Powered by Deep Web Technologies
Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

AP600 large-break loss-of-collant-accident developmental assessment plan for TRAC-PF1/MOD2  

SciTech Connect (OSTI)

The Westinghouse AP600 reactor is an advanced pressurized water reactor with passive safety systems to protect the plant against possible accidents and transients. The design has been submitted to the U.S. NRC for design certification. The NRC has selected the Transient Reactor Analysis Code (TRAC)-PF1/MOD2 for performing large break loss-of coolant-accident (LBLOCA) analysis to support the certification effort. This document defines the tests to be used in the current phase of developmental assessment related to AP600 LBLOCA.

Knight, T.D.

1996-07-01T23:59:59.000Z

2

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

NO. DE-AC21-95MC30247; DOE WAIVER DOCKET W(A)-98-006 ORO-737 Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the Contractor"),...

3

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

NO. DE-FC21-95MC32267; DOE WAIVER DOCKET W(A)-96-002 ORO-620 Westinghouse Power Generation, a former division of CBS Corporation (hereinafter referred to as "the...

4

Review of the proposed materials of construction for the SBWR and AP600 advanced reactors  

SciTech Connect (OSTI)

Two advanced light water reactor (LWR) concepts, namely the General Electric Simplified Boiling Water Reactor (SBWR) and the Westinghouse Advanced Passive 600 MWe Reactor (AP600), were reviewed in detail by Argonne National Laboratory. The objectives of these reviews were to (a) evaluate proposed advanced-reactor designs and the materials of construction for the safety systems, (b) identify all aging and environmentally related degradation mechanisms for the materials of construction, and (c) evaluate from the safety viewpoint the suitability of the proposed materials for the design application. Safety-related systems selected for review for these two LWRs included (a) reactor pressure vessel, (b) control rod drive system and reactor internals, (c) coolant pressure boundary, (d) engineered safety systems, (e) steam generators (AP600 only), (f) turbines, and (g) fuel storage and handling system. In addition, the use of cobalt-based alloys in these plants was reviewed. The selected materials for both reactors were generally sound, and no major selection errors were found. It was apparent that considerable thought had been given to the materials selection process, making use of lessons learned from previous LWR experience. The review resulted in the suggestion of alternate an possibly better materials choices in a number of cases, and several potential problem areas have been cited.

Diercks, D.R.; Shack, W.J.; Chung, H.M.; Kassner, T.F. [Argonne National Lab., IL (United States)

1994-06-01T23:59:59.000Z

5

Assembly of radioisotope power systems at Westinghouse Hanford Company  

SciTech Connect (OSTI)

Long-term space flight requires reliable long-term power sources. For the purpose of supplying a constant supply of power in deep space, the radioisotope thermoelectric generator has proven to be a successful power source. Westinghouse Hanford Company is installing the Radioisotope Power Systems Facility which is located in the Fuels and Material Examination Facility on the Hanford Site near Richland, Washington, for assembling the generators. The radioisotope thermoelectric generator assembly process is base upon one developed at Mound Laboratory in Miamisburg, Ohio (presently operated by EG G Mound Applied Technologies). Westinghouse Hanford Company is modernizing the process to ensure the heat source assemblies are produced in a manner that maximizes operator safety and is consistent with today's environmental and operational safety standards. The facility is being prepared to assemble the generators required by the National Aeronautics and Space Administration missions for CRAF (Comet Rendezvous Asteroid Flyby) in 1995 and Cassini, an investigation of Saturn and its moons, in 1996. The facility will also have the capability to assemble larger radioisotope power generators designed for dynamic power generation. 4 refs., 11 figs.

Alderman, C.J.

1990-04-01T23:59:59.000Z

6

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER...  

Broader source: Energy.gov (indexed) [DOE]

electrical power, such as steam turbine technology, nuclear power, hydroelectric and wind facilities, represent competition to the global power plant mariket. Thus grant of...

7

REQUEST BY WESTINGHOUSE POWER GENERATION, A FORMER DIVISION OF...  

Broader source: Energy.gov (indexed) [DOE]

position in the power generation field. It is the second largest commercial supplier of power generation gas turbines in the United States and the fourth single largest supplier...

8

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER...  

Broader source: Energy.gov (indexed) [DOE]

of improved reliability availability and maintainability (RAM) of existing and advanced gas turbine power plants by continuously monitoring the health of critical thermal barrier...

9

REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE...  

Broader source: Energy.gov (indexed) [DOE]

a pressurized tubular solid oxide fuel cell (PSOFC) coupled with conventional gas turbine technology in a completely dry (i.e., no boiler or steam bottoming power cycle)...

10

Westinghouse thermal barrier coatings development  

SciTech Connect (OSTI)

Westinghouse, in conjunction with the Department of Energy and Oak Ridge National Laboratory, has embarked upon a program for the development of advanced thermal barrier coatings for industrial gas turbines. Development of thermal barrier coatings (TBC`s) for industrial gas turbines has relied heavily on the transfer of technology from the aerospace industry. Significant differences in the time/temperature/stress duty cycles exist between these two coating applications. Coating systems which perform well in aerospace applications may not been optimized to meet power generation performance requirements. This program will focus on development of TBC`s to meet the specific needs of power generation applications. The program is directed at developing a state-of-the-art coating system with a minimum coating life of 25,000 hours at service temperatures required to meet increasing operating efficiency goals. Westinghouse has assembled a team of university and industry leaders to accomplish this goal. Westinghouse will coordinate the efforts of all program participants. Chromalloy Turbine Technologies, Inc. and Sermatech International, Inc. will be responsible for bond coat and TBC deposition technology. Praxair Specialty Powders, Inc. will be responsible for the fabrication of all bond coat and ceramic powders for the program. Southwest Research Institute will head the life prediction modelling effort; they will also be involved in coordinating nondestructive evaluation (NDE) efforts. Process modelling will be provided by the University of Arizona.

Goedjen, J.G.; Wagner, G. [Westinghouse Electric Corp., Orlando, FL (United States)

1995-10-01T23:59:59.000Z

11

Probabilistic analysis and operational data in response to NUREG-0737, Item II. K. 3. 2 for Westinghouse NSSS plants. [Modifications to reduce LOCA due to stuck-open power-operated relief valve  

SciTech Connect (OSTI)

This report describes various modifications to Westinghouse plants since TMI and, using probabilistic analysis via event trees, estimates the effect of the post-TMI changes, including an automatic (PORV) (power operated relief valve) isolation concept identified in NUREG-0731 item II.K.3.1. The requested safety valve operational data is included as an appendix. A significant reduction in the frequency of a small break LOCA, due to a stuck open PORV has already been achieved by the modifications made subsequent to TMI. Domestic Westinghouse operating plant data (based on 181 reactor years of operation) has been collected and evaluated. An auto block valve closure system has been evaluated. The analysis is generally applicable to all Westinghouse plants which have incorporated the post-TMI hardware and procedural changes relative to stuck-open PORVs.

Wood, D.C.; Gottshall, C.L.

1981-02-01T23:59:59.000Z

12

Use of phenomena identification and ranking (PIRT) process in research related to design certification of the AP600 advanced passive light water reactor (LWR)  

SciTech Connect (OSTI)

The AP600 LWR is a new advanced passive design that has been submitted to the USNRC for design certification. Within the certification process the USNRC will perform selected system thermal hydraulic response audit studies to help confirm parts of the vendor`s safety analysis submittal. Because of certain innovative design features of the safety systems, new experimental data and related advances in the system thermal hydraulic analysis computer code are being developed by the USNRC. The PIRT process is being used to focus the experimental and analytical work to obtain a sufficient and cost effective research effort. The objective of this paper is to describe the application and most significant results of the PIRT process, including several innovative features needed in the application to accommodate the short design certification schedule. The short design certification schedule has required that many aspects of the USNRC experimental and analytical research be performed in parallel, rather than in series as was normal for currently operating LWRS. This has required development and use of management techniques that focus and integrate the various diverse parts of the research. The original PIRTs were based on inexact knowledge of an evolving reactor design, and concentrated on the new passive features of the design. Subsequently, the PIRTs have evolved in two more stages as the design became more firm and experimental and analytical data became available. A fourth and final stage is planned and in progress to complete the PIRT development. The PIRTs existing at the end of each development stage have been used to guide the experimental program, scaling analyses and code development supporting the audit studies.

Wilson, G.E.; Fletcher, C.D. [Idaho National Engineering Lab., Idaho Falls, ID (United States); Eltawila, F. [Nuclear Regulatory Commission, Washington, DC (United States). Office of Nuclear Regulatory Research

1996-07-01T23:59:59.000Z

13

Westinghouse hot gas particle filter system  

SciTech Connect (OSTI)

Integrated Gasification Combined Cycles (IGCC) and Pressurized Circulating Fluidized Bed Cycles (PCFB) are being developed and demonstrated for commercial power generation applications. Hot gas particulate filters (HGPF) are key components for the successful implementation of IGCC and PCFB in power generation gas turbine cycles. The objective is to develop and qualify through analysis and testing a practical HGPF system that meets the performance and operational requirements of PCFB and IGCC systems. This paper reports on the status of Westinghouse`s HGPF commercialization programs including: A quick summary of past gasification based HGPF test programs; A summary of the integrated HGPF operation at the American Electric Power, Tidd Pressurized Fluidized Bed Combustion (PFBC) Demonstration Project with approximately 6000 hours of HGPF testing completed; A summary of approximately 3200 hours of HGPF testing at the Foster Wheeler (FW) 10 MW{sub e} facility located in Karhula, Finland; A summary of over 700 hours of HGPF operation at the FW 2 MW{sub e} topping PCFB facility located in Livingston, New Jersey; A summary of the design of the HGPFs for the DOE/Southern Company Services, Power System Development Facility (PSDF) located in Wilsonville, Alabama; A summary of the design of the commercial-scale HGPF system for the Sierra Pacific, Pinon Pine IGCC Project; A review of completed testing and a summary of planned testing of Westinghouse HGPFs in Biomass IGCC applications; and A brief summary of the HGPF systems for the City of Lakeland, McIntosh Unit 4 PCFB Demonstration Project.

Lippert, T.E.; Bruck, G.J.; Newby, R.A.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center; Debski, V.L.; Morehead, H.T. [Westinghouse Electric Corp., Orlando, FL (United States). Power Generation Business Unit

1997-12-31T23:59:59.000Z

14

Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories  

Office of Legacy Management (LM)

Radiological Condition of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories Cheswick, Pennsylvania -. -, -- AGENCY: Office of Operational Safety, Department...

15

Westinghouse Small Modular Reactor nuclear steam supply system design  

SciTech Connect (OSTI)

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the first in a series of four papers which describe the design and functionality of the Westinghouse SMR. Also described in this series are the key drivers influencing the design of the Westinghouse SMR and the unique passive safety features of the Westinghouse SMR. Several critical motivators contributed to the development and integration of the Westinghouse SMR design. These design driving motivators dictated the final configuration of the Westinghouse SMR to varying degrees, depending on the specific features under consideration. These design drivers include safety, economics, AP1000{sup R} reactor expertise and experience, research and development requirements, functionality of systems and components, size of the systems and vessels, simplicity of design, and licensing requirements. The Westinghouse SMR NSSS consists of an integral reactor vessel within a compact containment vessel. The core is located in the bottom of the reactor vessel and is composed of 89 modified Westinghouse 17x17 Robust Fuel Assemblies (RFA). These modified fuel assemblies have an active core length of only 2.4 m (8 ft) long, and the entirety of the core is encompassed by a radial reflector. The Westinghouse SMR core operates on a 24 month fuel cycle. The reactor vessel is approximately 24.4 m (80 ft) long and 3.7 m (12 ft) in diameter in order to facilitate standard rail shipping to the site. The reactor vessel houses hot and cold leg channels to facilitate coolant flow, control rod drive mechanisms (CRDM), instrumentation and cabling, an intermediate flange to separate flow and instrumentation and facilitate simpler refueling, a pressurizer, a straight tube, recirculating steam generator, and eight reactor coolant pumps (RCP). The containment vessel is 27.1 m (89 ft) long and 9.8 m (32 ft) in diameter, and is designed to withstand pressures up to 1.7 MPa (250 psi). It is completely submerged in a pool of water serving as a heat sink and radiation shield. Housed within the containment are four combined core makeup tanks (CMT)/passive residual heat removal (PRHR) heat exchangers, two in-containment pools (ICP), two ICP tanks and four valves which function as the automatic depressurization system (ADS). The PRHR heat exchangers are thermally connected to two different ultimate heat sink (UHS) tanks which provide transient cooling capabilities. (authors)

Memmott, M. J.; Harkness, A. W.; Van Wyk, J. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

2012-07-01T23:59:59.000Z

16

Sandia National Laboratories: Westinghouse  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1development Sandia, NREL Release Wave EnergyLinks Water PowerWaveDyn

17

Westinghouse gasification technology development and projects status  

SciTech Connect (OSTI)

A joint program between Westinghouse, the Department of Energy, and the Gas Research Institute has shown, through the use of a 35 ton-per-day coal feed process development unit (PDU), that the fluidized bed gasifier is technically feasible and economically attractive. The process has been shown to be simple, controllable, and safe in converting many types of coals, including reactive western coals, caking eastern coals, high ash coals, and run-of-mine coals. The process is efficient because it utilizes many coals at high conversion efficiency with relatively low use of oxidant and steam. Because of its simplicity, its use of available hardware technology, and the absence of tars in the product gas, the system has low capital and operating costs. It can be employed with little adverse environmental impact because of its efficiency, low pollutant output, low water usage, and disposal ash product. Process advantages have been confirmed by independent conceptual designs and cost estimates for commercial-scale applications, including substitute natural gas (SNG), industrial fuel gas, liquid synfuels, and combined cycle power generation. The development program includes unique cost-effective integration of hot and cold small-scale experimental models, a commercial-scale cold flow model, and analytical modeling, together with the PDU, to provide commercial design procedures. Westinghouse commercial designs are utilizing these design tools and the process is now being scaled-up for a commercial-scale demonstration facility.

Daugherty, D. P.; Schmidt, D. K.

1982-01-01T23:59:59.000Z

18

Westinghouse filter update  

SciTech Connect (OSTI)

Hot gas filters have been implemented and operated in four different test facilities: Subpilot scale entrained gasifier, located at the Texaco Montebello Research facilities in California, Foster Wheeler Advanced Pressurized Fluidized Bed Combustion pilot plant facilities, located in Livingston, New Jersey, Slipstream of the American Electric Power (AEP) 70 MW (electric) Tidd-PFBC, located in Brilliant, Ohio, and in the Ahlstrom 10 MW (thermal) Circulating PFBC facility, located in Karhula, Finland. Candle filter testing has occurred at all four facilities; cross flow filter testing has occurred at the Texaco and Foster Wheeler facilities. Table 1 identifies and summarizes the key operating characteristics of these facilities and the type and scale of filter unit tested. A brief description of each project is given.

Lippert, T.E.; Bruck, G.J.; Smeltzer, E.E.; Newby, R.A.; Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States). Science and Technology Center

1993-09-01T23:59:59.000Z

19

Westinghouse Cementation Facility of Solid Waste Treatment System - 13503  

SciTech Connect (OSTI)

During NPP operation, several waste streams are generated, caused by different technical and physical processes. Besides others, liquid waste represents one of the major types of waste. Depending on national regulation for storage and disposal of radioactive waste, solidification can be one specific requirement. To accommodate the global request for waste treatment systems Westinghouse developed several specific treatment processes for the different types of waste. In the period of 2006 to 2008 Westinghouse awarded several contracts for the design and delivery of waste treatment systems related to the latest CPR-1000 nuclear power plants. One of these contracts contains the delivery of four Cementation Facilities for waste treatment, s.c. 'Follow on Cementations' dedicated to three locations, HongYanHe, NingDe and YangJiang, of new CPR-1000 nuclear power stations in the People's Republic of China. Previously, Westinghouse delivered a similar cementation facility to the CPR-1000 plant LingAo II, in Daya Bay, PR China. This plant already passed the hot functioning tests successfully in June 2012 and is now ready and released for regular operation. The 'Follow on plants' are designed to package three 'typical' kind of radioactive waste: evaporator concentrates, spent resins and filter cartridges. The purpose of this paper is to provide an overview on the Westinghouse experience to design and execution of cementation facilities. (authors)

Jacobs, Torsten; Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D- 22419 Hamburg (Germany)

2013-07-01T23:59:59.000Z

20

Enforcement Letter, Westinghouse Savannah River Company - November...  

Broader source: Energy.gov (indexed) [DOE]

Savannah River Site On November 14, 2003, the U.S. Department of Energy (DOE) issued a nuclear safety Enforcement Letter to Westinghouse Savannah River Company related to...

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

DOE Initiates Enforcement Proceedings against Westinghouse and...  

Broader source: Energy.gov (indexed) [DOE]

Civil Penalty to Westinghouse Lighting Corporation and Mitsubishi Electric & Electronics USA, Inc. for failing to certify that certain of their products meet the applicable...

22

Preliminary Notice of Violation, Westinghouse Savannah River...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Westinghouse Savannah River Company - EA-2000-08 More Documents & Publications Type B Accident Investigation Board Report on the September 1, 1999, Plutonium Intakes at the...

23

Westinghouse independent safety review of Savannah River production reactors  

SciTech Connect (OSTI)

Westinghouse Electric Corporation has performed a safety assessment of the Savannah River production reactors (K,L, and P) as requested by the US Department of Energy. This assessment was performed between November 1, 1988, and April 1, 1989, under the transition contract for the Westinghouse Savannah River Company's preparations to succeed E.I. du Pont de Nemours Company as the US Department of Energy contractor for the Savannah River Project. The reviewers were drawn from several Westinghouse nuclear energy organizations, embody a combination of commercial and government reactor experience, and have backgrounds covering the range of technologies relevant to assessing nuclear safety. The report presents the rationale from which the overall judgment was drawn and the basis for the committee's opinion on the phased restart strategy proposed by E.I. du Pont de Nemours Company, Westinghouse, and the US Department of Energy-Savannah River. The committee concluded that it could recommend restart of one reactor at partial power upon completion of a list of recommended upgrades both to systems and their supporting analyses and after demonstration that the organization had assimilated the massive changes it will have undergone.

Leggett, W.D.; McShane, W.J. (Westinghouse Hanford Co., Richland, WA (USA)); Liparulo, N.J.; McAdoo, J.D.; Strawbridge, L.E. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear and Advanced Technology Div.); Toto, G. (Westinghouse Electric Corp., Pittsburgh, PA (USA). Nuclear Services Div.); Fauske, H.K. (Fauske and Associates, Inc., Burr Ridge, IL (USA)); Call, D.W. (Westinghouse Savannah R

1989-04-01T23:59:59.000Z

24

Westinghouse Lighting: Notice of Allowance (2010-CE-09/1001)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Allowance to Westinghouse Lighting Corporation allowing Westinghouse Lighting to resume distribution of product code 0521000 after Westinghouse Lighting provided new test data performed according to DOE regulations.

25

Regenerative Heater Optimization for Steam Turbo-Generation Cycles of Generation IV Nuclear Power Plants with a Comparison of Two Concepts for the Westinghouse International Reactor Innovative and Secure (IRIS)  

SciTech Connect (OSTI)

The intent of this study is to discuss some of the many factors involved in the development of the design and layout of a steam turbo-generation unit as part of a modular Generation IV nuclear power plant. Of the many factors involved in the design and layout, this research will cover feed water system layout and optimization issues. The research is arranged in hopes that it can be generalized to any Generation IV system which uses a steam powered turbo-generation unit. The research is done using the ORCENT-II heat balance codes and the Salisbury methodology to be reviewed herein. The Salisbury methodology is used on an original cycle design by Famiani for the Westinghouse IRIS and the effects due to parameter variation are studied. The vital parameters of the Salisbury methodology are the incremental heater surface capital cost (S) in $/ft{sup 2}, the value of incremental power (I) in $/kW, and the overall heat transfer coefficient (U) in Btu/ft{sup 2}-degrees Fahrenheit-hr. Each is varied in order to determine the effects on the cycles overall heat rate, output, as well as, the heater surface areas. The effects of each are shown. Then the methodology is then used to compare the optimized original Famiani design consisting of seven regenerative feedwater heaters with an optimized new cycle concept, INRC8, containing four regenerative heaters. The results are shown. It can be seen that a trade between the complexity of the seven stage regenerative Famiani cycle and the simplicity of the INRC8 cycle can be made. It is desired that this methodology can be used to show the ability to evaluate modularity through the value of size a complexity of the system as well as the performance. It also shows the effectiveness of the Salisbury methodology in the optimization of regenerative cycles for such an evaluation.

Williams, W.C.

2002-08-01T23:59:59.000Z

26

Overview of the Westinghouse Small Modular Reactor building layout  

SciTech Connect (OSTI)

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the third in a series of four papers, which describe the design and functionality of the Westinghouse SMR. It focuses in particular upon the plant building layout and modular design of the Westinghouse SMR. In the development of small modular reactors, the building layout is an area where the safety of the plant can be improved by applying new design approaches. This paper will present an overview of the Westinghouse SMR building layout and indicate how the design features improve the safety and robustness of the plant. The Westinghouse SMR is designed with no shared systems between individual reactor units. The main buildings inside the security fence are the nuclear island, the rad-waste building, the annex building, and the turbine building. All safety related equipment is located in the nuclear island, which is a seismic class 1 building. To further enhance the safety and robustness of the design, the reactor, containment, and most of the safety related equipment are located below grade on the nuclear island. This reduces the possibility of severe damage from external threats or natural disasters. Two safety related ultimate heat sink (UHS) water tanks that are used for decay heat removal are located above grade, but are redundant and physically separated as far as possible for improved safety. The reactor and containment vessel are located below grade in the center of the nuclear island. The rad-waste and other radioactive systems are located on the bottom floors to limit the radiation exposure to personnel. The Westinghouse SMR safety trains are completely separated into four unconnected quadrants of the building, with access between quadrants only allowed above grade. This is an improvement to conventional reactor design since it prevents failures of multiple trains during floods or fires and other external events. The main control room is located below grade, with a remote shutdown room in a different quadrant. All defense in depth systems are placed on the nuclear island, primarily above grade, while the safety systems are located on lower floors. The economics of the Westinghouse SMR challenges the established approach of large Light Water Reactors (LWR) that utilized the economies of scale to reach economic competitiveness. To serve the market expectation of smaller capital investment and cost competitive energy, a modular design approach is implemented within the Westinghouse SMR. The Westinghouse SMR building layout integrates the three basic design constraints of modularization; transportation, handling and module-joining technology. (authors)

Cronje, J. M. [Westinghouse Electric Company LLC, Centurion (South Africa); Van Wyk, J. J.; Memmott, M. J. [Westinghouse Electric Company LLC, Cranberry Township, PA (United States)

2012-07-01T23:59:59.000Z

27

Preliminary Notice of Violation, Westinghouse Savannah River...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

19, 2002 Issued to Westinghouse Savannah River Company related to Safety Basis and Radiation Protection Violations at the Savannah River Site, On March 19, 2002, the U.S....

28

Preliminary Notice of Violation, Westinghouse Savannah River...  

Broader source: Energy.gov (indexed) [DOE]

December 5, 1997 Issued to Westinghouse Savannah River Company, related to an Unplanned Radioactive Material Intake at the Savannah River Site, (EA-97-12) On December 5, 1997, the...

29

In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)  

SciTech Connect (OSTI)

In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

2005-01-01T23:59:59.000Z

30

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

PITTSBURGH PLANT FOREST HILLS PITTSBURGH, PENNSYLVANIA Department of Energy Office of Nuclear Energy Office of Terminal Waste Disposal and Remedial Action Division of Remedial...

31

CERTIFICATION DOCKET WESTINGHOUSE ATOMIC POWER DEVELOPMENT PLANT  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -MiamiYVE r. awC'COLUMBIA$f 2 .A

32

Interim activities report. [Westinghouse Savannah River Company  

SciTech Connect (OSTI)

Several developments have occurred since the 32nd WANTO Meeting that effect the status of the Savannah River Site. A request to restart K-Reactor was issued after nearly three years of intensive engineering analysis, procedure revisions and enhanced operator training to upgrade all aspects of reactor operation. In early December 1991, the Westinghouse Savannah River Company requested permission from DOE to start the K-Reactor. In mid-December the DOE and the Defense Nuclear Facility Safety Board concurred with readiness to operate and a Federal Circuit Court of Appeals ruled against a lawsuit to delay restart until a cooling tower is completed. The K-Reactor was restarted and has been in an evaluation and testing mode. Full power operation at thirty percent of maximum capacity is projected for March 1992 after which actual tritium generation will begin. Operation will continue until October when the cooling tower will be tied into the reactor cooling system. In conjunction with the restart of K-Reactor, the P-Reactor has been placed in permanent shutdown status and the L-Reactor has been placed in warm stand-by. In another reactor related situation, the DOE will delay the decision on construction of the New Production Reactor (NPR) until 1993. The choice of reactor type and location of the NPR will be integrated into the overall programmatic decision on Reconfiguration of the Weapons Complex. Finally, construction of the Replacement Tritium Facility (RTF) was resumed in December 1991 after several months stoppage for evaluation and revision of project funding procedures.

Majzlik, E.H. Jr.

1992-01-01T23:59:59.000Z

33

Westinghouse advanced particle filter system  

SciTech Connect (OSTI)

Integrated Gasification Combined Cycles (IGCC), Pressurized Fluidized Bed Combustion (PFBC) and Advanced PFBC (APFB) are being developed and demonstrated for commercial power generation application. Hot gas particulate filters are key components for the successful implementation of IGCC, PFBC and APFB in power generation gas turbine cycles. The objective of this work is to develop and qualify through analysis and testing a practical hot gas ceramic barrier filter system that meets the performance and operational requirements of these advanced, solid fuel power generation cycles.

Lippert, T.E.; Bruck, G.J.; Sanjana, Z.N.; Newby, R.A.

1995-11-01T23:59:59.000Z

34

Westinghouse Lighting: Order (2010-CE-09/1001)  

Broader source: Energy.gov [DOE]

DOE ordered Westinghouse Lighting Corporation to pay a $50,000 civil penalty after finding Westinghouse Lighting had failed to certify that certain models of general service flourescent and incandescent reflector lamps comply with the applicable energy conservation standards.

35

Westinghouse Small Modular Reactor balance of plant and supporting systems design  

SciTech Connect (OSTI)

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor (iPWR), in which all of the components typically associated with the nuclear steam supply system (NSSS) of a nuclear power plant are incorporated within a single reactor pressure vessel. This paper is the second in a series of four papers which describe the design and functionality of the Westinghouse SMR. It focuses, in particular, upon the supporting systems and the balance of plant (BOP) designs of the Westinghouse SMR. Several Westinghouse SMR systems are classified as safety, and are critical to the safe operation of the Westinghouse SMR. These include the protection and monitoring system (PMS), the passive core cooling system (PXS), and the spent fuel cooling system (SFS) including pools, valves, and piping. The Westinghouse SMR safety related systems include the instrumentation and controls (I and C) as well as redundant and physically separated safety trains with batteries, electrical systems, and switch gears. Several other incorporated systems are non-safety related, but provide functions for plant operations including defense-in-depth functions. These include the chemical volume control system (CVS), heating, ventilation and cooling (HVAC) systems, component cooling water system (CCS), normal residual heat removal system (RNS) and service water system (SWS). The integrated performance of the safety-related and non-safety related systems ensures the safe and efficient operation of the Westinghouse SMR through various conditions and transients. The turbine island consists of the turbine, electric generator, feedwater and steam systems, moisture separation systems, and the condensers. The BOP is designed to minimize assembly time, shipping challenges, and on-site testing requirements for all structures, systems, and components. (authors)

Memmott, M. J.; Stansbury, C.; Taylor, C. [Westinghouse Electric Company LLC, 600 Cranberry Woods Drive, Cranberry Twp. PA 16066 (United States)

2012-07-01T23:59:59.000Z

36

Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Noncompliance Determination to Westinghouse Lighting Corporation finding that model F40T12/CWE (Westinghouse product code 07521000), a general service fluorescent lamp, and model 15GLOBE/65/2 (Westinghouse product code 3800400), a medium base compact fluorescent lamp, do not comport with the energy conservation standards.

37

Westinghouse-DOE integration: Meeting the challenge  

SciTech Connect (OSTI)

The Westinghouse Electric Corporation (WEC) is in a unique position to affect national environmental management policy approaching the 21st Century. Westinghouse companies are management and operating contractors (MOC,s) at several environmentally pivotal government-owned, contractor operated (GOCO) facilities within the Department of Energy`s (DOE`s) nuclear defense complex. One way the WEC brings its companies together is by activating teams to solve specific DOE site problems. For example, one challenging issue at DOE facilities involves the environmentally responsible, final disposal of transuranic and high-level nuclear wastes (TRUs and HLWS). To address these disposal issues, the DOE supports two Westinghouse-based task forces: The TRU Waste Acceptance Criteria Certification Committee (WACCC) and the HLW Vitrification Committee. The WACCC is developing methods to characterize an estimated 176,287 cubic meters of retrievably stored TRUs generated at DOE production sites. Once characterized, TRUs could be safely deposited in the WIPP repository. The Westinghouse HLW Vitrification Committee is dedicated to assess appropriate methods to process an estimated 380,702 cubic meters of HLWs currently stored in underground storage tanks (USTs). As planned, this processing will involve segregating, and appropriately treating, low level waste (LLW) and HLW tank constituents for eventual disposal. The first unit designed to process these nuclear wastes is the SRS Defense Waste Processing Facility (DWPF). Initiated in 1973, the DWPF project is scheduled to begin operations in 1991 or 1992. Westinghouse companies are also working together to achieve appropriate environmental site restoration at DOE sites via the GOCO Environmental Restoration Committee.

Price, S.V.

1992-12-31T23:59:59.000Z

38

Westinghouse Lighting: Noncompliance Determination (2010-CE-09/1001)  

Broader source: Energy.gov [DOE]

DOE issued a Notice of Noncompliance Determination to Westinghouse Lighting Corporation finding that various models of incandescent reflector lamps do not comport with the energy conservation standards.

39

DOE - Office of Legacy Management -- Westinghouse Advanced Reactors...  

Office of Legacy Management (LM)

Advanced Reactors Div Plutonium and Advanced Fuel Labs - PA 10 FUSRAP Considered Sites Site: WESTINGHOUSE ADVANCED REACTORS DIV., PLUTONIUM FUEL LABORATORIES, AND THE ADVANCED FUEL...

40

Westinghouse and Fuzhou Permitted to Restart Distribution of...  

Broader source: Energy.gov (indexed) [DOE]

determining, based on corrected test data provided by Westinghouse, that the incandescent reflector lamps listed below are compliant with the federal energy conservation...

