Powered by Deep Web Technologies
Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


1

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Snake River Plain Geothermal Region Snake River Plain Geothermal Region (Redirected from Snake River Plain) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high

2

Great Plains Wind Energy Transmission Development Project  

DOE Green Energy (OSTI)

In fiscal year 2005, the Energy & Environmental Research Center (EERC) received funding from the U.S. Department of Energy (DOE) to undertake a broad array of tasks to either directly or indirectly address the barriers that faced much of the Great Plains states and their efforts to produce and transmit wind energy at the time. This program, entitled Great Plains Wind Energy Transmission Development Project, was focused on the central goal of stimulating wind energy development through expansion of new transmission capacity or development of new wind energy capacity through alternative market development. The original task structure was as follows: Task 1 - Regional Renewable Credit Tracking System (later rescoped to Small Wind Turbine Training Center); Task 2 - Multistate Transmission Collaborative; Task 3 - Wind Energy Forecasting System; and Task 4 - Analysis of the Long-Term Role of Hydrogen in the Region. As carried out, Task 1 involved the creation of the Small Wind Turbine Training Center (SWTTC). The SWTTC, located Grand Forks, North Dakota, consists of a single wind turbine, the Endurance S-250, on a 105-foot tilt-up guyed tower. The S-250 is connected to the electrical grid on the 'load side' of the electric meter, and the power produced by the wind turbine is consumed locally on the property. Establishment of the SWTTC will allow EERC personnel to provide educational opportunities to a wide range of participants, including grade school through college-level students and the general public. In addition, the facility will allow the EERC to provide technical training workshops related to the installation, operation, and maintenance of small wind turbines. In addition, under Task 1, the EERC hosted two small wind turbine workshops on May 18, 2010, and March 8, 2011, at the EERC in Grand Forks, North Dakota. Task 2 involved the EERC cosponsoring and aiding in the planning of three transmission workshops in the midwest and western regions. Under Task 3, the EERC, in collaboration with Meridian Environmental Services, developed and demonstrated the efficacy of a wind energy forecasting system for use in scheduling energy output from wind farms for a regional electrical generation and transmission utility. With the increased interest at the time of project award in the production of hydrogen as a critical future energy source, many viewed hydrogen produced from wind-generated electricity as an attractive option. In addition, many of the hydrogen production-related concepts involve utilization of energy resources without the need for additional electrical transmission. For this reason, under Task 4, the EERC provided a summary of end uses for hydrogen in the region and focused on one end product in particular (fertilizer), including several process options and related economic analyses.

Brad G. Stevens, P.E.; Troy K. Simonsen; Kerryanne M. Leroux

2012-06-09T23:59:59.000Z

3

Naturener USA LLC formerly Great Plains Wind Energy | Open Energy  

Open Energy Info (EERE)

LLC formerly Great Plains Wind Energy LLC formerly Great Plains Wind Energy Jump to: navigation, search Name Naturener USA, LLC (formerly Great Plains Wind & Energy) Place San Francisco, California Zip 94111 Sector Wind energy Product Developer of a wind farm in Montana, has been sold to Naturener S.A. References Naturener USA, LLC (formerly Great Plains Wind & Energy)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Naturener USA, LLC (formerly Great Plains Wind & Energy) is a company located in San Francisco, California . References ↑ "Naturener USA, LLC (formerly Great Plains Wind & Energy)" Retrieved from "http://en.openei.org/w/index.php?title=Naturener_USA_LLC_formerly_Great_Plains_Wind_Energy&oldid=3491

4

EIS-0408: Upper Great Plains Programmatic Wind EIS | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

8: Upper Great Plains Programmatic Wind EIS 8: Upper Great Plains Programmatic Wind EIS EIS-0408: Upper Great Plains Programmatic Wind EIS Summary This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interior's Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota - Western's Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects. Public Comment Opportunities None available at this time. Documents Available for Download March 22, 2013 EIS-0408: Draft Programmatic Environmental Impact Statement Upper Great Plains Programmatic Wind EIS

5

Central Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plains Wind Farm Plains Wind Farm Jump to: navigation, search Name Central Plains Wind Farm Facility Central Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner RES Americas Developer RES Americas Energy Purchaser Westar Energy Location KS Coordinates 38.49695°, -101.128392° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.49695,"lon":-101.128392,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

6

High Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

Plains Wind Farm Plains Wind Farm Jump to: navigation, search Name High Plains Wind Farm Facility High Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner PacifiCorp Developer PacifiCorp Energy Purchaser PacifiCorp Location Southwest of Rock River WY Coordinates 41.665943°, -106.043487° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.665943,"lon":-106.043487,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

7

High Plains Tech Center | Open Energy Information  

Open Energy Info (EERE)

Tech Center Tech Center Jump to: navigation, search Name High Plains Tech Center Facility High Plains Tech Center Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner High Plains Tech Center Energy Purchaser High Plains Tech Center Location Woodward OK Coordinates 36.40645133°, -99.4282195° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.40645133,"lon":-99.4282195,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

8

Western Energy Corridor -- Energy Resource Report  

Science Conference Proceedings (OSTI)

The world is facing significant growth in energy demand over the next several decades. Strategic in meeting this demand are the world-class energy resources concentrated along the Rocky Mountains and northern plains in Canada and the U.S., informally referred to as the Western Energy Corridor (WEC). The fossil energy resources in this region are rivaled only in a very few places in the world, and the proven uranium reserves are among the world's largest. Also concentrated in this region are renewable resources contributing to wind power, hydro power, bioenergy, geothermal energy, and solar energy. Substantial existing and planned energy infrastructure, including refineries, pipelines, electrical transmission lines, and rail lines provide access to these resources.

Leslie Roberts; Michael Hagood

2011-06-01T23:59:59.000Z

9

Snake River Plain Geothermal Region | Open Energy Information  

Open Energy Info (EERE)

Region Region Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Snake River Plain Geothermal Region Details Areas (8) Power Plants (1) Projects (2) Techniques (11) Map: {{{Name}}} "The Snake River Plain is a large arcuate structural trough that characterizes the topography of southern Idaho that can be divided into three sections: western, central, and eastern. The western Snake River Plain is a large tectonic graben or rift valley filled with several km of lacustrine (lake) sediments; the sediments are underlain by rhyolite and basalt, and overlain by basalt. The western plain began to form around 11-12 Ma with the eruption of rhyolite lavas and ignimbrites. The western plain is not parallel to North American Plate motion, and lies at a high angle to the central and eastern Snake River Plains. Its morphology is

10

Great Plains Institute | Open Energy Information  

Open Energy Info (EERE)

Plains Institute Plains Institute Jump to: navigation, search Name Great Plains Institute Place Minneapolis, Minnesota Zip 55407 Product Works with multiple stakeholders to produce and implement policies, technologies and practices in the areas of energy security and bio-based materials. Coordinates 44.979035°, -93.264929° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.979035,"lon":-93.264929,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

11

Western Gas Sands Project: Northern Great Plains Province review  

SciTech Connect

The synopsis outlines the Upper Cretaceous low permeability natural (biogenic) gas formations of the Northern Great Plains Province (NGPP) of Montana, Wyoming, North and South Dakota. The main objectives are to present a general picture of that stratigraphy, significant structures, and natural gas potential.

Newman, III, H E [comp.

1979-08-01T23:59:59.000Z

12

Price, Weather, and Acreage Abandonment in Western Great Plains Wheat Culture  

Science Conference Proceedings (OSTI)

Multivariate analyses of acreage abandonment patterns in the U.S. Great Plains winter wheat region indicate that the major mode of variation is an in-phase oscillation confined to the western half of the overall area, which is also the area with ...

Patrick J. Michaels

1983-07-01T23:59:59.000Z

13

High Plains Power Inc | Open Energy Information  

Open Energy Info (EERE)

High Plains Power Inc High Plains Power Inc Place Wyoming Utility Id 8566 Utility Location Yes Ownership C NERC Location WECC NERC WECC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png IRRIGATION Industrial LARGE POWER 500kW OR GREATER TIME OF USE Industrial LARGE POWER DISTRIBUTION SUBSTATION GREATER THAN 500kW LEVEL SERVICE Industrial LARGE POWER DISTRIBUTION SUBSTATION LESS THAN 500kW LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE Industrial LARGE POWER THREE PHASE DISTRIBUTION PRIMARY LEVEL SERVICE V2 Industrial

14

Great Plains Wind Farm | Open Energy Information  

Open Energy Info (EERE)

form form View source History View New Pages Recent Changes All Special Pages Semantic Search/Querying Get Involved Help Apps Datasets Community Login | Sign Up Search Page Edit with form History Facebook icon Twitter icon » Great Plains Wind Farm Jump to: navigation, search Name Great Plains Wind Farm Facility Great Plains Sector Wind energy Facility Type Commercial Scale Wind Facility Status In Service Owner Noble Environmental Developer Noble Environmental Location Hansford County TX Coordinates 36.285809°, -101.358662° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":36.285809,"lon":-101.358662,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

15

Western Solargenics | Open Energy Information  

Open Energy Info (EERE)

to: navigation, search Name Western Solargenics Place Coquitlam, British Columbia, Canada Zip V3J 2L7 Sector Solar, Wind energy Product Subsidiary firm of Western Wind, to...

16

Western NY Energy LLC | Open Energy Information  

Open Energy Info (EERE)

search Name Western NY Energy LLC Place Mount Morris, New York Zip 14510 Product Bioethanol producer. References Western NY Energy LLC1 LinkedIn Connections CrunchBase...

17

Northern Plains Electric Coop | Open Energy Information  

Open Energy Info (EERE)

Coop Coop Jump to: navigation, search Name Northern Plains Electric Coop Place North Dakota Utility Id 13196 Utility Location Yes Ownership C NERC Location MRO Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png CONTROLLED IRRIGATION SERVICE Commercial CONTROLLED OFF-PEAK SERVICE - DUAL HEAT / STORAGE HEAT (Under LPS) Industrial CONTROLLED OFF-PEAK SERVICE DUAL -HEAT / STORAGE HEAT (Under General Service ) Residential General Service - Rural and Seasonal Residential General Service - Urban Single Phase Residential

18

Proposed Project: Plains & Eastern Clean Line | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Section 1222 of the Energy Policy Act 2005 » Proposed Project: Plains & Section 1222 of the Energy Policy Act 2005 » Proposed Project: Plains & Eastern Clean Line Proposed Project: Plains & Eastern Clean Line On June 10, 2010, the Department of Energy published in the Federal Register a Request for Proposals (RFP) for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act (EPAct) of 2005. In response, Clean Line Energy Partners, LLC submitted an application for its Plains & Eastern Clean Line project. DOE has concluded that Clean Line's proposal was responsive to the RFP, and it is currently under consideration. The proposed Plains & Eastern Clean Line project (the proposed project) would include an overhead +/- 600 kV direct current electric transmission system and associated facilities with the capacity to deliver approximately

19

Des Plaines, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Des Plaines, Illinois: Energy Resources Des Plaines, Illinois: Energy Resources (Redirected from Des Plaines, IL) Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0333623°, -87.8833991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0333623,"lon":-87.8833991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

20

Level Plains, Alabama: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Plains, Alabama: Energy Resources Plains, Alabama: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 31.2996162°, -85.7779914° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":31.2996162,"lon":-85.7779914,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


21

Morris Plains, New Jersey: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Plains, New Jersey: Energy Resources Plains, New Jersey: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.836067°, -74.481575° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.836067,"lon":-74.481575,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

22

Plain City, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Plain City, Ohio: Energy Resources Plain City, Ohio: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 40.1075615°, -83.2674165° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":40.1075615,"lon":-83.2674165,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

23

Des Plaines, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Plaines, Illinois: Energy Resources Plaines, Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 42.0333623°, -87.8833991° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.0333623,"lon":-87.8833991,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

24

Maple Plain, Minnesota: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Plain, Minnesota: Energy Resources Plain, Minnesota: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.0071851°, -93.6557945° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.0071851,"lon":-93.6557945,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

25

Des Plaines Landfill Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Des Plaines Landfill Biomass Facility Jump to: navigation, search Name Des Plaines Landfill Biomass Facility Facility Des Plaines Landfill Sector Biomass Facility Type Landfill Gas...

26

Green Plains Renewable Energy Inc GPRE | Open Energy Information  

Open Energy Info (EERE)

GPRE GPRE Jump to: navigation, search Name Green Plains Renewable Energy Inc (GPRE) Place Omaha, Nebraska Zip 68114 Product Nebraska-based publicly traded bioethanol producer. Coordinates 33.180954°, -94.743294° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.180954,"lon":-94.743294,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

27

Western Riverside Council of Governments - Home Energy Renovation...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Riverside Council of Governments - Home Energy Renovation Opportunity (HERO) Financing Program (California) Western Riverside Council of Governments - Home Energy...

28

NorthWestern Energy | Open Energy Information  

Open Energy Info (EERE)

NorthWestern Energy NorthWestern Energy Place South Dakota Utility Id 13809 Utility Location Yes Ownership I NERC Location MRO NERC MRO Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png COPS-70 (Controlled Off Peak Service) Commercial LGS-34 Commercial RS-10 Residential Rate 25 All-Inclusive Commercial Service Commercial Average Rates

29

Advanced Manufacturing Office: Western Industrial Energy Efficiency...  

NLE Websites -- All DOE Office Websites (Extended Search)

Send a link to Advanced Manufacturing Office: Western Industrial Energy Efficiency & Combined Heat and Power Regional Dialogue Meeting to someone by E-mail Share Advanced...

30

Eastern Gulf Coastal Plain: a scenario for geothermal energy development  

DOE Green Energy (OSTI)

A scenario for the development of potential geothermal resources in the Eastern Gulf Coastal Plain states of Mississippi, Alabama and Florida is explained and discussed. A description of the resources and the nature of the potential applications and energy market in this region are given. A ranking of the resources as to their energy content, potential market, etc., is described, and the assumptions and strategy used to generate the scenario are discussed. A more complete report on the detailed aspects involved in the preparation of the development scenario will be issued in the near future.

Not Available

1978-02-01T23:59:59.000Z

31

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Download EA-1907: Final Environmental Assessment Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas http:energy.govnepadownloads...

32

Western Turbine | Open Energy Information  

Open Energy Info (EERE)

Turbine Turbine Jump to: navigation, search Name Western Turbine Place Aurora, Colorado Zip 80011 Sector Wind energy Product Wind Turbine Installation and Maintainance. Coordinates 39.325162°, -79.54975° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.325162,"lon":-79.54975,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

33

West Plains Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

West Plains Electric Coop Inc West Plains Electric Coop Inc Place North Dakota Utility Id 20395 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for West Plains Electric Coop Inc (North Dakota). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2008-02 520.255 9,974.038 4,609 115.333 1,963.162 969 888.433 14,154.159 788 1,524.021 26,091.359 6,366

34

Energy Department's Fossil Energy Chief to Tour Western Michigan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Department's Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable Energy Department's Fossil Energy Chief to Tour...

35

Western Cooling Efficiency Center | Open Energy Information  

Open Energy Info (EERE)

Efficiency Center Efficiency Center Jump to: navigation, search Name Western Cooling Efficiency Center Place Davis, CA Website http://http://wcec.ucdavis.edu References Western Cooling Efficiency Center [1] Information About Partnership with NREL Partnership with NREL Yes Partnership Type Test & Evaluation Partner Partnering Center within NREL Electricity Resources & Building Systems Integration LinkedIn Connections Western Cooling Efficiency Center is a research institution located in Davis, CA, at the University of California at Davis (UC Davis). References ↑ "Western Cooling Efficiency Center" Retrieved from "http://en.openei.org/w/index.php?title=Western_Cooling_Efficiency_Center&oldid=382319" Categories: Clean Energy Organizations

36

Western Renewable Energy Zones Initiative A joint initiative of the Western Governors'Association and U.S.Department  

E-Print Network (OSTI)

#12;Western Renewable Energy Zones Initiative A joint initiative of the Western Governors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 Transmission and Renewable Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3 The Path Toward Western Renewable Energy Zones . . . . . . . . . . . . . . . . .5 Renewable

37

NorthWestern Energy (Electric) - Commercial Energy Efficiency...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Rebate Program NorthWestern Energy offers multiple rebate programs for commercial and industrial customers to make energy efficient improvements to their businesses. This...

38

Energy-related impacts on Great Plains agricultural productivity in the next quarter century, 1976--2000. Great plains agricultural council publication  

SciTech Connect

Contents: The food demand dimension; Agriculture's relationship to national energy goals; Assumptions relating to great plains agriculture; Agricultural energy usage in perspective; The emerging energy usage transition agenda; General energy related agricultural adjustment concepts; Operational and technological adjustments in energy intense components; Agribusiness impacts and adjustments; Forests and energy; Effects of great plains energy resource development on agriculture; Institutional and agency program demands.

1976-01-01T23:59:59.000Z

39

Case Western University (Vestas) | Open Energy Information  

Open Energy Info (EERE)

University (Vestas) University (Vestas) Jump to: navigation, search Name Case Western University (Vestas) Facility Case Western University (Vestas) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Case Western University Developer Case Western University Energy Purchaser Sopko & Sons - excess to First Energy Location Euclid OH Coordinates 41.60216607°, -81.49763346° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.60216607,"lon":-81.49763346,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

40

Case Western University (Nordex) | Open Energy Information  

Open Energy Info (EERE)

University (Nordex) University (Nordex) Jump to: navigation, search Name Case Western University (Nordex) Facility Case Western University (Nordex) Sector Wind energy Facility Type Community Wind Facility Status In Service Owner Case Western University Developer Case Western University Energy Purchaser Stamco Inc - excess to First Energy Location Euclid OH Coordinates 41.60213398°, -81.49688244° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.60213398,"lon":-81.49688244,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


41

Energy Department's Fossil Energy Chief to Tour Western Michigan  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Fossil Energy Chief to Tour Western Michigan Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable Energy Department's Fossil Energy Chief to Tour Western Michigan University's Clean Coal Research Facilities, Host Business Roundtable June 26, 2012 - 10:51am Addthis Assistant Energy Secretary for Fossil Energy Charles McConnell will join Western Michigan University President John M. Dunn and Core Energy CEO Bob Mannes to tour WMU's cutting-edge facilities at the Michigan Geological Repository for Research and Education. NEWS MEDIA CONTACT (202) 586-4940 WASHINGTON - Tomorrow, Wednesday, June 27, 2012, Assistant Energy Secretary for Fossil Energy Charles McConnell will join Western Michigan University President John M. Dunn and Core Energy CEO Bob Mannes to tour

42

Plains CO2 Reduction Partnership PCOR | Open Energy Information  

Open Energy Info (EERE)

CO2 Reduction Partnership PCOR CO2 Reduction Partnership PCOR Jump to: navigation, search Name Plains CO2 Reduction Partnership (PCOR) Place Grand Forks, North Dakota Zip 58202-9018 Product North Dakota-based consortium researching CO2 storage options. PCOR is busy with the ECBM in the Unminable Lignite Research Project. References Plains CO2 Reduction Partnership (PCOR)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Plains CO2 Reduction Partnership (PCOR) is a company located in Grand Forks, North Dakota . References ↑ "Plains CO2 Reduction Partnership (PCOR)" Retrieved from "http://en.openei.org/w/index.php?title=Plains_CO2_Reduction_Partnership_PCOR&oldid=349772"

43

High Plains Ranch Solar Power Plant | Open Energy Information  

Open Energy Info (EERE)

High Plains Ranch Solar Power Plant High Plains Ranch Solar Power Plant Jump to: navigation, search Name High Plains Ranch Solar Power Plant Facility High Plains Ranch Sector Solar Facility Type Photovoltaic Developer Sun Power Location Carizzo Plain, California Coordinates 35.1913858°, -119.7260983° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.1913858,"lon":-119.7260983,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

44

Western Massachusetts Electric - Commercial Energy Efficiency Rebates |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Massachusetts Electric - Commercial Energy Efficiency Western Massachusetts Electric - Commercial Energy Efficiency Rebates Western Massachusetts Electric - Commercial Energy Efficiency Rebates < Back Eligibility Commercial Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Cooling Manufacturing Other Heating Heat Pumps Appliances & Electronics Commercial Lighting Lighting Maximum Rebate Pre-approval required for rebates greater than $5,000 Program Info State Massachusetts Program Type Utility Rebate Program Rebate Amount Small Business Program: up to 70% of cost, zero percent financing on remainder Custom: based on energy savings Retrofit Pay-for-Performance Incentive: $0.75/kWh or therm saved Lighting: Varies, see program web site Vending Machine Controls: $45 - $115 Variable Speed Drive (Retrofit): $2,550 - $10,500

45

Flood Plain and Floodway Management Act (Montana) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Flood Plain and Floodway Management Act (Montana) Flood Plain and Floodway Management Act (Montana) Flood Plain and Floodway Management Act (Montana) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Montana Program Type Siting and Permitting Provider Montana Department of Natural Resources and Conservation

46

NorthWestern Energy - Residential Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NorthWestern Energy - Residential Energy Efficiency Rebate Program NorthWestern Energy - Residential Energy Efficiency Rebate Program NorthWestern Energy - Residential Energy Efficiency Rebate Program < Back Eligibility Construction Installer/Contractor Residential Savings Category Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Construction Commercial Heating & Cooling Design & Remodeling Appliances & Electronics Ventilation Manufacturing Commercial Lighting Lighting Insulation Water Heating Maximum Rebate Lighting: Maximum of fifteen CFLs and five lighting fixtures per calendar year Programmable Thermostat: Two units per household Program Info Funding Source Montana natural gas and electric supply rates Start Date 1/1/2009 Expiration Date 12/31/2013 State Montana Program Type Utility Rebate Program

47

NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NorthWestern Energy (Electric) - Commercial Energy Efficiency NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate Program (Montana) NorthWestern Energy (Electric) - Commercial Energy Efficiency Rebate Program (Montana) < Back Eligibility Agricultural Commercial Construction Industrial Savings Category Other Home Weatherization Commercial Weatherization Sealing Your Home Heating & Cooling Commercial Heating & Cooling Cooling Construction Design & Remodeling Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Manufacturing Water Heating Maximum Rebate Lighting: Rebates will not be provided for lamps or fixtures placed in stock in excess of 5% of installed equipment Program Info Funding Source Electric default supply rates for its default supply customers. State Montana Program Type

48

Western Renewable Energy Zones (Presentation)  

DOE Green Energy (OSTI)

This presentation summarizes recent developments and trends pertaining to competitive renewable energy zones, transmission planning and the integration of renewable generation resources.

Hein, J.

2011-06-01T23:59:59.000Z

49

Reliant Coastal Plains Biomass Facility | Open Energy Information  

Open Energy Info (EERE)

Coastal Plains Biomass Facility Coastal Plains Biomass Facility Jump to: navigation, search Name Reliant Coastal Plains Biomass Facility Facility Reliant Coastal Plains Sector Biomass Facility Type Landfill Gas Location Galveston County, Texas Coordinates 29.3763499°, -94.8520636° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":29.3763499,"lon":-94.8520636,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

50

Northern Plains EC- Residential and Commercial Energy Efficiency Loan Program  

Energy.gov (U.S. Department of Energy (DOE))

Northern Plains Electric Cooperative is a member-owned electric cooperative that serves customers in east-central North Dakota. This EMC offers a low-interest loan program residential and...

51

Case Western University | Open Energy Information  

Open Energy Info (EERE)

University University Facility Case Western University Sector Wind energy Facility Type Small Scale Wind Facility Status In Service Owner Case Western University Energy Purchaser Case Western University Location Cleveland OH Coordinates 41.50239055°, -81.60550386° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.50239055,"lon":-81.60550386,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

52

Management of Specific Flood Plain Areas (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Management of Specific Flood Plain Areas (Iowa) Management of Specific Flood Plain Areas (Iowa) Management of Specific Flood Plain Areas (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department of Natural Resources Floodplain management orders by the Iowa Department of Natural Resources as

53

North Plains, Oregon: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Oregon: Energy Resources Oregon: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 45.5970596°, -122.9934389° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":45.5970596,"lon":-122.9934389,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

54

Pleasant Plains, Illinois: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Illinois: Energy Resources Illinois: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 39.8728269°, -89.9212211° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.8728269,"lon":-89.9212211,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

55

Garden Plain, Kansas: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

Kansas: Energy Resources Kansas: Energy Resources Jump to: navigation, search Equivalent URI DBpedia Coordinates 37.6583471°, -97.6836603° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":37.6583471,"lon":-97.6836603,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

56

Water for western energy development update 1977  

DOE Green Energy (OSTI)

This report contains projections of steam-electric plants and other energy production developments in the west to 1990 and presents findings in regard to their estimated water requirements. Important institutional considerations and water conservation opportunities relating to western energy development also are examined. National load growth is expected to be between 3 and 5% per year and is expected to reach a total demand of 170 quads by the year 2000. Western energy consumption will total about 25 quads over the same period, about half of which will be electrical energy. By 1990, oil-shale processing may be barely started, geothermal development will be small, and only two coal gasification facilities are planned. Five coal slurry pipelines are planned with a total water requirement of 46,000 AcFt/yr to transport 59 million tons per year. Firm plans exist among Western utilities to construct 85 additional large steam-electric generating units in 46 locations, with an aggregate capacity of 46,189 MW. Total water requirements for the various technologies are reviewed and the impact of energy conservation measures is forecast. (MCW)

Not Available

1977-09-01T23:59:59.000Z

57

EIS-0408: Upper Great Plains Programmatic Wind EIS  

Energy.gov (U.S. Department of Energy (DOE))

This EIS, being prepared jointly by DOE's Western Area Power Administration and the Department of the Interiors Fish and Wildlife Service, will evaluate the environmental impacts of wind energy development in Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota Westerns Upper Great Plains customer service region. Western will use the EIS to implement a comprehensive regional program to manage interconnection requests for wind energy projects.

58

South Plains Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

Plains Electric Coop Inc Plains Electric Coop Inc Place Texas Utility Id 17561 Utility Location Yes Ownership C NERC Location SPP & TRE NERC ERCOT Yes NERC SPP Yes ISO Ercot Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Commercial Large Power Over 50,000 KW Commercial Commercial Load Retention for Large Power over 2000 KW Commercial Cotton Gin Commercial Cotton Gin-Separately Metered Commercial Cotton Gins-Net Metering Commercial Distributed Generation Rider(50 kW - 250 kW) Commercial General Service All Electric II-Commercial Commercial

59

City of West Plains, Missouri (Utility Company) | Open Energy Information  

Open Energy Info (EERE)

Plains Plains Place Missouri Utility Id 20392 Utility Location Yes Ownership M NERC Location SERC NERC SERC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png City Commercial I Commercial City Commercial II a Commercial City Commercial II b Commercial City Employees Residential City Facilities Commercial Electric Rates-City Residential Electric Rates-Rural Residential Housing Authority Residential Industrial Primary Industrial

60

NorthWestern Energy - Commercial Energy Efficiency Rebate Program |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NorthWestern Energy - Commercial Energy Efficiency Rebate Program NorthWestern Energy - Commercial Energy Efficiency Rebate Program NorthWestern Energy - Commercial Energy Efficiency Rebate Program < Back Eligibility Commercial Construction Industrial Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Other Sealing Your Home Ventilation Manufacturing Appliances & Electronics Water Heating Windows, Doors, & Skylights Program Info Funding Source Electric default supply rates for its default supply customers. Expiration Date 12/31/2013 State Montana Program Type Utility Rebate Program Rebate Amount Furnace/Boiler: $3.25/KBtu/hr Boiler Tune-Up: $100 Water Heater: $2.50/KBtu/hr Stack Heat Exchanger: $0.50/KBtu/hr DHW Circulation Pump Time Clock: $100

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


61

NorthWestern Energy (Gas) - Residential Energy Efficiency Rebate Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

You are here You are here Home » NorthWestern Energy (Gas) - Residential Energy Efficiency Rebate Program (Montana) NorthWestern Energy (Gas) - Residential Energy Efficiency Rebate Program (Montana) < Back Eligibility Construction Installer/Contractor Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Commercial Weatherization Construction Design & Remodeling Manufacturing Appliances & Electronics Water Heating Maximum Rebate Lighting: Maximum of fifteen CFLs and five lighting fixtures per calendar year Programmable Thermostat: Two units per household Program Info Funding Source Montana natural gas and electric supply rates. Start Date 01/01/2009 Expiration Date 11/30/2012 State Montana Program Type Utility Rebate Program

62

Western Resource Advocates | Open Energy Information  

Open Energy Info (EERE)

Advocates Advocates Jump to: navigation, search Logo: Western Resource Advocates Name Western Resource Advocates Address 2260 Baseline Road Place Boulder, Colorado Zip 80302 Region Rockies Area Website http://www.westernresourceadvo Notes Non-profit environmental law and policy organization developing strategic programs in three areas: Water, Energy and Lands Coordinates 39.9998°, -105.264094° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.9998,"lon":-105.264094,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

63

Western Geothermal Partners | Open Energy Information  

Open Energy Info (EERE)

Western Geothermal Partners Western Geothermal Partners Place Reno, Nevada Zip 89509 Sector Geothermal energy Product A Reno-based geothermal development company Coordinates 32.944065°, -97.578279° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":32.944065,"lon":-97.578279,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

64

Energy Dissipation and Upwelling in a Western Boundary Current  

Science Conference Proceedings (OSTI)

Energy dissipation in a western boundary current begins with the conversion of mean potential energy into kinetic energy of primary eddies. The rate of this energy conversion is taken to equal the total energy dissipation rate, in analogy with ...

G. T. Csanady

1989-04-01T23:59:59.000Z

65

Flood Plain or Floodway Development (Iowa) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

or Floodway Development (Iowa) or Floodway Development (Iowa) Flood Plain or Floodway Development (Iowa) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor General Public/Consumer Industrial Installer/Contractor Institutional Investor-Owned Utility Local Government Low-Income Residential Multi-Family Residential Municipal/Public Utility Nonprofit Residential Retail Supplier Rural Electric Cooperative Schools State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Iowa Program Type Environmental Regulations Provider Iowa Department Natural Resources This section describes situations when a permit is needed for the

66

Snake River Plain Geothermal Project | Open Energy Information  

Open Energy Info (EERE)

Project Project Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Development Project: Snake River Plain Geothermal Project Project Location Information Coordinates 43.136944444444°, -115° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.136944444444,"lon":-115,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

67

NorthWestern Energy - USB Renewable Energy Fund | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

NorthWestern Energy - USB Renewable Energy Fund NorthWestern Energy - USB Renewable Energy Fund NorthWestern Energy - USB Renewable Energy Fund < Back Eligibility Commercial Industrial Residential Savings Category Water Buying & Making Electricity Solar Wind Maximum Rebate PV: 6,000 Wind: 10,000 Program Info State Montana Program Type Utility Grant Program Rebate Amount PV: 3.00/watt Wind: 2.00/watt Provider NorthWestern Energy NorthWestern Energy (NWE), formerly Montana Power Company, periodically provides funding to its customers for renewable energy projects. In 1997, Montana established the Universal System Benefits (USB) program. The USB requires all electric and gas utilities to establish USB funds for low-income energy assistance, weatherization, energy efficiency activities, and development of renewable energy resources. A typical NorthWestern

68

Energy Efficiency in Western Utility Resource Plans Implications...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Utility Resource Plans Implications for Regional Assessments and Initiatives Energy Efficiency in Western Utility Resource Plans Implications for Regional Assessments and...

69

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council Northwest Power Pool Area This...

70

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Western Electricity Coordinating Council California This dataset comes from the Energy Information Administration (EIA),...

71

Secretary Bodman Promotes Energy Bill to Western Governors | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Promotes Energy Bill to Western Governors Promotes Energy Bill to Western Governors Secretary Bodman Promotes Energy Bill to Western Governors March 1, 2005 - 10:37am Addthis WASHINGTON, DC - U.S. Secretary of Energy Samuel W. Bodman in a speech before the Western Governors Association today expressed the need for Congress to pass comprehensive energy legislation and highlighted the benefits of the proposal for the western United States. Secretary Bodman also discussed a number of important energy initiatives including: nuclear defense; scientific research; oil and gas exploration in Alaska; hydropower; the strengthening of our power grid; further development of renewable energy; hydrogen powered fuel-cell vehicles; and clean-coal power generation. "The energy challenges facing our country today are greater than they have

72

The Energy in Western Europe, Spain and Germany: From Renewable...  

NLE Websites -- All DOE Office Websites (Extended Search)

The Energy in Western Europe, Spain and Germany: From Renewable Energies to Energy-Saving Programs Speaker(s): Jose MaCampos Date: November 29, 2007 - 12:00pm Location: 90-3122...

73

Kansas | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

October 13, 2011 EA-1907: Finding of No Significant Impact Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas October 13, 2011 EA-1907: Final...

74

Western Massachusetts Elec Co | Open Energy Information  

Open Energy Info (EERE)

Co Co Jump to: navigation, search Name Western Massachusetts Elec Co Place Massachusetts Service Territory Massachusetts Green Button Landing Page www.wmeco.com/Residential Green Button Reference Page www.wmeco.com/Residential Green Button Implemented Yes Utility Id 20455 Utility Location Yes Ownership I NERC Location NPCC NERC NPCC Yes ISO NE Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Wholesale Marketing Yes Activity Retail Marketing Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile.

75

Western States Geothermal Company | Open Energy Information  

Open Energy Info (EERE)

States Geothermal Company States Geothermal Company Jump to: navigation, search Name Western States Geothermal Company Place Sparks, Nevada Zip 89432-2627 Sector Geothermal energy Product Geothermal power plant developer and operator. Acquired by Ormat in 2001. Coordinates 35.61145°, -96.821309° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.61145,"lon":-96.821309,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

76

The Impact of Energy Shortage and Cost on Irrigation for the High Plains and Trans Pecos Regions of Texas  

E-Print Network (OSTI)

The High Plains and Trans Pecos regions of Texas are semi-arid crop production regions located in the western part of the state. Relatively low levels of rainfall are supplemented by irrigation from groundwater supplies. These regions produced 51 percent of the cotton, 42 percent of the grain sorghum, and 48 percent of the wheat produced in Texas in 1974 (Texas Crop and Livestock Reporting Service). Considering only irrigated production these percentages were 75, 85, and 91 percent of Texas irrigated crop production for cotton, grain sorghum and wheat respectively. The importance of the High Plains and Trans Pecos regions to Texas crop production are not limited to these three crops, however, these statistics do serve to illustrate the significance of these regions in the Texas agricultural economy. While it is easily seen that the majority of irrigated production (for the crops mentioned) in Texas occurs in these regions, it should be noted that the importance of irrigation in the High Plains and Trans Pecos regional economies is much greater than these statistics show. On the High Plains 86 percent of the cotton, 90 percent of the grain sorghum, and 75 percent of the wheat produced in 1974 was harvested from irrigated acreage. Rainfall is somewhat less in the Trans Pecos region and 100 percent of the production of these crops was under irrigation (Texas Crop and Livestock Reporting Service). More than 60 percent of the value of agricultural crops in Texas is produced on irrigated land (Knutson, et.al.). Thus, the crop production of these regions is vitally important to the Texas and respective regional economies. Crop yields are heavily dependent on groundwater irrigation and extremely sensitive to any factor which may affect the availability or cost of irrigation water. Availability and price of fuel used in pumping groundwater are the critical factors which directly affect the availability and cost of irrigation water. About 39 percent of the energy used in Texas agriculture in 1973 was utilized in pumping water, compared to 18 percent used in machinery operations. Of this irrigation fuel, 76 percent was natural gas, the majority of which was consumed in the High Plains (Coble and LePori). Current supplies and reserves of natural gas have reached critically low levels in recent years and producers in the High Plains and Trans Pecos regions are faced with possible curtailments of, and certain price increases for their irrigation fuel (Patton and Lacewell). The threat of possible curtailment of fuel supplies during the irrigation season imposes greatly increased risk to irrigated crop production since curtailment of natural gas supplies during a critical water use period would significantly reduce yields (Lacewell). This threat would also increase financial risk and restrict availability of credit. Continued price increases for natural gas will increase costs of pumping irrigation water and hence the costs of irrigated crop production (Patton and Lacewell). The Ogalalla aquifer underlying the High Plains and many of the alluvium aquifers underlying the Trans Pecos are exhaustible; i.e., there is a negligible recharge from percolation and other sources. Therefore, even with unchanged natural gas prices, these groundwater supplies are being "economically" exhausted over time as pumping depth increases. Increases in fuel prices will lead to reduced groundwater pumpage and result in less groundwater being economically recoverable. Although life of the physical supply will be exhausted, a greater quantity of groundwater will be economically unrecoverable for irrigation without significant product price increases.

