Electric 13 Hot-Water or Steam 20 Cooling Towers (metal or wood) Metal 22 (1) Wood 20 Note(s): Source(s): 1) Data from 2005. All

  5. Liquid metal cooled nuclear reactors with passive cooling system

    DOE Patents [OSTI]

    Hunsbedt, Anstein; Fanning, Alan W.

    1991-01-01

    A liquid metal cooled nuclear reactor having a passive cooling system for removing residual heat resulting from fuel decay during reactor shutdown. The passive cooling system comprises a plurality of cooling medium flow circuits which cooperate to remove and carry heat away from the fuel core upon loss of the normal cooling flow circuit to areas external thereto.

  6. Data center cooling method

    DOE Patents [OSTI]

    Chainer, Timothy J.; Dang, Hien P.; Parida, Pritish R.; Schultz, Mark D.; Sharma, Arun

    2015-08-11

    A method aspect for removing heat from a data center may use liquid coolant cooled without vapor compression refrigeration on a liquid cooled information technology equipment rack. The method may also include regulating liquid coolant flow to the data center through a range of liquid coolant flow values with a controller-apparatus based upon information technology equipment temperature threshold of the data center.

  7. One Cool Roof

    Broader source: Energy.gov [DOE]

    The 134,629 sq. ft. (about 3 acres) roof of the Office of Scientific and Technical Information (OSTI) building in Oak Ridge, Tennessee is now officially a "Cool Roof" -- making it energy efficient in ways that darker roofs are not. Cool roofs are light in color, and therefore, reflect rather than absorb sunlight.

  8. Cool Earth Solar

    SciTech Connect (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2013-04-22

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  9. DOAS, Radiant Cooling Revisited

    SciTech Connect (OSTI)

    Hastbacka, Mildred; Dieckmann, John; Bouza, Antonio

    2012-12-01

    The article discusses dedicated outdoor air systems (DOAS) and radiant cooling technologies. Both of these topics were covered in previous ASHRAE Journal columns. This article reviews the technologies and their increasing acceptance. The two steps that ASHRAE is taking to disseminate DOAS information to the design community, available energy savings and the market potential of radiant cooling systems are addressed as well.

  10. Cool Earth Solar

    ScienceCinema (OSTI)

    Lamkin, Rob; McIlroy, Andy; Swalwell, Eric; Rajan, Kish

    2014-02-26

    In a public-private partnership that takes full advantage of the Livermore Valley Open Campus (LVOC) for the first time, Sandia National Laboratories and Cool Earth Solar have signed an agreement that could make solar energy more affordable and accessible. In this piece, representatives from Sandia, Cool Earth Solar, and leaders in California government all discuss the unique partnership and its expected impact.

  11. Rotary engine cooling system

    SciTech Connect (OSTI)

    Jones, C.

    1988-07-26

    A rotary internal combustion engine is described comprising: a rotor housing forming a trochoidal cavity therein; an insert of refractory material received in the recess, an element of a fuel injection and ignition system extending through the housing and insert bores, and the housing having cooling passages extending therethrough. The cooling passages are comprised of drilled holes.

  12. Why Cool Roofs?

    ScienceCinema (OSTI)

    Chu, Steven

    2013-05-29

    By installing a cool roof at DOE, the federal government and Secretary Chu are helping to educate families and businesses about the important energy and cost savings that can come with this simple, low-cost technology. Cool roofs have the potential to quickly and dramatically reduce global carbon emissions while saving money every month on consumers' electrical bills.

  13. Measure Guideline: Ventilation Cooling

    SciTech Connect (OSTI)

    Springer, D.; Dakin, B.; German, A.

    2012-04-01

    The purpose of this measure guideline on ventilation cooling is to provide information on a cost-effective solution for reducing cooling system energy and demand in homes located in hot-dry and cold-dry climates. This guideline provides a prescriptive approach that outlines qualification criteria, selection considerations, and design and installation procedures.

  14. Coherent electron cooling

    SciTech Connect (OSTI)

    Litvinenko,V.

    2009-05-04

    Cooling intense high-energy hadron beams remains a major challenge in modern accelerator physics. Synchrotron radiation is still too feeble, while the efficiency of two other cooling methods, stochastic and electron, falls rapidly either at high bunch intensities (i.e. stochastic of protons) or at high energies (e-cooling). In this talk a specific scheme of a unique cooling technique, Coherent Electron Cooling, will be discussed. The idea of coherent electron cooling using electron beam instabilities was suggested by Derbenev in the early 1980s, but the scheme presented in this talk, with cooling times under an hour for 7 TeV protons in the LHC, would be possible only with present-day accelerator technology. This talk will discuss the principles and the main limitations of the Coherent Electron Cooling process. The talk will describe the main system components, based on a high-gain free electron laser driven by an energy recovery linac, and will present some numerical examples for ions and protons in RHIC and the LHC and for electron-hadron options for these colliders. BNL plans a demonstration of the idea in the near future.