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Westinghouse GOCO conduct of casualty drills  

SciTech Connect (OSTI)

Purpose of this document is to provide Westinghouse Government Owned Contractor Operated (GOCO) Facilities with information that can be used to implement or improve drill programs. Elements of this guide are highly recommended for use when implementing a new drill program or when assessing an existing program. Casualty drills focus on response to abnormal conditions presenting a hazard to personnel, environment, or equipment; they are distinct from Emergency Response Exercises in which the training emphasis is on site, field office, and emergency management team interaction. The DOE documents which require team training and conducting drills in nuclear facilities and should be used as guidance in non-nuclear facilities are: DOE 5480.19 (Chapter 1 of Attachment I) and DOE 5480.20 (Chapter 1, paragraphs 7 a. and d. of continuing training). Casualty drills should be an integral part of the qualification and training program at every DOE facility.

Ames, C.P.

1996-02-01T23:59:59.000Z

42

LWZ-0031- In the Matter of Westinghouse Hanford Company  

Broader source: Energy.gov [DOE]

This determination will consider a Motion to Dismiss filed by Westinghouse Hanford Company (WHC) on April 5, 1994. In its Motion, WHC seeks the dismissal of the underlying complaint and hearing...

43

Westinghouse Lighting: Proposed Penalty (2010-CE-09/1001)  

Broader source: Energy.gov [DOE]

DOE alleged in a Notice of Proposed Civil Penalty that Westinghouse Lighting Corporation failed to certify various flourescent and incandescent reflector lamps as compliant with the applicable energy conservation standards.

44

Westinghouse Small Modular Reactor passive safety system response to postulated events  

SciTech Connect (OSTI)

The Westinghouse Small Modular Reactor (SMR) is an 800 MWt (>225 MWe) integral pressurized water reactor. This paper is part of a series of four describing the design and safety features of the Westinghouse SMR. This paper focuses in particular upon the passive safety features and the safety system response of the Westinghouse SMR. The Westinghouse SMR design incorporates many features to minimize the effects of, and in some cases eliminates the possibility of postulated accidents. The small size of the reactor and the low power density limits the potential consequences of an accident relative to a large plant. The integral design eliminates large loop piping, which significantly reduces the flow area of postulated loss of coolant accidents (LOCAs). The Westinghouse SMR containment is a high-pressure, compact design that normally operates at a partial vacuum. This facilitates heat removal from the containment during LOCA events. The containment is submerged in water which also aides the heat removal and provides an additional radionuclide filter. The Westinghouse SMR safety system design is passive, is based largely on the passive safety systems used in the AP1000{sup R} reactor, and provides mitigation of all design basis accidents without the need for AC electrical power for a period of seven days. Frequent faults, such as reactivity insertion events and loss of power events, are protected by first shutting down the nuclear reaction by inserting control rods, then providing cold, borated water through a passive, buoyancy-driven flow. Decay heat removal is provided using a layered approach that includes the passive removal of heat by the steam drum and independent passive heat removal system that transfers heat from the primary system to the environment. Less frequent faults such as loss of coolant accidents are mitigated by passive injection of a large quantity of water that is readily available inside containment. An automatic depressurization system is used to reduce the reactor pressure in a controlled manner to facilitate the passive injection. Long-term decay heat removal is accomplished using the passive heat removal systems augmented by heat transfer through the containment vessel to the environment. The passive injection systems are designed so that the fuel remains covered and effectively cooled throughout the event. Like during the frequent faults, the passive systems provide effective cooling without the need for ac power for seven days following the accident. Connections are available to add additional water to indefinitely cool the plant. The response of the safety systems of the Westinghouse SMR to various initiating faults has been examined. Among them, two accidents; an extended station blackout event, and a LOCA event have been evaluated to demonstrate how the plant will remain safe in the unlikely event that either should occur. (authors)

Smith, M. C.; Wright, R. F. [Westinghouse Electric Company, 600 Cranberry Woods Drive (United States)

2012-07-01T23:59:59.000Z

45

Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production, Nuclear Energy Research Initiative Project 2001-001, Westinghouse Electric Co. Grant Number: DE-FG07-02SF22533, Final Report  

SciTech Connect (OSTI)

The supercritical water-cooled reactor (SCWR) is one of the six reactor technologies selected for research and development under the Generation IV program. SCWRs are promising advanced nuclear systems because of their high thermal efficiency (i.e., about 45% versus about 33% efficiency for current Light Water Reactors [LWRs]) and considerable plant simplification. SCWRs are basically LWRs operating at higher pressure and temperatures with a direct once-through cycle. Operation above the critical pressure eliminates coolant boiling, so the coolant remains single-phase throughout the system. Thus, the need for a pressurizer, steam generators, steam separators, and dryers is eliminated. The main mission of the SCWR is generation of low-cost electricity. It is built upon two proven technologies: LWRs, which are the most commonly deployed power generating reactors in the world, and supercritical fossil-fired boilers, a large number of which are also in use around the world. The reference SCWR design for the U.S. program is a direct cycle system operating at 25.0 MPa, with core inlet and outlet temperatures of 280 and 500 C, respectively. The coolant density decreases from about 760 kg/m3 at the core inlet to about 90 kg/m3 at the core outlet. The inlet flow splits with about 10% of the inlet flow going down the space between the core barrel and the reactor pressure vessel (the downcomer) and about 90% of the inlet flow going to the plenum at the top of the rector pressure vessel, to then flow down through the core in special water rods to the inlet plenum. Here it mixes with the feedwater from the downcomer and flows upward to remove the heat in the fuel channels. This strategy is employed to provide good moderation at the top of the core. The coolant is heated to about 500 C and delivered to the turbine. The purpose of this NERI project was to assess the reference U.S. Generation IV SCWR design and explore alternatives to determine feasibility. The project was organized into three tasks: Task 1. Fuel-cycle Neutronic Analysis and Reactor Core Design Task 2. Fuel Cladding and Structural Material Corrosion and Stress Corrosion Cracking Task 3. Plant Engineering and Reactor Safety Analysis. moderator rods. materials.

Philip E. MacDonald

2005-01-01T23:59:59.000Z

46

Westinghouse Hanford Company Conduct of Operations Manual: GOCO Cross-Cultivation Committee, Operational Excellence Task Force  

SciTech Connect (OSTI)

This manual has been prepared to establish guidelines that are to be used at all Westinghouse Government Operations Business Unit (GOBU) sites and Westinghouse Savannah River Company (WSRC). The purpose of the manual is to establish standards that comply with the requirements of Department of Energy (DOE) Order 5480.19, Conduct of Operations Requirements for DOE Facilities'' and that will be used at all Westinghouse Government Operations Business Unit sites and Westinghouse Savannah River Company.

Schilperoort, D.

1991-11-01T23:59:59.000Z

47

Westinghouse Hanford Company Conduct of Operations Manual: GOCO Cross-Cultivation Committee, Operational Excellence Task Force  

SciTech Connect (OSTI)

This manual has been prepared to establish guidelines that are to be used at all Westinghouse Government Operations Business Unit (GOBU) sites and Westinghouse Savannah River Company (WSRC). The purpose of the manual is to establish standards that comply with the requirements of Department of Energy (DOE) Order 5480.19, ``Conduct of Operations Requirements for DOE Facilities`` and that will be used at all Westinghouse Government Operations Business Unit sites and Westinghouse Savannah River Company.

Schilperoort, D.

1991-11-01T23:59:59.000Z

48

Disposition of weapons-grade plutonium in Westinghouse reactors  

E-Print Network [OSTI]

We have studied the feasibility of using weapons-grade plutonium in the form of mixed-oxide (MOX) fuel in existing Westinghouse reactors. We have designed three transition cycles from an all LEU core to a partial MOX core. We found that four...

Alsaed, Abdelhalim Ali

2012-06-07T23:59:59.000Z

49

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER...  

Broader source: Energy.gov (indexed) [DOE]

the Petitioner's technical expertise, established market position, and significant investment in this technology, including substantial cost sharing under this agreement, it...

50

REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE...  

Broader source: Energy.gov (indexed) [DOE]

is granted. Specifically, Petitioner agrees to abide by the conditions set forth at 10 CFR 784 relating to the Government license, march-in rights, and preference for U.S....

51

STATEMENT OF CONSIDERATIONS REQUEST BY SIEMENS WESTINGHOUSE POWER...  

Broader source: Energy.gov (indexed) [DOE]

agreement will be modified to add the Patent Rights-Waiver clause in conformance with 10 CFR 784.12, wherein Siemens has agreed to the provisions of 35 U.S.C 202, 203, and...

52

REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE...  

Broader source: Energy.gov (indexed) [DOE]

be replaced by the Patent Rights-Waiver clause (attached hereto) in conformance with 10 CFR 784.12, as a no-cost modification to the subcontract. SWPC has approved the Patent...

53

REQUEST BY SIEMENS WESTINGHOUSE POWER CORPORATION FOR AN ADVANCE...  

Broader source: Energy.gov (indexed) [DOE]

The scope of the work calls for SWPC to identify and address the key hot corrosion and oxidation issues that are associated with the utilization of porous metal filter...

54

DOE - Office of Legacy Management -- Westinghouse Atomic Power Development  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -NewPlant - PA 04 Atomic

55

Siemens Westinghouse Power Generation SWPG | Open Energy Information  

Open Energy Info (EERE)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data CenterFranconia, Virginia:FAQ < RAPID Jump to:Seadov Pty Ltd Jump to: navigation,Pvt LtdShrub Oak, New York:Siemens SA Jump

56

Westinghouse conduct of operations manual as a tool  

SciTech Connect (OSTI)

This presentation discusses the Westinghouse Government-Owned and Contractor-Operated (GOCO) Conduct of Operations Manual and how it compares with US Department of Energy (DOE) Order 5480.19 and with the Price Anderson Safety Guide, 10 CFR 830.310. This presentation will focus on what has been added to the requirements of the DOE order and how these items can be used as tools to create excellence in operation.

Schilperoort, D.L.; Scanlan, P.R.

1992-04-01T23:59:59.000Z

57

Assessment of ISLOCA risk: Methodology and application to a Westinghouse four-loop ice condenser plant  

SciTech Connect (OSTI)

Inter-system loss-of-coolant accidents (ISLOCAs) have been identified as important contributors to offsite risk for some nuclear power plants. A methodology has been developed for identifying and evaluating plant-specific hardware designs, human factors issues, and accident consequence factors relevant to the estimation of ISLOCA core damage frequency and risk. This report presents a detailed description of the application of this analysis methodology to a Westinghouse four-loop ice condenser plant. This document also includes appendices A through I which provide: System descriptions; ISLOCA event trees; human reliability analysis; thermal hydraulic analysis; core uncovery timing calculations; calculation of system rupture probability; ISLOCA consequences analysis; uncertainty analysis; and component failure analysis.

Kelly, D.L.; Auflick, J.L.; Haney, L.N. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

1992-04-01T23:59:59.000Z

58

Westinghouse Pays $50,000 Civil Penalty to Resolve Light Bulb...  

Office of Environmental Management (EM)

of Energy has successfully resolved the enforcement case against Westinghouse Lighting Corporation for failure to certify its light bulbs as compliant with DOE's federal...

59

DOE Requires Westinghouse to Cease Sales of Two Light Bulb Models...  

Broader source: Energy.gov (indexed) [DOE]

and Fuzhou Sunlight Lighting Electrical Appliance Company to allow the companies to resume sales of an incandescent reflector lamp basic model 50PAR30F (Westinghouse product...

60

Office of Inspector General audit report on Westinghouse Savannah River Company`s health benefit plan  

SciTech Connect (OSTI)

Westinghouse Savannah River Company (Westinghouse) manages and operates the Savannah River Site, located in Aiken, South Carolina, for the US Department of Energy (Department). Westinghouse was self-insured for health benefits and contracted with Aetna Insurance to administer the plan (service payments to providers) from Calendar Year (CY) 1989 through 1996. Westinghouse`s administrative service contract with Aetna Insurance expired on December 31, 1996. Westinghouse chose Blue Cross/Blue Shield of South Carolina (BC/BS) to administer its health plan, effective January 1, 1997. After the contract was awarded to BC/BS, 47 health care providers in the Aiken area submitted their resignations as preferred providers for BC/BS. The health care providers complained that the fees received from BC/BS were less than they were previously paid through Aetna Insurance. As a result, Westinghouse instructed BC/BS to negotiate a modified fee schedule for all the health care providers in the Aiken area. The audit objective was to determine whether the health benefit costs incurred by Westinghouse under the BC/BS contract were necessary and reasonable.

NONE

1999-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

Westinghouse Waste Simulation and Optimization Software Tool - 13493  

SciTech Connect (OSTI)

Radioactive waste is produced during NPP operation and NPP D and D. Different kinds of waste with different volumes and properties have to be treated. Finding a technically and commercially optimized waste treatment concept is a difficult and time consuming process. The Westinghouse waste simulation and optimization software tool is an approach to study the total life cycle cost of any waste management facility. The tool enables the user of the simulation and optimization software to plan processes and storage buildings and to identify bottlenecks in the overall waste management design before starting detailed planning activities. Furthermore, application of the software enables the user to optimize the number of treatment systems, to determine the minimum design capacity for onsite storage facilities, to identify bottlenecks in the overall design and to identify the most cost-effective treatment paths by maintaining optimal waste treatment technologies. In combination with proven waste treatment equipment and integrated waste management solutions, the waste simulation and optimization software provides reliable qualitative results that lead to an effective planning and minimization of the total project planning risk of any waste management activity. (authors)

Mennicken, Kim [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Dudenstrasse 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

2013-07-01T23:59:59.000Z

62

Westinghouse Modular Grinding Process - Enhancement of Volume Reduction for Hot Resin Supercompaction - 13491  

SciTech Connect (OSTI)

In nuclear power plants (NPP) ion exchange (IX) resins are used in several systems for water treatment. Spent resins can contain a significant amount of contaminates which makes treatment for disposal of spent resins mandatory. Several treatment processes are available such as direct immobilization with technologies like cementation, bitumisation, polymer solidification or usage of a high integrity container (HIC). These technologies usually come with a significant increase in final waste volume. The Hot Resin Supercompaction (HRSC) is a thermal treatment process which reduces the resin waste volume significantly. For a mixture of powdered and bead resins the HRSC process has demonstrated a volume reduction of up to 75 % [1]. For bead resins only the HRSC process is challenging because the bead resins compaction properties are unfavorable. The bead resin material does not form a solid block after compaction and shows a high spring back effect. The volume reduction of bead resins is not as good as for the mixture described in [1]. The compaction properties of bead resin waste can be significantly improved by grinding the beads to powder. The grinding also eliminates the need for a powder additive.Westinghouse has developed a modular grinding process to grind the bead resin to powder. The developed process requires no circulation of resins and enables a selective adjustment of particle size and distribution to achieve optimal results in the HRSC or in any other following process. A special grinding tool setup is use to minimize maintenance and radiation exposure to personnel. (authors)

Fehrmann, Henning [Westinghouse Electric Germany GmbH, Dudenstr. 44, D-68167 Mannheim (Germany)] [Westinghouse Electric Germany GmbH, Dudenstr. 44, D-68167 Mannheim (Germany); Aign, Joerg [Westinghouse Electric Germany GmbH, Global D and D and Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)] [Westinghouse Electric Germany GmbH, Global D and D and Waste Management, Tarpenring 6, D-22419 Hamburg (Germany)

2013-07-01T23:59:59.000Z

63

Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company  

SciTech Connect (OSTI)

Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

Paller, M. (Westinghouse Savannah River Co., Aiken, SC (United States))

1992-03-26T23:59:59.000Z

64

Westinghouse Hanford Company Pollution Prevention Program Implementation Plan  

SciTech Connect (OSTI)

This plan documents Westinghouse Hanford Company`s (WHC) Pollution Prevention (P2) (formerly Waste Minimization) program. The program includes WHC; BCS Richland, Inc. (BCSR); and ICF Kaiser Hanford Company (ICF KH). The plan specifies P2 program activities and schedules for implementing the Hanford Site Waste Minimization and Pollution Prevention Awareness (WMin/P2) Program Plan requirements (DOE 1994a). It is intended to satisfy the U.S. Department of Energy (DOE) and other legal requirements that are discussed in both the Hanford Site WMin/P2 plan and paragraph C of this plan. As such, the Pollution Prevention Awareness Program required by DOE Order 5400.1 (DOE 1988) is included in the WHC P2 program. WHC, BCSR, and ICF KH are committed to implementing an effective P2 program as identified in the Hanford Site WMin/P2 Plan. This plan provides specific information on how the WHC P2 program will develop and implement the goals, activities, and budget needed to accomplish this. The emphasis has been to provide detailed planning of the WHC P2 program activities over the next 3 years. The plan will guide the development and implementation of the program. The plan also provides background information on past program activities. Because the plan contains greater detail than in the past, activity scope and implementation schedules may change as new priorities are identified and new approaches are developed and realized. Some activities will be accelerated, others may be delayed; however, all of the general program elements identified in this plan and contractor requirements identified in the Site WMin/P2 plan will be developed and implemented during the next 3 years. This plan applies to all WHC, BCSR, and ICF KH organizations and subcontractors. It will be distributed to those with defined responsibilities in this plan; and the policy, goals, objectives, and strategy of the program will be communicated to all WHC, BCSR, and ICF KH employees.

Floyd, B.C.

1994-10-01T23:59:59.000Z

65

In-Vessel Retention Technology Development and Use for Advanced PWR Designs in the USA and Korea  

SciTech Connect (OSTI)

In-Vessel Retention (IVR) of molten core debris by means of external reactor vessel flooding is a cornerstone of severe accident management for Westinghouse's AP600 (advanced passive light water reactor) design. The case for its effectiveness (made in previous work by the PI) has been thoroughly documented, reviewed as part of the licensing certification, and accepted by the US Nuclear Regulatory Commission. A successful IVR would terminate a severe accident, passively, with the core in a stable, coolable configuration (within the lower head), thus avoiding the largely uncertain accident evolution with the molten debris on the containment floor. This passive plant design has been upgraded by Westinghouse to the AP1000, a 1000 MWe plant very similar to the AP600. The severe accident management approach is very similar too, including In-Vessel Retention as the cornerstone feature, and initial evaluations indicated that this would be feasible at the higher power as well. A similar strategy is adopted in Korea for the APR1400 plant. The overall goal of this project is to provide experimental data and develop the necessary basic understanding so as to allow the robust extension of the AP600 In-Vessel Retention strategy for severe accident management to higher power reactors, and in particular, to the AP1000 advanced passive design.

T.G. Theofanous; S.J. Oh; J.H. Scobel

2004-05-18T23:59:59.000Z

66

Westinghouse Hanford Company quality assurance program and implementation plan  

SciTech Connect (OSTI)

This is the first revision of the Quality AssurancePlan/Implementation Plan (QAP/IP) for nuclear facilities managedand operated by the Westinghouse Hanford Company (WHC).Development of the initial IP required review of the WHC qualityassurance program to the requirements of the 10 CFR 830.120, andcompletion of initial baseline assessments against the QAP toverify implementation of the program. Each WHC-managed nuclearfacility provided a stand-alone section to the QAP/IP, describingits mission and life-cycle status. WHC support organizationsalso performed assessments for their lead areas, and providedinputs to a separate stand-alone section with the initialbaseline assessment results. In this first revision, the initialbaseline matrixes for those facilities found to be in compliancewith the QAP have been removed. Tank Waste Remediation System(TWRS) and K Basins have modified their baseline matrixes to showcompletion of action items to date. With the followingexceptions, the WHC-managed nuclear facilities and their supportorganizations were found to have implemented QA programs thatsatisfy the requirements of 10 CFR 830.120. TWRS identifiedImplementation Plan Action Items having to do with: generationand revision of as-built drawings; updating TWRS organizationaland program documents; tracking the condition/age ofmaterials/equipment; and reconstitution of design bases forexisting, active facilities. No incremental funding needs wereidentified for FY95. For FY97, TWRS identified incrementalfunding in the amount of $65,000 for as-built drawings, and$100,000 for tracking the age/condition of materials/equipment.The K Basin Fuel Storage Facility identified Implementation PlanAction Items having to do with: training; updating procedures;establishing configuration management; reconstituting designbases; and providing darwings; and developing integrated,resource-loaded schedules. Incremental funding needs in theamount of $1.7 million were identified, over a time periodthrough March 1996, to implement the actions. The costs were allassociated with the actions on training ($300K) and configurationmanagement, design bases, and drawings ($1.4M). Schedulardetails and compensatory measures for the action items areprovided in Appendices A and D to this document.

Moss, S.S., Westinghouse Hanford

1996-07-01T23:59:59.000Z

67

1992 Environmental Summer Science Camp Program evaluation. The International Environmental Institute of Westinghouse Hanford Company  

SciTech Connect (OSTI)

This report describes the 1992 Westinghouse Hanford Company/US Department of Energy Environmental Summer Science Camp. The objective of the ``camp`` was to motivate sixth and seventh graders to pursue studies in math, science, and the environment. This objective was accomplished through hands-on fun activities while studying the present and future challenges facing our environment. The camp was funded through Technical Task Plan, 424203, from the US Department of Energy-Headquarters, Office of Environmental Restoration and Waste Management, Technology Development,to Westinghouse Hanford Company`s International Environmental Institute, Education and Internship Performance Group.

Not Available

1993-07-01T23:59:59.000Z

68

Dynamic system characterization of an integral test facility of an advanced PWR  

E-Print Network [OSTI]

This work characterizes the dynamic behavior for the modified Large Scale Test Facility (LSTF), which has been selected by the U.S. Nuclear Regulatory Commission for confirmatory testing of the Westinghouse AP600 design. The LSTF is performing a...

Smith, Simon Gregory

1995-01-01T23:59:59.000Z

69

Westinghouse Hanford Company (WHC) standards/requirements identification document (S/RID)  

SciTech Connect (OSTI)

This Standards/Requirements Identification Document (S/RID) set forth the Environmental Safety and Health (ES&H) standards/requirements for Westinghouse Hanford Company Level Programs, where implementation and compliance is the responsibility of these organizations. These standards/requirements are adequate to ensure the protection of the health and safety of workers, the public, and the environment.

Bennett, G.L.

1996-03-15T23:59:59.000Z

70

E-Print Network 3.0 - ap600 safety system Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

system has a safety case, regardless... the system is acceptably safe. The ... Source: Kelly, Tim - Department of Computer Science, University of York (UK) Collection: Computer...

71

E-Print Network 3.0 - ap600 testing program Sample Search Results  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Modular Pebble Bed Reactor Collection: Fission and Nuclear Technologies 4 NUCLEAR ENERGY RENAISSANCE:NUCLEAR ENERGY RENAISSANCE: ADDRESSING THE CHALLENGES OF CLIMATE CHANGE...

72

E-Print Network 3.0 - ap600 design certification Sample Search...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

. Further darifications regarding the scope of this certificate and the applicability of ISO 9001 :2000 Source: US Army Corps of Engineers - Coastal and Hydraulics Laboratory...

73

Aging mechanisms in the Westinghouse PWR (Pressurized Water Reactor) Control Rod Drive system  

SciTech Connect (OSTI)

An aging assessment of the Westinghouse Pressurized Water Reactor (PWR) Control Rod System (CRD) has been completed as part of the US NRC's Nuclear Plant Aging Research, (NPAR) Program. This study examined the design, construction, maintenance, and operation of the system to determine its potential for degradation as the plant ages. Selected results from this study are presented in this paper. The operating experience data were evaluated to identify the predominant failure modes, causes, and effects. From our evaluation of the data, coupled with an assessment of the materials of construction and the operating environment, we conclude that the Westinghouse CRD system is subject to degradation which, if unchecked, could affect its safety function as a plant ages. Ways to detect and mitigate the effects of aging are included in this paper. The current maintenance for the control rod drive system at fifteen Westinghouse PWRs was obtained through a survey conducted in cooperation with EPRI and NUMARC. The results of the survey indicate that some plants have modified the system, replaced components, or expanded preventive maintenance. Several of these activities have effectively addressed the aging issue. 2 refs., 2 figs., 2 tabs.

Gunther, W.; Sullivan, K.

1991-01-01T23:59:59.000Z

74

Ichthyoplankton entrainment study at the SRS Savannah River water intakes for Westinghouse Savannah River Company. Final report  

SciTech Connect (OSTI)

Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in the river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.

Paller, M. [Westinghouse Savannah River Co., Aiken, SC (United States)

1992-03-26T23:59:59.000Z

75

WA_98_005_WESTINGHOUSE_POWER_GENERATION_A_FORMER_DIVISION_OF...  

Broader source: Energy.gov (indexed) [DOE]

5WESTINGHOUSEPOWERGENERATIONAFORMERDIVISIONOF.pdf WA98005WESTINGHOUSEPOWERGENERATIONAFORMERDIVISIONOF.pdf WA98005WESTINGHOUSEPOWERGENERATIONAFORMERDIVISION...

76

WA_98_006_WESTINGHOUSE_POWER_GENERATION_A_FORMER_DIVISION_OF...  

Broader source: Energy.gov (indexed) [DOE]

6WESTINGHOUSEPOWERGENERATIONAFORMERDIVISIONOF.pdf WA98006WESTINGHOUSEPOWERGENERATIONAFORMERDIVISIONOF.pdf WA98006WESTINGHOUSEPOWERGENERATIONAFORMERDIVISION...

77

DOE - Office of Legacy Management -- Westinghouse Atomic Power Div - PA 16  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -NewPlant - PA 04

78

Westinghouse Pays $50,000 Civil Penalty to Resolve Light Bulb Efficiency  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf TheViolations | Department of Energy Westinghouse Pays $50,000

79

Environmental assessment for decontaminating and decommissioning the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, PA  

SciTech Connect (OSTI)

The Department of Energy has prepared an environmental assessment on the proposed decontamination and decommissioning of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania. Based on the environmental assessment, which is available to the public on request, the Department has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969, 42 USC 4321 et seq. Therefore, no environmental impact statement is required. The proposed action is to decontaminate and decommission the Westinghouse Advanced Reactors Division fuel fabrication facilities (the Plutonium Laboratory - Building 7, and the Advanced Fuels Laboratory - Building 8). Decontamination and decommissioning of the facilities would require removal of all process equipment, the associated service lines, and decontamination of the interior surfaces of the buildings so that the empty buildings could be released for unrestricted use. Radioactive waste generated during these activities would be transported in licensed containers by truck for disposal at the Department's facility at Hanford, Washington. Useable non-radioactive materials would be sold as excess material, and non-radioactive waste would be disposed of by burial as sanitary landfill at an approved site.

Not Available

1980-12-01T23:59:59.000Z

80

U.S. Department of Energy Office of Inspector General report on inspection of Westinghouse Savannah River Company fees for managing and operating the Savannah River Site  

SciTech Connect (OSTI)

During the first five years of its contract with the Department of Energy, Westinghouse Savannah River Company was paid over $130 million in fees to manage and operate the Savannah River Site. Fees paid to Westinghouse steadily increased over the five year period. For example, fees paid for the last six months of this five year period were over three times as large as fees paid for the first six months. The purpose of this inspection was to review the Department`s annual negotiation of total available fees with Westinghouse, and to examine the reasons for the growth in fees over this five year period. The review disclosed that, after Fiscal Year 1989, the Department used an increasing number of fee bases in calculating Westinghouse Savannah River Company`s fixed-fee-equivalents from the maximum fee schedules within the Department of Energy Acquisition Regulation. The authors found that the Department had significantly increased the percentage of the dollar value of subcontracts being placed in Westinghouse`s fee bases for fee calculation purposes. They found that the Department had effectively increased Westinghouse`s fixed-fee-equivalents by approximately $3 million in both Fiscal Year 1993 and 1994 to, in large part, fund an unallowable employee incentive compensation program. They found that Westinghouse`s total paid fees for the five year period increased significantly over what they would have been had the terms resulting from the original competitive negotiations been maintained. The authors recommended that the Deputy Assist Secretary for Procurement and Assistance Management require that changes in either the number or composition of fee bases used in calculating fees from the maximum fee schedules be submitted to the Department`s Procurement Executive for approval.

NONE

1995-08-03T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

Westinghouse Hanford Company operational environmental monitoring annual report, calendar year 1994  

SciTech Connect (OSTI)

This document presents the results of the Westinghouse Hanford Company near-facility operational environmental monitoring for 1994 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air surface water, groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities are still seen on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

Schmidt, J.; Fassett, J.W.; Johnson, A.R.; Johnson, V.G.; Markes, B.M.; McKinney, S.M.; Moss, K.J.; Perkins, C.J.; Richterich, L.R.

1995-08-01T23:59:59.000Z

82

Westinghouse Hanford Company operational environmental monitoring annual report - calendar year 1995  

SciTech Connect (OSTI)

This document summarizes the results of the Westinghouse Hanford Company (WHC) near-facility operational environmental monitoring for 1995 in the 100, 200/600, and 300/400 Areas of the Hanford Site, in south-central Washington State. Surveillance activities included sampling and analyses of ambient air, surface water,groundwater, soil, sediments, and biota. Also, external radiation measurements and radiological surveys were taken at waste disposal sites, radiologically controlled areas, and roads. These activities were conducted to assess and control the effects of nuclear facilities and waste sites on the local environment. In addition, diffuse sources were monitored to determine compliance with Federal, State, and/or local regulations. In general, although effects from nuclear facilities can still be observed on the Hanford Site and radiation levels are slightly elevated when compared to offsite locations, the differences are less than in previous years.

Schmidt, J.W., Westinghouse Hanford

1996-07-30T23:59:59.000Z

83

Identification of items and activities important to waste form acceptance by Westinghouse GoCo sites  

SciTech Connect (OSTI)

The Department of Energy has established specifications (Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms, or WAPS) for canistered waste forms produced at Hanford, Savannah River, and West Valley. Compliance with these specifications requires that each waste form producer identify the items and activities which must be controlled to ensure compliance. As part of quality assurance oversight activities, reviewers have tried to compare the methodologies used by the waste form producers to identify items and activities important to waste form acceptance. Due to the lack of a documented comparison of the methods used by each producer, confusion has resulted over whether the methods being used are consistent. This confusion has been exacerbated by different systems of nomenclature used by each producer, and the different stages of development of each project. The waste form producers have met three times in the last two years, most recently on June 28, 1993, to exchange information on each producer`s program. These meetings have been sponsored by the Westinghouse GoCo HLW Vitrification Committee. This document is the result of this most recent exchange. It fills the need for a documented comparison of the methodologies used to identify items and activities important to waste form acceptance. In this document, the methodology being used by each waste form producer is summarized, and the degree of consistency among the waste form producers is determined.

Plodinec, M.J.; Marra, S.L. [Westinghouse Savannah River Co., Aiken, SC (United States); Dempster, J. [West Valley Demonstration Project, NY (United States); Randklev, E.H. [Hanford Waste Vitrification Plant (United States)

1993-10-12T23:59:59.000Z

84

The simulation of a 1-inch break loss-of-coolant accident at the ROSA-IV/AP600 test facility using RELAP5/AP600 test facility using RELAP5/MOD3.2  

E-Print Network [OSTI]

-flow junctions nodalization was chosen for further study. The code predictions with the two-regions nodes produced thermal stratifications in Loop A and Loop B Cold Legs of 132' K and 74' K, respectively. This is approximately 50' K less than the maximum seen...