Lacewell, R. D.; Condra, G. D.; Hardin, D. C.; Zavaleta, L.; Petty, J. A.

1978-01-01T23:59:59.000Z

77

Western Renewable Energy Generation Information System | Open Energy  

Open Energy Info (EERE)

Information System Information System Jump to: navigation, search Name Western Renewable Energy Generation Information System Place Sacramento, California Zip 95814-5504 Sector Renewable Energy Product WREGIS tracks renewable energy certificates throughout the Western Interconnection. Coordinates 38.579065°, -121.491014° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":38.579065,"lon":-121.491014,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

78

NorthWestern Energy LLC (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Wyoming) Wyoming) Jump to: navigation, search Name NorthWestern Energy LLC Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for NorthWestern Energy LLC (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-01 19.46 199.099 171 106.025 923.771 168 125.485 1,122.87 339

79

Western Electricity Coordinating Council | Open Energy Information  

Open Energy Info (EERE)

Council Jump to: navigation, search Name Western Electricity Coordinating Council Place Salt Lake City, UT References SGIC1 No information has been entered for this organization....

80

Western Employee Presents Wind Award to Minnkota | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Employee Presents Wind Award to Minnkota Western Employee Presents Wind Award to Minnkota Western Employee Presents Wind Award to Minnkota April 7, 2011 - 2:47pm Addthis Randy Manion Director of Renewable Energy, Western Area Power Administration What are the key facts? The Wind Cooperative of the Year award was created in 2002 to recognize electric cooperatives for leadership in wind development. The 2011 award recognized Minnkota Power Cooperative for developing North Dakota's first utility-owned wind turbine and investing in wind energy. Wind now represents 30 percent of the cooperative's total generation and transmission energy requirements. As the Renewable Energy Program manager for the Western Area Power Administration, I had the opportunity to showcase the Department of Energy's Wind Powering America initiative at the National Rural Electric

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


81

EA-98-I Western Systems Power Pool | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

& Publications Application to Export Electric Energy OE Docket No. EA-216-C TransAlta Energy Marketing (U.S) Inc . Canadian Electrical Association Comments EA-98-K Western...

82

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

from existing state renewable energy policy requirements,western United States for renewable energy. The Clean andstate and federal regulators, and environmental organizations. The Western Renewable Energy

Mills, Andrew D

2011-01-01T23:59:59.000Z

83

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

Colorado: National Renewable Energy Laboratory. NREL/SR-Decisions in the Western Renewable Energy Zone Initiative.Finn, J. 2009. Western Renewable Energy Zones, Phase 1: QRA

Mills, Andrew D

2011-01-01T23:59:59.000Z

84

Soil-, water-, and energy-conserving tillage - Southern Plains  

Science Conference Proceedings (OSTI)

This paper summarizes some conservation cropping systems that have been developed through research. The cropping systems were: dryland wheat-fallow with stubble mulch, dryland wheat-chemical fallow-sorghum, irrigated wheat-chemical fallow-sorghum, irrigated sorghum double-cropped after winter wheat, and irrigated annual sorghum. For these cropping systems, the affect of tillage method upon soil water storage, crop yield, and energy use is discussed. 15 refs.

Allen, R.R.; Musick, J.T.; Unger, P.W.; Wiese, A.F.

1981-01-01T23:59:59.000Z

85

Flow Test At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Flow Test At Snake River Plain Region (DOE GTP) Exploration Activity Details Location Snake River Plain Geothermal Region Exploration Technique Flow Test Activity Date Usefulness...

86

Slim Holes At Snake River Plain Region (DOE GTP) | Open Energy...  

Open Energy Info (EERE)

Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Slim Holes At Snake River Plain Region (DOE GTP) Exploration...

87

Application of wind energy to Great Plains irrigation pumping. Final report  

DOE Green Energy (OSTI)

Wind energy systems without energy storage for irrigation in the Great Plains are studied. Major uses of irrigation energy were identified as pumping for surface distribution systems, which could be supplied by variable flow, and pumping for sprinkler systems using constant flow. A computer program was developed to simulate operation of wind-powered irrigation wells. Pumping by wind turbine systems was simulated for 2 variable and 2 constant flow operational modes in which auxiliary motors were used in 3 of the modes. Using the simulation program, the well yields and maximum pumping rates among the 4 modes as a function of drawdown in a typical well are compared.

Hagen, L.J.; Lyles, L.; Skidmore, E.L.

1979-10-01T23:59:59.000Z

88

NorthWestern Energy LLC | Open Energy Information  

Open Energy Info (EERE)

Energy LLC Energy LLC Jump to: navigation, search Name NorthWestern Energy LLC Place Montana Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available The following table contains monthly sales and revenue data for NorthWestern Energy LLC (Montana). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-01 26,641.351 276,208.521 268,732 24,193.424 264,721.265 63,592 2,331.272 34,148.63 175 53,166.047 575,078.416 332,499

89

Western Governors Association Annual Breakfast | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Governors Association Annual Breakfast Western Governors Association Annual Breakfast Western Governors Association Annual Breakfast March 1, 2005 - 10:35am Addthis Remarks of Secretary Samuel W. Bodman It's a privilege to be here today with Secretary Johanns and all of you. Because of the long and important relationships between Western states and the Department of Energy, I know that many of you are quite familiar with the Department and its work - particularly Governor Bill Richardson of New Mexico, who has held the job of Secretary of Energy and whose portrait I see every day on the wall just outside my office... and Governor Murkowski of Alaska, who once chaired the Senate Committee that oversaw the Energy Department. The Western states are indeed fortunate to have governors with this level

90

Energy Efficiency in Western Utility Resource Plans Implications for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

in Western Utility Resource Plans Implications in Western Utility Resource Plans Implications for Regional Assessments and Initiatives Energy Efficiency in Western Utility Resource Plans Implications for Regional Assessments and Initiatives Project scope: Comparative analysis of recent resource plans filed by 14 utilities in the Western U.S. and Canada. Analyze treatment of conventional & emerging resource options-including energy efficiency (EE)-Assess risk analysis & portfolio management -Develop more standardized methods and conventions for resource assessment-Summarize how issues are handled in resource plans; identify "best practices" and offer recommendations-Create information tools for CREPC that facilitate work on related projects (e.g. regional transmission planning) Energy Efficiency in Western Utility Resource Plans Implications for

91

Western Governors Association Annual Breakfast | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Governors Association Annual Breakfast Western Governors Association Annual Breakfast Western Governors Association Annual Breakfast March 1, 2005 - 10:35am Addthis Remarks of Secretary Samuel W. Bodman It's a privilege to be here today with Secretary Johanns and all of you. Because of the long and important relationships between Western states and the Department of Energy, I know that many of you are quite familiar with the Department and its work - particularly Governor Bill Richardson of New Mexico, who has held the job of Secretary of Energy and whose portrait I see every day on the wall just outside my office... and Governor Murkowski of Alaska, who once chaired the Senate Committee that oversaw the Energy Department. The Western states are indeed fortunate to have governors with this level

92

Energy Secretary Highlights Hydrogen Fuel Initiative In Western New York |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Highlights Hydrogen Fuel Initiative In Western New Highlights Hydrogen Fuel Initiative In Western New York Energy Secretary Highlights Hydrogen Fuel Initiative In Western New York February 23, 2006 - 12:23pm Addthis HONEOYE FALLS, NY - Department of Energy (DOE) Secretary Samuel W. Bodman highlighted President Bush's $1.2 billion, five-year commitment to the Hydrogen Fuel Initiative while visiting General Motors Fuel Cell Activities in western New York today. As part of President Bush's Advanced Energy Initiative, the Fiscal Year (FY) 2007 budget request for the Hydrogen Fuel Initiative is being increased by $53 million over FY 2006 to $289.5 million. "Developing hydrogen as a key energy source for automobiles is an important step in diversifying our nation's energy mix," Secretary Bodman said. "If

93

Comments of the Western Interstate Energy Board's High-Level...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Counsel's Notice of Inquiry concerning the preparation of a report to Congress on the Price-Anderson Act. Comments of the Western Interstate Energy Board's High-Level Radioactive...

94

Notices DEPARTMENT OF ENERGY Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

64 Federal Register 64 Federal Register / Vol. 78, No. 224 / Wednesday, November 20, 2013 / Notices DEPARTMENT OF ENERGY Western Area Power Administration Notice of Intent To Prepare a Supplemental Draft Environmental Impact Statement-Interconnection of the Proposed Wilton IV Wind Energy Center Project, North Dakota (DOE/ EIS-0469) AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Intent to Prepare a Supplemental Draft Environmental Impact Statement and to Conduct a Scoping Meeting; Notice of Floodplain and Wetlands Involvement. SUMMARY: Western Area Power Administration (Western), an agency of the U.S. Department of Energy (DOE), intends to prepare a Supplemental Draft Environmental Impact Statement (SDEIS) for the interconnection of NextEra Energy Resources' proposed

95

Western New York Energy LLC | Open Energy Information  

Open Energy Info (EERE)

New York Energy LLC New York Energy LLC Jump to: navigation, search Name Western New York Energy LLC Place Medina, New York Zip 14103 Product Developed a 50m gallon ethanol plant in Shelby, New York. Coordinates 43.174659°, -89.082003° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.174659,"lon":-89.082003,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

96

Energy and water in the Western and Texas interconnects.  

Science Conference Proceedings (OSTI)

The Department of Energy's Office of Electricity has initiated a $60M program to assist the electric industry in interconnection-level analysis and planning. The objective of this effort is to facilitate the development or strengthening of capabilities in each of the three interconnections serving the lower 48 states of the United States, to prepare analyses of transmission requirements under a broad range of alternative futures and develop long-term interconnection-wide transmission expansion plans. The interconnections are the Western Interconnection, the Eastern Interconnection, and the Texas Interconnection. One element of this program address the support and development of an integrated energy-water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning (the Eastern Interconnection is not participating in this element). Specific objectives include: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners in the Western and Texas Interconnections to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between members of this proposal team and the Western Electricity Coordinating Council (WECC), Western Governors Association (WGA), the Electric Reliability Council of Texas (ERCOT) and their associated stakeholder teams. (3) Exercise the Energy-Water DSS to investigate water stress implications of the transmission planning scenarios put forward by WECC, WGA, and ERCOT. The goals of this project are: (1) Develop an integrated Energy-Water Decision Support System (DSS) that will enable planners to analyze the potential implications of water stress for transmission and resource planning. (2) Pursue the formulation and development of the Energy-Water DSS through a strongly collaborative process between Western Electricity Coordinating Council, Electric Reliability Council of Texas, Western Governors Association, and Western States Water Council. (3) Exercise the Energy-Water DSS to investigate water transmission planning scenarios.

Tidwell, Vincent Carroll

2010-08-01T23:59:59.000Z

97

Topic B Awardee: Western Governors' Association | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Governors' Association Western Governors' Association Topic B Awardee: Western Governors' Association For the Topic A input requirements of the award, the states and provinces in the Western Interconnection have formed a new committee -- the State and Provincial Steering Committee -- to provide input in regional transmission planning and analysis in the interconnection. The Committee will consist of representatives from each state and province in the Western Interconnection. Pending formal announcement, the Committee is preparing to carry out the Topic A input tasks as outlined in Topic B of the U.S. Department of Energy transmission funding opportunity announcement issued in June 2009. A preliminary meeting of the Steering Committee was held in Tempe, AZ on November 6, 2009.

98

Western Governors' Association | Open Energy Information  

Open Energy Info (EERE)

Governors' Association Governors' Association Jump to: navigation, search Logo: Western Governors' Association Name Western Governors' Association Address 1600 Broadway, Suite 1700 Place Denver, CO Zip 80202 Year founded 1984 Phone number (303) 623-9378 Website http://www.westgov.org/ Coordinates 39.7420789°, -104.987377° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.7420789,"lon":-104.987377,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

99

Western Riverside Council of Governments - Home Energy Renovation  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Home Energy Renovation Home Energy Renovation Opportunity (HERO) Financing Program (California) Western Riverside Council of Governments - Home Energy Renovation Opportunity (HERO) Financing Program (California) < Back Eligibility Residential Savings Category Heating & Cooling Commercial Heating & Cooling Heating Home Weatherization Sealing Your Home Cooling Other Design & Remodeling Windows, Doors, & Skylights Commercial Weatherization Ventilation Heat Pumps Appliances & Electronics Commercial Lighting Lighting Insulation Solar Buying & Making Electricity Water Heating Wind Program Info State California Program Type PACE Financing Provider WRCOG HERO Financing Program (Residential) Western Riverside Council of Governments (WRCOG) is offering homeowners in WRCOG participating jurisdictions an opportunity to finance energy and

100

Department of Energy Announces Start of Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Start of Western Area Power Start of Western Area Power Administration Recovery Act Project Department of Energy Announces Start of Western Area Power Administration Recovery Act Project September 16, 2009 - 12:00am Addthis WASHINGTON, DC - With the goal of bringing new jobs and green power to the West, Energy Secretary Steven Chu announced today a large-scale transmission project to be financed using funding from the American Recovery and Reinvestment Act. The Western Area Power Administration will use borrowing authority under the Recovery Act to help build the $213 million Montana-Alberta Tie Limited (MATL) transmission project between Great Falls, Montana, and Lethbridge, Alberta. Almost two-thirds of the 214-mile transmission line will be located on U.S. soil, creating American

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


101

UNRegion Western Africa | Open Energy Information  

Open Energy Info (EERE)

Understanding and Application of Climate Data and Information + AfricaAdapt + African Biofuel & Renewable Energy Fund (ABREF) + Agriculture Rural Energy Enterprise Development...

102

Microearthquake surveys of Snake River plain and Northwest Basin and Range  

Open Energy Info (EERE)

surveys of Snake River plain and Northwest Basin and Range surveys of Snake River plain and Northwest Basin and Range geothermal areas Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Journal Article: Microearthquake surveys of Snake River plain and Northwest Basin and Range geothermal areas Details Activities (2) Areas (2) Regions (0) Abstract: applications; Basin and Range Province; Black Rock Desert; Cassia County Idaho; earthquakes; economic geology; exploration; fracture zones; geophysical methods; geophysical surveys; geothermal energy; Humboldt County Nevada; Idaho; microearthquakes; Nevada; North America; passive systems; Pershing County Nevada; Raft River; reservoir rocks; seismic methods; seismicity; seismology; Snake River plain; surveys; United States; Western U.S. Author(s): Kumamoto, L.H.

103

EA-1907: Finding of No Significant Impact | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Impact EA-1907: Finding of No Significant Impact Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas Based on the analysis in the Final EA and...

104

BETWEEN UNITED STATES DEPARTMENT OF ENERGY WESTERN AREA POWER ADMINISTRATION  

NLE Websites -- All DOE Office Websites (Extended Search)

12-SLC-0663 12-SLC-0663 CONTRACT NO. 12-SLC-0663 BETWEEN UNITED STATES DEPARTMENT OF ENERGY WESTERN AREA POWER ADMINISTRATION COLORADO RIVER STORAGE PROJECT MANAGEMENT CENTER AND SHELL ENERGY NORTH AMERICA FOR PURCHASE OF POWER Contract No. 12-SLC-0663 1 TABLE OF CONTENTS Section Title Page No. 1 Preamble ............................................................................................................... 2 2 Explanatory Recitals ............................................................................................ 2 3 Agreement ............................................................................................................. 3 4 Term of Contract .................................................................................................. 3

105

Energy Efficiency and Renewable Energy (EERE) Tribal Energy Program, and Western Area  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

of Indian Energy Policy and Programs, Office of of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy (EERE) Tribal Energy Program, and Western Area Power Administration are pleased to continue their sponsorship of the DOE Tribal Renewable Energy Webinar Series. This year, the series focuses on topics and issues related to facility- and community-scale renew- able tribal energy projects. The webinar series is part of the DOE coordinated efforts to provide

106

Western New York Sustainable Energy Association | Open Energy Information  

Open Energy Info (EERE)

Association Association Jump to: navigation, search Name Western New York Sustainable Energy Association Address 27 St. Catherine's Court Place Buffalo, New York Zip 14222 Region Northeast - NY NJ CT PA Area Notes Non-profit community organization dedicated to sustainable energy solutions that promote energy conservation and efficiency Website http://www4.bfn.org/wnysea/ Coordinates 42.916451°, -78.874751° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":42.916451,"lon":-78.874751,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

107

Western Area Power Administration | Open Energy Information  

Open Energy Info (EERE)

Administration Administration Jump to: navigation, search Name Western Area Power Administration Place Colorado Utility Id 27000 Utility Location Yes Ownership F NERC Location WECC, MAPP NERC MRO Yes NERC SPP Yes NERC WECC Yes ISO CA Yes RTO SPP Yes ISO MISO Yes ISO Other Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes Activity Bundled Services Yes Alt Fuel Vehicle Yes Alt Fuel Vehicle2 Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Schedule R-8 Farm and Home Residential Average Rates Commercial: $0.0278/kWh

108

Western Ethanol Company LLC | Open Energy Information  

Open Energy Info (EERE)

Ethanol Company LLC Ethanol Company LLC Jump to: navigation, search Name Western Ethanol Company LLC Place Placentia, California Zip 92871 Product California-based fuel ethanol distribution and marketing company. Coordinates 33.871124°, -117.861401° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":33.871124,"lon":-117.861401,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

109

Economic Effect on Agricultural Production of Alternative Energy Input Prices: Texas High Plains  

E-Print Network (OSTI)

The Arab oil embargo of 1973 awakened the world to the reality of energy shortages and higher fuel prices. Agriculture in the United States is highly mechanized and thus energy intensive. This study seeks to develop an evaluative capability to readily determine the short-run effect of rising energy prices on agricultural production. The results are measured in terms of demand schedules for each input investigated, net revenue adjustments, cropping pattern shifts, and changes in agricultural output. The High Plains of Texas was selected as a study area due to the heterogeneous nature of agricultural production in the region and highly energy intensive methods of production employed. The region is associated with a diversity in crops and production practices as well as a high degree of mechanization and irrigation, which means agriculture is very dependent upon energy inputs and, in turn, is significantly affected by energy price changes. The study area was defined by the Texas Agricultural Extension subregions of High Plains II, High Plains III, and High Plains IV. The crops chosen for study were cotton, grain sorghum, wheat, corn, and soybeans. The energy and energy-related inputs under investigation were diesel, herbicide, natural gas, nitrogen fertilizer, and water. Mathematical linear programming was used as the analytical technique with parametric programming techniques incorporated into the LP model to evaluate effect of varying input price parameters over a specified range. Thus, demand schedules were estimated. The objective function was constructed using variable costs only; no fixed costs are considered. Therefore, the objective function maximizes net revenue above variable costs and thus limits the study to the short run. The data bases for the model were crop enterprise budgets developed by the Texas Agricultural Extension Service. These budgets were modified to adapt them to the study. Particularly important was the substitution of owner-operated harvesting equipment for custom-harvesting costs. This procedure made possible the delineation of fuel use by crop and production alternative which was necessary information in the accounting of costs. The completed LP model was applied to 16 alternative situations made up of various input and product price combinations which are considered as feasible in the short run future. The results reveal that diesel consumption would change very little in the short run unless commodity prices simultaneously decline below the lowest prices since 1971 or unless diesel price approaches $2.00 per gallon. Under average commodity price conditions, natural gas consumption would not decline appreciably until the price rose above $4.00 per 1000 cubic feet (mcf). Even when using the least product prices since 1971, natural gas would be consumed in substantial amounts as long as the price was below $1.28 per Mcf. The findings regarding nitrogen indicate that present nitrogen prices are within a critical range such that consumption would be immediately affected by nitrogen price increases. Water price was considered as the price a farmer can afford to pay for water above pumping and distribution costs. Application of water was defined as the price that would be paid for imported water. Under average commodity price conditions, the study results show that as water price rises from zero dollars to $22 per acre foot there would be less than a 4 percent reduction in consumption. However, as the price continues to rise, consumption would decline dramatically reaching zero at a water price of $71.75 per acre foot. This study indicates that rising input prices would cause acreage shifts from irrigated to dryland; however, with average commodity prices, these shifts do not occur until diesel reaches $2.69 per gallon, or natural gas sells for $1.92 per Mcf, or nitrogen price is $.41 per pound, or water price reaches $14.69 per acre foot. In general, the first crops that would shift out of production as energy input prices rise woul

Adams, B. M.; Lacewell, R. D.; Condra, G. D.

1976-06-01T23:59:59.000Z

110

Western Renewable Energy Zones, Phase 1: QRA Identification Technical Report  

SciTech Connect

This report describes the Western Renewable Energy Zones (WREZ) Initiative Phase 1 Qualified Resource Area identification process, including the identification and economic analysis of Qualified Resource Areas (QRAs) and 'non-REZ' resources. These data and analyses will assist the Western US in its renewable energy transmission planning goals. The economic analysis in this report produced the input data for the WREZ Generation and Transmission model, which is a screening-level model to determine the optimal routing for and cost of delivering renewable energy from QRAs to load centers throughout the Western Interconnection. In June 2009, the Western Governors' Association accepted the Western Governors' Association WREZ Phase 1 Report in which the QRAs were mapped and the entire WREZ Phase 1 process was explained in general. That same month the Lawrence Berkeley National Laboratory released the WREZ Generation and Transmission Model (GTM), which was also developed by Black & Veatch. This report details the assumptions and methodologies that were used to produce the maps and resource analyses in the WGA report as well as the economic data used by the WREZ GTM. This report also provides the results of the non-REZ resource analysis for the first time in the WREZ initiative.

Pletka, R.; Finn, J.

2009-10-01T23:59:59.000Z

111

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Southwest Southwest Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 116, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Southwest Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Southwest (xls, 119.1 KiB) Quality Metrics Level of Review Peer Reviewed

112

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Northwest Power Pool Area Northwest Power Pool Area Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is Table 118, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. This dataset contains data for the northwest power pool area of the U.S. Western Electricity Coordinating Council (WECC). Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Northwest Power Pool Area Renewable Energy Generation WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Northwest Power Pool Area - Reference (xls, 119.3 KiB)

113

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

California California Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

114

Abyssal Eddy Kinetic Energy Levels in the Western North Pacific  

Science Conference Proceedings (OSTI)

An earlier observation of about 50 cm2 s?2 for the maximum abyssal (4000 m depth) eddy kinetic energy (KE) in the western North Pacific along 152E, occurring in the vicinity of the Kuroshio Extension, is now supported by nearly two years of ...

Willeam J. Schmitz Jr.

1984-01-01T23:59:59.000Z

115

Russia pins energy hopes on western Siberia gas  

Science Conference Proceedings (OSTI)

This paper reports that natural gas, not oil or coal, will pull Russia out of its fuel production slump by the end of the century, predicts a recently disclosed study by Moscow's leading energy specialists. Western investment in Russia's natural gas industry is now being proposed on a scale rivaling foreign outlays for joint ventures aimed at stabilizing the republic's oil production.

Not Available

1992-09-07T23:59:59.000Z

116

Western Renewable Energy Zones-Phase 1 Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Renewable Energy Zones-Phase 1 Report Western Renewable Energy Zones-Phase 1 Report Western Renewable Energy Zones-Phase 1 Report In June 2006, the Western Governors'Association published "Clean Energy, a Strong Economy and a Healthy Environment,"a report from the Clean and Diversified Energy Advisory Committee.3 This report explained that while vast renewable resources exist throughout the West,many reside in remote areas without ready or cost effective access to transmission. Lack of cost effective transmission access was, and remains, the greatest impediment to the rapid development of utility-scale, renewable-rich resource areas. Western Renewable Energy Zones-Phase 1 Report More Documents & Publications Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation

117

NorthWestern Corporation | Open Energy Information  

Open Energy Info (EERE)

Corporation Corporation Place Montana Utility Id 12825 Utility Location Yes Ownership I NERC Location WECC NERC WECC Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Distribution Yes Activity Retail Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] Energy Information Administration Form 826[2] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png GS - 1 (General Service Secondary Demand) Commercial GS-D General Service Demand Secondary Commercial GS-ND General Service Non Demand Secondary Commercial GSEDS - 1 (Secondary Non-Demand) Commercial

118

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Energy Efficiency and Renewable Energy (Office of Planning,I. Introduction Markets for renewable electricity have grownRisk: The Treatment of Renewable Energy in Western Utility

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

119

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

Colorado: National Renewable Energy Laboratory. http://Colorado: National Renewable Energy Laboratory. NREL/SR-550-Finn, J. 2009. Western Renewable Energy Zones, Phase 1: QRA

Mills, Andrew

2010-01-01T23:59:59.000Z

120

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Risk: The Treatment of Renewable Energy in Western Utilityutilities in evaluating renewable energy options. For anthe treatment of renewable energy in each of the plans is

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


121

Well Log Techniques At Snake River Plain Region (DOE GTP) | Open Energy  

Open Energy Info (EERE)

Well Log Techniques At Snake River Plain Region (DOE GTP) Well Log Techniques At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Well Log Techniques At Snake River Plain Region (DOE GTP) Exploration Activity Details Location Snake River Plain Geothermal Region Exploration Technique Well Log Techniques Activity Date Usefulness not indicated DOE-funding Unknown References (1 January 2011) GTP ARRA Spreadsheet Retrieved from "http://en.openei.org/w/index.php?title=Well_Log_Techniques_At_Snake_River_Plain_Region_(DOE_GTP)&oldid=600470" Categories: Exploration Activities DOE Funded Activities ARRA Funded Activities What links here Related changes Special pages Printable version Permanent link Browse properties 429 Throttled (bot load) Error 429 Throttled (bot load)

122

Renewable Energy Network of Entrepreneurs in Western New York RENEW NY |  

Open Energy Info (EERE)

Network of Entrepreneurs in Western New York RENEW NY Network of Entrepreneurs in Western New York RENEW NY Jump to: navigation, search Name Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) Place Rochester, New York Zip 14623 Sector Renewable Energy Product US-based incubator fund, Renewable Energy Network of Entrepreneurs in Western New York, helps early stage renewable energy companies to start and grow in Western New York. References Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY)[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Renewable Energy Network of Entrepreneurs in Western New York (RENEW NY) is a company located in Rochester, New York . References ↑ "Renewable Energy Network of Entrepreneurs in Western New York

123

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

Rockies Rockies Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 119, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region of WECC. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords 2011 AEO EIA Renewable Energy Generation Rockies WECC Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / Rockies- Reference Case (xls, 119 KiB)

124

NorthWestern Corporation (Wyoming) | Open Energy Information  

Open Energy Info (EERE)

Jump to: navigation, search Jump to: navigation, search Name NorthWestern Corporation Place Wyoming Utility Id 12825 References Energy Information Administration.[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates Residential: $0.0975/kWh Commercial: $0.1380/kWh The following table contains monthly sales and revenue data for NorthWestern Corporation (Wyoming). Month RES REV (THOUSAND $) RES SALES (MWH) RES CONS COM REV (THOUSAND $) COM SALES (MWH) COM CONS IND_REV (THOUSAND $) IND SALES (MWH) IND CONS OTH REV (THOUSAND $) OTH SALES (MWH) OTH CONS TOT REV (THOUSAND $) TOT SALES (MWH) TOT CONS 2009-03 14.42 146.703 173 99.874 849.906 170 114.294 996.609 343

125

Western Illinois University Wind Project | Open Energy Information  

Open Energy Info (EERE)

Illinois University Wind Project Illinois University Wind Project Jump to: navigation, search Name Western Illinois University Wind Project Facility Western Illinois University Sector Wind energy Facility Type Community Wind Location IL Number of Units 1 Wind Turbine Manufacturer SkyStream Wind for Schools Portal Turbine ID 120256 References Wind Powering America[1] Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"TERRAIN","zoom":6,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

126

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

Colorado: National Renewable Energy Laboratory. NREL/SR-Decisions in the Western Renewable Energy Zone Initiative.Moore, and C.K. Woo. 2009. Renewable Portfolio Standards,

Mills, Andrew D

2011-01-01T23:59:59.000Z

127

Categorical Exclusion Determinations: Western Area PowerAdministratio...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Great Plains Region Categorical Exclusion Determinations issued by Western Area Power Administration-Upper Great Plains Region. DOCUMENTS AVAILABLE FOR DOWNLOAD March 22,...

128

WESTERN ELECTRIC INDUSTRY LEADERS GROUP | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WESTERN ELECTRIC INDUSTRY LEADERS GROUP WESTERN ELECTRIC INDUSTRY LEADERS GROUP Halting global warming and protecting the environment have properly moved high atop the...

129

Western Interconnection Energy Imbalance Market Status and Prospects (Presentation)  

Science Conference Proceedings (OSTI)

This presentation describes how a new wholesale electricity market for energy imbalance ancillary services could be implemented and operated. Some conclusions of this presentation are: (1) Method for calculating additional reserve requirements due to wind and solar production; (2) EIM results in substantial reduction in reserves requirements and ramping demand; (3) Reduced participation reduces benefits for all but reduces the benefits to non-participants the most; (4) Full participation leads to maximum benefit across the Western Interconnection, up to 42% of total reserve requirement; and (5) Regional EIM implementations have smaller but substantial benefits.

Milligan, M.; Kirby, B.; King, J.; Beuning, S.

2011-10-01T23:59:59.000Z

130

Western Renewable Energy Zones-Phase 1 Report | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Renewable Energy Zones-Phase 1 Report Renewable Energy Zones-Phase 1 Report Western Renewable Energy Zones-Phase 1 Report In June 2006, the Western Governors'Association published "Clean Energy, a Strong Economy and a Healthy Environment,"a report from the Clean and Diversified Energy Advisory Committee.3 This report explained that while vast renewable resources exist throughout the West,many reside in remote areas without ready or cost effective access to transmission. Lack of cost effective transmission access was, and remains, the greatest impediment to the rapid development of utility-scale, renewable-rich resource areas. Western Renewable Energy Zones-Phase 1 Report More Documents & Publications EIS-0413: Final Environmental Impact Statement Interconnection-Wide Transmission Planning Initiative: Topic B, Cooperation

131

Savannah River Region: Transition between the Gulf and Atlantic Coastal Plains. Proceedings  

Science Conference Proceedings (OSTI)

The focus of the this conference of Coastal Plains geologists was on the Savannah River region of Georgia and South Carolina, and particularly on the geology of the US Department of Energy`s 300 square mile Savannah River Site (SRS) in western South Carolina. Current geological studies indicate that the Mesozoic-Cenozoic section in the Savannah River region is transitional between that of the Gulf Coastal Plain to the southwest and that of the Atlantic Coastal Plain to the northeast. With the transitional aspect of the region as its theme, the first session was devoted to overviews of Cretaceous and Paleogene geology in the Gulf and Atlantic Coastal Plains. Succeeding presentations and resulting discussions dealt with more specific problems in structural, lithostratigraphic, hydrological, biostratigraphic, and cyclostratigraphic analysis, and of correlation to standard stratigraphic frameworks. For these conference proceedings, individual papers have been processed separately for the Energy Data Base.

Zullo, V.A.; Harris, W.B.; Price, V. [eds.

1990-12-31T23:59:59.000Z

132

Plains & Eastern Clean Line Project Proposal for New or Upgraded...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project...

133

Potential for heating western tree seedling greenhouses with geothermal energy  

DOE Green Energy (OSTI)

The technology to apply geothermal energy to greenhousing is available. Geothermal energy is compatible with greenhouse heat exchange hardware, and it is abundant in the western United States. Geothermal resources suitable for greenhousing are natural springs, deep hot water or steam wells, and waste water from electrical power generating plants. Factors influencing greenhouse heating needs include climate, elevation, structure, and growing regime, as well as the attributes of the geothermal energy source: heat, quantity, quality. Greenhouse sites should be evaluated for suitability, size, availability of labor supply, markets, etc. Problems exist in developing any new energy source, but a sound economic assessment based on good engineering and geological advice will illustrate advantages and problems. When considering geothermal energy as an alternative energy source these steps are recommended: (1) Determine the geographic region greenhouse will serve. (2) Tabulate known geothermal resources within region. (3) Rank potential locations in terms of geothermal fluid chemistry and location. (4) Obtain data on chemistry, flow potential, temperature, and probable lifespan of resources. (5) Conduct economic analysis of proposed greenhouse operation using these geothermal sources; compare with optimum fossil fuel economics and long term availability in the region. (6) Proceed with project if economically attractive.

McDonald, S.E.; Austin, C.F.; Lott, J.R.

1976-11-01T23:59:59.000Z

134

Geothermal energy market study on the Atlantic Coastal Plain: Ocean City, Maryland geothermal energy evaluation  

DOE Green Energy (OSTI)

This report is one of a series of studies that have been made by the Applied Physics Laboratory, or its subcontractors, to examine the technical and economic feasibility of the utilization of geothermal energy at the request of potential users.

Schubert, C.E.

1981-08-01T23:59:59.000Z

135

Potential for heating western tree seedling greenhouses with geothermal energy  

DOE Green Energy (OSTI)

Geothermal energy is compatible with greenhouse heat exchange hardware, and it is abundant in the western United States. Geothermal resources suitable for greenhousing are natural springs, deep hot water or steam wells, and waste water from electrical power generating plants. The wisest approach to using geothermal energy is to seek out and use known resources. Factors influencing greenhouse heating needs include climate, elevation, structure, and growing regime, as well as the attributes of the geothermal energy source: heat, quantity, quality. Greenhouse sites should be evaluated for suitability, size, availability of labor supply, markets, etc. A sound economic assessment based on good engineering and geological advice will illustrate advantages and problems. When considering geothermal energy as an alternative energy source these steps are recommended: (1) determine the geographic region greenhouse will serve; (2) tabulate known geothermal resources within region; (3) rank potential locations in terms of geothermal fluid chemistry and location; (4) obtain data on chemistry, flow potential, temperature, and probable lifespan of resources; (5) conduct economic analysis of proposed greenhouse operation using these geothermal sources; compare with optimum fossil fuel economics and long term availability in the region; (6) proceed with project if economically attractive.

McDonald, S.E.; Austin, C.F.; Lott, J.R.

1976-11-01T23:59:59.000Z

136

NorthWestern Energy - USB Renewable Energy Fund (Montana) | Open...  

Open Energy Info (EERE)

awareness of renewable energy. Incentives of 3.00watt are offered for residential solar PV installations up to a maximum of 6,000 per customer; the incentive for wind is...

137

About Upper Great Plains Regional Office  

NLE Websites -- All DOE Office Websites (Extended Search)

The Upper Great Plains Region carries out Western's mission in Montana, North Dakota, South Dakota, Nebraska, Iowa, and Minnesota. We sell more than 9 billion kilowatt-hours of...