  15. Predictive modeling of reactive wetting and metal joining.

    SciTech Connect (OSTI)

    van Swol, Frank B.

    2013-09-01

    The performance, reproducibility and reliability of metal joints are complex functions of the detailed history of physical processes involved in their creation. Prediction and control of these processes constitutes an intrinsically challenging multi-physics problem involving heating and melting a metal alloy and reactive wetting. Understanding this process requires coupling strong molecularscale chemistry at the interface with microscopic (diffusion) and macroscopic mass transport (flow) inside the liquid followed by subsequent cooling and solidification of the new metal mixture. The final joint displays compositional heterogeneity and its resulting microstructure largely determines the success or failure of the entire component. At present there exists no computational tool at Sandia that can predict the formation and success of a braze joint, as current capabilities lack the ability to capture surface/interface reactions and their effect on interface properties. This situation precludes us from implementing a proactive strategy to deal with joining problems. Here, we describe what is needed to arrive at a predictive modeling and simulation capability for multicomponent metals with complicated phase diagrams for melting and solidification, incorporating dissolutive and composition-dependent wetting.

  16. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf; Willett, Fred Thomas

    2000-01-01

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  17. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, Fred Wolf; Willett, Fred Thomas

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number.

  18. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, Jr., Edward P.

    1999-01-01

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed therebetween. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock.

  19. Water cooled steam jet

    DOE Patents [OSTI]

    Wagner, E.P. Jr.

    1999-01-12

    A water cooled steam jet for transferring fluid and preventing vapor lock, or vaporization of the fluid being transferred, has a venturi nozzle and a cooling jacket. The venturi nozzle produces a high velocity flow which creates a vacuum to draw fluid from a source of fluid. The venturi nozzle has a converging section connected to a source of steam, a diffuser section attached to an outlet and a throat portion disposed there between. The cooling jacket surrounds the venturi nozzle and a suction tube through which the fluid is being drawn into the venturi nozzle. Coolant flows through the cooling jacket. The cooling jacket dissipates heat generated by the venturi nozzle to prevent vapor lock. 2 figs.

  20. Hydronic rooftop cooling systems

    DOE Patents [OSTI]

    Bourne, Richard C.; Lee, Brian Eric; Berman, Mark J.

    2008-01-29

    A roof top cooling unit has an evaporative cooling section that includes at least one evaporative module that pre-cools ventilation air and water; a condenser; a water reservoir and pump that captures and re-circulates water within the evaporative modules; a fan that exhausts air from the building and the evaporative modules and systems that refill and drain the water reservoir. The cooling unit also has a refrigerant section that includes a compressor, an expansion device, evaporator and condenser heat exchangers, and connecting refrigerant piping. Supply air components include a blower, an air filter, a cooling and/or heating coil to condition air for supply to the building, and optional dampers that, in designs that supply less than 100% outdoor air to the building, control the mixture of return and ventilation air.

  1. Turbine blade cooling

    DOE Patents [OSTI]

    Staub, F.W.; Willett, F.T.

    1999-07-20

    A turbine rotor blade comprises a shank portion, a tip portion and an airfoil. The airfoil has a pressure side wall and a suction side wall that are interconnected by a plurality of partition sidewalls, defining an internal cooling passageway within the airfoil. The internal cooling passageway includes at least one radial outflow passageway to direct a cooling medium flow from the shank portion towards the tip portion and at least one radial inflow passageway to direct a cooling medium flow from the tip portion towards the shank portion. A number of mixing ribs are disposed on the partition sidewalls within the radial outflow passageways so as to enhance the thermal mixing of the cooling medium flow, thereby producing improved heat transfer over a broad range of the Buoyancy number. 13 figs.

  2. AmeriFlux US-Skr Shark River Slough (Tower SRS-6) Everglades...

    Office of Scientific and Technical Information (OSTI)

    The tower was offline until the following October in order to continue temporally consistent measurements. In post-hurricane conditions, ecosystem respiration rates and solar ...