Piper, Robert Beverly

1995-01-01T23:59:59.000Z

85

Letter Report for Analytical Results for Two Soil Samples Associated with the Westinghouse Hematite Decommisioning Project in Hematite Missouri  

SciTech Connect (OSTI)

Oak Ridge Associated Universities (ORAU), under the Oak Ridge Institute for Science and Education (ORISE) contract, received two soil samples on September 26, 2013 from the Westinghouse Hetnatite Decomminsioning project in Hematite, Missouri. The samples were analyzed for thorium-232, radium-226, uranium-235, and uranium-238 by gamma spectrometry and technetium-99 by liquid scintillation analysis. The samples were received in good condition. The sample collection data and identification numbers are tabulated. Also presented are the gamma spectrometry and technetium-99 data, respectively. The pertinent procedure references are included with the data tables.

Ivey, Wade

2013-10-30T23:59:59.000Z

86

Analysis of a 4-inch small-break loss-of-coolant accident in a Westinghouse Pressurized Water Reactor using TRAC-PF1/MOD1  

E-Print Network [OSTI]

ANALYSIS OF A 4-INCH SMALL-BREAK LOSS-OF-COO~ ACCIDENT IN A WESTINGHOUSE PRESSURIZED WATER REACTOR USING TRAC-PFI/MOD I. A Thesis by KIMBERLEY I. R, KNIPPEL Submitted to the Office of Graduate Studies of Texas A&M University in partial... fulfillment of the requirements for the degree of MASTER OF SCIENCE December 1988 Major Subject: Nuclear Engineering ANALYSIS OF A 4-INCH SMALL-BREAK LOSS-OF-COOLANT ACCIDENT IN A WESTINGHOUSE PRESSURIZED WATER REACTOR USING TRAC-PF I/MOD I. A Thesis...

Knippel, Kimberley I.R.

2012-06-07T23:59:59.000Z

87

Assessment of Metal Media Filters for Advanced Coal-Based Power Generation Applications  

SciTech Connect (OSTI)

Advanced coal and biomass-based gas turbine power generation technologies (IGCC, PFBC, PCFBC, and Hipps) are currently under development and demonstration. Efforts at Siemens Westinghouse Power Corporation (SWPC) have been focused on the development and demonstration of hot gas filter systems as an enabling technology for power generation. This paper reviews SWPC's material and component assessment efforts, identifying the performance, stability, and life of porous metal, advanced alloy, and intermetallic filters under simulated, pressurized fluidized-bed combustion conditions.

Alvin, M.A.

2002-09-19T23:59:59.000Z

88

Westinghouse Hanford Company ALARA year-end report, Calendar Year 1994: Revision 3A, Radiological engineering and ALARA  

SciTech Connect (OSTI)

It has long been the US Department of Energy`s (DOE`s) Policy that radiation doses should be maintained as far below the dose limits as is reasonably achievable. This policy, known as the ``ALARA Principle of radiation protection,`` maintains that radiation exposures should be maintained as low as reasonably achievable, taking into account social, technical, economic, practical, and public policy considerations. The ALARA Principle is based on the hypothesis that even very low radiation doses carry some risk. As a result, it is not enough to maintain doses at/or slightly below limits; the lower the doses, the lower the risks. Because it is not possible to reduce all doses at DOE facilities to zero, economic and social factors must be considered to determine the optimal level of radiation doses. According to the ALARA Principle, if doses are too high, resources should be well spent to reduce them. At some point, the resources being spent to maintain low doses are exactly balanced by the risks avoided. Reducing doses below this point results in a misallocation of resources; the resources could be spent elsewhere and have a greater positive impact on health and safety. The objective of the Westinghouse Hanford Company (WHC) ALARA/Contamination Control Improvement Project (CCIP) Program is to manage and control exposures (both individual and collective) to the work force, the general public, and the environment to levels as low as is reasonable using the aforementioned ALARA Principle.

Berglund, O.D.

1995-06-01T23:59:59.000Z

89

Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report  

SciTech Connect (OSTI)

OAK B188 Risk-informed assessment of regulatory and design requirements for future nuclear power plants. Annual report. The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-formed approach for the design and regulation of nuclear power plants. This approach will include the development and/or confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRS) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go further by focusing on the design of new plants.

NONE

2000-08-01T23:59:59.000Z

90

Radioactive waste isolation in salt: peer review of Westinghouse Electric Corporation's report on reference conceptual designs for a repository waste package  

SciTech Connect (OSTI)

This report documents the findings of the peer panel constituted by Argonne National Laboratory to review Region A of Westinghouse Electric Corporation's report entitled Waste Package Reference Conceptual Designs for a Repository in Salt. The panel determined that the reviewed report does not provide reasonable assurance that US Nuclear Regulatory Commission (NRC) requirements for waste packages will be met by the proposed design. It also found that it is premature to call the design a ''reference design,'' or even a ''reference conceptual design.'' This review report provides guidance for the preparation of a more acceptable design document.

Rote, D.M.; Hull, A.B.; Was, G.S.; Macdonald, D.D.; Wilde, B.E.; Russell, J.E.; Kruger, J.; Harrison, W.; Hambley, D.F.

1985-10-01T23:59:59.000Z

91

Analysis of a natural circulation cooldown transients in a Westinghouse Pressurized Water Reactor using TRAC-PF1/MOD1 and TRAC-PF1/MOD2  

E-Print Network [OSTI]

Circulation Cooldown Transient in a Westinghouse Pressurized Water Reactor Using TRAC-PF1/MOD1 and TRAC-PF1/MOD2. (December 1988) Evelyn Marie Breiner, B. S. , Texas AgtM University Chair of Advisory Committee; Dr. B. Nassersharif To perform transient.... 22). The four-loop model differs from the two-loop 35 TABLE 5 Component Actuation Timing Component Action Transient Time (s) 4-Loo Mod 1 Transient Time (s) 2-Loo M 1 4" break occurs CVCS initiation Low pressurizer pressure trip Reactor trip...

Breiner, Evelyn Marie

1988-01-01T23:59:59.000Z

92

Westinghouse Announces Managerial Appointments  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About | Careers

93

Westinghouse Test Stand Report  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About

94

Final evaluation report for Westinghouse Hanford Company, WRAP-1,208 liter waste drum, docket 94-35-7A, type A packaging  

SciTech Connect (OSTI)

This report documents the U.S. Department of Transportation Specification 7A Type A (DOT-7A) compliance test results of the Westinghouse Hanford Company, Waste Receiving and Processing Facility, Module 1 (WRAP-1) Drum. The WRAP-1 Drum was tested for DOE-HQ in August 1994, by Los Alamos National Laboratory, under docket number 94-35-7A. Additionally, comparison and evaluation of the approved, as-tested packaging configuration was performed by WHC in September 1995. The WRAP-1 Drum was evaluated against the performance of the DOT-17C, 208 1 (55-gal) steel drums tested and evaluated under dockets 89-13-7A/90-18-7A and 94-37-7A.

Kelly, D.L., Westinghouse Hanford

1996-06-12T23:59:59.000Z

95

Power Systems Development Facility  

SciTech Connect (OSTI)

This report discusses Test Campaign TC12 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (SW) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC12 began on May 16, 2003, with the startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until May 24, 2003, when a scheduled outage occurred to allow maintenance crews to install the fuel cell test unit and modify the gas clean-up system. On June 18, 2003, the test run resumed when operations relit the start-up burner, and testing continued until the scheduled end of the run on July 14, 2003. TC12 had a total of 733 hours using Powder River Basin (PRB) subbituminous coal. Over the course of the entire test run, gasifier temperatures varied between 1,675 and 1,850 F at pressures from 130 to 210 psig.

None

2003-07-01T23:59:59.000Z

96

Nuclear Energy Research Initiative. Risk Informed Assessment of Regulatory and Design Requirements for Future Nuclear Power Plants. Annual Report  

SciTech Connect (OSTI)

The overall goal of this research project is to support innovation in new nuclear power plant designs. This project is examining the implications, for future reactors and future safety regulation, of utilizing a new risk-informed regulatory system as a replacement for the current system. This innovation will be made possible through development of a scientific, highly risk-informed approach for the design and regulation of nuclear power plants. This approach will include the development and.lor confirmation of corresponding regulatory requirements and industry standards. The major impediment to long term competitiveness of new nuclear plants in the U.S. is the capital cost component--which may need to be reduced on the order of 35% to 40% for Advanced Light Water Reactors (ALWRs) such as System 80+ and Advanced Boiling Water Reactor (ABWR). The required cost reduction for an ALWR such as AP600 or AP1000 would be expected to be less. Such reductions in capital cost will require a fundamental reevaluation of the industry standards and regulatory bases under which nuclear plants are designed and licensed. Fortunately, there is now an increasing awareness that many of the existing regulatory requirements and industry standards are not significantly contributing to safety and reliability and, therefore, are unnecessarily adding to nuclear plant costs. Not only does this degrade the economic competitiveness of nuclear energy, it results in unnecessary costs to the American electricity consumer. While addressing these concerns, this research project will be coordinated with current efforts of industry and NRC to develop risk-informed, performance-based regulations that affect the operation of the existing nuclear plants; however, this project will go farther by focusing on the design of new plants.

Ritterbusch, S.E.

2000-08-01T23:59:59.000Z

97

Westinghouse Savannah River Company: Report from the DOE Voluntary Protection Program onsite reviews, February 24--March 7, 1997, and June 15--19, 1998  

SciTech Connect (OSTI)

This report summarizes the Department of Energy Voluntary Protection Program (DOE-VPP) Initial and Update Review Teams` findings from the onsite evaluations of the Westinghouse Savannah River Site (SRS), conducted February 24--March 7, 1997, and June 15-19, 1998. The site was evaluated against the program requirements contained in US Department of Energy Voluntary Protection Program, Part 1: Program Elements to determine its success in implementing the five tenets of DOE-VPP. The Initial Review Team concluded that WSRC met or surpassed all DOE-VPP requirements, with the exception of 12 minor findings and 5 recommendations. WSRC was asked to resolve the findings within 90 days. During a follow-up visit in January 1996, representatives of the Team verified that all 90-day actions were completed. The Update Team detected though that the program did not demonstrate thorough and meaningful employee involvement. The ability to attain and sustain VPP-level performance on employee involvement is a significant challenge. Large companies with multiple layers of management and geographically disperse personnel have particular difficulty.

NONE

1999-05-01T23:59:59.000Z

98

Wet processing of palladium for use in the tritium facility at Westinghouse, Savannah River, SC. Preparation of palladium using the Mound Muddy Water process  

SciTech Connect (OSTI)

Palladium used at Savannah River for tritium storage is currently obtained from a commercial source. In order to better understand the processes involved in preparing this material, Savannah River is supporting investigations into the chemical reactions used to synthesize this material and into the conditions necessary to produce palladium powder that meets their specifications. This better understanding may help to guarantee a continued reliable source for this material in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and the Ames Laboratory Metallurgy and Ceramics Program was initiated. During FY98, the process for producing palladium powder developed in 1986 by Dan Grove of Mound Applied Technologies (USDOE) was studied to understand the processing conditions that lead to changes in morphology in the final product. This report details the results of this study of the Mound Muddy Water process, along with the results of a round-robin analysis of well-characterized palladium samples that was performed by Savannah River and Ames Laboratory. The Mound Muddy Water process is comprised of three basic wet chemical processes, palladium dissolution, neutralization, and precipitation, with a number of filtration steps to remove unwanted impurity precipitates.

Baldwin, D.P.; Zamzow, D.S.

1998-11-10T23:59:59.000Z

99

Composite turbine blade design options for Claude (open) cycle OTEC power systems  

SciTech Connect (OSTI)

Small-scale turbine rotors made from composites offer several technical advantages for a Claude (open) cycle ocean thermal energy conversion (OTEC) power system. Westinghouse Electric Corporation has designed a composite turbine rotor/disk using state-of-the-art analysis methods for large-scale (100-MW/sub e/) open cycle OTEC applications. Near-term demonstrations using conventional low-pressure turbine blade shapes with composite material would achieve feasibility and modern credibility of the open cycle OTEC power system. Application of composite blades for low-pressure turbo-machinery potentially improves the reliability of conventional metal blades affected by stress corrosion.

Penney, T.R.

1985-11-01T23:59:59.000Z

100

Power Systems Development Facility Gasification Test Run TC09  

SciTech Connect (OSTI)

This report discusses Test Campaign TC09 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). The Transport Gasifier was operated as a pressurized gasifier during TC09 in air- and oxygen-blown modes. Test Run TC09 was started on September 3, 2002, and completed on September 26, 2002. Both gasifier and PCD operations were stable during the test run, with a stable baseline pressure drop. The oxygen feed supply system worked well and the transition from air to oxygen was smooth. The gasifier temperature varied between 1,725 and 1,825 F at pressures from 125 to 270 psig. The gasifier operates at lower pressure during oxygen-blown mode due to the supply pressure of the oxygen system. In TC09, 414 hours of solid circulation and over 300 hours of coal feed were attained with almost 80 hours of pure oxygen feed.

Southern Company Services

2002-09-30T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

Power Systems Development Facility Gasification Test Run TC11  

SciTech Connect (OSTI)

This report discusses Test Campaign TC11 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed gasifier designed to operate as either a combustor or a gasifier in air- or oxygen-blown mode of operation using a particulate control device (PCD). Test run TC11 began on April 7, 2003, with startup of the main air compressor and the lighting of the gasifier start-up burner. The Transport Gasifier operated until April 18, 2003, when a gasifier upset forced the termination of the test run. Over the course of the entire test run, gasifier temperatures varied between 1,650 and 1,800 F at pressures from 160 to 200 psig during air-blown operations and around 135 psig during enriched-air operations. Due to a restriction in the oxygen-fed lower mixing zone (LMZ), the majority of the test run featured air-blown operations.

Southern Company Services

2003-04-30T23:59:59.000Z

102

POWER SYSTEMS DEVELOPMENT FACILITY  

SciTech Connect (OSTI)

This report discusses test campaign GCT3 of the Halliburton KBR transport reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The transport reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using one of two possible particulate control devices (PCDs). The transport reactor was operated as a pressurized gasifier during GCT3. GCT3 was planned as a 250-hour test run to commission the loop seal and continue the characterization of the limits of operational parameter variations using a blend of several Powder River Basin coals and Bucyrus limestone from Ohio. The primary test objectives were: (1) Loop Seal Commissioning--Evaluate the operational stability of the loop seal with sand and limestone as a bed material at different solids circulation rates and establish a maximum solids circulation rate through the loop seal with the inert bed. (2) Loop Seal Operations--Evaluate the loop seal operational stability during coal feed operations and establish maximum solids circulation rate. Secondary objectives included the continuation of reactor characterization, including: (1) Operational Stability--Characterize the reactor loop and PCD operations with short-term tests by varying coal feed, air/coal ratio, riser velocity, solids circulation rate, system pressure, and air distribution. (2) Reactor Operations--Study the devolatilization and tar cracking effects from transient conditions during transition from start-up burner to coal. Evaluate the effect of process operations on heat release, heat transfer, and accelerated fuel particle heat-up rates. Study the effect of changes in reactor conditions on transient temperature profiles, pressure balance, and product gas composition. (3) Effects of Reactor Conditions on Syngas Composition--Evaluate the effect of air distribution, steam/coal ratio, solids circulation rate, and reactor temperature on CO/CO{sub 2} ratio, H{sub 2}/converted carbon ratio, gasification rates, carbon conversion, and cold and hot gas efficiencies. Test run GCT3 was started on December 1, 2000, with the startup of the thermal oxidizer fan, and was completed on February 1, 2001. This test was conducted in two parts; the loop seal was commissioned during the first part of this test run from December 1 through 15, which consisted of hot inert solids circulation testing. These initial tests provided preliminary data necessary to understand different parameters associated with the operation and performance of the loop seal. The loop seal was tested with coal feed during the second part of the test run and additional data was gathered to analyze reactor operations and to identify necessary modifications to improve equipment and process performance. In the second part of GCT3, the gasification portion of the test, from January 20 to February 1, 2001, the mixing zone and riser temperatures were varied between 1,675 and 1,825 F at pressures ranging from 200 to 240 psig. There were 306 hours of solid circulation and 184 hours of coal feed attained in GCT3.

Unknown

2002-05-01T23:59:59.000Z

103

Power Plant Power Plant  

E-Print Network [OSTI]

Basin Center for Geothermal Energy at University of Nevada, Reno (UNR) 2 Nevada Geodetic LaboratoryStillwater Power Plant Wabuska Power Plant Casa Diablo Power Plant Glass Mountain Geothermal Area Lassen Geothermal Area Coso Hot Springs Power Plants Lake City Geothermal Area Thermo Geothermal Area

Tingley, Joseph V.

104

Power Factor Reactive Power  

E-Print Network [OSTI]

power: 130 watts Induction motor PSERC Incandescent lights 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0 power: 150 watts #12;Page 4 PSERC Incandescent Lights PSERC Induction motor with no load #12;Page 5 Incandescent Lights #12;Page 7 PSERC Incandescent lights power: Power = 118 V x 1.3 A = 153 W = 0.15 kW = power

105

Westinghouse Presentation Template Class 2  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |

106

Westinghouse to host education fair  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In AboutEarns Top

107

Westinghouse Earns Safety Excellence Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered‰PNG IHDR€ÍSolar Energy SystemsFebruary 7-8,March 8,8)Normal 27 14,2TOPICS

108

Pinon Pine Power Project. Annual report, August 1992--December 1993  

SciTech Connect (OSTI)

This annual report has been prepared to present the status of the Pinon Pine Power Project, a nominal 104 MWe (gross) integrated gasification combined-cycle (IGCC) power plant addition to Sierra Pacific Power Company`s (SPPCo) system. This project will also serve as a demonstration project cost-shared by the US Department of Energy (DOE) and SPPCo under DOE`s Clean Coal Technology (CCT) Program. The goal of the CCT Program is to demonstrate advanced coal utilization technologies that are energy efficient and reliable and that are able to achieve substantial reductions in emissions as compared with existing coal technologies. The Pinon Pine Power Project will demonstrate an IGCC system utilizing the Kellogg-Rust-Westinghouse (KRW) fluidized-bed gasification process operating in an air-blown mode with in-bed desulfurization and hot gas clean-up with a western bituminous coal. The Pinon Pine Power Project will be constructed and operated at SPPCo`s Tracy Power Station, an existing power generation facility located on a rural 724-acre plot approximately 17 miles east of Reno, NV.

NONE

1994-11-01T23:59:59.000Z

109

LBB considerations for a new plant design  

SciTech Connect (OSTI)

The leak-before-break (LBB) methodology is accepted as a technically justifiable approach for eliminating postulation of Double-Ended Guillotine Breaks (DEGB) in high energy piping systems. This is the result of extensive research, development, and rigorous evaluations by the NRC and the commercial nuclear power industry since the early 1970s. The DEGB postulation is responsible for the many hundreds of pipe whip restraints and jet shields found in commercial nuclear plants. These restraints and jet shields not only cost many millions of dollars, but also cause plant congestion leading to reduced reliability in inservice inspection and increased man-rem exposure. While use of leak-before-break technology saved hundreds of millions of dollars in backfit costs to many operating Westinghouse plants, value-impacts resulting from the application of this technology for future plants are greater on a per plant basis. These benefits will be highlighted in this paper. The LBB technology has been applied extensively to high energy piping systems in operating plants. However, there are differences between the application of LBB technology to an operating plant and to a new plant design. In this paper an approach is proposed which is suitable for application of LBB to a new plant design such as the Westinghouse AP600. The approach is based on generating Bounding Analyses Curves (BAC) for the candidate piping systems. The general methodology and criteria used for developing the BACs are based on modified GDC-4 and Standard Review Plan (SRP) 3.6.3. The BAC allows advance evaluation of the piping system from the LBB standpoint thereby assuring LBB conformance for the piping system. The piping designer can use the results of the BACs to determine acceptability of design loads and make modifications (in terms of piping layout and support configurations) as necessary at the design stage to assure LBB for the, piping systems under consideration.

Swamy, S.A.; Mandava, P.R.; Bhowmick, D.C.; Prager, D.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

1997-04-01T23:59:59.000Z

110

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over several years, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana.

Albert Tsang

2003-03-14T23:59:59.000Z

111

Generation IV Nuclear Energy Systems Construction Cost Reductions through the Use of Virtual Environments - Final Report  

SciTech Connect (OSTI)

Final report of 3 year DOE NERI-sponsored effort evaluating immersive virtual reality (CAVE) technology for design review, construction planning, and maintenance planning and training for next generation nuclear power plants. Program covers development of full-scale virtual mockups generated from 3D CAD data presented in a CAVE visualization facility. Mockups applied to design review of AP600/1000, Construction planning for AP 600, and AP 1000 maintenance evaluation. Proof of concept study also performed for GenIV PBMR models.

Timothy Shaw; Anthony Baratta; Vaughn Whisker

2005-02-28T23:59:59.000Z

112

Power Systems Development Facility Gasification Test Run TC07  

SciTech Connect (OSTI)

This report discusses Test Campaign TC07 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC07. Prior to TC07, the Transport Reactor was modified to allow operations as an oxygen-blown gasifier. Test Run TC07 was started on December 11, 2001, and the sand circulation tests (TC07A) were completed on December 14, 2001. The coal-feed tests (TC07B-D) were started on January 17, 2002 and completed on April 5, 2002. Due to operational difficulties with the reactor, the unit was taken offline several times. The reactor temperature was varied between 1,700 and 1,780 F at pressures from 200 to 240 psig. In TC07, 679 hours of solid circulation and 442 hours of coal feed, 398 hours with PRB coal and 44 hours with coal from the Calumet mine, and 33 hours of coke breeze feed were attained. Reactor operations were problematic due to instrumentation problems in the LMZ resulting in much higher than desired operating temperatures in the reactor. Both reactor and PCD operations were stable and the modifications to the lower part of the gasifier performed well while testing the gasifier with PRB coal feed.

Southern Company Services

2002-04-05T23:59:59.000Z

113

Fossil Energy Fuel Cell Wayne Surdoval, SECA Coordinator  

E-Print Network [OSTI]

Powering All Ships Siemens Westinghouse Siemens Westinghouse DelphiDelphi General Electric General Electric supported 800 C Redesigned tubular Seal-less stack Siemens Westinghouse Tape calendering 2stage

114

An approach for assessing ALWR passive safety system reliability  

SciTech Connect (OSTI)

Many advanced light water reactor designs incorporate passive rather than active safety features for front-line accident response. A method for evaluating the reliability of these passive systems in the context of probabilistic risk assessment has been developed at Sandia National Laboratories. This method addresses both the component (e.g. valve) failure aspect of passive system failure, and uncertainties in system success criteria arising from uncertainties in the system's underlying physical processes. These processes provide the system's driving force; examples are natural circulation and gravity-induced injection. This paper describes the method, and provides some preliminary results of application of the approach to the Westinghouse AP600 design.

Hake, T M

1991-01-01T23:59:59.000Z

115

A High Efficiency PSOFC/ATS-Gas Turbine Power System  

SciTech Connect (OSTI)

A study is described in which the conceptual design of a hybrid power system integrating a pressurized Siemens Westinghouse solid oxide fuel cell generator and the Mercury{trademark} 50 gas turbine was developed. The Mercury{trademark} 50 was designed by Solar Turbines as part of the US. Department of Energy Advanced Turbine Systems program. The focus of the study was to develop the hybrid power system concept that principally would exhibit an attractively-low cost of electricity (COE). The inherently-high efficiency of the hybrid cycle contributes directly to achieving this objective, and by employing the efficient, power-intensive Mercury{trademark} 50, with its relatively-low installed cost, the higher-cost SOFC generator can be optimally sized such that the minimum-COE objective is achieved. The system cycle is described, major system components are specified, the system installed cost and COE are estimated, and the physical arrangement of the major system components is discussed. Estimates of system power output, efficiency, and emissions at the system design point are also presented. In addition, two bottoming cycle options are described, and estimates of their effects on overall-system performance, cost, and COE are provided.

W.L. Lundberg; G.A. Israelson; M.D. Moeckel; S.E. Veyo; R.A. Holmes; P.R. Zafred; J.E. King; R.E. Kothmann

2001-02-01T23:59:59.000Z

116

PWR FLECHT SEASET 163-Rod Bundle Flow Blockage Task data report. NRC/EPRI/Westinghouse report No. 13, August-October 1982  

SciTech Connect (OSTI)

This report presents data from the 163-Rod Bundle Blow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate Effects Test Program (FLECHT SEASET). The task consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. These tests were designed to determine effects of flow blockage and flow bypass on reflooding behavior and to aid in the assessment of computational models in predicting the reflooding behavior of flow blockage in rod bundle arrays.

Loftus, M J; Hochreiter, L E; McGuire, M F; Valkovic, M M

1983-10-01T23:59:59.000Z

117

Use of InSpector{sup TM} 1 1000 Instrument with LaBr{sub 3} for Nuclear Criticality Safety (NCS) Applications at the Westinghouse Hematite Decommissioning Project (HDP) - 13132  

SciTech Connect (OSTI)

The Westinghouse Hematite Decommissioning Project (HDP) is a former nuclear fuel cycle facility that is currently undergoing decommissioning. One aspect of the decommissioning scope is remediation of buried nuclear waste in unlined burial pits. The current Nuclear Criticality Safety program relies on application of criticality controls based on radiological setpoints from a 2 x 2 Sodium Iodide (NaI) detector. Because of the nature of the material buried (Low Enriched Uranium (LEU), depleted uranium, thorium, and radium) and the stringent threshold for application of criticality controls based on waste management (0.1 g {sup 235}U/L), a better method for {sup 235}U identification and quantification has been developed. This paper outlines the early stages of a quick, in-field nuclear material assay and {sup 235}U mass estimation process currently being deployed at HDP. Nuclear material initially classified such that NCS controls are necessary can be demonstrated not to require such controls and dispositioned as desired by project operations. Using Monte Carlo techniques and a high resolution Lanthanum Bromide (LaBr) detector with portable Multi-Channel Analyzer (MCA), a bounding {sup 235}U mass is assigned to basic geometries of nuclear material as it is excavated. The deployment of these methods and techniques has saved large amounts of time and money in the nuclear material remediation process. (authors)

Pritchard, Megan [Nuclear Safety Associates, P.O. Box 471488, Charlotte, NC 28247 (United States)] [Nuclear Safety Associates, P.O. Box 471488, Charlotte, NC 28247 (United States); Guido, Joe [System One Services, 12 Federal St. Ste. 205, Pittsburgh, PA 15212 (United States)] [System One Services, 12 Federal St. Ste. 205, Pittsburgh, PA 15212 (United States)

2013-07-01T23:59:59.000Z

118

PWR FLECHT SEASET 21-rod bundle flow blockage task data and analysis report. NRC/EPRI/Westinghouse Report No. 11. Appendices K-P  

SciTech Connect (OSTI)

This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

1982-09-01T23:59:59.000Z

119

System Definition and Analysis: Power Plant Design and Layout  

SciTech Connect (OSTI)

This is the Topical report for Task 6.0, Phase 2 of the Advanced Turbine Systems (ATS) Program. The report describes work by Westinghouse and the subcontractor, Gilbert/Commonwealth, in the fulfillment of completing Task 6.0. A conceptual design for critical and noncritical components of the gas fired combustion turbine system was completed. The conceptual design included specifications for the flange to flange gas turbine, power plant components, and balance of plant equipment. The ATS engine used in the conceptual design is an advanced 300 MW class combustion turbine incorporating many design features and technologies required to achieve ATS Program goals. Design features of power plant equipment and balance of plant equipment are described. Performance parameters for these components are explained. A site arrangement and electrical single line diagrams were drafted for the conceptual plant. ATS advanced features include design refinements in the compressor, inlet casing and scroll, combustion system, airfoil cooling, secondary flow systems, rotor and exhaust diffuser. These improved features, integrated with prudent selection of power plant and balance of plant equipment, have provided the conceptual design of a system that meets or exceeds ATS program emissions, performance, reliability-availability-maintainability, and cost goals.

NONE

1996-05-01T23:59:59.000Z

120

Margin for In-Vessel Retention in the APR1400 - VESTA and SCDAP/RELAP5-3D Analyses  

SciTech Connect (OSTI)

If cooling is inadequate during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the lower head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with such plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe pressurized water reactor (PWR) (AP600), which relied upon external reactor vessel cooling (ERVC) for in-vessel retention (IVR), resulted in the U.S. Nuclear Regulatory Commission (USNRC) approving the design without requiring certain conventional features common to existing light water reactors (LWRs). IVR of core melt is therefore a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced LWRs. However, it is not clear that currently proposed ERVC without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a three-year, United States (U.S.) -Korean International Nuclear Energy Research Initiative (INERI) project was initiated in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korean Atomic Energy Research Institute (KAERI) explored options, such as enhanced ERVC performance and an enhanced in-vessel core catcher (IVCC), that have the potential to ensure that IVR is feasible for higher power reactors.

Joy Rempe; D. Knudson

2004-12-01T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Pinon Pine Power Project. Annual report, January 1--December 31, 1996  

SciTech Connect (OSTI)

This annual report has been prepared to present the status of the Pinon Pine Power Project, a nominal 107 MWe (gross) coal-fired integrated gasification combined-cycle (IGCC) power plant addition to Sierra Pacific Power Company`s (SPPCo) system. This project will also serve as a demonstration project cost-shared by the US Department of Energy (DOE) and SPPCo under DOE`s Clean Coal Technology (CCT) Program. The goal of the CCT Program is to demonstrate advanced coal utilization technologies that are energy efficient, reliable and able to achieve substantial reductions in emissions as compared with existing coal technologies. The Pinon Pine Power Project will demonstrate an IGCC system utilizing the Kellogg-Rust-Westinghouse (KRW) fluidized-bed gasification process operating in an air-blown mode with in-bed desulfurization and hot gas clean-up with a western bituminous coal as the design fuel. Testing will also be performed on a high-sulfur eastern coal. The Pinon Pine Power Project will be constructed and operated at SPPCo`s Tracy Power Station, an existing power generation facility located on a rural 724-acre plot approximately 17 miles east of Reno, NV. This new unit is designated as Tracy Unit No. 4.

NONE

1997-12-31T23:59:59.000Z

122

Experiments to investigate direct containment heating phenomena with scaled models of the Calvert Cliffs Nuclear Power Plant  

SciTech Connect (OSTI)

The Surtsey Test Facility is used to perform scaled experiments simulating High Pressure Melt Ejection accidents in a nuclear power plant (NPP). The experiments investigate the effects of direct containment heating (DCH) on the containment load. The results from Zion and Surry experiments can be extrapolated to other Westinghouse plants, but predicted containment loads cannot be generalized to all Combustion Engineering (CE) plants. Five CE plants have melt dispersal flow paths which circumvent the main mitigation of containment compartmentalization in most Westinghouse PWRs. Calvert Cliff-like plant geometries and the impact of codispersed water were addressed as part of the DCH issue resolution. Integral effects tests were performed with a scale model of the Calvert Cliffs NPP inside the Surtsey test vessel. The experiments investigated the effects of codispersal of water, steam, and molten core stimulant materials on DCH loads under prototypic accident conditions and plant configurations. The results indicated that large amounts of coejected water reduced the DCH load by a small amount. Large amounts of debris were dispersed from the cavity to the upper dome (via the annular gap). 22 refs., 84 figs., 30 tabs.