138

Western Water and Power Production WWPP | Open Energy Information  

Open Energy Info (EERE)

Water and Power Production WWPP Water and Power Production WWPP Jump to: navigation, search Name Western Water and Power Production (WWPP) Place Albuquerque, New Mexico Zip 88340 Sector Biomass Product Developer and Builder of Biomass Energy Plants. Coordinates 35.08418°, -106.648639° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":35.08418,"lon":-106.648639,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

139

Western Area Power Administration (Arizona) | Open Energy Information  

Open Energy Info (EERE)

Arizona) Arizona) Jump to: navigation, search Name Western Area Power Administration Place Arizona Utility Id 27000 References EIA Form EIA-861 Final Data File for 2010 - File2_2010[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Energy and Capacity Components of Firm Electric Service Industrial Firm Transmission Service of Salt Lake City Area Integrated Projects Power Commercial Long-Term Firm Point-to-Point Transmission Service Commercial Nonfirm Transmission Service Commercial Short-Term Firm Point-to-Point Transmission Service Commercial Average Rates Commercial: $0.0175/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File2_2010"

140

The Energy in Western Europe, Spain and Germany: From Renewable Energies to  

NLE Websites -- All DOE Office Websites (Extended Search)

The Energy in Western Europe, Spain and Germany: From Renewable Energies to The Energy in Western Europe, Spain and Germany: From Renewable Energies to Energy-Saving Programs Speaker(s): Jose MaCampos Date: November 29, 2007 - 12:00pm Location: 90-3122 Seminar Host/Point of Contact: Girish Ghatikar The strong increase in the price of oil, and the dependency on oil from foreign, politically unstable countries has forced the European Union to develop programs to increase the efficiency of energy, not only in the industrial sector but also in residential and transports sectors. With common policies coming from the European Union, two countries with different economical and political conditions adapt these common policies to their reality. Spain, a strong developing country within the Union, and Germany, as a developed country, are approaching the same problems in

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


141

THE PLAINS CO  

NLE Websites -- All DOE Office Websites (Extended Search)

THE PLAINS CO 2 REDUCTION PARTNERSHIP THE UNITED S T A T E S 2012 ATLAS CARBON UTILIZATION AND STORAGE The Plains CO 2 Reduction Partnership The Plains CO 2 Reduction (PCOR) Partnership, comprising state agencies; coal, oil and gas, and other private companies; electric utilities; universities; and nonprofit organizations, covers an area of more than 1.4 million square miles in the central interior of North America and includes all or part of nine U.S. states and four Canadian provinces. The PCOR Partnership region has stable geologic basins that are ideal storage targets for CCUS. These basins have been well characterized because of commercial oil and gas activities and have significant CO 2 storage resource. The region's energy industry is evaluating carbon

142

Utilities District of Western Indiana REMC - Residential Energy...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

- 400 Air-sourceDual Fuel Heat Pump: 300 - 400 Geothermal Heat Pump: 1,500 Central Air Conditioning: 200 - 300 Utilities District of Western Indiana REMC offers...

143

Western Area Power Administration Record of Decision for the Energy Planning and Management Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

81 81 Federal Register / Vol. 60, No. 197 / Thursday, October 12, 1995 / Notices at 941 North Capitol Street, NE., Washington, DC 20426. Lois D. Cashell, Secretary. [FR Doc. 95-25230 Filed 10-11-95; 8:45 am] BILLING CODE 6717-01-M Western Area Power Administration Record of Decision for the Energy Planning and Management Program AGENCY: Western Area Power Administration, DOE. ACTION: Record of decision. SUMMARY: The Department of Energy, Western Area Power Administration (Western) completed a draft and final environmental impact statement (EIS), DOE/EIS-0182, on its Energy Planning and Management Program (Program). Western is publishing this Record of Decision (ROD) to adopt the Program, which will require the preparation of integrated resource plans (IRP) by Western's long-term firm power

144

Renewable Energy Network of Entrepreneurs in Western New York | Open Energy  

Open Energy Info (EERE)

Renewable Energy Network of Entrepreneurs in Western New York Renewable Energy Network of Entrepreneurs in Western New York Jump to: navigation, search Logo: Renewable Energy Network of Entrepreneurs in Western New York Name Renewable Energy Network of Entrepreneurs in Western New York Address 150 Lucius Gordon Drive Place West Henrietta, New York Zip 14586 Coordinates 43.07033°, -77.683833° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.07033,"lon":-77.683833,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

145

Plains CO  

NLE Websites -- All DOE Office Websites (Extended Search)

Partnership Partnership Fourth Annual Conference on Carbon Capture & Sequestration Alexandria, Virginia May 2-5, 2005 By Edward N. Steadman Plains CO Plains CO 2 2 Reduction Partnership Reduction Partnership Eagle Operating Inc. Fischer Oil and Gas, Inc. PCOR Partnership Region Nine states and three provinces 1,362,089 square miles Montana North Dakota South Dakota Minnesota Iowa Missouri Nebraska Saskatchewan Alberta Manitoba Wyoming Wisconsin Sedimentary Basins 440,828 square miles 32% of region Coal Fields 292,006 square miles 21% of region Evaluated the Wyodak- Anderson, Ardley, and Fort Union coals CO 2 sequestration capacity estimated to date: >8 billion tons PCOR Partnership Region Geological CO 2 sequestration capacity estimated thus far: >8 billion tons Saline Aquifers

146

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

WGA CDEAC) (2006). Energy Efficiency Task Force Report.on Phase 1 Issues: Energy Efficiency Shareholder Mechanism,Schlegel, J. (2006). Energy Efficiency in Western Utility

Hopper, Nichole

2008-01-01T23:59:59.000Z

147

Plain Language Compliance Report (2012)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy sees the implementation of the Plain Writing Act as an important initiative that helps the Department share relevant information in a way that is clear, concise, and...

148

Plain Language Training Class 01  

Energy.gov (U.S. Department of Energy (DOE))

Registration link: CHRIS https://mis.doe.gov/ess/index.cfm 002357/0017 and https://powerpedia.energy.gov/wiki/Plain_Writing_Training_Class_October_...Course Type: ClassroomCourse Location:...

149

PLAIN LANGUAGE COMPLIANCE REPORT (2013)  

Energy.gov (U.S. Department of Energy (DOE))

The Department of Energy sees the implementation of the Plain Writing Act as an important initiative that helps the Department share relevant information in a way that is clear, concise, and informative.

150

Utilities Dist-Western IN REMC | Open Energy Information  

Open Energy Info (EERE)

Dist-Western IN REMC Dist-Western IN REMC Jump to: navigation, search Name Utilities Dist-Western IN REMC Place Indiana Utility Id 19667 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png General Services Rate Commercial Power Flood Light Lighting Residential Rate Residential Security Light Lighting Average Rates Residential: $0.1290/kWh Commercial: $0.1170/kWh Industrial: $0.0917/kWh References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Utilities_Dist-Western_IN_REMC&oldid=41192

151

Break-Even Investment in a Wind Energy Conversion System for an Irrigated Farm on the Texas High Plains  

E-Print Network (OSTI)

The purpose of this study was to quantify the benefits of using a wind energy system for irrigation. The value of wind energy was estimated on both a static basis (where the annual value of wind power was assumed to be constant over the life of the machine) and on a temporal basis (where the annual value of wind power was estimated recursively). The model for static analysis contained two components which were applied consecutively. The first was a linear programming (LP) model for the High Plains region. Production activities were included which allowed both optimal and non-optimal timing of post-plant irrigations, giving the producer added flexibility in the employment of limiting water resources. The optimal irrigation schedule determined by the LP solution was used as input to the second component. A simulation model matched stochastically generated estimates of wind power availability with irrigation fuel requirements (derived from the profit maximizing irrigation schedule) by three-hour time periods throughout a year. For the temporal analysis, a Fortran subroutine was added to the LP model to operate the model recursively over the life of the wind system and to account for the annual decline of the aquifer. Both fixed and variable costs were included. The basic LP model was applied to develop the benchmark case (i.e., without wind power). The farm operation with wind power was analyzed by applying the LP model with the monthly expectations of wind-generated electricity added. Two wind machines were analyzed, with rate outputs of 40 to 60 kilowatts (KW). Each was applied to the Northern and Southern Texas High Plains over a range of land and water resource situations. Breakeven investment was estimated at discount rates of three, five and ten percent. Cropping patterns on the Southern High Plains were dominated by irrigated cotton and were insensitive to changes in crop or electricity prices. On the Northern High Plains, irrigated corn and grain sorghum were the major crops, with acreage reverting to dryland wheat at the higher electricity prices. The cropping patterns in this area were impacted heavily by labor restrictions. Consideration of wind power had little effect in determining optimal cropping patterns. When wind power was applied to an irrigated farm on a static basis, the set of crop prices applied had little effect on the annual value of a wind system. Value of wind power was increased, but by smaller proportions than associated increases in the price of electricity. Each machine size had a greater value when operated on the larger of the two applicable land units (100 acres for the 40 KW machine and 144 acres for the 60 KW system). The 60 KW system was also tested on the 100 acre unit but returned less per KW than the 40 KW system. Available wind power in the temporal analysis was less than in the static analysis, thus temporal estimates of wind system value should be regarded as conservative. On the Southern High Plains, break-even investment was decreased slightly from the static analysis. However, in some situations on the Northern High Plains, break-even investment increased. This indicates that the value of wind power could increase as the aquifer declines in some situations. Break-even investment increased by up to 80 percent when the price of electricity was increased by $.005 per KWH per year. The most significant effect of wind power was that it allowed the maintenance of irrigation levels which, without wind power, had been made uneconomical. These results indicate that, at least in the future when wind system costs decrease and stabilize, wind-assisted irrigation could be an economically viable alternative for Texas High Plains producers. The results are limited by the need for future research regarding the effect of irrigation timing on crop yield as well as some of the long-term characteristics of wind system operation, such as durability and the requirements and costs for system repairs and maintenance.

Hardin, D. C.; Lacewell, R. D.

1981-01-01T23:59:59.000Z

152

at Western University With escalating concerns about global energy shortages and the impact of  

E-Print Network (OSTI)

of knowledge related to renewable forms of energy, including solar and wind power, and biofuels. Western on fossil fuels. Wind Energy · WindEEEDome: the world's first hexagonal wind tunnel builds on expertise to maximize energy savings and production · Reduces energy losses caused by model uncertainty due to wind farm

Christensen, Dan

153

OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA  

E-Print Network (OSTI)

OFF-GRID RENEWABLE ENERGY OPTIONS FOR RURAL ELECTRIFICATION IN WESTERN CHINA by the Center for Energy and Environmental Policy of University of Delaware Sponsored by National Renewable Energy Laboratory and Ministry of Agriculture People's Republic of China June 2001 #12;i OFF-GRID RENEWABLE ENERGY

Delaware, University of

154

Western Region Renewable Energy Markets: Implications for the Bureau of Land Management  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Region Renewable Western Region Renewable Energy Markets: Implications for the Bureau of Land Management Scott Haase, Lynn Billman, and Rachel Gelman Produced under direction of the Bureau of Land Management by the National Renewable Energy Laboratory (NREL) under Interagency Agreement L11PG00030 and Task No WFH7.1004. Technical Report NREL/TP-6A20-53540 January 2012 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Western Region Renewable Energy Markets: Implications for the Bureau of Land Management

155

North Western Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

North Western Elec Coop, Inc North Western Elec Coop, Inc Jump to: navigation, search Name North Western Elec Coop, Inc Place Ohio Utility Id 13704 Utility Location Yes Ownership C NERC Location RFC NERC RFC Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Devices/SL-100 W HPS Lighting Devices/SL-175 W MV Lighting General Service - Non-residential Single Phase Residential Multi-Phase - 0-50 KVA Service. Not on a Demand Rate. Commercial Multi-Phase - 50-500 KVA Service. Demand Charges Apply. Industrial Multi-Phase - Demand Rate over 500 KVA Commercial Outdoor Lighting Service Lighting

156

Mapping Geothermal Potential In The Western United States | Open Energy  

Open Energy Info (EERE)

Geothermal Potential In The Western United States Geothermal Potential In The Western United States Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Mapping Geothermal Potential In The Western United States Details Activities (3) Areas (1) Regions (0) Abstract: The U. S. Geological Survey (USGS) is conducting an updated assessment of geothermal resources in the United States. An important component of the assessment is the estimate of the spatial distribution and quantity of undiscovered geothermal resources. Weights of evidence and logistic regression models have been applied through a Geographic Information System (GIS) framework to produce maps of geothermal favorability. These maps provide the basis for characterizing the undiscovered geothermal resource base and could guide future exploration

157

Western Lake Superior Sanitary District (Minnesota) | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Lake Superior Sanitary District (Minnesota) Western Lake Superior Sanitary District (Minnesota) Western Lake Superior Sanitary District (Minnesota) < Back Eligibility Utility Fed. Government Commercial Agricultural Investor-Owned Utility State/Provincial Govt Industrial Construction Municipal/Public Utility Local Government Residential Installer/Contractor Rural Electric Cooperative Tribal Government Low-Income Residential Schools Retail Supplier Institutional Multi-Family Residential Systems Integrator Fuel Distributor Nonprofit General Public/Consumer Transportation Program Info State Minnesota Program Type Siting and Permitting A sanitary board is established to deal with long-term serious problems relating to water pollution and solid waste disposal in the area. The district can set regulations regarding garbage management and recycling,

158

Western Farmers Elec Coop, Inc | Open Energy Information  

Open Energy Info (EERE)

Western Farmers Elec Coop, Inc Western Farmers Elec Coop, Inc Place Oklahoma Utility Id 20447 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Operates Generating Plant Yes Activity Generation Yes Activity Transmission Yes Activity Buying Transmission Yes Activity Wholesale Marketing Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png No rate schedules available. Average Rates No Rates Available References ↑ "EIA Form EIA-861 Final Data File for 2010 - File1_a" Retrieved from "http://en.openei.org/w/index.php?title=Western_Farmers_Elec_Coop,_Inc&oldid=412173

159

Influences of ENSO on Western North Pacific Tropical Cyclone Kinetic Energy and Its Meridional Transport  

Science Conference Proceedings (OSTI)

This study investigates the influences of ENSO on tropical cyclone (TC) kinetic energy and its meridional transport in the western North Pacific (WNP) using the TC wind field obtained after a method for removing TC vortices from reanalysis data is ...

Yao Ha; Zhong Zhong; Yijia Hu; Xiuqun Yang

2013-01-01T23:59:59.000Z

160

DEPARTMENT OF ENERGY Western Area Power Administration Provo River Project Rate Order No. WAPA-149  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DEPARTMENT OF ENERGY Western Area Power Administration Provo River Project Rate Order No. WAPA-149 AGENCY: Western Area Power Administration, DOE. ACTION: Notice of Rate Order Concerning a Power Rate Formula. SUMMARY: The Deputy Secretary of Energy confinned and approved Rate Order No. W AP A-149, placing a power rate fOlIDula for the Provo River Project (PRP) of Western Area Power Administration (Western) into effect on an interim basis. The provisional power rate formula will remain in effect on an interim basis until the Federal Energy Regulatory Commission (FERC) COnfilIDs, approves, and places it into effect on a final basis, or until the power rate formula is replaced by another power rate fOlIDula. DATES: The provisional power rate fonnula will be placed into effect on an interim basis on

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


161

Renewable Energy Policy in Remote Rural Areas of Western China: Implementation and Socio-economic Benefits  

E-Print Network (OSTI)

Renewable Energy Policy in Remote Rural Areas of Western China: Implementation and Socio on renewable energy sources. However, such an option is not universally agreed upon. This dissertation examines a renewable energy-based rural electrification program, the `Township Electrification Program', launched

Huber, Bernhard A.

162

Western Electricity Coordinating Council Smart Grid Project | Open Energy  

Open Energy Info (EERE)

Council Smart Grid Project Council Smart Grid Project Jump to: navigation, search Project Lead Western Electricity Coordinating Council Country United States Headquarters Location Salt Lake City, Utah Additional Benefit Places Arizona, California, Colorado, Idaho, Montana, New Mexico, Nevada, Oregon, South Dakota, Texas, Washington Recovery Act Funding $53,890,000.00 Total Project Value $107,780,000.00 Coverage Area Coverage Map: Western Electricity Coordinating Council Smart Grid Project Coordinates 40.7607793°, -111.8910474° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[]}

163

MHK Projects/Western Passage OCGen | Open Energy Information  

Open Energy Info (EERE)

Western Passage OCGen Western Passage OCGen < MHK Projects Jump to: navigation, search << Return to the MHK database homepage Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":5,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"500px","height":"350px","centre":false,"title":"","label":"","icon":"File:Aquamarine-marker.png","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":44.6755,"lon":-67.014,"alt":0,"address":"","icon":"http:\/\/prod-http-80-800498448.us-east-1.elb.amazonaws.com\/w\/images\/7\/74\/Aquamarine-marker.png","group":"","inlineLabel":"","visitedicon":""}]}

164

Surface Energy Balance of the Western and Central Canadian Subarctic: Variations in the Energy Balance among Five Major Terrain Types  

Science Conference Proceedings (OSTI)

In this study, the surface energy balance of 10 sites in the western and central Canadian subarctic is examined. Each research site is classified into one of five terrain types (lake, wetland, shrub tundra, upland tundra, and coniferous forest) ...

Andrea K. Eaton; Wayne R. Rouse; Peter M. Lafleur; Philip Marsh; Peter D. Blanken

2001-09-01T23:59:59.000Z

165

Modeling the Atmospheric Response to Irrigation in the Great Plains. Part I: General Impacts on Precipitation and the Energy Budget  

Science Conference Proceedings (OSTI)

Since World War II, the expansion of irrigation throughout the Great Plains has resulted in a significant decline in the water table of the Ogallala Aquifer, threatening its long-term sustainability. The addition of near-surface water for ...

Keith J. Harding; Peter K. Snyder

2012-12-01T23:59:59.000Z

166

Assessment of municipal solid waste for energy production in the western United States  

Science Conference Proceedings (OSTI)

Municipal solid waste (MSW) represents both a significant problem and an abundant resource for the production of energy. The residential, institutional, and industrial sectors of this country generate about 250 million tons of MSW each year. In this report, the authors have compiled data on the status of MSW in the 13-state western region, including economic and environmental issues. The report is designed to assist the members of the Western Regional Biomass Energy Program Ad Hoc Resource Committee in determining the potential for using MSW to produce energy in the region. 51 refs., 7 figs., 18 tabs.

Goodman, B.J.; Texeira, R.H.

1990-08-01T23:59:59.000Z

167

Impact of Alternative Energy Prices, Tenure Arrangements and Irrigation Technologies on a Typical Texas High Plains Farm  

E-Print Network (OSTI)

Irrigation is a major contributing factor in crop production on the Texas High Plains. It is responsible for greatly increasing crop production and farm income for the region. Two factors, a declining groundwater supply and increasing production costs, are of primary concern because they impact on farm operations and producer economic viability. A recursive linear programming model for a typical Texas High Plains irrigated farm was developed to evaluate expected impact of price changes, tenure and new technology. The model includes a Fortran sub-routine that adjusts irrigation factors each year based on the linear programming solution of the previous year. After calculating new pumping energy requirements, well yield, and pumping lift, the Fortran component updates the linear programming model. This procedure continues automatically to the end of a specified planning period or to economic exhaustion of the groundwater, whichever occurs first. Static applications of the model, in a deep water situation, showed that a natural gas price increase from $1.50 to $2.20 per thousand cubic feet (mcf) would result in reductions in irrigation levels. Irrigation was terminated when the price of natural gas reached about $7.00 per mcf. In a shallow water situation, much higher natural gas prices were reached ($3.60 per mcf) before short-run adjustments in farm organization began to occur. Under furrow irrigation, irrigation was terminated when the natural gas price reached $7.00 per mcf. Increased natural gas prices impact heavily on returns above variable costs (up to 15 percent reductions) for a 60 percent natural gas price increase. The effects of rising natural gas prices over a longer period of time were more significant. Annual returns (above variable and fixed costs) were reduced by as much as 30 percent, and the present value of returns to water was reduced by as much as 80 percent as the natural gas price was increased annually by $0.25 per mcf (from $1.50 per mcf). The economic life of deep groundwater was shortened by as much as 18 years. Renter-operators are even more vulnerable to rising natural gas prices than are owner-operators. With rising natural gas prices, profitability over time for the renter is low. As natural gas prices continue to increase, the greater will be the incentives for renter-operators to seek more favorable rental terms such as a sharing of irrigation costs. With the problem of a declining groundwater supply and rising natural gas prices, an economic incentive exists for producers to find new technologies that will enable them to make more efficient use of remaining groundwater and of natural gas. Substantial economic gains appear feasible through improved pump efficiency. Increasing pump efficiency from 50 to 75 percent will not increase the economic life of the water supply, but can improve farm profits over time; e.g., the present value of groundwater was increased 33 percent for a typical farm with an aquifer containing 250 feet of saturated thickness and 15 percent for 75 feet of saturated thickness. Improved irrigation distribution systems can help conserve water and reduce irrigation costs. Results indicate that irrigation can be extended by 11 or more years with 50 percent improved distribution efficiency. In addition, the increase in present value of groundwater on the 1.69 million irrigated acres of the Texas High Plains was estimated to be $995 million with 50 percent improved efficiency. Limitations in borrowing can substantially reduce annual net returns. This analysis suggests that the farmer can economically justify very high costs of borrowing rather than a limitation of funds available for operating expenses.

Petty, J. A.; Lacewell, R. D.; Hardin, D. C.; Whitson, R. E.

1980-05-01T23:59:59.000Z

168

Advance Funding and Development Agreement: Plains & Eastern Clean Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Funding and Development Agreement: Plains & Eastern Clean Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) More Documents & Publications Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Letter from Deputy Secretary Poneman to Clean Line Energy Regarding the Plains & Eastern Clean Line Project Under Section 1222 of EPAct 2005 (April 5, 2012) 2013 Annual Planning Summary for the Southwestern Area Power Administration

169

Department of Energy Announces Start of Western Area Power Administrat...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Skip to main content Energy.gov Find information about your town or city. GO Search form Search link to facebook link to twitter Email Signup Sign up for updates Go Energy.gov...

170

Categorical Exclusion Determinations: Western Area Power  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Upper Great Plains Region Upper Great Plains Region Categorical Exclusion Determinations: Western Area Power Administration-Upper Great Plains Region Categorical Exclusion Determinations issued by Western Area Power Administration-Upper Great Plains Region. DOCUMENTS AVAILABLE FOR DOWNLOAD March 22, 2013 CX-010553: Categorical Exclusion Determination Appledorn Substation Construction CX(s) Applied: B4.11 Date: 03/22/2010 Location(s): Minnesota Offices(s): Western Area Power Administration-Upper Great Plains Region December 3, 2012 CX-009534: Categorical Exclusion Determination Construct New Transmission Line and Footings, Garrison Switchyard CX(s) Applied: B4.13 Date: 12/03/2012 Location(s): North Dakota Offices(s): Western Area Power Administration-Upper Great Plains Region October 11, 2011

171

Western Coop Electric Assn Inc | Open Energy Information  

Open Energy Info (EERE)

Assn Inc Assn Inc Jump to: navigation, search Name Western Coop Electric Assn Inc Place Kansas Utility Id 20476 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation power Commercial general service Commercial general service electric heat Commercial general service large Commercial general service large(Transformer Ownership discount at Primary Voltage) Commercial general service medium Commercial general service medium(Transformer Ownership Discount at Primary Voltage)

172

Energy directions for the United States: a Western perspective  

SciTech Connect

A 1981 survey of 9500 households in 11 states identifies public attitudes toward energy conservation. This report describes the development of the questionnaire and the procedures used in conducting the survey. The questions help to determine the level of support for energy conservation and the attitudinal and behavioral changes people are willing to make. Respondents ranked 11 alternative ways to meet energy needs. The results show that 70% think energy needs are a serious problem. There is a uniform response among urban and rural dwellers that conservation and increased energy production require equal attention. A breakdown of the survey results appears in 145 tables. 4 references. (DCK)

Makela, C.J.; Chatelain, L.B.; Dillman, D.A.; Dillman, J.J.; Tripple, P.A.

1982-01-01T23:59:59.000Z

173

Report to the Western Governors, Secretary of Energy and the U. S. Congress  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Governors' Association Governors' Association Transportation Update William B. Mackie Program Manager 2 Western States' Update Department of Energy & Western Governors renewed and signed a Memorandum of Agreement in 2003 Revised WGA WIPP Program Implementation Guide approved in December 2003 and published earlier this year Funded CVSA Inspection Results Update on WIPP Shipments Facilitated negotiations between Western States and DOE on shipments of Transuranic Waste between NTS and the WIPP Reviewed Transportation Plans and Lessons Learned from a number of projects (FRR shipments, SNF Shipments, West Valley Lessons Learned, etc.) 3 Western States' Unresolved Issues Shipments to the Waste Isolation Pilot Plant using rail DOE Security Protocols Development of a negotiated route for the second half of the NTS

174

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

Electricity Coordinating Council (WECC), which includes Arizona, California, Colorado,Colorado Puget Sound Energy Public Utilities Commission San Diego Gas & Electric Southern California Edison Western Electricity

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

175

Pages that link to "Western Turbine" | Open Energy Information  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind Page Actions View source History...

176

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. The dataset contains data for the Rockies region...

177

Western Sahara - U.S. Energy Information Administration (EIA)  

U.S. Energy Information Administration (EIA)

US EIA provides data, forecasts, country analysis brief and other analyses, focusing on the energy industry including oil, natural gas and electricity.

178

Changes related to "Western Turbine" | Open Energy Information  

Open Energy Info (EERE)

Policies International Clean Energy Analysis Low Emission Development Strategies Oil & Gas Smart Grid Solar U.S. OpenLabs Utilities Water Wind View New Pages Recent Changes All...

179

AEO2011: Renewable Energy Generation by Fuel - Western Electricity  

Open Energy Info (EERE)

kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption.
2011-07-25T20:15:39Z...

180

Great Plains: status of the Great Plains coal gasification project  

SciTech Connect

Updated information is presented on the Great Plains coal gasification project in North Dakota following the default of a $1.54 billion federal loan by the project sponsors. This report includes updated information obtained through October 31, 1985, on the loan default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, Great Plains operations, and socioeconomic issues. The new information highlights changes in the gas pricing calculations; the Department's action to pay off the defaulted loan; legal action concerning gas purchase agreements; the project sponsors' proposed settlement; September revenue, expense, and production data; coal lease payments; capital improvement projects; plant by-products; and the final results of a North Dakota task force study of the potential socioeconomic impact if the plant closes.

Not Available

1985-11-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


181

Great Plains Coal Gasification Project:  

Science Conference Proceedings (OSTI)

This progress report on the Great Plains Coal Gasification Project discusses Lignite coal, natural gas, and by-products production as well as gas quality. A tabulation of raw material, product and energy consumption is provided for plant operations. Capital improvement projects and plant maintenance activities are detailed and summaries are provided for environmental, safety, medical, quality assurance, and qualtiy control activities.

Not Available

1988-01-29T23:59:59.000Z

182

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 18480 of 31,917 results. 71 - 18480 of 31,917 results. Page Annual Planning Summaries: Western Area Power Administration-Rocky Mountain Region (WAPA-RMR) http://energy.gov/nepa/annual-planning-summaries-western-area-power-administration-rocky-mountain-region-wapa-rmr Page Annual Planning Summaries: Western Area Power Administration-Upper Great Plains Region (WAPA-UGPR) http://energy.gov/nepa/annual-planning-summaries-western-area-power-administration-upper-great-plains-region-wapa-ugpr Page Annual Planning Summaries: West Valley Demonstration Project (WVDP) http://energy.gov/nepa/annual-planning-summaries-west-valley-demonstration-project-wvdp Page Annual Planning Summaries: Western Area Power Administration (WAPA) http://energy.gov/nepa/annual-planning-summaries-western-area-power-administration-wapa

183

Examination of Potential Benefits of an Energy Imbalance Market in the Western Interconnection  

SciTech Connect

In the Western Interconnection, there is significant interest in improving approaches to wide-area coordinated operations of the bulk electric power system, in part because of the increasing penetration of variable generation. One proposed solution is an energy imbalance market. This study focused on that approach alone, with the goal of identifying the potential benefits of an energy imbalance market in the year 2020.

Milligan, M.; Clark, K.; King, J.; Kirby, B.; Guo, T.; Liu, G.

2013-03-01T23:59:59.000Z

184

Western Area Power Administration Draft Finding of No Significant Impact East Altamont Energy Center, Alameda County, California  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

DOE/EA-1411 DEPARTMENT OF ENERGY Western Area Power Administration Draft Finding of No Significant Impact East Altamont Energy Center, Alameda County, California Summary: East Altamont Energy Center, LLC (EAEC LLC), a wholly owned subsidiary of Calpine Corporation applied to the Department of Energy (DOE), Western Area Power Administration (Western) to interconnect the East Altamont Energy Center (EAEC), a 1100-megawatt (MW) natural gas-fired power plant, to Western's Tracy Substation. EAEC LLC intends to serve competitive regional markets in California with power from the EAEC. Western proposes to make modifications at its Tracy Substation to accommodate the interconnection. The EAEC is a merchant plant which means that it would be independent of other generators and that the power generated would serve

185

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

DOE Green Energy (OSTI)

The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this paper we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33percent of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33percent RE target across nearly all scenarios analyzed (38-65percent). Solar energy is almost always the second largest source (14-41percent). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Further, we find that even with total transmission expenditures of $17-34 billion these costs still represent just 10-19percent of the total delivered cost of renewable energy.

Mills, Andrew D.; Phadke, Amol A.; Wiser, Ryan H.

2010-06-10T23:59:59.000Z

186

The Western Wind and Solar Integration Study (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

Wear-and-Tear Costs and Emissions Wear-and-Tear Costs and Emissions Impacts of Cycling and Ramping Are Relatively Small The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It examines the operational impact of up to 35% penetration of wind, photovoltaic (PV), and concentrating solar power (CSP) energy on the electric power system. The goal is to understand the effects of and investigate mitigation options for the variability and uncertainty of wind and solar. Phase 1 Research Phase 1 of the Western Wind and Solar Integration Study (WWSIS1) found no technical barriers to the integration of high penetrations of wind and solar power in the Western Interconnection power system if certain changes to opera- tional practices are made. The two most important changes

187

Selection of herbaceous energy crops for the western corn belt  

DOE Green Energy (OSTI)

The ultimate economic feasibility of biomass depends on its cost of production and on the cost of competing fuels. The purpose of this research project is to evaluate the production costs of several combinations of species and management systems for producing herbaceous biomass for energy use in Iowa. Herbaceous biomass production systems have costs similar to other crop production systems, such as corn, soybean, and forages. Thus, the factors influencing the costs of producing dedicated biomass energy crops include technological factors such as the cultivation system, species, treatments, soil type, and site and economic factors such as input prices and use of fixed resources. In order to investigate how these production alternatives are influenced by soil resources, and climate conditions, two locations in Iowa, Ames and Chariton, with different soil types and slightly different weather patterns were selected for both the agronomic and economic analyses. Nine crops in thirteen cropping systems were grown at the two sites for five years, from 1988 to 1992. Some of the systems had multiple cropping or interplanting, using combinations of cool-season species and warm-season species, in order to meet multiple objectives of maximum biomass, minimal soil loss, reduced nitrogen fertilization or diminished pesticide inputs. Six of the systems use continuous monocropping of herbaceous crops with an emphasis on production. The seven other systems consist of similar crops, but with crop rotation and soil conservation considerations. While the erosion and other off-site effects of these systems is an important consideration in their overall evaluation, this report will concentrate on direct production costs only.

Anderson, I.C.; Buxton, D.R.; Hallam, J.A. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1994-05-01T23:59:59.000Z

188

Geothermal Energy Market Study on the Atlantic Coastal Plain. A Review of Recent Energy Price Projections for Traditional Space Heating Fuel 1985-2000  

DOE Green Energy (OSTI)

In order to develop an initial estimate of the potential competitiveness of low temperature (45 degrees C to 100 degrees C) geothermal resources on the Eastern Coastal Plain, the Center for Metropolitant Planning and Research of The Johns Hopkins University reviewed and compared available energy price projections. Series of projections covering the post-1985 period have been made by the Energy Information Administration, Brookhaven National Laboratory, and by private research firms. Since low temperature geothermal energy will compete primarily for the space and process heating markets currently held by petroleum, natural gas, and electricity, projected trends in the real prices for these fuels were examined. The spread in the current and in projected future prices for these fuels, which often serve identical end uses, underscores the influence of specific attributes for each type of fuel, such as cleanliness, security of supply, and governmental regulation. Geothermal energy possesses several important attributes in common with electricity (e.g., ease of maintenance and perceived security of supply), and thus the price of electric space heating is likely to be an upper bound on a competitive price for geothermal energy. Competitiveness would, of course, be increased if geothermal heat could be delivered for prices closer to those for oil and natural gas. The projections reviewed suggest that oil and gas prices will rise significantly in real terms over the next few decades, while electricity prices are projected to be more stable. Electricity prices will, however, remain above those for the other two fuels. The significance of this work rests on the fact that, in market economies, prices provide the fundamental signals needed for efficient resource allocation. Although market prices often fail to fully account for factors such as environmental impacts and long-term scarcity value, they nevertheless embody a considerable amount of information and are the primary guideposts for suppliers and consumers.

Weissbrod, Richard; Barron, William

1979-03-01T23:59:59.000Z

189

Great Plains coal gasification project. Hearing before the Committee on Energy and Natural Resources, United States Senate, One Hundredth Congress, Second Session, September 12, 1988  

Science Conference Proceedings (OSTI)

The hearing was called to review the announcement by the Department of Energy that it has selected Basin Electric Power Cooperative of Bismarck, North Dakota, as the preferred buyer for the Great Plains Coal Gasification Plant. The plant produces 142 billion standard cubic feet of synthetic natural gas per day from lignite coal plus several byproducts which are marketed. The hearing examines the bids of the finalists, the composition of the trust funds, the status of the siting permits, questions of air quality, employee retirement funds and employee benefits, and the ability of the successful bidder to pursue byproduct development and marketing. Testimony was heard from 7 witnesses.

Not Available

1989-01-01T23:59:59.000Z

190

Energy from the west: a progress report of a technology assessment of western energy resource development. Executive summary  

SciTech Connect

This report covers a three year technology assessment of the development of six energy resources (coal, geothermal, natural gas, oil, oil shale, and uranium) in eight western states (Arizona, Montana, New Mexico, North Dakota, South Dakota, Utah, and Wyoming) during the period from the present to the year 2000.

White, I.L.; Chartock, M.A.; Leonard, R.L.; LaGrone, F.S.; Bartosh, C.P.

1977-10-01T23:59:59.000Z

191

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

DOE Green Energy (OSTI)

Markets for renewable energy have historically been motivated primarily by policy efforts, but a less widely recognized driver is poised to also play a major role in the coming years: utility integrated resource planning (IRP). Resource planning has re-emerged in recent years as an important tool for utilities and regulators, particularly in regions where retail competition has failed to take root. In the western United States, the most recent resource plans contemplate a significant amount of renewable energy additions. These planned additions--primarily coming from wind power--are motivated by the improved economics of wind power, a growing acceptance of wind by electric utilities, and an increasing recognition of the inherent risks (e.g., natural gas price risk, environmental compliance risk) in fossil-based generation portfolios. This report examines how twelve western utilities treat renewable energy in their recent resource plans. In aggregate, these utilities supply approximately half of all electricity demand in the western United States. Our purpose is twofold: (1) to highlight the growing importance of utility IRP as a current and future driver of renewable energy, and (2) to identify methodological/modeling issues, and suggest possible improvements to methods used to evaluate renewable energy as a resource option. Here we summarize the key findings of the report, beginning with a discussion of the planned renewable energy additions called for by the twelve utilities, an overview of how these plans incorporated renewables into candidate portfolios, and a review of the specific technology cost and performance assumptions they made, primarily for wind power. We then turn to the utilities' analysis of natural gas price and environmental compliance risks, and examine how the utilities traded off portfolio cost and risk in selecting a preferred portfolio.