  3. MEIC electron cooling program

    DOE Public Access Gateway for Energy & Science Beta (PAGES Beta)

    Derbenev, Yaroslav S.; Zhang, Yuhong

    2014-12-01

    Cooling of proton and ion beams is essential for achieving high luminosities (up to above 1034 cm-2s-1) for MEIC, a Medium energy Electron-Ion Collider envisioned at JLab [1] for advanced nuclear science research. In the present conceptual design, we utilize the conventional election cooling method and adopted a multi-staged cooling scheme for reduction of and maintaining low beam emittances [2,3,4]. Two electron cooling facilities are required to support the scheme: one is a low energy (up to 2 MeV) DC cooler installed in the MEIC ion pre-booster (with the proton kinetic energy up to 3 GeV); the other is amore » high electron energy (up to 55 MeV) cooler in the collider ring (with the proton kinetic energy from 25 to 100 GeV). The high energy cooler, which is based on the ERL technology and a circulator ring, utilizes a bunched electron beam to cool bunched proton or ion beams. To complete the MEIC cooling concept and a technical design of the ERL cooler as well as to develop supporting technologies, an R&D program has been initiated at Jefferson Lab and significant progresses have been made since then. In this study, we present a brief description of the cooler design and a summary of the progress in this cooling R&D.« less

  4. NREL: Technology Deployment - Resource Maps for Taller Towers Reveal New

    Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

    Areas for Wind Project Development Resource Maps for Taller Towers Reveal New Areas for Wind Project Development News Mapping the Frontier of New Wind Power Potential Publications Southeastern Wind Coalition fact sheets Southeast Wind Energy Fact Sheet Enabling Wind Power Nationwide Wind Vision: A New Era for Wind Power in the United States Sponsors AWS Truepower Southeastern Wind Coalition Key Partners U.S. Department of Energy Contact Ian Baring-Gould, 303-384-7021 A picture of a tall wind

  5. Wetting of a Chemically Heterogeneous Surface

    SciTech Connect (OSTI)

    Frink, L.J.D.; Salinger, A.G.

    1998-11-20

    Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.

  6. Reducing the atmospheric impact of wet slaking

    SciTech Connect (OSTI)

    B.D. Zubitskii; G.V. Ushakov; B.G. Tryasunov; A.G.Ushakov

    2009-05-15

    Means of reducing the atmospheric emissions due to the wet slaking of coke are considered. One option, investigated here, is to remove residual active silt and organic compounds from the biologically purified wastewater sent for slaking, by coagulation and flocculation.

  7. National Ignition Facility wet weather construction plan

    SciTech Connect (OSTI)

    Kugler, A N

    1998-01-01

    This report presents a wet weather construction plan for the National Ignition Facility (NIF) construction project. Construction of the NIF commenced in mid- 1997, and excavation of the site was completed in the fall. Preparations for placing concrete foundations began in the fall, and above normal rainfall is expected over the tinter. Heavy rainfall in late November impacted foundation construction, and a wet weather construction plan was determined to be needed. This wet weather constiction plan recommends a strategy, techniques and management practices to prepare and protect the site corn wet weather effects and allow construction work to proceed. It is intended that information in this plan be incorporated in the Stormwater Pollution Prevention Plan (SWPPP) as warranted.

  8. MHK Technologies/WET NZ | Open Energy Information

    Open Energy Info (EERE)

    to the MHK database homepage WET NZ.jpg Technology Profile Primary Organization Wave Energy Technology New Zealand WET NZ Technology Resource Click here Wave Technology...

  9. ,"West Virginia Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... Virginia Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  10. ,"Montana Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  11. ,"Oklahoma Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  12. ,"Kentucky Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  13. ,"Louisiana Natural Gas, Wet After Lease Separation Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  14. ,"Pennsylvania Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  15. ,"Ohio Natural Gas, Wet After Lease Separation Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... 1","Ohio Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  16. ,"Mississippi Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  17. ,"Mississippi Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  18. ,"Ohio Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  19. ,"Michigan Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  20. ,"Lower 48 States Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... 48 States Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  1. ,"Virginia Natural Gas, Wet After Lease Separation Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click ... Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  2. ,"Wyoming Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  3. ,"Kansas Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  4. ,"Pennsylvania Natural Gas, Wet After Lease Separation Proved...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  5. ,"Montana Natural Gas, Wet After Lease Separation Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  6. ,"Mississippi Associated-Dissolved Natural Gas, Wet After Lease...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  7. ,"Texas Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  8. ,"Kansas Natural Gas, Wet After Lease Separation Proved Reserves...

    U.S. Energy Information Administration (EIA) Indexed Site

    Gas, Wet After Lease Separation Proved Reserves (Billion Cubic Feet)" ,"Click worksheet ... 1","Kansas Natural Gas, Wet After Lease Separation Proved Reserves (Billion Cubic ...

  9. ,"Wyoming Associated-Dissolved Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Associated-Dissolved Natural Gas, Wet After Lease Separation, Proved Reserves (Billion ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...

  10. ,"Michigan Nonassociated Natural Gas, Wet After Lease Separation...

    U.S. Energy Information Administration (EIA) Indexed Site

    Nonassociated Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ... Natural Gas, Wet After Lease Separation, Proved Reserves (Billion Cubic ...