Blanchat, T.K.; Pilch, M.M.; Allen, M.D.

1997-02-01T23:59:59.000Z

123

Power supply  

DOE Patents [OSTI]

A modular, low weight impedance dropping power supply with battery backup is disclosed that can be connected to a high voltage AC source and provide electrical power at a lower voltage. The design can be scaled over a wide range of input voltages and over a wide range of output voltages and delivered power.

Yakymyshyn, Christopher Paul (Seminole, FL); Hamilton, Pamela Jane (Seminole, FL); Brubaker, Michael Allen (Loveland, CO)

2007-12-04T23:59:59.000Z

124

New Research Center to Increase Safety and Power Output of U...  

Energy Savers [EERE]

Carolina State University, Sandia National Laboratories, Tennessee Valley Authority, University of Michigan and Westinghouse Electric Company. Awarded by DOE in May 2010, CASL...

125

Assessment of RELAP5/MOD2 code using loss of offsite power transient data of KNU (Korea Nuclear Unit) No. 1 Plant  

SciTech Connect (OSTI)

This report presents a code assessment study based on a real plant transient that occurred on June 9, 1981 at the KNU {number sign}1 (Korea Nuclear Unit Number 1). KNU {number sign}1 is a two-loop Westinghouse PWR plant of 587 Mwe. The loss of offsite power transient occurred at the 77.5% reactor power with 0.5%/hr power ramp. The real plant data were collected from available on-line plant records and computer diagnostics. The transient was simulated by RELAP5/MOD2/36.05 and the results were compared with the plant data to assess the code weaknesses and strengths. Some nodalization studies were performed to contribute to developing a guideline for PWR nodalization for the transient analysis. 5 refs., 18 figs., 3 tabs.

Chung, Bud-Dong; Kim, Hho-Jung (Korea Advanced Energy Research Inst., Daeduk-Danji (Republic of Korea). Korea Nuclear Safety Center); Lee, Young-Jin (Seoul National Univ. (Republic of Korea))

1990-04-01T23:59:59.000Z

126

Power LCAT  

ScienceCinema (OSTI)

POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

Drennen, Thomas

2014-06-27T23:59:59.000Z

127

Power LCAT  

SciTech Connect (OSTI)

POWER LCAT is a software tool used to compare elements of efficiency, cost, and environmental effects between different sources of energy.

Drennen, Thomas

2012-08-15T23:59:59.000Z

128

STATEMENT OF CONSIDERATIONS PETITION BY WESTINGHOUSE ELECTRIC...  

Broader source: Energy.gov (indexed) [DOE]

of the waiver petition and in view of the objectives and considerations set forth in 10 CFR 784 , all of which have been considered, it is recommended that the requested waiver be...

129

Preliminary Notice of Violation, Westinghouse Savannah River...  

Broader source: Energy.gov (indexed) [DOE]

- EA 2004-03 April 6, 2004 This letter refers to the Department of Energy's Office of Price-Anderson Enforcement (OE) investigation of the facts and circumstances concerning the...

130

PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST...  

Office of Legacy Management (LM)

EAST PITTSBURGH, PENNSYLVANIA Work performed by the Health and Safety Research Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830 March 1980 OAK RIDGE NATIONAL...

131

Energy Conservation at Westinghouse R&D  

E-Print Network [OSTI]

sumption of electricity (see Figure 2). The first OPEC oil embargo in 1973 caused Westing house to take a strong position to emphasize con servation of fossil fuels in all of its physical plant facilities including R&D. Figure 3 is a his tory of our... CONSERVATION - ENERGY AUDITS What criteria can we develop to measure achievements and establish goals? Figure 10 shows a range of en ergy requirements for schools in Northern United States of America in t~rms of M Btu/sq.ft./year. Figure 11 compares...

Norelli, P.; Roy, V.

1981-01-01T23:59:59.000Z

132

Westinghouse TRU Solutions LLC Announces Scholarship Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |Selects Bill

133

Westinghouse TRU Solutions LLC Announces Scholarship Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |Selects BillLea and

134

Westinghouse TRU Solutions LLC Assumes WIPP Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |Selects BillLea

135

Westinghouse TRU Solutions Launches New Web Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |SelectsForTRU

136

Westinghouse hires new attorney at WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In AboutEarns Top Award

137

DOE, Westinghouse sponsor medical technician course  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed Newcatalyst phases onOrganization FYBeauTransitionDepartmentDOE, State of

138

CASL Core Partner - Westinghouse Electric Company  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation InInformationCenterResearch

139

Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCTTO:March 20,Since dewatering

140

Enforcement Letter, Westinghouse Waste Isolation Division - October...  

Broader source: Energy.gov (indexed) [DOE]

Division related to four noncompliances with the requirements of the Quality Assurance Rule andor the Occupational Radiation Protection Rule at DOE's Waste Isolation...

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

Five Kilowatt Fuel Cell Demonstration for Remote Power Applications  

SciTech Connect (OSTI)

While most areas of the US are serviced by inexpensive, dependable grid connected electrical power, many areas of Alaska are not. In these areas, electrical power is provided with Diesel Electric Generators (DEGs), at much higher cost than in grid connected areas. The reasons for the high cost of power are many, including the high relative cost of diesel fuel delivered to the villages, the high operational effort required to maintain DEGs, and the reverse benefits of scale for small utilities. Recent progress in fuel cell technologies have lead to the hope that the DEGs could be replaced with a more efficient, reliable, environmentally friendly source of power in the form of fuel cells. To this end, the University of Alaska Fairbanks has been engaged in testing early fuel cell systems since 1998. Early tests were conducted on PEM fuel cells, but since 2001, the focus has been on Solid Oxide Fuel Cells. In this work, a 5 kW fuel cell was delivered to UAF from Fuel Cell Technologies of Kingston, Ontario. The cell stack is of a tubular design, and was built by Siemens Westinghouse Fuel Cell division. This stack achieved a run of more than 1 year while delivering grid quality electricity from natural gas with virtually no degradation and at an electrical efficiency of nearly 40%. The project was ended after two control system failures resulted in system damage. While this demonstration was successful, considerable additional product development is required before this technology is able to provide electrical energy in remote Alaska. The major issue is cost, and the largest component of system cost currently is the fuel cell stack cost, although the cost of the balance of plant is not insignificant. While several manufactures are working on schemes for significant cost reduction, these systems do not as yet provide the same level of performance and reliability as the larger scale Siemens systems, or levels that would justify commercial deployment.

Dennis Witmer; Tom Johnson; Jack Schmid

2008-12-31T23:59:59.000Z

142

Power Recovery  

E-Print Network [OSTI]

.POWER RECOVERY Fletcher Mlirray Monsanto Chemical Company AB5'-:::0 p.p., will ??vi.w 'h. '.ohnnln,y nf 'h.::v,n. T:X:~~T ~ methods for estimating the power recovery potential from fluid streams. The ideal gas law formula for expanding gases.... Gas Law Estimation Power recovery estimates from a vapor stream can be made using the formula: which is derived from the Ideal Gas Law. At first glance the. formula seems imposing and perhaps difficult to occasionally use. If however; the formula...

Murray, F.

143

Power combiner  

DOE Patents [OSTI]

A power combiner for the combining of symmetric and asymmetric traveling wave energy comprises a feed waveguide having an input port and a launching port, a reflector for reflecting launched wave energy, and a final waveguide for the collection and transport of launched wave energy. The power combiner has a launching port for symmetrical waves which comprises a cylindrical section coaxial to the feed waveguide, and a launching port for asymmetric waves which comprises a sawtooth rotated about a central axis.

Arnold, Mobius; Ives, Robert Lawrence

2006-09-05T23:59:59.000Z

144

Cleco Power- Power Miser New Home Program  

Broader source: Energy.gov [DOE]

Louisiana's Cleco Power offers energy efficiency incentives to eligible customers. Cleco Power offers a rate discount for residential customers building homes that meet the Power Miser Program...

145

Power inverters  

DOE Patents [OSTI]

Power inverters include a frame and a power module. The frame has a sidewall including an opening and defining a fluid passageway. The power module is coupled to the frame over the opening and includes a substrate, die, and an encasement. The substrate includes a first side, a second side, a center, an outer periphery, and an outer edge, and the first side of the substrate comprises a first outer layer including a metal material. The die are positioned in the substrate center and are coupled to the substrate first side. The encasement is molded over the outer periphery on the substrate first side, the substrate second side, and the substrate outer edge and around the die. The encasement, coupled to the substrate, forms a seal with the metal material. The second side of the substrate is positioned to directly contact a fluid flowing through the fluid passageway.

Miller, David H. (Redondo Beach, CA); Korich, Mark D. (Chino Hills, CA); Smith, Gregory S. (Woodland Hills, CA)

2011-11-15T23:59:59.000Z

146

Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > FinancialPower

147

Power Factor Compensation (PFC) Power Factor Compensation  

E-Print Network [OSTI]

Power Factor Compensation (PFC) Power Factor Compensation The power factor (PF) is defined as the ratio between the active power and the apparent power of a system. If the current and voltage are periodic with period , and [ ), then the active power is defined by ( ) ( ) (their inner product

Knobloch,Jürgen

148

Star Power  

SciTech Connect (OSTI)

The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

None

2014-10-17T23:59:59.000Z

149

Star Power  

ScienceCinema (OSTI)

The U.S. Department of Energy's Princeton Plasma Physics Laboratory has released ''Star Power,'' a new informational video that uses dramatic and beautiful images and thought-provoking interviews to highlight the importance of the Laboratory's research into magnetic fusion.

None

2014-11-18T23:59:59.000Z

150

Power superconducting power transmission cable  

DOE Patents [OSTI]

The present invention is for a compact superconducting power transmission cable operating at distribution level voltages. The superconducting cable is a conductor with a number of tapes assembled into a subconductor. These conductors are then mounted co-planarly in an elongated dielectric to produce a 3-phase cable. The arrangement increases the magnetic field parallel to the tapes thereby reducing ac losses.

Ashworth, Stephen P. (Cambridge, GB)

2003-01-01T23:59:59.000Z

151

Power Right. Power Smart. Efficient Computer Power Supplies and...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

AC power that you get from your electric company into the DC power consumed by most electronics, including your computer. We expect our power supplies to be safe, reliable, and...

152

Silicon Valley Power and Oklahoma Municipal Power Authority Win...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind Awards Silicon Valley Power and Oklahoma Municipal Power Authority Win 2014 Public Power Wind...

153

Scale-Up of Palladium Powder Production Process for Use in the Tritium Facility at Westinghouse, Savannah River, SC/Summary of FY99-FY01 Results for the Preparation of Palladium Using the Sandia/LANL Process  

SciTech Connect (OSTI)

Palladium used at Savannah River (SR) for process tritium storage is currently obtained from a commercial source. In order to understand the processes involved in preparing this material, SR is supporting investigations into the chemical reactions used to synthesize this material. The material specifications are shown in Table 1. An improved understanding of the chemical processes should help to guarantee a continued reliable source of Pd in the future. As part of this evaluation, a work-for-others contract between Westinghouse Savannah River Company and Ames Laboratory (AL) was initiated. During FY98, the process for producing Pd powder developed in 1986 by Dan Grove of Mound Applied Technologies, USDOE (the Mound muddy water process) was studied to understand the processing conditions that lead to changes in morphology in the final product. During FY99 and FY00, the process for producing Pd powder that has been used previously at Sandia and Los Alamos National Laboratories (the Sandia/LANL process) was studied to understand the processing conditions that lead to changes in the morphology of the final Pd product. During FY01, scale-up of the process to batch sizes greater than 600 grams of Pd using a 20-gallon Pfaudler reactor was conducted by the Iowa State University (ISU) Chemical Engineering Department. This report summarizes the results of FY99-FY01 Pd processing work done at AL and ISU using the Sandia/LANL process. In the Sandia/LANL process, Pd is dissolved in a mixture of nitric and hydrochloric acids. A number of chemical processing steps are performed to yield an intermediate species, diamminedichloropalladium (Pd(NH{sub 3}){sub 2}Cl{sub 2}, or DADC-Pd), which is isolated. In the final step of the process, the Pd(NH{sub 3}){sub 2}Cl{sub 2} intermediate is subsequently redissolved, and Pd is precipitated by the addition of a reducing agent (RA) mixture of formic acid and sodium formate. It is at this point that the morphology of the Pd product is determined. During FY99 and FY00, a study of how the characteristics of the Pd are affected by changes in processing conditions including the RA/Pd molar ratio, Pd concentration, mole fraction of formic acid (mf-FA) in the RA solution, reaction temperature, and mixing was performed. These parameters all had significant effects on the resulting values of the tap density (TD), BET surface area (SA), and Microtrac particle size (PS) distribution for the Pd samples. These effects were statistically modeled and fit in order to determine ranges of predicted experimental conditions that resulted in material that meets the requirements for the Pd powder to be used at SR. Although not statistically modeled, the method and rate of addition of the RA and the method and duration of stirring were shown to be significant factors affecting the product morphology. Instead of producing an additional statistical fit and due to the likely changes anticipated during scale-up of this processing procedure, these latter conditions were incorporated into a reproducible practical method of synthesis. Palladium powder that met the SR specifications for TD, BET SA, and Microtrac PS was reliably produced at batch sizes ranging from 25-100 grams. In FY01, scale-up of the Sandia/LANL process was investigated by the ISU Chemical Engineering Department for the production of 600-gram batches of Pd. Palladium that meets the SR specifications for TD, BET SA, and Microtrac PS has been produced using the Pfaudler reactor, and additional processing batches will be done during the remainder of FY01 to investigate the range of conditions that can be used to produce Pd powder within specifications. Palladium product samples were analyzed at AL and SR to determine TD and at SR to determine BET SA, Microtrac PS distribution, and Pd nodule size and morphology by scanning electron microscopy (SEM).

David P. Baldwin; Daniel S. Zamzow; R. Dennis Vigil; Jesse T. Pikturna

2001-08-24T23:59:59.000Z

154

Wind power and Wind power and  

E-Print Network [OSTI]

Wind power and the CDM #12; Wind power and the CDM Emerging practices in developing wind power 2005 Jyoti P. Painuly, Niels-Erik Clausen, Jørgen Fenhann, Sami Kamel and Romeo Pacudan #12; WIND POWER AND THE CDM Emerging practices in developing wind power projects for the Clean Development Mechanism Energy

155

Wind Power  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISPWind Industry Soars to New1Wind Power

156

FUTURE POWER GRID INITIATIVE Future Power Grid  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE Future Power Grid Control Paradigm OBJECTIVE This project integration & exploit the potential of distributed smart grid assets Significantly reduce the risk of advanced mathematical models, next- generation simulation and analytics capabilities for the power grid

157

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Courses Instructors NERC Continuing Education Power Operations Training Center You'll find the "Power" of learning at Southwestern's Power Operations Training Center (POTC). POTC's...

158

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

and Battery-Electric Powered Special Purpose Vehicles, SAELead-Acid Powered Electric Vehicles, Fifth Internationalmeantime, battery-powered electric vehicles can be expected

Cairns, Elton J.

2012-01-01T23:59:59.000Z

159

Solar powered desalination system  

E-Print Network [OSTI]

2008, uses concentrated solar power to split water. Figurethe main reason the potential for solar power is boundless.a clean energy source, solar power is inexhaustible, fairly

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

160

Power management system  

DOE Patents [OSTI]

A method of managing power resources for an electrical system of a vehicle may include identifying enabled power sources from among a plurality of power sources in electrical communication with the electrical system and calculating a threshold power value for the enabled power sources. A total power load placed on the electrical system by one or more power consumers may be measured. If the total power load exceeds the threshold power value, then a determination may be made as to whether one or more additional power sources is available from among the plurality of power sources. At least one of the one or more additional power sources may be enabled, if available.

Algrain, Marcelo C. (Peoria, IL); Johnson, Kris W. (Washington, IL); Akasam, Sivaprasad (Peoria, IL); Hoff, Brian D. (East Peoria, IL)

2007-10-02T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Analysis of a Main Steam Line Break in Asco Nuclear Power Plant  

SciTech Connect (OSTI)

A comprehensive analysis of a double-ended main steam line break (MSLB) accident assumed to occur in the Asco nuclear power plant was carried out using the RELAP/PARCS coupled code. The general results of the benchmark provide a certain qualification of tools and methodologies used. Applying such methodologies to other plant models can be useful to extend conclusions and to identify areas where further analysis is needed. The calculations showed the capability of the control rod to recover the accident. However, one stuck control rod caused some recriticality or return to power (RTP), whose magnitude is heavily affected by the initial and boundary conditions. This paper identifies similarities and discrepancies between the benchmark calculation on the TMI-1 model and the Westinghouse three-loop calculation on the Asco model. The use of an integral plant model was helpful in showing the importance on the RTP of different plant systems that are modeled in detail. The high-pressure injection system and feedwater lines as well as the broken steam line model are the most significant.

Cuadra, Arantxa; Gago, Jose Luis; Reventos, Francesc

2001-06-17T23:59:59.000Z

162

Topping combustor application to the Wilsonville Advanced Power Systems Development Facility  

SciTech Connect (OSTI)

The Advanced Power Systems Development Facility (PSDF) located at Wilsonville Alabama is a Department of Energy (DOE) and Industry cost-shared facility which will be operated by Southern Company Services. This facility is designed to provide long-term hot gas cleanup and process testing for an Advanced Pressurized Fluidized Bed Combustion (PFBC) and Gasification System. It incorporates carbonization with a circulating fluidized bed and topping combustion system. The plant will produce 4 MW of electricity. It is being designed by Foster Wheeler and is scheduled to commence operation in 1998. As in any new technology or project there is usually a number of critical components whose successful development form the foundation for the overall success of the concept. In the development of advanced (PFBC) power generation plants, one of those critical components is the topping combustion system. This paper presents the criteria for the Westinghouse developed Topping Combustor that will fire a coal derived high temperature, ammonia-rich syngas into a high temperature vitiated air stream to drive an Allison Model 501-KM gas turbine.

Domeracki, W.F. [Westinghouse Electric Corp., Orlando, FL (United States); Bachovchin, D.M. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Crumm, C.J. [Foster Wheeler USA Corp., Clinton, NJ (United States); Morton, F.C. [Southern Co. Services, Wilsonville, AL (United States)

1997-12-31T23:59:59.000Z

163

Power oscillator  

DOE Patents [OSTI]

An oscillator includes an amplifier having an input and an output, and an impedance transformation network connected between the input of the amplifier and the output of the amplifier, wherein the impedance transformation network is configured to provide suitable positive feedback from the output of the amplifier to the input of the amplifier to initiate and sustain an oscillating condition, and wherein the impedance transformation network is configured to protect the input of the amplifier from a destructive feedback signal. One example of the oscillator is a single active element device capable of providing over 70 watts of power at over 70% efficiency. Various control circuits may be employed to match the driving frequency of the oscillator to a plurality of tuning states of the lamp.

Gitsevich, Aleksandr (Montgomery Village, MD)

2001-01-01T23:59:59.000Z

164

Solar powered desalination system  

E-Print Network [OSTI]

1.18: Largest PV Power Plants32 TableTable 1.18: Largest PV Power Plants 19 Power (MW) LocationWorld Canada, Sarnia PV power plant Sarnia (Ontario) Italy,

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

165

Disparities in nuclear power plant performance in the United States and the Federal Republic of Germany  

E-Print Network [OSTI]

This report presents data comparing the performance of light water reactors in the United States and the Federal Republic of Germany (FRG). The comparisons are made for the years 1980-1983 and include 21 Westinghouse ...

Hansen, Kent F.

1984-01-01T23:59:59.000Z

166

Steam Turbine Materials for Ultrasupercritical Coal Power Plants  

SciTech Connect (OSTI)

The Ultrasupercritical (USC) Steam Turbine Materials Development Program is sponsored and funded by the U.S. Department of Energy and the Ohio Coal Development Office, through grants to Energy Industries of Ohio (EIO), a non-profit organization contracted to manage and direct the project. The program is co-funded by the General Electric Company, Alstom Power, Siemens Power Generation (formerly Siemens Westinghouse), and the Electric Power Research Institute, each organization having subcontracted with EIO and contributing teams of personnel to perform the requisite research. The program is focused on identifying, evaluating, and qualifying advanced alloys for utilization in coal-fired power plants that need to withstand steam turbine operating conditions up to 760°C (1400°F) and 35 MPa (5000 psi). For these conditions, components exposed to the highest temperatures and stresses will need to be constructed from nickel-based alloys with higher elevated temperature strength than the highchromium ferritic steels currently used in today??s high-temperature steam turbines. In addition to the strength requirements, these alloys must also be weldable and resistant to environmental effects such as steam oxidation and solid particle erosion. In the present project, candidate materials with the required creep strength at desired temperatures have been identified. Coatings that can resist oxidation and solid particle erosion have also been identified. The ability to perform dissimilar welds between nickel base alloys and ferritic steels have been demonstrated, and the properties of the welds have been evaluated. Results of this three-year study that was completed in 2009 are described in this final report. Additional work is being planned and will commence in 2009. The specific objectives of the future studies will include conducting more detailed evaluations of the weld-ability, mechanical properties and repair-ability of the selected candidate alloys for rotors, casings and valves, and to perform scale-up studies to establish a design basis for commercial scale components. A supplemental program funded by the Ohio Coal Development Office will undertake supporting tasks such as testing and trials using existing atmospheric, vacuum and developmental pressure furnaces to define specific metal casting techniques needed for producing commercial scale components.

Viswanathan, R.; Hawk, J.; Schwant, R.; Saha, D.; Totemeier, T.; Goodstine, S.; McNally, M.; Allen, D. B.; Purgert, Robert

2009-06-30T23:59:59.000Z

167

LIFE Power Plant Fusion Power Associates  

E-Print Network [OSTI]

LIFE Power Plant Fusion Power Associates December 14, 2011 Mike Dunne LLNL #12;NIf-1111-23714.ppt LIFE power plant 2 #12;LIFE delivery timescale NIf-1111-23714.ppt 3 #12;Timely delivery is enabled dpa) Removes ion threat and mitigates x-ray threat allows simple steel piping No need

168

Solar powered desalination system  

E-Print Network [OSTI]

of the electrical power output to the solar power input), aSolar Energy Calculator using Google Maps 23 Table 1.24: PV System Power Production Average Daily Irradiance (kWh/m2) Instillation Efficiency Labeled Efficiency Output

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

169

In-vessel coolability and retention of a core melt. Volume 2  

SciTech Connect (OSTI)

The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided.

Theofanous, T.G.; Liu, C.; Additon, S.; Angelini, S.; Kymaelaeinen, O.; Salmassi, T. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

1996-10-01T23:59:59.000Z

170

In-vessel coolability and retention of a core melt. Volume 1  

SciTech Connect (OSTI)

The efficacy of external flooding of a reactor vessel as a severe accident management strategy is assessed for an AP600-like reactor design. The overall approach is based on the Risk Oriented Accident Analysis Methodology (ROAAM), and the assessment includes consideration of bounding scenarios and sensitivity studies, as well as arbitrary parametric evaluations that allow the delineation of the failure boundaries. Quantification of the input parameters is carried out for an AP600-like design, and the results of the assessment demonstrate that lower head failure is physically unreasonable. Use of this conclusion for any specific application is subject to verifying the required reliability of the depressurization and cavity-flooding systems, and to showing the appropriateness (in relation to the database presented here, or by further testing as necessary) of the thermal insulation design and of the external surface properties of the lower head, including any applicable coatings. The AP600 is particularly favorable to in-vessel retention. Some ideas to enhance the assessment basis as well as performance in this respect, for applications to larger and/or higher power density reactors are also provided.

Theofanous, T.G.; Liu, C.; Additon, S.; Angelini, S.; Kymaelaeinen, O.; Salmassi, T. [California Univ., Santa Barbara, CA (United States). Center for Risk Studies and Safety

1996-10-01T23:59:59.000Z

171

Minnesota Agri Power Project. Quarterly report, July 1, 1997--September 30, 1997  

SciTech Connect (OSTI)

Program status and accomplishments for a project to develop alfalfa as a biomass fuel for power generation are summarized in this report. The main areas of reporting include: (1) alfalfa separation pilot plant testing, (2) design of gasification plant, (3) alfalfa leaf meal feeding trials and analysis, (4) integrated plant design and cost estimate, and (5) site plan construction and environmental permits. The alfalfa separation pilot plant fractionation equipment encountered operating problems from rocks and other tramp materials in the alfalfa bales. An investigation of techniques and equipment to remove the tramp materials resulted in the selection of a vibrating conveyor system. The Carbona gasification plant design basis and the Westinghouse scope of supply and design basis for the hot gas filter are provided in the report. The alfalfa leaf meal feeding trials showed that this economically critical co-product can be a viable livestock feed ingredient if favorable price, availability, and quality are maintained. The Stone and Webster basis of design for the integrated plant is included, and the basis for development of gas turbine performance runs is also detailed.

NONE

1997-10-01T23:59:59.000Z

172

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov (indexed) [DOE]

CONCENTRATING SOLAR POWER PROGRAM REVIEW 2013 Concentrated Solar Thermoelectric Power Principal Investigator: Prof. Gang Chen Massachusetts Institute of Technology Cambridge, MA...

173

Power System Dispatcher  

Broader source: Energy.gov [DOE]

(See Frequently Asked Questions for more information). Where would I be working? Western Area Power Administration Rocky Mountain Region Power System Operations, (J4800) Transmission Scheduling and...

174

Electrolytes for power sources  

DOE Patents [OSTI]

Electrolytes are disclosed for power sources, particularly alkaline and acidic power sources, comprising benzene polysulfonic acids and benzene polyphosphonic acids or salts of such acids. 7 figures.

Doddapaneni, N.; Ingersoll, D.

1995-01-03T23:59:59.000Z

175

TVA- Green Power Providers  

Broader source: Energy.gov [DOE]

Tennessee Valley Authority (TVA) and participating power distributors of TVA power offer a performance-based incentive program to homeowners and businesses for the installation of renewable...

176

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

POTC Home Courses Instructors NERC Continuing Education 2014 Power Operations Training Center Courses The 2014 Power Operations Training Center course schedule is currently being...

177

HOUSEHOLD SOLAR POWER SYSTEM.  

E-Print Network [OSTI]

?? Photovoltaic power has become one of the most popular research area in new energy field. In this report, the case of household solar power (more)

Jiang, He

2014-01-01T23:59:59.000Z

178

Concentrated Solar Power Generation.  

E-Print Network [OSTI]

??Solar power generation is the most promising technology to transfer energy consumption reliance from fossil fuel to renewable sources. Concentrated solar power generation is a (more)

Jin, Zhilei

2013-01-01T23:59:59.000Z

179

Solar powered desalination system  

E-Print Network [OSTI]

As a clean energy source, solar power is inexhaustible,renewables for energy sources, including solar power. Also,Requirements Energy Source Natural Gas Nuclear Solar Wind

Mateo, Tiffany Alisa

2011-01-01T23:59:59.000Z

180

Assessment of Combined Heat and Power Premium Power Applications...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Assessment of Combined Heat and Power Premium Power Applications in California, September 2008 Assessment of Combined Heat and Power Premium Power Applications in California,...

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Wind Powering America Webinar: Wind Power Economics: Past, Present...  

Broader source: Energy.gov (indexed) [DOE]

Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends Wind Powering America Webinar: Wind Power Economics: Past, Present, and Future Trends November...

182

PWR FLECHT SEASET 21-rod-bundle flow-blockage task: data and analysis report. NRC/EPRI/Westinghouse report No. 11, main report and appendices A-J  

SciTech Connect (OSTI)

This report presents data and limited analysis from the 21-Rod Bundle Flow Blockage Task of the Full-Length Emergency Cooling Heat Transfer Separate Effects and Systems Effects Test Program (FLECHT SEASET). The tests consisted of forced and gravity reflooding tests utilizing electrical heater rods with a cosine axial power profile to simulate PWR nuclear core fuel rod arrays. Steam cooling and hydraulic characteristics tests were also conducted. These tests were utilized to determine effects of various flow blockage configurations (shapes and distributions) on reflooding behavior, to aid in development/assessment of computational models in predicting reflooding behavior of flow blockage configurations, and to screen flow blockage configurations for future 163-rod flow blockage bundle tests.

Loftus, M.J.; Hochreiter, L.E.; Lee, N.; McGuire, M.F.; Wenzel, A.H.; Valkovic, M.M.

1982-09-01T23:59:59.000Z

183

Power network analysis and optimization  

E-Print Network [OSTI]

hierarchical power distribution design with a power tree [T. Roy, Power distribution system design methodology andChen, 3D Power Distribution Network Co-design for Nanascale

Zhang, Wanping

2009-01-01T23:59:59.000Z

184

Power Series Introduction  

E-Print Network [OSTI]

Power Series 16.4 Introduction In this section we consider power series. These are examples of infinite series where each term contains a variable, x, raised to a positive integer power. We use the ratio test to obtain the radius of convergence R, of the power series and state the important result

Vickers, James

185

Dispersed power and renewables  

SciTech Connect (OSTI)

Distributed power generation and renewable energy sources are discussed: The following topics are discussed: distributed resources, distributed generation, commercialization requirements, biomass power, location of existing biomass feedstocks, biomass business plan components, North Carolina BGCC partnership, New York biomass co-firing project, alfalfa for power and feed, Hawaii Pioneer Mill LOI project, next steps for biomass, wind power activity, photovoltaic modules and arrays, lead-acid batteries, superconducting magnetic energy storage, fuel cells, and electric power industry trends.

O`Sullivan, J.B.

1995-12-31T23:59:59.000Z

186

Active Power Control from Wind Power (Presentation)  

SciTech Connect (OSTI)

In order to keep the electricity grid stable and the lights on, the power system relies on certain responses from its generating fleet. This presentation evaluates the potential for wind turbines and wind power plants to provide these services and assist the grid during critical times.

Ela, E.; Brooks, D.

2011-04-01T23:59:59.000Z

187

High power fast ramping power supplies  

SciTech Connect (OSTI)

Hundred megawatt level fast ramping power converters to drive proton and heavy ion machines are under research and development at accelerator facilities in the world. This is a leading edge technology. There are several topologies to achieve this power level. Their advantages and related issues will be discussed.

Marneris,I.; Bajon, E.; Bonati, R.; Sandberg, J.; Roser, T.; Tsoupas, N.

2009-05-04T23:59:59.000Z

188

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

that is powered by an electric motor which is driven byPower module Reactor Electric motor Toyota EVlH electricdesign package including an electric motor and associated

Cairns, Elton J.

2012-01-01T23:59:59.000Z

189

Power Factor Improvement  

E-Print Network [OSTI]

Power factor control is a necessary ingredient in any successful Energy Management Program. Many companies are operating with power factors of 70% or less and are being penalized through the electrical utility bill. This paper starts by describing...

Viljoen, T. A.

1979-01-01T23:59:59.000Z

190

Residential Wind Power  

E-Print Network [OSTI]

This research study will explore the use of residential wind power and associated engineering and environmental issues. There is various wind power generating devices available to the consumer. The study will discuss the dependencies of human...