Bolinger, Mark; Wiser, Ryan

2005-08-10T23:59:59.000Z

192

The Western Wind and Solar Integration Study Phase 2 (Fact Sheet), NREL (National Renewable Energy Laboratory)  

NLE Websites -- All DOE Office Websites (Extended Search)

of Energy Efficiency of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. The Western Wind and Solar Integration Study Phase 2 An examination of how wind and solar power affect operations, costs, and emissions from fossil-fueled generators The electric grid is a highly complex, interconnected machine. Changing one part of the grid can have consequences elsewhere. Adding variable renewable generation such as wind and solar power affects the operation of the other types of power plants, and adding high penetrations can induce cycling of fossil-fueled generators. Cycling leads to wear-and-tear costs and changes in emissions, but do those increases in costs and emissions from cycling negate the overall benefits of integrating renewables?

193

Geothermal Energy Market Study on the Atlantic Coastal Plain: Technical Feasibility of use of Eastern Geothermal Energy in Vacuum Distillation of Ethanol Fuel  

DOE Green Energy (OSTI)

The DOE is studying availability, economics, and uses of geothermal energy. These studies are being conducted to assure maximum cost-effective use of geothermal resources. The DOE is also aiding development of a viable ethanol fuel industry. One important point of the ethanol program is to encourage use of non-fossil fuels, such as geothermal energy, as process heat to manufacture ethanol. Geothermal waters available in the eastern US tend to be lower in temperature (180 F or less) than those available in the western states (above 250 F). Technically feasible use of eastern geothermal energy for ethanol process heat requires use of technology that lowers ethanol process temperature requirements. Vacuum (subatmospheric) distillation is one such technology. This study, then, addresses technical feasibility of use of geothermal energy to provide process heat to ethanol distillation units operated at vacuum pressures. They conducted this study by performing energy balances on conventional and vacuum ethanol processes of ten million gallons per year size. Energy and temperature requirements for these processes were obtained from the literature or were estimated (for process units or technologies not covered in available literature). Data on available temperature and energy of eastern geothermal resources was obtained from the literature. These data were compared to ethanol process requirements, assuming a 150 F geothermal resource temperature. Conventional ethanol processes require temperatures of 221 F for mash cooking to 240 F for stripping. Fermentation, conducted at 90 F, is exothermic and requires no process heat. All temperature requirements except those for fermentation exceed assumed geothermal temperatures of 150 F. They assumed a 130 millimeter distillation pressure for the vacuum process. It requires temperatures of 221 F for mash cooking and 140 F for distillation. Data indicate lower energy requirements for the vacuum ethanol process (30 million BTUs per hour) than for the conventional process (36 million BTUs per hour). Lower energy requirements result from improved process energy recovery. Data examined in this study indicate feasible use of eastern geothermal heated waters (150 F) to provide process heat for vacuum (130 mm Hg) ethanol distillation units. Data indicate additional heat sources are needed to raise geothermal temperatures to the 200 F level required by mash cooking. Data also indicate potential savings in overall process energy use through use of vacuum distillation technology. Further study is needed to confirm conclusions reached during this study. Additional work includes obtaining energy use data from vacuum ethanol distillation units currently operating in the 130 millimeter pressure range; economic analysis of different vacuum pressures to select an optimum; and operation of a pilot geothermally heated vacuum column to produce confirmatory process data.

None

1981-04-01T23:59:59.000Z

194

Are federal energy tax credits effective: a Western United States survey  

SciTech Connect

The likely demise of the federal Energy Tax Act of 1977 indicates nothing about the Act's effectiveness in getting homeowners to invest in energy conservation or solar devices. A random survey of homeowners in the Western US examines awareness and use of the tax credit, the role of climate and dwelling type, and the influence of selected socio-economic factors on the use of energy tax credits. The survey found that 30% made a claim between 1978 and 1980, while almost 90% were aware of the tax credits. Of those making a claim, only 1% said their investment was contingent on receiving the tax credit. However, tax credits were important for the solar and more costly installations. Claims were filed mostly by older, employed, and married owners with a college education and a high income. 16 references, 6 tables.

Carpenter, E.H.; Chester, S.T. Jr.

1984-04-01T23:59:59.000Z

195

Draft Programmatic Environmental Impact Statement fo the Designation of Energy Corridors in the 11 Western States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WWEC PEIS ES-1 October 2007 WWEC PEIS ES-1 October 2007 EXECUTIVE SUMMARY ES.1 WHY ARE FEDERAL AGENCIES PROPOSING TO DESIGNATE ENERGYCORRIDORS IN THE WEST? On August 8, 2005, the President signed into law the Energy Policy Act of 2005 (EPAct). In Subtitle F of EPAct, Congress set forth various provisions that would change the way certain federal agencies 1 (Agencies) coordinated to authorize the use of land for a variety of energy- related purposes. Section 368 of EPAct requires, among other things, the designation of energy corridors on federal lands in 11 western states 2 and the establishment of procedures to ensure that additional corridors are identified and designated as necessary and to expedite applications to construct or modify oil, gas, and

196

Southern Great Plains  

NLE Websites -- All DOE Office Websites (Extended Search)

govSitesSouthern Great Plains govSitesSouthern Great Plains SGP Related Links Facilities and Instruments Central Facility Boundary Facility Extended Facility Intermediate Facility Radiometric Calibration Facility Geographic Information ES&H Guidance Statement Operations Science Field Campaigns Visiting the Site Fact Sheet Images Information for Guest Scientists Contacts Southern Great Plains SGP Central Facility, Lamont, OK 36° 36' 18.0" N, 97° 29' 6.0" W Altitude: 320 meters The Southern Great Plains (SGP) site was the first field measurement site established by DOE's Atmospheric Radiation Measurement (ARM) Program. Scientists are using the information obtained from the SGP to improve cloud and radiative models and parameterizations and, thereby, the performance of atmospheric general circulation models used for climate research.

197

Potential for hot-dry-rock geothermal energy in the western United States  

SciTech Connect

ABS>The U. S. Geological Survey has identified 1.5 million acres (2800 square miles) of western lands as having a significant potential for geothermal development.'' The LASL for the past 2 years has been actively investigating the potential for and preblems associated with extracting geothermal energy from the much more numerous regions of the western United States containing hot, but essentially dry, rock at moderate depths. A recent survey reveals that about 7% of the 13-state area comprising the Western Heat Flow Province---about 95,000 square miles--is underlain, at a depth of 5 km (16,400 ft), by hot rock at temperature levels above 290 deg C (>550 deg F). In the Los Alamos concept a man- made geothermal reservoir would be formed by first drilling into suitably hot rock, and then creating a very large surface area for heat transfer using conventional hydraulic fracturing techniques developed by the oil industry. After forming a circulation loop by drilling a second hole into the top of the fractured region, the heat contained would be convected to the surface by the buoyant circulation of water, without the need for pumping. The water in the Earth loop would be maintained as a liquid throughout by pressurization at the surface, both increasing the amount of heat transport up the second (withdrawal) hole, and enhancing the rate of heat removal from the fractured reservoir, when compared to steam. Thermal stresses resulting from the cooling of the hot rock in such a man-made reservoir may gradually enlarge the initial fracture system so that its useful lifetime will be greatly extended beyond the planned 10 to 15 years provided by the original reservoir. If these thermal stress cracks grow preferentially downward and outward into regions of hotter rock, as seems probable, the quality of the geothermal source may actually improve as energy is withdrawn from it. (auth)

Brown, D.W.

1973-07-25T23:59:59.000Z

198

Advance Funding and Development Agreement: Plains & Eastern Clean Line  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Advance Funding and Development Agreement: Plains & Eastern Clean Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) Advance Funding and Development Agreement: Plains & Eastern Clean Line Transmission Project (September 20, 2012) More Documents & Publications Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Letter from Deputy Secretary Poneman to Clean Line Energy Regarding the Plains & Eastern Clean Line Project Under Section 1222 of EPAct 2005 (April 5, 2012) EIS-0486: Notice of Intent and Notice of Potential Floodplain and Wetland

199

Agribusiness geothermal energy utilization potential of Klamath and Western Snake River Basins, Oregon. Final report  

DOE Green Energy (OSTI)

Resource assessment and methods of direct utilization for existing and prospective food processing plants have been determined in two geothermal resource areas in Oregon. Ore-Ida Foods, Inc. and Amalgamated Sugar Company in the Snake River Basin; Western Polymer Corporation (potato starch extraction) and three prospective industries--vegetable dehydration, alfalfa drying and greenhouses--in the Klamath Basin have been analyzed for direct utilization of geothermal fluids. Existing geologic knowledge has been integrated to indicate locations, depth, quality, and estimated productivity of the geothermal reservoirs. Energy-economic needs and balances, along with cost and energy savings associated with field development, delivery systems, in-plant applications and fluid disposal have been calculated for interested industrial representatives.

Lienau, P.J.

1978-03-01T23:59:59.000Z

200

Effect of Large Scale Transmission Limitations on Renewable Energy Load Matching for Western U.S.: Preprint  

DOE Green Energy (OSTI)

Based on the available geographically dispersed data for the Western U.S. (excluding Alaska), we analyze to what extent the geographic diversity of these resources can offset their variability. Without energy storage and assuming unlimited energy flows between regions, wind and PV can meet up to 80% of loads in Western U.S. while less than 10% of the generated power is curtailed. Limiting hourly energy flows by the aggregated transmission line carrying capacities decreases the fraction of the load that can be met with wind and PV generation to approximately 70%.

Diakov, V.; Short, W.; Gilchrist, B.

2012-06-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


201

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

SciTech Connect

Building transmission to reach renewable energy (RE) goals requires coordination among renewable developers, utilities and transmission owners, resource and transmission planners, state and federal regulators, and environmental organizations. The Western Renewable Energy Zone (WREZ) initiative brings together a diverse set of voices to develop data, tools, and a unique forum for coordinating transmission expansion in the Western Interconnection. In this report we use a new tool developed in the WREZ initiative to evaluate possible renewable resource selection and transmission expansion decisions. We evaluate these decisions under a number of alternative future scenarios centered on meeting 33% of the annual load in the Western Interconnection with new renewable resources located within WREZ-identified resource hubs. Of the renewable resources in WREZ resource hubs, and under the assumptions described in this report, our analysis finds that wind energy is the largest source of renewable energy procured to meet the 33% RE target across nearly all scenarios analyzed (38-65%). Solar energy is almost always the second largest source (14-41%). Solar exceeds wind by a small margin only when solar thermal energy is assumed to experience cost reductions relative to all other technologies. Biomass, geothermal, and hydropower are found to represent a smaller portion of the selected resources, largely due to the limited resource quantity of these resources identified within the WREZ-identified hubs (16-23% combined). We find several load zones where wind energy is the least cost resource under a wide range of sensitivity scenarios. Load zones in the Southwest, on the other hand, are found to switch between wind and solar, and therefore to vary transmission expansion decisions, depending on uncertainties and policies that affect the relative economics of each renewable option. Uncertainties and policies that impact bus-bar costs are the most important to evaluate carefully, but factors that impact transmission costs and the relative market value of each renewable option can also be important. Under scenarios in which each load zone must meet 33% of its load with delivered renewable energy from the WREZ-identified resource hubs, the total transmission investment required to meet the 33% west-wide RE target is estimated at between $22 billion and $34 billion. Although a few of the new transmission lines are very long - over 800 miles - most are relatively short, with average transmission distances ranging from 230-315 miles, depending on the scenario. Needed transmission expenditure are found to decline to $17 billion if wide use of renewable energy credits is allowed; consideration of renewable resources outside of WREZ-identified hubs would further reduce this transmission cost estimate. Even with total transmission expenditures of $17-34 billion, however, these costs still represent just 10-19% of the total delivered cost of renewable energy.

Mills, Andrew; Phadke, Amol; Wiser, Ryan

2010-02-16T23:59:59.000Z

202

Western Region Renewable Energy Markets: Implications for the Bureau of Land Management  

SciTech Connect

The purpose of this analysis is to provide the U.S. Department of the Interior (DOI) and the Bureau of Land Management (BLM) with an overview of renewable energy (RE) generation markets, transmission planning efforts, and the ongoing role of the BLM RE projects in the electricity markets of the 11 states (Arizona, California, Colorado, Idaho, Montana, Nevada, New Mexico, Oregon, Utah, Washington, and Wyoming) that comprise the Western Electricity Coordinating Council (WECC) Region. This analysis focuses on the status of, and projections for, likely development of non-hydroelectric renewable electricity from solar (including photovoltaic [PV] and concentrating solar power [CSP]), wind, biomass and geothermal resources in these states. Absent new policy drivers and without the extension of the DOE loan guarantee program and Treasury's 1603 program, state RPS requirements are likely to remain a primary driver for new RE deployment in the western United States. Assuming no additional policy incentives are implemented, projected RE demand for the WECC states by 2020 is 134,000 GWh. Installed capacity to meet that demand will need to be within the range of 28,000-46,000 MW.

Haase, S.; Billman, L.; Gelman, R.

2012-01-01T23:59:59.000Z

203

Impacts of Western Area Power Administration`s power marketing alternatives on utility demand-side management and conservation and renewable energy programs  

SciTech Connect

The Western Area Power Administration (Western) requires all of its long-term firm power customers to implement programs that promote the conservation of electric energy or facilitate the use of renewable energy resources. Western has also proposed that all customers develop integrated resource plans that include cost-effective demand-side management programs. As part of the preparation of Western`s Electric Power Marketing Environmental Impact Statement, Argonne National Laboratory (ANL) developed estimates of the reductions in energy demand resulting from Western`s conservation and renewable energy activities in its Salt Lake City Area Office. ANL has also estimated the energy-demand reductions from cost-effective, demand-side management programs that could be included in the integrated resource plans of the customers served by Western`s Salt Lake City Area Office. The results of this study have been used to adjust the expected hourly demand for Western`s major systems in the Salt Lake City Area. The expected hourly demand served as the basis for capacity expansion plans develops with ANL`s Production and Capacity Expansion (PACE) model.

Cavallo, J.D.; Germer, M.F.; Tompkins, M.M.

1995-03-01T23:59:59.000Z

204

Energy directory of organizations and researchers in Great Plains/Great Basin area (Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Wyoming)  

SciTech Connect

The directory lists research institutes and researchers involved in energy R and D in Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, and Wyoming. The first section of this publication, Organizations and Researchers, lists the names of colleges and organizations which are involved in energy R and D in these ten western states. The name of the organization is arranged in alphabetical order and printed below each organization are the name(s) of the researchers in the organization, their phone numbers if known, and the titles of their research projects. Section 2, Research Organizations by State, lists the research organizations performing energy R and D within each of the ten states mentioned. The alphabetical arrangement is first by state and then by research organization.

Caton, G.M.; Michelson, D.C.; Danford, G.S.; Frogge, L.M. (comps.)

1977-10-01T23:59:59.000Z

205

Operating Reserve Implication of Alternative Implementations of an Energy Imbalance Service on Wind Integration in the Western Interconnection: Preprint  

DOE Green Energy (OSTI)

During the past few years, there has been significant interest in alternative ways to manage power systems over a larger effective electrical footprint. Large regional transmission organizations in the Eastern Interconnection have effectively consolidated balancing areas, achieving significant economies of scale that result in a reduction in required reserves. Conversely, in the Western Interconnection there are many balancing areas, which will result in challenges if there is significant wind and solar energy development in the region. A recent proposal to the Western Electricity Coordinating Council suggests a regional energy imbalance service (EIS). To evaluate this EIS, a number of analyses are in process or are planned. This paper describes one part of an analysis of the EIS's implication on operating reserves under several alternative scenarios of the market footprint and participation. We improve on the operating reserves method utilized in the Eastern Wind Integration and Transmission Study and apply this modified approach to data from the Western Wind and Solar Integration Study.

Milligan, M.; Kirby, B.; King, J.; Beuning, S.

2011-07-01T23:59:59.000Z

206

Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

served by Western would provide long term economic benefits by increasing the percentage of energy provided by renewable sources. Require New Capacity Be Used Exclusively...

207

Geothermal Energy Market Study on the Atlantic Coastal Plain. GRITS (Version 9): Model Description and User's Guide  

DOE Green Energy (OSTI)

The Geothermal Resource Interactive Temporal Simulation (GRITS) model calculates the cost and revenue streams for the lifetime of a project that utilizes low to moderate temperature geothermal resources. With these estimates, the net present value of the project is determined. The GRITS model allows preliminary economic evaluations of direct-use applications of geothermal energy under a wide range of resource, demand, and financial conditions, some of which change over the lifetime of the project.

Kroll, Peter; Kane, Sally Minch [eds.

1982-04-01T23:59:59.000Z

208

Case history study of total energy system at Western Mall Shopping Center, Sioux Falls, South Dakota  

SciTech Connect

Western Mall Total Energy Plant in Sioux Falls, South Dakota, serves an enclosed mall shopping center of 462,000 ft/sup 2/. The plant provides most of the mall and tenants with electricity, space-heating, and air-conditioning services from a natural gas-fueled engine-generator plant with hot water heat recovery, supplementary gas-fueled boiler, and absorption water chiller. Heating load served by the plant is calculated to be 15,000,000 Btu at -30/sup 0/F winter design condition with 70/sup 0/F space temperature. Maximum observed cooling load at 100/sup 0/F, 75/sup 0/ W.B. outdoor conditions is about 750 tons of refrigeration. Engine heat is recovered in a water system operated at 210 to 240/sup 0/F; an auxiliary scotch marine type, firetype gas-fueled boiler provides up to 14,000,000 Btu/h or supplementary heat. Energy customers have recently begun to exercise considerable control over their uses of electricity with more careful operation of lighting and appliances and with some replacement of illumination devices with more-efficient equipment. It is concluded that central heating and air-conditioning facilities provide the owner with an assured means for serving the shopping center, regardless of which energy source is most economical or least available. The hot and chilled water can be obtained from gas fuel as at present, from fuel oil, propane, all electric, or coal firing. Adapting the conversion equipment is difficult only for coal because of the space requirement for storage and handling that fuel. The power-generating capacity in place is an asset that should be used to serve the tenants because it reduces the public utility company need for expanded capacity. (MCW)

1977-11-01T23:59:59.000Z

209

Direct utilization of geothermal energy in western South Dakota agribusiness. Final report  

SciTech Connect

This project involved the direct utilization of geothermal energy for (1) space heating of farm and ranch buildings, (2) drying grain, and (3) providing warm stock water during the winter. The site for this demonstration project was the Diamond Ring Ranch north of Midland, South Dakota. Geothermal water flowing from an existing well into the Madison Aquifer was used to heat four homes, a shop, a hospital barn for cattle, and air for a barn and grain dryer. This site is centrally located in the western region of South Dakota where geothermal water is available from the Madison Aquifer. The first year of the project involved the design of the heating systems and its construction while the following years were for operation, testing, demonstrating, and monitoring the system. Required modifications and improvements were made during this period. Operating modifications and improvements were made during this period. Operating experience showed that such application of geothermal resources is feasible and can result in substantial fuel savings. Economic analyses under a variety of assumptions generally gave payback periods of less than ten years. Numerous technical recommendations are made. The most significant being the necessity of passive protection from freezing of remote geothermal systems subject to winter shut downs caused by power or equipment failure. The primary institutional recommendation is to incorporate a use for the geothermal water such as irrigation or stock watering into agribusiness-related geothermal development.

Howard, S.M.

1983-09-01T23:59:59.000Z

210

Plain Language: A Commitment to Writing You Can Understand | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plain Language: A Commitment to Writing You Can Understand Plain Language: A Commitment to Writing You Can Understand Plain Language: A Commitment to Writing You Can Understand The Plain Writing Act of 2010 requires federal agencies to write "clear Government communication that the public can understand and use." President Obama also emphasized the importance of establishing "a system of transparency, public participation, and collaboration" in his January 21, 2009, Memorandum on Transparency and Open Government. We here at the Department of Energy are committed to writing new documents in plain language by October 2011, using the Federal Plain Language Guidelines. We have assigned staff to oversee our plain language efforts: Michael Coogan, Plain Language Contact We're training our employees and have strengthened our oversight process.

211

Report of the Energy Field Institute V on western energy opportunities, problems, and policy issues  

SciTech Connect

The fifth Energy and Minerals Field Institute program for Washington, D.C. Congressional and Executive Aides was held during August 15-21, 1982. The five-and-one-half day program was conducted through Wyoming, Colorado and Utah and consisted of visits to: an R and D tertiary petroleum production facility; an historic oil field entering secondary production; a surface uranium mine; a petroleum exploration drilling rig; a surface coal mine; an air cooled, coal-fired power plant; an oil shale site; a geothermal-electrical generating facility; and open pit copper mine and associated smelter and refinery; a petroleum refinery and an oil shale semi-works retort. During the field program, participants had opportunities to view communities affected by these activities, such as Wright City and Gillette, Wyoming, Parachute, Colorado and Milford and Cedar City, Utah. Throughout the program, aides met with local, state and industry officials and citizen leaders during bus rides, meals and site visits.

Hepworth, J.C.; Foss, M.M.

1982-12-01T23:59:59.000Z

212

DOE/EIS-0415: Final Environmental Impact Statement Deer Creek Station Energy Facility Project Brookings County, South Dakota (April 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

ENVIRONMENTAL IMPACT STATEMENT Deer Creek Station Energy Facility Project Brookings County, South Dakota U.S. Department of Energy Western Area Power Administration Upper Great Plains Region Billings, Montana DOE/EIS-0415 April 2010 Final Environmental Impact Statement Cover Sheet i COVER SHEET Lead Federal Agency: U.S. Department of Energy, Western Area Power Administration Cooperating Agency: U.S. Department of Agriculture, Rural Utilities Service

213

ESS 2012 Peer Review - Iron Based Flow Batteries for Low Cost Grid Level Energy Storage - Jesse Wainright, Case Western Reserve  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. authors gratefully acknowledge the support of the Department of Energy/Office of Electricity's Energy Storage Program. Iron Based Flow Batteries for Low Cost Grid Level Energy Storage J.S. Wainright, R. F. Savinell, P.I.s Dept. of Chemical Engineering, Case Western Reserve University Purpose Impact on Iron Based Batteries on the DOE OE Energy Storage Mission Recent Results Recent Results Develop efficient, cost-effective grid level storage capability based on iron. Goals of this Effort: * Minimize Cost/Watt by increasing current density - Hardware Cost >> Electrolyte Cost * Minimize Cost/Whr by increasing plating capacity * Maximize Efficiency by minimizing current lost to hydrogen evolution Electrochemistry of the all-Iron system:

214

Financial status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Great Plains Gasification Associates and the Department of Energy (DOE) signed a loan guarantee agreement in January 1982 for up to $2.02 billion of the estimated $2.76 billion needed to construct a plant producing synthetic gas from coal. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional project assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity and Great Plains would repay the DOE-guaranteed loan faster and share profits with SFC. According to GAO's assessment of SFC's proposed assistance, a lower amount of assistance could achieve the same results if Great Plains' partners could fully use certain tax credits and if energy prices and other assumptions remained the same as those SFC used in April 1984. Since April 1984, however, several changes have occurred, such as a continued decline in energy prices. An August 1984 SFC analysis indicated that the decline in energy price offset the effect of the increase tax credits. Other changes have also occurred, but SFC analyses subsequent to August 1984 showing the impact of these changes were not available to GAO. If all changes since April 1984 were incorporated into GAO's analyses, the results could be different.

Not Available

1985-02-21T23:59:59.000Z

215

Influence of the Atchafalaya River on recent evolution of the chenier-plain inner continental shelf, northern Gulf of  

E-Print Network (OSTI)

seaward of Louisiana's chenier-plain coast. The results demonstrate a link between sedimentary facies-grained sedimentation and geomorphic evolution on the chenier plain of western Louisiana, a classic area for the study Louisiana has become a classic area in which to investigate fine-grained sedimentary processes (e.g., Wells

216

Flexibility Reserve Reductions from an Energy Imbalance Market with High Levels of Wind Energy in the Western Interconnection  

DOE Green Energy (OSTI)

The anticipated increase in variable generation in the Western Interconnection (WI) over the next several years has raised concerns about how to maintain system balance, especially in smaller Balancing Areas (BAs). Given renewable portfolio standards in the West, it is possible that more than 50 gigawatts (GW) of wind capacity will be installed by 2020. Significant quantities of solar generation are likely to be added as well. The consequent increase in variability and uncertainty that must be managed by the conventional generation fleet and responsive load make it attractive to consider ways in which Balancing Area Authorities (BAAs) can pool their variability and response resources, thus taking advantage of geographic and temporal diversity to increase overall operational efficiency. Our analysis considers several alternative forms of an Energy Imbalance Market (EIM) that have been proposed in the non-market areas of the WI. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: BAA cooperation and sub-hourly dispatch. As proposed, the EIM does not consider any form of coordinated unit commitment; however, over time it is possible that BAAs would develop formal or informal coordination plans. This report examines the benefits of several possible EIM implementations, both separately and in concert.

King, J.; Kirby, B.; Milligan, M.; S. Beuning

2011-10-01T23:59:59.000Z

217

Great Plains makes 100 billion cubic feet  

SciTech Connect

The Great Plains coal gasification plant on January 18, 1987 produced its 100 billionth cubic foot of gas since start-up July 28, 1984. Owned by the Department of Energy and operated by ANG Coal Gasification Company, the plant uses the Lurgi process to produce about 50 billion cubic feet per year of gas from five million tons per year of lignite. The plant has been performing at well above design capacity.

Not Available

1987-03-01T23:59:59.000Z

218

Geothermal resources of the Alberta Plains  

Science Conference Proceedings (OSTI)

Formation waters of the Alberta Plains are inventoried in a new report prepared for the Renewable Energy Branch, Energy, Mines, and Resources, Canada. Water temperatures, salinities, depths, and the reservoir capacities of the enclosing rocks are included. From geological information and preexisting temperature and gradient data, 21 maps were drawn often rock units and the enclosed fluids. Although some previous site-specific inventories of the geothermal resources of the Alberta Plains have been made, the study is the first comprehensive survey. Capital costs to install geothermal energy recovery operations from scratch are prohibitively high on Canada's Alberta Plains. The geothermal resources there are about 1.5 kilometers deep, and drilling wells to reach them is expensive. For a geothermal recovery operation to be economically feasible, drilling cots must be avoided. One way is through a joint-venture operation with the petroleum industry. A joint venture may be possible because oil extraction often involves the production of large volumes of hot water, a geothermal resource. Typically, after the hot water is brought to the surface with oil, it is injected underground and the heat is never used. Ways to obtain and use this heat follow.

Loveseth, G.E.; Pfeffer, B.J.

1988-12-01T23:59:59.000Z

219

FY-09 Summary Report to the Office of Petroleum Reserves on the Western Energy Corridor Initiative Activities and Accomplishments  

Science Conference Proceedings (OSTI)

To meet its programmatic obligations under the Energy Policy Act of 2005, the Office of Naval Petroleum and Shale Oil Reserves (NPSOR) has initiated the Western Energy Corridor Initiative (WECI). The WECI will implement the Unconventional Strategic Fuels Task Force recommendations for accelerating and promoting the development of domestic unconventional fuels to help meet the nations energy needs. The mission of the WECI is to bolster Americas future fuel security by facilitating socially and environmentally responsible development of unconventional fuels resources in the Western Energy Corridor, using sound engineering principles and science-based methods to define and assess benefits, impacts, uncertainties, and mitigation options and to resolve impediments. The Task Force proposed a three-year program in its commercialization plan. The work described herein represents work performed by Idaho National Laboratory (INL) in support of the DOEs WECI. This effort represents an interim phase of work, designed to initiate only select portions of the initiative, limited by available funding resources within NPOSR. Specifically, the work presented here addresses what was accomplished in FY-09 with the remaining carryover (~$420K) from NPOSR FY-08 funds. It was the intent of the NPOSR program to seek additional funding for full implementation of the full scope of work; however, the original tasks were reduced in scope, terminated, or eliminated (as noted below). An effort is ongoing to obtain funding to continue the tasks initiated under this project. This study will focus on the integrated development of multiple energy resources in a carbon-neutral and environmentally acceptable manner. Emphasis will be placed on analyses of the interrelationships of various energy-resource development plans and the infrastructure, employment, training, fiscal, and economic demands placed on the region as a result of various development scenarios. The interactions at build-out during the design, permitting, and construction of individual and multiple energy developments are not fully considered at the local, state, regional, or national levels. The net impacts to the Western Energy Corridor cannot be understood and the design optimized under the current approach. A regional development plan is needed to model cumulative impacts, determine the carrying capacity of the basin, and provide valuable technically based information to both skeptics and advocates. The INL scope of work for FY-09 involved six tasks: 1. Evaluation of the ASPEN Code as a dynamic systems model for application and use under the WECI and communications with Alberta Oil Sands Research Institutions as an analog resource development in the Western Energy Corridor 2. Application of the Aspen Plus computer model to several oil shale processes to consider energy balances and inputs and outputs (e.g. water consumption, CO2 production, etc.) 3. Development of a regulatory roadmap for oil shale developments 4. Defining of the physiographic extent of the natural resource reserves that comprise the Western Energy Corridor 5. A review of the Unconventional Fuels Task Force Report to Congress for ideas, concepts and recommendations that crosscutting plans 6. Program development with stakeholders, including industry, academics, state and federal agencies, and non government organizations. This task also includes project management, strategic development and reporting.

Thomas R. Wood

2010-01-01T23:59:59.000Z

220

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Previously Believed. Renewable Energy World, 6(2): pp. 52-T. 1997. Integrating Renewable Energy Technologies in theGolden, Colorado: National Renewable Energy Laboratory.

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


221

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

reduction in average renewable energy costs WECC-wide byto reduce the average renewable energy costs WECC-wide byscenarios on renewable energy supply costs and transmission

Mills, Andrew

2010-01-01T23:59:59.000Z

222

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

customer needs. Renewable energy cost reductions, combinedthe likely cost of renewable energy in the longer term.Renewable Energy Credits (RECs)38 5.2 Geothermal Cost

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

223

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

reduction in average renewable energy costs WECC-wide byscenarios on renewable energy supply costs and transmissiondifferent renewable energy procurement, technology cost,

Mills, Andrew D

2011-01-01T23:59:59.000Z

224

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

analyzed (38-65%). Solar energy is almost always the secondthan the average value of solar energy. Load-sited CCGT (renewable energy demand. Solar energy is the second largest

Mills, Andrew

2010-01-01T23:59:59.000Z

225

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

Hild. 2004. The Value of Wind Energy as a Function of Wind2: Capacity credit. Wind Energy 3(4): 167206. Milligan,Energy (DOE). 2008. 20% Wind Energy by 2030: Increasing Wind

Mills, Andrew D

2011-01-01T23:59:59.000Z

226

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

$10/MWh for wind Average Energy Price Integration Costs Highprices: The case of wind electricity in Spain. Energy

Mills, Andrew

2010-01-01T23:59:59.000Z

227

Operating Reserve Reductions from a Proposed Energy Imbalance Market with Wind and Solar Generation in the Western Interconnection  

DOE Green Energy (OSTI)

This paper considers several alternative forms of an energy imbalance market (EIM) proposed in the nonmarket areas of the Western Interconnection. The proposed EIM includes two changes in operating practices that independently reduce variability and increase access to responsive resources: balancing authority cooperation and sub-hourly dispatch. As the penetration of variable generation increases on the power system, additional interest in coordination would likely occur. Several alternative approaches could be used, but consideration of any form of coordinated unit commitment is beyond the scope of this analysis. This report examines the benefits of several possible EIM implementations--both separately and in concert.

King, J.; Kirby, B.; Milligan, M.; Beuning, S.

2012-05-01T23:59:59.000Z

228

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

time-of- delivery energy costswhich are due to the timeTime-of-Delivery Energy Value 13 Capacity Value 16 Integration Cost ..energy costs displaced by electricity from a renewable resource (the time-

Mills, Andrew

2010-01-01T23:59:59.000Z

229

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

the likely cost of renewable energy in the longer term. ItBalancing Cost and Risk: The Treatment of Renewable EnergyBalancing Cost and Risk: The Treatment of Renewable Energy

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

230

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

The case of wind electricity in Spain. Energy Policy 36(9)wind power in a carbon constrained world. Energy Policywind in transmission-constrained electric power systems. Energy Policy

Mills, Andrew

2010-01-01T23:59:59.000Z

231

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

alone. In real energy markets, prices rise above marginalfrom revenues in energy markets. Because energy prices inenergy markets may rise above the marginal production cost of peaker plants due to scarcity pricing, the forward capacity market prices

Mills, Andrew

2010-01-01T23:59:59.000Z

232

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

Hild. 2004. The Value of Wind Energy as a Function of Wind2: Capacity credit. Wind Energy 3(4): 167206. Milligan,of Transmission for Wind Energy: A Review of Transmission

Mills, Andrew

2010-01-01T23:59:59.000Z

233

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Electricity Markets. Wind Energy, 5(1): 19-36. Hirst, E.2002b. Integrating Wind Energy with the BPA Power System:Large Amounts of Wind Energy with a Small Electric- Power

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

234

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

increases the bus-bar cost of wind energy by $40/MWh. As atargets. The bus-bar cost of wind energy, in contrast, is aAdjusted delivered cost American Wind Energy Association

Mills, Andrew

2010-01-01T23:59:59.000Z

235

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

by economic factors. Hydro Energy From Each Resource (TWh/model TOD Energy Factor Technology Hydro Biomass Geothermal33% RE Renewable Energy (TWh/yr) Wind Solar Hydro Biom as s

Mills, Andrew

2010-01-01T23:59:59.000Z

236

Benefit of Regional Energy Balancing Service on Wind Integration in the Western Interconnection of the United States  

Science Conference Proceedings (OSTI)

Interest in various wide-area balancing schemes to help integrate wind have generated significant interest. As we have shown in past work, large balancing areas not only help with wind integration, but can also increase the efficiency of operations in systems without wind. Recent work on the Western Wind and Solar Integration Study (WWSIS) has found that combining balancing over the WestConnect footprint will increase the efficiency of commitment and dispatch at wind penetrations ranging from 10-20% of annual electricity demand, and will be essential for high penetrations and small balancing areas. In addition the Northwest Wind Integration Action Plan recommended balancing area cooperation as a method to help integrate the large potential wind development. In this paper we investigate the potential impact of a proposed Energy Imbalance Service on the ability of the non-market portions of Western Electricity Coordinating Councils (WECC) United States footprint to integrate wind energy. We will utilize data adapted from the WWSIS for the Western Interconnection. The analysis uses time-synchronized wind and load data to evaluate the potential for ramp requirement reduction that could be achieved with combined operation. Chronological analysis and ramp duration analysis quantify the benefit in terms of not only the ramp sizes, but the frequency of the potentially avoided ramps that must be managed by the non-wind generation fleet. Multiple approaches that can be used to achieve these benefits will also be suggested in the paper. We also suggest other approaches that can help achieve much of the benefit of full consolidation without requiring the physical consolidation of balancing areas.

Milligan, M.; Kirby, B.; King, J.; Beuning, S.