Willis, Gary

2011-12-16T23:59:59.000Z

191

Space Solar Power Program  

SciTech Connect (OSTI)

Information pertaining to the Space Solar Power Program is presented on energy analysis; markets; overall development plan; organizational plan; environmental and safety issues; power systems; space transportation; space manufacturing, construction, operations; design examples; and finance.

Arif, H.; Barbosa, H.; Bardet, C.; Baroud, M.; Behar, A.; Berrier, K.; Berthe, P.; Bertrand, R.; Bibyk, I.; Bisson, J.; Bloch, L.; Bobadilla, G.; Bourque, D.; Bush, L.; Carandang, R.; Chiku, T.; Crosby, N.; De Seixas, M.; De Vries, J.; Doll, S.; Dufour, F.; Eckart, P.; Fahey, M.; Fenot, F.; Foeckersperger, S.; Fontaine, J.E.; Fowler, R.; Frey, H.; Fujio, H.; Gasa, J.M.; Gleave, J.; Godoe, J.; Green, I.; Haeberli, R.; Hanada, T.; Ha

1992-08-01T23:59:59.000Z

192

Idaho Power- Net Metering  

Broader source: Energy.gov [DOE]

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has developed a net...

193

Power production and ADS  

SciTech Connect (OSTI)

We describe the power production process in Accelerator Driven Sub-critical systems employing Thorium-232 and Uranium-238 as fuel and examine the demands on the power of the accelerator required.

Raja, Rajendran; /Fermilab

2010-03-01T23:59:59.000Z

194

Body powered thermoelectric systems  

E-Print Network [OSTI]

Great interest exists for and progress has be made in the effective utilization of the human body as a possible power supply in hopes of powering such applications as sensors and continuously monitoring medical devices ...

Settaluri, Krishna Tej

2012-01-01T23:59:59.000Z

195

Soldier power. Battery charging.  

E-Print Network [OSTI]

hours runtime at full load 50 W #12; (%) (kW) 300 1-5 Siemens-Power 30 (hr) 10,000 Siemens 300 Acumentrics 80 (mW/cm2) 600 400 Siemens-Power 85 (hr) 70,000 3,000 Siemens-Power 15 () 500 25 Siemens-Power 60 >2013 - , Bloom, MHI, Rolls Royce 6 #12; SOFCSOFC * (LSCF ) ( Ag

Hong, Deog Ki

196

ELECTROCHEMICAL POWER FOR TRANSPORTATION  

E-Print Network [OSTI]

resistant material for contact with s Low-cost seals Low-cost electrolyte Specific power is low Thermal

Cairns, Elton J.

2012-01-01T23:59:59.000Z

197

Concentrating Solar Power  

SciTech Connect (OSTI)

Summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts within its concentrating solar power subprogram.

Not Available

2008-09-01T23:59:59.000Z

198

Green Power Inverter Prvningsrapport  

E-Print Network [OSTI]

Green Power Inverter Prøvningsrapport SolenergiCentret Søren Poulsen Ivan Katic Oktober 2004 #12;Green Power Inverter målerapport.doc SolenergiCentret - 04-03-2005 2 Forord Nærværende rapport indeholder Teknologisk Instituts bidrag til målinger i forbindelse med PSO projektet "Green Power Inverter

199

Power Plant Cycling Costs  

SciTech Connect (OSTI)

This report provides a detailed review of the most up to date data available on power plant cycling costs. The primary objective of this report is to increase awareness of power plant cycling cost, the use of these costs in renewable integration studies and to stimulate debate between policymakers, system dispatchers, plant personnel and power utilities.

Kumar, N.; Besuner, P.; Lefton, S.; Agan, D.; Hilleman, D.

2012-07-01T23:59:59.000Z

200

Power/Privilege Definitions  

E-Print Network [OSTI]

Major; People's Institute for Survival and Beyond, New Orleans 2. Power is the ability to define reality and to convince other people that it is their definition. ~ Dr. Wade Nobles 3. Power is the capacity to act. 4 different cultures. [JL] RACISM Racism is race prejudice plus power [See Racist]. People's Institute calls

Sheridan, Jennifer

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Power Dancers Audition Packet  

E-Print Network [OSTI]

Power Dancers Dance Team Audition Packet September 8-10, 2014 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

O'Toole, Alice J.

202

Power Dancers Audition Packet  

E-Print Network [OSTI]

Power Dancers Dance Team Audition Packet September 9-11, 2013 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

O'Toole, Alice J.

203

Power Dancers Audition Packet  

E-Print Network [OSTI]

Power Dancers Dance Team Audition Packet September 10 & 12, 2012 #12;Power Dancers Dance Team Dear service to their school with the support of the faculty, administration, and other groups on campus, but they also provide a source of great school spirit to UT Dallas. Power Dancers provides a real opportunity

O'Toole, Alice J.

204

How Power is Lost: Illusions of Alliance Among the Powerful  

E-Print Network [OSTI]

while most accounts of power loss focus on ethical breachesPower Loss .1. Proposed Model of Power Loss Figure 2. Social Monitoring

Brion, Sebastien

2010-01-01T23:59:59.000Z

205

Energy Storage & Power Electronics 2008 Peer Review - Power Electronic...  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Power Electronics (PE) Systems Presentations Energy Storage & Power Electronics 2008 Peer Review - Power Electronics (PE) Systems Presentations The 2008 Peer Review Meeting for the...

206

Karnataka Power Corporation Limited and National Thermal Power...  

Open Energy Info (EERE)

Limited and National Thermal Power Corporation JV Jump to: navigation, search Name: Karnataka Power Corporation Limited and National Thermal Power Corporation JV Place: India...

207

Evaluation of gasification and gas cleanup processes for use in molten carbonate fuel cell power plants. Final report. [Contains lists and evaluations of coal gasification and fuel gas desulfurization processes  

SciTech Connect (OSTI)

This report satisfies the requirements for DOE Contract AC21-81MC16220 to: List coal gasifiers and gas cleanup systems suitable for supplying fuel to molten carbonate fuel cells (MCFC) in industrial and utility power plants; extensively characterize those coal gas cleanup systems rejected by DOE's MCFC contractors for their power plant systems by virtue of the resources required for those systems to be commercially developed; develop an analytical model to predict MCFC tolerance for particulates on the anode (fuel gas) side of the MCFC; develop an analytical model to predict MCFC anode side tolerance for chemical species, including sulfides, halogens, and trace heavy metals; choose from the candidate gasifier/cleanup systems those most suitable for MCFC-based power plants; choose a reference wet cleanup system; provide parametric analyses of the coal gasifiers and gas cleanup systems when integrated into a power plant incorporating MCFC units with suitable gas expansion turbines, steam turbines, heat exchangers, and heat recovery steam generators, using the Westinghouse proprietary AHEAD computer model; provide efficiency, investment, cost of electricity, operability, and environmental effect rankings of the system; and provide a final report incorporating the results of all of the above tasks. Section 7 of this final report provides general conclusions.

Jablonski, G.; Hamm, J.R.; Alvin, M.A.; Wenglarz, R.A.; Patel, P.

1982-01-01T23:59:59.000Z

208

Multimode power processor  

DOE Patents [OSTI]

In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources.

O'Sullivan, George A. (Pottersville, NJ); O'Sullivan, Joseph A. (St. Louis, MO)

1999-01-01T23:59:59.000Z

209

Multimode power processor  

DOE Patents [OSTI]

In one embodiment, a power processor which operates in three modes: an inverter mode wherein power is delivered from a battery to an AC power grid or load; a battery charger mode wherein the battery is charged by a generator; and a parallel mode wherein the generator supplies power to the AC power grid or load in parallel with the battery. In the parallel mode, the system adapts to arbitrary non-linear loads. The power processor may operate on a per-phase basis wherein the load may be synthetically transferred from one phase to another by way of a bumpless transfer which causes no interruption of power to the load when transferring energy sources. Voltage transients and frequency transients delivered to the load when switching between the generator and battery sources are minimized, thereby providing an uninterruptible power supply. The power processor may be used as part of a hybrid electrical power source system which may contain, in one embodiment, a photovoltaic array, diesel engine, and battery power sources. 31 figs.

O'Sullivan, G.A.; O'Sullivan, J.A.

1999-07-27T23:59:59.000Z

210

EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility...  

Broader source: Energy.gov (indexed) [DOE]

6: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI EA-1726: Kahuku Wind Power, LLC Wind Power Generation Facility, O'ahu, HI May 3, 2010 EA-1726: Final...

211

Dynamic Reactive Power Control of Isolated Power Systems  

E-Print Network [OSTI]

This dissertation presents dynamic reactive power control of isolated power systems. Isolated systems include MicroGrids in islanded mode, shipboard power systems operating offshore, or any other power system operating in islanded mode intentionally...

Falahi, Milad

2012-10-03T23:59:59.000Z

212

Power Quality Aspects in a Wind Power Plant: Preprint  

SciTech Connect (OSTI)

Although many operational aspects affect wind power plant operation, this paper focuses on power quality. Because a wind power plant is connected to the grid, it is very important to understand the sources of disturbances that affect the power quality.

Muljadi, E.; Butterfield, C. P.; Chacon, J.; Romanowitz, H.

2006-01-01T23:59:59.000Z

213

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead previously by Gasification Engineering Corporation (GEC). The project is now under the leadership of ConocoPhillips Company (COP) after it acquired GEC and the E-Gas{trademark} gasification technology from Global Energy in July 2003. The Phase I of this project was supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while the Phase II is supported by Gas Technology Institute, TDA Research, Inc., and Nucon International, Inc. The two project phases planned for execution include: (1) Feasibility study and conceptual design for an integrated demonstration facility at Global Energy's existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana, and for a fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. The WREL facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and now COP and the industrial partners are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Thomas Lynch

2004-01-07T23:59:59.000Z

214

Southeastern Power Administration | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Southeastern Power Administration Southeastern Power Administration Southeastern Power Administration View All Maps Addthis...

215

Alternative Energy Technologies Solar Power  

E-Print Network [OSTI]

#12;Alternative Energy Technologies Solar Power Photovoltaics Concentrating Solar Power (CSP) Power;Concentrating Solar Power (CSP) Reflector material is Aluminum or Silver Tube material ..... Several possible ............... Mexico, Canada, Peru Alumina ............Guinea, Brazil, Australia, Jamaica Manganese ....... S. Africa

Scott, Christopher

216

Peak power ratio generator  

DOE Patents [OSTI]

A peak power ratio generator is described for measuring, in combination with a conventional power meter, the peak power level of extremely narrow pulses in the gigahertz radio frequency bands. The present invention in a preferred embodiment utilizes a tunnel diode and a back diode combination in a detector circuit as the only high speed elements. The high speed tunnel diode provides a bistable signal and serves as a memory device of the input pulses for the remaining, slower components. A hybrid digital and analog loop maintains the peak power level of a reference channel at a known amount. Thus, by measuring the average power levels of the reference signal and the source signal, the peak power level of the source signal can be determined.

Moyer, Robert D. (Albuquerque, NM)

1985-01-01T23:59:59.000Z

217

Entangling Power of Permutations  

E-Print Network [OSTI]

The notion of entangling power of unitary matrices was introduced by Zanardi, Zalka and Faoro [PRA, 62, 030301]. We study the entangling power of permutations, given in terms of a combinatorial formula. We show that the permutation matrices with zero entangling power are, up to local unitaries, the identity and the swap. We construct the permutations with the minimum nonzero entangling power for every dimension. With the use of orthogonal latin squares, we construct the permutations with the maximum entangling power for every dimension. Moreover, we show that the value obtained is maximum over all unitaries of the same dimension, with possible exception for 36. Our result enables us to construct generic examples of 4-qudits maximally entangled states for all dimensions except for 2 and 6. We numerically classify, according to their entangling power, the permutation matrices of dimension 4 and 9, and we give some estimates for higher dimensions.

Lieven Clarisse; Sibasish Ghosh; Simone Severini; Anthony Sudbery

2005-04-11T23:59:59.000Z

218

Power transaction issues in deregulated power systems  

E-Print Network [OSTI]

numbers Slack Bus IVI, 0 P;, Q; Gen. Bus Q 0 2, 3, 4, . . . , l+NPV Load Bus Pu Qi 2+NPV, 3+NPV, . . . , N Using the Kirchhoff's current law at a given node, the real and reactive power balance equations are written at each bus of the system: n P... ~ 822 821 827 9!, '7 Fig. 4. IEEE 30 bus system. 11 Figure 5 shows the bus dialog box for bus 13, where a 10MW increase in real power generation is entered. 1 IOIOOO 1QOtKMCO QOQINIO QOXCOO O'I OOXI -0 DDDOCO tg. . us ata. Step 1. Let us...

Roycourt, Henrik

2000-01-01T23:59:59.000Z

219

Electric power annual 1993  

SciTech Connect (OSTI)

This report presents a summary of electric power industry statistics at national, regional, and state levels: generating capability and additions, net generation, fossil-fuel statistics, retail sales and revenue, finanical statistics, environmental statistics, power transactions, demand side management, nonutility power producers. Purpose is to provide industry decisionmakers, government policymakers, analysts, and the public with historical data that may be used in understanding US electricity markets.

Not Available

1994-12-08T23:59:59.000Z

220

Interleaved power converter  

DOE Patents [OSTI]

A power converter architecture interleaves full bridge converters to alleviate thermal management problems in high current applications, and may, for example, double the output power capability while reducing parts count and costs. For example, one phase of a three phase inverter is shared between two transformers, which provide power to a rectifier such as a current doubler rectifier to provide two full bridge DC/DC converters with three rather than four high voltage inverter legs.

Zhu, Lizhi (Canton, MI)

2007-11-13T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Trumping and Power Majorization  

E-Print Network [OSTI]

Majorization is a basic concept in matrix theory that has found applications in numerous settings over the past century. Power majorization is a more specialized notion that has been studied in the theory of inequalities. On the other hand, the trumping relation has recently been considered in quantum information, specifically in entanglement theory. We explore the connections between trumping and power majorization. We prove an analogue of Rado's theorem for power majorization and consider a number of examples.

David W. Kribs; Rajesh Pereira; Sarah Plosker

2012-10-24T23:59:59.000Z

222

Nuclear power browning out  

SciTech Connect (OSTI)

When the sad history of nuclear power is written, April 26, 1986, will be recorded as the day the dream died. The explosion at the Chernobyl plant was a terrible human tragedy- and it delivered a stark verdict on the hope that nuclear power will one day replace fossil fuel-based energy systems. Nuclear advocates may soldier on, but a decade after Chernobyl it is clear that nuclear power is no longer a viable energy option for the twenty-first century.

Flavin, C.; Lenssen, N.

1996-05-01T23:59:59.000Z

223

Power Right. Power Smart. Efficient Computer Power Supplies and Monitors. |  

Energy Savers [EERE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE: Alternative Fuels Data Center Home Page on Google Bookmark EERE: Alternative Fuels Data Center Home Page on Office of Inspector GeneralDepartment of Energy from Elizabeth C. PPortland DataBoard -Energy SolutionsPower

224

Balancing of Wind Power.  

E-Print Network [OSTI]

?? In the future, renewable energy share, especially wind power share, in electricity generation is expected to increase. Due to nature of the wind, wind (more)

lker, Muhammed Akif

2011-01-01T23:59:59.000Z

225

Solar Power Purchase Agreements  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Brian Millberg | Energy Manager, City of Minneapolis Direct Ownership * Financial: Even at 3kW installed cost, simple payback is 18 years (initial...

226

Concentrated Solar Thermoelectric Power  

Broader source: Energy.gov [DOE]

This presentation was delivered at the SunShot Concentrating Solar Power (CSP) Program Review 2013, held April 2325, 2013 near Phoenix, Arizona.

227

Critical pulse power components  

SciTech Connect (OSTI)

Critical components for pulsed power conditioning systems will be reviewed. Particular emphasis will be placed on those components requiring significant development efforts. Capacitors, for example, are one of the weakest elements in high-power pulsed systems, especially when operation at high-repetition frequencies for extended periods of time are necessary. Switches are by far the weakest active components of pulse power systems. In particular, opening switches are essentially nonexistent for most applications. Insulaton in all systems and components requires development and improvement. Efforts under way in technology base development of pulse power components will be discussed.

Sarjeant, W.J.; Rohwein, G.J.

1981-01-01T23:59:59.000Z

228

Municipal Electric Power (Minnesota)  

Broader source: Energy.gov [DOE]

This section describes energy procurement for local utilities operating in Minnesota and provides a means for Minnesota cities to construct and operate hydroelectric power plants. The statute gives...

229

Power Supply Negotiations  

Office of Environmental Management (EM)

Southeastern Federal Power Alliance Incremental Decay in Energy March 11, 2014 2 Incremental Decay in Energy Hydropower customers observations from our review of the Buford...

230

Alabama Power- UESC Activities  

Broader source: Energy.gov [DOE]

Presentationgiven at the Fall 2012 Federal Utility Partnership Working Group (FUPWG) meetingdiscusses Alabama Power and its utility energy service contract (UESC) projects and activities.

231

Energy 101: Hydroelectric Power  

Office of Energy Efficiency and Renewable Energy (EERE)

Learn how hydroelectric power, or hydropower, captures the kinetic energy of flowing water and turns it into electricity for our homes and businesses.

232

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

and Characterization (SciChar) Workshop Characterization Capabilities Battery Questions Neutron Advantages * Scattering Power unrelated to Z - Many low Z elements have high cross...

233

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

DOE Energy Storage & Power Electronics Research Programs September 29 - 30, 2008 Marcelo Schupbach, Ph.D. Chief Technical Officer APEI, Inc. 535 Research Center Blvd. Fayetteville,...

234

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

Systems Program 1 DOE Energy Storage & Power Electronics Research Programs October 8, 2009 Marcelo Schupbach, Ph.D. Chief Technology Officer APEI, Inc. 535 Research Center Blvd....

235

European Space Power Conference  

SciTech Connect (OSTI)

To support the Space Exploration Initiative (SEI), a study was performed to investigate power system alternatives for the rover vehicles and servicers that were subsequently generated for each of these rovers and servicers, candidate power sources incorporating various power generation and energy storage technologies were identified. The technologies were those believed most appropriate to the SEI missions, and included solar, electrochemical, and isotope systems. The candidates were characterized with respect to system mass, deployed area, and volume. For each of the missions a preliminary selection was made. Results of this study depict the available power sources in light of mission requirements as they are currently defined.

Bents, D.J.; Kohout, L.L.; Mckissock, B.I.; Rodriguez, C.D.; Withrow, C.A.; Colozza, A.; Hanlon, J.C.; Schmitz, P.C.

1991-01-01T23:59:59.000Z

236

Wide Bandgap Power Electronics  

Broader source: Energy.gov (indexed) [DOE]

- Acquiring new prototype devices. - Building new gate drivers and test set- ups for power switches with fast switching times * Total project funding - DOE 100% * FY08 - 432K *...

237

Application Power Signature Analysis  

SciTech Connect (OSTI)

The high-performance computing (HPC) community has been greatly concerned about energy efficiency. To address this concern, it is essential to understand and characterize the electrical loads of HPC applications. In this work, we study whether HPC applications can be distinguished by their power-consumption patterns using quantitative measures in an automatic manner. Using a collection of 88 power traces from 4 different systems, we find that basic statistical measures do a surprisingly good job of summarizing applications' distinctive power behavior. Moreover, this study opens up a new area of research in power-aware HPC that has a multitude of potential applications.

Hsu, Chung-Hsing [ORNL] [ORNL; Combs, Jacob [Sonoma State University] [Sonoma State University; Nazor, Jolie [Sonoma State University] [Sonoma State University; Santiago, Fabian [Sonoma State University] [Sonoma State University; Thysell, Rachelle [Sonoma State University] [Sonoma State University; Rivoire, Suzanne [Sonoma State University] [Sonoma State University; Poole, Stephen W [ORNL] [ORNL

2014-01-01T23:59:59.000Z

238

Contemporary Trends power point  

E-Print Network [OSTI]

Power point slides guiding presentation on closing the gap between political acceptability and administrative sustainability as a prerequisite for effective governance. Leadership challenges are described

Nalbandian, John

2013-02-01T23:59:59.000Z

239

Solar power satellites.  

E-Print Network [OSTI]

??During energy crisis at the end of the Sixties, a new idea to exploit solar energy arose: Solar Power Satellites. These satellites need a huge (more)

Palmas, Alessandro

2013-01-01T23:59:59.000Z

240

Westinghouse Hanford Company health and safety performance report  

SciTech Connect (OSTI)

Topping the list of WHC Safety recognition during this reporting period is a commendation received from the National Safety Council (NSC). The NSC bestowed their Award of Honor upon WHC for significant reduction of incidence rates during CY 1995. The award is based upon a reduction of 48 % or greater in cases involving days away from work, a 30 % or greater reduction in the number of days away, and a 15% or greater reduction in the total number of occupational injuries and illnesses. (page 2-1). A DOE-HQ review team representing the Office of Envirorunent, Safety and Health (EH), visited the Hanford Site during several weeks of the quarter. Ile 40-member Safety Management Evaluation Team (SMET) assessed WHC in the areas of management responsibility, comprehensive requirements, and competence commensurate with responsibility. As part of their new approach to oversight, they focused on the existence of management systems and programs (comparable approach to VPP). Plant/project areas selected for review within WHC were PFP, B Plant/WESF, Tank Farms, and K-Basins (page 2-2). Effective safety meetings, prejob safety meetings, etc., are a cornerstone of any successful safety program. In an effort to improve the reporting of safety meetings, the Safety/Security Meeting Report form was revised. It now provides a mechanism for recording and tracking safety issues (page 2-4). WHC has experienced an increase in the occupational injury and illness incidence rates during the first quarter of CY 1996. Trends show this increase can be partially attributed to inattention to workplace activities due 0999to the uncertainty Hanford employees currently face with recent reduction of force, reorganization, and reengineering efforts (page 2-7). The cumulative CY 1995 lost/restricted workday case incidence rate for the first quarter of CY 1996 (1.28) is 25% below the DOE CY 1991-93 average (1.70). However, the incidence rate increased 24% from the CY 1995 rate of 1.03 (page 2-8). The reengineering of the Radiological Control organization has resulted in an increase in the availability of personnel to help facilities with the procurement and use of practical ALARA measures. In addition, there seems to be more awareness of the need to use ALARA, resulting in a significant increase in the number of calls received by the ALARA Program Office for help in solving radiological problems (page 1-3). The Figure 3-2-1 chart data includes WHC, BCSR, and ICF KH employee exposure. The first quarter CY 1996 results represent the exposure of 1,913 quarterly-badged employees and an average of 846 monthly-badged employees. There were three instances of potential loss of contamination control during the calendar quarter involving three workers where internal dosimetry follow-up was performed. No intakes of contamination were detected (page 3-6). There were five skin contaminations and 18 clothing contaminations reported during this quarter in all WHC-managed facilities/areas. This represents an improvement in performance compared to the first quarter of CY 1995 (page 3-9). A monthly average of 76 Radiological Problem Reports (RPR) was issued during the first quarter of CY 1996 for a total issuance of 227 RPRS. The monthly average for the same quarter in CY 1995 was 76; a total of 228 for the quarter (Figure 3-5-1). At the end of March, WHC Dosimetry was monitoring the following employees/sub- contractors: 631 monthly standard dosimeters, 251 monthly combination dosimeters, 1,386 quarterly standard dosimeters, 472 quarterly combination dosimeters, and 3,716 annual dosimeters. During this period, Dosimetry had 987 requests for changes to the frequency, and terminated 731 dosimetry records.

Rogers, L.

1996-05-15T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

LWJ-0004- In the Matter of Westinghouse Hanford Company  

Broader source: Energy.gov [DOE]

On February 28, 1994, Helen "Gai" Oglesbee filed a request for hearing under the Department of Energy's Contractor Employee Protection Program, 10 C.F.R. Part 708. This request has been assigned...

242

G. A. Antaki Westinghouse Savannah River Company Savannah River...  

Office of Scientific and Technical Information (OSTI)

Recognizing the excessive costs and the limited value added of wholesale analysis, the nuclear industry, through EPRI, has developed rules for the seismic evaluation of small...

243

Westinghouse Hanford Company Operational Groundwater status report, 1990--1992  

SciTech Connect (OSTI)

This report presents information related to the water quality of ground water at the Hanford Reservation. Included are plume maps, geology, hydrology, and information on various effluent sources.

Johnson, V.G.

1993-03-01T23:59:59.000Z

244

Westinghouse Hanford Company FY 1995 Materials Management Plan (MMP)  

SciTech Connect (OSTI)

The safe and sound operation of facilities and storage of nuclear material are top priorities within Hanford`s environmental management, site restoration mission. The projected materials estimates, based on the Materials Management Plan (MMP) assumptions outlined below, were prepared for Department of Energy (DOE) use in long-range planning. The Hanford MMP covers the period FY 1995 through FY 2005, as directed by DOE. All DOE Richland Operations (RL) Office facilities are essentially funded by the Office of Transition and Facilities Management, Environmental Restoration and Waste Management (EM). These facilities include PUREX, the UO{sub 3} plant, N-Reactor, T-Plant, K-Basins, FFTF, PFP and the 300 Area Fuel Fabrication facilities. Currently DP provides partial funding for the latter two facilities. Beginning in FY 1996 (in accordance with DOE-HQ MMP assumptions), EM will fund expenses related to the storage, monitoring, and safeguarding of all Special Nuclear Material (SNM) in the PFP. Ownership and costs related to movement and/or stabilization of that material will belong to EM programs (excluding NE material). It is also assumed that IAEA will take over inventory validation and surveillance of EM owned SNM at this time (FY 1996).

Higginson, M.C.

1994-10-01T23:59:59.000Z

245

Westinghouse Completes its AP1000 Test Stand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon CaptureFY08Intermittent3,19963xinyufu Ames17to Thomson| GE1 1

246

Westinghouse and Fuzhou Permitted to Restart Distribution of Light Bulb  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment of Energy WhileTanklessLES' URENCO-USAWestern

247

Preliminary Notice of Violation, Westinghouse Savannah River Company -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07 |EA-2005-03| DepartmentEA-2000-02 |

248

Preliminary Notice of Violation, Westinghouse Savannah River Company -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07 |EA-2005-03| DepartmentEA-2000-02

249

Preliminary Notice of Violation, Westinghouse Savannah River Company -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07 |EA-2005-03|

250

Preliminary Notice of Violation, Westinghouse Savannah River Company -  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07 |EA-2005-03|EA-97-12 | Department

251

Preliminary Notice of Violation, Westinghouse Savannah River Company - EA  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07 |EA-2005-03|EA-97-12 |

252

Preliminary Notice of Violation, Westinghouse Savannah River Company - EA  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Careerlumens_placard-green.epsEnergy1.pdfMarket |21,- EA-1999-07 |EA-2005-03|EA-97-12 |98-09 |

253

DOE Initiates Enforcement Proceedings against Westinghouse and Mitsubishi  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana. DOCUMENTSof Energy DOE ChallengeThese(Notice of Proposed Civil Penaltyfor

254

Westinghouse Again Recognized For Safe Underground Operations at WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About | Careers NovemberTRU

255

Westinghouse Earns 15th Consecutive Mine Safety Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About | CareersEarns 15 th

256

Westinghouse Earns Mine Safety Award for 16th Consecutive Year  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About | CareersEarns 15

257

Westinghouse Earns Mine Safety Award for Exceptional Underground Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About | CareersEarns

258

Westinghouse Selects Bill Keeley To Lead Strategic Planning and Communication  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |Selects Bill Keeley

259

Westinghouse TRU Solutions LLC Earns Corporate Award for Mining Operations  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |Selects

260

Westinghouse TRU Solutions LLC Earns Small Business Program Award  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |SelectsFor Immediate

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Westinghouse TRU Solutions LLC Earns Superior Star Award for Safety  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In About |SelectsFor

262

Westinghouse earns top award from quality new mexico  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In AboutEarns Top Award From

263

Westinghouse receives high marks for management, operation of WIPP  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun DengWISP Sign In AboutEarns Top AwardReceives

264

Enforcement Letter, Westinghouse Hanford Corporation - July 6, 1995 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartmentEnergy

265

Enforcement Letter, Westinghouse Hanford Corporation - September 22, 1995 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartmentEnergyDepartment of

266

Enforcement Letter, Westinghouse Savannah River Company - April 15, 1997 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartmentEnergyDepartment

267

Enforcement Letter, Westinghouse Savannah River Company - April 19, 2004 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick onDepartmentEnergyDepartmentDepartment

268

Enforcement Letter, Westinghouse Savannah River Company - July 21, 1998 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClick

269

Enforcement Letter, Westinghouse Savannah River Company - June 4, 1996 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment of Energy June 4, 1996 Issued

270

Enforcement Letter, Westinghouse Savannah River Company - March 29, 2000 |  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment of Energy June 4, 1996

271

Enforcement Letter, Westinghouse Savannah River Company - November 14, 2003  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment of Energy June 4, 1996|

272

Enforcement Letter, Westinghouse Waste Isolation Division - October 3, 2000  

Broader source: Energy.gov (indexed) [DOE]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarly Career Scientists'Montana.Program -Department oftoTheseClickDepartment of Energy June 4, 1996||

273

G. A. Antaki Westinghouse Savannah River Company Savannah River Site  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation ProposedUsingFun with Big Sky Learning Fun with Big SkyDIII-D ExplorationsFuture25,JeffersonW

274

DOE - Office of Legacy Management -- Westinghouse Advanced Reactors Div  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -New

275

DOE - Office of Legacy Management -- Westinghouse Electric Corp - NJ 03  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -NewPlant - PA

276

DOE - Office of Legacy Management -- Westinghouse Naval Ordnance - MI 02  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou areDowntown Site -Miami -NewPlant - PANaval Ordnance

277

Westinghouse Completes its AP1000® Test Stand  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies | Blandine Jerome Careers at WIPPCompletes its AP1000® Test

278

PRELIMINARY SURVEY OF WESTINGHOUSE ELECTRIC CORPORATION EAST PITTSBURGH, PENNSYLVANIA  

Office of Legacy Management (LM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "ofEarlyEnergyDepartment ofDepartment ofof EnergyYou$0.C. 20545 OCT 28 1% - :NEW;ORAU/ I_ROHM

279

Power, Media & Montesquieu. New forms of public power and the balance of power  

E-Print Network [OSTI]

SUMMARY Power, Media & Montesquieu. New forms of public power and the balance of power are organized it is crucial to restrain the power that the state exerts on its citizens. The state has three functions, commonly known as powers: the legislative, executive and judicial powers. This three

van den Brink, Jeroen

280

NUCLEAR POWER in CALIFORNIA  

E-Print Network [OSTI]

NUCLEAR POWER in CALIFORNIA: 2007 STATUS REPORT CALIFORNIA ENERGY COMMISSION October 2007 CEC-100, California Contract No. 700-05-002 Prepared For: California Energy Commission Barbara Byron, Senior Nuclear public workshops on nuclear power. The Integrated Energy Policy Report Committee, led by Commissioners

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

The Icelandic Power Situation  

E-Print Network [OSTI]

energy attracts power intensive industry to Iceland Households use only 5% 90% of district heating ensured · Feasible to sell excess energy · Takes advantage of the flexiblity of hydropower · Energy with low cost geothermal energy 80% 5% 15% Households Other users Power intensive industries #12;Future

Karlsson, Brynjar

282

Purchasing Renewable Power  

Broader source: Energy.gov [DOE]

Federal agencies can purchase renewable power or renewable energy certificates (RECs) from a utility or other organization to meet Federal renewable energy requirements. Renewable power and RECs are good choices for facilities where on-site projects may be difficult or capital budgets are limited.