2010-01-01T23:59:59.000Z

237

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

by state renewables portfolio standards and renewable energyconsidered renewable energy additions above the states RPSstate policies, a less widely recognized driver for renewable energy

Wiser, Ryan; Bolinger, Mark

2005-01-01T23:59:59.000Z

238

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

of the Choice Facing Renewable Power Projects in the UnitedColorado: National Renewable Energy Laboratory. http://Colorado: National Renewable Energy Laboratory. NREL/SR-550-

Mills, Andrew

2010-01-01T23:59:59.000Z

239

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United  

E-Print Network (OSTI)

Pre-print version of article to be published in Energy Efficiency Journal. "The journal article can be found in the Energy Efficiency Journal at:

Ernest Orlando Lawrence; Galen Barbose; Charles Goldman; Jeff Schlegel

2008-01-01T23:59:59.000Z

240

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

SciTech Connect

This article examines the future role of energy efficiency as a resource in the Western United States and Canada, as envisioned in the most recent resource plans issued by 16 utilities, representing about 60percent of the region's load. Utility and third-party administered energy efficiency programs proposed by 15 utilities over a ten-year horizon would save almost 19,000 GWh annually, about 5.2percent of forecast load. There are clear regional trends in the aggressiveness of proposed energy savings. California's investor-owned utilities (IOUs) had the most aggressive savings targets, followed by IOUs in the Pacific Northwest, and the lowest savings were proposed by utilities in Inland West states and by two public utilities on the West coast. The adoption of multiple, aggressive policies targeting energy efficiency and climate change appear to produce sizeable energy efficiency commitments. Certain specific policies, such as mandated energy savings goals for California's IOUs and energy efficiency provisions in Nevada's Renewable Portfolio Standard had a direct impact on the level of energy savings included in the resource plans. Other policies, such as revenue decoupling and shareholder incentives, and voluntary or legislatively mandated greenhouse gas emission reduction policies, may have also impacted utilities' energy efficiency commitments, though the effects of these policies are not easily measured. Despite progress among the utilities in our sample, more aggressive energy efficiency strategies that include high-efficiency standards for additional appliances and equipment, tighter building codes for new construction and renovation, as well as more comprehensive ratepayer-funded energy efficiency programs are likely to be necessary to achieve a region-wide goal of meeting 20percent of electricity demand with efficiency in 2020.

Hopper, Nichole; Barbose, Galen; Goldman, Charles; Schlegel, Jeff

2008-09-15T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


241

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

SciTech Connect

This article examines the future role of energy efficiency as a resource in the Western United States and Canada, as envisioned in the most recent resource plans issued by 16 utilities, representing about 60percent of the region's load. Utility and third-party administered energy efficiency programs proposed by 15 utilities over a ten-year horizon would save almost 19,000 GWh annually, about 5.2percent of forecast load. There are clear regional trends in the aggressiveness of proposed energy savings. California's investor-owned utilities (IOUs) had the most aggressive savings targets, followed by IOUs in the Pacific Northwest, and the lowest savings were proposed by utilities in Inland West states and by two public utilities on the West coast. The adoption of multiple, aggressive policies targeting energy efficiency and climate change appear to produce sizeable energy efficiency commitments. Certain specific policies, such as mandated energy savings goals for California's IOUs and energy efficiency provisions in Nevada's Renewable Portfolio Standard had a direct impact on the level of energy savings included in the resource plans. Other policies, such as revenue decoupling and shareholder incentives, and voluntary or legislatively mandated greenhouse gas emission reduction policies, may have also impacted utilities' energy efficiency commitments, though the effects of these policies are not easily measured. Despite progress among the utilities in our sample, more aggressive energy efficiency strategies that include high-efficiency standards for additional appliances and equipment, tighter building codes for new construction and renovation, as well as more comprehensive ratepayer-funded energy efficiency programs are likely to be necessary to achieve a region-wide goal of meeting 20percent of electricity demand with efficiency in 2020.

Hopper, Nichole; Barbose, Galen; Goldman, Charles; Schlegel, Jeff

2008-09-15T23:59:59.000Z

242

Geothermal Energy Market Study on the Atlantic Coastal Plain. Geothermal Energy Market penetration: development of a model for the residential sector  

SciTech Connect

A model has been developed that examines the feasibility of using geothermal technology in heating residential structures. Specific account is taken of the small contribution of new housing to the total stock in any given year and of the durability of houses and their furnaces. Both aspects constrain the penetration of geothermal energy into the residential market. After a discussion of other market penetration paradigms, a simple model of market penetration is developed that is based on the premise that homeowners will not abandon an existing furnace until its economic life is over. Next, behavioral parameters are discussed and the model is extended from 20 to 40 years. Finally, methods are discussed for collecting the needed data to determine market penetration, and ideas are proposed of ways to induce homeowners to give up economically viable furnaces to allow the firm providing the energy to reduce costs.

Goodman, A.C.

1979-09-01T23:59:59.000Z

243

REGIONAL AND COMMUNITY IMPACTS OF THE DEPARTMENT OF ENERGY APPROPRIATE ENERGY TECHNOLOGY PILOT PROGRAM IN THE WESTERN PACIFIC  

E-Print Network (OSTI)

small grants for alternative energy projects through theirraging small scale alternative energy develop ment. Loco.lalternative ener- gy interest is in ocean thermal energy

Case, Charles W.

2013-01-01T23:59:59.000Z

244

Regional assessment of aquifers for thermal energy storage. Volume 1. Regions 1 through 6  

DOE Green Energy (OSTI)

This volume contains information on the geologic and hydrologic framework, major aquifers, aquifers which are suitable and unsuitable for annual thermal energy storage (ATES) and the ATES potential of the following regions of the US: the Western Mountains; Alluvial Basins; Columbia LAVA Plateau; Colorado Plateau; High Plains; and Glaciated Central Region. (LCL)

Not Available

1981-06-01T23:59:59.000Z

245

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

zones where wind energy is the least cost resource under acosts incurred to manage the variability and uncertainty of wind energycosts are likely to be similar to those for wind energy.

Mills, Andrew D

2011-01-01T23:59:59.000Z

246

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

33% RE Renewable Energy (TWh/yr) Wind Solar Hydro Biomass$/MWh) Energy- Weighted Median (10th; 90th Percentile) Hydroenergy. Load-sited CCGT (Sacramento) Geothermal Biomass Hydro

Mills, Andrew D

2011-01-01T23:59:59.000Z

247

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

thermal, solar PV, and landfill gas, while PGE initiallywave energy, solar, landfill gas, and MSW, but excluded each

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

248

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United  

E-Print Network (OSTI)

LBNL-1023E Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans://eetd.lbl.gov/ea/EMS/EMS_pubs.html Pre-print version of article to be published in Energy Efficiency Journal. "The journal article can be found in the Energy Efficiency Journal at: http://dx.doi.org/10.1007/s12053-008-9030-x" The work

249

Geothermal Energy Market Study on the Atlantic Coastal Plain: a review of recent energy price projections for traditional space and process heating fuels in the post-1985 period  

Science Conference Proceedings (OSTI)

The most recent price projections that have been published for distillate heating fuels, natural gas, and electricity are reviewed. The projections include those made by EIA, DOE, BNL, Foster Associates, and SRI International. Projected distillate prices for 1990 range from Brookhaven's worst case real price of $8.80 per million Btu's to EIA's most optimistic case of $4.10 for that year compared to $6.10 prevailing in September 1979. Natural gas prices projected for 1990 fall within a more narrow band ranging up to $4.50 (Brookhaven's basecase) compared to $4.20 in September 1979. Electricity prices projected for 1990 range to $17.00 per million Btu's compared to the September 1979 average price of $15.50. Regional price differentials show the Northeast paying above national average prices for oil, natural gas, and electricity. The West enjoys the lowest energy price levels overall. Oil prices are relatively uniform across the country, while natural gas and electricity prices may vary by more than 50% from one region to another.

Barron, W.

1980-04-01T23:59:59.000Z

250

Plains & Eastern Clean Line Project Proposal for New or Upgraded  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plains & Eastern Clean Line Project Proposal for New or Upgraded Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 (July 2010) Update to Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 (August 2011) More Documents & Publications EIS-0486: Notice of Intent and Notice of Potential Floodplain and Wetland Involvement Notice of Intent To Prepare an Environmental Impact Statement for the

251

The Potential Supply of Cellulosic Biomass Energy Crops in Western Massachusetts.  

E-Print Network (OSTI)

??Most energy sources are derived from the sun, directly or indirectly. Stopping the increase of heat-trapping carbon dioxide in the atmosphere will likely require more (more)

Timmons, David Selkirk

2011-01-01T23:59:59.000Z

252

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

A. 2003a. Natural Gas Supply and Demand Issues. Testimonythat, by reducing demand for natural gas, renewable energySecond, by reducing demand for natural gas, these sources

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

253

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

The Role of Forward Natural Gas Prices Energy Policy (inGas Crisis: Reducing Natural Gas Prices through Increased6: Risk Analysis: Natural Gas Price and Environmental

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

254

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

of Forward Natural Gas Prices Energy Policy (in press).Gas Crisis: Reducing Natural Gas Prices through IncreasedAnalysis: Natural Gas Price and Environmental Compliance

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

255

Status of the Great Plains coal gasification project  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 95 percent complete and only about 2 weeks behind schedule as of November 30, 1983. Cumulative project costs were less than originally estimated for this date. Due to a drop in forecasted energy prices, Great Plains, in September 1983, projected that plant operations could result in large after-tax losses and negative cash flows for the sponsors. Great Plains notified the Department of Energy that it was considering terminating its participation in the project in the absence of additional federal assistance. In this regard, additional assistance in the form of price guarantees for the project's synthetic natural gas are being considered by the US Synthetic Fuels Corporation.

Not Available

1984-03-22T23:59:59.000Z

256

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

of Forward Natural Gas Prices Energy Policy (in press).of, natural gas. The calculation assumes that such policiesNatural Gas Price and Environmental Compliance Risks81 Executive Summary Introduction Markets for renewable energy have historically been motivated primarily by policy

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

257

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

costs to access in-state wind power, either in their 2004 IRPs, or in subsequent renewable energycost and performance of wind power, with limited analysis of geothermal. In its subsequent 2005 renewable energyWind Power Cost and Performance Assumptions .23 5.1.1 Busbar Costs ..26 5.1.2 Indirect Costs .29 5.1.3 Treatment of Renewable Energy

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

258

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Loveland Area Projects November 29-30, 2011 2 Agenda * Overview of Western Area Power Administration * Post-1989 Loveland Area Projects (LAP) Marketing Plan * Energy Planning and Management Program * Development of the 2025 PMI Proposal * 2025 PMI Proposal * 2025 PMI Comment Period & Proposal Information * Questions 3 Overview of Western Area Power Administration (Western) * One of four power marketing administrations within the Department of Energy * Mission: Market and deliver reliable, renewable, cost-based Federal hydroelectric power and related services within a 15-state region of the central and western U.S. * Vision: Provide premier power marketing and transmission services Rocky Mountain Region (RMR) is one of five regional offices 4 Rocky Mountain Region

259

UPDATE TO PLAINS & EASTERN CLEAN LINE PROPOSAL FOR NEW OR UPGRADED TRANSMISSION LINE PROJECTS  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

UPDATE TO PLAINS & EASTERN CLEAN LINE PROPOSAL UPDATE TO PLAINS & EASTERN CLEAN LINE PROPOSAL FOR NEW OR UPGRADED TRANSMISSION LINE PROJECTS UNDER SECTION 1222 OF THE ENERGY POLICY ACT OF 2005 AUGUST 2011 Table of Contents 1. Executive Summary .......................................................................................................... 1 2. Project Update .................................................................................................................. 2 a. Jobs and Economic Development ........................................................................................................... 5 b. Interconnection Studies ............................................................................................................................. 6 c. Routing and Public Outreach ................................................................................................................... 7

260

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Determining the Real Cost: Why Renewable Power is More Cost-Previously Believed. Renewable Energy World, 6(2): pp. 52-Price Risk When Comparing Renewable to Gas-Fired Generation:

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


261

Balancing Cost and Risk: The Treatment of Renewable Energy in Western Utility Resource Plans  

E-Print Network (OSTI)

Lai, S. and J.C. Smith. 2004. Xcel Energy and the MinnesotaSouth- MN MN west (GRE) (Xcel) PSE Pacifi- PSCo PGE* AvistaPenetration (% capacity) MN, Xcel * (Brooks et al. 2003) MN,

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

262

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

trip efficiency of 90%. We dispatched a Nevada solar thermalefficiency losses. Generation profiles for wind energy and solar technologies without thermalsolar technology used in the Base case, offers a low-cost, highly-efficiency mechanism for solar thermal

Mills, Andrew

2010-01-01T23:59:59.000Z

263

Exploration of Resource and Transmission Expansion Decisions in the Western Renewable Energy Zone Initiative  

E-Print Network (OSTI)

to be wind energy. Transmission and line losses, however,plus the cost of transmission and line losses to deliver themay be substantial, transmission and line loss costs only

Mills, Andrew

2010-01-01T23:59:59.000Z

264

Fuel from the Sky: Solar Power's Potential for Western Energy Supply  

DOE Green Energy (OSTI)

A reliable and affordable supply of electricity is essential to protect public health and safety and to sustain a vigorous economy in the West. Renewable energy in the form of wind or solar provides one of the means of meeting the demand for power while minimizing adverse impacts on the environment, increasing fuel diversity, and hedging against fuel price volatility. Concentrating solar power (CSP) is the most efficient and cost-effective way to generate electricity from the sun. Hundreds of megawatts of CSP solar-generating capacity could be brought on-line within a few years and make a meaningful contribution to the energy needs of the West.

Leitner, A.

2002-07-01T23:59:59.000Z

265

Synthetic fuels: Status of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

Sponsors of the Great Plains coal gasification project in North Dakota defaulted on a federal loan in the amount of $1.54 billion. The Department of Energy has obtained title to the Great Plains project and is evaluating proposals from investment banking-type companies to assist it in selling the plant and its assets. This fact sheet highlights recent legal action concerning gas purchase agreements and mortgage foreclosure; the status of the project's sponsors' outstanding liability; DOE's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues.

Not Available

1987-01-01T23:59:59.000Z

266

Financial situation of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

GAO reviewed drafts of DOE's National Energy Policy Plan IV, calculated synthetic gas prices using Great Plains methodology, converted those prices to current year dollars, and used DOE's computer model of the project's economics to analyze the cash flow forecast. GAO found both the model and the data produced to be reliable. (PSB)

Not Available

1983-10-17T23:59:59.000Z

267

Wind Shear Characteristics at Central Plains Tall Towers (presentation)  

SciTech Connect

The objectives of this report are: (1) Analyze wind shear characteristics at tall tower sites for diverse areas in the central plains (Texas to North Dakota)--Turbines hub heights are now 70-100 m above ground and Wind measurements at 70-100+ m have been rare. (2) Present conclusions about wind shear characteristics for prime wind energy development regions.

Schwartz, M.; Elliott, D.

2006-06-05T23:59:59.000Z

268

Status of the Great Plains coal gasification project - Summer 1983  

SciTech Connect

Construction of the Great Plains coal gasification plant in North Dakota was 3 weeks behind schedule as of May 31, 1983, but cumulative project costs were less than originally estimated. A March 1983 analysis by Great Plains raised questions about the project's economic viability, which is closely linked to future energy prices. The estimated gas prices used in the analysis were lower than those used in January 1982 to justify construction. As a result, the project's investors are concerned about possible losses during the early years of operations. GAO's review shows, however, that Great Plains did not consider substantial tax benefits which may be available to the parent companies of the project's investors. If these benefits are considered, the project's economic viability could be more positive. Should the investors end their participation, some tax benefits previously obtained would have to be repaid.

Not Available

1983-09-20T23:59:59.000Z

269

Status of the Great Plains coal gasification project, August 1982  

SciTech Connect

Construction of the Great Plains coal gasification plant in Mercer County, North Dakota, is 4 to 6 weeks behind schedule, but no long-term impacts are anticipated. Cumulative project costs are lower than originally estimated. Overall, the management system established to oversee project construction appears comprehensive. However, some weaknesses exist in the computerized information system, which produces most project data. The Department of Energy complied with statutory requirements in awarding the Great Plains loan guarantee for an alternative fuel demonstration project and is actively working to fulfill its responsibilities as the project's overseer. However, the Department needs to audit the costs incurred by Great Plains to determine that funds are being used only for eligible project costs.

Not Available

1982-09-14T23:59:59.000Z

270

The Impact of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory conducted a study on the impact of wide-scale implementation of net zero-energy homes (ZEHs) in the western grid. Although minimized via utilization of advanced building technologies, ZEHs still consume energy that must be balanced on an annual basis via self-generation of electricity which is commonly assumed to be from rooftop photovoltaics (PV). This results in a ZEH having a significantly different electricity demand profile than a conventional home. Wide-spread implementation of ZEHs will cause absolute demand levels to fall compared to continued use of more conventional facilities; however, the shape of the demand profile will also change significantly. Demand profile changes will lead to changes in the hourly value of electric generation. With significant penetration of ZEHs, it can be expected that ZEHs will face time of day rates or real time pricing that reflect the value of generation and use. This will impact the economics of ZEHs and the optimal design of PV systems for subsequent ZEHs.

Dirks, James A.

2010-08-16T23:59:59.000Z

271

An Exploration of Impacts of Wide-Scale Implementation of Net Zero-Energy Homes on the Western Grid  

Science Conference Proceedings (OSTI)

Pacific Northwest National Laboratory conducted a study on the impact of wide-scale implementation of net zero-energy homes (ZEHs) in the western grid. Although minimized via utilization of advanced building technologies, ZEHs still consume energy that must be balanced on an annual basis via self-generation of electricity, which is commonly assumed to be from rooftop photovoltaics (PV). This results in a ZEH having a significantly different electricity demand profile than a conventional home. Widespread implementation of ZEHs will cause absolute demand levels to fall compared to continued use of more conventional facilities; however, the shape of the demand profile will also change significantly. Demand profile changes will lead to changes in the hourly value of electric generation. With significant penetration of ZEHs, it can be expected that ZEHs will face time-of-day rates or real-time pricing that reflect the value of generation and use. This will impact the economics of ZEHs and the optimal design of PV systems for subsequent ZEHs.

Dirks, James A.

2010-07-01T23:59:59.000Z

272

Latest Documents and Notices | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

13, 2011 13, 2011 EA-1907: Finding of No Significant Impact Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas October 13, 2011 EA-1867: Finding of No Significant Impact RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida (October 2011) October 13, 2011 EA-1907: Final Environmental Assessment Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas October 13, 2011 EA-1867: Final Environmental Assessment RTI International Scale-Up of High-Temperature Syngas Cleanup and Carbon Capture and Sequestration Technologies, Polk County, Florida October 6, 2011 EIS-0448: Record of Decision Issuance of a Loan Guarantee to First Solar, Inc., for the Desert Sunlight

273

Western Regional Partnership Overview  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Regional Partnership Overview Regional Partnership Overview June 2013 Briefing Overview  WRP Background  Importance of Region  WRP Tribal Relations Committee  WRP Energy Committee WRP Region's Uniqueness  5 states stretching from the Great Plains to the Pacific Ocean  Diverse terrain ranging from desert valleys to forested mountains  Significant State Trust Landholdings  Approximately 188 Federally recognized Tribes  Significant amounts of Federally managed land  According to GSA 2004 study, WRP states range from 41.8% - 84.5% of total state land WRP Region's Importance to DoD  Extensive Training Ranges  Interconnected ground/air ranges provide unmatched warfighter training opportunities

274

NREL Variability Analysis for the Western Interconnect (Presentation)  

DOE Green Energy (OSTI)

This presentation investigates the effects of several Energy Imbalance Markets implementations in the Western Interconnect.

Milligan, M.; Kirby, B.; King, J.

2011-07-01T23:59:59.000Z

275

Weather data for simplified energy calculation methods. Volume III. Western United States: TRY data  

DOE Green Energy (OSTI)

The objective is to provide a source of weather data for direct use with a number of simplified energy calculation methods available today. Complete weather data for a number of cities in the United States are provided for use in the following methods: degree hour, modified degree hour, bin, modified bin, and variable degree day. This report contains sets of weather data for 24 cities in the continental United States using Test Reference Year (TRY) source weather data. The weather data at each city has been summarized in a number of ways to provide differing levels of detail necessary for alternative simplified energy calculation methods. Weather variables summarized include dry bulb and wet bulb temperature, percent relative humidity, humidity ratio, wind speed, percent possible sunshine, percent diffuse solar radiation, total solar radiation on horizontal and vertical surfaces, and solar heat gain through standard DSA glass. Monthly and annual summaries, in some cases by time of day, are available. These summaries are produced in a series of nine computer generated tables.

Olsen, A.R.; Moreno, S.; Deringer, J.; Watson, C.R.

1984-08-01T23:59:59.000Z

276

DOE receives title to Great Plains plant  

Science Conference Proceedings (OSTI)

On June 30, 1986 the Great Plains Coal Gasification Project was sold at a foreclosure sale at the Mercer County courthouse in North Dakota. The US Department of Energy was the only bidder at the sale. DOE's bid for the plant was $1 billion DOE-secured loan that the five sponsor companies defaulted on when they withdrew from the project in August 1985. DOE did not receive title to the plant until a lawsuit filed by American Natural Resources (ANR) was settled on July 14, 1986. DOE has vowed to keep the plant running as long as it does not cost the taxpayers any money. Eventually DOE wishes to dispose of the plant. Therefore, in February 1986 DOE requested that interested organizations submit expressions of interest in the Great Plains plant. This paper, after discussing the lawsuit, summarizes the nine responses received by DOE. Some companies were willing for it to remain a coal gasification facility; other submitted plans for modifications to produce methanol.

Not Available

1986-09-01T23:59:59.000Z

277

Draft Programmatic Environmental Impact Statement fo the Designation of Energy Corridors in the 11 Western States  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Draft WWEC PEIS September 2007 Draft WWEC PEIS September 2007 i DOCUMENT CONTENTS VOLUME I Executive Summary Chapter 1: Why Are Federal Agencies Proposing to Designate Energy Corridors in the West? Chapter 2: What Are the Alternatives Evaluated in This PEIS? Chapter 3: What Are the Potential Environmental Consequences of Corridor Designation and Land Use Plan Amendment? Chapter 4: How Are Cumulative Impacts Evaluated? Chapter 5: What Unavoidable Adverse Impacts Might Be Caused by Corridor Designation and Land Use Plan Amendment? Chapter 6: The Relationship between Local Short-Term Uses of the Environment and Long-Term Productivity Chapter 7: What Irreversible and Irretrievable Commitment of Resources Would Be Involved with Implementation of the Alternatives? Chapter 8: List of Preparers

278

EA-1907: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

7: Final Environmental Assessment 7: Final Environmental Assessment EA-1907: Final Environmental Assessment Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas For more information, contact: Ms. Melissa Rossiter U.S. Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 Electronic mail: melissa.rossiter@go.doe.gov This EA, prepared by the U.S. Department of Agriculture and adopted by DOE, evaluates the environmental impacts of a proposal to provide funding to Western Plains Energy, LLC (WPE) to construct, purchase equipment, and operate a new Biogas Anaerobic Digester at WPE's existing Ethanol Facility, located at 3022 County Road 18, Grinnell Township (Oakley), Gove County, Kansas. The proposed facility will include a receiving building, digester,

279

EA-1907: Final Environmental Assessment | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Final Environmental Assessment Final Environmental Assessment EA-1907: Final Environmental Assessment Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas For more information, contact: Ms. Melissa Rossiter U.S. Department of Energy Golden Field Office 1617 Cole Boulevard Golden, Colorado 80401 Electronic mail: melissa.rossiter@go.doe.gov This EA, prepared by the U.S. Department of Agriculture and adopted by DOE, evaluates the environmental impacts of a proposal to provide funding to Western Plains Energy, LLC (WPE) to construct, purchase equipment, and operate a new Biogas Anaerobic Digester at WPE's existing Ethanol Facility, located at 3022 County Road 18, Grinnell Township (Oakley), Gove County, Kansas. The proposed facility will include a receiving building, digester,

280

Status of the Great Plains coal gasification project, May 31, 1984. [Mercer County, North Dakota  

SciTech Connect

The Great Plains coal gasification project in North Dakota was 99 percent complete and essentially on schedule on May 31, 1984. Cumulative project costs were $164 million less than originally estimated for this date, primarily due to reduced material, interest, and subcontractor costs. On the basis of reduced energy price forecasts, Great Plains in September 1983 projected large after-tax losses and negative cash flows from plant operations. To alleviate these losses, Great Plains applied to the US Synthetic Fuels Corporation for additional financial assistance. On April 26, 1984, the Corporation outlined its intentions to award Great Plains up to $790 million in assistance. As of August 10, 1984, the Corporation had not finalized the Great Plains assistance agreement.

Not Available

1984-09-18T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


281

African Biofuel & Renewable Energy Fund (ABREF) | Open Energy Information  

Open Energy Info (EERE)

Biofuel & Renewable Energy Fund (ABREF) Biofuel & Renewable Energy Fund (ABREF) Jump to: navigation, search Name African Biofuel & Renewable Energy Fund (ABREF) Agency/Company /Organization African Biofuel & Renewable Energy Compnay (ABREC) Sector Energy Focus Area Renewable Energy, Biomass, - Biofuels Website http://www.bidc-ebid.com/en/fo Country Benin, Burkina Faso, Cape Verde, Ivory Coast, Gambia, Ghana, Guinea, Guinea-Bissau, Liberia, Mali, Niger, Nigeria, Senegal, Sierra Leone, Togo Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa References African Biofuel & Renewable Energy Fund (ABREF)[1]

282

Utility Integrated Resource Planning: An Emerging Driver of New Renewable Generation in the Western United States  

E-Print Network (OSTI)

Risk: The Treatment of Renewable Energy in Western UtilityEmerging Driver of New Renewable Generation in the WesternEnergy Efficiency and Renewable Energy (Office of Planning,

Bolinger, Mark; Wiser, Ryan

2005-01-01T23:59:59.000Z

283

Status of the Great Plains Coal Gasification Project, December 31, 1984  

Science Conference Proceedings (OSTI)

The Department of Energy (DOE)-sponsored construction of the Great Plains coal gasification project - designed to produce synthetic natural gas from coal in North Dakota - was completed in December 1984 on schedule. However, technical problems prevented Great Plains from meeting the inservice (commercial operation) target date of December 1, 1984. DOE believes the in-service date could occur in June 1985. Faced with deteriorating financial projections in the wake of declining energy prices, Great Plains applied to the US Synthetic Fuels Corporation (SFC) for additional assistance. In April 1984 SFC tentatively agreed to provide Great Plains up to $790 million in price guarantee assistance. In return, the Great Plains partners would contribute more equity, and Great Plains would repay the DOE-guaranteed loan faster and make profit-sharing payments to SFC. However, since SFC's tentative agreement for price guarantees, several events that could affect the project's financial outlook have occurred. For example, SFC and DOE have revised their energy price forecasts downward. In addition, Great Plains and SFC are negotiating a final agreement that could change some conditions of the tentative agreement.

Bowsher, C.A.

1985-05-28T23:59:59.000Z

284

Great Plains gets a running start  

Science Conference Proceedings (OSTI)

The United States first commercial synthetic fuel plant has been geared up to deliver the $2 billion project by late 1984 in Beulah, North Dakota. The Great Plains coal gasification plant is rising quickly under a compressed 44 month schedule. Delivery of synthetic natural gas from the 125 million-cu-ft-a-day plant by 1984 is possible. Getting the $1.4 billion gasification plant, 22,000-ton-per-day coal mine and 365-mile, 20-in. dia pipeline connection completed on schedule and within budget is critical. The price of the product gas, which will be mixed with relatively cheap natural gas in the consortium's pipelines, has been set by the Federal Energy Regulatory Commission at $6.75 per thousand cubic feet. This project has been planned since 1972. (DP)

Not Available

1981-11-19T23:59:59.000Z

285

A physical basis for the probabilistic prediction of the accumulated tropical cyclone kinetic energy in the Western North Pacific  

Science Conference Proceedings (OSTI)

The relationship between El Nio Southern Oscillation (ENSO) and tropical storm (TS) activity over the western North Pacific (WNP) is examined for the period from 1981 to 2010. In El Nio years, TS genesis locations are generally shifted to the ...

Hye-Mi Kim; Myong-In Lee; Peter J. Webster; Dongmin Kim; Jin Ho Yoo

286

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

Power Idaho Power Seattle City Light PSE BC Hydro AvistaLight BC Hydro NorthWestern SDG&E LADWP SCE PSCo Idaho PowerPower Idaho Power Seattle City Light PSE PGE BC Hydro Avista

Hopper, Nichole

2008-01-01T23:59:59.000Z

287

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment References Energy Information Administration, Annual Energy Outlook 2000, DOE/EIA-0383(2000) (Washington, DC, December 1999), Table A11. Energy Information Administration, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge, SR/RNGD/87-01 (Washington, DC, September 1987). U.S. Department of Interior, Arctic National Wildlife Refuge, Alaska, Coastal Plain Resource Assessment, (Washington, DC, November, 1986). U.S. Department of Interior, Bureau of Land Management, Minerals Management Service. Northeast National Petroleum Reserve-Alaska Final Integrated Activity Plan / Environmental Impact Statement, (Anchorage , Alaska, August, 1998).

288

Plains & Eastern Clean Line Project Proposal for New or Upgraded Transmission Line Projects Under Section 1222 of the Energy Policy Act of 2005 (July 2010)  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

PROJECT PROPOSAL PROJECT PROPOSAL FOR NEW OR UPGRADED TRANSMISSION LINE PROJECTS UNDER SECTION 1222 OF THE ENERGY POLICY ACT OF 2005 JULY 2010 TABLE OF CONTENTS INTRODUCTION 1. The Challenge ....................................................................................................................................... 1 2. The Solution .......................................................................................................................................... 1 SECTION I: STATUTORY CRITERIA 1. General Description of the Entity ................................................................................................... 4 2. Project Description ............................................................................................................................. 5

289

Great Plains Project: at worst a $1. 7 billion squeeze  

SciTech Connect

On January 29, 1982, seeking a loan guarantee for its coal-to-gas synfuels project, Great Plains Gasification Associates told the Department of Energy that they expected to reap $1.2 billion in net income to the partnership during the first 10 years of the venture. On March 31, 1983, Great Plains treasurer Rodney Boulanger had a different projection: a horrific loss of $773 million in the first decade. The Great Plains project, with construction 50% complete, is being built near Beulah, ND. The project has a design capacity of 137.5 million cubic feet a day of SNG. Great Plains' analysis assumes that the plant will operate at 70% of design capacity in 1985, 77% in 1986, 84% in 1987 and 91% thereafter. The company projects the total project cost at $2.1 billion, consisting of plant costs of $1.9 billion and coal mine costs of $156 million. In originally projecting a cumulative net income of better than $1 billion, the partners anticipated running losses in only three of the first 10 years, and cash distributions from the project of $893 million during the first decade. Under the new projections, even in the best case, the first four years would show losses and there would be no distribution to the partners. In the worst case, the project would run in the red every year for the first 10 years.

Maize, K.

1983-04-11T23:59:59.000Z

290

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation is presented of the coring program site identification, and drilling and testing activity in the four primary study areas of the Western Gas Sands Project (WGSP). Pertinent information for January, February, and March, 1978 is included for each study area. The areas are the Northern Great Plains Province, the Greater Green River Basin, the Piceance Basin, and the Uinta Basin.

1978-04-01T23:59:59.000Z

291

Energy directory of researchers in Great Plains/Great Basin area (Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, Wyoming)  

SciTech Connect

The directory lists in Part 1 names of researchers involved in energy R and D in Arizona, Colorado, Montana, Nebraska, Nevada, New Mexico, North Dakota, South Dakota, Utah, and Wyoming by category. Within each category each researcher is given with his phone number when known, his affiliation, the title of his research, and publication information. These categories are listed and defined in ERDA Energy Information Data Base: Subject Categories, TID-4584-R2 (May 1977). In Part 2 the principal investigators are arranged by the state (two-letter state abbreviation) in which the research is performed. Researchers are alphabetically listed by the first author. If research on a project is performed in more than one state, the abbreviations for all the states involved will appear with the names of the project's principal investigators listed below. Indexes included are an investigator index, a research institute index, and a location index.

Caton, G.M.; Michelson, D.C.; Danford, G.S.; Frogge, L.M. (comps.)

1977-10-01T23:59:59.000Z

292

FACT SHEET U.S. Department of Energy  

NLE Websites -- All DOE Office Websites (Extended Search)

Turtle, from the Tropical Western Pacific; and Principal Investigator (PI) Prairie Dog, from the Southern Great Plains. The website is organized into three sections:...

293

Kansas's 1st congressional district: Energy Resources | Open Energy  

Open Energy Info (EERE)

1st congressional district: Energy Resources 1st congressional district: Energy Resources Jump to: navigation, search Equivalent URI DBpedia This article is a stub. You can help OpenEI by expanding it. This page represents a congressional district in Kansas. US Recovery Act Smart Grid Projects in Kansas's 1st congressional district Midwest Energy Inc. Smart Grid Project Registered Energy Companies in Kansas's 1st congressional district Conestoga Energy Partners LLC ESE Alcohol Gateway Ethanol LLC formerly Wildcat Bio Energy LLC Kansas Ethanol LLC Nesika Energy LLC Orion Ethanol Reeve Agri Energy Inc Western Plains Energy LLC Utility Companies in Kansas's 1st congressional district Midwest Energy Inc Retrieved from "http://en.openei.org/w/index.php?title=Kansas%27s_1st_congressional_district&oldid=189120

294

Office of Inspector General audit report on the U.S. Department of Energy`s management of Associated Western Universities grant programs  

SciTech Connect

The Department of Energy (DOE), recognizing the need to maintain a strong science and engineering base at a time when enrollments in these disciplines were declining, implemented several educational programs. Among these were educational programs to provide faculty and students of US colleges and universities with energy-related training and research experience. Associated Western Universities (AWU), a nonprofit organization, administered post-secondary educational programs for DOE through grants and, occasionally, subcontracts. The objectives of the audit were to determine whether: (1) DOE was achieving its goal of enhancing US science and engineering education and (2) AWU was appropriately accumulating and classifying its costs. It was found that DOE was not fully achieving its objective of enhancing science and engineering education for students of US colleges and universities. In addition, it was found that AWU had not complied with cost principles for nonprofit organizations as required under the terms of the grants. Specifically, AWU misclassified a $13,000 overrun of direct program cost as indirect cost, incurred $40,000 of idle facility costs that were unallowable under the terms of the grant, misclassified indirect costs as direct costs, and claimed reimbursement for consultant costs that were inappropriate under the terms of the consulting contract. These discrepancies resulted in $53,000 of questionable costs, as well as costs having been charged to the Office of Energy Research (ER) grant that should have been charged to the Richland and Idaho grants. The authors recommended that the Managers of the Richland and Idaho Operations offices take actions to ensure that the objectives of DOE`s educational programs are met. In addition, they recommended that the Manager, Idaho Operations Office, direct the Contracting Officer to have AWU comply with the appropriate cost principles for nonprofit organizations.

1998-04-01T23:59:59.000Z

295

CX-006298: Categorical Exclusion Determination | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

298: Categorical Exclusion Determination 298: Categorical Exclusion Determination CX-006298: Categorical Exclusion Determination Interconnection of the Letcher to Mitchell 115 Kilovolt Transmission Line to Western's Letcher Substation CX(s) Applied: B4.11 Date: 07/08/2011 Location(s): Montana Office(s): Western Area Power Administration-Upper Great Plains Region Interconnection of Northwestern Energy's 115 kilovolt Letcher to Mitchell transmission line at Western's Letcher substation. Northwestern Energy is proposing to build a 14.5 mile transmission line between their Mitchell substation and Western's Letcher substation to shore up reliability of their electrical system in the area. DOCUMENT(S) AVAILABLE FOR DOWNLOAD CX-006298.pdf More Documents & Publications CX-006303: Categorical Exclusion Determination

296

EIS-0486: Plains & Eastern Clean Line Transmission Project | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

86: Plains & Eastern Clean Line Transmission Project 86: Plains & Eastern Clean Line Transmission Project EIS-0486: Plains & Eastern Clean Line Transmission Project SUMMARY This EIS will evaluate the potential environmental impacts of participating with Clean Line Energy Partners LLC (Clean Line) in the proposed Plains & Eastern Project. The proposed project would include an overhead ± 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the capacity to deliver approximately 3,500 megawatts (MW) primarily from renewable energy generation facilities in the Oklahoma Panhandle region to load-serving entities in the Mid-South and Southeast via an interconnection with the Tennessee Valley Authority (TVA). PUBLIC COMMENT OPPORTUNITIES None available at this time.