283

Power module assembly  

DOE Patents [OSTI]

A power module assembly of the type suitable for deployment in a vehicular power inverter, wherein the power inverter has a grounded chassis, is provided. The power module assembly comprises a conductive base layer electrically coupled to the chassis, an insulating layer disposed on the conductive base layer, a first conductive node disposed on the insulating layer, a second conductive node disposed on the insulating layer, wherein the first and second conductive nodes are electrically isolated from each other. The power module assembly also comprises a first capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the first conductive node, and further comprises a second capacitor having a first electrode electrically connected to the conductive base layer, and a second electrode electrically connected to the second conductive node.

Campbell, Jeremy B. (Torrance, CA); Newson, Steve (Redondo Beach, CA)

2011-11-15T23:59:59.000Z

284

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), a company of Global Energy Inc., and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the U.S. Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. During the reporting period, various methods to remove low-level contaminants for the synthesis gas were reviewed. In addition, there was a transition of the project personnel for GEC which has slowed the production of the outstanding project reports.

Gary Harmond; Albert Tsang

2003-03-14T23:59:59.000Z

285

Engineering Development of Coal-Fired High-Performance Power Systems  

SciTech Connect (OSTI)

A High Performance Power System (HIPPS) is being developed. This system is a coal-fired, combined cycle plant with indirect heating of gas turbine air. Foster Wheeler Development Corporation and a team consisting of Foster Wheeler Energy Corporation, Bechtel Corporation, University of Tennessee Space Institute and Westinghouse Electric Corporation are developing this system. In Phase 1 of the project, a conceptual design of a commercial plant was developed. Technical and economic analyses indicated that the plant would meet the goals of the project which include a 47 percent efficiency (HHV) and a 10 percent lower cost of electricity than an equivalent size PC plant. The concept uses a pyrolysis process to convert coal into fuel gas and char. The char is fired in a High Temperature Advanced Furnace (HITAF). The HITAF is a pulverized fuel-fired boiler/air heater where steam is generated and gas turbine air is indirectly heated. The fuel gas generated in the pyrolyzer is then used to heat the gas turbine air further before it enters the gas turbine. The project is currently in Phase 2 which includes engineering analysis, laboratory testing and pilot plant testing. Research and development is being done on the HIPPS systems that are not commercial or being developed on other projects. Pilot plant testing of the pyrolyzer subsystem and the char combustion subsystem are being done separately. This report addresses the areas of technical progress for this quarter. The detail of syngas cooler design is given in this report. The final construction work of the CFB pyrolyzer pilot plant has started during this quarter. No experimental testing was performed during this quarter. The proposed test matrix for the future CFB pyrolyzer tests is given in this report. Besides testing various fuels, bed temperature will be the primary test parameter.

York Tsuo

2000-12-31T23:59:59.000Z

286

FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking,  

E-Print Network [OSTI]

FUTURE POWER GRID INITIATIVE GridOPTICSTM Power Networking, Equipment, and Technology (powerNET) Testbed OBJECTIVE A lot of interest in research, improvements, and testing surrounds the power grid to these activities. Specifically, » power system equipment is expensive and has a high knowledge barrier

287

Northwest Power and Conservation Council Fifth Northwest Power Plan  

E-Print Network [OSTI]

Northwest Power and Conservation Council Fifth Northwest Power Plan Statement of Basis and Purpose for the Fifth Power Plan and Response to Comments on the Draft Fifth Power Plan February 2005 #12;I. Background.........................................................................................................................................3 B. Developing the Fifth Power Plan

288

The Power of Non-Uniform Wireless Power  

E-Print Network [OSTI]

The Power of Non-Uniform Wireless Power ETH Zurich ­ Distributed Computing Group Magnus M-To-Interference-Plus-Noise Ratio (SINR) Formula Minimum signal- to-interference ratio Power level of sender u Path-loss exponent Noise Distance between two nodes Received signal power from sender Received signal power from all other

289

TEP Power Partners Project [Tucson Electric Power  

SciTech Connect (OSTI)

The Arizona Governors Office of Energy Policy, in partnership with Tucson Electric Power (TEP), Tendril, and Next Phase Energy (NPE), formed the TEP Power Partners pilot project to demonstrate how residential customers could access their energy usage data and third party applications using data obtained from an Automatic Meter Reading (AMR) network. The project applied for and was awarded a Smart Grid Data Access grant through the U.S. Department of Energy. The project participants goal for Phase I is to actively engage 1,700 residential customers to demonstrate sustained participation, reduction in energy usage (kWh) and cost ($), and measure related aspects of customer satisfaction. This Demonstration report presents a summary of the findings, effectiveness, and customer satisfaction with the 15-month TEP Power Partners pilot project. The objective of the program is to provide residential customers with energy consumption data from AMR metering and empower these participants to better manage their electricity use. The pilot recruitment goals included migrating 700 existing customers from the completed Power Partners Demand Response Load Control Project (DRLC), and enrolling 1,000 new participants. Upon conclusion of the project on November 19, 2013: ? 1,390 Home Area Networks (HANs) were registered. ? 797 new participants installed a HAN. ? Survey respondents are satisfied with the program and found value with a variety of specific program components. ? Survey respondents report feeling greater control over their energy usage and report taking energy savings actions in their homes after participating in the program. ? On average, 43 % of the participants returned to the web portal monthly and 15% returned weekly. ? An impact evaluation was completed by Opinion Dynamics and found average participant savings for the treatment period1 to be 2.3% of their household use during this period.2 In total, the program saved 163 MWh in the treatment period of 2013.

None

2013-11-19T23:59:59.000Z

290

Zero Emission Power Plants Using Solid Oxide Fuel Cells and Oxygen Transport Membranes  

SciTech Connect (OSTI)

Siemens Westinghouse Power Corp. (SWPC) is engaged in the development of Solid Oxide Fuel Cell stationary power systems. SWPC has combined DOE Developmental funds with commercial customer funding to establish a record of successful SOFC field demonstration power systems of increasing size. SWPC will soon deploy the first unit of a newly developed 250 kWe Combined Heat Power System. It will generate electrical power at greater than 45% electrical efficiency. The SWPC SOFC power systems are equipped to operate on lower number hydrocarbon fuels such as pipeline natural gas, which is desulfurized within the SOFC power system. Because the system operates with a relatively high electrical efficiency, the CO2 emissions, {approx}1.0 lb CO2/ kW-hr, are low. Within the SOFC module the desulfurized fuel is utilized electrochemically and oxidized below the temperature for NOx generation. Therefore the NOx and SOx emissions for the SOFC power generation system are near negligible. The byproducts of the power generation from hydrocarbon fuels that are released into the environment are CO2 and water vapor. This forward looking DOE sponsored Vision 21 program is supporting the development of methods to capture and sequester the CO2, resulting in a Zero Emission power generation system. To accomplish this, SWPC is developing a SOFC module design, to be demonstrated in operating hardware, that will maintain separation of the fuel cell anode gas, consisting of H2, CO, H2O and CO2, from the vitiated air. That anode gas, the depleted fuel stream, containing less than 18% (H2 + CO), will be directed to an Oxygen Transport Membrane (OTM) Afterburner that is being developed by Praxair, Inc.. The OTM is supplied air and the depleted fuel. The OTM will selectively transport oxygen across the membrane to oxidize the remaining H2 and CO. The water vapor is then condensed from the totally 1.5.DOC oxidized fuel stream exiting the afterburner, leaving only the CO2 in gaseous form. That CO2 can then be compressed and sequestered, resulting in a Zero Emission power generation system operating on hydrocarbon fuel that adds only water vapor to the environment. Praxair has been developing oxygen separation systems based on dense walled, mixed electronic, oxygen ion conducting ceramics for a number of years. The oxygen separation membranes find applications in syngas production, high purity oxygen production and gas purification. In the SOFC afterburner application the chemical potential difference between the high temperature SOFC depleted fuel gas and the supplied air provides the driving force for oxygen transport. This permeated oxygen subsequently combusts the residual fuel in the SOFC exhaust. A number of experiments have been carried out in which simulated SOFC depleted fuel gas compositions and air have been supplied to either side of single OTM tubes in laboratory-scale reactors. The ceramic tubes are sealed into high temperature metallic housings which precludes mixing of the simulated SOFC depleted fuel and air streams. In early tests, although complete oxidation of the residual CO and H2 in the simulated SOFC depleted fuel was achieved, membrane performance degraded over time. The source of degradation was found to be contaminants in the simulated SOFC depleted fuel stream. Following removal of the contaminants, stable membrane performance has subsequently been demonstrated. In an ongoing test, the dried afterburner exhaust composition has been found to be stable at 99.2% CO2, 0.4% N2 and 0.6%O2 after 350 hours online. Discussion of these results is presented. A test of a longer, commercial demonstration size tube was performed in the SWPC test facility. A similar contamination of the simulated SOFC depleted fuel stream occurred and the performance degraded over time. A second test is being prepared. Siemens Westinghouse and Praxair are collaborating on the preliminary design of an OTM equipped Afterburner demonstration unit. The intent is to test the afterburner in conjunction with a reduced size SOFC test module that has the anode gas separati

Shockling, Larry A.; Huang, Keqin; Gilboy, Thomas E. (Siemens Westinghouse Power Corporation); Christie, G. Maxwell; Raybold, Troy M. (Praxair, Inc.)

2001-11-06T23:59:59.000Z

291

Wind power generating system  

SciTech Connect (OSTI)

Normally feathered propeller blades of a wind power generating system unfeather in response to the actuation of a power cylinder that responds to actuating signals. Once operational, the propellers generate power over a large range of wind velocities. A maximum power generation design point signals a feather response of the propellers so that once the design point is reached no increase in power results, but the system still generates power. At wind speeds below this maximum point, propeller speed and power output optimize to preset values. The propellers drive a positive displacement pump that in turn drives a positive displacement motor of the swash plate type. The displacement of the motor varies depending on the load on the system, with increasing displacement resulting in increasing propeller speeds, and the converse. In the event of dangerous but not clandestine problems developing in the system, a control circuit dumps hydraulic pressure from the unfeathering cylinder resulting in a predetermined, lower operating pressure produced by the pump. In the event that a problem of potentially cladestine consequence arises, the propeller unfeathering cylinder immediately unloads. Upon startup, a bypass around the motor is blocked, applying a pressure across the motor. The motor drives the generator until the generator reaches a predetermined speed whereupon the generator is placed in circuit with a utility grid and permitted to motor up to synchronous speed.

Schachle, Ch.; Schachle, E. C.; Schachle, J. R.; Schachle, P. J.

1985-03-12T23:59:59.000Z

292

Electric power annual 1992  

SciTech Connect (OSTI)

The Electric Power Annual presents a summary of electric utility statistics at national, regional and State levels. The objective of the publication is to provide industry decisionmakers, government policymakers, analysts and the general public with historical data that may be used in understanding US electricity markets. The Electric Power Annual is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels; Energy Information Administration (EIA); US Department of Energy. ``The US Electric Power Industry at a Glance`` section presents a profile of the electric power industry ownership and performance, and a review of key statistics for the year. Subsequent sections present data on generating capability, including proposed capability additions; net generation; fossil-fuel statistics; retail sales; revenue; financial statistics; environmental statistics; electric power transactions; demand-side management; and nonutility power producers. In addition, the appendices provide supplemental data on major disturbances and unusual occurrences in US electricity power systems. Each section contains related text and tables and refers the reader to the appropriate publication that contains more detailed data on the subject matter. Monetary values in this publication are expressed in nominal terms.

Not Available

1994-01-06T23:59:59.000Z

293

Foucault's Ethics of Power  

E-Print Network [OSTI]

cally remarks , there is no 'headquarters that presides over the rationality" of power (HSl 125). Rather, strategies of power are nonsubjective insofar as they arc anonymous and operate indepen dent ly of the part icular people who wil l ingly or unwi...Foucault's Ethics of Power Kirk Wolf Delia College 1. I n t r o d u c t i o n Since Foucaull 's death in 19K4, his interpreters have generally located his importance in his genealogical critiques and in his phi losophy ofpower. On the one hand...

Wolf, Kirk

294

Computational power of correlations  

E-Print Network [OSTI]

We study the intrinsic computational power of correlations exploited in measurement-based quantum computation. By defining a general framework the meaning of the computational power of correlations is made precise. This leads to a notion of resource states for measurement-based \\textit{classical} computation. Surprisingly, the Greenberger-Horne-Zeilinger and Clauser-Horne-Shimony-Holt problems emerge as optimal examples. Our work exposes an intriguing relationship between the violation of local realistic models and the computational power of entangled resource states.

Janet Anders; Dan E. Browne

2009-02-05T23:59:59.000Z

295

Power control system and method  

DOE Patents [OSTI]

A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

Steigerwald, Robert Louis (Burnt Hills, NY) [Burnt Hills, NY; Anderson, Todd Alan (Niskayuna, NY) [Niskayuna, NY

2008-02-19T23:59:59.000Z

296

Power control system and method  

DOE Patents [OSTI]

A power system includes an energy harvesting device, a battery coupled to the energy harvesting device, and a circuit coupled to the energy harvesting device and the battery. The circuit is adapted to deliver power to a load by providing power generated by the energy harvesting device to the load without delivering excess power to the battery and to supplement the power generated by the energy harvesting device with power from the battery if the power generated by the energy harvesting device is insufficient to fully power the load. A method of operating the power system is also provided.

Steigerwald, Robert Louis; Anderson, Todd Alan

2006-11-07T23:59:59.000Z

297

POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC  

E-Print Network [OSTI]

POWER CENTRALIZED SEMIGROUPS PRIMOZ MORAVEC Abstract. A semigroup is said to be power centralized if for every pair of elements x and y there exists a power of x commuting with y. The structure of power centralized groups and semigroups is investigated. In particular, we characterize 0-simple power centralized

298

High Power, Linear CMOS Power Amplifier for WLAN Applications /  

E-Print Network [OSTI]

Tracking OFDM Power Amplier, IEEE Journal of Solid-StateGSM/GPRS CMOS Power Ampli?er, IEEE Journal of Solid-StateEnded Switching Power Ampli?es, IEEE Journal of Solid-State

Afsahi, Ali

2013-01-01T23:59:59.000Z

299

Wind Power in Alaska  

Broader source: Energy.gov [DOE]

In the past few years wind power has become more and more prevalent across Alaska, with big turbines sprouting up in all parts of the state. Sponsored by the Renewable Energy Alaska Project, event...

300

Pig Poop Power  

E-Print Network [OSTI]

Broadcast Transcript: What could be more fitting in the Year of the Pig than to turn to the pig for power? And that's what is happening here in South Korea. In an effort to develop environmentally friendly, renewable energy ...

Hacker, Randi; Tsutsui, William

2007-04-11T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

Mesofluidic magnetohydrodynamic power generation  

E-Print Network [OSTI]

Much of the previous research into magnetohydrodynamics has involved large-scale systems. This thesis explores the miniaturization and use of devices to convert the power dissipated within an expanding gas flow into ...

Fucetola, Jay J

2012-01-01T23:59:59.000Z

302

Glucose-powered neuroelectronics  

E-Print Network [OSTI]

A holy grail of bioelectronics is to engineer biologically implantable systems that can be embedded without disturbing their local environments, while harvesting from their surroundings all of the power they require. As ...

Rapoport, Benjamin Isaac

2011-01-01T23:59:59.000Z

303

Renewable Power Procurement Policy  

Broader source: Energy.gov [DOE]

New York Governor George Pataki signed Executive Order No. 111 to promote "Green and Clean" State Buildings and Vehicles on June 10, 2001. The renewable-power procurement component of this order...

304

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

http:www.bpa.gov PR 02 14 BONNEVILLE POWER ADMINISTRATION FOR IMMEDIATE RELEASE Thursday, Jan. 23, 2014 CONTACT: Kevin Wingert, 503-230-4140971-207-8390 or 503-230-5131 BPA...

305

The power tool  

SciTech Connect (OSTI)

POWER Tool--Planning, Optimization, Waste Estimating and Resourcing tool, a hand-held field estimating unit and relational database software tool for optimizing disassembly and final waste form of contaminated systems and equipment.

HAYFIELD, J.P.

1999-02-01T23:59:59.000Z

306

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In reply refer to: PGP Ms. Renata Kurshner Manager, Generation Resource Management, BC Hydro and Power Authority 6911 Southpoint Drive, Tower 15 Burnaby, BC V3N 4X8 Dear Ms....

307

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

In reply refer to: PGPO Renata Kurschner Director, Generation Resource Management BC Hydro and Power Authority 691 1 Southpoint Drive, El5 Burnaby, B.C., Canada V3N 4 x 8 Dear...

308

Structural power flow measurement  

SciTech Connect (OSTI)

Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

Falter, K.J.; Keltie, R.F.

1988-12-01T23:59:59.000Z

309

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2006-05-01T23:59:59.000Z

310

Wind Power Today  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Hydropower Technologies Program.

Not Available

2007-05-01T23:59:59.000Z

311

Power Quality Implications  

E-Print Network [OSTI]

Electric utilities in the United States spend in excess of one billion dollars annually to maintain or improve the quality of electric power supplied to their customers. Yet, an increasing and alarming number of complaints are being voiced...

Hilson, D.

312

PowerPoint Presentation  

Broader source: Energy.gov (indexed) [DOE]

Island Bus NaS Battery Energy Storage Project U.S. DOE Peer Review Seattle, WA October 8, 2009 Steve Eckroad Electric Power Research Institute Seckroad@epri.com (704) 595-2717 2 ...

313

Crowd-powered systems  

E-Print Network [OSTI]

Crowd-powered systems combine computation with human intelligence, drawn from large groups of people connecting and coordinating online. These hybrid systems enable applications and experiences that neither crowds nor ...

Bernstein, Michael Scott

2012-01-01T23:59:59.000Z

314

Power Plant Dams (Kansas)  

Broader source: Energy.gov [DOE]

This act states the provisions for erection and maintenance of dams. When any person, corporation or city may be desirous of erecting and maintaining a milldam or dam for generating power across...

315

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

* No cold or centrifugation steps * Power draw is minimal RNA Prep Module: Digital Microfluidics (DMF) with Macro-to-Micro Fluidic Interface Jebrail MJ et al., Anal Chem 86:3856...

316

Reactive power compensator  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation.

El-Sharkawi, Mohamed A. (Renton, WA); Venkata, Subrahmanyam S. (Woodinville, WA); Chen, Mingliang (Kirkland, WA); Andexler, George (Everett, WA); Huang, Tony (Seattle, WA)

1992-01-01T23:59:59.000Z

317

Reactive Power Compensator.  

DOE Patents [OSTI]

A system and method for determining and providing reactive power compensation for an inductive load. A reactive power compensator (50,50') monitors the voltage and current flowing through each of three distribution lines (52a, 52b, 52c), which are supplying three-phase power to one or more inductive loads. Using signals indicative of the current on each of these lines when the voltage waveform on the line crosses zero, the reactive power compensator determines a reactive power compensator capacitance that must be connected to the lines to maintain a desired VAR level, power factor, or line voltage. Alternatively, an operator can manually select a specific capacitance for connection to each line, or the capacitance can be selected based on a time schedule. The reactive power compensator produces control signals, which are coupled through optical fibers (102/106) to a switch driver (110, 110') to select specific compensation capacitors (112) for connections to each line. The switch driver develops triggering signals that are supplied to a plurality of series-connected solid state switches (350), which control charge current in one direction in respect to ground for each compensation capacitor. During each cycle, current flows from ground to charge the capacitors as the voltage on the line begins to go negative from its positive peak value. The triggering signals are applied to gate the solid state switches into a conducting state when the potential on the lines and on the capacitors reaches a negative peak value, thereby minimizing both the potential difference and across the charge current through the switches when they begin to conduct. Any harmonic distortion on the potential and current carried by the lines is filtered out from the current and potential signals used by the reactive power compensator so that it does not affect the determination of the required reactive compensation. 26 figs.

El-Sharkawi, M.A.; Venkata, S.S.; Chen, M.; Andexler, G.; Huang, T.

1992-07-28T23:59:59.000Z

318

NSTX Electrical Power Systems  

SciTech Connect (OSTI)

The National Spherical Torus Experiment (NSTX) has been designed and installed in the existing facilities at Princeton Plasma Physic Laboratory (PPPL). Most of the hardware, plant facilities, auxiliary sub-systems, and power systems originally used for the Tokamak Fusion Test Reactor (TFTR) have been used with suitable modifications to reflect NSTX needs. The design of the NSTX electrical power system was tailored to suit the available infrastructure and electrical equipment on site. Components were analyzed to verify their suitability for use in NSTX. The total number of circuits and the location of the NSTX device drove the major changes in the Power system hardware. The NSTX has eleven (11) circuits to be fed as compared to the basic three power loops for TFTR. This required changes in cabling to insure that each cable tray system has the positive and negative leg of cables in the same tray. Also additional power cabling had to be installed to the new location. The hardware had to b e modified to address the need for eleven power loops. Power converters had to be reconnected and controlled in anti-parallel mode for the Ohmic heating and two of the Poloidal Field circuits. The circuit for the Coaxial Helicity Injection (CHI) System had to be carefully developed to meet this special application. Additional Protection devices were designed and installed for the magnet coils and the CHI. The thrust was to making the changes in the most cost-effective manner without compromising technical requirements. This paper describes the changes and addition to the Electrical Power System components for the NSTX magnet systems.

A. Ilic; E. Baker; R. Hatcher; S. Ramakrishnan; et al

1999-12-16T23:59:59.000Z

319

Integration of wind power in deregulated power systems.  

E-Print Network [OSTI]

??This thesis investigates the impact of integrating wind power into deregulated power systems. It includes a discussion of the history of deregulation and the development (more)

Scorah, Hugh

2010-01-01T23:59:59.000Z

320

Microsoft PowerPoint - Vicksburg District Federal Power Projects...  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

Federal Power Projects Vicksburg District Federal Power Projects Blakely Mountain Hydro DeGray Hydro DeGray Hydro Narrows Hydro Blakely Mountain Rewind Unit 1 ll Rotor...

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

Nuclear Power Generating Facilities (Maine)  

Broader source: Energy.gov [DOE]

The first subchapter of the statute concerning Nuclear Power Generating Facilities provides for direct citizen participation in the decision to construct any nuclear power generating facility in...

322

SiC Power Module  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

energy from renewable sources (i.e., solar arrays or wind generators), and provide power for a wide variety of electronics and electronic systems (DC power supplies and...

323

Power network analysis and optimization  

E-Print Network [OSTI]

chip power supply network optimization using multigrid-basedchip decoupling capacitor optimization for high- performanceSapatnekar, Analysis and optimization of structured power/

Zhang, Wanping

2009-01-01T23:59:59.000Z

324

High power connection system  

DOE Patents [OSTI]

A high power connection system adapted for automotive environments which provides environmental and EMI shielding includes a female connector, a male connector, and a panel mount. The female connector includes a female connector base and a snap fitted female connector cover. The male connector includes a male connector base and a snap fitted male connector cover. The female connector base has at least one female power terminal cavity for seatably receiving a respective female power terminal. The male connector base has at least one male power terminal cavity for seatably receiving a respective male power terminal. The female connector is covered by a cover seal and a conductive shroud. A pair of lock arms protrude outward from the front end of the male connector base, pass through the panel mount and interface with a lever of a lever rotatably connected to the shroud to thereby mechanically assist mating of the male and female connectors. Safety terminals in the male and female connectors provide a last-to-connect-first-to-break connection with an HVIL circuit.

Schaefer, Christopher E. (Warren, OH); Beer, Robert C. (Noblesville, IN); McCall, Mark D. (Youngstown, OH)

2000-01-01T23:59:59.000Z

325

Photonic-powered cable assembly  

DOE Patents [OSTI]

A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

Sanderson, Stephen N.; Appel, Titus James; Wrye, IV, Walter C.

2013-01-22T23:59:59.000Z

326

Photonic-powered cable assembly  

DOE Patents [OSTI]

A photonic-cable assembly includes a power source cable connector ("PSCC") coupled to a power receive cable connector ("PRCC") via a fiber cable. The PSCC electrically connects to a first electronic device and houses a photonic power source and an optical data transmitter. The fiber cable includes an optical transmit data path coupled to the optical data transmitter, an optical power path coupled to the photonic power source, and an optical feedback path coupled to provide feedback control to the photonic power source. The PRCC electrically connects to a second electronic device and houses an optical data receiver coupled to the optical transmit data path, a feedback controller coupled to the optical feedback path to control the photonic power source, and a photonic power converter coupled to the optical power path to convert photonic energy received over the optical power path to electrical energy to power components of the PRCC.

Sanderson, Stephen N; Appel, Titus James; Wrye, IV, Walter C

2014-06-24T23:59:59.000Z

327

Final Report: Assessment of Combined Heat and Power Premium Power Applications in California  

E-Print Network [OSTI]

ASSESSMENT OF COMBINED HEAT AND POWER SYSTEM PREMIUM POWERAssessment of Combined Heat and Power Premium Power1 The Pacific Region Combined Heat and Power Application

Norwood, Zack

2010-01-01T23:59:59.000Z

328

Reducing Power Load Fluctuations on Ships Using Power Redistribution Control  

E-Print Network [OSTI]

controller is demonstrated through simulation studies on a supply vessel power plant, using the SIMULINK plant with electric propulsion, the power generation will con- sist of multiple engines, whereReducing Power Load Fluctuations on Ships Using Power Redistribution Control Damir Radan,1 Asgeir J

Johansen, Tor Arne

329

Sixth Power Plan northwest Power and Conservation Council  

E-Print Network [OSTI]

-Fired Generating Resources #12;Sixth Power Plan AssessMenT reporT Resource Adequacy 40Sixth Power Plan northwest Power and Conservation Council March 13, 2013 Mid-term assessment report #12;PaGe 2 > Mid-TerM AssessMenT reporT > Sixth Power Plan Contents 04 Executive Summary 06 Situation

330

Running Head: TESTOSTERONE AND POWER Testosterone and power  

E-Print Network [OSTI]

Running Head: TESTOSTERONE AND POWER Testosterone and power Steven J. Stanton and Oliver C. Schultheiss University of Michigan, Ann Arbor, MI, USA To appear in: K. Dowding (Ed.), Encyclopedia of power-647-9440, email: stantons@umich.edu #12;Testosterone and power 2 Across many studies in humans, two functional

Schultheiss, Oliver C.

331

Distributed Power Delivery for Energy Efficient and Low Power Systems  

E-Print Network [OSTI]

Distributed Power Delivery for Energy Efficient and Low Power Systems Selc¸uk K¨ose Department are needed to determine the location of these on-chip power supplies and decoupling capacitors. In this paper, the optimal location of the power supplies and decoupling capacitors is determined for different size

Friedman, Eby G.

332

Hawaii hydrogen power park Hawaii Hydrogen Power Park  

E-Print Network [OSTI]

. (Barrier R ­ Cost) Generate public interest & support. (Barrier S­Siting) #12;Hawaii hydrogen power park H Electrolyzer ValveManifold Water High Pressure H2 Storage Fuel Cell AC Power H2 Compressor Hydrogen Supply O2Hawaii hydrogen power park H Hawaii Hydrogen Power Park 2003 Hydrogen & Fuel Cells Merit Review

333

Qualification for PowerInsight accuracy of power measurements.  

SciTech Connect (OSTI)

Accuracy of component based power measuring devices forms a necessary basis for research in the area of power-e cient and power-aware computing. The accuracy of these devices must be quanti ed within a reasonable tolerance. This study focuses on PowerInsight, an out- of-band embedded measuring device which takes readings of power rails on compute nodes within a HPC system in realtime. We quantify how well the device performs in comparison to a digital oscilloscope as well as PowerMon2. We show that the accuracy is within a 6% deviation on measurements under reasonable load.

DeBonis, David; Laros, James H.,; Pedretti, Kevin Thomas Tauke

2013-11-01T23:59:59.000Z

334

Interested Parties - Xtreme Power | Department of Energy  

Energy Savers [EERE]

Xtreme Power Interested Parties - Xtreme Power 09-14-10XtremePower.pdf More Documents & Publications Interested Parties - XtremePower Interested Parties - Myriant Interested...

335

Power line detection system  

DOE Patents [OSTI]

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard.

Latorre, Victor R. (Tracy, CA); Watwood, Donald B. (Tracy, CA)

1994-01-01T23:59:59.000Z

336

Power converter connection configuration  

DOE Patents [OSTI]

EMI shielding is provided for power electronics circuits and the like via a direct-mount reference plane support and shielding structure. The thermal support may receive one or more power electronic circuits. The support may aid in removing heat from the circuits through fluid circulating through the support. The support forms a shield from both external EMI/RFI and from interference generated by operation of the power electronic circuits. Features may be provided to permit and enhance connection of the circuitry to external circuitry, such as improved terminal configurations. Modular units may be assembled that may be coupled to electronic circuitry via plug-in arrangements or through interface with a backplane or similar mounting and interconnecting structures.

Beihoff, Bruce C. (Wauwatosa, WI); Kehl, Dennis L. (Milwaukee, WI); Gettelfinger, Lee A. (Brown Deer, WI); Kaishian, Steven C. (Milwaukee, WI); Phillips, Mark G. (Brookfield, WI); Radosevich, Lawrence D. (Muskego, WI)

2008-11-11T23:59:59.000Z

337

Power line detection system  

DOE Patents [OSTI]

A short-range, radio frequency (RF) transmitting-receiving system that provides both visual and audio warnings to the pilot of a helicopter or light aircraft of an up-coming power transmission line complex. Small, milliwatt-level narrowband transmitters, powered by the transmission line itself, are installed on top of selected transmission line support towers or within existing warning balls, and provide a continuous RF signal to approaching aircraft. The on-board receiver can be either a separate unit or a portion of the existing avionics, and can also share an existing antenna with another airborne system. Upon receipt of a warning signal, the receiver will trigger a visual and an audio alarm to alert the pilot to the potential power line hazard. 4 figs.

Latorre, V.R.; Watwood, D.B.

1994-09-27T23:59:59.000Z

338

Power Systems Control Architecture  

SciTech Connect (OSTI)

A diagram provided in the report depicts the complexity of the power systems control architecture used by the national power structure. It shows the structural hierarchy and the relationship of the each system to those other systems interconnected to it. Each of these levels provides a different focus for vulnerability testing and has its own weaknesses. In evaluating each level, of prime concern is what vulnerabilities exist that provide a path into the system, either to cause the system to malfunction or to take control of a field device. An additional vulnerability to consider is can the system be compromised in such a manner that the attacker can obtain critical information about the system and the portion of the national power structure that it controls.

James Davidson

2005-01-01T23:59:59.000Z

339

Powered protrusion cutter  

DOE Patents [OSTI]

An apparatus for clipping a protrusion of material is provided. The protrusion may, for example, be a bolt head, a nut, a rivet, a weld bead, or a temporary assembly alignment tab protruding from a substrate surface of assembled components. The apparatus typically includes a cleaver having a cleaving edge and a cutting blade having a cutting edge. Generally, a mounting structure configured to confine the cleaver and the cutting blade and permit a range of relative movement between the cleaving edge and the cutting edge is provided. Also typically included is a power device coupled to the cutting blade. The power device is configured to move the cutting edge toward the cleaving edge. In some embodiments the power device is activated by a momentary switch. A retraction device is also generally provided, where the retraction device is configured to move the cutting edge away from the cleaving edge.

Bzorgi, Fariborz M. (Knoxville, TN)

2010-03-09T23:59:59.000Z

340

Power Systems Development Facility  

SciTech Connect (OSTI)

In support of technology development to utilize coal for efficient, affordable, and environmentally clean power generation, the Power Systems Development Facility (PSDF), located in Wilsonville, Alabama, has routinely demonstrated gasification technologies using various types of coals. The PSDF is an engineering scale demonstration of key features of advanced coal-fired power systems, including a Transport Gasifier, a hot gas particulate control device, advanced syngas cleanup systems, and high-pressure solids handling systems. This final report summarizes the results of the technology development work conducted at the PSDF through January 31, 2009. Twenty-one major gasification test campaigns were completed, for a total of more than 11,000 hours of gasification operation. This operational experience has led to significant advancements in gasification technologies.

Southern Company Services

2009-01-31T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

Power Generation and Power Use Decisions in an Industrial Process  

E-Print Network [OSTI]

of power generation and power use economics, most people want to under stand power generation. The primary questions usually relate to increasing the amount of power available, starting with a high pressure steam turbine or a gas turbine. They are "How... pressure Tsink OF temperature corresponding to outlet pressure Qsource = steam flow in Btu per hour Wideal Ideal power produced in Btu per hour 460 Conversion to absolute tempera ture "R From here, knowing the efficiency of the turbine...

Gilbert, J. S.; Niess, R. C.

342

Power electronics cooling apparatus  

DOE Patents [OSTI]

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, Philip Albert (Monroeville, PA); Lindberg, Frank A. (Baltimore, MD); Garcen, Walter (Glen Burnie, MD)

2000-01-01T23:59:59.000Z

343

Power electronics cooling apparatus  

SciTech Connect (OSTI)

A semiconductor cooling arrangement wherein a semiconductor is affixed to a thermally and electrically conducting carrier such as by brazing. The coefficient of thermal expansion of the semiconductor and carrier are closely matched to one another so that during operation they will not be overstressed mechanically due to thermal cycling. Electrical connection is made to the semiconductor and carrier, and a porous metal heat exchanger is thermally connected to the carrier. The heat exchanger is positioned within an electrically insulating cooling assembly having cooling oil flowing therethrough. The arrangement is particularly well adapted for the cooling of high power switching elements in a power bridge.

Sanger, P.A.; Lindberg, F.A.; Garcen, W.

2000-01-18T23:59:59.000Z

344

Power Systems Engineering  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & BlogPostdocs, Power Systems Power

345

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & BlogPostdocs, Power Systems PowerSITE

346

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems EngineeringNATIONAL

347

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems

348

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems5 Budget Overview

349

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems5 Budget Overviewand

350

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems5 Budget

351

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power Systems Engineering Research and Development (PSE R&D) Power Systems5

352

Powering | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - SeptemberMicroneedles for medical point ofPowerSaver Loan ProgramPowering Whether

353

RF power generation  

E-Print Network [OSTI]

This paper reviews the main types of r.f. power amplifiers which are, or may be, used for particle accelerators. It covers solid-state devices, tetrodes, inductive output tubes, klystrons, magnetrons, and gyrotrons with power outputs greater than 10 kW c.w. or 100 kW pulsed at frequencies from 50 MHz to 30 GHz. Factors affecting the satisfactory operation of amplifiers include cooling, matching and protection circuits are discussed. The paper concludes with a summary of the state of the art for the different technologies.

Carter, R G

2011-01-01T23:59:59.000Z

354

The solar electric power outlook  

SciTech Connect (OSTI)

The outlook for solar electric power plants is discussed. The following topics are discussed: Amoco/Envon solar vision, multi-megawatt solar power projects, global carbon dioxide emission estimates, pollution and electric power generation, social costs of pollution economies of scale, thin-film power module, rooftop market strategy, regulatory issues regarding rooftop systems, and where do we go from here?

Kemp, J.W.

1995-12-31T23:59:59.000Z

355

Power marketing and renewable energy  

SciTech Connect (OSTI)

Power marketing refers to wholesale and retail transactions of electric power made by companies other than public power entities and the regulated utilities that own the generation and distribution lines. The growth in power marketing has been a major development in the electric power industry during the last few years, and power marketers are expected to realize even more market opportunities as electric industry deregulation proceeds from wholesale competition to retail competition. This Topical Issues Brief examines the nature of the power marketing business and its relationship with renewable power. The information presented is based on interviews conducted with nine power marketing companies, which accounted for almost 54% of total power sales by power marketers in 1995. These interviews provided information on various viewpoints of power marketers, their experience with renewables, and their respective outlooks for including renewables in their resource portfolios. Some basic differences exist between wholesale and retail competition that should be recognized when discussing power marketing and renewable power. At the wholesale level, the majority of power marketers stress the commodity nature of electricity. The primary criteria for developing resource portfolios are the same as those of their wholesale customers: the cost and reliability of power supplies. At the retail level, electricity may be viewed as a product that includes value-added characteristics or services determined by customer preferences.

Fang, J.M.

1997-09-01T23:59:59.000Z

356

Supercomputing Power to the People  

E-Print Network [OSTI]

Supercomputing Power to the People Arun Chauhan Indiana University #12;Supercomputing power. Sadayappan #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming Languages: A Buddhist View #12;Supercomputing power to the people Indiana University, March 22, 2006 Programming

Chauhan, Arun

357

Power Maps in Algebra and  

E-Print Network [OSTI]

Power Maps in Algebra and Topology Kathryn Hess Preface The case of commutative algebras The Hochschild complex of a twisting cochain Power maps on the Hochschild complex Topological relevance Power Compostela, 17 September 2008 #12;Power Maps in Algebra and Topology Kathryn Hess Preface The case

Thévenaz, Jacques

358

Reactive Power Compensating System.  

DOE Patents [OSTI]

The circuit was designed for the specific application of wind-driven induction generators. It has great potential for application in any situation where a varying reactive power load is present, such as with induction motors or generators, or for transmission network compensation.

Williams, Timothy J.; El-Sharkawi, Mohamed A.; Venkata, Subrahmanyam S.

1985-01-04T23:59:59.000Z

359

ENERGY EFFICIENCY RESEARCH POWERS  

E-Print Network [OSTI]

1 ENERGY EFFICIENCY RESEARCH POWERS THE FUTUREPIER CONTRIBUTES TO JOB GROWTH AND PRIVATE INVESTMENT.Partofthecreditforthese achievementsgoestoCalifornia'suniquePublicInterest EnergyResearch(PIER)Program. Overthepast40years,Californiansincreasedthesizeof their homes and added scores of new energy-using de- vices,fromlargerefrigerators,dishwashers,audioequip- ment

360

High Power Cryogenic Targets  

SciTech Connect (OSTI)

The development of high power cryogenic targets for use in parity violating electron scattering has been a crucial ingredient in the success of those experiments. As we chase the precision frontier, the demands and requirements for these targets have grown accordingly. We discuss the state of the art, and describe recent developments and strategies in the design of the next generation of these targets.

Gregory Smith

2011-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

Wireless Power Transfer  

SciTech Connect (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-07-22T23:59:59.000Z

362

Wireless Power Transfer  

ScienceCinema (OSTI)

Wireless Power Transfer is an innovative approach using magnetic resonance coupling of air core transformers designed for today's growing plug-in electric vehicle market. This technology can provide a convenient, safe and flexible means to charge electric vehicles under stationary and dynamic conditions. Plug-in Electric Vehicles (PEV) are burdened by the need for cable and plug charger, galvanic isolation of the on-board electronics, bulk and cost of this charger and the large energy storage system (ESS) packs needed. With a system where you have to physically plug in there are a number of occasions where the owner could very well forget to charge the vehicle. For stationary applications (like charging of a PHEV at home), ORNL's innovative wireless power transfer technology adds a convenience factor compared to actually plugging in which will mean that the vehicle will have a full charge every morning. Electric vehicle charging must be safe, compact and efficient in order to be convenient for customers. By reconfiguring the transformer and altering the resonance frequency, energy is transferred to the battery with lower energy losses and with fewer demands on the primary circuit by the rest of the transformer system. The ORNL discovery shows that sufficient power for the battery can be transferred from the primary to secondary circuits without significant energy losses if the operating frequency is set at 50% to 95% of the resonance frequency of the circuit. The electrical power is then transmitted to the chargeable battery, which is electrically coupled to the secondary circuit through the air core transformer. Some advantages include: Reduced energy losses during transfer of energy to the battery; A charge potential that is relatively unaffected by up to 25% misalignment of vehicle; and Other receiving components draw less power from the primary circuit. These advantages allow wireless power technology applications to expand at the workplace and beyond as the demand for EV rises. For vehicles that operate over a fixed route such as busses and shuttle vehicles, Wireless Power Transfer (WPT) means that a smaller battery pack can be used. In the traditional system, the battery pack is designed to accommodate the needs of the entire route or shift. With WPT the battery can be downsized because it can be charged when the vehicle stops on its route (a rental car shuttle bus, for example, can charge when it waits in the terminal and again when it waits at the rental car place. Thus the battery only needs enough charge to get to the next stop. This decrease in battery size means significant cost savings to electrify the vehicle. This technology enables efficient "opportunity charging stations" for predefined routes and planned stops reducing down time. Charging can occur in minutes. This improvement also eliminates the harmful emissions that occur in garages while buses are at idle during charging. In larger cities, dynamic charging offers an even greater impact utilizing existing infrastructure. As vehicles travel along busy freeways and interstate systems, wireless charging can occur while the vehicle is in motion. With this technology a vehicle essentially has unlimited electric range while using a relatively small battery pack. In-motion charging stations use vehicle sensors to alert the driver. Traveling at normal speeds, sensors establish in-motion charging. WPT transmit pads sequentially energize to the negotiated power level based on vehicle speed and its requested charging energy. Lower power when vehicle speed is slow and much higher power for faster moving vehicles. Vehicle to Infrastructure communications (V2I) coordinates WPT charging level according to on-board battery pack state-of-charge. V2I activates the roadway transmit pads placing them in standby mode and negotiates charging fee based on prevailing grid rate and vehicle energy demand. Dynamic charging would allow electricity to supply a very large fraction of the energy for the transportation sector and reduce greatly petroleum consump

None

2013-11-19T23:59:59.000Z

363

Clean Power at Home  

E-Print Network [OSTI]

this report is to describe and analyze net metering as a mechanism to support the deployment of small-scale, distributed electricity technologies in British Columbia based on renewable energy sources. These are referred to as "distributed renewables" throughout the report. The deployment of distributed renewables offers several environmental, economic, and social benefits that are described in this paper. Net metering enables individual utility customers to connect on-site generation to the utility grid, feeding excess power back to the grid when it is not needed, and utilizing grid power when consumption exceeds local renewable energy supply. In most programs, a single meter measures the customer's net consumption of grid power in a billing period, and they are charged for that consumption under regular retail rates. If production exceeds consumption, the customer's bill is essentially zero. In some instances, utilities may refund customers for excess production in a billing period based on wholesale market prices or avoided production costs. Net metering programs can make self-generation more attractive for customers by eliminating the need to size systems to meet customers' exact power needs or install on-site storage and power conditioning devices. Utilities may, depending upon the type of systems installed, benefit from improvements in local area load factors, and receive credit for various social or environmental benefits of such resources (e.g., greenhouse gas reductions). However, utilities have raised concerns about worker safety (e.g., the possibility that net metering sites may continue to feed electricity into the local distribution grid when the rest of the network is down, putting line workers at risk) and possible financial cross-subsidies from other rate...

May Author Andrew; Andrew E. Pape

364

Index Terms --Smart grid; power engineering education; power engineering curriculum; power engineering re-  

E-Print Network [OSTI]

1 Index Terms -- Smart grid; power engineering education; power engineering curriculum; power the United States power system has led to an engineering initiative va- riously known as `smart grid the smart grid will be educated, how they should be trained, and to what levels of comprehension

365

The Power Spectrum of Matter  

E-Print Network [OSTI]

We calculate the mean power spectrum of galaxies using published power spectra of galaxies and clusters of galaxies. The mean power spectrum has a relatively sharp maximum on scale 120 Mpc (for Hubble constant h=1), followed by an almost exact power-law spectrum of index n = -1.9 toward smaller scales. The power spectrum found from APM 2-D galaxy distribution and from LCRS and IRAS 1.2 Jy surveys is flatter around the maximum. Power spectra of galaxies and matter are similar in shape, we find the bias parameter of galaxies relative to matter 1.3 + - 0.1. We compare the empirical power spectrum of matter with analytical power spectra and show that the primordial power spectrum has a break in amplitude and a spike.

J. Einasto

1998-11-27T23:59:59.000Z

366

Distribution Power Flow in IRW Group Meeting  

E-Print Network [OSTI]

in and power out (sum of 3 phases) Power losses Power in & out A, Current in & out A, Power loss A Power in & out B, Current in & out B, Power loss B Power in & out C, Current in & out C, Power loss C Status

Tesfatsion, Leigh

367

A power beaming based infrastructure for space power  

SciTech Connect (OSTI)

At present all space mission power requirements are met by integral, on-board, self-contained power systems. To provide needed flexibility for space exploration and colonization, an additional approach to on-board, self-contained power systems is needed. Power beaming, an alternative approach to providing power, has the potential to provide increased mission flexibility while reducing total mass launched into space. Laser-power beaming technology provides a viable power and communication infrastructure that can be developed sequentially as it is applied to power satellite constellations in Earth orbit and to orbital transport vehicles transferring satellites and cargos to geosynchronous orbit and beyond. Coupled with nuclear electric propulsion systems for cargo transport, the technology can be used to provide global power to the Lunar surface and to Mars' surface and moons. The technology can be developed sequentially as advances in power system and propulsion system technology occur. This paper presents stepwise development of an infrastructure based on power beaming that can support the space development and exploration goals of the Space Exploration Initiative. Power scenarios based on commonality of power systems hardware with cargo transport vehicles are described. Advantages of this infrastructure are described. 12 refs., 4 figs., 1 tab.

Bamberger, J.A.

1991-08-01T23:59:59.000Z

368

Oscillating fluid power generator  

SciTech Connect (OSTI)

A system and method for harvesting the kinetic energy of a fluid flow for power generation with a vertically oriented, aerodynamic wing structure comprising one or more airfoil elements pivotably attached to a mast. When activated by the moving fluid stream, the wing structure oscillates back and forth, generating lift first in one direction then in the opposite direction. This oscillating movement is converted to unidirectional rotational movement in order to provide motive power to an electricity generator. Unlike other oscillating devices, this device is designed to harvest the maximum aerodynamic lift forces available for a given oscillation cycle. Because the system is not subjected to the same intense forces and stresses as turbine systems, it can be constructed less expensively, reducing the cost of electricity generation. The system can be grouped in more compact clusters, be less evident in the landscape, and present reduced risk to avian species.

Morris, David C

2014-02-25T23:59:59.000Z

369

Switching power supply  

DOE Patents [OSTI]

The invention is a repratable capacitor charging, switching power supply. A ferrite transformer steps up a dc input. The transformer primary is in a full bridge configuration utilizing power MOSFETs as the bridge switches. The transformer secondary is fed into a high voltage, full wave rectifier whose output is connected directly to the energy storage capacitor. The transformer is designed to provide adequate leakage inductance to limit capacitor current. The MOSFETs are switched to the variable frequency from 20 to 50 kHz to charge a capacitor from 0.6 kV. The peak current in a transformer primary and secondary is controlled by increasing the pulse width as the capacitor charges. A digital ripple counter counts pulses and after a preselected desired number is reached an up-counter is clocked.

Mihalka, A.M.

1984-06-05T23:59:59.000Z

370

Transmission rights and market power on electric power networks  

E-Print Network [OSTI]

We analyze whether and how the allocation of transmission rights associated with the use of electric power networks affects the behavior of electricity generators and electricity consumers with market power. We consider ...

Joskow, Paul L.

2000-01-01T23:59:59.000Z

371

Magnetic machines and power electronics for power MEMS applications  

E-Print Network [OSTI]

This thesis presents the modeling, design, and characterization of microfabricated, surface-wound, permanent-magnet (PM) generators, and their power electronics, for use in Watt-level Power MEMS applications such as a ...

Das, Sauparna, 1979-

2005-01-01T23:59:59.000Z

372

Wind Power Today, 2010, Wind and Water Power Program (WWPP)  

SciTech Connect (OSTI)

Wind Power Today is an annual publication that provides an overview of the wind energy research conducted by the U.S. Department of Energy Wind and Water Power Program.

Not Available

2010-05-01T23:59:59.000Z

373

EIS-0131: Initial Northwest Power Act Power Sales Contracts  

Broader source: Energy.gov [DOE]

The Bonneville Power Administration prepared this EIS to analyze the environmental impact of power sales and residential exchange contracts and to explore if there is a need to seek changes to these contracts.

374

New Technologies Power Wearable Devices through Body Power or...  

Open Energy Info (EERE)

Power Wearable Devices through Body Power or the Environment Home > Groups > No Battery Wearables WikiSysop's picture Submitted by WikiSysop(15) Member 12 August, 2014 - 13:18...

375

Reliability Evaluation of Electric Power Generation Systems with Solar Power  

E-Print Network [OSTI]

Conventional power generators are fueled by natural gas, steam, or water flow. These generators can respond to fluctuating load by varying the fuel input that is done by a valve control. Renewable power generators such as wind or solar, however...

Samadi, Saeed

2013-11-08T23:59:59.000Z

376

Pasadena Water and Power- Solar Power Installation Rebate  

Broader source: Energy.gov [DOE]

Pasadena Water and Power (PWP) offers its electric customers a rebate for photovoltaic (PV) installations, with a goal of helping to fund the installation of 14 megawatts (MW) of solar power by...

377

SaskPower Small Power Producers Program (Saskatchewan, Canada)  

Broader source: Energy.gov [DOE]

The Small Power Producers Program accommodates customers who wish to generate up to 100 kilowatts (kW) of electricity for the purpose of offsetting power that would otherwise be purchased from...

378

High power microwave generator  

DOE Patents [OSTI]

A microwave generator efficiently converts the energy of an intense relativistic electron beam (REB) into a high-power microwave emission using the Smith-Purcell effect which is related to Cerenkov radiation. Feedback for efficient beam bunching and high gain is obtained by placing a cylindrical Smith-Purcell transmission grating on the axis of a toroidal resonator. High efficiency results from the use of a thin cold annular highly-magnetized REB that is closely coupled to the resonant structure.

Ekdahl, C.A.

1983-12-29T23:59:59.000Z

379

Hydrogen powered bus  

ScienceCinema (OSTI)

Take a ride on a new type of bus, fueled by hydrogen. These hydrogen taxis are part of a Department of Energy-funded deployment of hydrogen powered vehicles and fueling infrastructure at nine federal facilities across the country to demonstrate this market-ready advanced technology. Produced and leased by Ford Motor Company , they consist of one 12- passenger bus and one nine-passenger bus. More information at: http://go.usa.gov/Tgr

None

2013-11-22T23:59:59.000Z

380

Wind Power Outlook 2004  

SciTech Connect (OSTI)

The brochure, expected to be updated annually, provides the American Wind Energy Association's (AWAE's) up-to-date assessment of the wind industry. It provides a summary of the state of wind power in the U.S., including the challenges and opportunities facing the industry. It provides summary information on the growth of the industry, policy-related factors such as the federal wind energy production tax credit status, comparisons with natural gas, and public views on wind energy.

anon.

2004-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

Stirling engine power control  

DOE Patents [OSTI]

A power control method and apparatus for a Stirling engine including a valved duct connected to the junction of the regenerator and the cooler and running to a bypass chamber connected between the heater and the cylinder. An oscillating zone of demarcation between the hot and cold portions of the working gas is established in the bypass chamber, and the engine pistons and cylinders can run cold.

Fraser, James P. (Scotia, NY)

1983-01-01T23:59:59.000Z

382

Combustion powered linear actuator  

DOE Patents [OSTI]

The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

Fischer, Gary J. (Albuquerque, NM)

2007-09-04T23:59:59.000Z

383

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration

384

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power

385

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014

386

Bulk Power Transmission Study  

E-Print Network [OSTI]

BULK POWER TRANSMISSION STUDY TOMMY JOH~ P. E. Manager of Resource Recovery Waste Management of North America, Inc. Houston, Texas Texans now have a choice. We can become more efficient and maintain our standard of living, or we can... continue business as usual and watch our standard of living erode from competition from other regions. In the past, except for improving reliability, there was no need for a strong transmission system. When Texas generation was primarily gas fueled...

John, T.

387

Village Power `97. Proceedings  

SciTech Connect (OSTI)

It is estimated that two billion people live without electricity and its services. In addition, there is a sizable number of rural villages that have limited electrical service, with either part-day operation by diesel gen-sets or partial electrification (local school or community center and several nearby houses). For many villages connected to the grid, power is often sporadically available and of poor quality. The U.S. National Renewable Energy Laboratory (NREL) in Golden, Colorado, has initiated a program to address these potential electricity opportunities in rural villages through the application of renewable energy (RE) technologies. The objective of this program is to develop and implement applications that demonstrate the technical performance, economic competitiveness, operational viability, and environmental benefits of renewable rural electric solutions, compared to the conventional options of line extension and isolated diesel mini-grids. These four attributes foster sustainability; therefore, the program is entitled Renewables for Sustainable Village Power (RSVP). The RSVP program is a multi-disciplinary, multi-technology, multi-application program composed of six key activities, including village application development, computer model development, systems analysis, pilot project development, technical assistance, and an Internet-based village power project database. The current program emphasizes wind, photovoltaics (PV), and their hybrids with diesel gen-sets. NREL`s RSVP team is currently involved in rural electricity projects in thirteen countries, with U.S., foreign, and internationally based agencies and institutions. This document contains reports presented at the Proceedings of Village Power, 1997. Individual projects have been processed separately for the United States Department of Energy databases.

Cardinal, J.; Flowers, L.; Taylor, R.; Weingart, J. [eds.

1997-09-01T23:59:59.000Z

388

Powerful glow discharge excilamp  

DOE Patents [OSTI]

A powerful glow discharge lamp comprising two coaxial tubes, the outer tube being optically transparent, with a cathode and anode placed at opposite ends of the tubes, the space between the tubes being filled with working gas. The electrodes are made as cylindrical tumblers placed in line to one other in such a way that one end of the cathode is inserted into the inner tube, one end of the anode coaxially covers the end of the outer tube, the inner tube penetrating and extending through the anode. The increased electrodes' surface area increases glow discharge electron current and, correspondingly, average radiation power of discharge plasma. The inner tube contains at least one cooling liquid tube placed along the axis of the inner tube along the entire lamp length to provide cathode cooling. The anode has a circumferential heat extracting radiator which removes heat from the anode. The invention is related to lighting engineering and can be applied for realization of photostimulated processes under the action of powerful radiation in required spectral range.

Tarasenko, Victor F. (Tomsk, RU); Panchenko, Aleksey N. (Tomsk, RU); Skakun, Victor S. (Tomsk, RU); Sosnin, Edward A. (Tomsk, RU); Wang, Francis T. (Danville, CA); Myers, Booth R. (Livermore, CA); Adamson, Martyn G. (Danville, CA)

2002-01-01T23:59:59.000Z

389

Commercial nuclear power 1990  

SciTech Connect (OSTI)

This report presents the status at the end of 1989 and the outlook for commercial nuclear capacity and generation for all countries in the world with free market economies (FME). The report provides documentation of the US nuclear capacity and generation projections through 2030. The long-term projections of US nuclear capacity and generation are provided to the US Department of Energy's (DOE) Office of Civilian Radioactive Waste Management (OCRWM) for use in estimating nuclear waste fund revenues and to aid in planning the disposal of nuclear waste. These projections also support the Energy Information Administration's annual report, Domestic Uranium Mining and Milling Industry: Viability Assessment, and are provided to the Organization for Economic Cooperation and Development. The foreign nuclear capacity projections are used by the DOE uranium enrichment program in assessing potential markets for future enrichment contracts. The two major sections of this report discuss US and foreign commercial nuclear power. The US section (Chapters 2 and 3) deals with (1) the status of nuclear power as of the end of 1989; (2) projections of nuclear capacity and generation at 5-year intervals from 1990 through 2030; and (3) a discussion of institutional and technical issues that affect nuclear power. The nuclear capacity projections are discussed in terms of two projection periods: the intermediate term through 2010 and the long term through 2030. A No New Orders case is presented for each of the projection periods, as well as Lower Reference and Upper Reference cases. 5 figs., 30 tabs.

Not Available

1990-09-28T23:59:59.000Z

390

GEOTHERMAL POWER GENERATION PLANT  

SciTech Connect (OSTI)

Oregon Institute of Technology (OIT) drilled a deep geothermal well on campus (to 5,300 feet deep) which produced 196oF resource as part of the 2008 OIT Congressionally Directed Project. OIT will construct a geothermal power plant (estimated at 1.75 MWe gross output). The plant would provide 50 to 75 percent of the electricity demand on campus. Technical support for construction and operations will be provided by OITs Geo-Heat Center. The power plant will be housed adjacent to the existing heat exchange building on the south east corner of campus near the existing geothermal production wells used for heating campus. Cooling water will be supplied from the nearby cold water wells to a cooling tower or air cooling may be used, depending upon the type of plant selected. Using the flow obtained from the deep well, not only can energy be generated from the power plant, but the waste water will also be used to supplement space heating on campus. A pipeline will be construction from the well to the heat exchanger building, and then a discharge line will be construction around the east and north side of campus for anticipated use of the waste water by facilities in an adjacent sustainable energy park. An injection well will need to be drilled to handle the flow, as the campus existing injection wells are limited in capacity.

Boyd, Tonya

2013-12-01T23:59:59.000Z

391

High Power, Linear CMOS Power Amplifier for WLAN Applications /  

E-Print Network [OSTI]

components in silicon, achieving a high power enhancement ratio from a single stage LC matching network or single transformer

Afsahi, Ali

2013-01-01T23:59:59.000Z

392

Analysis of Power System Dynamics Subject to Stochastic Power Injections  

E-Print Network [OSTI]

Abstract--We propose a framework to study the impact of stochastic active/reactive power injections. In this framework the active/reactive power injections evolve according to a continuous-time Markov chain (CTMC) model. The DAE model is linearized around a nominal set of active/reactive power injections

Liberzon, Daniel

393

Power load forecasting Organization: Huizhou Electric Power, P. R. China  

E-Print Network [OSTI]

Power load forecasting Organization: Huizhou Electric Power, P. R. China Presenter: Zhifeng Hao can be divided into load forecasting and electrical consumption predicting according to forecasting in generators macroeconomic control, power exchange plan and so on. And the prediction is from one day to seven

394

DYNAMIC MODELLING OF AUTONOMOUS POWER SYSTEMS INCLUDING RENEWABLE POWER SOURCES.  

E-Print Network [OSTI]

(thermal, gas, diesel) and renewable (hydro, wind) power units. The objective is to assess the impact - that have a special dynamic behaviour, and the wind turbines. Detailed models for each one of the power system components are developed. Emphasis is given in the representation of different hydro power plant

Paris-Sud XI, Université de

395

Sixth Power Plan northwest Power and Conservation Council  

E-Print Network [OSTI]

's loads · Bonneville sells wholesale power to over 120 publicly-owned utilities · Variability in hydro generation led to development of the nation's first major spot market for wholesale power · Bonneville built and wholesale power are low · Retirement of coal-fired plants have been announced; will require development

396

Impact of Power Generation Uncertainty on Power System Static Performance  

E-Print Network [OSTI]

in load and generation are modeled as random variables and the output of the power flow computationImpact of Power Generation Uncertainty on Power System Static Performance Yu Christine Chen, Xichen--The rapid growth in renewable energy resources such as wind and solar generation introduces significant

Liberzon, Daniel

397

POWER SYSTEMS STABILITY WITH LARGE-SCALE WIND POWER PENETRATION  

E-Print Network [OSTI]

of offshore wind farms, wind power fluctuations may introduce several challenges to reliable power system behaviour due to natural wind fluctuations. The rapid power fluctuations from the large scale wind farms Generation Control (AGC) system which includes large- scale wind farms for long-term stability simulation

Bak-Jensen, Birgitte

398

Power options for lunar exploration  

SciTech Connect (OSTI)

This paper presents an overview of the types of power systems available for providing power on the moon. Lunar missions of exploration, in situ resource utilization, and colonization will be constrained by availability of adequate power. The length of the lunar night places severe limitations on solar power system designs, because a large portion of the system mass is devoted to energy storage. The selection of the ideal power source hardware will require compatibility with not only the lunar base power requirements and environment, but also with the conversion, storage, and transmission equipment. In addition, further analysis to determine the optimum operating parameters for a given power system should be conducted so that critical technologies can be identified in the early stages of base development. This paper describes the various concepts proposed for providing power on the lunar surface and compare their ranges of applicability. The importance of a systems approach to the integration of these components will also be discussed.

Bamberger, J.A.; Gaustad, K.L.

1992-01-01T23:59:59.000Z

399

Rocky Mountain Power- Net Metering  

Broader source: Energy.gov [DOE]

Idaho does not have a statewide net-metering policy. However, each of the state's three investor-owned utilities -- Avista Utilities, Idaho Power and Rocky Mountain Power -- has a net-metering...

400

Flexible NOx Abatement from Power  

E-Print Network [OSTI]

Flexible NOx Abatement from Power Plants in the Eastern United States* Lin Sun, Mort Webster, Gary: globalchange@mit.edu Website: http://globalchange.mit.edu/ #12;Flexible NOx Abatement from Power Plants

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Automotive Power Generation and Control  

E-Print Network [OSTI]

This paper describes some new developments in the application of power electronics to automotive power generation and control. A new load-matching technique is introduced that uses a simple switched-mode rectifier to achieve ...

Caliskan, Vahe

402

Recover Power with Hydraulic Motors  

E-Print Network [OSTI]

displacement device, the HPRM torque and speed are almost completely independent - unlike hydraulic power recovery turbines (centrifugal motors). Three screw HPRM's have low moments of inertia, operate at low vibration and noise levels and extract power...

Brennan, J. R.