297

DOE assists in meeting social impacts of Great Plains Plant  

Science Conference Proceedings (OSTI)

On August 15, 1986 Department of Energy Secretary John S. Herrington pledged that federal funds of $100,000 per month would be provided to the local governments and school districts of Mercer County, North Dakota. These funds are intended to assist the governments meet demands caused by the Great Plains Coal Gasification Plant. The community impact assistance will continue for as long as the government is the owner of the facility.

Not Available

1986-09-01T23:59:59.000Z

298

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

or financial incentives; State or federal energy-efficiencyfinancial incentives. State or federal energy- efficiency

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

299

A Physical Basis for the Probabilistic Prediction of the Accumulated Tropical Cyclone Kinetic Energy in the Western North Pacific  

Science Conference Proceedings (OSTI)

The relationship between El NioSouthern Oscillation (ENSO) and tropical storm (TS) activity over the western North Pacific Ocean is examined for the period from 1981 to 2010. In El Nio years, TS genesis locations are generally shifted to the ...

Hye-Mi Kim; Myong-In Lee; Peter J. Webster; Dongmin Kim; Jin Ho Yoo

2013-10-01T23:59:59.000Z

300

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains Co{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) activities have focused on developing information on deployment issues to support Task 5 activities by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) activities have focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) has included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 (Modeling and Phase II Action Plans) activities have focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman

2004-07-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


301

PLAINS CO2 REDUCTION PARTNERSHIP  

Science Conference Proceedings (OSTI)

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-01-01T23:59:59.000Z

302

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) by providing information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. Task 5 focused on screening and qualitatively assessing sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O' Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2004-10-01T23:59:59.000Z

303

Refraction Survey At Snake River Plain Region (DOE GTP) | Open...  

Open Energy Info (EERE)

Refraction Survey At Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Refraction Survey At Snake River Plain...

304

Ground Gravity Survey At Snake River Plain Region (DOE GTP) ...  

Open Energy Info (EERE)

Snake River Plain Region (DOE GTP) Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Exploration Activity: Ground Gravity Survey At Snake River Plain Region (DOE GTP)...

305

Western Veg Management EA  

NLE Websites -- All DOE Office Websites (Extended Search)

the the Glen Canyon to Pinnacle Peak 345 kV Transmission Lines Vegetation Management Project within the Coconino National Forest DOE/EA-1863 July 2012 Lead Agency: United States Department of Energy, Western Area Power Administration Cooperating Agency: United States Forest Service Coconino National Forest FINAL ENVIRONMENTAL ASSESSMENT DOE/EA-1863 Glen Canyon - Pinnacle Peak 345 kV Transmission Lines Vegetation Management Project Coconino and Yavapai Counties, Arizona U.S. Department of Energy Western Area Power Administration Desert Southwest Customer Service Region 615 South 43rd Avenue Phoenix, Arizona 85009 U.S. Department of Agriculture US Forest Service Coconino National Forest 1824 S. Thompson St. Flagstaff, AZ 86001 July 2012

306

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

targets based on cost-effective energy-efficiency potentialachievable, and cost-effective energy efficiency potentialopportunities for cost-effective energy efficiencythrough

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

307

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

to pursue all cost-effective energy efficiency EEPS or RPSto pursue cost-effective energy efficiency The states ofall achievable cost-effective energy efficiency before

Hopper, Nichole

2008-01-01T23:59:59.000Z

308

U.S. Energy Information Administration | Annual Energy Outlook 2011  

Gasoline and Diesel Fuel Update (EIA)

1 1 Regional maps Figure F6. Coal supply regions Figure F6. Coal Supply Regions WA ID OR CA NV UT TX OK AR MO LA MS AL GA FL TN SC NC KY VA WV WY CO SD ND MI MN WI IL IN OH MD PA NJ DE CT MA NH VT NY ME RI MT NE IA KS MI AZ NM 500 0 SCALE IN MILES APPALACHIA Northern Appalachia Central Appalachia Southern Appalachia INTERIOR NORTHERN GREAT PLAINS Eastern Interior Western Interior Gulf Lignite Dakota Lignite Western Montana Wyoming, Northern Powder River Basin Wyoming, Southern Powder River Basin Western Wyoming OTHER WEST Rocky Mountain Southwest Northwest KY AK 1000 0 SCALE IN MILES Source: U.S. Energy Information Administration, Office

309

Surface Energy Balance System (SEBS) Handbook  

Science Conference Proceedings (OSTI)

A Surface Energy Balance System (SEBS) has been installed collocated with each deployed ECOR system at the Southern Great Plains (SGP), North Slope of Alaska (NSA), Tropical Western Pacific (TWP), ARM Mobile Facility 1 (AMF1), and ARM Mobile Facility 2 (AMF2). The surface energy balance system consists of upwelling and downwelling solar and infrared radiometers within one net radiometer, a wetness sensor, and soil measurements. The SEBS measurements allow the comparison of ECOR sensible and latent heat fluxes with the energy balance determined from the SEBS and provide information on wetting of the sensors for data quality purposes.

Cook, DR

2011-02-14T23:59:59.000Z

310

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

Energy Efficiency in Resource Plans 27 References..33 Glossaryan Energy Efficient Economy: ACEEE-U054, October. Glossary

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

311

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

the cost-effectiveness of energy efficiency (and renewablecost-effectively with energy efficiency programs than with renewable

Hopper, Nichole

2008-01-01T23:59:59.000Z

312

Synthetic fuels. Status of the Great Plains Coal Gasification Project  

Science Conference Proceedings (OSTI)

This report includes updated information obtained through February 14, 1986, on the loan-default, Great Plains loan and gas pricing formula, legal matters and agreements, the Department of Energy's options and actions, and Great Plains operations. The new information highlights changes in the gas pricing calculations; legal action concerning gas purchase agreements and mortgage foreclosure; the Department's determination of the project sponsors' outstanding liability; the Department's progress in evaluating its options; revenue, expense, production, and plant employment data; capital improvement projects; and plant maintenance issues. Our November fact sheet included information on socioeconomic issues. We have not obtained any additional information on these issues and are, therefore, not repeating the socioeconomic information in this fact sheet.

Not Available

1986-02-01T23:59:59.000Z

313

Update on the Great Plains Coal Gasification Project  

SciTech Connect

The Great Plains Gasification Plant is the US's first commercial synthetic fuels project based on coal conversion. The ANG Coal Gasification Company is the administer of the Great Plains Coal Gasification Project for the United States Department of Energy. The Project is designed to convert 14 M TPD of North Dakota of lignite into 137.5 MM SCFD of pipeline quality synthetic natural gas (SNG). Located in Mercer County, North Dakota, the gasification plant, and an SNG pipeline. Some 12 years passed from the time the project was conceived unit it became a reality by producing SNG into the Northern Border pipeline in 1984 for use by millions of residential, commercial, and industrial consumers. In this paper, the basic processes utilized in the plant are presented. This is followed by a discussion of the start-up activities and schedule. Finally, some of the more interesting start-up problems are described.

Imler, D.L.

1985-12-01T23:59:59.000Z

314

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

Goal.6 Figure 2-2. Accounting for Energy Efficiency2-3. Accounting for Energy Efficiency Resources in LoadFigure 3-1. Plan Energy Efficiency Program Effects: Annual

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

315

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

Goal.6 Figure 2-2. Accounting for Energy Efficiency8 Figure 2-3. Accounting for Energy Efficiency Resources in10 Figure 3-1. Plan Energy Efficiency Program Effects:

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

316

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

Service of New Mexico (PNM) Puget Sound Energy (PSE) SanService of New Mexico (PNM) Puget Sound Energy (PSE) Sanof New Mexico Public Service of Colorado Puget Sound Energy

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

317

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

extent, BC Hydro and Avistas energy efficiency proposalsHydro 1 British Columbia Portland General Electric (PGE) Oregon Puget Sound Energy (Hydro price data. However, the expected relationship between average retail rates and energy

Hopper, Nichole

2008-01-01T23:59:59.000Z

318

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

5% of total energy requirements for BC Hydro and PacifiCorp1 Avista BC Hydro PacifiCorp PGE Total energy requirementsNorthwestern Energy, and BC Hydro) plan to offset ~3050% of

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

319

Plain Writing Implementation Plan | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2011.pdf More Documents & Publications Open Government Plan 1.0 Web Improvement Strategy Radiation Monitoring Data from Fukushima Area What We Do For You Month by month the clean...

320

The Des Plaines River -- Part Two  

NLE Websites -- All DOE Office Websites (Extended Search)

a canal through the Chicago Portage, down the Des Plaines valley, and thence to LaSalle-Peru where the Illinois River became navigable in all seasons. The Northwest Territory...

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


321

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership continues to make great progress. Task 2 (Technology Deployment) focused on developing information regarding deployment issues to support Task 5 (Modeling and Phase II Action Plans) and provided information to be used to assess CO{sub 2} sequestration opportunities in the PCOR Partnership region. Task 2 efforts also included preparation of a draft topical report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region'', which is nearing completion. Task 3 (Public Outreach) focused on developing an informational video about CO{sub 2} sequestration. The video will be completed and aired on Prairie Public Television in the next quarter. Progress in Task 4 (Sources, Sinks, and Infrastructure) included the continued collection of data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation. The addition of the Canadian province of Alberta to the PCOR Partnership region expanded the decision support system (DSS) geographic information system database. Task 5 screened and qualitatively assessed sequestration options. Task 5 activities also continue to be useful in structuring data collection and other activities in Tasks 2, 3, and 5.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Thea E. Reikoff

2005-04-01T23:59:59.000Z

322

PLAINS CO2 REDUCTION PARTNERSHIP  

SciTech Connect

The Plains CO{sub 2} Reduction (PCOR) Partnership characterization work is nearing completion, and most remaining efforts are related to finalizing work products. Task 2 (Technology Deployment) has developed a Topical Report entitled ''Deployment Issues Related to Geologic CO{sub 2} Sequestration in the PCOR Partnership Region''. Task 3 (Public Outreach) has developed an informational Public Television program entitled ''Nature in the Balance'', about CO{sub 2} sequestration. The program was completed and aired on Prairie Public Television in this quarter. Task 4 (Sources, Sinks, and Infrastructure) efforts are nearing completion, and data regarding CO{sub 2} sources and sinks and data on the performance and costs for CO{sub 2} separation, capture, treatment, and compression for pipeline transportation are being incorporated into a series of topical reports. The expansion of the Decision Support System Geographic Information System database has continued with the development of a ''save bookmark'' feature that allows users to save a map from the system easily. A feature that allows users to develop a report that summarizes CO{sub 2} sequestration parameters was also developed. Task 5 (Modeling and Phase II Action Plans) focused on screening and qualitatively assessing sequestration options and developing economic estimates for important regional CO{sub 2} sequestration strategies.

Edward N. Steadman; John A. Harju; Erin M. O'Leary; James A. Sorensen; Daniel J. Daly; Melanie D. Jensen; Lisa S. Botnen

2005-07-01T23:59:59.000Z

323

EIS-0486: Plains & Eastern Clean Line Transmission Project  

Energy.gov (U.S. Department of Energy (DOE))

This EIS will evaluate the potential environmental impacts of participating with Clean Line Energy Partners LLC (Clean Line) in the proposed Plains & Eastern Project. The proposed project would include an overhead 600 kilovolt (kV) high voltage direct current (HVDC) electric transmission system and associated facilities with the capacity to deliver approximately 3,500 megawatts (MW) primarily from renewable energy generation facilities in the Oklahoma Panhandle region to load-serving entities in the Mid-South and Southeast via an interconnection with the Tennessee Valley Authority (TVA).

324

Senate vote possible this week on opening ANWR Coastal Plain  

Science Conference Proceedings (OSTI)

The U.S. Senate will continue debate this week on an omnibus energy bill and could vote on whether to allow exploration on the Alaska National natural gas and petroleum Wildlife Refuge (ANWR) Coastal Plain. After taking up the energy bill the Senate approved 68 amendments, many of them concerning alternative fuel auto fleets. The amendments have not changed core elements of the bill. This paper reports on the major pending amendment, which would permit ANWR exploration. The Senate scheduled 4 hr of debate on that issue this week.

Not Available

1992-02-17T23:59:59.000Z

325

Tropical Western Pacific  

NLE Websites -- All DOE Office Websites (Extended Search)

ARM-00-005 ARM-00-005 RPT(TWP)-010.006 LA-UR-004434 Tropical Western Pacific Site Science Mission Plan July - December 2000 Prepared for the U.S. Department of Energy under Contract W-7405-ENG-36 Tropical Western Pacific Project Office Atmospheric and Climate Sciences Group (EES-8) Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos, NM 87545 This report and previous versions are available electronically at the following web sites: http://www.arm.gov/docs/sites/twp/science_plan/archive.html http://www.twppo.lanl.gov/docs/office.html 2 DISCLAIMER This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor an agency thereof, nor any of their employees, makes any warranty, expresses or

326

of Western Area Power Administration's Cyber Security Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Area Power Western Area Power Administration's Cyber Security Program DOE/IG-0873 October 2012 U.S. Department of Energy Office of Inspector General Office of Audits & Inspections Department of Energy Washington, DC 20585 October 22, 2012 MEMORANDUM FOR THE UNDER SECRETARY OF ENERGY FROM: Gregory H. Friedman Inspector General SUBJECT: INFORMATION: Audit Report on "Management of Western Area Power Administration's Cyber Security Program" INTRODUCTION AND OBJECTIVE The Department of Energy's Western Area Power Administration (Western) markets and delivers hydroelectric power and related services to 15 states within the central and western United States. As the largest U.S. Power Marketing Administration, millions of households and

327

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O'Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

328

PLAINS CO2 REDUCTION (PCOR) PARTNERSHIP  

SciTech Connect

During the period of October 1, 2003, through September 30, 2005, the Plains CO2 Reduction (PCOR) Partnership, identified geologic and terrestrial candidates for near-term practical and environmentally sound carbon dioxide (CO2) sequestration demonstrations in the heartland of North America. The PCOR Partnership region covered nine states and three Canadian provinces. The validation test candidates were further vetted to ensure that they represented projects with (1) commercial potential and (2) a mix that would support future projects both dependent and independent of CO2 monetization. This report uses the findings contained in the PCOR Partnership's two dozen topical reports and half-dozen fact sheets as well as the capabilities of its geographic information system-based Decision Support System to provide a concise picture of the sequestration potential for both terrestrial and geologic sequestration in the PCOR Partnership region based on assessments of sources, sinks, regulations, deployment issues, transportation, and capture and separation. The report also includes concise action plans for deployment and public education and outreach as well as a brief overview of the structure, development, and capabilities of the PCOR Partnership. The PCOR Partnership is one of seven regional partnerships under Phase I of the U.S. Department of Energy National Energy Technology Laboratory's Regional Carbon Sequestration Partnership program. The PCOR Partnership, comprising 49 public and private sector members, is led by the Energy & Environmental Research Center at the University of North Dakota. The international PCOR Partnership region includes the Canadian provinces of Alberta, Saskatchewan, and Manitoba and the states of Montana (part), Wyoming (part), North Dakota, South Dakota, Nebraska, Missouri, Iowa, Minnesota, and Wisconsin.

Edward N. Steadman; Daniel J. Daly; Lynette L. de Silva; John A. Harju; Melanie D. Jensen; Erin M. O' Leary; Wesley D. Peck; Steven A. Smith; James A. Sorensen

2006-01-01T23:59:59.000Z

329

OE Issues Notice of Intent to Prepare an Environmental Impact Statement for the Plains & Eastern Clean Line Transmission Project  

Energy.gov (U.S. Department of Energy (DOE))

On December 21, 2012, DOEs Office of Electricity Delivery and Energy Reliability (OE) issued a Notice of Intent (NOI) to Prepare an Environmental Impact Statement (EIS) for the Plains &...

330

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

policy resolution on Clean and Diversified Energy for the West (WGA 2004). Nationally, the North American

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

331

To the Western Governors:  

E-Print Network (OSTI)

The Clean and Diversified Energy Advisory Committee (CDEAC) is pleased to present you with its report and recommendations for achieving and potentially exceeding your clean and diversified energy objectives. This report represents the culmination of an enormous effort by hundreds of individuals representing a broad range of backgrounds and interests. This report and the reports of the CDEAC task forces represent a comprehensive and balanced look at transmission, energy efficiency and clean energy resources. These documents represent the best thinking of some of the most accomplished experts across an array of issues. The strength of the CDEAC report is the recommendations for consideration by the Governors. We have organized the recommendations into those that can be considered by individual states, those that suggest opportunities for action on a regional level, and those that offer the potential for influencing national policy. As requested by your charge to the CDEAC, the recommendations stress non-mandatory, incentive-based approaches. The CDEAC believes that the suite of recommendations is worthy of consideration and adoption by the Western Governors where appropriate. The CDEAC believes this report offers the Western Governors a host of viable options for increasing

William J. Keese

2006-01-01T23:59:59.000Z

332

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

states/rps.cfm Pacific Gas and Electric Company (PG&E) (2007). PG&E Energy Efficiency Shareholder Incentive

Hopper, Nichole

2008-01-01T23:59:59.000Z

333

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

in forecast (2004 BC Hydro Idaho Power Nevada Power NWEAvista Corp. BC Hydro Idaho Power Co. Nevada Power Energy (GWh) Avista BC Hydro Idaho Power Nevada Power NWE

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

334

Energy Efficiency in Western Utility Resource Plans: Impacts on Regional Resources Assessment and Support for WGA Policies  

E-Print Network (OSTI)

energy-efficiency programs, building & appliance standards, and market & priceenergy-efficiency programs, building & appliance standards, and market & priceenergy-efficiency programs, building & appliance standards, and market & price

Hopper, Nicole; Goldman, Charles; Schlegal, Jeff

2006-01-01T23:59:59.000Z

335

Plains CO2 Reduction Partnership--Validation Phase  

NLE Websites -- All DOE Office Websites (Extended Search)

Andrea McNemar Andrea McNemar Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road PO Box 880 Morgantown, WV 26507 304-285-2024 andrea.mcnemar@netl.doe.gov Edward N. Steadman Deputy Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5279 esteadman@undeerc.org John A. Harju Associate Director for Research Energy & Environmental Research Center University of North Dakota 15 North 23rd Street, Stop 9018 Grand Forks, ND 58202-9018 701-777-5157 jharju@undeerc.org PARTNERS (2003 TO PRESENT) Abengoa Bioenergy New Technology, Inc. Air Products and Chemicals, Inc. Alberta Department of Energy Alberta Department of Environment Plains CO2 Reduction Partnership-

336

Geothermal energy in the western United States and Hawaii: Resources and projected electricity generation supplies. [Contains glossary and address list of geothermal project developers and owners  

DOE Green Energy (OSTI)

Geothermal energy comes from the internal heat of the Earth, and has been continuously exploited for the production of electricity in the United States since 1960. Currently, geothermal power is one of the ready-to-use baseload electricity generating technologies that is competing in the western United States with fossil fuel, nuclear and hydroelectric generation technologies to provide utilities and their customers with a reliable and economic source of electric power. Furthermore, the development of domestic geothermal resources, as an alternative to fossil fuel combustion technologies, has a number of associated environmental benefits. This report serves two functions. First, it provides a description of geothermal technology and a progress report on the commercial status of geothermal electric power generation. Second, it addresses the question of how much electricity might be competitively produced from the geothermal resource base. 19 figs., 15 tabs.

Not Available

1991-09-01T23:59:59.000Z

337

Longest-Serving Active Paper Mill in the Western United States Uncovers New Ways to Save Energy  

SciTech Connect

This case study describes how West Linn Paper Company's coated paper mill in West Linn, Oregon, saves nearly 58,200 MMBtu and $379,000 annually after receiving a DOE Save Energy Now energy assessment and implementing recommendations to improve the efficiency of its steam system.

2008-03-01T23:59:59.000Z

338

A final report on the Great Plains Gasification Project's environmental, health, and safety information data system  

Science Conference Proceedings (OSTI)

This report describes Oak Ridge National Laboratory's (ORNLs) role in providing information to Department of Energy (DOE) on environmental data generated at the Great Plains Coal Gasification Project (GPCGP) in Beulah, North Dakota. An information system, the Fossil Energy (FE) Environmental, Health, and Safety Information System (EHSIS) was developed at ORNL to assist in tracking, analyzing, and making readily available significant environmental information derived from Great Plains. The Great Plains module with its numerous files (e.g., Gasification Bibliography, Gasification Tables, and Great Plains Gasification Project -- Permits, Standards, or Exceedences/Incidents) is a major technical area located within the information system. Over 1388 Great Plains documents have been reviewed, abstracted, and made available on-line in the information system. Also in the information system are 911 tables of selected environmental data including monitoring data from the following six subject areas: (1) air quality; (2) water quality; (3) solid wastes; (4) hazardous wastes; (5) industrial hygiene; and (6) surface mining. 14 refs., 4 figs.

Noghrei-Nikbakht, P.A.; Roseberry, L.M.

1989-12-01T23:59:59.000Z

339

The impact of the North Atlantic Oscillation on the renewable energy resources in southwestern Europe  

Science Conference Proceedings (OSTI)

Europe is investing considerably in renewable energies for a sustainable future, with both Iberian countries (Portugal and Spain) promoting significantly new hydraulic, wind and solar plants. The climate variability in this area is highly ...

S. Jerez; R. M. Trigo; S. M. Vicente-Serrano; D. Pozo-Vzquez; R. Lorente-Plazas; J. Lorenzo-Lacruz; F. Santos-Alamillos; J. P. Montvez

340

Energy Efficiency as a Preferred Resource: Evidence from Utility Resource Plans in the Western United States and Canada  

E-Print Network (OSTI)

and market drivers on the proposed levels of energy efficiency, a few trendsenergy efficiency goals. 7 We postulate that a number of policies and other market drivers underlie these trends.

Hopper, Nichole

2008-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


341

VEE-0040- In the Matter of Western Star Propane, Inc.  

Energy.gov (U.S. Department of Energy (DOE))

On February 18, 1997, Western Star Propane, Inc. (Western) filed an Application for Exception with the Office of Hearings and Appeals (OHA) of the Department of Energy (DOE). In its application,...

342

Coolerado 5 Ton RTU Performance: Western Cooling Challenge Results (Revised)  

Science Conference Proceedings (OSTI)

The Western Cooling Efficiency Center (WCEC) developed a set of criteria for test conditions, minimum energy, and water use performance for prototype cooling equipment and identified these conditions as indicative of western state climates.

Kozubal, E.; Slayzak, S.

2010-11-01T23:59:59.000Z

343

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment 3. Summary The 1.5 million-acre coastal plain of the 19 million-acre...

344

Synthetic fuels. Status of the Great Plains Coal Gasification Project, August 1, 1985  

Science Conference Proceedings (OSTI)

In December 1984, the Great Plains Gasification Associates had essentially finished constructing the nation's first commercial-scale coal gasification plant. As of July 31, 1985, Great Plains had contributed about $537 million in equity to the project and had borrowed $1.54 billion against a federal load guarantee made available by the Department of Energy (DOE). Since 1984 the project has faced deteriorating financial projections in the wake of declining energy prices. This is GAO's eighth semiannual report on Great Plains and covers the project's progress from January through August 1, 1985. GAO's objectives were to report on (1) the status of Great Plains' attempt to obtain additional federal financial assistance and (2) the status of the project's operational startup activities as of August 1, 1985. The Department of Energy Act of 1978 requires GAO to report on the status of the loan guarantee. Even though the Synthetic Fuels Corporation approved price guarantees in principle for Great Plains, DOE announced, on July 30, 1985, that it would not agree to restructuring its guaranteed loan. DOE rejected the proposed agreement, saying that it would not assure long-term plant operation at a reasonable cost to the taxpayers. The Great Plains sponsors then terminated their participation in the project on August 1, 1985, and defaulted on the $1.54 billion DOE-guaranteed loan. DOE directed the project administrator, ANG Coal Gasification Company, to continue plant operations pending a DOE decision about the project's future. DOE is assessing options including operating, leasing, selling, shutting down, mothballing, and scrapping the plant.

Bowsher, C.A.

1985-12-01T23:59:59.000Z

345

Western Electricity Coordinating | OpenEI  

Open Energy Info (EERE)

Western Electricity Coordinating Western Electricity Coordinating Dataset Summary Description This dataset comes from the Energy Information Administration (EIA), and is part of the 2011 Annual Energy Outlook Report (AEO2011). This dataset is table 117, and contains only the reference case. The dataset uses gigawatts, billion kilowatthours and quadrillion Btu. The data is broken down into generating capacity, electricity generation and energy consumption. Source EIA Date Released April 26th, 2011 (3 years ago) Date Updated Unknown Keywords AEO California EIA Renewable Energy Generation Western Electricity Coordinating Data application/vnd.ms-excel icon AEO2011: Renewable Energy Generation by Fuel - Western Electricity Coordinating Council / California (xls, 119.2 KiB) Quality Metrics Level of Review Peer Reviewed

346

Western Area Power Administration combined power system financial statements, 30 September 1995 and 1994  

SciTech Connect

The attached report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Western Area Power Administration`s (Western) combined financial statements as of September 30, 1995. The auditors have expressed an unqualified opinion on Western`s 1995 statements. Their reports on Western`s internal control structure and on compliance with laws and regulations are also provided.

NONE

1995-12-31T23:59:59.000Z

347

May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 29 Tribal Renewable Energy Webinar to Highlight Regional May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 24, 2013 - 3:41pm Addthis The U.S. Department of Energy Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration (WAPA) will present the next Tribal Renewable Energy Series webinar, "Regional Transmission Planning," on Wednesday, May 29, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. Speakers from WAPA's Rocky Mountain Region, its Upper Great Plains Region, and WestConnect will provide an overview of various interconnection-based regional transmission planning efforts. Helpful background information on

348

May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

May 29 Tribal Renewable Energy Webinar to Highlight Regional May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 29 Tribal Renewable Energy Webinar to Highlight Regional Transmission Planning Efforts May 24, 2013 - 3:41pm Addthis The U.S. Department of Energy Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration (WAPA) will present the next Tribal Renewable Energy Series webinar, "Regional Transmission Planning," on Wednesday, May 29, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. Speakers from WAPA's Rocky Mountain Region, its Upper Great Plains Region, and WestConnect will provide an overview of various interconnection-based regional transmission planning efforts. Helpful background information on

349

Status of the Great Plains coal gasification project  

SciTech Connect

ANG has extensive policies and procedures for overseeing the construction of the Great Plains project. Additional management comes from a computerized information system, various audit groups, and staff located at the project site. Neither we nor any other audit group identified significant deficiencies in ANG's computer system or the individual systems which feed into it. Overall, the system contains both automated and manual controls which ensure that the data generated from the system is reliable and accurate. The various audit and evaluation groups provide management continuous and significant information concerning major project components. Great Plains management recognized the usefulness of the information and acted on recommendations made which enhanced its overall effectiveness. ANG established and implemented comprehensive procedures to oversee the project's construction. These procedures appear adequate for managing and controlling all construction activities. For example, ANG's onsite managers have identified problems and suggested actions which ANG believes minimized the effect of these problems on the construction schedule. The Department of Energy has extensive procedures for monitoring this project. With few exceptions, the Department followed the procedures established. It has not, however, completed its audit of incurred costs to determine that loan guarantee funds are spent only for eligible project costs. Such an audit was underway and the Department expected to complete it in 1983.

Not Available

1983-04-08T23:59:59.000Z

350

Wind Shear Characteristics at Central Plains Tall Towers  

Science Conference Proceedings (OSTI)

The object of this study is to analyze wind shear characteristics at tall tower sites in the Central Plains of the United States. The hub heights of modern turbines used for wind farm projects are now 70 meters (m) to 100 m above ground and some advanced turbines under development for deployment during the second half of this decade are rated at 2-5 megawatts of energy generation with rotor diameters near 100 m and hub heights of 100-120 m. These advanced turbines will take advantage of the higher wind speeds aloft to generate more wind energy. Specific knowledge of important wind shear characteristics near and at turbine hub height is needed to optimize turbine design and wind farm layout. Unfortunately, wind speed shear measurements at heights of 80-120 m were virtually nonexistent a few years ago and are still quite uncommon today. The Central Plains is a prime wind energy development region and knowledge about the wind shear characteristics will reduce uncertainty about the resource and enhance wind farm design. Previous analyses of tall tower data (Schwartz and Elliott, 2005) concentrated on data from specific states. The wind energy community has recognized the need to fill the gap of direct wind speed measurements at levels 70 m and higher above the ground. Programs instituted during the last 5 years at the state level and supported by the U.S. Department of Energy's (DOE) State Energy Program initiative have placed anemometers and vanes at several levels on existing tall (70 m+) communication towers. The Central Plains has a fairly high concentration of tall tower sites. The distribution of tall tower sites varies among the states in the Central Plains, because the tall tower program is new and the available state and federal funding to establish tall towers is variable. Our wind resource assessment group at DOE's National Renewable Energy Laboratory (NREL) has obtained much of these necessary measurement data from both individual state sources and regional organizations. Most of the data are available to the public, though data from one tower in Colorado are proprietary. We have begun to analyze important wind climate parameters, including wind shear from the tall towers. A total of 13 tall towers were used for this study. Eleven of the towers had the highest anemometer level between 100 m and 113 m. Two towers had the highest measurement level between 70 m and 85 m above ground. The distribution of the towers among the states is: two sites in Texas and Oklahoma; six sites in Kansas; and one site each in Colorado, South Dakota, and North Dakota. Figure 1 shows the locations and names of the thirteen towers. The wind resource at these sites can be classified as ranging from good-to-excellent. Eight tall tower sites have Class 3 resource, four sites have Class 4 resource, and one has Class 5 resource at 50 m.

Schwartz, M.; Elliott, D.

2006-01-01T23:59:59.000Z

351

AtmosphereLand Surface Interactions over the Southern Great Plains: Characterization from Pentad Analysis of DOE ARM Field Observations and NARR  

Science Conference Proceedings (OSTI)

The Department of Energy Atmospheric Radiation Measurement Program (ARM) Southern Great Plains (SGP) site data are analyzed to provide insight into atmosphereland surface interactions generating summertime precipitation variability. Pentad-...

Alfredo Ruiz-Barradas; Sumant Nigam

2013-02-01T23:59:59.000Z

352

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Preface Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment is a product of the Energy Information Administration’s (EIA) Reserves and Production Division. EIA, under various programs, has assessed foreign and domestic oil and gas resources, reserves, and production potential. As a policy-neutral agency, EIA’s standard analysis of the potential of the Alaska North Slope (ANS) has focused on the areas without exploration and development restrictions. EIA received a letter (dated March 10, 2000) from Senator Frank H. Murkowski as Chairman of the Senate Committee on Energy and Natural Resources requesting an EIA Service Report "with plausible scenarios for ANWR supply development consistent with the most recent U.S. Geological Survey resource assessments." This service report is prepared in response to the request of Senator Murkowski. It focuses on the ANWR coastal plain, a region currently restricted from exploration and development, and updates EIA’s 1987 ANWR assessment.

353

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Executive Summary This Service Report, Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment, was prepared for the U.S. Senate Committee on Energy and Natural Resources at the request of Chairman Frank H. Murkowski in a letter dated March 10, 2000. The request asked the Energy Information Administration (EIA) to develop plausible scenarios for Arctic National Wildlife Refuge (ANWR) supply development consistent with the most recent U.S. Geological Survey (USGS) resource assessments. This report contains EIA projections of future daily production rates using recent USGS resource estimates. The Coastal Plain study area includes 1.5 million acres in the ANWR 1002 Area, 92,000 acres of Native Inupiat lands and State of Alaska offshore lands out to the 3-mile limit which are expected to be explored and developed if and when ANWR is developed. (Figure ES1) About 26 percent of the technically recoverable oil resources are in the Native and State lands.

354

Great Plains ASPEN model development: executive summary. Final topical report for Phase 1  

Science Conference Proceedings (OSTI)

The Scientific Design Company contracted with the United States Department of Energy through its Morgantown Energy Technology Center to develop a steady-state simulation model of the Great Plains Coal Gasification plant. This plant produces substitute natural gas from North Dakota lignite. The model was to be developed using the ASPEN (Advanced System for Process Engineering) simulation program. The project was divided into the following tasks: (1) Development of a simplified overall model of the process to be used for a sensitivity analysis to guide the development of more rigorous section models. (2) Review and evaluation of existing rigorous moving-bed gasifier models leading to a recommendation of one to be used to model the Great Plains gasifiers. Adaption and incorporation of this model into ASPEN. (3) Review of the accuracy and completeness of the physical properties data and models provided by ASPEN that are required to characterize the Great Plains plant. Rectification of inaccurate or incomplete data. (4) Development of rigorous ASPEN models for critical unit operations and sections of the plant. (5) Evaluation of the accuracy of the ASPEN Cost Estimation and Evaluation System and upgrading where feasible. Development of a preliminary cost estimate for the Great Plains plant. (6) Validation of the simulation models developed in the course of this project. Determination of model sensitivity to variations of technical and economic parameters. (7) Documentation of all work performed in the course of this project. Essentially all of these tasks were completed successfully. 34 figs.

Rinard, I.H.; Stern, S.S.; Millman, M.C.; Schwint, K.J.; Benjamin, B.W.; Kirman, J.J.; Dweck, J.S.; Mendelson, M.A.

1986-07-25T23:59:59.000Z

355

RTG resource book for western states and provinces: Final proceedings  

SciTech Connect

The Western Interstate Energy Board held a workshop and liaison activities among western states, provinces, and utilities on the formation of Regional Transmission Groups (RTGs). Purpose of the activities was to examine the policy implications for western states and provinces in the formation of RTGs in the West, the implications for western ratepayers and utilities of the RTG formation and potential impacts of RTGs on the western electricity system. The workshop contributed to fulfilling the transmission access and competition objectives of Title VII of the Energy Policy Act of 1992.

NONE

1994-12-31T23:59:59.000Z

356

Alternative Operations Study Summary Western Area Power Administration...  

NLE Websites -- All DOE Office Websites (Extended Search)

ties. Historically, Western-UGP has had opportunities to sell and purchase short-term energy from many different entities in response to hydro-generation variability. However,...

357

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

11 - 19820 of 26,764 results. 11 - 19820 of 26,764 results. Download CX-005382: Categorical Exclusion Determination Dawson County Maintenance Facility, Construction of Additional Buildings CX(s) Applied: B1.11 Date: 03/03/2011 Location(s): Glendive, Montana Office(s): Western Area Power Administration-Upper Great Plains Region http://energy.gov/nepa/downloads/cx-005382-categorical-exclusion-determination Download CX-005392: Categorical Exclusion Determination Illinois State Energy Program Additional Solar Project for Cornerstone Church CX(s) Applied: B5.1 Date: 03/03/2011 Location(s): Bethalto, Illinois Office(s): Energy Efficiency and Renewable Energy, Golden Field Office http://energy.gov/nepa/downloads/cx-005392-categorical-exclusion-determination Download CX-005437: Categorical Exclusion Determination

358

Great Plains Gasification Project process stream design data. [Lurgi Process  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) is the first commercial coal-to-synthetic natural gas plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams, and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the Department of Energy's ASPEN (Advanced System for Process Engineering) computer simulation models of the GPGP processes. 8 refs., 22 figs., 2 tabs.

Honea, F.I.

1985-09-01T23:59:59.000Z

359

June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

June 26 Webinar to Explore Renewable Energy Project Leasing on June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands June 26 Webinar to Explore Renewable Energy Project Leasing on Tribal Lands June 19, 2013 - 7:28pm Addthis The U.S. Department of Energy (DOE) Office of Indian Energy, the DOE Office of Energy Efficiency and Renewable Energy's Tribal Energy Program, and the Western Area Power Administration will present the next Tribal Renewable Energy Series webinar, "Renewable Energy Project Leasing on Tribal Lands," on Wednesday, June 26, 2013, from 1:00 p.m. to 2:30 p.m. Eastern Time. According to the Intertribal Council on Utility Policy, wind resources on tribal lands in the Great Plains alone could power more than 50 million homes. This webinar will explore the opportunities for Tribes to reap the

360

Environmental Energy Technologies Division News  

NLE Websites -- All DOE Office Websites (Extended Search)

7: 7: Vol. 7, No. 2 Energy-Efficient Electrochromic Windows on the Threshold What Can Models Tell Us About Risk? An Inexpensive Wireless Lighting Control System to Improve Energy Efficiency Technology Transfer Monitoring of Western Electricity Markets Research Highlights Sources and Credits PDF of EETD News Energy-Efficient Electrochromic Windows on the Threshold A small, curious building began to rise on a hillside parking lot at Lawrence Berkeley National Laboratory (Berkeley Lab) in 2002. The exterior walls of the 953-square-foot structure were plain enough-corrugated sheet metal. But as the building went up, a distinctive feature appeared: the south-facing wall, with a spectacular view of the San Francisco Bay area, held three large picture windows, each 10 feet wide by 9 feet high and

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


361

The Distribution Company of the Future: Is it all Plain Vanilla or 31  

NLE Websites -- All DOE Office Websites (Extended Search)

The Distribution Company of the Future: Is it all Plain Vanilla or 31 The Distribution Company of the Future: Is it all Plain Vanilla or 31 Flavors, Sprinkles and Waffle Cones? Speaker(s): Matthew Lecar Date: May 11, 1999 - 12:00pm Location: Bldg. 90 Seminar Host/Point of Contact: Richard Sextro Deregulation and unbundling have caused many U.S. energy utilities to break apart the traditional vertically integrated monopoly and place competitive businesses such as electric generation, energy trading, and retail marketing into separate subsidiary companies or business units from the remaining regulated businesses of transmission and distribution. Some utilities are even voluntarily divesting themselves of most or all of their generation and gas supply assets, in order to focus on the core monopoly functions of energy delivery. But is the Utility Distribution Company

362

Renewable Energy Project Leasing on Tribal Lands Webinar | Department of  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Project Leasing on Tribal Lands Webinar Project Leasing on Tribal Lands Webinar Renewable Energy Project Leasing on Tribal Lands Webinar June 26, 2013 11:00AM MDT Webinar The U.S. Department of Energy (DOE) Office of Indian Energy Policy and Programs, Office of Energy Efficiency and Renewable Energy Tribal Energy Program, and Western Area Power Administration are pleased to continue their sponsorship of the Tribal Renewable Energy Webinar Series. According to the Intertribal Council on Utility Policy, wind resources on tribal lands in the Great Plains alone could power more than 50 million homes. The HEARTH Act of 2012 provides the opportunity for Tribes to eliminate delays, costs, federal environmental reviews, federal administrative and judicial litigation, and risks associated with Bureau of

363

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS:...

364

Instrumentation for Southem Great Plains D. L. Sisterson and...  

NLE Websites -- All DOE Office Websites (Extended Search)

counties are outlined. 318 Instrumentation for Southern Great Plains Table 1. Dates of installations of Instrumentation, side data system versions, and facilities at the SGP...

365

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

Survey (USGS) resource assessments. This report contains EIA projections of future daily production rates using recent USGS resource estimates. The Coastal Plain study area...

366

Potential Oil Production from the Coastal Plain of the Arctic...  

U.S. Energy Information Administration (EIA) Indexed Site

2. Analysis Discussion Resource Assessment The USGS most recent assessment of oil and gas resources of ANWR Coastal Plain (The Oil and Gas Resource Potential of the Arctic...

367

Potential Oil Production from the Coastal Plain of the Arctic...  

Annual Energy Outlook 2012 (EIA)

Setting Geology 2. Analysis Discussion Resource Assessment Method of Analysis ANWR Coastal Plain Assessment 3. Summary Glossary References Access the PDF version of the...

368

Micro-Earthquake At Snake River Plain Geothermal Region (1976...  

Open Energy Info (EERE)

Login | Sign Up Search Page Edit History Facebook icon Twitter icon Micro-Earthquake At Snake River Plain Geothermal Region (1976) Jump to: navigation, search GEOTHERMAL...

369

Great Plains Gasification Project status report  

SciTech Connect

The Great Plains Gasification Project is the first commercial synthetic fuels project based on coal conversion in the US. The goal is to convert North Dakota lignite into pipeline quality synthetic natural gas (SNG). The project consists of an open pit coal mine, a gasification plant, and an SNG pipeline in Mercer County, North Dakota. The project took 12 years from its conception to the production in 1984 of SNG for users. The author describes the plant's basic processes, the start-up activities and schedule, and some of the more interesting start-up problems.

Pollock, D.C.

1985-08-01T23:59:59.000Z

370

Preparation for upgrading western subbituminous coal  

SciTech Connect

The objective of this project was to establish the physical and chemical characteristics of western coal and determine the best preparation technologies for upgrading this resource. Western coal was characterized as an abundant, easily mineable, clean, low-sulfur coal with low heating value, high moisture, susceptibility to spontaneous ignition, and considerable transit distances from major markets. Project support was provided by the Morgantown Energy Technology Center (METC) of the US Department of Energy (DOE). The research was conducted by the Western Research Institute, (WRI) in Laramie, Wyoming. The project scope of work required the completion of four tasks: (1) project planning, (2) literature searches and verbal contacts with consumers and producers of western coal, (3) selection of the best technologies to upgrade western coal, and (4) identification of research needed to develop the best technologies for upgrading western coals. The results of this research suggest that thermal drying is the best technology for upgrading western coals. There is a significant need for further research in areas involving physical and chemical stabilization of the dried coal product. Excessive particle-size degradation and resulting dustiness, moisture reabsorption, and high susceptibility to spontaneous combustion are key areas requiring further research. Improved testing methods for the determination of equilibrium moisture and susceptibility to spontaneous ignition under various ambient conditions are recommended.

Grimes, R.W.; Cha, C.Y.; Sheesley, D.C.

1990-11-01T23:59:59.000Z

371

10 Year Transmission Plan for the Western Electricity Interconnection  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

10 Year Transmission Plan for the Western Electricity 10 Year Transmission Plan for the Western Electricity Interconnection Released 10 Year Transmission Plan for the Western Electricity Interconnection Released October 3, 2011 - 8:11am Addthis Western Electricity Coordinating Council releases its first-ever transmission plan for the Western Interconnection. The Western Electricity Coordinating Council (WECC) announced the release of its first 10-Year Regional Transmission Plan (Plan) for the Western Interconnection. The Office of Electricity Delivery and Energy Reliability awarded WECC a $14.5 million grant under the American Recovery and Reinvestment Act to expand on its transmission planning activities. Looking ahead to 2020, the Plan focuses on how to meet the Western Interconnection's transmission requirements, including transmission

372

Cross Plains, Wisconsin: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

144385°, -89.6556777° 144385°, -89.6556777° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":43.1144385,"lon":-89.6556777,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

373

White Plains, New York: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

62°, -73.7629097° 62°, -73.7629097° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":41.0339862,"lon":-73.7629097,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

374

The Plains, Ohio: Energy Resources | Open Energy Information  

Open Energy Info (EERE)

689609°, -82.1323677° 689609°, -82.1323677° Loading map... {"minzoom":false,"mappingservice":"googlemaps3","type":"ROADMAP","zoom":14,"types":["ROADMAP","SATELLITE","HYBRID","TERRAIN"],"geoservice":"google","maxzoom":false,"width":"600px","height":"350px","centre":false,"title":"","label":"","icon":"","visitedicon":"","lines":[],"polygons":[],"circles":[],"rectangles":[],"copycoords":false,"static":false,"wmsoverlay":"","layers":[],"controls":["pan","zoom","type","scale","streetview"],"zoomstyle":"DEFAULT","typestyle":"DEFAULT","autoinfowindows":false,"kml":[],"gkml":[],"fusiontables":[],"resizable":false,"tilt":0,"kmlrezoom":false,"poi":true,"imageoverlays":[],"markercluster":false,"searchmarkers":"","locations":[{"text":"","title":"","link":null,"lat":39.3689609,"lon":-82.1323677,"alt":0,"address":"","icon":"","group":"","inlineLabel":"","visitedicon":""}]}

375

The framework and tools for the Western Area Power Administration`s Environmental Risk Management Program  

SciTech Connect

Pacific Northwest Laboratory (PNL) is working with various government agencies to develop and implement environmental risk management programs. One such program is being developed for the U.S. Department of Energy`s Western Area Power Administration (Western). In this paper, we describe the risk framework and assessment tools being developed by Western and PNL to help Western`s management staff make effective and defensible decisions on issues that involve environmental risk.

Di Massa, F.V.; Glantz, C.S. [Pacific Northwest Lab., Richland, WA (United States); Roybal, A.L. [Western Area Power Administration, Golden, CO (United States)

1995-06-01T23:59:59.000Z

376

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

51 - 19860 of 26,764 results. 51 - 19860 of 26,764 results. Download CX-006301: Categorical Exclusion Determination Expansion of O'Fallon Creek Substation Yard CX(s) Applied: B4.11 Date: 02/10/2011 Location(s): Montana Office(s): Western Area Power Administration-Upper Great Plains Region http://energy.gov/nepa/downloads/cx-006301-categorical-exclusion-determination Download CX-005228: Categorical Exclusion Determination Alaska-Tribe-Healy Lake Traditional Council CX(s) Applied: B2.5, B5.1 Date: 02/09/2011 Location(s): Healy Lake, Alaska Office(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-005228-categorical-exclusion-determination Download CX-005252: Categorical Exclusion Determination Florida-City-Sarasota CX(s) Applied: A1, A9, A11, B1.32, B5.1 Date: 02/09/2011

377

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

71 - 880 of 29,416 results. 71 - 880 of 29,416 results. Download 2012 Annual Planning Summary for Princeton Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Princeton Site Office. http://energy.gov/nepa/downloads/2012-annual-planning-summary-princeton-site-office Download EA-1907: Final Environmental Assessment Western Plains Energy, LLC Biogas Anaerobic Digester Facility, Oakley, Kansas http://energy.gov/nepa/downloads/ea-1907-final-environmental-assessment Download 2012 Annual Planning Summary for Ames Site Office The ongoing and projected Environmental Assessments and Environmental Impact Statements for 2012 and 2013 within Ames Site Office. http://energy.gov/nepa/downloads/2012-annual-planning-summary-ames-site-office

378

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

41 - 2950 of 28,905 results. 41 - 2950 of 28,905 results. Download CX-006303: Categorical Exclusion Determination Interconnection of the Pronghorn Gas Plant 115 Kilovolt Transmission Line CX(s) Applied: B4.11 Date: 07/14/2011 Location(s): Montana Office(s): Western Area Power Administration-Upper Great Plains Region http://energy.gov/nepa/downloads/cx-006303-categorical-exclusion-determination Download CX-006110: Categorical Exclusion Determination Virginia-City-Alexandria CX(s) Applied: A1, A9, A11, B5.1 Date: 06/21/2011 Location(s): Alexandria, Virginia Office(s): Energy Efficiency and Renewable Energy http://energy.gov/nepa/downloads/cx-006110-categorical-exclusion-determination Download CX-006031: Categorical Exclusion Determination Oregon-Tribe-Confederated Tribes of the Grand Ronde Community of Oregon

379

Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) |  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Interstate Nuclear Compact State Nuclear Policy (Multiple Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) Western Interstate Nuclear Compact State Nuclear Policy (Multiple States) < Back Eligibility Agricultural Commercial Construction Fed. Government Fuel Distributor Industrial Institutional Investor-Owned Utility Local Government Municipal/Public Utility Nonprofit Retail Supplier Rural Electric Cooperative State/Provincial Govt Systems Integrator Transportation Tribal Government Utility Savings Category Alternative Fuel Vehicles Hydrogen & Fuel Cells Buying & Making Electricity Water Home Weatherization Solar Wind Program Info State Arizona Program Type Siting and Permitting Provider Western Interstate Energy Board Legislation authorizes states' entrance into the Western Interstate Nuclear Compact, which aims to undertake the cooperation of participating states in

380

Western Business Rountable: Coordination of Federal Authorizations for  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Business Rountable: Coordination of Federal Authorizations Western Business Rountable: Coordination of Federal Authorizations for Electric Transmission Facilities Western Business Rountable: Coordination of Federal Authorizations for Electric Transmission Facilities The Western Business Roundtable ("Roundtable") respectfully submits the following comments relating to the U.S. Department of Energy's (DOE) request for public comments regarding implementation of its transmission siting obligations under Section 216(h) of the Federal Power Act. Western Business Rountable: Coordination of Federal Authorizations for Electric Transmission Facilities More Documents & Publications Comments Received on Proposed Rulemaking for regulation implementing section 216(h): Coordination of Federal Transmission Permitting on Federal

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


381

ASPEN physical property evaluation for Great Plains simulation. Great Plains ASPEN model development. [Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

This report documents the steps taken to evaluate the pure component properties in the ASPEN data bank for those compounds required to simulate the Great Plains Coal Gasification Plant where the compounds are also available in the DIPPR (Design Institute for Physical Property Data) data bank. DIPPR is a cooperative effort of industry, institutes and federal agencies interested in the compilation, measurement and evaluation of physical property data for industrially important compounds. It has been found that the ASPEN data bank is for the most part reliable, its main problem being lack of documentation. In the few instances where values were found to be either missing or to be unacceptable, recommended constants or equation parameters are presented in this report along with associated literature citations. In the cases where temperature dependent data were regressed to obtain new equation parameters, the detailed methods employed are also presented.

Millman, M.C.

1983-08-04T23:59:59.000Z

382

Irrigation-Induced Rainfall and the Great Plains  

Science Conference Proceedings (OSTI)

The postWorld War II increase in irrigation in the Great Plains represents the largest human-induced hydrologic impact in North America. Drawn primarily from the High Plains aquifer, water applied as irrigation in the region amounts to billions ...

Nathan Moore; Stuart Rojstaczer

2001-08-01T23:59:59.000Z

383

Great Plains Coal Gasification project. Quarterly technical progress report, third quarter 1985  

Science Conference Proceedings (OSTI)

The operations of the Great Plains Gasification Plant are reported for the third quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1985-10-31T23:59:59.000Z

384

Great Plains Coal Gasification project. Quarterly technical progress report fourth quarter, 1985  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the fourth quarter of 1985. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1985; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical service; (12) environmental; and (13) quality assurance/quality control activities.

Not Available

1986-01-31T23:59:59.000Z

385

Potential Oil Production from Coastal Plain of Arctic National Wildlife Refuge: Updated Assessment  

Reports and Publications (EIA)

EIA received a letter (dated March 10, 2000) from Senator Frank H. Murkowski as Chairmanof the Senate Committee on Energy and Natural Resources requesting an EIA Service Reportwith plausible scenarios for ANWR supply development consistent with the most recentU.S. Geological Survey resource assessments. This service report is prepared in response to therequest of Senator Murkowski. It focuses on the ANWR coastal plain, a region currentlyrestricted from exploration and development, and updates EIA's 1987 ANWR assessment.

Floyd Wiesepape

2000-05-01T23:59:59.000Z

386

Snow Cover and Spring Flood Flow in the Northern Part of Western Siberia (the Poluy, Nadym, Pur, and Taz Rivers)  

Science Conference Proceedings (OSTI)

The paper aims to quantitatively estimate the role of snowmelt in the spring flood flow and the redistribution of river runoff for the northern (Arctic) part of the western Siberian Plain (the rivers Poluy, Nadym, Pur, and Taz). In this region, ...

E. A. Zakharova; A. V. Kouraev; S. Biancamaria; M. V. Kolmakova; N. M. Mognard; V. A. Zemtsov; S. N. Kirpotin; B. Decharme

2011-12-01T23:59:59.000Z

387

The Des Plaines River -- Part One  

NLE Websites -- All DOE Office Websites (Extended Search)

One One Nature Bulletin No. 606 May 28, 1960 Forest Preserve District of Cook County Daniel Ryan, President Roberts Mann, Conservation Editor David H. Thompson, Senior Naturalist THE DES PLAINES RIVER -- PART ONE: DESCRIPTION Chicago was incorporated as a village in 1833 and in less than 100 years it had become one of the world's great cities. Four unique natural features have contributed to its phenomenal growth. The first is Lake Michigan. Chicago is strategically located at the south end of it, deep in the heart of the continent and the vast central lowland -- bread-basket of our nation. The lake provides an inexhaustible supply of fresh water and a highway for water-borne commerce. Since the completion of the St. Lawrence Seaway, Chicago has also become a port for ocean going ships.

388

The cost of geothermal energy in the western US region:a portfolio-based approach a mean-variance portfolio optimization of the regions' generating mix to 2013.  

DOE Green Energy (OSTI)

Energy planning represents an investment-decision problem. Investors commonly evaluate such problems using portfolio theory to manage risk and maximize portfolio performance under a variety of unpredictable economic outcomes. Energy planners need to similarly abandon their reliance on traditional, ''least-cost'' stand-alone technology cost estimates and instead evaluate conventional and renewable energy sources on the basis of their portfolio cost--their cost contribution relative to their risk contribution to a mix of generating assets. This report describes essential portfolio-theory ideas and discusses their application in the Western US region. The memo illustrates how electricity-generating mixes can benefit from additional shares of geothermal and other renewables. Compared to fossil-dominated mixes, efficient portfolios reduce generating cost while including greater renewables shares in the mix. This enhances energy security. Though counter-intuitive, the idea that adding more costly geothermal can actually reduce portfolio-generating cost is consistent with basic finance theory. An important implication is that in dynamic and uncertain environments, the relative value of generating technologies must be determined not by evaluating alternative resources, but by evaluating alternative resource portfolios. The optimal results for the Western US Region indicate that compared to the EIA target mixes, there exist generating mixes with larger geothermal shares at equal-or-lower expected cost and risk.

Beurskens, Luuk (ECN-Energy Research Centre of the Netherland); Jansen, Jaap C. (ECN-Energy Research Centre of the Netherlands); Awerbuch, Shimon Ph.D. (.University of Sussex, Brighton, UK); Drennen, Thomas E.

2005-09-01T23:59:59.000Z

389

Western Area Power Administration  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

v*Zy- i , . v*Zy- i , . r ,v * -i S # Af [, (e- . - o -A tl }r- 0 v-" l^~4~S J l ^-)^ I^U^ck iM clti ^ Western Area Power Administration Follow-up to Nov. 25, 2008 Transition Meeting Undeveloped Transmission Right-of-Way Western has very little undeveloped transmission right-of-way. There is a 7-mile right- of-way between Folsom, CA and Roseville, CA where Western acquired a 250' wide right-of-way but is only using half of it. Another line could be built parallel to Western's line to relieve congestion in the Sacramento area. In addition, Western has rights-of- way for many transmission lines that could be rebuilt to increase transmission capacity. For example, Western's Tracy-Livermore 230-kV line is a single circuit line but the existing towers could support a double circuit line. These rights-of-way would have to

390

Potential Oil Production from the Coastal Plain of the Arctic National  

U.S. Energy Information Administration (EIA) Indexed Site

Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Potential Oil Production from the Coastal Plain of the Arctic National Wildlife Refuge: Updated Assessment Glossary ANILCA: Alaska National Interest Lands Conservation Act ANS: Alaskan North Slope ANWR: Arctic National Wildlife Refuge BBbls: billion barrels Bbls: barrels Daily Petroleum Production Rate: The amount of petroleum extracted per day from a well, group of wells, region, etc. (usually expressed in barrels per day) EIA: Energy Information Administration MBbls: thousand barrels MMBbls: million barrels NPR-A: National Petroleum Reserve-Alaska Petroleum Play: A set of known or postulated petroleum accumulations sharing similar geologic, geographic, and temporal properties such as source rock, migration, pathway, timing, trapping mechanism, and hydrocarbon type

391

EA-1903: Kansas State University Zond Wind Energy Project, Manhattan...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Plains Wind Energy Consortium aimed at increasing the penetration of wind energy via distributed wind power generation throughout the region. PUBLIC COMMENT OPPORTUNITIES...

392

Western Greenbrier Co-Production Demonstration Project  

NLE Websites -- All DOE Office Websites (Extended Search)

contacts contacts Brad tomer Director Office of Major Demonstrations National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4692 brad.tomer@netl.doe.gov nelson Rekos Project Manager National Energy Technology Laboratory 3610 Collins Ferry Road P.O. Box 880 Morgantown, WV 26507-0880 304-285-4066 nelson.rekos@netl.doe.gov PaRtIcIPant Western Greenbrier Co-Generation, LLC Lewisburg, WV Western Greenbrier Co-ProduCtion demonstration ProjeCt (disContinued) Project Description The Western Greenbrier Co-Production (WGC) project will generate about 100 megawatts of electricity and commercial quantities of salable ash by-products by burning waste coal presently contained in numerous coal refuse dumps in the vicinity of the plant. These refuse dumps, created by coal cleaning operations over

393

The Owl Horn Radar Signature in Developing Southern Plains Supercells  

Science Conference Proceedings (OSTI)

During spring 2001 in the Southern Plains, a recurring, hitherto undocumented reflectivity signature that the authors have called the Owl Horn signature (because the radar reflectivity pattern resembles the profile of the Great Horned Owl) was ...

Matthew R. Kramar; Howard B. Bluestein; Andrew L. Pazmany; John D. Tuttle

2005-09-01T23:59:59.000Z

394

Synoptic-Scale Environments Associated with High Plains Severe Thunderstorms  

Science Conference Proceedings (OSTI)

Typical synoptic-scale features are described for summertime severe thunderstorms on the High Plains. Severe weather generally occurs on several days in succession, under conditions that are relatively benign in terms of conventional severe ...

Charles A. Doswell

1980-11-01T23:59:59.000Z

395

Drought in the Great Plains: History of Societal Response  

Science Conference Proceedings (OSTI)

The Great Plains has a long history of drought episodes which have, in some years, significantly reducedexpected crop yields. The historic evidence suggests that such droughts will probably recur in the future.The drought of the 1930's stimulated ...

Alan D. Hecht

1983-01-01T23:59:59.000Z

396

Return Levels of Northern Great Plains Snow Water Equivalents  

Science Conference Proceedings (OSTI)

This paper estimates return levels of extreme snow water equivalents (SWE) in the northern Great Plains region, containing North and South Dakota, Iowa, Minnesota, and Nebraska. The return levels are estimated from extreme-value methods using a ...

Andrew J. Grundstein; Qi Qi Lu; Robert Lund

2006-07-01T23:59:59.000Z

397

Wind Shear Characteristics at Central Plains Tall Towers: Preprint  

SciTech Connect

Conference paper for WindPower 2006 held June 4-7, 2006, in Pittsburgh, PA, describing the wind shear characteristics at tall tower sites in the Central Plains of the United States.

Schwartz, M.; Elliott, D.

2006-06-01T23:59:59.000Z

398

Doppler Radar Analysis of a Snake River Plain Convergence Event  

Science Conference Proceedings (OSTI)

A convergence zone periodically forms in the Snake River plain (SRP) of eastern Idaho as a result of terrain-induced boundary layer flow under synoptic northwesterly flow at low and midlevels. Complex terrain in central and eastern Idaho is ...

Thomas A. Andretta; Dean S. Hazen

1998-06-01T23:59:59.000Z

399

The Great Plains coal gasification project status  

SciTech Connect

The Great Plains Gasification Project is the first commercial-sized plant to produce substitute natural gas from coal in the United States. The plant is designed to convert 14,000 tons/D of North Dakota lignite into 137.5 million standard cubic feet of gas per day. The plant construction has been successfully completed per original design, on schedule and on budget. The plant has also been successfully turned over from construction to operations, as per the original plan. With the completion of the capital projects being implemented at the plant, plans are to achieve 70 percent stream factor in the first year of production (1985). The DOE-Chicago Operations Office has been assigned the responsibility for monitoring the project's performance against baselines of cost, schedule, and technical criteria. During the startup phase of the project, significant technological advancements have been made and considerable knowledge has been gained, both by the operators and DOE (considering this to be a first of a kind plant built in the U.S.).

Bodnaruk, B.J.

1986-07-01T23:59:59.000Z

400

Great Plains Gasification Project status report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Project is designed to convert North Dakota lignite into pipeline quality high Btu synthetic natural gas (SNG). Located in Mercer County, North Dakota, the project consists of a coal gasification plant, coal mine, and an SNG pipeline. Construction of the project started in the summer of 1981 and was essentially complete by the fourth quarter of 1984. The plant operating staff started initial start-up planning in early 1982 and moved to the plant site in late 1982. The first unit taken over from construction was the secondary water treating unit and initial operations began on August 19, 1983. The remainder of the plant was commissioned and started up in a planned sequence with initial production of SNG occurring on July 28, 1983. Both trains were in operation and the plant was producing at about 70 percent of design capacity by December 1984-a date that has been targeted for in a start-up schedule prepared some 4-5 years earlier.

Pollock, D.C.; Stockwell, R.E.

1985-01-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


401

Comparison And Discussion Of The 6 Km Temperature Maps Of The Western Us  

Open Energy Info (EERE)

Comparison And Discussion Of The 6 Km Temperature Maps Of The Western Us Comparison And Discussion Of The 6 Km Temperature Maps Of The Western Us Prepared By The Smu Geothermal Lab And The Usgs Jump to: navigation, search GEOTHERMAL ENERGYGeothermal Home Conference Paper: Comparison And Discussion Of The 6 Km Temperature Maps Of The Western Us Prepared By The Smu Geothermal Lab And The Usgs Details Activities (1) Areas (1) Regions (0) Abstract: Interpretations of temperature-at-6 km depth maps for the western US are compared and three areas of difference are discussed in detail. These three areas are critical for EGS resource evaluation yet they are quite different between the two maps. The data in these three areas (the northern Oregon Cascade Range, the Snake River Plain, and the northern Great Basin) bearing on the interpretations are discussed. There is a large

402

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

2, 2010 2, 2010 CX-001295: Categorical Exclusion Determination B39 CASE Facility Upgrades CX(s) Applied: B1.15 Date: 03/22/2010 Location(s): Morgantown, West Virginia Office(s): National Energy Technology Laboratory March 22, 2010 CX-001487: Categorical Exclusion Determination Construction of Appledorn Substation CX(s) Applied: B4.11 Date: 03/22/2010 Location(s): Minnesota Office(s): Western Area Power Administration-Upper Great Plains Region March 22, 2010 CX-001294: Categorical Exclusion Determination Heavy-Duty Natural Gas Drainage Truck Replacement Program in the South Coast Air Basin CX(s) Applied: A7, A9, A11 Date: 03/22/2010 Location(s): Los Angeles, California Office(s): Energy Efficiency and Renewable Energy, National Energy Technology Laboratory March 22, 2010 CX-007040: Categorical Exclusion Determination

403

Great Plains Coal Gasification Plant public design report. Volume I  

SciTech Connect

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume I contains: (1) introduction; (2) overview of project (plant and mine, plant facilities, Basin Electric Antelope Valley Station); and (3) plant process data (coal, oxygen and steam, gasification and gas processing). 53 refs., 80 figs., 36 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

404

Great Plains Coal Gasification Plant Public Design Report. Volume II  

Science Conference Proceedings (OSTI)

This Public Design Report provides, in a single document, available nonproprietary design information for the Great Plains Gasification Project, the first commercial coal gasification facility in the United States. In addition to the design aspects, the history of the project, the organization of the plant owners, and the role of the Department of Energy are briefly discussed. Plant capital and operating costs are also presented. An overview of the mine and plant operations is presented and is followed by detailed nonproprietary descriptions of the individual process units, plant systems, and products. Narrative process descriptions, simplified process flow diagrams, input/output stream data, operating conditions, catalyst and chemical requirements, and utility requirements are given for each unit. The process units are described as they were planned by July 1984. Any modification or alteration that occurred after that date will be the subject of a followup work. Plant startup provisions, environmental considerations and control, monitoring and safety considerations are also addressed for each operating unit. The report is published in two volumes. Volume II contains: (1) plant process data (sulfur recovery, main flare - area 8300, liquid processing, ash handling and solids disposal, other systems); (2) plant startup procedure and schedule; (3) plant and employee safety; (4) GPGP cost data; and (5) references. 53 refs., 46 figs., 38 tabs.

Miller, W.R.; Belt, R.J.; Honea, F.I.; Ness, H.M.; Lang, R.A.; Berty, T.E.; Delany, R.C.; Mako, P.F.

1985-07-01T23:59:59.000Z

405

Radiological verification survey results at the Pompton Plains Railroad Spur, Pequannock, New Jersey (PJ008V)  

SciTech Connect

The US Department of Energy (DOE) conducted remedial action during 1993 at the Pompton Plains railroad spur and eight vicinity properties in the Wayne and Pequannock Townships in New Jersey as part of the Formerly Utilized Sites Remedial Action Program (FUSRAP). These properties are in the vicinity of the DOE-owned Wayne Interim Storage Site (WISS), formerly the W.R. Grace facility. The property at the Pompton Plains Railroad Spur, Pequannock, New Jersey is one of these vicinity properties. At the request of DOE, a team from Oak Ridge National Laboratory conducted an independent radiological verification survey at this property. The purpose of the survey, conducted between September and December 1993, was to confirm the success of the remedial actions performed to remove any radioactive materials in excess of the identified guidelines. The verification survey included surface gamma scans and gamma readings at 1 meter, beta-gamma scans, and the collection of soil and debris samples for radionuclide analysis. Results of the survey demonstrated that all radiological measurements on the property at the Pompton Plains railroad spur were within applicable DOE guidelines. Based on the results of the remedial action data and confirmed by the verification survey data, the portions of the site that had been remediated during this action successfully meet the DOE remedial action objectives.

Rodriguez, R.E.; Johnson, C.A.

1995-05-01T23:59:59.000Z

406

Page not found | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

31 - 22340 of 29,416 results. 31 - 22340 of 29,416 results. Download CX-004752: Categorical Exclusion Determination Havre Substation Stage 03 CX(s) Applied: B4.11 Date: 12/13/2010 Location(s): Montana Office(s): Western Area Power Administration-Upper Great Plains Region http://energy.gov/nepa/downloads/cx-004752-categorical-exclusion-determination Page Light Water Reactor Sustainability (LWRS) Program The Light Water Reactor Sustainability (LWRS) Program is developing the scientific basis to extend existing nuclear power plant operating life beyond the current 60-year licensing period and ensure... http://energy.gov/ne/nuclear-reactor-technologies/light-water-reactor-sustainability-lwrs-program Page Advanced Reactor Technologies The Office of Advanced Reactor Technologies (ART) sponsors research,

407

Washington Profile - Energy Information Administration  

U.S. Energy Information Administration (EIA)

Nuclear Power Plants : ... Clean Cities Coalitions Western Washington (Seattle) ... Governor Chris Gregoire - Initiatives - Energy;

408

WESTERN AREA POWER ADMINISTRATION  

NLE Websites -- All DOE Office Websites (Extended Search)

be delivered due to the constraints of Path 15. In May 2001, the Department of Energy released its National Energy Policy recommending that the Department of Energy take...

409

Western Area Power Administration customer database  

SciTech Connect

This report describes a comprehensive customer database compiled by the Pacific Northwest Laboratory (PNL) to assist with analyses conducted as part of the Western Area Power Administration Energy Planning and Management Program Environmental Impact Statement (EIS). The database was used by PNL as a tool to help select a sample of Western customers for potential participation in the Organizational Impacts Analysis case studies, and was used as part of the Utility Impact Analysis to identify sources and costs of auxiliary power. Secondary information sources were used predominantly to compile one year of system related information on the Western customers (over 600) included in the database. This information was useful for its intended purposes; however, year-to-year information may not be consistent across utilities and not all information was available for each utility.

Sandahl, L.J.; Lee, A.D.; Wright, G.A.; Durfee, D.L.

1993-05-01T23:59:59.000Z

410

Energy Efficiency and Conservation Block Grant Program  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

U.S. Department of Energy Categorical Exclusion Determination Form Program or Field Office: Energy Efficiency and Conservation Block Grant Program Project Title IL-City-Des Plaines Location: City Des Plaines IL American Recovery and Reinvestment Act: Proposed Action or Project Description 1) Energy efficiency retrofits at City's Public Works Garage-replace windows and boilers, 2) traffic signal

411

Energy Crossroads: Utility Energy Efficiency Programs Nebraska...  

NLE Websites -- All DOE Office Websites (Extended Search)

Nebraska Energy Crossroads Index Utility Energy Efficiency Programs Index Suggest a Listing Nebraska Municipal Power Pool (NMPP) Information for Businesses NorthWestern Energy...

412

Demand Response: An UntappedDemand Response: An Untapped Resource for Western ElectricityResource for Western Electricity  

E-Print Network (OSTI)

Information Administration, Form EIA-861 Database. #12;Energy Analysis Department Significant cost@lbl.gov FERC Western Energy Infrastructure Conference Denver, Colorado July 30, 2003 #12;Energy Analysis value of demand-side for electricity markets - Short-term Load Management - Dynamic Pricing - Energy

413

WESTERN UNIVERSITY Disaster Plan  

E-Print Network (OSTI)

.7 Assumptions 1.7.1 Emergency 1.7.2 Disaster 1.8 Concept of Operations 1.8.1 Background 1.8.2 Emergency Response/Administrative Unit Responsibilities 1.8.8 Situation Reports 2. UTILIZING THE DISASTER PLAN 2.1 Emergency Process Members ­ Individual Responsibilities #12;WESTERN UNIVERSITY Disaster Plan January, 2013 2.7.1 VP

Sinnamon, Gordon J.

414

Western North Pacific Tropical Cyclone Intensity and ENSO  

Science Conference Proceedings (OSTI)

The influence of the El NioSouthern Oscillation (ENSO) on tropical cyclone intensity in the western North Pacific basin is examined. Accumulated cyclone energy (ACE), constructed from the best-track dataset for the region for the period 1950...

Suzana J. Camargo; Adam H. Sobel

2005-08-01T23:59:59.000Z

415

Great Plains Coal Gasification Project. Quarterly technical progress report, second quarter 1986. [Lurgi process  

SciTech Connect

The operations of the Great Plains coal gasification plant are reported for the second quarter of 1986. The following areas are covered: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities. (AT)

Not Available

1986-07-31T23:59:59.000Z

416

(Great Plains Coal Gasification Associates). Quarterly technical progress report. [Lurgi Process  

SciTech Connect

The operations of the Great Plains Gasification plant are reported for the first quarter of 1986. Contents include the following: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) on-stream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications-1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-04-30T23:59:59.000Z

417

Great Plains coal gasification project: Quarterly technical progress report, Third quarter 1986. [Lurgi process  

Science Conference Proceedings (OSTI)

Accomplishments for the third quarter of 1986 are presented for the Great Plains coal gasification plant. The following areas are discussed: (1) lignite coal production; (2) SNG production; (3) SNG gas quality; (4) by-products production and inventories; (5) onstream factors; (6) raw material, product and by-product consumption and energy consumption for plant operations; (7) plant modifications - 1986 budget; (8) plant maintenance; (9) safety; (10) industrial hygiene; (11) medical services; (12) environmental executive summary; and (13) quality assurance/quality control activities.