1982-01-01T23:59:59.000Z

403

Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project was established to evaluate integrated electrical power generation and methanol production through clean coal technologies. The project was under the leadership of ConocoPhillips Company (COP), after it acquired Gasification Engineering Corporation (GEC) and the E-Gas gasification technology from Global Energy Inc. in July 2003. The project has completed both Phase 1 and Phase 2 of development. The two project phases include the following: (1) Feasibility study and conceptual design for an integrated demonstration facility at SG Solutions LLC (SGS), previously the Wabash River Energy Limited, Gasification Facility located in West Terre Haute, Indiana, and for a fence-line commercial embodiment plant (CEP) operated at the Dow Chemical Company or Dow Corning Corporation chemical plant locations. (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues. Phase 1 of this project was supported by a multi-industry team consisting of Air Products and Chemicals, Inc., The Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation, while Phase 2 was supported by Gas Technology Institute, TDA Research Inc., and Nucon International, Inc. The SGS integrated gasification combined cycle (IGCC) facility was designed, constructed, and operated under a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other carbonaceous fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas (syngas) is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now acquired and offered commercially by COP as the E-Gas technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC, and later COP and the industrial partners investigated the use of syngas produced by the E-Gas technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort were to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from syngas derived from coal, or, coal in combination with some other carbonaceous feedstock. The intended result of the project was to provide the necessary technical, economic, and environmental information that would be needed to move the EECP forward to detailed design, construction, and operation by industry. The EECP study conducted in Phase 1 of the IMPPCCT Project confirmed that the concept for the integration of gasification-based (E-Gas) electricity generation from coal and/or petroleum coke and methanol production (Liquid Phase Methanol or LPMEOH{trademark}) processes was feasible for the coproduction of power and chemicals. The results indicated that while there were minimal integration issues that impact the deployment of an IMPPCCT CEP, the major concern was the removal of sulfur and other trace contaminants, which are known methanol catalyst poisons, from the syngas. However, economic concerns in the domestic methanol market which is driven by periodic low natural gas prices and cheap offshore supplies limit the commercial viability of this more capital intensive concept. The objective of Phase 2 was to conduct RD&T as outlined in the Phase 1 RD&T Plan to enhance the development and commercial acceptance of coproduction technology. Studies were designed to address the technical concerns that would mak

Conocophillips

2007-09-30T23:59:59.000Z

404

Small Power Production Facilities (Montana)  

Broader source: Energy.gov [DOE]

For the purpose of these regulations, a small power production facility is defined as a facility that:...

405

Heat and Power Systems Design  

E-Print Network [OSTI]

HEAT AND POWER SYSTEMS DESIGN H. D. Spriggs and J. V. Shah, Leesburg. VA ABSTRACT The selection of heat and power systems usually does not include a thorough analysis of the process heating. cooling and power requirements. In most cases..., these process requirements are accepted as specifications before heat and power systems are selected and designed. In t~is article we describe how Process Integration using Pinch Technology can be used to understand and achieve the minimum process heating...

Spriggs, H. D.; Shah, J. V.

406

Standards for Power Electronic Components  

E-Print Network [OSTI]

Standards for Power Electronic Components and Systems EPE 14 ECCE Europe Dr Peter R. Wilson #12;Session Outline "Standards for Power Electronic Components and Systems" Peter Wilson, IEEE PELS Electronics where next? Wide Band Gap Devices SiC, GaN etc... Transformers (ETTT) Power Modules

407

Main Injector power distribution system  

SciTech Connect (OSTI)

The paper describes a new power distribution system for Fermilab's Main Injector. The system provides 13.8 kV power to Main Injector accelerator (accelerator and conventional loads) and is capable of providing power to the rest of the laboratory (backfeed system). Design criteria, and features including simulation results are given.

Cezary Jach and Daniel Wolff

2002-06-03T23:59:59.000Z

408

Power Supply Synchronization without Communication  

E-Print Network [OSTI]

1 Power Supply Synchronization without Communication Leonardo A. B. T^orres, Jo~ao P. Hespanha, Jeff Moehlis Abstract--We consider the synchronization of power supplies in an isolated grid with multiple small-to-medium power sources. We show how to achieve a coordinated or synchronized behavior

Moehlis, Jeff

409

Overview paper on nuclear power  

SciTech Connect (OSTI)

This paper was prepared as an input to ORNL's Strategic Planning Activity, ORNL National Energy Perspective (ONEP). It is intended to provide historical background on nuclear power, an analysis of the mission of nuclear power, a discussion of the issues, the technology choices, and the suggestion of a strategy for encouraging further growth of nuclear power.

Spiewak, I.; Cope, D.F.

1980-09-01T23:59:59.000Z

410

International Power Engineering Research Collaborations  

E-Print Network [OSTI]

, Power Systems, International Cooperation, Power Engineering Education, Industry and Government Support of electricity is on the rise as efficient and environmentally sensitive electricity services are key have major impacts on the topics of research projects and the education of the new generation of power

Gross, George

411

Active Power Controls from Wind Power: Bridging the Gaps  

SciTech Connect (OSTI)

This paper details a comprehensive study undertaken by the National Renewable Energy Laboratory, Electric Power Research Institute, and the University of Colorado to understand how the contribution of wind power providing active power control (APC) can benefit the total power system economics, increase revenue streams, improve the reliability and security of the power system, and provide superior and efficient response while reducing any structural and loading impacts that may reduce the life of the wind turbine or its components. The study includes power system simulations, control simulations, and actual field tests using turbines at NREL's National Wind Technology Center (NWTC). The study focuses on synthetic inertial control, primary frequency control, and automatic generation control, and analyzes timeframes ranging from milliseconds to minutes to the lifetime of wind turbines, locational scope ranging from components of turbines to large wind plants to entire synchronous interconnections, and additional topics ranging from economics to power system engineering to control design.

Ela, E.; Gevorgian, V.; Fleming, P.; Zhang, Y. C.; Singh, M.; Muljadi, E.; Scholbrook, A.; Aho, J.; Buckspan, A.; Pao, L.; Singhvi, V.; Tuohy, A.; Pourbeik, P.; Brooks, D.; Bhatt, N.

2014-01-01T23:59:59.000Z

412

The effect of high penetration of wind power on primary frequency control of power systems.  

E-Print Network [OSTI]

??In this work, a power system with wind power units and hydro power units are considered. The hydro power unit and variable speed wind turbine (more)

Motamed, Bardia

2013-01-01T23:59:59.000Z

413

Clean Coal Power Initiative  

SciTech Connect (OSTI)

This report is the fifth quarterly Technical Progress Report submitted by NeuCo, Incorporated, under Award Identification Number, DE-FC26-04NT41768. This award is part of the Clean Coal Power Initiative (''CCPI''), the ten-year, $2B initiative to demonstrate new clean coal technologies in the field. This report is one of the required reports listed in Attachment B Federal Assistance Reporting Checklist, part of the Cooperative Agreement. The report covers the award period January 1, 2006 - March 31, 2006 and NeuCo's efforts within design, development, and deployment of on-line optimization systems during that period.

Doug Bartlett; Rob James; John McDermott; Neel Parikh; Sanjay Patnaik; Camilla Podowski

2006-03-31T23:59:59.000Z

414

CRSP Power Projects  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth7-1D: Vegetation Proposed New Substation Sites Proposed Route BTRICGEGR-N Goods PO6,Act of 1956 An act toPower

415

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update: Post-TropicalRecords

416

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update:

417

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update:Fleet Card Program Review

418

PowerPoint Presentation  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of Energy Power.pdf11-161-LNG |September 15, 2010Energy6DepartmentOutages Update:Fleet Card Program

419

Water Power Program: Publications  

Office of Environmental Management (EM)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) "of EnergyEnergyENERGYWomen Owned SmallOf The 2012NuclearBradleyBudget Water Power Program BudgetInformation

420

Powering | GE Global Research  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearch Welcome to theNews & BlogPostdocs, Power

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration One West

422

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration One West

423

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration One

424

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration OneDOE Office

425

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration OneDOE

426

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration OneDOEBusiness

427

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power Administration OneDOEBusiness

428

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power AdministrationDOE Office of

429

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power AdministrationDOE Office

430

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power AdministrationDOE

431

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power AdministrationDOEFOIA/Privacy

432

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013 Meeting 2012

433

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013 Meeting

434

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013

435

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013News Items

436

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013News

437

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting 2013NewsBusiness

438

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Meeting

439

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNews Items Skip

440

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNews Items

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNews

442

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNewsDOE Order No.

443

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNewsDOE Order

444

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNewsDOE

445

Southwestern Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 MeetingNewsDOECrime

446

Southwestern Power System Map  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert Southwest RegionatSearchScheduled System Highlights Power2014 Evaluate Our Site Please

447

Power Prepayment Program  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power > Financial

448

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianI

449

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x a s A

450

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x a s

451

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x a

452

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x

453

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe x2013

454

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIe

455

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIeB:

456

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIeB:PV

457

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIeB:PVA:

458

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power >TechnicianIeB:PVA:F:

459

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout Power

460

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustry Reliability:

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustry Reliability:May

462

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustry

463

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustryAccelerator

464

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006PhotovoltaicSeptember 22,ReactorAbout PowerIndustryAcceleratorRight)

465

POWER SALES AGREEMENT  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear Security Administration the1 - September 2006 TheSteven Ashby Dr. Steven Ashby PhotoAt13PM-I0978 POWER SALES

466

Wind Power Career Chat  

SciTech Connect (OSTI)

This document will teach students about careers in the wind energy industry. Wind energy, both land-based and offshore, is expected to provide thousands of new jobs in the next several decades. Wind energy companies are growing rapidly to meet America's demand for clean, renewable, and domestic energy. These companies need skilled professionals. Wind power careers will require educated people from a variety of areas. Trained and qualified workers manufacture, construct, operate, and manage wind energy facilities. The nation will also need skilled researchers, scientists, and engineers to plan and develop the next generation of wind energy technologies.

Not Available

2011-01-01T23:59:59.000Z

467

Western Area Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched FerromagnetismWaste and MaterialsWenjun Deng Associate ResearchWestern Area Power

468

Wind Power FAQ  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWind Power

469

Wind Power Link  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

470

Wind Power Outreach Campaign  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power Wind

471

Wind Power Software  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLasDelivered energy consumption byAbout PrintableBlenderWhatFellows - PastFarmWindWind Power

472

2025 Power Marketing Initiative  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary)morphinanInformation Desert SouthwestTechnologies |November 2011 Mon, Next2025 Power Marketing Initiative The

473

Electric Power Monthly  

Annual Energy Outlook 2013 [U.S. Energy Information Administration (EIA)]

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May Jun Jul(Summary) " ,"ClickPipelines AboutDecemberSteam Coal Import96Nebraska NuclearDecade Year-0 Year-1Electric Power

474

Fusion Power Associates Awards  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsruc DocumentationP-SeriesFlickr Flickr Editor's note:Computing |FuelsFundingSciencesFusion Power

475

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply forBiosurveillance A8 Blythe-Knob1|POWER BUSINESS

476

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply forBiosurveillance A8 Blythe-Knob1|POWER

477

Bonneville Power Administration  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmospheric Optical Depth (AOD)ProductssondeadjustsondeadjustAboutScienceCareers Apply forBiosurveillance A8 Blythe-Knob1|POWER"NT

478

in Idaho's Power County  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr MayAtmosphericNuclear SecurityTensile Strain Switched5 Industrial Carbon Capture andDeepwaterfors67 From:i6 GreenPower News

479

PowerPoint ?????????  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePower

480

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethods *

Note: This page contains sample records for the topic "westinghouse ap600 power" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


481

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethods *Touching

482

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethods

483

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethodsAllinea

484

PowerPoint Presentation  

Broader source: All U.S. Department of Energy (DOE) Office Webpages (Extended Search)

AFDC Printable Version Share this resource Send a link to EERE: Alternative Fuels Data Center Home Page to someone by E-mail Share EERE: Alternative Fuels Data Center Home Page on Facebook Tweet about EERE: Alternative Fuels Data Center Home Page on Twitter Bookmark EERE:1 First Use of Energy for All Purposes (Fuel and Nonfuel),Feet) Year Jan Feb Mar Apr May JunDatastreamsmmcrcalgovInstrumentsrucLas ConchasPassive Solar Home Design PassivePostdoctoral Opportunities ArePowerMethodsAllineaRice

485

Electronic power conditioning for dynamic power conversion in high-power space systems  

E-Print Network [OSTI]

require power levels above 10 kW, . For high energy levels of short duration, Chemical energy sources are effective choices. Utilizing magnetohydrodynamics (MHD), for example, these systems provide pulse power to their respective loads. And lastly, A...

Hansen, James Michael

1991-01-01T23:59:59.000Z

486

Power converters for parabolic dishes  

SciTech Connect (OSTI)

The development status of receivers and power conversion units to be used with parabolic dish concentrators is presented. Applications are identified, and the key role played by the power converter element of the collector module is emphasized. The electrical output of the 11-meter-diameter dish modules which are being developed varies up to a maximum of about 25 kilowatts, depending on the thermodynamic cycle of the power converter. Three power conversion units are being developed: an organic Rankine, an air Brayton, and a Stirling. The development program for the receivers and the power conversion units is described in detail.

Truscello, V.C.; Williams, A.N.

1981-01-01T23:59:59.000Z

487

Hybrid power source  

DOE Patents [OSTI]

A hybrid power system is comprised of a high energy density element such as a fuel-cell and high power density elements such as a supercapacitor banks. A DC/DC converter electrically connected to the fuel cell and converting the energy level of the energy supplied by the fuel cell. A first switch is electrically connected to the DC/DC converter. First and second supercapacitors are electrically connected to the first switch and a second switch. A controller is connected to the first switch and the second switch, monitoring charge levels of the supercapacitors and controls the switching in response to the charge levels. A load is electrically connected to the second switch. The first switch connects the DC/DC converter to the first supercapacitor when the second switch connects the second supercapacitor to the load. The first switch connects the DC/DC converter to the second supercapacitor when the second switch connects the first supercapacitor to the load.

Singh, Harmohan N.

2012-06-05T23:59:59.000Z

488

Solar thermal power system  

DOE Patents [OSTI]

A solar thermal power generator includes an inclined elongated boiler tube positioned in the focus of a solar concentrator for generating steam from water. The boiler tube is connected at one end to receive water from a pressure vessel as well as connected at an opposite end to return steam back to the vessel in a fluidic circuit arrangement that stores energy in the form of heated water in the pressure vessel. An expander, condenser, and reservoir are also connected in series to respectively produce work using the steam passed either directly (above a water line in the vessel) or indirectly (below a water line in the vessel) through the pressure vessel, condense the expanded steam, and collect the condensed water. The reservoir also supplies the collected water back to the pressure vessel at the end of a diurnal cycle when the vessel is sufficiently depressurized, so that the system is reset to repeat the cycle the following day. The circuital arrangement of the boiler tube and the pressure vessel operates to dampen flow instabilities in the boiler tube, damp out the effects of solar transients, and provide thermal energy storage which enables time shifting of power generation to better align with the higher demand for energy during peak energy usage periods.

Bennett, Charles L.

2010-06-15T23:59:59.000Z

489

Power Systems Development Facility  

SciTech Connect (OSTI)

This report discusses Test Campaign TC15 of the Kellogg Brown & Root, Inc. (KBR) Transport Gasifier train with a Siemens Power Generation, Inc. (SPG) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Gasifier is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or gasifier using a particulate control device (PCD). While operating as a gasifier, either air or oxygen can be used as the oxidant. Test run TC15 began on April 19, 2004, with the startup of the main air compressor and the lighting of the gasifier startup burner. The Transport Gasifier was shutdown on April 29, 2004, accumulating 200 hours of operation using Powder River Basin (PRB) subbituminous coal. About 91 hours of the test run occurred during oxygen-blown operations. Another 6 hours of the test run was in enriched-air mode. The remainder of the test run, approximately 103 hours, took place during air-blown operations. The highest operating temperature in the gasifier mixing zone mostly varied from 1,800 to 1,850 F. The gasifier exit pressure ran between 200 and 230 psig during air-blown operations and between 110 and 150 psig in oxygen-enhanced air operations.

Southern Company Services

2004-04-30T23:59:59.000Z

490

SMART POWER TURBINE  

SciTech Connect (OSTI)

Gas turbines are the choice technology for high-performance power generation and are employed in both simple and combined cycle configurations around the world. The Smart Power Turbine (SPT) program has developed new technologies that are needed to further extend the performance and economic attractiveness of gas turbines for power generation. Today's power generation gas turbines control firing temperatures indirectly, by measuring the exhaust gas temperature and then mathematically calculating the peak combustor temperatures. But temperatures in the turbine hot gas path vary a great deal, making it difficult to control firing temperatures precisely enough to achieve optimal performance. Similarly, there is no current way to assess deterioration of turbine hot-gas-path components without shutting down the turbine. Consequently, maintenance and component replacements are often scheduled according to conservative design practices based on historical fleet-averaged data. Since fuel heating values vary with the prevalent natural gas fuel, the inability to measure heating value directly, with sufficient accuracy and timeliness, can lead to maintenance and operational decisions that are less than optimal. GE Global Research Center, under this Smart Power Turbine program, has developed a suite of novel sensors that would measure combustor flame temperature, online fuel lower heating value (LHV), and hot-gas-path component life directly. The feasibility of using the ratio of the integrated intensities of portions of the OH emission band to determine the specific average temperature of a premixed methane or natural-gas-fueled combustion flame was demonstrated. The temperature determined is the temperature of the plasma included in the field of view of the sensor. Two sensor types were investigated: the first used a low-resolution fiber optic spectrometer; the second was a SiC dual photodiode chip. Both methods worked. Sensitivity to flame temperature changes was remarkably high, that is a 1-2.5% change in ratio for an 11.1 C (20 F) change in temperature at flame temperatures between 1482.2 C (2700 F) and 1760 C (3200 F). Sensor ratio calibration was performed using flame temperatures determined by calculations using the amount of unburned oxygen in the exhaust and by the fuel/air ratio of the combustible gas mixture. The agreement between the results of these two methods was excellent. The sensor methods characterized are simple and viable. Experiments are underway to validate the GE Flame Temperature Sensor as a practical tool for use with multiburner gas turbine combustors. The lower heating value (LHV) Fuel Quality Sensor consists of a catalytic film deposited on the surface of a microhotplate. This micromachined design has low heat capacity and thermal conductivity, making it ideal for heating catalysts placed on its surface. Several methods of catalyst deposition were investigated, including micropen deposition and other proprietary methods, which permit precise and repeatable placement of the materials. The use of catalysts on the LHV sensor expands the limits of flammability (LoF) of combustion fuels as compared with conventional flames; an unoptimized LoF of 1-32% for natural gas (NG) in air was demonstrated with the microcombustor, whereas conventionally 4 to 16% is observed. The primary goal of this work was to measure the LHV of NG fuels. The secondary goal was to determine the relative quantities of the various components of NG mixes. This determination was made successfully by using an array of different catalysts operating at different temperatures. The combustion parameters for methane were shown to be dependent on whether Pt or Pd catalysts were used. In this project, significant effort was expended on making the LHV platform more robust by the addition of high-temperature stable materials, such as tantalum, and the use of passivation overcoats to protect the resistive heater/sensor materials from degradation in the combustion environment. Modeling and simulation were used to predict improved sensor designs.

Nirm V. Nirmalan

2003-11-01T23:59:59.000Z

491

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

Biofuels,LLC UCSDBiomasstoPower EconomicFeasibilityFigure1:WestBiofuelsBiomassGasificationtoPowerrates... 31 UCSDBiomasstoPower?Feasibility

Cattolica, Robert

2009-01-01T23:59:59.000Z

492

Concentrated Thermoelectric Power | Department of Energy  

Broader source: Energy.gov (indexed) [DOE]

Concentrated Thermoelectric Power This fact sheet describes a concentrated solar hydroelectric power project awarded under the DOE's 2012 SunShot Concentrating Solar Power R&D...

493

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

small irrigation power, municipal solid waste, andinto Municipal Solid Waste Gasification for PowerMunicipalSolidWasteGasificationforPowerGeneration.

Cattolica, Robert

2009-01-01T23:59:59.000Z

494

UCSD Biomass to Power Economic Feasibility Study  

E-Print Network [OSTI]

into Municipal Solid Waste Gasification for PowerAthermalwastegasificationpowergenerationfacilityMunicipalSolidWasteGasificationforPowerGeneration.

Cattolica, Robert

2009-01-01T23:59:59.000Z

495

Solar Power Purchase Agreements | Department of Energy  

Office of Energy Efficiency and Renewable Energy (EERE) Indexed Site

Solar Power Purchase Agreements Solar Power Purchase Agreements Provides an overview of solar power purchase agreements including how they work, benefits and challenges and...

496

A Tariff for Reactive Power  

SciTech Connect (OSTI)

Two kinds of power are required to operate an electric power system: real power, measured in watts, and reactive power, measured in volt-amperes reactive or VARs. Reactive power supply is one of a class of power system reliability services collectively known as ancillary services, and is essential for the reliable operation of the bulk power system. Reactive power flows when current leads or lags behind voltage. Typically, the current in a distribution system lags behind voltage because of inductive loads such as motors. Reactive power flow wastes energy and capacity and causes voltage droop. To correct lagging power flow, leading reactive power (current leading voltage) is supplied to bring the current into phase with voltage. When the current is in phase with voltage, there is a reduction in system losses, an increase in system capacity, and a rise in voltage. Reactive power can be supplied from either static or dynamic VAR sources. Static sources are typically transmission and distribution equipment, such as capacitors at substations, and their cost has historically been included in the revenue requirement of the transmission operator (TO), and recovered through cost-of-service rates. By contrast, dynamic sources are typically generators capable of producing variable levels of reactive power by automatically controlling the generator to regulate voltage. Transmission system devices such as synchronous condensers can also provide dynamic reactive power. A class of solid state devices (called flexible AC transmission system devices or FACTs) can provide dynamic reactive power. One specific device has the unfortunate name of static VAR compensator (SVC), where 'static' refers to the solid state nature of the device (it does not include rotating equipment) and not to the production of static reactive power. Dynamic sources at the distribution level, while more costly would be very useful in helping to regulate local voltage. Local voltage regulation would reduce system losses, increase circuit capacity, increase reliability, and improve efficiency. Reactive power is theoretically available from any inverter-based equipment such as photovoltaic (PV) systems, fuel cells, microturbines, and adjustable-speed drives. However, the installation is usually only economical if reactive power supply is considered during the design and construction phase. In this report, we find that if the inverters of PV systems or the generators of combined heat and power (CHP) systems were designed with capability to supply dynamic reactive power, they could do this quite economically. In fact, on an annualized basis, these inverters and generators may be able to supply dynamic reactive power for about $5 or $6 per kVAR. The savings from the local supply of dynamic reactive power would be in reduced losses, increased capacity, and decreased transmission congestion. The net savings are estimated to be about $7 per kVAR on an annualized basis for a hypothetical circuit. Thus the distribution company could economically purchase a dynamic reactive power service from customers for perhaps $6/kVAR. This practice would provide for better voltage regulation in the distribution system and would provide an alternate revenue source to help amortize the cost of PV and CHP installations. As distribution and transmission systems are operated under rising levels of stress, the value of local dynamic reactive supply is expected to grow. Also, large power inverters, in the range of 500 kW to 1 MW, are expected to decrease in cost as they become mass produced. This report provides one data point which shows that the local supply of dynamic reactive power is marginally profitable at present for a hypothetical circuit. We expect that the trends of growing power flow on the existing system and mass production of inverters for distributed energy devices will make the dynamic supply of reactive power from customers an integral component of economical and reliable system operation in the future.

Kueck, John D [ORNL; Kirby, Brendan J [ORNL; Li, Fangxing [ORNL; Tufon, Christopher [Pacific Gas and Electric Company; Isemonger, Alan [California Independent System Operator

2008-07-01T23:59:59.000Z

497

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution over a three year period, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial plants operated at Dow Chemical or Dow Corning chemical plant locations; (2) Research, development, and testing to define any technology gaps or critical design and integration issues; and (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. This report describes management planning, work breakdown structure development, and feasibility study activities by the IMPPCCT consortium in support of the first project phase. Project planning activities have been completed, and a project timeline and task list has been generated. Requirements for an economic model to evaluate the West Terre Haute implementation and for other commercial implementations are being defined. Specifications for methanol product and availability of local feedstocks for potential commercial embodiment plant sites have been defined. The WREL facility is a project selected and co-funded under the fifth phase solicitation of the U.S. Department of Energy's Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., as the E-GAS{trademark} technology. In a joint effort with the U.S. Department of Energy, working under a Cooperative Agreement Award from the ''Early Entrance Coproduction Plant'' (EECP) initiative, the GEC and an Industrial Consortia are investigating the application of synthesis gas from the E-GAS{trademark} technology to a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry.

Doug Strickland; Albert Tsang

2002-10-14T23:59:59.000Z

498

WABASH RIVER INTEGRATED METHANOL AND POWER PRODUCTION FROM CLEAN COAL TECHNOLOGIES (IMPPCCT)  

SciTech Connect (OSTI)

The Wabash River Integrated Methanol and Power Production from Clean Coal Technologies (IMPPCCT) project is evaluating integrated electrical power generation and methanol production through clean coal technologies. The project is conducted by a multi-industry team lead by Gasification Engineering Corporation (GEC), and supported by Air Products and Chemicals, Inc., Dow Chemical Company, Dow Corning Corporation, Methanex Corporation, and Siemens Westinghouse Power Corporation. Three project phases are planned for execution, including: (1) Feasibility study and conceptual design for an integrated demonstration facility, and for fence-line commercial embodiment plants (CEP) operated at Dow Chemical or Dow Corning chemical plant locations (2) Research, development, and testing (RD&T) to define any technology gaps or critical design and integration issues (3) Engineering design and financing plan to install an integrated commercial demonstration facility at the existing Wabash River Energy Limited (WREL) plant in West Terre Haute, Indiana. The WREL facility is a project selected and co-funded under the Round IV of the United States Department of Energy's (DOE's) Clean Coal Technology Program. In this project, coal and/or other solid fuel feedstocks are gasified in an oxygen-blown, entrained-flow gasifier with continuous slag removal and a dry particulate removal system. The resulting product synthesis gas is used to fuel a combustion turbine generator whose exhaust is integrated with a heat recovery steam generator to drive a refurbished steam turbine generator. The gasifier uses technology initially developed by The Dow Chemical Company (the Destec Gasification Process), and now offered commercially by Global Energy, Inc., parent company of GEC and WREL, as the E-GAS{trademark} technology. In a joint effort with the DOE, a Cooperative Agreement was awarded under the Early Entrance Coproduction Plant (EECP) solicitation. GEC and an Industrial Consortium are investigating the use of synthesis gas produced by the E-GAS{trademark} technology in a coproduction environment to enhance the efficiency and productivity of solid fuel gasification combined cycle power plants. The objectives of this effort are to determine the feasibility of an EECP located at a specific site which produces some combination of electric power (or heat), fuels, and/or chemicals from synthesis gas derived from coal, or, coal in combination with some other carbonaceous feedstock. The project's intended result is to provide the necessary technical, economic, and environmental information that will be needed to move the EECP forward to detailed design, construction, and operation by industry. During the reporting period, effort continues on identifying potential technologies for removing contaminants from synthesis gas to the level required by methanol synthesis. A liquid phase Claus process and a direct sulfur oxidation process were evaluated. Preliminary discussion was held with interested parties on cooperating on RD&T in Phase II of the project. Also, significant progress was made during the period in the submission of project deliverables. A meeting was held at DOE's National Energy Technology Laboratory in Morgantown between GEC and the DOE IMPPCCT Project Manager on the status of the project, and reached an agreement on the best way to wrap up Phase I and transition into the Phase II RD&T. Potential projects for the Phase II, cost, and fund availability were also discussed.

Albert Tsang

2003-03-14T23:59:59.000Z

499

Waste Management Strategy for Dismantling Waste to Reduce Costs for Power Plant Decommissioning - 13543  

SciTech Connect (OSTI)

Decommissioning of nuclear power plants generates large volumes of radioactive or potentially radioactive waste. The proper management of the dismantling waste plays an important role for the time needed for the dismantling phase and thus is critical to the decommissioning cost. An efficient and thorough process for inventorying, characterization and categorization of the waste provides a sound basis for the planning process. As part of comprehensive decommissioning studies for Nordic NPPs, Westinghouse has developed the decommissioning inventories that have been used for estimations of the duration of specific work packages and the corresponding costs. As part of creating the design basis for a national repository for decommissioning waste, the total production of different categories of waste packages has also been predicted. Studsvik has developed a risk based concept for categorization and handling of the generated waste using six different categories with a span from extremely small risk for radiological contamination to high level waste. The two companies have recently joined their skills in the area of decommissioning on selected market in a consortium named 'ndcon' to further strengthen the proposed process. Depending on the risk for radiological contamination or the radiological properties and other properties of importance for waste management, treatment routes are proposed with well-defined and proven methods for on-site or off-site treatment, activity determination and conditioning. The system is based on a graded approach philosophy aiming for high confidence and sustainability, aiming for re-use and recycling where found applicable. The objective is to establish a process where all dismantled material has a pre-determined treatment route. These routes should through measurements, categorization, treatment, conditioning, intermediate storage and final disposal be designed to provide a steady, un-disturbed flow of material to avoid interruptions. Bottle-necks in the process causes increased space requirements and will have negative impact on the project schedule, which increases not only the cost but also the dose exposure to personnel. For these reasons it is critical to create a process that transfers material into conditioned waste ready for disposal as quickly as possible. To a certain extent the decommissioning program should be led by the waste management process. With the objective to reduce time for handling of dismantled material at site and to efficiently and environmental-friendly use waste management methods (clearance for re-use followed by clearance for recycling), the costs for the plant decommissioning could be reduced as well as time needed for performing the decommissioning project. Also, risks for delays would be reduced with a well-defined handling scheme which limits surprises. Delays are a major cost driver for decommissioning projects. (authors)

Larsson, Arne; Lidar, Per [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden)] [Studsvik Nuclear AB, SE-611 82 Nykoeping (Sweden); Bergh, Niklas; Hedin, Gunnar [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)] [Westinghouse Electric Sweden AB, Fredholmsgatan 2, SE-721 63, Vaesteraas (Sweden)

2013-07-01T23:59:59.000Z

500

Power electronics reliability analysis.  

SciTech Connect (OSTI)

This report provides the DOE and industry with a general process for analyzing power electronics reliability. The analysis can help with understanding the main causes of failures, downtime, and cost and how to reduce them. One approach is to collect field maintenance data and use it directly to calculate reliability metrics related to each cause. Another approach is to model the functional structure of the equipment using a fault tree to derive system reliability from component reliability. Analysis of a fictitious device demonstrates the latter process. Optimization can use the resulting baseline model to decide how to improve reliability and/or lower costs. It is recommended that both electric utilities and equipment manufacturers make provisions to collect and share data in order to lay the groundwork for improving reliability into the future. Reliability analysis helps guide reliability improvements in hardware and software technology including condition monitoring and prognostics and health management.

Smith, Mark A.; Atcitty, Stanley

2009-12-01T23:59:59.000Z