Not Available

1986-10-31T23:59:59.000Z

418

Western Wind and Solar Integration Study  

SciTech Connect

The Western Wind and Solar Integration Study (WWSIS) is one of the largest regional wind and solar integration studies to date. It was initiated in 2007 to examine the operational impact of up to 35% energy penetration of wind, photovoltaics (PV), and concentrating solar power (CSP) on the power system operated by the WestConnect group of utilities in Arizona, Colorado, Nevada, New Mexico, and Wyoming (see study area map). WestConnect also includes utilities in California, but these were not included because California had already completed a renewable energy integration study for the state. This study was set up to answer questions that utilities, public utilities commissions, developers, and regional planning organizations had about renewable energy use in the west: (1) Does geographic diversity of renewable energy resource help mitigate variability; (2) How do local resources compare to out-of-state resources; (3) Can balancing area cooperation help mitigate variability; (4) What is the role and value of energy storage; (5) Should reserve requirements be modified; (6) What is the benefit of forecasting; and (7) How can hydropower help with integration of renewables? The Western Wind and Solar Integration Study is sponsored by the U.S. Department of Energy (DOE) and run by NREL with WestConnect as a partner organization. The study follows DOE's 20% Wind Energy by 2030 report, which did not find any technical barriers to reaching 20% wind energy in the continental United States by 2030. This study and its partner study, the Eastern Wind Integration and Transmission Study, performed a more in-depth operating impact analysis to see if 20% wind energy was feasible from an operational level. In DOE/NREL's analysis, the 20% wind energy target required 25% wind energy in the western interconnection; therefore, this study considered 20% and 30% wind energy to bracket the DOE analysis. Additionally, since solar is rapidly growing in the west, 5% solar was also considered in this study. The goal of the Western Wind and Solar Integration Study is to understand the costs and operating impacts due to the variability and uncertainty of wind, PV, and CSP on the grid. This is mainly an operations study, (rather than a transmission study), although different scenarios model different transmission build-outs to deliver power. Using a detailed power system production simulation model, the study identifies operational impacts and challenges of wind energy penetration up to 30% of annual electricity consumption.

Lew, D.; Piwko, R.; Jordan, G.; Miller, N.; Clark, K.; Freeman, L.; Milligan, M.

2011-01-01T23:59:59.000Z

419

POSITION OF LARGE POWER PRODUCERS IN ELECTRICITY MARKETS OF NORTH WESTERN EUROPE Report for the Dutch Energy Council on the Electricity Markets  

E-Print Network (OSTI)

This report is prepared for the Dutch Energy Council (Algemene Energieraad) to provide input for a discussion among experts and members of the Energy Council on European electricity markets. The final version of this report includes some suggestions from this discussion that took place on December 16, 2002.

M. J. J. Scheepers; A. F. Wals

2003-01-01T23:59:59.000Z

420

Evaluation of herbacceous biomass crops in the northern Great Plains. Final report  

DOE Green Energy (OSTI)

Herbaceous lignocellulose crops are a potential renewable feedstock for biochemical conversion systems second in size to wood products. Several herbaceous crops are utilized as forage crops in the northern Great Plains, but forage quality considerations usually dictates a early harvest. Biomass cropping does not have this constraint; therefore, little information was available on herbaceous crops utilized as energy crops prior to this project. Our primary objectives were to evaluate the biomass yield and select chemical components of several herbaceous crops for energy crops in the northern Great Plains, compare the economic feasibility of energy crops with common competing crops, and evaluate biomass cropping on summer fallow lands. Three good, two marginal, and one irrigated sites were used during 1988 to 1992 for the first component. At least six perennial and four annual biomass species were included at all sites. Three to four nitrogen (N) levels and a crop-recrop comparison (annuals only) were management intensities included. Biomass cropping on idled lands was performed on dryland at Carrington and evaluated the effects of removing leguminous biomass on fallowed lands. This report summarizes results from the 5-year project.

Meyer, D.W.; Norby, W.E.; Erickson, D.O.; Johnson, R.G. [North Dakota State Univ., Fargo, ND (United States)

1994-08-01T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


421

North Plains Electric Coop Inc | Open Energy Information  

Open Energy Info (EERE)

3757 3757 Utility Location Yes Ownership C NERC Location SPP NERC SPP Yes RTO SPP Yes Activity Transmission Yes Activity Distribution Yes References EIA Form EIA-861 Final Data File for 2010 - File1_a[1] LinkedIn Connections CrunchBase Profile No CrunchBase profile. Create one now! This article is a stub. You can help OpenEI by expanding it. Utility Rate Schedules Grid-background.png Irrigation rate Commercial Large Power-Commercial Commercial Large Power-Commercial Primary Voltage Commercial Large Power-Industrial Industrial Large Power-Industrial Primary Voltage Industrial Oil Well Pump Industrial Security Lighting-1000 Watt Lighting Security Lighting-175 Watt Lighting Security Lighting-400 Watt Lighting Single Phase General Service-Commercial Commercial Single Phase General Service-Residential Residential

422

Draft Upper Great Plains Wind Energy Programmatic Environmental...  

NLE Websites -- All DOE Office Websites (Extended Search)

UGP Region includes all or parts of Iowa, Minnesota, Montana, Nebraska, North Dakota, and South Dakota, encompassing some areas of the United States with the highest potential for...

423

Comparison of Moist Static Energy and Budget between the GCM-Simulated MaddenJulian Oscillation and Observations over the Indian Ocean and Western Pacific  

Science Conference Proceedings (OSTI)

The moist static energy (MSE) anomalies and MSE budget associated with the MaddenJulian oscillation (MJO) simulated in the Iowa State University General Circulation Model (ISUGCM) over the Indian and Pacific Oceans are compared with observations. ...

Xiaoqing Wu; Liping Deng

2013-07-01T23:59:59.000Z

424

Economic Development Impacts from Wind Power in the Western Governors' Association States (Poster)  

DOE Green Energy (OSTI)

The Western Governors' Association created the Clean and Diversified Energy Advisory Committee (CDEAC) "to utilize the region's diverse resources to produce affordable, sustainable, and environmentally reponsible energy." This conference poster, prepared for WINDPOWER 2007 in Los Angeles, outlines the economic impact to the Western United States from new wind energy projects.

Tegen, S.; Goldberg, M.; Milligan, M.

2007-06-01T23:59:59.000Z

425

WECC releases its first-ever transmission plan for the Western...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Western Interconnection. The Plan was developed through WECC's Regional Transmission Expansion Planning (RTEP) project, as part of a grant from the U.S. Department of Energy...

426

U.S. Department of Energy Categorical Exclusion Detennination...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Efficiency Turbo- Machinery Program or Field Office: Advanced Research Project Agency- Energy Location(s) (CityCountyState): Canoga Park, CA; Des Plaines, IL; University Park,...

427

Benthic Observations on the Madeira Abyssal Plain: Currents and Dispersion  

Science Conference Proceedings (OSTI)

An experiment to measure near-bottom currents on the Madeira Abyssal Plain is described. The moorings placed near 33N, 22W were separated by 540 km with instruments at 10, 100 and 600 m above the bottom (depth 5300 m). Rotor stalling occurred ...

Peter M. Saunders

1983-08-01T23:59:59.000Z

428

High Plains Severe WeatherTen Years After  

Science Conference Proceedings (OSTI)

More than a decade ago, a study was published that identified a short list of precursor conditions for severe thunderstorms on the High Plains of the United States. The present study utilizes data from the summer months of ten convective seasons ...

John F. Weaver; Nolan J. Doesken

1991-09-01T23:59:59.000Z

429

Benthic Observations on the Madeira Abyssal Plain: Fronts  

Science Conference Proceedings (OSTI)

Analysis of data from a mooring with five vector-averaging current meters between 10 and 70 m above the bed of the Madeira Abyssal Plain reveals the existence of narrow regions with relatively large gradients of potential temperature, or fronts....

S. A. Thorpe

1983-08-01T23:59:59.000Z

430

Western Gas Sands Project. Quarterly basin activities report  

SciTech Connect

A summation of information is presented on geology and drilling activity in the four primary study areas of the Western Gas Sands Project. The areas of interest are the Greater Green River Basin, the Piceance Basin, the Uinta Basin, and the Northern Great Plains Province. Drilling activity is discussed for the months of October, November, and December, 1977, with the major emphasis on wells located in low permeability sandstone areas, having significant gas production and utilizing hydraulic fracturing treatments. The drilling information was obtained primarily from ''The Rocky Mountain Region Report'' published by Petroleum Information Corporation on a daily basis. Another source of information was the ''Montana Oil and Gas Journal'' which is released weekly.

1978-01-01T23:59:59.000Z

431

Western Greenbrier Co-Production Demonstration Project Final Environmental Impact Statement  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

WESTERN WESTERN GREENBRIER CO-PRODUCTION DEMONSTRATION PROJECT FINAL ENVIRONMENTAL IMPACT STATEMENT VOLUME 1 OF 3 DOE / EIS-0361 U.S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory NOVEMBER 2007 COVER SHEET Responsible Agency: U.S. Department of Energy Title: Western Greenbrier Co-Production Demonstration Project, Final Environmental Impact Statement (DOE/EIS-0361) Location: Rainelle, West Virginia Contact: For further information about this Environmental Impact Statement, contact: For general information on the Department of Energy's process for implementing the National Environmental Policy Act, contact: Roy Spears, Document Manager National Energy Technology Laboratory U.S. Department of Energy 3610 Collins Ferry Road

432

Laboratory-Measured and Property-Transfer Modeled Saturated Hydraulic Conductivity of Snake River Plain  

E-Print Network (OSTI)

Plain Aquifer Sediments at the Idaho National Laboratory, Idaho Scientific Investigations Report 2008 Conductivity of Snake River Plain Aquifer Sediments at the Idaho National Laboratory, Idaho By Kim S. Perkins saturated hydraulic conductivity of Snake River Plain aquifer sediments at the Idaho National Laboratory

433

Categorical Exclusion (CX) Determinations By Date | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

March 22, 2013 March 22, 2013 CX-010553: Categorical Exclusion Determination Appledorn Substation Construction CX(s) Applied: B4.11 Date: 03/22/2010 Location(s): Minnesota Offices(s): Western Area Power Administration-Upper Great Plains Region March 21, 2013 CX-010246: Categorical Exclusion Determination South Table Mountain Denver West Parkway Improvements CX(s) Applied: A9, B1.33 Date: 03/21/2013 Location(s): Colorado Offices(s): Golden Field Office March 21, 2013 CX-010244: Categorical Exclusion Determination Community-Wide Public Facilities Energy Efficiency Retrofit and Biomass Heating Conversion Project, Energy Efficiency and Conservation Block Grant Program CX(s) Applied: B5.1 Date: 03/21/2013 Location(s): Alaska Offices(s): Golden Field Office March 21, 2013 CX-010167: Categorical Exclusion Determination

434

A Model for Estimating Demand for Irrigation Water on the Texas High Plains  

E-Print Network (OSTI)

With rapidly changing conditions in production agriculture, the need for highly flexible and quickly applicable methods of analysis is emphasized. The purpose of this study was to develop such a model for a homogeneous production region in the Texas High Plains. A linear programming model was constructed whereby crop or input prices are readily adjustable. In addition, limitations on quantities of inputs available can easily be evaluated. The model contains cotton, grain sorghum, corn, wheat and soybeans. Inputs that can be evaluated include irrigation water, natural gas, diesel, nitrogen fertilizer and herbicides. The primary focus of this work was to estimate the demand for irrigation water in the study area. The model was applied using alternative crop prices and input prices. Assuming average crop prices, current input prices and only variable costs of production, as the price of water was increased wheat shifted from irrigated to dryland production, then grain sorghum, cotton, corn and soybeans, in that order. The price of water was $71.75 per acre foot plus current pumping cost when all land shifted to dryland production. The same analysis, except variable and fixed costs both included, gave similar results relative to the sequence of crops that shift to dryland production as the price of water was increased. However, the shifts occurred at much lower water prices; i.e., at $24.47 per acre foot plus current pumping costs, all land had shifted to dryland production. This suggests that over the long run, irrigation in the Texas High Plains is quite sensitive to the price of energy used in pumping water. Further, there are strong implications relative to farmer's "ability to pay" for water imported to the High Plains from other regions. In this report, several scenarios including low, high and average crop prices and average and high input prices were evaluated.

Condra, G. D.; Lacewell, R. D.; Sprott, J. M.; Adams, B. M.

1975-05-01T23:59:59.000Z

435

USAID West Africa Climate Program | Open Energy Information  

Open Energy Info (EERE)

West Africa Climate Program West Africa Climate Program Jump to: navigation, search Name USAID West Africa Climate Program Agency/Company /Organization U.S. Agency for International Development Sector Energy, Land Focus Area Energy Efficiency, Renewable Energy, Forestry, Agriculture Topics Background analysis Website http://www.usaid.gov/our_work/ Country Ghana, Togo, Benin, Senegal, Niger, Nigeria, Mali, Liberia, Gambia, Ivory Coast, Burkina Faso, Sierra Leone, Mauritania, Guinea, Guinea-Bissau, Cameroon, Gabon, Equatorial Guinea, Chad, Sao Tome and Principe, Cape Verde Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Western Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa, Middle Africa, Western Africa

436

Western Area Power Administration  

NLE Websites -- All DOE Office Websites (Extended Search)

Western Area Power Administration Customer Meeting The meeting will begin at 12:30 pm MST We have logged on early for connectivity purposes Please stand-by until the meeting begins Please be sure to call into the conference bridge at: 888-989-6414 Conf. Code 60223 If you have connectivity issues, please contact: 866-900-1011 1 Introduction  Welcome  Introductions  Purpose of Meeting ◦ Status of the SLCA/IP Rate ◦ SLCA/IP Marketing Plan ◦ Credit Worthiness Policy ◦ LTEMP EIS update ◦ Access to Capital  Handout Materials http://www.wapa.gov/crsp/ratescrsp/default.htm 2 SLCA/IP Rate 3 1. Status of Repayment 2. Current SLCA/IP Firm Power Rate (SLIP-F9) 3. Revenue Requirements Comparison Table 4.SLCA/IP Rate 5. Next Steps

437

Impact of High Solar Penetration in the Western Interconnection  

NLE Websites -- All DOE Office Websites (Extended Search)

Impact of High Solar Penetration Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy Technical Report NREL/TP-5500-49667 December 2010 NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy, operated by the Alliance for Sustainable Energy, LLC. National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401 303-275-3000 * www.nrel.gov Contract No. DE-AC36-08GO28308 Impact of High Solar Penetration in the Western Interconnection Debra Lew National Renewable Energy Laboratory Nicholas Miller, Kara Clark, Gary Jordan, and Zhi Gao GE Energy Prepared under Task No. SM101610

438

Projects to expand energy sources in the western states: an update of Information Circular 8719. [24 states west of the Mississippi River  

DOE Green Energy (OSTI)

This report is an expansion and update of BM-IC-8719 and comprises maps and tables listing the name, location, and other pertinent data concerning certain fuel-related projects. The maps show the locations of the planned or proposed facilities. The tables include information on projects involving the proposed or planned development of fuel resources, as well as the development of storage, transportation, and conversion facilities. The report covers the 24 states west of the Mississippi River including Alaska and Hawaii. Of the 808 projects for which information is provided, 219 concern coal mines, 246 concern electric generating plants, and 115 concern uranium mines; Energy Supply and Environmental Coordination Act coal conversion notices are also included. Because of the dynamic nature of the energy industry, many uncertainties exist and some of the listed projects may never become realities. Also, no attempt has been made to determine the degree of certainty or viability of each project.

Rich, C.H. Jr.

1977-01-01T23:59:59.000Z

439

Selection of herbaceous energy crops for the western corn belt. Final report Part 1: Agronomic aspects, March 1, 1988--November 30, 1993  

DOE Green Energy (OSTI)

The relative high cost of energy derived from biomass is a major deterrent to greater use of biomass for energy production One of the most important methods of lowering the cost of dedicated biomass production is to increase the yield per unit of land area so that fixed costs can be applied to more tons of forage. For this study, the authors selected grass and legume crops with potential for high biomass yields and those that offer protection from soil erosion. The research reported here was conducted to identify those species and cultural practices that would result in high biomass yields for various land capabilities with acceptable and soil erosion potential. They also conducted research to determine if intercropping sorghum into alfalfa or reed canarygrass could increase biomass yields over alfalfa or reed canarygrass grown alone and still have the advantage for limiting soil erosion.

Anderson, I.C.; Buxton, D.R.; Hallam, J.A. [Iowa State Univ. of Science and Technology, Ames, IA (United States)

1994-05-01T23:59:59.000Z

440

Western Area Power Administration combined power system financial statements September 30, 1994 and 1993 and management overview and performance measurements  

SciTech Connect

The attached report presents the results of the independent certified public accountant`s audit of the Department of Energy`s Western Area Power Administration`s (Western) combined financial statements as of September 30, 1994. The auditors have expressed an unqualified opinion on Western`s 1994 statements. Their reports on Western`s internal control structure and on compliance with laws and regulations are also provided. Western was established in December 1977, and has the responsibility for the Federal electric power marketing and transmission functions in 15 central and western states. Western markets power, as required by existing law, at the lowest possible rates consistent with sound business principles to recover the costs of operation and capital invested in power facilities.

Marwick, P.

1994-12-31T23:59:59.000Z

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


441

Western LNG project - Project summary  

Science Conference Proceedings (OSTI)

The Western LNG Project is a major new undertaking involving the liquefaction of conventional natural gas from the Western Canadian Sedimentary Basin at a plant on the British Columbia north coast. The gas in its liquid form will be shipped to Japan for consumption by utility companies. The Project represents a new era in gas processing and marketing for the Canadian natural gas industry.

Forgues, E.L.

1984-02-01T23:59:59.000Z

442

Preliminary design of the Carrisa Plains solar central receiver power plant. Volume I. Executive summary  

DOE Green Energy (OSTI)

The design of the 30 MWe central receiver solar power plant to be located at Carrisa Plains, San Luis Obispo County, California, is summarized. The plant uses a vertical flat-panel (billboard) solar receiver located at the top of a tower to collect solar energy redirected by approximately 1900 heliostats located to the north of the tower. The solar energy is used to heat liquid sodium pumped from ground level from 610 to 1050/sup 0/F. The power conversion system is a non-reheat system, cost-effective at this size level, and designed for high-efficiency performance in an application requiring daily startup. Successful completion of this project will lead to power generation starting in 1986. This report also discusses plant performance, operations and maintenance, development, and facility cost estimate and economic analysis.

Not Available

1983-12-31T23:59:59.000Z

443

MENA-GTZ EERE Regional Center | Open Energy Information  

Open Energy Info (EERE)

MENA-GTZ EERE Regional Center MENA-GTZ EERE Regional Center Jump to: navigation, search Name MENA-GTZ EERE Regional Center Agency/Company /Organization GTZ Partner Ministry of electricity and energy of Egypt, New and Renewable Energy Authority (NREA) Sector Energy Focus Area Energy Efficiency, Renewable Energy Topics Background analysis Website http://www.gtz.de/en/praxis/95 Program Start 2008 Program End 2013 Country Algeria, Bahrain, Cyprus, Djibouti, Egypt, Iran, Iraq, Israel, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Qatar, Saudi Arabia, Syria, Tunisia, Turkey, United Arab Emirates, Yemen Northern Africa, Western Asia, Western Asia, Eastern Africa, Northern Africa, Southern Asia, Western Asia, Western Asia, Western Asia, Western Asia, Western Asia, Northern Africa, Northern Africa, Western Asia, Western Asia, Western Asia, Western Asia, Northern Africa, Western Asia, Western Asia, Western Asia

444

title Survey of Western U S Electric Utility Resource Plans  

NLE Websites -- All DOE Office Websites (Extended Search)

Survey of Western U S Electric Utility Resource Plans Survey of Western U S Electric Utility Resource Plans journal Energy Policy year month abstract p We review long term electric utility plans representing nbsp textquoteright of generation within the Western U S and Canadian provinces nbsp We nbsp address what utility planners assume about future growth of electricity demand and supply what types of risk they consider in their long term resource planning and the consistency in which they report resource planning related data The region is anticipated to grow by annually by before Demand Side Management nbsp About nbsp two thirds of nbsp the utilities that provided an annual energy forecast also nbsp reported energy efficiency savings projections in aggregate they anticipate an average reduction in energy and nbsp reduction in

445

Impact of the Great Plains coal gasification decision on a coal gas industry  

SciTech Connect

In approving the special tariff and financing features of the Great Plains coal-gasification project, the Federal Energy Regulatory Commission took the first major federal action toward encouraging the construction of a commercial-sized synthetic-fuels facility, asserts the law firm of Morley, Caskin and Generelly. Owned by Great Plains Gasification Associates - a partnership of five pipeline companies - the commercial-sized plant qualifies for FERC approval under the commission's RD and D regulations. The special financing terms for the project will require customers of existing natural gas companies to bear the costs incurred by the project regardless of its success in operation or the amount of gas produced for the customer's utilization. This RD and D rate treatment serves to mitigate market forces and thus operates as an effective subsidy for the pipeline industry. If this or a similar regulatory subsidy is extended to other coal-gas projects, the pipeline industry could take the lead in the nation's synfuels program.

Zipp, J.F.

1980-05-08T23:59:59.000Z

446

Audit Report: IG-0873 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Report: IG-0873 October 22, 2012 Management of Western Area Power Administration's Cyber Security Program The Department of Energy's Western Area Power Administration...

447

Economics of the Great Plains coal gasification project  

Science Conference Proceedings (OSTI)

the Great Plains project will be the Nation's first commercial-scale plant producing synthetic gas from coal. The project's first annual economic report, released in March 1983, was much less optimistic than a similar analysis prepared in January 1982 to justify construction. GAO found that: the main reason for the changed economic outlook was that the assumed synthetic gas prices used in the March analysis were significantly lower than those used previously. Great Plains did not, nor was it required to, consider tax implications to the parent companies of the project's partners. If these implications are considered, the economics could be more optimistic than the March 1983 report indicates. Should the partners end their participation, some tax benefits would have to be repaid. Although the project is a potentially attractive investment, its financial viability is extremely sensitive to the future prices of synthetic gas. Even a small deviation in prices could significantly affect its economics.

Not Available

1983-08-24T23:59:59.000Z

448

Shallow magma targets in the western US  

DOE Green Energy (OSTI)

Within the next few years a hole will be drilled into a shallow magma body in the western US for the purpose of evaluating the engineering feasibility of magma energy. This paper examines potential drilling sites for these engineering feasibility experiments. Target sites high on the list are ones that currently exhibit good geophysical and geological data for shallow magma and also have reasonable operational requirements. Top ranked sites for the first magma energy well are Long Valley, CA, and Coso/Indian Wells, CA. Kilauea, HI, also in the top group, is an attractive site for some limited field experiments. A number of additional sites offer promise as eventual magma energy sites, but sparsity of geophysical data presently prevents these sites from being considered for the first magma energy well.

Hardee, H.C.

1984-10-01T23:59:59.000Z

449

Great Plaines installs directionally drilled crossings in Texas  

SciTech Connect

This paper reports on installing a five- line wide, one-line long products system for ARCO Pipe Line Co. (APLC) in a crowded utility right of way required Great Plains Pipeline Construction Co. to complete three directionally drilled crossings and over 50 conventional bored crossings in the Channelview, Texas area. The pipe line route closely parallels a 4-mi ROW section of Houston Power and Light Co. (HP and L) and about 4 mi of Union Pacific Railroad tracks. Due to overhead towers carrying high-voltage electric transmission lines, Great Plains bored under the existing towers in HP and L's easement to preserve the right of way for future tower expansion. Laney, Inc., subcontracted the conventional bores underneath towers and minor roads. Laney Directional Drilling Co. was the prime contractor for two horizontal directionally drilled crossings of the Houston Ship Channel and Carpenter's Bayou. Great Plains, with its own crew, completed three roadway crossings in high-traffic areas. Engineering and material procurement was handled by APLC.

Thiede, K.L.

1991-09-01T23:59:59.000Z

450

The Western Edge: some recent electronic music from Western Australia  

Science Conference Proceedings (OSTI)

A survey is presented of developments in recent Western Australian electronic music, focusing on the geographical influence on local composers' work. The article follows specific cases of practitioners in the fields of Sound Art (Alan Lamb and Hannah ...

Lindsay Vickery

2001-04-01T23:59:59.000Z

451

Evaluation of lineament analysis as an exploration technique for geothermal energy, western and central Nevada. Final report, June 1976--October 1978  

DOE Green Energy (OSTI)

Lineament analysis as an exploration technique for geothermal energy using multi-scale, multi-format imagery and geophysical data is investigated and evaluated. Two areas in Nevada, each having distinct differences in structural style were studied. One area, which encompasses a portion of the Battle Mountain Heat Flow High, was studied to determine the relationship between regional and local structural controls and geothermal activity. Four geothermal sites within this area (Winnemucca AMS) were selected and studied in detail. These sites include: 1) Leach Hot Springs, 2) Kyle Hot Springs, 3) Beowawe geothermal area and Buffalo Valley Hot Springs. A second area encompassed by the Reno AMS Sheet was selected for further study in a region dominated by three diverse tectonic styles; these are: 1) the Sierra Nevada Front, 2) the Walker Lane, and 3) basin-and-range structures. Geothermal sites analyzed at site specific scales within the Reno AMS Sheet included Steamboat Hot Springs in the Sierra Nevada Front subprovince, Dixie Valley Hot Springs located in typical basin-and-range terrain and the Brady's-Desert Peak area which is marginal to the Walker Lane. Data products employed included LANDSAT imagery, SKYLAB photography, gravity, and aeromagnetic maps. Results of this investigation indicate that in north-central Nevada the major sites of geothermal activity are associated with northeast trending structures related to the Midas Trench lineament and that the most viable geothermal area (Beowawe is located at the intersection of the northeast trend of the Oregon-Nevada Lineament.

Trexler, D.T.; Bell, E.J.; Roquemore, G.R.

1978-10-01T23:59:59.000Z

452

Western Wind and Solar Integration Study: Hydropower Analysis  

DOE Green Energy (OSTI)

The U.S. Department of Energy's (DOE) study of 20% Wind Energy by 2030 was conducted to consider the benefits, challenges, and costs associated with sourcing 20% of U.S. energy consumption from wind power by 2030. This study found that with proactive measures, no insurmountable barriers were identified to meet the 20% goal. Following this study, DOE and the National Renewable Energy Laboratory (NREL) conducted two more studies: the Eastern Wind Integration and Transmission Study (EWITS) covering the eastern portion of the U.S., and the Western Wind and Solar Integration Study (WWSIS) covering the western portion of the United States. The WWSIS was conducted by NREL and research partner General Electric (GE) in order to provide insight into the costs, technical or physical barriers, and operational impacts caused by the variability and uncertainty of wind, photovoltaic, and concentrated solar power when employed to serve up to 35% of the load energy in the WestConnect region (Arizona, Colorado, Nevada, New Mexico, and Wyoming). WestConnect is composed of several utility companies working collaboratively to assess stakeholder and market needs to and develop cost-effective improvements to the western wholesale electricity market. Participants include the Arizona Public Service, El Paso Electric Company, NV Energy, Public Service of New Mexico, Salt River Project, Tri-State Generation and Transmission Cooperative, Tucson Electric Power, Xcel Energy and the Western Area Power Administration.

Acker, T.; Pete, C.

2012-03-01T23:59:59.000Z

453

Western Electricity Coordinating Council (WECC) Webinar  

Energy.gov (U.S. Department of Energy (DOE))

Hosted by the Western Electricity Coordinating Council (WECC), the regional entity responsible for coordinating and promoting bulk electric system reliability in the Western Interconnection, this...

454

Topic A" Awardee: Western Electricity Coordinating Council |...  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

A" Awardee: Western Electricity Coordinating Council Topic A" Awardee: Western Electricity Coordinating Council Regional Transmission Expansion Planning (RTEP) The America Recovery...

455

Validation of regional wind resource predictions in the Northern Great Plains  

DOE Green Energy (OSTI)

The development and validation of computerized wind mapping tools for regional assessment purposes is an important step in accelerating wind energy deployment. This paper summarizes the results of a validation study of the automated wind resource mapping technique developed at the National Renewable Energy Laboratory (NREL). This technique uses Geographic Information System (GIS) software and produces high horizontal resolution (1 km) wind resource maps. The automated wind maps have been used to help plan wind measurement programs and to define potential areas for wind energy projects in countries such as Mexico, Chile, Indonesia, and China. The authors chose a US location for this project to test the accuracy of the automated mapping technique in a region where the wind resource distribution was already fairly well known. The Buffalo Ridge region of the Northern Great Plains served as the subject area. The study area covered northwestern Iowa, southwestern Minnesota, and adjacent parts of South Dakota and Nebraska. This area had several advantages for use in a validation study. First, this area has active wind energy development and the results would be of interest to the wind energy community. Second, a validation data set would be fairly easy to derive because recent wind measurements were taken in that region specifically for wind energy purposes. These data were publicly available and easily obtained. Finally, the relatively simple terrain in that region enabled this study to be completed in a timely manner.

Elliott, D.; Schwartz, M.

1998-08-01T23:59:59.000Z

456

Looking at Western Nepal's Climate  

Science Conference Proceedings (OSTI)

Working in western Nepal as a climatologist, one encounters conditions and problems very different from those in technologically advanced countries. This article discusses the working environment, the present state of climatology, some recent ...

Norman Thyer

1985-06-01T23:59:59.000Z

457

| Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

July 27, 2011 Comments of the Western Interstate Energy Board's High-Level Radioactive Waste Committee on the Department of Energy Office of General Counsel's Notice of Inquiry...

458

Senegal-ENDA Projects | Open Energy Information  

Open Energy Info (EERE)

ENDA Sector Energy, Land Focus Area Conventional Energy, Energy Efficiency, Renewable Energy Topics Background analysis Country Senegal UN Region Western Africa...

459

Categorical Exclusion Determinations: B4.11 | Department of Energy  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

January 18, 2012 January 18, 2012 CX-007604: Categorical Exclusion Determination General Motors Battery Pack Assembly Plant - Electric Substation Upgrade CX(s) Applied: B4.11 Date: 01/18/2012 Location(s): Michigan Offices(s): National Energy Technology Laboratory October 11, 2011 CX-006889: Categorical Exclusion Determination Bristol to Groton Transmission Line Upgrade Project CX(s) Applied: B4.11 Date: 10/11/2011 Location(s): South Dakota Office(s): Western Area Power Administration-Upper Great Plains Region September 27, 2011 CX-006815: Categorical Exclusion Determination Cattle Creek Substation CX(s) Applied: B4.11 Date: 09/27/2011 Location(s): Bonneville County, Idaho Office(s): Bonneville Power Administration September 15, 2011 CX-006896: Categorical Exclusion Determination Maxwell - O'Banion Optical Ground Wire

460

GPS Water Vapor Projects Within the ARM Southern Great Plains Region  

NLE Websites -- All DOE Office Websites (Extended Search)

GPS Water Vapor Projects Within the ARM GPS Water Vapor Projects Within the ARM Southern Great Plains Region J. Braun, T. Van Hove, S. Y. Ha, and C. Rocken GPS Science and Technology Program University Corporation for Atmospheric Research Boulder, Colorado Abstract The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program has a need for an improved capability to measure and characterize the four-dimensional distribution of water vapor within the atmosphere. Applications for this type of data include their use in radiation transfer studies, cloud-resolving and single-column models, and for the establishment of an extended time series of water vapor observations. The University Corporation for Atmospheric Research's (UCAR) GPS Science and Technology (GST) Program is working with ARM to leverage the substantial investment in

Note: This page contains sample records for the topic "western plains energy" from the National Library of EnergyBeta (NLEBeta).
While these samples are representative of the content of NLEBeta,
they are not comprehensive nor are they the most current set.
We encourage you to perform a real-time search of NLEBeta
to obtain the most current and comprehensive results.


461

Western Riverside Council of Governments - Large Commercial PACE  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Large Commercial PACE Large Commercial PACE (California) Western Riverside Council of Governments - Large Commercial PACE (California) < Back Eligibility Commercial Savings Category Other Alternative Fuel Vehicles Hydrogen & Fuel Cells Solar Buying & Making Electricity Program Info State California Program Type PACE Financing Provider Structured Finance Associates Structured Finance, on behalf of the Western Riverside Council of Governments (WRCOG), is providing Property Assessed Clean Energy (PACE) loans to eligible large commercial businesses in participating jurisdictions. PACE programs allow property owners to finance energy projects, and to repay the financing through special assessments on their property tax bill. Solar installations of at least 125 kilowatts, fuel cells, and a variety of

462

SPE Western Regional Meeting  

Energy.gov (U.S. Department of Energy (DOE)) Indexed Site

Overview of "Section 999" and Overview of "Section 999" and Ultra-Deepwater Advisory Committee Elena Melchert Committee Manager Ultra-Deepwater Advisory Committee February 23, 2011 Energy Policy Act of 2005  Energy Policy Act of 2005, Public Law 109-58  TITLE IX--RESEARCH AND DEVELOPMENT  Subtitle J--Ultra-Deepwater and Unconventional Natural Gas and Other Petroleum Resources  Sec. 999 -- Ultra-deepwater and unconventional onshore natural gas and other petroleum research and development program  Signed into Law August 8, 2005 2 Section 999 Requirements  Program Elements - Ultra-Deepwater Resources - Unconventional Resources - Small Producer Program - NETL Complementary Research  Other Requirements - Program Consortium - Annual Plan

463

Evaluation of cooling tower and wastewater treatment operations at the Great Plains Coal Gasification Plant  

Science Conference Proceedings (OSTI)

The objective of this study was to provide a technical assessment of the Great Plains Coal Gasification Plant Wastewater Treatment System. This Scope of Work consisted of five primary tasks described as follows: Task 1 - Determine the quantity of hydantoins in the stripped gas liquor (SGL), their precursors, and the kinetics of their formation in condensed liquor for the Great Plains Gasification Associates (GPGA) gasification facility. The University of North Dakota Energy Research Center (UNDERC) has measured a high concentration of hydantoins in the gas liquor from their slagging gasifier. UNDERC has tested the use of SGL in a pilot cooling tower and they witnessed some adverse effects in the cooling tower and heat exchanger systems. Task 2 - Investigate the adverse Department of Energy (DOE) findings at UNDERC with regard to corrosion, foaming, biological and organic fouling, chemical attack on concrete and organic emissions resulting from the use of SGL in a pilot plant cooling tower. Task 3 - Validate the heat load on the cooling tower for both summer and winter operation and determine the adequacy of the surge pond to store the maximum predicted amount of excess water accumulated during winter operation. Task 4 - Assess potential fouling, foaming and organic carry-over problems associated with operability of the multiple-effect evaporator and develop recommendations on possible alternate use of evaporator condensate to alleviate possible problems in disposing of excess wastewater. Task 5 - Provide DOE with recommendations on the wastewater treatment backup design and test program already committed to by GPGA. This paper presents Fluor's findings regarding the five primary tasks. 12 refs., 4 figs., 15 tabs.

Lang, R.A.

1984-12-01T23:59:59.000Z

464

Energy Information Directory of the Energy Information Administration  

U.S. Energy Information Administration (EIA)

Waste to energy; Waste management; Water companies; Water conservation apparatus; Weather; Weatherization material; Weatherization Program; Western Area Power ...

465

Great plains coal gasification plant: Technical lessons learned report  

SciTech Connect

In a first of a kind, grass roots plant of the complexity of the Great Plains Gasification Plant the lessons learned are numerous and encompass a wide range of items. This report documents the lessons learned from all phases of the project from preliminary design through the most recent operation of the plant. Based on these lessons learned, suggestions are made for changes and/or process improvements to future synfuel plants. In addition, recommendations are made for research and development in selected areas. 46 refs., 31 figs., 33 tabs.

Delaney, R.C.; Mako, P.F.

1988-11-01T23:59:59.000Z

466

Great Plains Gasification Project process stream design data. Final report  

Science Conference Proceedings (OSTI)

The Great Plains Coal Gasification Plant (GPGP) in the first commercial coal-to-SNG synthetic fuel plant constructed and operated in the United States. This process stream design data report provides non-proprietary information to the public on the major GPGP process streams. The report includes a simplified plant process block flow diagram, process input/output diagrams and stream design data sheets for 161 major GPGP process and effluent streams. This stream design data provides an important base for evaluation of plant and process performance and for verification of the DOE ASPEN computer simulation models of the GPGP processes. 8 refs.